WO2021162520A1 - 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 - Google Patents

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 Download PDF

Info

Publication number
WO2021162520A1
WO2021162520A1 PCT/KR2021/001900 KR2021001900W WO2021162520A1 WO 2021162520 A1 WO2021162520 A1 WO 2021162520A1 KR 2021001900 W KR2021001900 W KR 2021001900W WO 2021162520 A1 WO2021162520 A1 WO 2021162520A1
Authority
WO
WIPO (PCT)
Prior art keywords
pbch block
pbch
candidate
khz
candidates
Prior art date
Application number
PCT/KR2021/001900
Other languages
English (en)
French (fr)
Inventor
김선욱
고현수
양석철
이영대
신석민
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020227030184A priority Critical patent/KR102565558B1/ko
Priority to US17/796,832 priority patent/US12101276B2/en
Publication of WO2021162520A1 publication Critical patent/WO2021162520A1/ko
Priority to US18/094,077 priority patent/US11917566B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/30Resource management for broadcast services

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving a wireless signal.
  • a wireless communication system is a multiple access system that can support communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • Examples of the multiple access system include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system. division multiple access) systems.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • a method for a terminal to receive a downlink signal in a wireless communication system supporting an unlicensed band includes a plurality of SS/PBCH (Synchronization Signal/Public Broadcast Channel) block candidates located on the unlicensed band.
  • SS/PBCH Synchronization Signal/Public Broadcast Channel
  • the plurality of SS/PBCH block candidates may be located in both a first half section and a second half section of a time window configured for transmission of the SS/PBCH block.
  • a terminal operating in a wireless communication system supporting an unlicensed band is operatively connected to at least one RF (Radio Frequency) unit, at least one processor, and the at least one processor, and to be executed.
  • the at least one processor comprises at least one computer memory to perform an operation, the operation comprising: receiving an SS/PBCH block within a plurality of SS/PBCH block candidates located on an unlicensed band; and acquiring time synchronization based on an SS/PBCH block, and based on a subcarrier spacing (SCS) of the SS/PBCH block set to 240 kHz, the plurality of SS/PBCH block candidates,
  • SCS subcarrier spacing
  • the SS/PBCH block may be located in both a first half section and a second half section of a time window configured for transmission.
  • an apparatus for a terminal includes at least one processor, and at least one computer memory operatively connected to the at least one processor and, when executed, causing the at least one processor to perform an operation.
  • the operation includes receiving an SS/PBCH block within a plurality of SS/PBCH block candidates located on an unlicensed band, and obtaining time synchronization based on the SS/PBCH block, Based on the fact that the subcarrier spacing (SCS) of the SS / PBCH block is set to 240 kHz, the plurality of SS / PBCH block candidates are the first half of the time window set for transmission of the SS / PBCH block. It can be located in both the interval and the second half.
  • SCS subcarrier spacing
  • a computer-readable storage medium includes at least one computer program that, when executed, causes the at least one processor to perform an operation, the operation comprising: Receiving an SS/PBCH block within an SS/PBCH block candidate, and acquiring time synchronization based on the SS/PBCH block, wherein a subcarrier spacing (SCS) of the SS/PBCH block is 240 kHz Based on the setting of , the plurality of SS/PBCH block candidates may be located in both a first half section and a second half section of a time window configured for transmission of the SS/PBCH block.
  • SCS subcarrier spacing
  • a method for a base station to transmit a downlink signal in a wireless communication system supporting an unlicensed band includes the steps of setting a subcarrier interval of an SS/PBCH (Synchronization Signal/Public Broadcast Channel) block and the unlicensed band Transmitting an SS/PBCH block within a plurality of SS/PBCH block candidates located on The SS/PBCH block candidates of n may be located in both the first half and the second half of a time window configured for transmission of the SS/PBCH block.
  • SS/PBCH Synchron Generation
  • a base station operating in a wireless communication system supporting an unlicensed band is operatively connected to at least one RF (Radio Frequency) unit, at least one processor, and the at least one processor, at least one computer memory that, when executed, causes the at least one processor to perform an operation, the operation comprising: setting a subcarrier interval of a Synchronization Signal/Public Broadcast Channel (SS/PBCH) block; An operation of transmitting an SS/PBCH block within a plurality of SS/PBCH block candidates located therein, and based on that a subcarrier spacing (SCS) of the SS/PBCH block is set to 240 kHz, the plurality of SSs
  • the /PBCH block candidate may be located in both a first half section and a second half section of a time window configured for transmission of the SS/PBCH block.
  • continuous slots in which SS/PBCH block candidates are not defined may be located after consecutive slots in which SS/PBCH block candidates are defined.
  • the first half section and the second half section each include 40 slots, and consecutive slots in which the SS/PBCH block candidates are defined are from 1) the first slot of each of the first half section and the second half section. 16 consecutive slots and 2) 16 consecutive slots from the 21st slot may be included.
  • receiving information about an interval Q between SS/PBCH blocks in a quasi-co-located (QCL) relationship among the plurality of SS/PBCH block candidates, the plurality of SS/PBCH blocks Receiving a bitmap for indicating an SS/PBCH block transmitted by the base station from among candidates, and from the bitmap excluding one or more bits determined based on the Q, the transmission position of the SS/PBCH block
  • the method further includes obtaining information, wherein Q may be less than the number of SS/PBCH block candidates defined in the time window.
  • the slots in which the SS/PBCH block candidates with the subcarrier spacing of 480 kHz are defined are aligned with the slots in which the SS/PBCH block candidates with the subcarrier spacing of 240 kHz are defined within the time window.
  • a CAP Channel Access Procedure
  • the CAP is a first CAP that is allowed to transmit regardless of whether a channel is in an idle state, or is in an idle state. It may include a second CAP in which transmission is allowed only in the channel.
  • the SS/PBCH block is SS/ in a Quasi-Co-Located (QCL) relationship within the time window.
  • Q Quasi-Co-Located
  • wireless signal transmission and reception can be efficiently performed in a wireless communication system.
  • the terminal can effectively receive the SS/PBCH block on the unlicensed band.
  • 1 is a diagram for explaining physical channels used in a 3GPP NR system and a general signal transmission method using them.
  • FIG. 2 illustrates the structure of a radio frame.
  • 3 illustrates a resource grid of slots.
  • FIG. 4 shows an example in which a physical channel is mapped in a slot.
  • SSB Synchronization Signal Block
  • FIG 9 illustrates a wireless communication system supporting an unlicensed band.
  • FIG. 10 illustrates a method of occupying resources in an unlicensed band.
  • 11 and 12(a) to 12(c) show positions of SS/PBCH block candidates when the SCS of the SS/PBCH block is set to 120 kHz or 240 kHz.
  • 13(a) to 13(c) show positions of SS/PBCH block candidates according to the proposed method.
  • 16 is a flowchart illustrating operations of a base station and a terminal according to the proposed [Method #5].
  • 17A to 21 are diagrams for explaining the transmission position of an SS/PBCH block having a subcarrier interval of 480/960 kHz according to the proposed method.
  • 22 is a flowchart illustrating operations of a base station and a terminal according to the proposed [Method #8].
  • 23 to 25 are flowcharts of a terminal and a base station according to the proposed method.
  • 26 to 29 show examples of a communication system and a wireless device to which the present invention is applied.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with a radio technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented with a radio technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, Evolved UTRA (E-UTRA), and the like.
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3GPP (3rd Generation Partnership Project) long term evolution (LTE) is a part of Evolved UMTS (E-UMTS) using E-UTRA
  • LTE-A Advanced
  • 3GPP NR New Radio or New Radio Access Technology
  • 3GPP LTE/LTE-A is an evolved version of 3GPP LTE/LTE-A.
  • next-generation communication As more and more communication devices require a larger communication capacity, there is a need for improved mobile broadband communication compared to the existing RAT (Radio Access Technology).
  • massive MTC Machine Type Communications
  • massive MTC Machine Type Communications
  • a communication system design in consideration of a service/terminal sensitive to reliability and latency is being discussed.
  • the introduction of the next-generation RAT in consideration of eMBB (enhanced Mobile BroadBand Communication), massive MTC, and URLLC (Ultra-Reliable and Low Latency Communication) is being discussed, and in the present invention, for convenience, the technology is NR (New Radio or New RAT). it is called
  • 3GPP NR is mainly described, but the technical spirit of the present invention is not limited thereto.
  • a terminal receives information through a downlink (DL) from a base station, and the terminal transmits information through an uplink (UL) to the base station.
  • Information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type/use of the information they transmit and receive.
  • 1 is a diagram for explaining physical channels used in a 3GPP NR system and a general signal transmission method using them.
  • the terminal receives a synchronization signal block (SSB) from the base station.
  • the SSB includes a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the terminal synchronizes with the base station based on PSS/SSS and acquires information such as cell identity.
  • the UE may acquire intra-cell broadcast information based on the PBCH.
  • the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE receives a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Control Channel (PDSCH) according to the physical downlink control channel information in step S102 to receive more specific information.
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • the terminal may perform a random access procedure such as steps S103 to S106 to complete access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), and a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel can be received (S104).
  • PRACH physical random access channel
  • S104 a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel
  • S104 a contention resolution procedure such as transmission of an additional physical random access channel (S105) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S106) ) can be done.
  • S105 additional physical random access channel
  • S106 reception of a physical downlink control channel and a corresponding physical downlink shared channel
  • the UE After performing the procedure as described above, the UE performs a physical downlink control channel/physical downlink shared channel reception (S107) and a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH)/ Physical uplink control channel (PUCCH) transmission (S108) may be performed.
  • Control information transmitted by the terminal to the base station is collectively referred to as uplink control information (UCI).
  • UCI includes HARQ ACK/NACK (Hybrid Automatic Repeat and reQuest Acknowledgment/Negative-ACK), SR (Scheduling Request), CSI (Channel State Information), and the like.
  • CSI includes a Channel Quality Indicator (CQI), a Precoding Matrix Indicator (PMI), and a Rank Indication (RI).
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data are to be transmitted at the same time. In addition, the UCI may be transmitted aperiodically through the PUSCH according to a request/instruction of the network.
  • Uplink and downlink transmission in NR consists of frames.
  • Each radio frame has a length of 10 ms and is divided into two 5 ms half-frames (HF).
  • Each half-frame is divided into 5 1ms subframes (Subframes, SF).
  • a subframe is divided into one or more slots, and the number of slots in a subframe depends on subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot includes 12 or 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols according to a cyclic prefix (CP).
  • OFDM Orthogonal Frequency Division Multiplexing
  • CP cyclic prefix
  • Table 1 exemplifies that the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to SCS when CP is usually used.
  • N slot symb The number of symbols in the slot
  • Table 2 illustrates that when the extended CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to SCS.
  • the structure of the frame is only an example, and the number of subframes, the number of slots, and the number of symbols in the frame may be variously changed.
  • OFDM numerology numerology
  • SCS OFDM numerology
  • an (absolute time) interval of a time resource eg, SF, slot, or TTI
  • a TU Time Unit
  • the symbols may include OFDM symbols (or CP-OFDM symbols) and SC-FDMA symbols (or Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM symbols).
  • NR supports various 5G services Supports multiple numerology (or subcarrier spacing (SCS)) for For example, when SCS is 15kHz, it supports a wide area in traditional cellular bands, and when SCS is 30kHz/60kHz, dense-urban, lower latency and a wider carrier bandwidth, and when the SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz to overcome phase noise.
  • the NR frequency band is defined as a frequency range of two types (FR1, FR2).
  • FR1 and FR2 may be configured as shown in Table 3 below.
  • FR2 may mean a millimeter wave (mmW).
  • a slot includes a plurality of symbols in the time domain. For example, in the case of a normal CP, one slot includes 14 symbols, but in the case of an extended CP, one slot includes 12 symbols.
  • the carrier includes a plurality of subcarriers in the frequency domain.
  • a resource block (RB) is defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
  • a bandwidth part (BWP) is defined as a plurality of consecutive physical RBs (PRBs) in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.).
  • a carrier may include a maximum of N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP may be activated for one terminal.
  • Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
  • RE resource element
  • a frame is characterized by a self-contained structure in which a DL control channel, DL or UL data, and a UL control channel can all be included in one slot.
  • a DL control channel eg, PDCCH
  • DL control region DL control region
  • UL control region UL control channel
  • a resource region (hereinafter, a data region) between the DL control region and the UL control region may be used for DL data (eg, PDSCH) transmission or UL data (eg, PUSCH) transmission.
  • GP provides a time gap between the base station and the terminal in the process of switching from the transmission mode to the reception mode or in the process of switching from the reception mode to the transmission mode. Some symbols at the time of switching from DL to UL in a subframe may be set to GP.
  • the PDCCH carries Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • PCH paging information for a paging channel
  • It carries system information on the DL-SCH, resource allocation information for a higher layer control message such as a random access response transmitted on the PDSCH, a transmission power control command, activation/deactivation of CS (Configured Scheduling), and the like.
  • DCI includes a cyclic redundancy check (CRC), and the CRC is masked/scrambled with various identifiers (eg, Radio Network Temporary Identifier, RNTI) according to the owner or use purpose of the PDCCH. For example, if the PDCCH is for a specific terminal, the CRC is masked with a terminal identifier (eg, Cell-RNTI, C-RNTI). If the PDCCH relates to paging, the CRC is masked with a Paging-RNTI (P-RNTI). If the PDCCH relates to system information (eg, System Information Block, SIB), the CRC is masked with a System Information RNTI (SI-RNTI). If the PDCCH relates to a random access response, the CRC is masked with RA-RNTI (Random Access-RNTI).
  • RNTI Radio Network Temporary Identifier
  • Table 4 illustrates the use and transport channel of the PDCCH according to the RNTI.
  • the transport channel indicates a transport channel related to data carried by a PDSCH/PUSCH scheduled by the PDCCH.
  • SI-RNTI Usage Transport Channel P-RNTI Paging and System Information change notification PCH (Paging Channel) SI-RNTI Broadcast of System Information DL-SCH RA-RNTI Random Access Response DL-SCH C-RNTI Dynamically scheduled unicast transmission UL-SCH, DL-SCH Slot Format Indication (SFI)-RNTI Slot Format Indication on the given cell N/A
  • the modulation method of the PDCCH is fixed (eg, Quadrature Phase Shift Keying, QPSK), and one PDCCH is composed of 1, 2, 4, 8, or 16 Control Channel Elements (CCEs) according to the AL (Aggregation Level).
  • CCE consists of six REGs (Resource Element Groups).
  • REG is defined as one OFDMA symbol and one (P)RB.
  • the PDCCH is transmitted through a Control Resource Set (CORESET).
  • CORESET corresponds to a set of physical resources/parameters used to carry PDCCH/DCI within the BWP.
  • the UE may monitor (eg, blind decode) a set of PDCCH candidates in CORESET.
  • the PDCCH candidate indicates CCE(s) monitored by the UE for PDCCH reception/detection.
  • PDCCH monitoring may be performed in one or more CORESETs on active DL BWPs on each activated cell in which PDCCH monitoring is configured.
  • the set of PDCCH candidates monitored by the UE is defined as a PDCCH search space (SS) set.
  • the SS set may be a Common Search Space (CSS) set or a UE-specific Search Space (USS) set.
  • Table 5 illustrates the PDCCH search space.
  • the UE may perform cell search, system information acquisition, beam alignment for initial access, DL measurement, and the like based on the SSB.
  • the SSB may be mixed with an SS/PBCH (Synchronization Signal/Physical Broadcast Channel) block.
  • SS/PBCH Synchronization Signal/Physical Broadcast Channel
  • the SSB is composed of PSS, SSS and PBCH.
  • the SSB is configured in four consecutive OFDM symbols, and PSS, PBCH, SSS/PBCH and PBCH are transmitted for each OFDM symbol.
  • PSS and SSS consist of 1 OFDM symbol and 127 subcarriers, respectively, and PBCH consists of 3 OFDM symbols and 576 subcarriers.
  • Polar coding and Quadrature Phase Shift Keying (QPSK) are applied to the PBCH.
  • the PBCH consists of a data RE and a demodulation reference signal (DMRS) RE for each OFDM symbol.
  • DMRS demodulation reference signal
  • the SSB is periodically transmitted according to the SSB period (periodicity).
  • the SSB basic period assumed by the UE during initial cell discovery is defined as 20 ms.
  • the SSB period may be set to one of ⁇ 5ms, 10ms, 20ms, 40ms, 80ms, 160ms ⁇ by a network (eg, a base station).
  • a set of SSB bursts is constructed at the beginning of the SSB period.
  • the SSB burst set consists of a 5 ms time window (ie, half-frame), and the SSB can be transmitted up to L times within the SS burst set.
  • the maximum number of transmissions L of the SSB can be given as follows according to the frequency band of the carrier. One slot includes up to two SSBs.
  • the temporal position of the SSB candidate in the SS burst set may be defined as follows according to the SCS.
  • the temporal positions of SSB candidates are indexed from 0 to L-1 (SSB index) in temporal order within the SSB burst set (ie, half-frame).
  • the UE When selecting an initial cell, the UE assumes that the half-frame having the SSB is repeated at a period of 20 ms.
  • the UE may check whether a Control Resource Set (CORESET) for the Type0-PDCCH common search space exists based on a Master Information Block (MIB).
  • the MIB includes information/parameters related to SIB1 (SystemInformationBlockType1) reception and is transmitted through the PBCH of the SSB.
  • the Type0-PDCCH common search space is a type of PDCCH search space, and is used to transmit a PDCCH scheduling an SI (System Information) message.
  • SI System Information
  • the UE based on information in the MIB (eg, pdcch-ConfigSIB1) (i) a plurality of contiguous RBs and one or more contiguous symbols constituting CORESET and (ii) PDCCH opportunity (ie, a time domain location for PDCCH reception) may be determined.
  • pdcch-ConfigSIB1 is 8-bit information, (i) is determined based on 4 bits of Most Significant Bit (MSB) (see 3GPP TS 38.213 Table 13-1 ⁇ 13-10), and (ii) is LSB (Least Significant Bit) It is determined based on 4 bits (refer to 3GPP TS 38.213 Table 13-11 ⁇ 13-15).
  • MSB Most Significant Bit
  • LSB east Significant Bit
  • Beam sweeping means that a transmission reception point (TRP) (eg, a base station/cell) changes a beam (direction) of a radio signal according to time (hereinafter, a beam and a beam direction may be used interchangeably).
  • TRP transmission reception point
  • the SSB may be transmitted periodically using beam sweeping.
  • the SSB index is implicitly linked with the SSB beam.
  • the SSB beam may be changed in units of SSB (index).
  • the maximum number of transmissions L of the SSB in the SSB burst set has a value of 4, 8, or 64 depending on the frequency band to which the carrier belongs. Therefore, the maximum number of SSB beams in the SSB burst set may also be given as follows according to the frequency band of the carrier.
  • Max number of beams 64
  • the number of SSB beams is one.
  • SSB_tx a method of notifying the actually transmitted SSB
  • SSB_tx a maximum of L SSBs may be transmitted, and the number/location of SSBs actually transmitted may vary for each base station/cell.
  • the number/position of SSBs actually transmitted is used for rate-matching and measurement, and information about the actually transmitted SSBs is indicated as follows.
  • rate-matching it may be indicated through UE-specific RRC signaling or RMSI.
  • UE-specific RRC signaling includes a full (eg, length L) bitmap in both the below 6 GHz and above 6 GHz frequency ranges.
  • RMSI includes a full bitmap at 6 GHz below, and includes a bitmap in a compressed form as shown at 6 GHz above.
  • information about the actually transmitted SSB may be indicated using a group-bit map (8 bits) + an intra-group bit map (8 bits).
  • a resource (eg, RE) indicated through UE-specific RRC signaling or RMSI is reserved for SSB transmission, and PDSCH/PUSCH may be rate-matched in consideration of SSB resources.
  • a network When in RRC connected mode, a network (eg, a base station) may indicate an SSB set to be measured within a measurement period.
  • the SSB set may be indicated for each frequency layer. If there is no indication regarding the SSB set, the default SSB set is used.
  • the default SSB set includes all SSBs in the measurement interval.
  • the SSB set may be indicated using a full (eg, length L) bitmap of RRC signaling.
  • the default SSB set is used.
  • a cell operating in a licensed band (hereinafter, L-band) is defined as an LCell, and a carrier of the LCell is defined as a (DL/UL) Licensed Component Carrier (LCC).
  • L-band a cell operating in an unlicensed band
  • U-band a cell operating in an unlicensed band
  • U-band is defined as a UCell
  • a carrier of the UCell is defined as a (DL/UL) Unlicensed Component Carrier (UCC).
  • a carrier of a cell may mean an operating frequency (eg, a center frequency) of the cell.
  • a cell/carrier (eg, Component Carrier, CC) may be collectively referred to as a cell.
  • one terminal may transmit/receive a signal to/from the base station through a plurality of merged cells/carriers.
  • one CC may be configured as a PCC (Primary CC), and the remaining CCs may be configured as a SCC (Secondary CC).
  • Specific control information/channel eg, CSS PDCCH, PUCCH
  • PCC Primary CC
  • SCC Secondary CC
  • Specific control information/channel eg, CSS PDCCH, PUCCH
  • Data can be transmitted/received through PCC/SCC.
