WO2021162581A1 - Procédé de radiographie à double énergie (variantes) - Google Patents

Procédé de radiographie à double énergie (variantes) Download PDF

Info

Publication number
WO2021162581A1
WO2021162581A1 PCT/RU2021/000021 RU2021000021W WO2021162581A1 WO 2021162581 A1 WO2021162581 A1 WO 2021162581A1 RU 2021000021 W RU2021000021 W RU 2021000021W WO 2021162581 A1 WO2021162581 A1 WO 2021162581A1
Authority
WO
WIPO (PCT)
Prior art keywords
images
ray
displacement map
exposure interval
corrected image
Prior art date
Application number
PCT/RU2021/000021
Other languages
English (en)
Russian (ru)
Inventor
Заурбек Викторович БУЛАТОВ
Анатолий Рудольфович ДАБАГОВ
Игорь Сергеевич КОБЫЛКИН
Александр Валерьевич ПРОХОРОВ
Владимир Игоревич СПОРЫШ
Юрий Евгеньевич ШУНКОВ
Дмитрий Викторович ПОЗДНЯКОВ
Дмитрий Михайлович КАСЮК
Original Assignee
Акционерное, Общество "Медицинские Технологии Лтд"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Акционерное, Общество "Медицинские Технологии Лтд" filed Critical Акционерное, Общество "Медицинские Технологии Лтд"
Publication of WO2021162581A1 publication Critical patent/WO2021162581A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N23/00Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00
    • G01N23/02Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material
    • G01N23/04Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material
    • G01N23/046Investigating or analysing materials by the use of wave or particle radiation, e.g. X-rays or neutrons, not covered by groups G01N3/00 – G01N17/00, G01N21/00 or G01N22/00 by transmitting the radiation through the material and forming images of the material using tomography, e.g. computed tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography

Definitions

  • the claimed group of inventions relates to the field of medical X-ray technology and can be used in examining patients with various diseases, including oncological diseases.
  • the disadvantage of the known method consists in the manifestation of artifacts on the obtained separate images, caused both by the natural rhythmic movement of the patient during the diagnostic study (as a result of breathing and heartbeat), and by possible random changes in the position of his body, which reduces the accuracy of image interpretation.
  • the technical problem solved by the claimed group of inventions consists in the creation of a dual-energy radiography method, which makes it possible to accurately interpret X-ray images, which increases the diagnostic value of the study.
  • the technical result is achieved, which consists in the reduction of motion artifacts on the obtained separate images, both by reducing the influence of the probable movement of the patient during a diagnostic study, and by compensating for the influence of the residual effect of such movement on the information content of these images.
  • the technical problem is solved, and the specified technical result is achieved by implementing the method of dual-energy radiography, which includes irradiating a patient with X-ray radiation as a result of applying two voltage pulses of different magnitude to the X-ray source, obtaining two corresponding initial x-ray images and construction on their basis of separate images of tissues with different coefficients of linear attenuation.
  • a high voltage pulse is applied, and essentially simultaneously with the beginning of the second exposure interval, a low voltage pulse is applied.
  • a sequence of formations is carried out from the set of said displacement vectors Ar P (ij) of the displacement map Ar in the scale of the original images and obtaining the current corrected image by shifting the previous corrected image according to the current displacement map until the final corrected image is obtained.
  • the formation of the aforementioned displacement vectors Ar P ( y> the displacement map Ar in the scale of the original images with its sequential refinement until the final displacement map is obtained and obtaining the corrected image by shifting the original image according to the final displacement map) is carried out.
  • FIG. 1 shows the time base of the pulses, in accordance with the closest analogue, and Ui ⁇ U2.
  • FIG. 2 shows the time base of pulses, in accordance with the present invention in both versions, with U2 ⁇ Ui.
  • the claimed method of dual-energy radiography is implemented as follows.
  • the patient is irradiated with X-ray radiation by applying to the X-ray source two pulses, high and low voltage, respectively, Ui and U2.
  • the supply of pulses is carried out using a voltage generator included in the X-ray power supply device.
  • the radiation emitted by the source is optionally additionally filtered by passing through a layer of selectively absorbing material.
  • the radiation transmitted through the patient is recorded using an X-ray detector, optionally equipped with a raster filtering out scattered radiation.
  • the high voltage pulse Ui is applied not earlier than the middle of the first exposure interval (denoted in Figs. 1 and 2 as ti ⁇ b), i.e. not earlier than the point in time indicated in FIG. 2 as (ti + t 2 ) / 2).
  • Applying a high voltage pulse Ui of the previously mentioned time point unreasonably increases the total exposure time indicated in FIG. 2 as T 2 , because, due to the high penetrating ability of high-energy radiation with a high degree of probability, repeatedly confirmed experimentally, the duration of the high-voltage pulse Ui turns out to be shorter than half the exposure interval.
  • the low voltage pulse U 2 is applied substantially simultaneously with the start of the second exposure interval (denoted in FIGS. 1 and 2 as t 3 I 4 ).
  • high voltage means a voltage in the range of 100-150 kV
  • low voltage means a voltage in the range of 50-100 kV
  • the claimed sequence of impulses significantly reduces the total duration of exposure (from the value of ti in Fig. 1 to the value of m in Fig. 2), which, in turn, leads to a decrease in the influence of the probable movement of the patient during the diagnostic study, which is expressed, ultimately, in the reduction of motion artifacts on the obtained separate images.
  • the subsequent corrected image f is obtained by shifting the image f according to Ar;
  • the described sequence of operations makes it possible to compensate for the influence of the residual effect of the probable movement of the patient during a diagnostic study on the information content of X-ray images, which also ultimately leads to a reduction in motion artifacts in the obtained separate images and, as a consequence, to an increase in the information content of X-ray images.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Pulmonology (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Optics & Photonics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