  • 9(a) illustrates a case in which a terminal and a base station transmit and receive signals through LCC and UCC (non-standalone (NSA) mode).
  • LCC may be set to PCC and UCC may be set to SCC.
  • one specific LCC may be configured as a PCC and the remaining LCCs may be configured as an SCC.
  • 9 (a) corresponds to the LAA of the 3GPP LTE system.
  • 9 (b) illustrates a case in which the terminal and the base station transmit and receive signals through one or more UCCs without LCC (SA mode). in this case.
  • One of the UCCs may be configured as a PCC and the other UCCs may be configured as an SCC. In the unlicensed band of the 3GPP NR system, both the NSA mode and the SA mode may be supported.
  • communication nodes in unlicensed bands must determine whether other communication node(s) use channels before signal transmission. Specifically, the communication node may first perform CS (Carrier Sensing) before signal transmission to check whether other communication node(s) are performing signal transmission. A case in which it is determined that other communication node(s) does not transmit a signal is defined as CCA (Clear Channel Assessment) has been confirmed. If there is a CCA threshold set by pre-defined or higher layer (eg, RRC) signaling, the communication node determines the channel state as busy if energy higher than the CCA threshold is detected in the channel, otherwise the channel state can be considered as idle.
  • CS Carrier Sensing
  • the CCA threshold is defined as -62 dBm for a non-Wi-Fi signal and -82 dBm for a Wi-Fi signal. If it is determined that the channel state is idle, the communication node may start transmitting a signal in the UCell.
  • LBT Listen-Before-Talk
  • CAP Channel Access Procedure
  • - SLIV Starting and Length Indicator Value (This is an indication field regarding the starting symbol index and the number of symbols in the slot of the PDSCH and/or PUSCH, and is carried on the PDCCH scheduling the PDSCH and/or PUSCH.)
  • BandWidth Part can be composed of continuous RBs on the frequency axis, and can correspond to one numerology (eg, SCS, CP length, slot / mini-slot duration). Also, one A plurality of BWPs may be set (the number of BWPs per carrier may also be limited), but the number of activated BWPs may be limited to a part of the carrier (eg, one).
  • COntrol REsourse SET (means a time frequency resource region in which PDCCH can be transmitted, and the number of CORESETs per BWP may be limited.)
  • PLMN ID Public Land Mobile Network identifier
  • LTE/NR systems are also considering using unlicensed bands such as the 2.4GHz band mainly used by the existing WiFi system or unlicensed bands such as the 5 GHz and 60 GHz bands, which are newly attracting attention, for traffic offloading. is in progress
  • unlicensed bands such as the 2.4GHz band mainly used by the existing WiFi system or unlicensed bands such as the 5 GHz and 60 GHz bands, which are newly attracting attention, for traffic offloading. is in progress
  • each communication node requires an LBT operation to confirm that the other communication node does not transmit a signal by performing channel sensing before transmitting a signal.
  • the eNB/gNB or UE of the LTE/NR system must also perform LBT for signal transmission in an unlicensed band (referred to as U-band for convenience).
  • Wi-Fi or WiGig (Wireless Gigabit Alliance) such as 802.11ad/ay
  • WiGig Wireless Gigabit Alliance
  • the 3GPP Rel-15 (release-15) NR system defines the operation of the band below 52.6 GHz, and discussions are underway to operate the NR system in the licensed and/or unlicensed band of the 60/70 GHz band in future releases is in progress
  • an SS/PBCH block transmission method for initial access in the unlicensed band of the 60/70 GHz band is proposed.
  • a method for increasing the transmission opportunity of the SS / PBCH block is proposed.
  • the proposed method of the present specification is described based on the operation in the unlicensed band, it can be extended and applied to the operation in the licensed band according to the proposal.
  • the unlicensed band may be mixed with a shared spectrum.
  • the mmWave band (eg, above 7.125 or 24 MHz, up to 52.6 GHz) is defined as FR2 (Frequency Range 2), and the SCS of the SS/PBCH block in FR2 may be 120 kHz or 240 kHz.
  • the SS/PBCH block candidate may be mixed with the candidate SS/PBCH block, the aforementioned SSB candidate, or the candidate SSB.
  • up to 4 or 8 SS/PBCH blocks are can be transmitted.
  • SS/PBCH block (candidate) index 'n' in symbol #4/5/6/7 of the first slot SS/PBCH block in symbol #8/9/10/11 ( Candidate) index 'n+1' can be transmitted, and SS/PBCH block (candidate) index 'n+2', symbol #6/7/8/9 in symbol #2/3/4/5 of the second slot In SS/PBCH block (candidate) index 'n+3' may be transmitted.
  • symbol #4/5/6/7/ may mean symbols having a symbol index of 4/5/6/7 in the slot, or 5/6/7/8th symbols.
  • the transmission of the SS/PBCH block (candidate) index may mean that the SS/PBCH block is transmitted in the SS/PBCH block candidate having the corresponding SS/PBCH block (candidate) index.
  • the SS/PBCH block it is preferable that transmission is guaranteed at regular intervals. Since transmission is allowed only when the CAP succeeds due to the nature of the unlicensed band operation, one within a predefined window period (hereinafter, S_window)
  • a plurality of transmission candidates eg, a plurality of SS/PBCH block candidates) corresponding to the SS/PBCH block may be configured.
  • the transmission probability of the SS/PBCH block can be increased by performing the CAP in another SS/PBCH block candidate.
  • a plurality of SS/PBCH block candidates may have the same SS/PBCH block index, and in the present specification, the SS/PBCH block candidate index may be replaced with an SS/PBCH block index according to context.
  • SS/PBCH block (candidate) index 'n' in symbol #8/9/10/11 of the first slot, symbol #12/13 of the first slot and SS in symbol #0/1 of the second slot /PBCH block (candidate) index 'n+1', symbol #2/3/4/5 in the second slot SS/PBCH block (candidate) index 'n+2', symbol #6/7/8 in the second slot SS/PBCH block (candidate) index 'n+3' can be transmitted at /9, and SS/PBCH block (candidate) index 'n+4', third at symbol #4/5/6/7 of the third slot SS/PBCH block (candidate) index 'n+5' in symbol #8/9/10/11 of slot, SS/PBCH block (candidate) in symbol #12/13 of third slot and symbol #0/1 of fourth slot ) index 'n+6', an SS/PBCH block (candidate) index 'n+7
  • FIG. 11 shows SS/PBCH block transmission according to each SCS at a symbol level on the time axis
  • FIGS. 12(a) to 12(c) show SS/PBCH block transmission according to each SCS at the slot level on the time axis. shown (existing 3GPP Rel-15 NR system).
  • S_window a window through which an SS/PBCH block can be transmitted
  • the S_window is a 5msec window.
  • the duration of the S_window may be set to another value (eg, 0.5 msec, 1/2/3/4 msec, etc.) by the base station.
  • SS/PBCH blocks may be transmitted during consecutive 8 slots 1200 , and 8 consecutive slots.
  • Two slot gaps (eg, slots #8 to 9) 1201 may exist between (eg, slots #0 to #7 (1200) or slots #10 to #17).
  • two slots eg, slots #0 to 1 (1202), #2 to 3, #4 to 5) among 8 consecutive slots (eg, slots #0 to 7) in which the SS/PBCH block can be transmitted. , #6-7), as in the case 1100 of the 120 kHz SCS shown in FIG. 11 , up to four SS/PBCH blocks may be transmitted.
  • SS/PBCH blocks may be transmitted during consecutive 16 slots 1210, and 16 consecutive slots (eg, slot #0)
  • a gap of 4 slots (eg, slots #16 to #19) 1211 may exist between ⁇ #15 ( 1210 ) and #20 ⁇ #35 .
  • 4 slots eg, slots #0 to 3, #4 to 7. #8 to 16 consecutive slots (eg, slots #0 to #15) 1210 in which the SS/PBCH block can be transmitted 11, #12-15)
  • a maximum of 8 SS/PBCH blocks may be transmitted as in the 240 kHz SCS of FIG. 11 .
  • the maximum number of SS/PBCH block (candidate) indices allowed within a 5 msec window may be limited to 64, and may be cell-specific or UE-specific (UE). -specific)
  • RRC signaling it may be configured to which index of the maximum of 64 SS/PBCH blocks are actually transmitted.
  • the SCS of the SS/PBCH block is defined in FR2. 120 kHz or 240 kHz may be applied as shown.
  • FR3 Frequency Range 3
  • serving cell timing is obtained, or a quasi-Co-located (QCL) relationship between SS/PBCH blocks is obtained, or a maximum of 64 SS/PBCH blocks
  • QCL quasi-Co-located
  • obtaining the serving cell timing may include the meaning of obtaining information on the timing of the serving cell, and may be referred to as obtaining time synchronization of the serving cell according to an embodiment.
  • the information on timing may include information on timing boundaries such as frames, subframes, slots, and symbols, but is not limited thereto.
  • acquiring the QCL relationship between SS/PBCH blocks may mean acquiring information on SS/PBCH blocks in a QCL relationship among a plurality of SS/PBCH blocks.
  • the actually transmitted SS/PBCH block candidate index may mean an SS/PBCH block candidate index corresponding to the SS/PBCH block actually transmitted by the base station.
  • the two SS / PBCH blocks are in a QCL relationship means that the two SS / PBCH blocks have the same (large-scale) channel characteristics (eg, average gain, Doppler shift), Doppler It may mean that the UE can assume that it has a spread (Doppler spread, average delay, delay spread, Spatial Rx parameter, etc.).
  • the proposed method of the present specification is described based on the operation in the unlicensed band, it can be extended and applied to the operation in the licensed band according to the proposal.
  • the unlicensed band may be mixed with a shared spectrum.
  • FIGS. 12(a) to 12(c) By allowing SS/PBCH block transmission even in a slot in which SS/PBCH block transmission is not allowed (see FIGS. 12(a) to 12(c)), it is possible to increase an SS/PBCH block transmission opportunity. For example, in the case of 240 kHz SCS, transmission of an SS/PBCH block burst is allowed in 16 consecutive slots 1300, as shown in FIG. 13(a), and SS/PBCH in the next 4 consecutive slots 1301 Rules that do not allow the transmission of block bursts can be extended.
  • the SS/PBCH block burst may be interpreted to have the same meaning as the aforementioned SSB burst.
  • transmission of additional SS/PBCH blocks may be allowed in slot indexes #40 to 55 (1302) and slot indexes #60 to 75 (1303).
  • a method of transmitting the SS/PBCH block at the slot level every 0.25 msec may be the same as in FIG. 11 .
  • the transmission method is referred to as " CASE 1 ".
  • the SS/PBCH block (candidate) index values range from #0 to 127, and each SS/PBCH block (candidate) index may be linked with an SS/PBCH block at a single location.
  • transmission of the SS/PBCH block in all slots existing within a 5 msec window without considering a slot in which transmission of the SS/PBCH block burst is not allowed This may be allowed.
  • a method of transmitting the SS/PBCH block at the slot level every 0.25 msec may be the same as in FIG. 11 .
  • the UE performs an uplink such as PRACH or PUCCH in the slot 1301 in which the transmission of the SS/PBCH block is not allowed.
  • the transmission method is referred to as " CASE 2 ".
  • the SS/PBCH block (candidate) index is from #0 to 159, and each SS/PBCH block (candidate) index may be interlocked with an SS/PBCH block at a single location.
  • SS/PBCH block in all slots may be allowed to transmit.
  • a method of transmitting the SS/PBCH block at the slot level every 0.25 msec may be as shown in FIG. 11 .
  • the CAP must be completed before the transmitting node actually transmits due to the operational characteristics of the unlicensed band, it may be advantageous to allow the SS/PBCH blocks to be transmitted in as many consecutive slots as possible, as in FIG. 13(b). have.
  • the transmission method is referred to as " CASE 3 ".
  • the SS/PBCH block (candidate) index ranges from 0 to 79, and each SS/PBCH block (candidate) index may be linked with an SS/PBCH block at a single location.
  • transmission of the SS/PBCH block may be allowed in a slot (or symbol) in which transmission of the SS/PBCH block is not allowed in the existing 3GPP Rel-15 NR system.
  • the UE attempts cell identification (eg, cell identification for initial access, cell selection, or RRM measurement) through SS/PBCH block detection in a slot (or symbol) in which transmission is newly permitted.
  • cell identification eg, cell identification for initial access, cell selection, or RRM measurement
  • SS/PBCH block detection eg, cell identification for initial access, cell selection, or RRM measurement
  • 3GPP Rel-15 NR it is possible to transmit a maximum of 64 SS/PBCH blocks within a 5 msec window, and each 64 SS/PBCH blocks (candidates) Combinations with different ⁇ PBCH DM-RS sequence index and PBCH payload information ⁇ are defined for each index.
  • 64 SS/PBCH blocks are grouped in units of 8 consecutive SS/PBCH blocks on the time axis, and 8 SS/PBCH blocks included in each group are 8 PBCH DM-RS sequence indexes. and 8 groups can be distinguished by 3 bits in the PBCH payload.
  • the UE may acquire the cell timing corresponding to the additionally transmitted SS/PBCH block through the following specific methods.
  • the PBCH payload 1-bit information may be utilized.
  • the 1-bit information may be a 1-bit that is spared in the MIB, or all or a part of a specific field used in the past may be reinterpreted.
  • the terminal acquires a cell timing corresponding to one of the first 64 SS/PBCH block (candidate) indices, and if the 1-bit value is '1', the terminal acquires the second 64 SS A cell timing corresponding to one of the /PBCH block (candidate) indices may be obtained.
  • PBCH DMRS in order to distinguish the first 64 SS/PBCH block (candidate) index and the latter 64 SS/PBCH block (candidate) index, PBCH DMRS The number of sequences can be increased to 16. That is, if the PBCH DMRS sequence index is #0-7, the UE acquires a cell timing corresponding to one of the first 64 SS/PBCH block (candidate) indices (as before), and the PBCH DMRS sequence index is #8- If 15, the UE may acquire a cell timing corresponding to one of the 64 SS/PBCH block (candidate) indices in the latter half.
  • the PBCH DMRS sequence index is N (eg, N is one of 8 to 15)
  • the UE the PBCH DMRS sequence index is 'N-8' (as before) the first 64 SS/PBCH blocks ( A value added by 2.5 msec from the cell timing corresponding to one of the candidate) indices may be recognized as the actual cell timing.
  • a phase offset between the SSS and PBCH DMRS of the first half and a phase offset between the SSS and PBCH DMRS of the second half may be set differently.
  • the phase offset between the SSS and the PBCH DMRS in the first half is 0° (that is, the phases of the SSS and the PBCH DMRS are set to be the same), and the phase offset between the SSS and the PBCH DMRS in the second half is 180° (that is, the phase offset of the SSS and the PBCH DMRS) different phases) and may be transmitted. That is, if the phase offset between the SSS and the PBCH DMRS in the found SS/PBCH block is estimated to be 0°, the UE acquires the cell timing corresponding to one of the first 64 SS/PBCH block (candidate) indices (as before) do.
  • the UE may acquire a cell timing corresponding to one of the latter 64 SS/PBCH block (candidate) indices.
  • the UE is 2.5 from the cell timing corresponding to one of the first 64 SS/PBCH block (candidate) indices whose phase offset is 0°
  • a value added by msec can be recognized as the actual cell timing.
  • the RE location of PBCH DMRS is determined by a cell ID value.
  • the v value of Table 6 is defined as v-shift.
  • the RE position of the first PBCH DMRS is the same as before. It is defined by the v-shift value, and the RE position of the PBCH DMRS in the second half is may be defined, and the value of a may be defined in advance.
  • the value of a may be an integer (eg, 2) excluding a multiple of 4. That is, the RE position of the PBCH DMRS in the found SS/PBCH block is If it is determined as , the UE acquires a cell timing corresponding to one of the first 64 SS/PBCH block (candidate) indices (as before), and the RE position of the PBCH DMRS is If it is determined as , the UE may acquire a cell timing corresponding to one of the latter 64 SS/PBCH block (candidate) indices.
  • DL RS #1 may be transmitted in the first half
  • DL RS #2 may be transmitted in the latter half.
  • DL RS #1 and DL RS #2 may be defined in advance as an interlocked SS/PBCH block and TDM (Time Division Multiplexing) and/or FDM (Frequency Division Multiplexing) resource locations, and different sequences between the two RSs may be defined.
  • the UE acquires the cell timing corresponding to one of the first 64 SS/PBCH block (candidate) indices. And, if it is determined that DL RS#2 has been transmitted, the UE may acquire a cell timing corresponding to one of the latter 64 SS/PBCH block (candidate) indices.
  • a method of informing whether the corresponding SS/PBCH blocks are in a QCL relationship may be required. At this time, it may be signaled at how many intervals among the SS/PBCH block (candidate) indices present in the S_window that the UE can assume the QCL relationship, and the corresponding value (eg, the SS/PBCH in the QCL relationship) A value indicating an interval between blocks) may be defined as QCL_para.
  • an SS/PBCH block candidate index (eg, SS/PBCH block candidate index mod QCL_para) obtained by modulo operation according to the QCL_para value may be defined as an SS/PBCH block index.
  • candidate values for QCL_para are defined in advance, and a specific value to be actually applied by the terminal among the candidate values may be signaled as the QCL_para value.
  • the candidate values may characteristically have a divisor relationship with 64. For example, ⁇ 64, 32, 16, 8 ⁇ (or ⁇ 64, 32 ⁇ ) may be predefined as a candidate value, and a specific value among them may be set as the QCL_para value.
  • the QCL_para value may be signaled by one or more of the following methods. Accordingly, in the S_window, one or more SS/PBCH blocks (eg, up to (64/QCL_para) SS/PBCH blocks) in the same QCL relationship may be configured/transmitted.
  • candidate values for QCL_para are ⁇ 64, 32, 16, 8 ⁇ in advance may be defined, and a specific value among the candidate values may be signaled based on 2 bits on a PBCH payload, cell-specific RRC signaling, or UE-only RRC signaling.
  • the PBCH payload may be a bit spare in the PBCH, or all or a part of a specific field used in the past may be reinterpreted.
  • the number of PBCH DMRS sequences may be increased to 16. For example, if the PBCH DMRS sequence index is #0-7, the UE recognizes the QCL_para value as 64, and if the PBCH DMRS sequence index is #8-15, the UE recognizes the QCL_para value as 32.
  • - Option C (using phase shift information of PBCH DM-RS): For example, if the phase offset between the first half SSS and PBCH DMRS is 0°, the UE recognizes the QCL_para value as 64, and the phase offset between the SSS and PBCH DMRS If this is 180°, the UE may recognize the QCL_para value as 32.
  • the RE location of the PBCH DMRS in the found SS/PBCH block is If determined as , the UE recognizes the QCL_para value as 64, and the RE position of the PBCH DMRS is If it is determined as , the UE may recognize the QCL_para value as 32.
  • - Option E (using additional DL RS transmission): For example, if it is determined that DL RS #1 linked to the found SS/PBCH block has been transmitted, the UE recognizes the QCL_para value as 64, and DL RS# 2 is transmitted If it is determined that, the terminal may recognize the QCL_para value as 32.
  • the terminal uses an 8-bit bit It can be expected that bit information after the K/8th bit of the map is ignored, or bit information after the K/8th bit is signaled as 0.
  • indicating the presence or absence of each group may mean indicating whether the SS/PBCH block is actually transmitted in each group.
  • the UE ignores the K-th and subsequent bit information of the 64-bit bitmap, or the K-th and subsequent bits It can be expected that 0 is signaled as information.
  • notifying the presence or absence of each SS/PBCH block index may mean indicating whether each SS/PBCH block candidate index corresponds to the actually transmitted SS/PBCH block.
  • each bit in the groupPresence may represent consecutive 8 SS/PBCH block indexes.
  • the first bit of groupPresence may represent SS/PBCH block candidate indexes #0 to 7
  • the second bit may represent SS/PBCH block indexes #8 to 15.
  • the n-th bit in inOneGroup may represent the n-th SS/PBCH block indices in each group.
  • the first bit of inOneGroup may represent #0/8/16/24/32/40/48/56, which is the first SS/PBCH block index in each group.
  • groupPresence is '11000000'
  • inOneGroup is '00110000' the signaling if, to the actual transmission SS / PBCH block corresponding to # 2/3/10/11 of the total 64 SS / PBCH block index can
  • the SS/PBCH block index constituting each group is maintained as 8, and LSB 4 bits (the first 4 bits or the leftmost 4 bits) on the groupPresence.
  • LSB 4 bits the first 4 bits or the leftmost 4 bits
  • only 4 bits of the MSB are valid, the remaining 4 bits are not valid, or '0' may be signaled for the remaining 4 bits.
  • the UE may expect to ignore the remaining 4 bits (IGNORE) or signal '0' as the remaining 4 bits.
  • groupPresence the LSB (8/64 * K) bits that is, the first (8/64 * K) bits or Only the leftmost (8/64*K) bits
  • MSB (8/64*K) bits are valid, and the remaining (8-8/64*K) bits may not be valid.
  • the UE ignores the remaining (8-8/64*K) bits or that '0' is signaled as the remaining (8-8/64*K) bit value.
  • the number of SS/PBCH block indexes constituting each group is set differently from when K is 64, and groupPresence and/or inOneGroup is interpreted based on the differently set number of SS/PBCH block indexes.
  • K is 32
  • the number of SS/PBCH block indexes constituting each group may be set to two, and the presence or absence of each group may be signaled through a 16-bit bitmap that is a sum of groupPresence and inOneGroup.
  • two consecutive SS/PBCH block indexes are paired (eg, SS/PBCH block index #0/1 is set as the first group) or SS/PBCH block indexes of 16 intervals are Pairing (SS/PBCH block index #0/16 is set as the first group, SS/PBCH block index #1/17 is set as the second group).
  • K 16
  • the number of SS/PBCH block indexes constituting each group may be set to one, and the presence or absence of each SS/PBCH block index is signaled through a 16-bit bitmap that combines groupPresence and inOneGroup can be
  • the presence or absence of each SS/PBCH block index may be signaled through the inOneGroup 8-bit bitmap.
  • groupPresence is not signaled
  • groupPresence is all signaled as '0'
  • the UE ignores the signaled groupPresence
  • groupPresence is signaled with a specific value (eg, all '0' values).
  • the presence or absence of each SS/PBCH block index may be signaled through the groupPresence 8-bit bitmap.
  • inOneGroup is not signaled
  • inOneGroup is all signaled as '0'
  • the terminal ignores the signaled inOneGroup
  • inOneGroup is signaled with a specific value (eg, all '0' values).
  • a 64-bit full bitmap may be transmitted without considering signaling overhead.
  • the size (or bit width) of the corresponding bitmap is set to K-bits, or LSB on the corresponding bitmap Only K bits (i.e.
  • the UE ignores the remaining (64-K) bits on the corresponding bitmap or that the remaining (64-K) bit values on the corresponding bitmap are signaled as 0'.
  • FIG. 14 is a flowchart illustrating operations of a base station and a terminal according to an embodiment of [Method #4].
  • the base station may transmit information about the interval Q between SS/PBCH blocks in a QCL relationship among a plurality of SS/PBCH block candidates to the terminal (S1400).
  • Q may mean the maximum number of SS/PBCH blocks that can be transmitted within the time window, may be defined as the number of (continuous) SS/PBCH block candidates, and SS/PBCH blocks defined in the time window It may be a value smaller than the number of candidates.
  • Q may correspond to QCL_para of [Method #3] or K of [Method #4], as described above.
  • the base station may transmit a bitmap for indicating the actually transmitted SS/PBCH block among the plurality of SS/PBCH blocks to the terminal (S1410).
  • the bitmap may be for indicating the location of the SS/PBCH block actually transmitted by the base station.
  • the bitmap may include a bitmap indicating whether SS/PBCH blocks are actually transmitted in each group when a plurality of SS/PBCH block candidates defined within a time window are divided into a plurality of groups. Specifically, if 64 SS/PBCH block candidates are defined within the time window, and 64 SS/PBCH block candidates are grouped into 8 SS/PBCH block candidate units, each group is may indicate whether the SS/PBCH block is transmitted.
  • the UE may obtain information about the transmission position of the SS/PBCH block that is actually transmitted from the bitmap except for one or more bits determined based on Q.
  • Q When information on Q is received, since only a maximum of Q SS/PBCH blocks can be transmitted within a time window, one or more bits in the bitmap may be recognized as invalid bits. For example, when Q is set to 32, bits after Q/8th in an 8-bit size bitmap may be invalid bits. Accordingly, the terminal ignores the bit information after the Q/8th in the bitmap of the 8-bit size, or all bit information after the Q/8th can be expected to be signaled as a specific value (eg, '0'). have. That is, the UE may obtain information about the transmission position of the actually transmitted SS/PBCH block from the bitmap except for the Q/8th and subsequent bits in the 8-bit bitmap.
  • the bitmap for indicating the actually transmitted SS/PBCH block includes a bitmap (eg, groupPresence parameter) for indicating information about each group and each SS/PBCH block candidate in the group. It may mean a combination of a bitmap (eg, inOneGroup parameter) for indicating information on .
  • the base station It may be determined according to, or whether it is an unlicensed band (eg, whether the SS/PBCH block is transmitted in an unlicensed band). In this case, in order to inform whether the proposed methods are applied or not, a synchronization raster through which the SS/PBCH block can be transmitted may be defined differently.
  • synchronization raster set #1 (eg, a set related to a licensed band) and a synchronization raster set #2 (eg, a set related to an unlicensed band) in FR3 may be defined.
  • a frequency offset and/or an interval between the synchronization raster set #1 and the synchronization raster set #2 may be set differently.
  • the UE may recognize that it is the same SS/PBCH block as FR2 (eg, refer to FIGS. 12(a) to 12(c)).
  • the same SS/PBCH block as FR2 may mean the SS/PBCH block defined in FR2, for example, the SS/PBCH transmitted as shown in FIGS. 12(a) to 12(c). It can mean a block.
  • the UE may use the [Method #1] and/or [Method #2] and/or [Method #3] and/or [ As in the proposed methods including Method #4], it can be recognized that the SS/PBCH block is enhanced in FR3 (unlike FR2 operation).
  • the enhanced SS/PBCH block in FR3 may mean an SS/PBCH block to which at least one of [Method #1] to [Method #4] is applied, for example, FIGS. 13(a) to 13( It may mean an SS/PBCH block transmitted as shown in c).
  • the WiGig system is an example of a wireless communication system operating in an unlicensed frequency band of 60 GHz or higher.
  • the synchronization raster may be differently defined according to the SCS in consideration of the complexity of the cell detection/identification process that the UE must perform in the corresponding frequency band.
  • the number of synchronization raster according to the SCS may be defined differently within a specific frequency band.
  • the WiGig channel bandwidth eg, 2.16 GHz
  • one synchronization raster in which the SS/PBCH block of 960 kHz SCS can be located, and the synchronization raster in which the SS/PBCH block of 120 kHz SCS can be located is There may be five, and positions of the six raster may be different from each other. For example, referring to FIG.
  • the synchronization raster in which the SS/PBCH block of 120 kHz SCS can be located is ⁇ A,C,D,E,F ⁇
  • the SS/PBCH block of 960 kHz SCS is located.
  • a possible synchronization raster is B, and the positions of each of the six synchronization raster ⁇ A,B,C,D,E,F ⁇ are different. Accordingly, when the UE attempts to detect the SS/PBCH block in one of the synchronization raster ⁇ A,C,D,E,F ⁇ , it assumes only 120 kHz SCS and attempts to detect the SS/PBCH block in the synchronization raster B In this case, only 960 kHz SCS can be assumed.
  • 16 is a flowchart illustrating operations of a base station and a terminal according to an embodiment of [Method #5].
  • the base station may transmit information about the first synchronization raster set and the second synchronization raster set for the unlicensed band to the terminal (S1600).
  • the first synchronization raster set and the second synchronization raster set may correspond to the synchronization raster set #1 and the synchronization raster set #2, respectively.
  • the first synchronization raster set may include one or more synchronization raster set for the licensed band
  • the second synchronization raster set may include one or more synchronization raster set for the unlicensed band.
  • the first synchronization raster set and the second synchronization raster set may be set to have different frequency offsets and/or intervals.
  • the base station may transmit the SS/PBCH block to the terminal based on the synchronization raster included in the first synchronization raster set or the second synchronization raster set (S1610).
  • the UE may acquire cell timing based on the received SS/PBCH block (S1620).
  • the UE may recognize the SS/PBCH block differently depending on which synchronization raster set the received SS/PBCH block is based on. For example, if it is an SS/PBCH block based on the synchronization raster included in the first synchronization raster set, the UE recognizes it as the SS/PBCH block transmitted as shown in FIGS. 12(a) to 12(c). can do.
  • the UE may recognize it as an SS/PBCH block to which at least one of [Method #1] to [Method #4] is applied.
  • the SS/PBCH block to which at least one of [Method #1] to [Method #4] is applied may include the SS/PBCH block transmitted as shown in FIGS. 13(a) to 13(c). have.
  • the second synchronization raster set configured for the unlicensed band may include synchronization raster set differently according to the SCS.
  • the synchronization raster for 120 kHz SCS and the synchronization raster for 960 kHz SCS may be set differently within the channel bandwidth of WiGig operating in the unlicensed band.
  • the synchronization raster for 120 kHz SCS may include 5 synchronization raster ⁇ A,C,D,E,F ⁇ , and the synchronization raster for 960 kHz SCS is 1 It may contain two synchronization raster Bs.
  • the positions of the synchronization rasters set differently according to the SCS may be different from each other. Accordingly, when an SS/PBCH block is detected in one of the synchronization raster ⁇ A,C,D,E,F ⁇ , the UE recognizes the SCS of the corresponding SS/PBCH block as 120 kHz, and the SS/PBCH in the synchronization raster B When the block is detected, the UE may recognize the SCS of the corresponding SS/PBCH block as 960 kHz.
  • SS/PBCH of 480 kHz and/or 960 kHz SCS Blocks can be introduced.
  • an (OFDM) symbol position of an SS/PBCH block of 480 kHz and/or 960 kHz is proposed.
  • the UE can expect that the SS/PBCH block of 480 kHz and/or 960 kHz SCS is transmitted at the proposed (OFDM) symbol position.
  • a design based on the following three approaches is proposed.
  • the symbol position of the 480/960 kHz SCS SS/PBCH block may be determined by being aligned (or aligned) with the symbol position of the previously defined 120/240 kHz SCS SS/PBCH block.
  • the SS/PBCH block is transmitted at 480 kHz or 960 kHz SCS, and the DL/UL control/data channel/signal transmitted and received on the carrier/BWP including the corresponding SS/PBCH block is 120 kHz or Even with a 240 kHz SCS, there is an advantage in that multiplexing is easy. As an example, as shown in FIGS.
  • FIG. 17(a) shows the configuration of an SS/PBCH block (or SS/PBCH block pattern) according to each SCS within the p-th 1/16 msec time window
  • FIG. 17(b) is a diagram following FIG. 17(a) It represents the SS/PBCH block pattern according to each SCS within the 'p+1'th 1/16msec time window. Specifically, referring to FIGS.
  • the SS/PBCH block (candidate) index in symbol #8/9/10/11 of the first slot In 'n', symbol #12/13 of the first slot, a part of the SS/PBCH block (candidate) index 'n+1' may be defined/transmitted.
  • the second SS/PBCH block (candidate) index 'i' in symbol #2/3/4/5 of slot SS/PBCH block (candidate) index 'i+1' in symbol #6/7/8/9 of second slot
  • SS/PBCH block (candidate) index 'i+2' may be defined/transmitted in symbol #10/11/12/13 of the second slot.
  • One of previously defined SS/PBCH block patterns may be applied to 480 kHz and/or 960 kHz SCS.
  • the temporal position of the SSB candidate (or SS/PBCH block candidate) in the SSB burst set may be defined as Case A to Case E according to the SCS
  • the previously defined SS/PBCH block patterns are may include SS/PBCH block patterns according to Case A to Case E described above.
  • the index of the start symbol of the SSB candidate (or SS/PBCH block candidate) may be given as follows.
  • n is an integer greater than or equal to 0 and may have a different value according to each case.
  • FIG. 18(a) shows SS/PBCH block patterns according to each Case (Case A to Case E), and according to Approach2, one of the SS/PBCH block patterns shown in FIG. 18(a) is 480 kHz and/or Alternatively, it may be applied to the SS/PBCH block of 960 kHz SCS.
  • Approach2 it can be assumed that at least the SS/PBCH block, CORESET #0, and SCSs of the initial active DL/UL BWP (initial active DL/UL BWP) are the same.
  • the SCS between the plurality of DL signals/channels is the same, there is an advantage in that it is easy to implement a terminal that simultaneously receives the plurality of DL signals/channels.
  • the SS/PBCH block is symbol #4/5/6/ in the slot of the 960 kHz SCS corresponding to the symbol #2/3/4/5 (1800) in the slot of the 480 kHz SCS.
  • specific four consecutive symbols eg, symbol #4/5/6/7 1820 may be located. That is, when the SS/PBCH block of 480 kHz SCS is transmitted in symbol #2/3/4/5 (1800) in the slot of 480 kHz SCS, 960 kHz corresponding to the transmission period of the SS/PBCH block of 480 kHz SCS Only one SS/PBCH block of 960 kHz SCS may be located within symbols #4 to 11 (1810) in the slot of the SCS.
  • one 960 kHz symbol #4/5/6/7(1820) of four consecutive symbols #4-11(1810) in the slot of 960 kHz SCS An SS/PBCH block of SCS may be transmitted.
  • the SS/PBCH block is, in-slot symbol #2/3 of 960 kHz SCS corresponding to in-slot symbol #8/9/10/11 ( 1801 ) of 480 kHz SCS.
  • certain four consecutive symbols eg, symbol #2/3/4/5) (1821 may be located.
  • SS/PBCH block pattern of 120/240 kHz SCS 60 kHz SCS is set as a reference SCS in consideration of coexistence between different SCSs, and 120/240 kHz based on the reference SCS
  • a method of defining the SS/PBCH block pattern of the SCS may be similarly applied.
  • symbol positions of 480 and/or 960 kHz SS/PBCH blocks may be determined based on a separate reference SCS rather than 60 kHz SCS.
  • a 240 kHz SCS may be set as the reference SCS.
  • SS/PBCH blocks of 480 kHz and/or 960 kHz SCS may be introduced. have.
  • a slot position of the SS/PBCH block of 480 kHz and/or 960 kHz SCS is proposed.
  • the UE can expect SS/PBCH block transmission of 480 kHz and/or 960 kHz SCS in the proposed slot position.
  • SS/PBCH block candidates may exist within 1 msec, and SS/PBCH block candidates may be indexed from #0 to #63 according to time order. Yes (SS/PBCH block candidate index).
  • a slot in which the SS/PBCH block is transmitted by applying the aforementioned [Method #1] (hereinafter, for convenience, it is referred to as a slot of the SS/PBCH block. ) can be expanded.
  • slot positions of the additional SS/PBCH block may be determined by equally applying the slot gaps considered in the SS/PBCH block of 120/240 kHz SCS.
  • the slots of the SS/PBCH block of the 480 kHz SCS are aligned with the slots of the SS/PBCH block of the 240 kHz SCS within the S_window.
  • transmission of the SS/PBCH block is allowed in 32 consecutive slots 2000 corresponding to 1 msec, and transmission of the SS/PBCH block is performed in the next 8 slot gaps 2001 . This is not allowed.
  • the slot position of the additional SS/PBCH block may be determined without a slot gap. Specifically, referring to FIG. 20(c) , a slot is inserted between the slots 2011 of the SS/PBCH block added by applying [Method #1] and the slots 2000 of the previously defined SS/PBCH block. There is no gap, thus increasing the chance that the SS/PBCH block can be transmitted in consecutive slots.
  • the slot in which the SS/PBCH block is transmitted may be extended by applying the aforementioned [Method #1].
  • the slot position of the additional SS/PBCH block may be determined by equally applying the slot gaps considered in the 120/240 kHz SCS SS/PBCH block.
  • transmission of up to 128 SS/PBCH blocks is allowed in 64 consecutive slots 2110 corresponding to 1 msec, and SS/PBCH blocks are allowed in the next 16 slot gaps 2111. Transmission of the PBCH block is not allowed.
  • the slot position of the additional SS/PBCH block may be determined without a slot gap.
  • SS/PBCH blocks having different SS/PBCH block (candidate) index values may have a QCL relationship.
  • it may be preset/defined that SS/PBCH blocks having consecutive N SS/PBCH block (candidate) index values (without a symbol gap) are in a QCL relationship. For example, in the case of a 960 kHz SCS SS/PBCH block in FIG. 19, if N is 4, SS/PBCH blocks having four SS/PBCH block candidate index values consecutive from symbol #8 of the first slot are in a QCL relationship. It can be defined or set.
  • N 2
  • SS/PBCH blocks having the first two or the last two index values among the four SS/PBCH block candidate indexes continuous from symbol #8 of the first slot are in a QCL relationship.
  • it may be configured through cell-common RRC signaling such as MIB and SIB of continuous SS/PBCH blocks in QCL relationship).
  • SS/PBCH blocks with consecutive N SS/PBCH block (candidate) index values without a symbol gap are QCL It can be set/defined as being in a relationship.
  • SS/PBCH blocks having consecutive N SS/PBCH block (candidate) index values may be set/defined as being in a QCL relationship.
  • discontinuous SS / PBCH block (candidate) SS / having an index value PBCH blocks are set/defined to be in a QCL relationship.
  • SSB(s) (or SS/PBCH block(s)) with the same value are assumed to be in a QCL relationship.
  • Table 7 shows the combination of LSBs of subCarrierSpacingCommon and ssb-SubcarrierOffset and represents the mapping relationship of The value may be indicated by a combination of the subCarrierSpacingCommon value and the LSB value of ssb-SubcarrierOffset.
  • ssbSubcarrierSpacingCommon represents the SCS of the RMSI only when operating without a shared spectrum.
  • the terminal determines the number of SSBs transmitted on the serving cell within the discovery burst transmission window. Assume no more.
  • the terminal sets the SSB index , or can be decided with here, denotes a candidate SSB index (or an SSB candidate index or an SS/PBCH block candidate index). Accordingly, one or more candidate SSBs may correspond to one SSB index.
  • candidate SSBs corresponding to the same SSB index are in a QCL relationship.
  • At least one symbol gap can be expected between SS / PBCH block (candidate) indices in different QCL relationships. .
  • FIG. 1 For example, in FIG. 1
  • the terminal SS/PBCH block corresponding to the SS/PBCH block (candidate) index 'm+2' transmission can be expected.
  • the terminal may be signaled by the LBT scheme performed by the base station for downlink signal/channel transmission (during a specific period). If the signaled LBT scheme is a scheme that allows transmission without determining whether the channel is idle/busy, when the terminal receives the SS/PBCH block from the corresponding base station (during the corresponding period), the SS/PBCH block in the QCL relationship It can be assumed that it is transmitted only once within this S_window.
  • the base station (operating in a specific unlicensed band of FR3), depending on a specific situation (eg, low interference level, high probability of success in downlink transmission, determines that the frequency of collision is low, transmission frequency is low, transmission power Transmission may be permitted without determining whether the channel is idle/busy (depending on the situation such as this low).
  • a specific situation eg, low interference level, high probability of success in downlink transmission, determines that the frequency of collision is low, transmission frequency is low, transmission power Transmission may be permitted without determining whether the channel is idle/busy (depending on the situation such as this low).
  • LBT scheme A the LBT scheme that allows transmission without determining whether the channel is idle/busy
  • LBT scheme B the LBT scheme that allows transmission only when it is determined that the channel is idle
  • the base station through higher layer signaling or (UE-specific or group-common) DCI, the LBT scheme performed by the base station may indicate to the terminal whether the LBT scheme A or LBT scheme B.
  • higher layer signaling may include cell-specific RRC signaling, UE-specific RRC signaling, or medium access control (MAC)-control element (CE).
  • the terminal may recognize whether the LBT scheme performed by the base station is LBT scheme A or LBT scheme B according to the synchronization raster in which the SS/PBCH block can be transmitted.
  • the UE may recognize that the LBT scheme performed by the base station for the SS/PBCH block is the LBT scheme A.
  • the UE may recognize that the LBT scheme performed by the base station for the SS/PBCH block is the LBT scheme #B.
  • that a specific LBT scheme is indicated may mean that it is explicitly set / indicated through higher layer signaling, or it may mean that the terminal knows implicitly based on the synchronization raster.
  • SS/PBCH block (candidate) indexes #0 to 127 are defined within a 5 msec window as shown in FIG. 13(a), and if the QCL_para value is 64, SS/ The PBCH block (candidate) index #N (eg, N ⁇ 64) and the SS/PBCH block (candidate) index #(N+64) may have a QCL relationship.
  • the SS/PBCH block (candidate) index defined within the 5 msec window is represented by M (eg, 0 ⁇ M ⁇ 127)
  • the SS/PBCH block candidate indexes with the same (M mod 64) value are in a QCL relationship.
  • the UE may perform the measurement in the entire period of the S_window.
  • the UE For example, for radio link monitoring corresponding to a specific SS/PBCH block (candidate) index, the UE utilizes all of the SS/PBCH block (candidate) indices in a QCL relationship with the specific SS/PBCH block (candidate) index.
  • the specific SS/PBCH block (candidate) may include the SS/PBCH block from which the MIB is obtained.
  • radio link monitoring may include path loss estimation (PL (path loss) estimation) of a PUSCH/SRS (Sounding Reference Signal) based on an SS/PBCH block.
  • PL path loss estimation
  • the UE may calculate the PL by using the RS resource obtained from the SS/PBCH (candidate) block(s) having the same SS/PBCH block index as that used for obtaining the MIB.
  • the UE may assume that only specific QCL_para SS/PBCH blocks are transmitted (in the S_window). For example, if QCL_para is 64 in FIG. 13(a), the UE can expect only SS/PBCH block reception corresponding to SS/PBCH block (candidate) indices #0 to 63. Since the base station will use the LBT scheme A, regardless of whether the channel is in an idle state, it can always transmit a downlink signal such as an SS/PBCH block.