Ce groupe d'inventions se rapporte au domaine de la médecine. L'invention concerne un procédé de radiographie à double énergie qui consiste à éclairer un patient avec un rayonnement radiographique suite à l'envoi sur une source de rayonnement radiographique de deux impulsions ayant une tension de valeur différente, obtenir deux images radiographiques initiales et construire des images radiographiques distinctes de tissus ayant différents coefficients d'atténuation linéaire. A partir du milieu du premier intervalle d'exposition, on envoie une impulsion de haute tension et, simultanément avec le début du second intervalle d'exposition, on envoie une impulsion basse tension. On effectue une superposition des deux images initiales en corrigeant l'une d'elles, ce pour quoi on effectue une série de compressions des images radiographiques initiales. Selon une première variante, on effectue une série de générations à partir d'un ensemble de vecteurs des décalages de la carte des décalages à l'échelle des images initiales et on obtient une image corrigée courante en décalant l'image corrigée précédente conformément à la carte courante jusqu'à obtenir une image corrigée finale. Dans une seconde variante, on effectue une génération à partir d'un ensemble de vecteurs des décalages de la carte des décalages à l'échelle des images originales suivie par un processus de précision jusqu'à obtenir une carte finale des décalages, après quoi on obtient une image corrigée en décalant l'image originale conformément à la carte finale des décalages.
PCT/RU2021/000021 2020-02-11 2021-01-20 Procédé de radiographie à double énergie (variantes) WO2021162581A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
RU2020106388 2020-02-11
RU2020106388A RU2738135C1 (ru) 2020-02-11 2020-02-11 Способ двухэнергетической рентгенографии (варианты)

Publications (1)

Publication Number Publication Date
WO2021162581A1 true WO2021162581A1 (fr) 2021-08-19

Family

ID=73792431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/RU2021/000021 WO2021162581A1 (fr) 2020-02-11 2021-01-20 Procédé de radiographie à double énergie (variantes)

Country Status (2)

Country Link
RU (1) RU2738135C1 (fr)
WO (1) WO2021162581A1 (fr)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2648635C2 (ru) * 2012-10-05 2018-03-26 Конинклейке Филипс Н.В. Обработка изображений в режиме реального времени для оптимизации представления фрагментов изображения
RU2655091C2 (ru) * 2014-02-21 2018-05-23 Самсунг Электроникс Ко., Лтд. Томографический аппарат и способ реконструкции его томографического изображения