  • the UE may calculate the PL by using only the RS resources obtained from the SS/PBCH block used for obtaining the MIB.
  • the LBT scheme A may be valid for a specific section, and the specific section may be defined or set in advance.
  • the specific section may be defined or set as a period (eg, 1 sec) in which SIB information can be changed.
  • the LBT scheme may be indicated through higher layer signaling (eg, RRC signaling such as MeasObjectNR Information Element (IE)) not only for the serving cell but also for the neighbor cell.
  • RRC signaling such as MeasObjectNR Information Element (IE)
  • the UE performs RRM measurement for the neighboring cell only through SS/PBCH blocks of QCL_para number within the S_window (eg, from the start of the S_window). and may not perform RRM measurement in other sections.
  • a method for the terminal to monitor the Type0-PDCCH CSS set may vary.
  • LBT scheme B the UE transmits a Type0-PDCCH CSS set corresponding to all SS/PBCH block (candidate) indexes in a QCL relationship with a specific SS/PBCH block (candidate) index (in S_window).
  • the terminal when LBT scheme A is indicated, one of a plurality of SS / PBCH block (candidate) indexes in a QCL relationship with a specific SS / PBCH block (candidate) index (eg, S_window) , it can be assumed that only the Type0-PDCCH CSS set corresponding to the first SS/PBCH block (candidate) index in QCL relationship with a specific SS/PBCH block (candidate) index can be transmitted.
  • the first SS/PBCH block (candidate) index in a QCL relationship with a specific SS/PBCH block (candidate) index in the S_window may mean the number of SS/PBCH blocks of the first QCL_para in the S_window.
  • the reception method of the PDSCH may vary according to the indicated LBT scheme.
  • LBT scheme B the terminal (within S_window) a specific SS / PBCH block (candidate) index and all SS / PBCH block (candidate) indexes in QCL relationship Resources (eg, RB ), it can be assumed that PDSCH mapping is not performed.
  • the codeword carried on the PDSCH is generated in consideration of the amount of all resources (eg, RBs) allocated for PDSCH transmission, but the resources allocated for PDSCH transmission (eg, RBs) are specific SS/PBCH blocks.
  • the PDSCH may not be mapped to the overlapping resource.
  • the specific SS/PBCH block (candidate) index includes the SS/PBCH block (candidate) index, which the base station informs the UE that it is actually transmitted (see FIG. 9 ).
  • the terminal in the S_ window) one of a plurality of SS / PBCH block (candidate) indexes in a QCL relationship with a specific SS / PBCH block (candidate) index (eg, S_
  • the PDSCH is not mapped only to the resource (eg, RB) of the first SS/PBCH block (candidate) index) in the QCL relationship with the specific SS/PBCH block (candidate) index within the window, and the remaining SS/PBCH blocks in the QCL relationship It may be assumed that a PDSCH may be mapped to a resource (eg, RB) of (candidate) indices.
  • the PDSCH is assigned to all resources (eg, RB) allocated for the PDSCH. can be mapped.
  • the PDSCH TDRA (Time Domain Resource Allocation) method may vary. Before receiving a specific TDRA table setting from the base station, the UE may receive a PDSCH scheduled through a default TDRA table.
  • the default TDRA table may be defined differently depending on whether a shared spectrum access operation is performed. For example, when LBT scheme B is indicated, before receiving a specific TDRA table setting from the base station, the UE may receive a PDSCH scheduled through a default TDRA table defined for a shared spectrum access operation.
  • the terminal may receive a PDSCH scheduled through a default TDRA table defined for operations other than shared spectrum access.
  • Each TDRA table includes a plurality of columns, and each column includes (1) a DMRS symbol index in a slot, (2) a PDSCH mapping type, (3) a PDCCH-to-PDSCH slot offset, and (4) a PDSCH start symbol in a slot. index, and (5) the number of PDSCH symbols.
  • 22 is a flowchart illustrating operations of a base station and a terminal according to the proposed [Method #8].
  • the base station may transmit information about the CAP (or LBT) performed by the base station (S2200).
  • the CAP performed by the base station may include a first CAP in which transmission is allowed regardless of whether the channel is in an idle state or a second CAP in which transmission is allowed only in a channel in an idle state.
  • the first CAP may correspond to the aforementioned LBT scheme A
  • the second CAP may correspond to the aforementioned LBT scheme B.
  • Information on the CAP may be transmitted to the UE through higher layer signaling or DCI.
  • the base station may transmit the SS/PBCH block to the terminal based on the performed CAP (S2210).
  • the base station When the base station performs the first CAP, the base station can transmit the SS/PBCH block regardless of whether the channel is idle, and when the base station performs the second CAP, the channel The SS/PBCH block can be transmitted only in the idle state.
  • the UE may acquire time synchronization based on the received SS/PBCH block (S2220).
  • the UE may differently recognize the transmission of the SS/PBCH block according to the CAP performed by the base station. For example, when the second CAP is performed, since the base station can transmit the SS/PBCH block only when the channel is in an idle state, a plurality of SS/PBCH blocks in the QCL relationship within the aforementioned S_window are provided. A transmission opportunity may be given. Accordingly, the terminal can expect that some of the SS/PBCH blocks in the QCL relationship will be transmitted by the base station.
  • the UE can expect transmission of the SS/PBCH block only from SS/PBCH block candidates having an SS/PBCH block candidate index smaller than QCL_para (or SS/PBCH block candidates having the number of QCL_para).
  • Method #9 A method in which an SS/PBCH block having a plurality of numerologies in one cell is configured
  • SS/PBCH blocks having different numerology in one cell may be configured (for each BWP).
  • SS/PBCH block reception of 120 kHz SCS may be configured in initial BWP #0
  • SS/PBCH block reception of 480 kHz SCS (or 960 kHz SCS) may be configured in BWP #1. If the UE is switched to BWP #0 while performing RRM measurement based on the SS/PBCH block of 480 kHz SCS (or 960 kHz SCS) set in BWP #1, the UE can continue performing RRM measurement, etc.
  • the QCL relationship between the SS/PBCH block index of 120 kHz SCS and the SS/PBCH block index of 480 kHz SCS may be set.
  • the SS/PBCH block (candidate) index n of 120 kHz SCS and the SS/PBCH block (candidate) index m of 480 kHz SCS (or 960 kHz SCS) are set to be in a QCL relationship, or the same SS/PBCH
  • a rule can be set so that a QCL relationship can be assumed between block (candidate) indexes.
  • the number of SCS values to be applied to the SS/PBCH block in the initial access step can be minimized. For example, it may be limited to apply only 120 kHz SCS to the SS/PBCH block of the initial access stage.
  • 480 kHz SCS or 960 kHz SCS may be configured. If an SS/PBCH block of 120 kHz SCS is to be received for RRM measurement, etc.
  • the UE has a disadvantage in that it has to frequently change the numerology to perform RRM measurement.
  • the UE has to frequently change the numerology to perform RRM measurement.
  • an SS/PBCH block of 480 kHz SCS and/or 960 kHz SCS may be defined. At this time, even within the same cell, SS/PBCH blocks having different SCS values for each BWP may be configured.
  • 120 kHz SCS-based SS/PBCH block reception is set for BWP #0, and 480 kHz SCS (or 960 kHz SCS-based) SS/PBCH block such as the numerology set in BWP #1 for BWP #1 Reception may be established.
  • the UE can perform RRM measurement, radio link monitoring, candidate beam detection, beam failure detection, beam management, etc. through SS/PBCH block reception. Even during BWP switching, the UE receives a specific SS/PBCH block (candidate) Performance can be maintained only when RRM measurement, radio link monitoring, candidate beam detection, beam failure detection, beam management, etc. performed through the index can be continuously performed. To support this, it may be necessary to establish a QCL relationship between different numerology-based SS/PBCH block (candidate) indexes set in the same cell.
  • SS / PBCH block (candidate) index n of 120 kHz SCS and SS / PBCH block (candidate) index n of 480 kHz SCS (or 960 kHz SCS) is in a QCL relationship, It can be assumed that different indexes are not in a QCL relationship.
  • it may be established by RRC signaling that the QCL relationship between the SS / PBCH block (candidate) index n of 120 kHz SCS and the SS / PBCH block (candidate) index m of 480 kHz SCS (or 960 kHz SCS) is established. .
  • the UE in the initial access step, the ssb-PositionsInBurst value (see Table 8) obtained through RRC signaling such as SIB1 is the SS / PBCH block (candidate) index of 120 kHz SCS and 480 kHz SCS (or 960 kHz SCS) It can be assumed that the same applies to the SS/PBCH block (candidate) index of .
  • a UE For operation with shared spectrum channel access, a UE assumes that transmission of SS/PBCH blocks in a half frame is within a discovery burst transmission window that starts from the first symbol of the first slot in a half-frame.
  • the UE can be provided per serving cell by DiscoveryBurst-WindowLength a duration of the discovery burst transmission window. If DiscoveryBurst-WindowLength is not provided, the UE assumes that the duration of the discovery burst transmission window is a half frame.
  • the UE assumes that a periodicity of the discovery burst transmission window is same as a periodicity of half frames for receptions of SS/PBCH blocks in the serving cell.
  • the UE assumes that one or more SS/PBCH blocks indicated by ssb-PositionsInBurst may be transmitted within the discovery burst transmission window and have candidate SS/PBCH blocks indexes corresponding to SS/PBCH block indexes provided by ssb-PositionsInBurst .
  • MSB k of ssb-PositionsInBurst is set to 1, the UE assumes that SS/PBCH block(s) within the discovery burst transmission window with candidate SS/PBCH block index(es) corresponding to SS/PBCH block index equal to k -1 may be transmitted; if MSB k is set to 0, the UE assumes that the SS/PBCH block(s) are not transmitted.
  • SS/PBCH block (candidate) indices For example, among 64 SS/PBCH block (candidate) indices, only SS/PBC blocks corresponding to indices #0 to 31 are actually transmitted and SS/PBCH blocks corresponding to indices #32 to 63 are not transmitted.
  • the UE assumes that the setting is equally applied to the SS/PBCH block of 120 kHz SCS configured on the (initial) BWP, as well as the SS/PBCH block of 480 kHz SCS (or 960 kHz SCS) configured on the (dedicated) BWP.
  • the ssb-PositionsInBurst parameter indicating which SS/PBCH block (candidate) index is transmitted among the 64 SS/PBCH block (candidate) indices is in the BWP (or SCS of the SS/PBCH block). may be set separately.
  • RRM measurement can be extended and applied to radio link monitoring, candidate beam detection, beam failure detection, and beam management, and not only in the serving cell (Pcell and/or PSCell and/or Scell) but also in the neighboring cell measurement point of view.
  • the same method can be extended and applied.
  • the 480 kHz SCS or 960 kHz SCS-based SS/PBCH block is applied only to the SCell (not PCell or PSCell). Rules can be set to do so.
  • FIG. 23 is a flowchart illustrating an operation of a terminal according to the proposed method.
  • the UE may receive an SS/PBCH block within a plurality of SS/PBCH block candidates located on an unlicensed band (S2300).
  • SS/PBCH block candidates through which the SS/PBCH block can be transmitted are defined within a time window configured for transmission of the SS/PBCH block, and the UE selects some of the SS/PBCH block candidates defined within the time window. It is possible to receive the SS/PBCH block transmitted through .
  • the time window may be set to a period of 5 msec (eg, half frame), but is not limited thereto, and may be set to another value by the base station.
  • the time window may correspond to the above-described S_window in [Method #1] and the like.
  • the positions of the plurality of SS/PBCH block candidates defined within the time window may be differently determined according to the subcarrier spacing (SCS) of the SS/PBCH block. Specifically, based on the SCS of the SS/PBCH block being set to 240 kHz, the plurality of SS/PBCH block candidates may be located in both the first half section and the second half section of the time window. In this case, the first half section and the second half section of the time window may mean a first time section and a second time section when the time window is divided into two time sections having the same size.
  • SCS subcarrier spacing
  • the first half section and the second half section may mean the first 2.5 msec section and the second half 2.5 msec section, respectively, and SS/PBCH block candidates defined within the 5 msec window are the first half 2.5 msec It may be located in both the interval and the latter 2.5 msec interval. More specifically, in the first half, continuous slots in which SS/PBCH block candidates are not defined may be located after consecutive slots in which SS/PBCH block candidates are defined.
  • the first half may include 40 slots, and the consecutive slots in which the SS/PBCH block candidates are defined are, 1) may include 16 consecutive slots from slot #0 (or the first slot) and 2) 16 consecutive slots from slot #20 (or the 21st slot).
  • consecutive slots in which SS/PBCH block candidates are not defined may include four consecutive slots from slot #16 and four consecutive slots from slot #36.
  • the positions of SS/PBCH block candidates defined in the first half may be similarly applied to the second half.
  • slots in which the SS/PBCH block can be transmitted can be extended by defining the positions of SS/PBCH block candidates in the second half as well as the first half of the time window, and the CAP failure of the base station can be compensated for
  • a method of transmitting the SS/PBCH block at the slot level every 0.25 msec may be the same as in FIG. 11 .
  • the SS/PBCH block (candidate) index values range from #0 to 127, and each SS/PBCH block (candidate) index may be linked with an SS/PBCH block at a single location.
  • transmission of the SS/PBCH block in all slots existing within a 5 msec window without considering a slot in which transmission of the SS/PBCH block burst is not allowed This may be allowed.
  • a method of transmitting the SS/PBCH block at the slot level every 0.25 msec may be the same as in FIG. 11 .
  • the UE performs an uplink such as PRACH or PUCCH in the slot 1301 in which the transmission of the SS/PBCH block is not allowed.
  • the SS/PBCH block (candidate) index is from #0 to 159, and each SS/PBCH block (candidate) index may be interlocked with an SS/PBCH block at a single location.
  • SS/PBCH block in all slots may be allowed to transmit.
  • a method of transmitting the SS/PBCH block at the slot level every 0.25 msec may be as shown in FIG. 11 .
  • the CAP must be completed before the transmitting node actually transmits due to the operational characteristics of the unlicensed band, it may be advantageous to allow the SS/PBCH blocks to be transmitted in as many consecutive slots as possible, as in FIG. 13(b). have.
  • the SS/PBCH block (candidate) index ranges from 0 to 79, and each SS/PBCH block (candidate) index may be linked with an SS/PBCH block at a single location.
  • transmission of the SS/PBCH block may be allowed in a slot (or symbol) in which transmission of the SS/PBCH block is not allowed in the existing 3GPP Rel-15 NR system.
  • the UE attempts cell identification (eg, cell identification for initial access, cell selection, or RRM measurement) through SS/PBCH block detection in a slot (or symbol) in which transmission is newly permitted.
  • cell timing eg, timing boundary such as frame/subframe/slot/symbol, etc. timing boundary
  • 3GPP Rel-15 NR it is possible to transmit a maximum of 64 SS/PBCH blocks within a 5 msec window, and each 64 SS/PBCH blocks (candidates) Combinations with different ⁇ PBCH DM-RS sequence index and PBCH payload information ⁇ are defined for each index.
  • 64 SS/PBCH blocks are grouped in units of 8 consecutive SS/PBCH blocks on the time axis, and 8 SS/PBCH blocks in each group are distinguished by 8 PBCH DM-RS sequence indexes. and 8 groups can be distinguished by 3 bits in the PBCH payload.
  • the UE may acquire the cell timing corresponding to the additionally transmitted SS/PBCH block through the following specific methods.
  • the PBCH payload 1-bit information may be utilized.
  • the 1-bit information may be a 1-bit that is spared in the MIB, or all or a part of a specific field used in the past may be reinterpreted.
  • PBCH DMRS in order to distinguish the first 64 SS/PBCH block (candidate) index and the latter 64 SS/PBCH block (candidate) index, PBCH DMRS The number of sequences can be increased to 16. That is, the PBCH DMRS sequence index of the first half may be #0-7, and the PBCH DMRS sequence index of the second half may be transmitted as #8-15.
  • a phase offset between the SSS and PBCH DMRS of the first half and a phase offset between the SSS and PBCH DMRS of the second half may be set differently.
  • the phase offset between the SSS and the PBCH DMRS in the first half is 0° (that is, the phases of the SSS and the PBCH DMRS are set to be the same), and the phase offset between the SSS and the PBCH DMRS in the second half is 180° (that is, the phase offset of the SSS and the PBCH DMRS) different phases) and may be transmitted.
  • the first 64 SS/PBCH block (candidate) indexes and the latter 64 SS/PBCH block (candidate) indexes are distinguished
  • the RE position of the PBCH DMRS in the first half is defined as a v-shift value as before, and the RE position of the PBCH DMRS in the second half is may be defined, and the value of a may be defined in advance.
  • the value of a may be an integer (eg, 2) excluding a multiple of 4.
  • DL RS #1 may be transmitted in the first half, and DL RS #2 may be transmitted in the latter half.
  • DL RS #1 and DL RS #2 may be predefined as an interlocked SS/PBCH block and TDM and/or FDM resource locations, and different sequences may be defined between the two RSs.
  • a method for the base station to inform whether the corresponding SS/PBCH blocks are in a QCL relationship may be required.
  • the base station may signal how many intervals among the SS/PBCH block (candidate) indices that the terminal exists in the S_window can assume the QCL relationship, and the corresponding value (eg, in the QCL relationship)
  • a value indicating an interval between SS/PBCH blocks) may be defined as QCL_para.
  • an SS/PBCH block candidate index (eg, SS/PBCH block candidate index mod QCL_para) obtained by modulo operation according to the QCL_para value may be defined as an SS/PBCH block index.
  • candidate values for QCL_para are defined in advance, and the base station may transmit a specific value to be actually applied by the terminal among the candidate values as the QCL_para value.
  • the candidate values may characteristically have a divisor relationship with 64. For example, ⁇ 64, 32, 16, 8 ⁇ (or ⁇ 64, 32 ⁇ ) is predefined as a candidate value, and the base station may set a specific value among them as the QCL_para value.
  • the base station When the base station sets the QCL_para value to the terminal, it can be transmitted through one or more of the following methods. Accordingly, in the S_window, one or more SS/PBCH blocks in the same QCL relationship (eg, up to 64/QCL_para SS/PBCH blocks) may be configured/transmitted.
  • candidate values for QCL_para are ⁇ 64, 32, 16, 8 ⁇ in advance may be defined, and may signal a specific value among candidate values based on 2 bits on a PBCH payload, cell-specific RRC signaling, or UE-only RRC signaling.
  • the number of PBCH DMRS sequences may be increased to 16.
  • the QCL_para value is 64
  • the base station uses the PBCH DMRS sequence having indexes #0 to 7, and when the QCL para value is 32, the PBCH DMRS sequence having indexes #8 to 15 may be used. .
  • - Option C (using phase shift information of PBCH DM-RS): For example, when the QCL_para value is 64, the base station sets the phase offset between the SSS and PBCH DMRS in the first half to 0°, and when the QCL_para value is 32 , the base station may set the phase offset between the SSS and the PBCH DMRS to 180°.
  • - Option D (utilizing the location information of the RE to which the PBCH DM-RS is mapped): For example, if the QCL_para value is 64, the base station determines the location of the PBCH DMRS is mapped to the RE, and when the QCL_para value is 32, the base station sets the PBCH DMRS can be mapped to RE.
  • Option E (using additional DL RS transmission): For example, when the QCL_para value is 64, the base station additionally transmits DL RS #1 interlocked with the SS/PBCH block, and when the QCL_para value is 32, the base station uses the SS DL RS# 2 interlocked with the /PBCH block may be additionally transmitted.
  • the SS/PBCH block index actually transmitted by the base station eg, the A method of informing the SS/PBCH block candidate index corresponding to the transmitted SS/PBCH block is proposed.
  • each group is linked with 8 SS/PBCH block (candidate) indexes
  • the terminal uses an 8-bit bit It can be expected that bit information after the K/8th bit of the map is ignored, or bit information after the K/8th bit is signaled as 0.
  • the UE ignores the K-th and subsequent bit information of the 64-bit bitmap, or the K-th and subsequent bits It can be expected that 0 is signaled as information.
  • each bit in the groupPresence may represent consecutive 8 SS/PBCH block indexes.
  • the first bit of groupPresence may represent SS/PBCH block indexes #0 to 7
  • the second bit may represent SS/PBCH block indexes #8 to 15.
  • the n-th bit in inOneGroup may represent the n-th SS/PBCH block indices in each group.
  • the first bit of inOneGroup may represent #0/8/16/24/32/40/48/56, which is the first SS/PBCH block index in each group.
  • groupPresence is '11000000'
  • inOneGroup is '00110000' the signaling if, to the actual transmission SS / PBCH block corresponding to # 2/3/10/11 of the total 64 SS / PBCH block index can
  • the SS/PBCH block index constituting each group is maintained at 8, only the LSB (8/64*K) bits are valid on the groupPresence, and the remaining (8-8/64*K) ) bit may not be valid.
  • the UE ignores the remaining (8-8/64*K) bits or that '0' is signaled as the remaining (8-8/64*K) bit value.
  • the number of SS/PBCH block indexes constituting each group is set differently from when K is 64, and groupPresence and/or inOneGroup is interpreted based on the differently set number of SS/PBCH block indexes.
  • K is 32
  • the number of SS/PBCH block indexes constituting each group may be set to two, and the presence or absence of each group may be signaled through a 16-bit bitmap that is a sum of groupPresence and inOneGroup.
  • SS/PBCH block index #0/1 is set as the first group
  • SS/PBCH block index #0/16 is set as the first group
  • SS/PBCH block index #1/17 is set as the second group
  • the SS/PBCH block indices at intervals of 16 may mean SS/PBCH block indices spaced apart from each other at intervals of 16 SS/PBCH blocks.
  • K 16
  • the number of SS/PBCH block indexes constituting each group may be set to one, and the presence or absence of each SS/PBCH block index is signaled through a 16-bit bitmap that combines groupPresence and inOneGroup can be
  • the presence or absence of each SS/PBCH block index may be signaled through the inOneGroup 8-bit bitmap.
  • the groupPresence or not signaled the UE ignores the signaling groupPresence or may groupPresence is expected to be signaled to a specific value (for example, all "0" values).
  • a 64-bit full bitmap may be transmitted without considering signaling overhead.
  • the size (or bit width) of the corresponding bitmap is set to K-bits, or LSB on the corresponding bitmap Only K bits (that is, the first K bits or the leftmost K bits) are valid and the remaining (64-K) bits are not valid, or the UE ignores the remaining (64-K) bits on the corresponding bitmap or It can be expected that the remaining (64-K) bit values are signaled as 0'.
  • Whether the proposed methods are applied or not may be determined according to the base station or whether it is an unlicensed band (eg, whether an SS/PBCH block is transmitted in an unlicensed band).
  • a synchronization raster through which the SS/PBCH block can be transmitted may be defined differently.
  • the base station may inform the terminal whether the above-described [method #1/1A] to [method #4/4A] are applied SS/PBCH blocks. .
  • synchronization raster set #1 (eg, a set related to a licensed band) and a synchronization raster set #2 (eg, a set related to an unlicensed band) in FR3 may be defined.
  • a frequency offset and/or an interval between the synchronization raster set #1 and the synchronization raster set #2 may be set differently.
  • the base station may inform the terminal that it is the same SS/PBCH block as FR2 by transmitting the SS/PBCH block based on the synchronization raster belonging to the synchronization raster set #1.
  • the UE can recognize that it is the same SS/PBCH block as FR2 (eg, FIGS. 12(a) to 12(c)).
  • FR2 eg, FIGS. 12(a) to 12(c)
  • Reference the same SS/PBCH block as FR2 may mean the SS/PBCH block defined in FR2, for example, the SS/PBCH transmitted as shown in FIGS. 12(a) to 12(c). It can mean a block.
  • the base station transmits the SS/PBCH block based on the synchronization raster belonging to the synchronization raster set #2, thereby notifying the terminal that it is the SS/PBCH block to which [Method #1/1A] to [Method #4/4A] are applied. have.
  • the UE may use the [Method #1/1A] and/or [Method #2/2A] and/or [Method #3] /3A] and/or [Method #4/4A], as in the proposed methods, it can be recognized that the SS/PBCH block enhanced in FR3 (unlike FR2 operation).
  • the enhanced SS/PBCH block in FR3 may mean an SS/PBCH block to which at least one of [Method #1/1A] to [Method #4/4A] is applied, for example, FIG. 13(a) It may mean an SS/PBCH block transmitted as shown in FIG. 13(c).
  • the synchronization raster may be defined differently according to the SCS in consideration of the complexity of the cell detection/identification process that the UE must perform in the corresponding frequency band. Also, considering that the maximum frequency bandwidth is different according to the SCS, the number of synchronization raster according to the SCS may be defined differently within a specific frequency band.
  • one synchronization raster in which the SS/PBCH block of 960 kHz SCS can be located, and the synchronization raster in which the SS/PBCH block of 120 kHz SCS can be located is There may be five, and positions of the six raster may be different from each other.
  • the synchronization raster in which the SS/PBCH block of 120 kHz SCS can be located is ⁇ A,C,D,E,F ⁇ , and the SS/PBCH block of 960 kHz SCS is located.
  • a possible synchronization raster is B, and the positions of each of the six synchronization raster ⁇ A,B,C,D,E,F ⁇ are different.
  • the base station transmits the SS/PBCH block in one of the synchronization raster ⁇ A,C,D,E,F ⁇
  • only the SS/PBCH block of 120 kHz SCS can be transmitted, and the SS/PBCH block is transmitted in the synchronization raster B
  • the SS/PBCH block of 960 kHz SCS can be transmitted.
  • SS/PBCH of 480 kHz and/or 960 kHz SCS Blocks can be introduced.
  • an (OFDM) symbol position of an SS/PBCH block of 480 kHz and/or 960 kHz is proposed. That is, the base station may transmit the SS/PBCH block of 480 kHz and/or 960 kHz SCS at the proposed (OFDM) symbol position.
  • the symbol position of the 480/960 kHz SCS SS/PBCH block may be determined by being aligned (or aligned) with the symbol position of the previously defined 120/240 kHz SCS SS/PBCH block.
  • the SS/PBCH block is transmitted at 480 kHz or 960 kHz SCS, and the DL/UL control/data channel/signal transmitted and received on the carrier/BWP including the corresponding SS/PBCH block is 120 kHz or Even with a 240 kHz SCS, there is an advantage in that multiplexing is easy. As an example, as shown in FIGS.
  • FIG. 17(a) shows the configuration of an SS/PBCH block (or SS/PBCH block pattern) according to each SCS within the p-th 1/16 msec time window
  • FIG. 17(b) is a diagram following FIG. 17(a) It represents the SS/PBCH block pattern according to each SCS within the 'p+1'th 1/16msec time window. Specifically, referring to FIGS.
  • the SS/PBCH block (candidate) index in symbol #8/9/10/11 of the first slot In 'n', symbol #12/13 of the first slot, a part of the SS/PBCH block (candidate) index 'n+1' may be defined/transmitted.
  • the second SS/PBCH block (candidate) index 'i' in symbol #2/3/4/5 of slot SS/PBCH block (candidate) index 'i+1' in symbol #6/7/8/9 of second slot
  • SS/PBCH block (candidate) index 'i+2' may be defined/transmitted in symbol #10/11/12/13 of the second slot.
  • the SS/PBCH block is symbol #4/5/6/ in the slot of the 960 kHz SCS corresponding to the symbol #2/3/4/5 (1800) in the slot of the 480 kHz SCS.
  • specific four consecutive symbols eg, symbol #4/5/6/7) 1820 may be located.
  • the SS/PBCH block is, in-slot symbol #2/3 of 960 kHz SCS corresponding to in-slot symbol #8/9/10/11 ( 1801 ) of 480 kHz SCS.
  • certain four consecutive symbols eg, symbol #2/3/4/5) (1821) may be located.
  • SS/PBCH blocks of 480 kHz and/or 960 kHz SCS may be introduced. have.
  • a slot position of the SS/PBCH block of 480 kHz and/or 960 kHz SCS is proposed.
  • the base station may transmit an SS/PBCH block of 480 kHz and/or 960 kHz SCS in the proposed slot position.
  • SS/PBCH block of 480 kHz SCS the location of the SS/PBCH block in each slot (or slot group) based on the three approaches proposed in [Method #6] is applied to adjacent slots (or slot groups).
  • a maximum of 64 SS/PBCH blocks may be transmitted for 1 msec (eg, during 32 slots).
  • SS/PBCH block candidates may exist within 1 msec, and SS/PBCH block candidates may be indexed from #0 to #63 according to time order. Yes (SS/PBCH block candidate index).
  • a slot in which the SS/PBCH block is transmitted by applying the aforementioned [Method #1] (hereinafter, for convenience, it is referred to as a slot of the SS/PBCH block. ) can be expanded.
  • slot positions of the additional SS/PBCH block may be determined by equally applying the slot gaps considered in the SS/PBCH block of 120/240 kHz SCS.
  • the slot position of the additional SS/PBCH block may be determined without a slot gap.
  • the base station may apply [Method #2A] to define 64 or more SS/PBCH block candidate indexes and transmit (or signal) to the terminal, and apply [Method #3A] to the SS/PBCH block A QCL relationship between candidate indexes can be defined and signaled, and information about actually transmitted SS/PBCH blocks can be transmitted to the UE by applying [Method #4A].
  • the slot in which the SS/PBCH block is transmitted may be extended by applying the aforementioned [Method #1A].
  • the slot position of the additional SS/PBCH block may be determined by equally applying the slot gaps considered in the 120/240 kHz SCS SS/PBCH block.
  • the slot position of the additional SS/PBCH block may be determined without a slot gap.
  • the slot location of the block may be determined.
  • the base station may apply [Method #2A] to define 64 or more SS/PBCH block candidate indexes and transmit them to the UE, and apply [Method #3A] to QCL between SS/PBCH block candidate indexes A relationship can be defined and transmitted to the terminal.
  • the base station may transmit information about the actually transmitted SS/PBCH blocks to the terminal by applying [Method #4A].
  • SS/PBCH blocks having different SS/PBCH block (candidate) index values may have a QCL relationship.
  • it may be preset/defined that SS/PBCH blocks having consecutive N SS/PBCH block (candidate) index values (without a symbol gap) are in a QCL relationship. For example, in the case of a 960 kHz SCS SS/PBCH block in FIG. 19, if N is 4, SS/PBCH blocks having four SS/PBCH block candidate index values consecutive from symbol #8 of the first slot are in a QCL relationship. It can be defined or set.
  • N 2
  • SS/PBCH blocks having the first two or the last two index values among the four SS/PBCH block candidate indexes continuous from symbol #8 of the first slot are in a QCL relationship.
  • it may be configured through cell-common RRC signaling such as MIB and SIB of continuous SS/PBCH blocks in QCL relationship).
  • SS/PBCH blocks with consecutive N SS/PBCH block (candidate) index values without a symbol gap are QCL It can be set/defined as being in a relationship.
  • SS/PBCH blocks having consecutive N SS/PBCH block (candidate) index values may be set/defined as being in a QCL relationship.
  • At least one symbol gap can be expected between SS / PBCH block (candidate) indices in different QCL relationships. .
  • FIG. 1 For example, in FIG. 1
  • the base station SS/PBCH block corresponding to the SS/PBCH block (candidate) index 'm+2' can be transmitted.
  • the base station may transmit (or signal) an LBT scheme performed for downlink signal/channel transmission (during a specific period) to the terminal.
  • LBT may be used interchangeably with the aforementioned CAP. If the LBT scheme signaled to the terminal is a scheme that allows transmission without determining whether the channel is idle/busy, the base station transmits the SS/PBCH block (during the corresponding period), the SS/PBCH block in the QCL relationship is S _Can only be sent once within a window.
  • SS/PBCH block (candidate) indexes #0 to 127 are defined within a 5 msec window as shown in FIG. 13(a), and if the QCL_para value is 64, SS/ The PBCH block (candidate) index #N (eg, N ⁇ 64) and the SS/PBCH block (candidate) index #(N+64) may have a QCL relationship. Accordingly, by providing an opportunity for the SS / PBCH block having the same beam to be transmitted twice within the 5 msec window, it is possible to compensate for the LBT failure of the base station.
  • the base station (operating in a specific unlicensed band of FR3), depending on a specific situation (eg, low interference level, high probability of success of downlink transmission, determined that the frequency of collision is low, or the transmission frequency is low, Transmission may be allowed without determining whether the channel is idle/busy (according to situations such as low transmission power).
  • a specific situation eg, low interference level, high probability of success of downlink transmission, determined that the frequency of collision is low, or the transmission frequency is low
  • Transmission may be allowed without determining whether the channel is idle/busy (according to situations such as low transmission power).
  • LBT scheme A the LBT scheme that allows transmission without determining whether the channel is idle/busy
  • LBT scheme B the LBT scheme that allows transmission only when it is determined that the channel is idle
  • the base station through higher layer signaling or (UE-specific or group-common) DCI, the LBT scheme performed by the base station may indicate to the terminal whether the LBT scheme A or LBT scheme B.
  • higher layer signaling may include cell-specific RRC signaling, UE-specific RRC signaling, or medium access control (MAC)-control element (CE).
  • MAC medium access control
  • the base station may inform the terminal whether the LBT scheme performed by the base station is LBT scheme A or LBT scheme B, based on the synchronization raster in which the SS / PBCH block can be transmitted. .
  • the base station may inform the terminal that the LBT scheme performed by the base station is LBT scheme A by transmitting an SS/PBCH block based on the synchronization raster belonging to the synchronization raster set #1.
  • the base station by transmitting the SS / PBCH block based on the synchronization raster belonging to the synchronization raster set #2, may inform that the LBT scheme performed by the base station is the LBT scheme #B.
  • that a specific LBT scheme is indicated may mean that it is explicitly set / indicated through higher layer signaling, or may mean that the terminal knows implicitly based on the synchronization raster.
  • LBT scheme B when LBT scheme B is indicated, a plurality of transmission opportunities are given to SS/PBCH blocks in a QCL relationship within the S_window, as in FIG. 13(a) and the proposed methods, and the base station, According to LBT success/failure, some of the SS/PBCH blocks in the QCL relationship may be transmitted to the UE. Accordingly, when the UE performs measurement such as RLM/RRM through the SS/PBCH block (in the S_window), the UE may perform the measurement in the entire period of the S_window.
  • radio link monitoring corresponding to a specific SS/PBCH block (candidate) index
  • the UE utilizes all of the SS/PBCH block (candidate) indices in a QCL relationship with the specific SS/PBCH block (candidate) index.
  • the specific SS/PBCH block (candidate) may include the SS/PBCH block from which the MIB is obtained.
  • radio link monitoring may include path loss estimation (PL (path loss) estimation) of a PUSCH/SRS (Sounding Reference Signal) based on an SS/PBCH block.
  • the UE may calculate the PL by using the RS resource obtained from the SS/PBCH (candidate) block(s) having the same SS/PBCH block index as that used for obtaining the MIB.
  • PL path loss estimation
  • the base station may transmit only specific QCL_para SS/PBCH blocks to the terminal (in the S_window). That is, if QCL_para is 64 in FIG. 13A , the base station may transmit only the SS/PBCH blocks corresponding to SS/PBCH block (candidate) indices #0 to 63. Since the base station will use the LBT scheme A, regardless of whether the channel is in an idle state, it can always transmit a downlink signal such as an SS/PBCH block.
  • the UE may calculate the PL by using only the RS resources obtained from the SS/PBCH block used for obtaining the MIB.
  • the LBT scheme A may be valid for a specific section, and the specific section may be defined or set in advance.
  • the specific section may be defined or set as a period (eg, 1 sec) in which SIB information can be changed.
  • the base station through higher layer signaling (eg, RRC signaling such as MeasObjectNR IE (Information Element)), the serving cell as well as the neighbor cell (neighbor cell) may indicate the LBT scheme.
  • the UE measures the RRM for the neighboring cell only through the SS/PBCH blocks of the QCL_para number within the S_window (eg, from the start of the S_window). , and may not perform RRM measurement in other sections.
  • a method for the terminal to monitor the Type0-PDCCH CSS set may vary.
  • the base station corresponds to all SS/PBCH block (candidate) indexes in a QCL relationship with a specific SS/PBCH block (candidate) index (within S_window) according to the success or failure of LBT
  • Some of the Type0-PDCCH CSS sets may be transmitted to the UE.
  • the base station when indicating LBT scheme A, one of a plurality of SS / PBCH block (candidate) index in a QCL relationship with a specific SS / PBCH block (candidate) index (eg, S_ window) Only the Type0-PDCCH CSS set corresponding to the first SS/PBCH block (candidate) index in a QCL relationship with a specific SS/PBCH block (candidate) index in .
  • the first SS/PBCH block (candidate) index in a QCL relationship with a specific SS/PBCH block (candidate) index in the S_window may mean the number of SS/PBCH blocks of the first QCL_para in the S_window.
  • the mapping method of the PDSCH may vary according to the LBT scheme indicated by the base station.
  • the base station (within S_window) a specific SS / PBCH block (candidate) index and all SS / PBCH block (candidate) indices in a QCL relationship PDSCH to resources (eg, RB) may not be mapped.
  • the codeword carried on the PDSCH is generated in consideration of the amount of all resources (eg, RBs) allocated for PDSCH transmission, but the resources allocated for PDSCH transmission (eg, RBs) are specific SS/PBCH blocks.
  • the base station may not map the PDSCH to the overlapping resource (eg, RB).
  • the specific SS/PBCH block (candidate) index includes the SS/PBCH block (candidate) index, which the base station informs the UE that it is actually transmitted (see FIG. 9 ).
  • the base station when indicating the LBT scheme A, the base station, (in the S_window) one of a plurality of SS / PBCH block (candidate) index in a QCL relationship with a specific SS / PBCH block (candidate) index (eg, S
  • the PDSCH may not be mapped only to the resource (eg, RB) of the first SS/PBCH block (candidate) index in a QCL relationship with a specific SS/PBCH block (candidate) index within the _window.
  • the base station may map the PDSCH to resources (eg, RBs) of the remaining SS/PBCH block (candidate) indices in a QCL relationship with the specific SS/PBCH block (candidate) index. Accordingly, when the resource (eg, RB) and the PDSCH resource (eg, RB) of the remaining SS / PBCH block (candidate) indexes in the QCL relationship overlap, the base station is allocated for all resources (eg, RB) for the PDSCH. PDSCH may be mapped.
  • the PDSCH TDRA (Time Domain Resource Allocation) method may vary.
  • the base station may schedule a PDSCH through a default TDRA table before setting a specific TDRA table to the terminal, and transmit the scheduled PDSCH to the terminal.
  • the default TDRA table may be defined differently depending on whether a shared spectrum access operation is performed. For example, when the LBT scheme B is indicated, the base station may schedule the PDSCH through the default TDRA table defined for the shared spectrum access operation before setting a specific TDRA table to the terminal.
  • the base station may schedule the PDSCH through the default TDRA table defined for operations other than shared spectrum access before setting a specific TDRA table to the terminal.
  • Each TDRA table includes a plurality of columns, and each column includes (1) a DMRS symbol index in a slot, (2) a PDSCH mapping type, (3) a PDCCH-to-PDSCH slot offset, and (4) a PDSCH start symbol in a slot. index, and (5) the number of PDSCH symbols.
  • the base station may configure SS/PBCH blocks having different numerology in one cell (for each BWP). For example, the base station may set the SS/PBCH block reception of 120 kHz SCS in the initial BWP #0, and set the SS/PBCH block reception of the 480 kHz SCS (or 960 kHz SCS) in BWP #1. If the UE is switched to BWP #0 while performing RRM measurement based on the SS/PBCH block of 480 kHz SCS (or 960 kHz SCS) set in BWP #1, the UE can continue performing RRM measurement, etc.
  • the base station may set the QCL relationship between the SS/PBCH block index of 120 kHz SCS and the SS/PBCH block index of 480 kHz SCS (or 960 kHz SCS). That is, the base station sets that the SS / PBCH block (candidate) index n of 120 kHz SCS and the SS / PBCH block (candidate) index m of 480 kHz SCS (or 960 kHz SCS) are in a QCL relationship, or the same SS / A rule may be established so that a QCL relationship can be assumed between PBCH block (candidate) indices.
  • the base station may be limited to apply only 120 kHz SCS to the SS/PBCH block of the initial access stage.
  • the base station may configure a 480 kHz SCS or a 960 kHz SCS.
  • the base station for purposes other than the initial access phase (eg, RRM measurement, radio link monitoring, candidate beam detection, beam failure detection, beam management, etc.), 480 kHz SCS and / or 960 kHz
  • An SS/PBCH block of SCS may be defined.
  • the base station may configure SS/PBCH blocks having different SCS values for each BWP even within the same cell.
  • the base station sets a 120 kHz SCS-based SS/PBCH block for BWP #0, and for BWP #1, 480 kHz SCS (or 960 kHz SCS-based) SS/ A PBCH block can be configured.
  • the UE can perform RRM measurement, radio link monitoring, candidate beam detection, beam failure detection, beam management, etc. through SS/PBCH block reception. Even during BWP switching, the UE receives a specific SS/PBCH block (candidate) Performance can be maintained only when RRM measurement, radio link monitoring, candidate beam detection, beam failure detection, beam management, etc. performed through the index can be continuously performed. To support this, it may be necessary to establish a QCL relationship between different numerology-based SS/PBCH block (candidate) indexes set in the same cell.
  • the base station may set the SS/PBCH block (candidate) index n of 120 kHz SCS and the SS/PBCH block (candidate) index m of 480 kHz SCS (or 960 kHz SCS) to be in a QCL relationship, and the QCL
  • the relationship setting may be transmitted to the UE through RRC signaling.
  • the UE in the initial access step, the ssb-PositionsInBurst value (see Table 8) obtained through RRC signaling such as SIB1 is the SS / PBCH block (candidate) index of 120 kHz SCS and 480 kHz SCS (or 960 kHz SCS) It can be assumed that the same applies to the SS/PBCH block (candidate) index of .
  • SS/PBCH block (candidate) indices For example, among 64 SS/PBCH block (candidate) indices, only SS/PBC blocks corresponding to indices #0 to 31 are actually transmitted and SS/PBCH blocks corresponding to indices #32 to 63 are not transmitted.