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8977027B2 (en) * 2010-08-25 2015-03-10 Koninklijke Philips N.V. Dual modality imaging including quality metrics
CN107430778A (zh) * 2015-03-18 2017-12-01 棱镜传感器公司 基于来自光子计数多仓检测器的能量分辨的图像数据的图像重建
EP3960087B1 (fr) * 2016-10-31 2023-07-12 Oxford University Innovation Limited Procédé de détection de l'inflammation vasculaire
RU2694331C1 (ru) * 2018-10-26 2019-07-11 Акционерное общество "Научно-исследовательский институт технической физики и автоматизации" (АО "НИИТФА") Способ двухэнергетической томографии в коническом пучке и схема устройства двухэнергетического детектора

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2648635C2 (ru) * 2012-10-05 2018-03-26 Конинклейке Филипс Н.В. Обработка изображений в режиме реального времени для оптимизации представления фрагментов изображения
RU2655091C2 (ru) * 2014-02-21 2018-05-23 Самсунг Электроникс Ко., Лтд. Томографический аппарат и способ реконструкции его томографического изображения

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XU TONG ET AL.: "Dynamic dual-energy chest radiography: a potential tool for lung, tissue motion monitoring and kinetic study", PHYS MED BIOL, vol. 56, no. 4, 21 February 2011 (2011-02-21), pages 1191 - 1205, XP020203827, DOI: 10.1088/0031-9155/56/4/019 *

Also Published As

Publication number Publication date
RU2738135C1 (ru) 2020-12-08

Similar Documents

Publication Publication Date Title
JP5604103B2 (ja) X線生成システムの電源
JP6106365B2 (ja) 乳房の形態学的情報を取得する方法
DE102016207437B4 (de) Spektralunabhängige Ermittlung von Kalkablagerungen in Blutgefäßen
JPS59111740A (ja) X線ハイブリツド減算用整合フイルタ
CN111317493B (zh) 基于多能量x射线成像单独调整生成虚拟图像数据
US20110168878A1 (en) Method and apparatus for empirical determination of a correction function for correcting beam hardening and stray beam effects in projection radiography and computed tomography
KR20060135560A (ko) X선 ct 장치
DE102015104614A1 (de) Vorrichtung und Verfahren zur elektrischen Stimulation mit Hilfe eines Cochlea-Implantats
JPWO2011030460A1 (ja) 放射線断層撮影方法および放射線治療装置制御装置
US8428321B2 (en) Medical image processing apparatus and method, as well as program
JP2004173857A (ja) 放射線断層撮影装置、放射線断層撮影方法及びプログラム
DE102012214472B4 (de) Verfahren zur Ermittlung von Dualenergie-Bilddatensätzen und eine Röntgeneinrichtung dazu
KR20040073348A (ko) 방사선 촬영장치
WO2021162581A1 (fr) Procédé de radiographie à double énergie (variantes)
WO2019181229A1 (fr) Dispositif de commande de photographie, procédé de commande de photographie, système de radiographie, et programme
US7974450B2 (en) Method for generation of 3-D x-ray image data of a subject
RU2740870C1 (ru) Способ мультиэнергетического рентгенологического исследования
DE102004006548B4 (de) Verfahren zur Planung der Strahlentherapie eines Patienten und CT-System hierzu und zur Erstellung von CT-Aufnahmen
CN104361567A (zh) 基于配准的肺4d-ct图像吸气过程中间相位图像的重建方法
JP7373323B2 (ja) 画像処理装置、放射線撮像システム、画像処理方法及びプログラム
DE102011076882A1 (de) Verfahren zur Steuerung eines medizinischen Gerätes, Einrichtung mit einem medizinischen Gerät und Datenträger
JP7431602B2 (ja) 画像処理装置及び画像処理方法
JP7425619B2 (ja) 画像処理装置及び画像処理方法
WO2022181022A1 (fr) Dispositif et procédé de traitement d'image, système de radiographie et programme
WO2021162026A1 (fr) Dispositif de traitement d'image et procédé de traitement d'image

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753013

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21753013

Country of ref document: EP

Kind code of ref document: A1