  • the base station can Or, the ssb-PositionsInBurst parameter indicating which SS / PBCH block (candidate) index to which of the 64 SS / PBCH block (candidate) indexes to transmit the BWP (or SS / PBCH block of SCS) can be set separately.
  • RRM measurement can be extended and applied to radio link monitoring, candidate beam detection, beam failure detection, and beam management, and not only in the serving cell (Pcell and/or PSCell and/or Scell) but also in the neighboring cell measurement point of view.
  • the same method can be extended and applied.
  • the 480 kHz SCS or 960 kHz SCS-based SS/PBCH block is applied only to the SCell (not PCell or PSCell). Rules can be set to do so.
  • 24 is a flowchart illustrating an operation of a base station according to the proposed method.
  • the base station may set a subcarrier spacing (SCS) of the SS/PBCH block (S2400).
  • SCS subcarrier spacing
  • the SCS of the SS/PBCH block may be explicitly delivered to the UE through higher layer signaling (eg, RRC signaling) or may be implicitly delivered according to an embodiment.
  • the base station may transmit an SS/PBCH block from among a plurality of SS/PBCH block candidates to the terminal based on the configured SCS (S2410).
  • the positions of the plurality of SS/PBCH block candidates may be defined differently according to the SCS of the SS/PBCH block.
  • a plurality of SS/PBCH block candidates may be determined according to 'CASE 1' of the aforementioned [Method #1]. Specifically, a plurality of SS/PBCH block candidates may be defined within a time window set for transmission of the SS/PBCH block, and based on the SCS of the SS/PBCH block set to 240 kHz, a plurality of SS/PBCH blocks Candidates may be located in both the first half and the second half of the time window. Accordingly, the transmission opportunity of the SS/PBCH block may increase within the time window, and the SS/PBCH block may be effectively transmitted in consideration of the case where the base station fails in the CAP.
  • the base station may transmit the SS/PBCH block to the terminal based on the synchronization raster defined in FR3 (S2400). Specifically, the base station may transmit the SS/PBCH block to the terminal using the synchronization raster defined in FR as a center frequency, and the synchronization raster may be defined as shown in FIG. 15 .
  • the SS/PBCH block transmittable position may be defined on FR3.
  • the SS/PBCH block transmittable position may mean a position where the SS/PBCH block can be transmitted within a 5 msec window, and corresponds to the position of the above-described SS/PBCH block candidate.
  • the base station may transmit SS/PBCH block candidate indexes corresponding to the SS/PBCH block actually transmitted to the terminal by applying [Method #4] and [Method #4A].
  • the UE may acquire a cell timing or a QCL relationship between a plurality of SS/PBCH blocks based on the SS/PBCH block received from the base station (S2410). Specifically, the UE may acquire cell timing through the detected SS/PBCH block by applying [Method #2], and by applying [Method #3], QCL between a plurality of detected SS/PBCH blocks relationship can be obtained. According to the methods proposed herein, by increasing the transmission opportunity of the SS / PBCH block in the unlicensed band of FR3, due to the CAP failure of the base station, it is possible to reduce the probability that the transmission of the SS / PBCH block fails.
  • 26 illustrates a communication system 1 applied to the present invention.
  • the communication system 1 applied to the present invention includes a wireless device, a base station, and a network.
  • the wireless device refers to a device that performs communication using a radio access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • a radio access technology eg, 5G NR (New RAT), LTE (Long Term Evolution)
  • the wireless device includes a robot 100a, a vehicle 100b-1, 100b-2, an eXtended Reality (XR) device 100c, a hand-held device 100d, and a home appliance 100e. ), an Internet of Things (IoT) device 100f, and an AI device/server 400 .
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous driving vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include AR (Augmented Reality)/VR (Virtual Reality)/MR (Mixed Reality) devices, and include a Head-Mounted Device (HMD), a Head-Up Display (HUD) provided in a vehicle, a television, a smartphone, It may be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • the mobile device may include a smart phone, a smart pad, a wearable device (eg, a smart watch, smart glasses), a computer (eg, a laptop computer), and the like.
  • Home appliances may include a TV, a refrigerator, a washing machine, and the like.
  • the IoT device may include a sensor, a smart meter, and the like.
  • the base station and the network may be implemented as a wireless device, and a specific wireless device 200a may operate as a base station/network node to other wireless devices.
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200 .
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may also communicate directly (e.g. sidelink communication) without passing through the base station/network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g. Vehicle to Vehicle (V2V)/Vehicle to everything (V2X) communication).
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensor) or other wireless devices 100a to 100f.
  • Wireless communication/connection 150a, 150b, and 150c may be performed between the wireless devices 100a to 100f/base station 200 and the base station 200/base station 200 .
  • the wireless communication/connection includes uplink/downlink communication 150a and sidelink communication 150b (or D2D communication), and communication between base stations 150c (eg relay, IAB (Integrated Access Backhaul)).
  • This can be done through technology (eg 5G NR)
  • Wireless communication/connection 150a, 150b, 150c allows the wireless device and the base station/radio device, and the base station and the base station to transmit/receive wireless signals to each other.
  • the wireless communication/connection 150a, 150b, and 150c may transmit/receive signals through various physical channels.
  • various signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation processes etc.
  • the first wireless device 100 and the second wireless device 200 may transmit/receive wireless signals through various wireless access technologies (eg, LTE, NR).
  • ⁇ first wireless device 100, second wireless device 200 ⁇ is ⁇ wireless device 100x, base station 200 ⁇ of FIG. 26 and/or ⁇ wireless device 100x, wireless device 100x) ⁇ can be matched.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104 , and may further include one or more transceivers 106 and/or one or more antennas 108 .
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or flow charts disclosed herein.
  • the processor 102 may process the information in the memory 104 to generate the first information/signal, and then transmit a wireless signal including the first information/signal through the transceiver 106 .
  • the processor 102 may receive the radio signal including the second information/signal through the transceiver 106 , and then store the information obtained from the signal processing of the second information/signal in the memory 104 .
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102 .
  • the memory 104 may provide instructions for performing some or all of the processes controlled by the processor 102 , or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • a wireless communication technology eg, LTE, NR
  • the transceiver 106 may be coupled with the processor 102 , and may transmit and/or receive wireless signals via one or more antennas 108 .
  • the transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be used interchangeably with a radio frequency (RF) unit.
  • RF radio frequency
  • a wireless device may refer to a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202 , one or more memories 204 , and may further include one or more transceivers 206 and/or one or more antennas 208 .
  • the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 202 may process the information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206 .
  • the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 , and then store information obtained from signal processing of the fourth information/signal in the memory 204 .
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202 .
  • the memory 204 may provide instructions for performing some or all of the processes controlled by the processor 202 , or for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein. may store software code including
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • a wireless communication technology eg, LTE, NR
  • the transceiver 206 may be coupled to the processor 202 and may transmit and/or receive wireless signals via one or more antennas 208 .
  • the transceiver 206 may include a transmitter and/or a receiver.
  • the transceiver 206 may be used interchangeably with an RF unit.
  • a wireless device may refer to a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102 , 202 .
  • one or more processors 102 , 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • the one or more processors 102, 202 may be configured to process one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, function, procedure, proposal, method, and/or operational flowcharts disclosed herein.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or flow charts disclosed herein.
  • the one or more processors 102 and 202 generate a signal (eg, a baseband signal) including PDUs, SDUs, messages, control information, data or information according to the functions, procedures, proposals and/or methods disclosed in this document. , to one or more transceivers 106 and 206 .
  • the one or more processors 102 , 202 may receive signals (eg, baseband signals) from one or more transceivers 106 , 206 , and may be described, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein.
  • PDUs, SDUs, messages, control information, data, or information may be acquired according to the above.
  • One or more processors 102 , 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • firmware or software which may be implemented to include modules, procedures, functions, and the like.
  • the descriptions, functions, procedures, proposals, methods, and/or flow charts disclosed herein provide that firmware or software configured to perform is included in one or more processors 102 , 202 , or stored in one or more memories 104 , 204 . It may be driven by the above processors 102 and 202 .
  • the descriptions, functions, procedures, suggestions, methods, and/or flow charts disclosed herein may be implemented using firmware or software in the form of code, instructions, and/or a set of instructions.
  • One or more memories 104 , 204 may be coupled with one or more processors 102 , 202 and may store various forms of data, signals, messages, information, programs, code, instructions, and/or instructions.
  • One or more memories 104 , 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104 , 204 may be located inside and/or external to one or more processors 102 , 202 .
  • one or more memories 104 , 204 may be coupled to one or more processors 102 , 202 through various technologies, such as wired or wireless connections.
  • One or more transceivers 106 , 206 may transmit user data, control information, radio signals/channels, etc. referred to in the methods and/or operational flowcharts of this document to one or more other devices.
  • One or more transceivers 106, 206 may receive user data, control information, radio signals/channels, etc. referred to in the descriptions, functions, procedures, suggestions, methods and/or flow charts, etc. disclosed herein, from one or more other devices. there is.
  • one or more transceivers 106 , 206 may be coupled to one or more processors 102 , 202 and may transmit and receive wireless signals.
  • one or more processors 102 , 202 may control one or more transceivers 106 , 206 to transmit user data, control information, or wireless signals to one or more other devices.
  • one or more processors 102 , 202 may control one or more transceivers 106 , 206 to receive user data, control information, or wireless signals from one or more other devices.
  • one or more transceivers 106, 206 may be coupled to one or more antennas 108, 208, and the one or more transceivers 106, 206 may be coupled via one or more antennas 108, 208 to the descriptions, functions, and functions disclosed herein. , procedures, proposals, methods and/or operation flowcharts, etc.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • the one or more transceivers 106, 206 convert the received radio signal/channel, etc. from the RF band signal to process the received user data, control information, radio signal/channel, etc. using the one or more processors 102, 202. It can be converted into a baseband signal.
  • One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from baseband signals to RF band signals.
  • one or more transceivers 106 , 206 may include (analog) oscillators and/or filters.
  • At least one memory may store instructions or programs, which, when executed, are at least operably coupled to the at least one memory.
  • a single processor may be capable of performing operations in accordance with some embodiments or implementations of the present disclosure.
  • a computer readable (storage) medium may store at least one instruction or computer program, wherein the at least one instruction or computer program is executed by at least one processor.
  • a single processor may be capable of performing operations in accordance with some embodiments or implementations of the present disclosure.
  • a processing device or apparatus may include at least one processor and at least one computer memory connectable to the at least one processor.
  • the at least one computer memory may store instructions or programs, which, when executed, cause at least one processor operably coupled to the at least one memory to include several may cause actions according to embodiments or implementations to be performed.
  • the wireless device 28 shows another example of a wireless device to which the present invention is applied.
  • the wireless device may be implemented in various forms according to use-examples/services (refer to FIG. 26 ).
  • wireless devices 100 and 200 correspond to wireless devices 100 and 200 of FIG. 27 , and various elements, components, units/units, and/or modules ) can be composed of
  • the wireless devices 100 and 200 may include a communication unit 110 , a control unit 120 , a memory unit 130 , and an additional element 140 .
  • the communication unit may include communication circuitry 112 and transceiver(s) 114 .
  • communication circuitry 112 may include one or more processors 102,202 and/or one or more memories 104,204 of FIG. 27 .
  • transceiver(s) 114 may include one or more transceivers 106 , 206 and/or one or more antennas 108 , 208 of FIG. 27 .
  • the control unit 120 is electrically connected to the communication unit 110 , the memory unit 130 , and the additional element 140 , and controls general operations of the wireless device. For example, the controller 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130 . In addition, the control unit 120 transmits the information stored in the memory unit 130 to the outside (eg, another communication device) through the communication unit 110 through a wireless/wired interface, or through the communication unit 110 to the outside (eg, Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130 .
  • the outside eg, another communication device
  • Information received through a wireless/wired interface from another communication device may be stored in the memory unit 130 .
  • the additional element 140 may be configured in various ways according to the type of the wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an input/output unit (I/O unit), a driving unit, and a computing unit.
  • the wireless device includes a robot ( FIGS. 26 and 100a ), a vehicle ( FIGS. 26 , 100b-1 , 100b-2 ), an XR device ( FIGS. 26 and 100c ), a mobile device ( FIGS. 26 and 100d ), and a home appliance. (Fig. 26, 100e), IoT device (Fig.
  • digital broadcasting terminal digital broadcasting terminal
  • hologram device public safety device
  • MTC device medical device
  • fintech device or financial device
  • security device climate/environment device
  • It may be implemented in the form of an AI server/device ( FIGS. 26 and 400 ), a base station ( FIGS. 26 and 200 ), and a network node.
  • the wireless device may be mobile or used in a fixed location depending on the use-example/service.
  • various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least some of them may be wirelessly connected through the communication unit 110 .
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130 and 140 ) are connected to the communication unit 110 through the communication unit 110 . It can be connected wirelessly.
  • each element, component, unit/unit, and/or module within the wireless device 100 , 200 may further include one or more elements.
  • the controller 120 may be configured with one or more processor sets.
  • the controller 120 may be configured as a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, a memory control processor, and the like.
  • the memory unit 130 may include random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
  • the wireless communication technology implemented in the wireless devices 100 and 200 of the present specification may include a narrowband Internet of Things for low-power communication as well as LTE, NR, and 6G.
  • the NB-IoT technology may be an example of a LPWAN (Low Power Wide Area Network) technology, and may be implemented in standards such as LTE Cat NB1 and/or LTE Cat NB2, and is limited to the above-mentioned names. no.
  • the wireless communication technology implemented in the wireless devices 100 and 200 of the present specification may perform communication based on the LTE-M technology.
  • the LTE-M technology may be an example of an LPWAN technology, and may be called by various names such as enhanced machine type communication (eMTC).
  • eMTC enhanced machine type communication
  • LTE-M technology is 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL (non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine It may be implemented in at least one of various standards such as Type Communication, and/or 7) LTE M, and is not limited to the above-described name.
  • the wireless communication technology implemented in the wireless devices 100 and 200 of the present specification is at least one of ZigBee, Bluetooth, and Low Power Wide Area Network (LPWAN) in consideration of low power communication.
  • LPWAN Low Power Wide Area Network
  • the ZigBee technology can create PAN (personal area networks) related to small/low-power digital communication based on various standards such as IEEE 802.15.4, and can be called by various names.
  • the vehicle or autonomous driving vehicle may be implemented as a mobile robot, vehicle, train, manned/unmanned aerial vehicle (AV), ship, or the like.
  • the vehicle or autonomous driving vehicle 100 includes an antenna unit 108 , a communication unit 110 , a control unit 120 , a driving unit 140a , a power supply unit 140b , a sensor unit 140c , and autonomous driving. It may include a part 140d.
  • the antenna unit 108 may be configured as a part of the communication unit 110 .
  • Blocks 110/130/140a-140d correspond to blocks 110/130/140 of FIG. 28, respectively.
  • the communication unit 110 may transmit/receive signals (eg, data, control signals, etc.) to and from external devices such as other vehicles, base stations (eg, base stations, roadside units, etc.), servers, and the like.
  • the controller 120 may control elements of the vehicle or the autonomous driving vehicle 100 to perform various operations.
  • the controller 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous driving vehicle 100 to run on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous driving vehicle 100 , and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c includes an inertial measurement unit (IMU) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight sensor, a heading sensor, a position module, and a vehicle forward movement.
  • IMU inertial measurement unit
  • a collision sensor a wheel sensor
  • a speed sensor a speed sensor
  • an inclination sensor a weight sensor
  • a heading sensor a position module
  • a vehicle forward movement / may include a reverse sensor, a battery sensor, a fuel sensor, a tire sensor, a steering sensor, a temperature sensor, a humidity sensor, an ultrasonic sensor, an illuminance sensor, a pedal position sensor, and the like.
  • the autonomous driving unit 140d includes a technology for maintaining a driving lane, a technology for automatically adjusting speed such as adaptive cruise control, a technology for automatically driving along a predetermined route, and a technology for automatically setting a route when a destination is set. technology can be implemented.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 120 may control the driving unit 140a to move the vehicle or the autonomous driving vehicle 100 along the autonomous driving path (eg, speed/direction adjustment) according to the driving plan.
  • the communication unit 110 may non/periodically acquire the latest traffic information data from an external server, and may acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c may acquire vehicle state and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and driving plan based on the newly acquired data/information.
  • the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomous vehicles, and may provide the predicted traffic information data to the vehicle or autonomous vehicles.
  • the present invention can be used in a terminal, a base station, or other equipment in a wireless mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Computer Security & Cryptography (AREA)
  • Databases & Information Systems (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Burglar Alarm Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

본 발명은, 비면허 대역 상에 위치하는 복수의 SS/PBCH(Synchronization Signal/Public Broadcast Channel) 블록 후보 내에서 SS/PBCH 블록을 수신하는 단계, 및 상기 SS/PBCH 블록에 기초하여 시간 동기를 획득하는 단계를 포함하고, 상기 SS/PBCH 블록의 부반송파 간격(subcarrier spacing, SCS)이 240 kHz로 설정된 것에 기초하여, 상기 복수의 SS/PBCH 블록 후보는, 상기 SS/PBCH 블록의 전송을 위해 설정된 시간 윈도우의 전반(first half) 구간 및 후반 구간(second half) 모두에 위치하는, 방법 및 이를 위한 장치에 관한 것이다.

Description

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로, 보다 상세하게는 무선 신호 송수신 방법 및 장치에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
본 발명의 목적은 무선 신호 송수신 과정을 효율적으로 수행하는 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 제1 양상으로, 비면허 대역을 지원하는 무선 통신 시스템에서 단말이 하향링크 신호를 수신하는 방법은, 비면허 대역 상에 위치하는 복수의 SS/PBCH(Synchronization Signal/Public Broadcast Channel) 블록 후보 내에서 SS/PBCH 블록을 수신하는 단계, 및 상기 SS/PBCH 블록에 기초하여 시간 동기를 획득하는 단계를 포함하고, 상기 SS/PBCH 블록의 부반송파 간격(subcarrier spacing, SCS)이 240 kHz로 설정된 것에 기초하여, 상기 복수의 SS/PBCH 블록 후보는, 상기 SS/PBCH 블록의 전송을 위해 설정된 시간 윈도우의 전반(first half) 구간 및 후반 구간(second half) 모두에 위치할 수 있다.
본 발명의 제2 양상으로, 비면허 대역을 지원하는 무선 통신 시스템에서 동작하는 단말은 적어도 하나의 RF(Radio Frequency) 유닛, 적어도 하나의 프로세서, 및 상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작은, 비면허 대역 상에 위치하는 복수의 SS/PBCH 블록 후보 내에서 SS/PBCH 블록을 수신하고, 상기 SS/PBCH 블록에 기초하여 시간 동기를 획득하는 동작을 포함하며, 상기 SS/PBCH 블록의 부반송파 간격(subcarrier spacing, SCS)이 240 kHz로 설정된 것에 기초하여, 상기 복수의 SS/PBCH 블록 후보는, 상기 SS/PBCH 블록의 전송을 위해 설정된 시간 윈도우의 전반(first half) 구간 및 후반 구간(second half) 모두에 위치할 수 있다.
본 발명의 제3 양상으로, 단말을 위한 장치는 적어도 하나의 프로세서, 및 상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작은, 비면허 대역 상에 위치하는 복수의 SS/PBCH 블록 후보 내에서 SS/PBCH 블록을 수신하고, 상기 SS/PBCH 블록에 기초하여 시간 동기를 획득하는 동작을 포함하며, 상기 SS/PBCH 블록의 부반송파 간격(subcarrier spacing, SCS)이 240 kHz로 설정된 것에 기초하여, 상기 복수의 SS/PBCH 블록 후보는, 상기 SS/PBCH 블록의 전송을 위해 설정된 시간 윈도우의 전반(first half) 구간 및 후반 구간(second half) 모두에 위치할 수 있다.
본 발명의 제4 양상으로, 컴퓨터 판독 가능한 저장 매체는, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 프로그램을 포함하며, 상기 동작은, 비면허 대역 상에 위치하는 복수의 SS/PBCH 블록 후보 내에서 SS/PBCH 블록을 수신하고, 상기 SS/PBCH 블록에 기초하여 시간 동기를 획득하는 동작을 포함하며, 상기 SS/PBCH 블록의 부반송파 간격(subcarrier spacing, SCS)이 240 kHz로 설정된 것에 기초하여, 상기 복수의 SS/PBCH 블록 후보는, 상기 SS/PBCH 블록의 전송을 위해 설정된 시간 윈도우의 전반(first half) 구간 및 후반 구간(second half) 모두에 위치할 수 있다.
본 발명의 제5 양상으로, 비면허 대역을 지원하는 무선 통신 시스템에서 기지국이 하향링크 신호를 전송하는 방법은, SS/PBCH(Synchronization Signal/Public Broadcast Channel) 블록의 부반송파 간격을 설정하는 단계 및 비면허 대역 상에 위치하는 복수의 SS/PBCH 블록 후보 내에서 SS/PBCH 블록을 전송하는 단계를 포함하고, 상기 SS/PBCH 블록의 부반송파 간격(subcarrier spacing, SCS)이 240 kHz로 설정된 것에 기초하여, 상기 복수의 SS/PBCH 블록 후보는, 상기 SS/PBCH 블록의 전송을 위해 설정된 시간 윈도우의 전반(first half) 구간 및 후반 구간(second half) 모두에 위치할 수 있다.
본 발명의 제6 양상으로, 비면허 대역을 지원하는 무선 통신 시스템에서 동작하는 기지국은, 적어도 하나의 RF(Radio Frequency) 유닛, 적어도 하나의 프로세서, 및 상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작은, SS/PBCH(Synchronization Signal/Public Broadcast Channel) 블록의 부반송파 간격을 설정하고, 비면허 대역 상에 위치하는 복수의 SS/PBCH 블록 후보 내에서 SS/PBCH 블록을 전송하는 동작을 포함하고, 상기 SS/PBCH 블록의 부반송파 간격(subcarrier spacing, SCS)이 240 kHz로 설정된 것에 기초하여, 상기 복수의 SS/PBCH 블록 후보는, 상기 SS/PBCH 블록의 전송을 위해 설정된 시간 윈도우의 전반(first half) 구간 및 후반 구간(second half) 모두에 위치할 수 있다.
일 실시예에 따르면, 상기 전반 구간 및 상기 후반 구간 각각에서, SS/PBCH 블록 후보들이 정의된 연속된 슬롯들 이후에 SS/PBCH 블록 후보들이 정의되지 않은 연속된 슬롯들이 위치할 수 있다.
일 실시예에 따르면, 상기 전반 구간 및 상기 후반 구간은 각각 40개의 슬롯을 포함하고, 상기 SS/PBCH 블록 후보들이 정의된 연속한 슬롯들은, 상기 전반 구간과 상기 후반 구간 각각의 1)첫번째 슬롯으로부터 연속된 16개의 슬롯 및 2)21번째 슬롯으로부터 연속된 16개의 슬롯을 포함할 수 있다.
일 실시예에 따르면, 상기 복수의 SS/PBCH 블록 후보 중에서 QCL(Quasi-Co-Located) 관계에 있는 SS/PBCH 블록들 사이의 간격 Q에 관한 정보를 수신하는 단계, 상기 복수의 SS/PBCH 블록 후보 중에서 상기 기지국에 의해 전송되는 SS/PBCH 블록을 지시하기 위한 비트맵을 수신하는 단계, 및 상기 Q에 기반하여 결정된 하나 이상의 비트를 제외한 상기 비트맵으로부터, 상기 SS/PBCH 블록의 전송 위치에 관한 정보를 획득하는 단계를 더 포함하고, Q는 상기 시간 윈도우에서 정의된 SS/PBCH 블록 후보들의 개수보다 작을 수 있다.
일 실시예에 따르면, 상기 부반송파 간격이 480 kHz인 SS/PBCH 블록 후보들이 정의된 슬롯들은, 상기 시간 윈도우 내에서, 상기 부반송파 간격이 240 kHz인 SS/PBCH 블록 후보들이 정의된 슬롯들에 정렬하여 위치할 수 있다.
일 실시예에 따르면, 기지국에 의해 수행되는 CAP(Channel Access Procedure)에 관한 정보가 수신되고, 상기 CAP는 채널이 유휴 상태에 있는지 여부와 상관없이 전송이 허용되는 제1 CAP, 또는 유휴 상태에 있는 채널에서만 전송이 허용되는 제2 CAP를 포함할 수 있다.
일 실시예에 따르면, 상기 CAP에 관한 정보가 제2 CAP에 관한 정보를 포함하는 것에 기초하여, 상기 SS/PBCH 블록은, 상기 시간 윈도우 내에서 QCL(Quasi-Co-Located) 관계에 있는 SS/PBCH 블록 후보들 중 일부를 통해 수신되고, 상기 CAP에 관한 정보가 제1 CAP에 관한 정보를 포함하는 것에 기초하여, 상기 SS/PBCH 블록은, 상기 시간 윈도우 내에서 SS/PBCH 블록 후보 인덱스가 Q보다 작은 SS/PBCH 블록 후보들을 통해 수신되며, Q는 상기 시간 윈도우 내에서 QCL 관계에 있는 SS/PBCH 블록 후보들 간의 간격을 나타낼 수 있다.
본 발명에 의하면, 무선 통신 시스템에서 무선 신호 송수신을 효율적으로 수행할 수 있다.
본 발명에 의하면, 비면허 대역 상에서 SS/PBCH 블록의 전송 기회를 증가시킬 수 있다.
본 발명에 의하면, 기지국이 CAP에서 실패하더라도, 단말이 비면허 대역 상에서 SS/PBCH 블록을 효과적으로 수신할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 3GPP NR 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다.
도 4는 슬롯 내에 물리 채널이 매핑되는 예를 도시한다.
도 5는 SSB(Synchronization Signal Block) 구조를 예시한다.
도 6은 SSB 전송을 예시한다.
도 7은 SSB의 멀티-빔 전송을 예시한다.
도 8은 실제로 전송되는 SSB(SSB_tx)를 알려주는 방법을 예시한다.
도 9는 비면허 대역을 지원하는 무선 통신 시스템을 예시한다.
도 10은 비면허 대역에서 자원을 점유하는 방법을 예시한다.
도 11 및 도 12(a) 내지 도 12(c)는, SS/PBCH 블록의 SCS가 120 kHz 또는 240 kHz로 설정된 경우, SS/PBCH 블록 후보들의 위치를 나타낸다.
도 13(a) 내지 도 13(c)는 제안하는 방법에 따른 SS/PBCH 블록 후보들의 위치를 나타낸다.
도 14는 제안하는 [방법 #4]에 따른 기지국과 단말의 동작을 나타내는 흐름도이다.
도 15는 부반송파 간격에 따라 다르게 정의된 동기화 래스터들의 예시를 나타낸다.
도 16은 제안하는 [방법 #5]에 따른 기지국과 단말의 동작을 나타내는 흐름도이다.
도 17(a) 내지 도 21은 제안하는 방법에 따라 부반송파 간격이 480/960 kHz인 SS/PBCH 블록의 전송 위치를 설명하기 위한 도면이다.
도 22는 제안하는 [방법 #8]에 따른 기지국과 단말의 동작을 나타내는 흐름도이다.
도 23 내지 도 25는 제안하는 방법에 따른 단말과 기지국의 흐름도이다.
도 26 내지 도 29는 본 발명에 적용되는 통신 시스템과 무선 기기의 예를 나타낸다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A의 진화된 버전이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT(Radio Access Technology)에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC(Machine Type Communications)도 차세대 통신에서 고려될 주요 이슈 중 하나이다. 또한, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced Mobile BroadBand Communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 발명에서는 편의상 해당 기술을 NR(New Radio 또는 New RAT)이라고 부른다.
설명을 명확하게 하기 위해, 3GPP NR을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP NR 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 SSB(Synchronization Signal Block)를 수신한다. SSB는 PSS(Primary Synchronization Signal), SSS(Secondary Synchronization Signal) 및 PBCH(Physical Broadcast Channel)를 포함한다. 단말은 PSS/SSS에 기반하여 기지국과 동기를 맞추고, 셀 ID(cell identity) 등의 정보를 획득한다. 또한, 단말은 PBCH에 기반하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속(Contention based random access)의 경우 추가적인 물리 임의 접속 채널의 전송(S105) 및 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널 수신(S106)과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널/물리 하향링크 공유 채널 수신(S107) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다. NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 각 무선 프레임은 10ms의 길이를 가지며, 두 개의 5ms 하프-프레임(Half-Frame, HF)으로 분할된다. 각 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 분할된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함한다. 보통(normal) CP가 사용되는 경우, 각 슬롯은 14개의 OFDM 심볼을 포함한다. 확장(extended) CP가 사용되는 경우, 각 슬롯은 12개의 OFDM 심볼을 포함한다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
* N slot symb: 슬롯 내 심볼의 개수
* N frame,u slot: 프레임 내 슬롯의 개수
* N subfrae,u slot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
60KHz (u=2) 12 40 4
프레임의 구조는 예시에 불과하고, 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM 뉴머롤로지(numerology)(예, SCS)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 여기서, 심볼은 OFDM 심볼 (또는, CP-OFDM 심볼), SC-FDMA 심볼 (또는, Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM 심볼)을 포함할 수 있다.NR은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 subcarrier spacing(SCS))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다. NR 주파수 밴드(frequency band)는 2가지 type(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1, FR2는 아래 표 3과 같이 구성될 수 있다. 또한 FR2는 밀리미터 웨이브(millimeter wave, mmW)를 의미할 수 있다.
Frequency Range
designation
Corresponding frequency range Subcarrier Spacing
FR1 450MHz - 7125MHz 15, 30, 60kHz
FR2 24250MHz - 52600MHz 60, 120, 240kHz
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다.
반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 PRB(Physical RB)로 정의되며, 하나의 뉴머롤로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 4는 슬롯 내에 물리 채널이 매핑되는 예를 도시한다. NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널(예, PDCCH)을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널(예, PUCCH)을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터(예, PDSCH) 전송을 위해 사용되거나, UL 데이터(예, PUSCH) 전송을 위해 사용될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
PDCCH는 DCI(Downlink Control Information)를 운반한다. 예를 들어, PCCCH (즉, DCI)는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위 계층 제어 메시지에 대한 자원 할당 정보, 전송 전력 제어 명령, CS(Configured Scheduling)의 활성화/해제 등을 나른다. DCI는 CRC(cyclic redundancy check)를 포함하며, CRC는 PDCCH의 소유자 또는 사용 용도에 따라 다양한 식별자(예, Radio Network Temporary Identifier, RNTI)로 마스킹/스크램블 된다. 예를 들어, PDCCH가 특정 단말을 위한 것이면, CRC는 단말 식별자(예, Cell-RNTI, C-RNTI)로 마스킹 된다. PDCCH가 페이징에 관한 것이면, CRC는 P-RNTI(Paging-RNTI)로 마스킹 된다. PDCCH가 시스템 정보(예, System Information Block, SIB)에 관한 것이면, CRC는 SI-RNTI(System Information RNTI)로 마스킹 된다. PDCCH가 랜덤 접속 응답에 관한 것이면, CRC는 RA-RNTI(Random Access-RNTI)로 마스킹 된다.
표 4는 RNTI에 따른 PDCCH의 용도 및 전송 채널을 예시한다. 전송 채널은 PDCCH에 의해 스케줄링된 PDSCH/PUSCH가 운반하는 데이터와 관련된 전송 채널을 나타낸다.
RNTI Usage Transport Channel
P-RNTI Paging and System Information change notification PCH(Paging Channel)
SI-RNTI Broadcast of System Information DL-SCH
RA-RNTI Random Access Response DL-SCH
C-RNTI Dynamically scheduled unicast transmission UL-SCH, DL-SCH
SFI(Slot Format Indication)-RNTI Slot Format Indication on the given cell N/A
PDCCH의 변조 방식은 고정돼 있으며(예, Quadrature Phase Shift Keying, QPSK), 하나의 PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16 개의 CCE(Control Channel Element)로 구성된다. 하나의 CCE는 6개의 REG(Resource Element Group)로 구성된다. 하나의 REG는 하나의 OFDMA 심볼과 하나의 (P)RB로 정의된다. PDCCH는 CORESET(Control Resource Set)를 통해 전송된다. CORESET는 BWP 내에서 PDCCH/DCI를 운반하는데 사용되는 물리 자원/파라미터 세트에 해당한다. PDCCH 수신을 위해, 단말은 CORESET에서 PDCCH 후보들의 세트를 모니터링(예, 블라인드 디코딩)할 수 있다. PDCCH 후보는 PDCCH 수신/검출을 위해 단말이 모니터링 하는 CCE(들)을 나타낸다. PDCCH 모니터링은 PDCCH 모니터링이 설정된 각각의 활성화된 셀 상의 활성 DL BWP 상의 하나 이상의 CORESET에서 수행될 수 있다. 단말이 모니터링 하는 PDCCH 후보들의 세트는 PDCCH 검색 공간(Search Space, SS) 세트로 정의된다. SS 세트는 공통 검색 공간(Common Search Space, CSS) 세트 또는 단말-특정 검색 공간(UE-specific Search Space, USS) 세트일 수 있다.
표 5는 PDCCH 검색 공간을 예시한다.
Search Space Type RNTI Use Case
Type0-PDCCH Common SI-RNTI on a primary cell Broadcast of System Information
Type0A-PDCCH Common SI-RNTI on a primary cell Broadcast of System Information
Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 in RACH
Type2-PDCCH Common P-RNTI on a primary cell Paging
System Information change notification
Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s) Group signaling
UE Specific UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) UE signaling (e.g., PDSCH/PUSCH)
도 5는 SSB(Synchronization Signal Block) 구조를 예시한다. 단말은 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. 이하에서, SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용될 수 있다.
도 5를 참조하면, SSB는 PSS, SSS와 PBCH로 구성된다. SSB는 4개의 연속된 OFDM 심볼에 구성되며, OFDM 심볼 별로 PSS, PBCH, SSS/PBCH 및 PBCH가 전송된다. PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파로 구성된다. PBCH에는 폴라 코딩 및 QPSK(Quadrature Phase Shift Keying)이 적용된다. PBCH는 OFDM 심볼마다 데이터 RE와 DMRS(Demodulation Reference Signal) RE로 구성된다. RB 별로 3개의 DMRS RE가 존재하며, DMRS RE 사이에는 3개의 데이터 RE가 존재한다.
도 6은 SSB 전송을 예시한다. 도 6을 참조하면, SSB는 SSB 주기(periodicity)에 맞춰 주기적으로 전송된다. 초기 셀 탐색 시에 단말이 가정하는 SSB 기본 주기는 20ms로 정의된다. 셀 접속 후, SSB 주기는 네트워크(예, 기지국)에 의해 {5ms, 10ms, 20ms, 40ms, 80ms, 160ms} 중 하나로 설정될 수 있다. SSB 주기의 시작 부분에 SSB 버스트(burst) 세트가 구성된다. SSB 버스트 세트는 5ms 시간 윈도우(즉, 하프-프레임)로 구성되며, SSB는 SS 버스트 세트 내에서 최대 L번 전송될 수 있다. SSB의 최대 전송 횟수 L은 반송파의 주파수 대역에 따라 다음과 같이 주어질 수 있다. 하나의 슬롯은 최대 2개의 SSB를 포함한다.
- For 주파수 레인지 up to 3 GHz, L = 4
- For 주파수 레인지 from 3GHz to 6 GHz, L = 8
- For 주파수 레인지 from 6 GHz to 52.6 GHz, L = 64
SS 버스트 세트 내에서 SSB 후보의 시간 위치는 SCS에 따라 다음과 같이 정의될 수 있다. SSB 후보의 시간 위치는 SSB 버스트 세트(즉, 하프-프레임) 내에서 시간 순서에 따라 0 ~ L-1로 인덱싱 된다(SSB 인덱스).
- Case A - 15 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다. 반송파 주파수가 3 GHz이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.
- Case B - 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 3 GHz이하인 경우 n=0이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1이다.
- Case C - 30 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {2, 8} + 14*n으로 주어진다. 반송파 주파수가 3 GHz이하인 경우 n=0, 1이다. 반송파 주파수가 3 GHz ~ 6 GHz인 경우 n=0, 1, 2, 3이다.
- Case D - 120 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {4, 8, 16, 20} + 28*n으로 주어진다. 반송파 주파수가 6 GHz보다 큰 경우 n=0, 1, 2, 3, 5, 6, 7, 8, 10, 11, 12, 13, 15, 16, 17, 18이다.
- Case E - 240 kHz SCS: 후보 SSB의 시작 심볼의 인덱스는 {8, 12, 16, 20, 32, 36, 40, 44} + 56*n으로 주어진다. 반송파 주파수가 6 GHz보다 큰 경우 n=0, 1, 2, 3, 5, 6, 7, 8이다.
초기 셀 선택 시, 단말은 SSB를 갖는 하프-프레임이 20ms 주기로 반복된다고 가정한다. 단말은 MIB(Master Information Block)에 기반하여 Type0-PDCCH 공통 탐색 공간(common search space)을 위한 CORESET(Control Resource Set)이 존재하는지 확인할 수 있다. MIB는 SIB1(SystemInformationBlockType1) 수신과 관련된 정보/파라미터를 포함하며 SSB의 PBCH를 통해 전송된다.
Type0-PDCCH 공통 탐색 공간은 PDCCH 탐색 공간의 일종이며, SI(System Information) 메시지를 스케줄링 하는 PDCCH를 전송하는데 사용된다. Type0-PDCCH 공통 탐색 공간이 존재하는 경우, 단말은 MIB 내의 정보(예, pdcch-ConfigSIB1)에 기반하여 (i)CORESET을 구성하는 복수의 연속된 RB와 하나 이상의 연속된 심볼과 (ii)PDCCH 기회(즉, PDCCH 수신을 위한 시간 도메인 위치)를 결정할 수 있다. 구체적으로, pdcch-ConfigSIB1는 8비트 정보이며, (i)은 MSB(Most Significant Bit) 4비트에 의해 기반하여 결정되고(3GPP TS 38.213 Table 13-1~13-10 참조), (ii)는 LSB(Least Significant Bit) 4비트에 의해 기반하여 결정된다(3GPP TS 38.213 Table 13-11~13-15 참조).
도 7은 SSB의 멀티-빔 전송을 예시한다. 빔 스위핑은 TRP(Transmission Reception Point)(예, 기지국/셀)가 무선 신호의 빔 (방향)을 시간에 따라 다르게 하는 것을 의미한다(이하에서, 빔과 빔 방향은 혼용될 수 있다). SSB는 빔 스위핑을이용하여 주기적으로 전송될 수 있다. 이 경우, SSB 인덱스는 SSB 빔과 묵시적(implicitly)으로 링크된다. SSB 빔은 SSB (인덱스) 단위로 변경될 수 있다. SSB 버스트 세트 내에서 SSB의 최대 전송 횟수 L은 캐리어가 속하는 주파수 대역에 따라 4, 8 또는 64의 값을 가진다. 따라서, SSB 버스트 세트 내에서 SSB 빔의 최대 개수도 캐리어의 주파수 대역에 따라 다음과 같이 주어질 수 있다.
- For 주파수 레인지 up to 3 GHz, Max number of beams = 4
- For 주파수 레인지 from 3GHz to 6 GHz, Max number of beams = 8
- For 주파수 레인지 from 6 GHz to 52.6 GHz, Max number of beams = 64
* 멀티-빔 전송이 적용되지 않는 경우, SSB 빔의 개수는 1개이다.
도 8은 실제로 전송되는 SSB(SSB_tx)를 알려주는 방법을 예시한다. SSB 버스트 세트 내에서 SSB는 최대 L개가 전송될 수 있으며, SSB가 실제로 전송되는 개수/위치는 기지국/셀 별로 달라질 수 있다. SSB가 실제로 전송되는 개수/위치는 레이트-매칭과 측정을 위해 사용되며, 실제로 전송된 SSB에 관한 정보는 다음과 같이 지시된다.
- 레이트-매칭과 관련된 경우: 단말-특정(specific) RRC 시그널링이나 RMSI를 통해 지시될 수 있다. 단말-특정 RRC 시그널링은 below 6GHz 및 above 6GHz 주파수 범위에서 모두 풀(full)(예, 길이 L) 비트맵을 포함한다. 반편, RMSI는 below 6GHz에서 풀 비트맵을 포함하고, above 6GHz에서는 도시된 바와 같이 압축 형태의 비트맵을 포함한다. 구체적으로, 그룹-비트 맵(8비트) + 그룹-내 비트맵(8비트)을 이용하여 실제로 전송된 SSB에 관한 정보가 지시될 수 있다. 여기서, 단말-특정 RRC 시그널링이나 RMSI를 통해 지시된 자원(예, RE)은 SSB 전송을 위해 예약되고, PDSCH/PUSCH 등은 SSB 자원을 고려하여 레이트-매칭될 수 있다.
- 측정과 관련된 경우: RRC 연결(connected) 모드에 있는 경우, 네트워크(예, 기지국)는 측정 구간 내에서 측정될 SSB 세트를 지시할 수 있다. SSB 세트는 주파수 레이어(frequency layer) 별로 지시될 수 있다. SSB 세트에 관한 지시가 없는 경우, 디폴트 SSB 세트가 사용된다. 디폴트 SSB 세트는 측정 구간 내의 모든 SSB를 포함한다. SSB 세트는 RRC 시그널링의 풀(full)(예, 길이 L) 비트맵을이용하여 지시될 수 있다. RRC 아이들(idle) 모드에 있는 경우, 디폴트 SSB 세트가 사용된다.
도 9는 비면허 대역을 지원하는 무선 통신 시스템을 예시한다. 편의상, 면허 대역(이하, L-밴드)에서 동작하는 셀을 LCell로 정의하고, LCell의 캐리어를 (DL/UL) LCC(Licensed Component Carrier)로 정의한다. 또한, 비면허 대역(이하, U-밴드)에서 동작하는 셀을 UCell로 정의하고, UCell의 캐리어를 (DL/UL) UCC(Unlicensed Component Carrier)로 정의한다. 셀의 캐리어는 셀의 동작 주파수(예, 중심 주파수)를 의미할 수 있다. 셀/캐리어(예, Component Carrier, CC)는 셀로 통칭될 수 있다.
캐리어 병합(Carrier Aggregation, CA)이 지원되는 경우, 하나의 단말은 병합된 복수의 셀/캐리어를 통해 기지국과 신호를 송수신할 수 있다. 하나의 단말에게 복수의 CC가 구성된 경우, 하나의 CC는 PCC(Primary CC)로 설정되고, 나머지 CC는 SCC(Secondary CC)로 설정될 수 있다. 특정 제어 정보/채널(예, CSS PDCCH, PUCCH)은 PCC를 통해서만 송수신 되도록 설정될 수 있다. 데이터는 PCC/SCC를 통해 송수신 될 수 있다. 도 9(a)는 단말과 기지국은 LCC 및 UCC를 통해 신호를 송수신 하는 경우를 예시한다(NSA(non-standalone) 모드). 이 경우, LCC는 PCC로 설정되고 UCC는 SCC로 설정될 수 있다. 단말에게 복수의 LCC가 구성된 경우, 하나의 특정 LCC는 PCC로 설정되고 나머지 LCC는 SCC로 설정될 수 있다. 도 9(a)는 3GPP LTE 시스템의 LAA에 해당한다. 도 9(b)는 단말과 기지국은 LCC 없이 하나 이상의 UCC를 통해 신호를 송수신 하는 경우를 예시한다(SA 모드). 이 경우. UCC들 중 하나는 PCC로 설정되고 나머지 UCC는 SCC로 설정될 수 있다. 3GPP NR 시스템의 비면허 대역에서는 NSA 모드와 SA 모드가 모두 지원될 수 있다.
도 10은 비면허 대역에서 자원을 점유하는 방법을 예시한다. 비면허 대역에 대한 지역별 규제(regulation)에 따르면, 비면허 대역 내의 통신 노드는 신호 전송 전에 다른 통신 노드(들)의 채널 사용 여부를 판단해야 한다. 구체적으로, 통신 노드는 신호 전송 전에 먼저 CS(Carrier Sensing)를 수행하여 다른 통신 노드(들)이 신호 전송을 하는지 여부를 확인할 수 있다. 다른 통신 노드(들)이 신호 전송을 하지 않는다고 판단된 경우를 CCA(Clear Channel Assessment)가 확인됐다고 정의한다. 기-정의된 혹은 상위계층(예, RRC) 시그널링에 의해 설정된 CCA 임계치가 있는 경우, 통신 노드는 CCA 임계치보다 높은 에너지가 채널에서 검출되면 채널 상태를 비지(busy)로 판단하고, 그렇지 않으면 채널 상태를 아이들(idle)로 판단할 수 있다. 참고로, Wi-Fi 표준(802.11ac)에서 CCA 임계치는 non Wi-Fi 신호에 대하여 -62dBm, Wi-Fi 신호에 대하여 -82dBm으로 규정되어 있다. 채널 상태가 아이들이라고 판단되면, 통신 노드는 UCell에서 신호 전송을 시작할 수 있다. 상술한 일련의 과정은 LBT(Listen-Before-Talk) 또는 CAP(Channel Access Procedure)로 지칭될 수 있다. LBT와 CAP는 혼용될 수 있다.
실시예
본 명세서에서 사용되는 기호/약어/용어는 다음과 같다.
- PDCCH: Physical Downlink Control CHannel
- PDSCH: Physical Downlink Shared CHannel
- PUSCH: Physical Uplink Shared CHannel
- CSI: Channel state information
- RRM: Radio resource management
- RLM: Radio link monitoring
- DCI: Downlink Control Information
- CAP: Channel Access Procedure
- Ucell: Unlicensed cell
- TBS: Transport Block Size
- SLIV: Starting and Length Indicator Value(PDSCH 및/또는 PUSCH의 슬롯 내 시작 심볼 인덱스 및 심볼 개수에 관한 지시 필드로써, 해당 PDSCH 및/또는 PUSCH를 스케줄링하는 PDCCH에 실린다.)
- BWP: BandWidth Part(주파수 축 상에서 연속한 RB들로 구성될 수 있으며, 하나의 뉴머롤로지(예, SCS, CP 길이, 슬롯/미니-슬롯 구간(duration))에 대응할 수 있다. 또한, 하나의 반송파(carrier)에서 복수의 BWP가 설정(반송파 당 BWP 개수 역시 제한될 수 있음)될 수 있으나, 활성화된 BWP 개수는 반송파의 일부(예, 1개)로 제한될 수 있다.)
- CORESET: COntrol REsourse SET(PDCCH 가 전송될 수 있는 시간 주파수 자원 영역을 의미하며, BWP 당 CORESET 개수가 제한될 수 있다.)
- REG: Resource Element Group
- SFI: Slot Format Indicator(특정 슬롯(들) 내의 심볼 레벨 DL/UL 방향을 지시하는 지시자로써, 그룹 공통(group common) PDCCH를 통해 전송된다.)
- COT: Channel Occupancy Time
- SPS: Semi-Persistent Scheduling
- PLMN ID: Public Land Mobile Network identifier
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라, 차기 무선 통신 시스템에서 제한된 주파수 대역의 효율적 활용은 점점 더 중요한 요구가 되고 있다. LTE/NR 시스템과 같은 셀룰러 통신 시스템도 기존의 WiFi 시스템이 주로 사용하는 2.4GHz 대역과 같은 비면허 대역이나 새로 주목받고 있는 5 GHz 및 60 GHz 대역과 같은 비면허 대역을 트래픽 오프로딩에 활용하는 방안을 검토 중이다. 전술한 바와 같이, 비면허 대역에서는, 각 통신 노드가 신호를 전송하기 전에 채널 센싱(channel sensing)을 수행하여 다른 통신 노드가 신호 전송을 하지 않음을 확인하는 LBT 동작을 요구한다. LTE/NR 시스템의 eNB/gNB나 UE도 비면허 대역(편의상 U-band로 칭함)에서의 신호 전송을 위해서는 LBT를 수행해야 한다. 또한, LTE/NR 시스템의 eNB/gNB나 UE가 비면허 대역에서 신호를 전송할 때, Wi-Fi(또는 802.11ad/ay 등의 WiGig(Wireless Gigabit Alliance)) 등 다른 통신 노드들도 LBT를 수행하여 간섭을 일으키지 않아야 한다.
3GPP Rel-15 (release-15) NR 시스템은 52.6 GHz 이하의 대역의 동작을 정의하고 있으며, 향후 release에서 60/70 GHz 밴드의 면허 대역 및/또는 비면허 대역에서도 NR 시스템을 동작시키기 위한 논의가 진행 중이다.
본 명세서에서는, 60/70 GHz 밴드의 비면허 대역에서 초기 접속을 위한 SS/PBCH 블록 전송 방법을 제안한다. 구체적으로, 본 명세서에서는, CAP 기반의 비면허 대역 동작을 고려할 때, SS/PBCH 블록의 전송 기회를 증대시키기 위한 방법을 제안한다. 본 명세서의 제안 방법은 비면허 대역에서의 동작에 기반하여 설명하고 있으나, 제안 내용에 따라 면허 대역에서의 동작에도 확장 적용될 수 있다. 또한, 비면허 대역은 공유 스펙트럼(shared spectrum)과 혼용될 수 있다.
NR 시스템에서 mmWave 대역(예, above 7.125 또는 24 MHz, up to 52.6 GHz)을 FR2(Frequency Range 2)로 정의하고 있으며, FR2에서 SS/PBCH 블록의 SCS는 120 kHz 또는 240 kHz일 수 있다.
도 11은, SS/PBCH 블록의 SCS가 120 kHz 또는 240 kHz로 설정된 경우, SS/PBCH 블록 후보들의 위치를 나타낸다. 실시예에 따라, SS/PBCH 블록 후보는 후보 SS/PBCH 블록, 전술한 SSB 후보, 또는 후보 SSB와 혼용될 수 있다.
구체적으로, 도 11과 같이, 0.25 msec 내(예를 들어, 120 kHz SCS 기준 2개 슬롯(1100), 240 kHz SCS 기준 4개 슬롯(1110))에 최대 4개 또는 8개의 SS/PBCH 블록이 전송될 수 있다. 예를 들어, 120 kHz SCS 기준으로, 첫번째 슬롯의 심볼 #4/5/6/7에서 SS/PBCH 블록 (후보) 인덱스 'n', 심볼 #8/9/10/11에서 SS/PBCH 블록 (후보) 인덱스 'n+1' 이 전송될 수 있고, 두번째 슬롯의 심볼 #2/3/4/5에서 SS/PBCH 블록 (후보) 인덱스 'n+2', 심볼 #6/7/8/9에서 SS/PBCH 블록 (후보) 인덱스 'n+3'이 전송될 수 있다. 이때, 심볼 #4/5/6/7/은, 슬롯 내에서 심볼 인덱스가 4/5/6/7인 심볼들, 또는 5/6/7/8번째 심볼들을 의미할 수 있다. 또한, 이하에서, SS/PBCH 블록 (후보) 인덱스가 전송된다는 것은, 해당 SS/PBCH 블록 (후보) 인덱스를 갖는 SS/PBCH 블록 후보에서 SS/PBCH 블록이 전송되는 것을 의미할 수 있다. SS/PBCH 블록의 경우, 일정 주기마다 전송이 보장되는 것이 바람직한데, 비면허 대역 동작의 특성상 CAP에서 성공한 경우에만 전송이 허용되기 때문에, 기정의된 윈도우 구간(이하에서, S_윈도우) 내에서 하나의 SS/PBCH 블록에 대응하는 복수의 전송 후보(예, 복수의 SS/PBCH 블록 후보)가 설정될 수 있다. 이에 따라, 기지국이 CAP에 실패하여 특정 SS/PBCH 블록 후보에서 SS/PBCH 블록의 전송을 시도하지 못했다 하더라도, 다른 SS/PBCH 블록 후보에서 CAP를 수행함으로써, SS/PBCH 블록의 전송 확률을 높일 수 있다. 따라서, 복수의 SS/PBCH 블록 후보는 동일한 SS/PBCH 블록 인덱스를 가질 수 있으며, 본 명세서에서, SS/PBCH 블록 후보 인덱스는, 문맥에 따라 SS/PBCH 블록 인덱스로 대체되어 사용될 수 있다.
240 kHz SCS의 경우, 첫번째 슬롯의 심볼 #8/9/10/11에서 SS/PBCH 블록 (후보) 인덱스 'n', 첫번째 슬롯의 심볼 #12/13과 두번째 슬롯의 심볼 #0/1에서 SS/PBCH 블록 (후보) 인덱스 'n+1', 두번째 슬롯의 심볼 #2/3/4/5에서 SS/PBCH 블록 (후보) 인덱스 'n+2', 두번째 슬롯의 심볼 #6/7/8/9에서 SS/PBCH 블록 (후보) 인덱스 'n+3'이 전송될 수 있고, 세번째 슬롯의 심볼 #4/5/6/7에서 SS/PBCH 블록 (후보) 인덱스 'n+4', 세번째 슬롯의 심볼 #8/9/10/11에서 SS/PBCH 블록 (후보) 인덱스 'n+5', 세번째 슬롯의 심볼 #12/13과 네번째 슬롯의 심볼 #0/1에서 SS/PBCH 블록 (후보) 인덱스 'n+6', 네번째 슬롯의 심볼 #2/3/4/5에서 SS/PBCH 블록 (후보) 인덱스 'n+7'이 전송될 수 있다.
도 11은 각 SCS에 따른 SS/PBCH 블록 전송을 시간 축 상에서 심볼 레벨로 나타낸 것이고, 도 12(a) 내지 도 12(c)는 각 SCS에 따른 SS/PBCH 블록 전송을 시간 축 상에서 슬롯 레벨로 나타낸 것이다(기존 3GPP Rel-15 NR 시스템). 이하에서는, 편의상, SS/PBCH 블록이 전송될 수 있는 윈도우를 S_윈도우(S_window)로 정의하고, S_윈도우를 5msec 윈도우로 가정한다. 그러나, 실시예에 따라, S_윈도우의 길이(duration)는 기지국에 의해 다른 값으로(예를 들어, 0.5 msec, 1/2/3/4 msec 등) 설정될 수 있다. 도 12(a)를 참조하면, 5 msec 윈도우에는, 120 kHz SCS 기준으로 총 40개의 슬롯이 있고, 연속한 8개의 슬롯(1200)동안 SS/PBCH 블록들이 전송될 수 있으며, 연속한 8개의 슬롯(예를 들어, 슬롯 #0~#7(1200) 또는 슬롯 #10~#17) 사이에 2개 슬롯 갭(예, 슬롯 #8~9)(1201)이 존재할 수 있다. 이때, SS/PBCH 블록이 전송될 수 있는 연속한 8개의 슬롯(예, 슬롯 #0~7) 중에서 2개의 슬롯(예, 슬롯 #0~1(1202), #2~3, #4~5, #6~7)동안, 도 11에 도시된 120 kHz SCS의 경우(1100)와 같이, 최대 4개의 SS/PBCH 블록이 전송될 수 있다. 유사하게, 5 msec 윈도우에는, 240 kHz SCS 기준으로 총 80개의 슬롯이 있고, 연속한 16개의 슬롯(1210)동안 SS/PBCH 블록들이 전송될 수 있으며, 연속한 16개의 슬롯(예, 슬롯 #0~#15(1210), #20~#35) 사이에 4개 슬롯의 갭(예, 슬롯 #16~#19)(1211)이 존재할 수 있다. 이때, SS/PBCH 블록이 전송될 수 있는 연속한 16개의 슬롯(예, 슬롯 #0~#15)(1210) 중에서 4개의 슬롯(예, 슬롯 #0~3, #4~7. #8~11, #12~15)동안, 도 11의 240 kHz SCS와 같이 최대 8개의 SS/PBCH 블록이 전송될 수 있다. 즉, 120 kHz 및 240 kHz SCS의 경우, 5msec 윈도우 내에서 허용된 SS/PBCH 블록 (후보) 인덱스의 최대 개수는 64개로 제한될 수 있으며, 셀-특정(cell-specific) 또는 UE-특정(UE-specific) RRC 시그널링에 의해, 최대 64개 중 실제 어느 인덱스에 대응하는 SS/PBCH 블록들이 전송되는지 설정될 수 있다.
NR 시스템이 60/70 GHz 주파수 밴드(편의상, 이하에서는 60/70 GHz 밴드를 FR3(Frequency Range 3)으로 명명한다.)에서도 동작 가능하도록 확장시키더라도, SS/PBCH 블록의 SCS은 FR2에서 정의된 바와 같이 120 kHz 또는 240 kHz가 적용될 수 있다. 이하에서는, 위와 같은 상황일 때, 비면허 대역에서 SS/PBCH 블록의 전송 기회를 증가시키기 위한 방법들을 제안한다. 또한, 본 발명에서는, 위와 같은 상황일 때, 서빙 셀 타이밍(serving cell timing)을 획득하거나, SS/PBCH 블록 간 QCL (quasi-Co-Located) 관계를 획득하거나, 또는 최대 64개 SS/PBCH 블록 후보 중 실제 전송되는 SS/PBCH 블록 (후보) 인덱스들을 알려주는 방법 등을 제안한다. 이때, 서빙 셀 타이밍을 획득한다는 것은, 서빙 셀의 타이밍에 관한 정보를 획득한다는 의미를 포함할 수 있으며, 실시예에 따라 서빙 셀의 시간 동기(time synchronization)를 획득한다고 지칭될 수도 있다. 예를 들어, 타이밍에 관한 정보는 프레임, 서브프레임, 슬롯, 심볼 등의 타이밍 경계(timing boundary)에 관한 정보를 포함할 수 있으나, 이에 한정되지 않는다. 또한, SS/PBCH 블록 간 QCL 관계를 획득한다는 것은, 복수의 SS/PBCH 블록 중에서 QCL 관계에 있는 SS/PBCH 블록들에 관한 정보를 획득한다는 것을 의미할 수 있다. 또한, 실제 전송되는 SS/PBCH 블록 후보 인덱스는, 기지국에 의해 실제 전송되는 SS/PBCH 블록에 대응하는 SS/PBCH 블록 후보 인덱스를 의미할 수 있다.
본 명세서에서, 2개의 SS/PBCH 블록들이 QCL 관계에 있다는 것은, 2개의 SS/PBCH 블록이 동일한 (large-scale) 채널 특성(예, 평균 이득(average gain), 도플러 쉬프트(Doppler shift), 도플러 스프레드(Doppler spread), 평균 지연(average delay), 지연 스프레드(delay spread), Spatial Rx 파라미터 등)을 갖고 있다고 단말이 가정할 수 있음을 의미할 수 있다.
본 명세서의 제안 방법은 비면허 대역에서의 동작에 기반하여 설명하고 있으나, 제안 내용에 따라 면허 대역에서의 동작에도 확장 적용될 수 있다. 또한, 비면허 대역은 공유 스펙트럼(shared spectrum)과 혼용될 수 있다.
1) Receiver (Entity A; 예, 단말)
[방법 #1] SS/PBCH 블록의 전송 기회를 증가시키는 방법
SS/PBCH 블록 전송이 허용되지 않은 슬롯(도 12(a) 내지 도 12(c) 참조)에서도 SS/PBCH 블록 전송을 허용함으로써 SS/PBCH 블록의 전송 기회를 증가시킬 수 있다. 일 예로, 240 kHz SCS의 경우, 도 13(a)와 같이, 연속한 16개의 슬롯(1300)에서 SS/PBCH 블록 버스트의 전송을 허용하고, 다음 연속한 4개의 슬롯(1301)에서 SS/PBCH 블록 버스트의 전송을 허용하지 않는 규칙이 확장될 수 있다. 이하에서, SS/PBCH 블록 버스트는, 전술한 SSB 버스트와 동일한 의미로 해석될 수 있다. 즉, 슬롯 인덱스 #40~55(1302) 및 슬롯 인덱스 #60~75(1303)에서 추가적인 SS/PBCH 블록들의 전송이 허용될 수 있다. 이때, 각 0.25 msec마다 슬롯 레벨에서 SS/PBCH 블록을 전송하는 방법은 도 11과 같을 수 있다. 이하에서는, 편의상 상기 전송 방법을 " CASE 1"로 명명한다. 이때, SS/PBCH 블록 (후보) 인덱스 값은 #0~127 까지 이며, 각 SS/PBCH 블록 (후보) 인덱스마다 단일 위치의 SS/PBCH 블록과 연동될 수 있다.
다른 일 예로, 240 kHz SCS의 경우, 도 13(b)와 같이, SS/PBCH 블록 버스트의 전송이 허용되지 않는 슬롯을 고려하지 않고, 5 msec 윈도우 내에 존재하는 모든 슬롯에서 SS/PBCH 블록의 전송이 허용될 수 있다. 이때, 각 0.25 msec마다 슬롯 레벨에서 SS/PBCH 블록을 전송하는 방법은 도 11과 같을 수 있다. 도 13(a)와 같이 SS/PBCH 블록의 전송이 허용되지 않는 슬롯(1301)이 정의된 경우, 단말이 SS/PBCH 블록의 전송이 허용되지 않는 슬롯(1301)에서 PRACH 또는 PUCCH와 같은 상향링크 전송을 수행할 수 있도록 하여, 시스템 성능을 향상시킬 수 있다. 하지만, 비면허 대역의 동작 특성 상, 전송 노드가 실제로 전송하기 전에 CAP가 완료되어야 한다는 것을 고려할 때, SS/PBCH 블록들이 최대한 연속한 슬롯에서 전송될 수 있도록 하는 것이 유리할 수 있다. 이하에서는, 편의상 상기 전송 방법을 " CASE 2"로 명명한다. 이때, SS/PBCH 블록 (후보) 인덱스는 #0~159 까지 이며, 각 SS/PBCH 블록 (후보) 인덱스마다 단일 위치의 SS/PBCH 블록과 연동될 수 있다.
또 다른 일 예로, 120 kHz SCS의 경우, 도 13(c)와 같이, SS/PBCH 블록 버스트의 전송이 허용되지 않는 슬롯을 고려하지 않고 (5 msec 윈도우 내에 존재하는) 모든 슬롯에서 SS/PBCH 블록의 전송이 허용될 수 있다. 이때, 각 0.25 msec마다 슬롯 레벨에서 SS/PBCH 블록이 전송되는 방법은 도 11과 같을 수 있다. 비면허 대역의 동작 특성 상, 전송 노드가 실제로 전송하기 전에 CAP가 완료되어야 한다는 것을 고려할 때, 도 13(b)에서와 같이, SS/PBCH 블록들이 최대한 연속한 슬롯에서 전송될 수 있도록 하는 것이 유리할 수 있다. 이하에서는, 편의상 상기 전송 방법을 " CASE 3"으로 명명한다. 이때, SS/PBCH 블록 (후보) 인덱스는 0부터 79까지이며, 각 SS/PBCH 블록 (후보) 인덱스마다 단일 위치의 SS/PBCH 블록과 연동될 수 있다.
[방법 #2] [방법 #1]을 적용하여, 셀 타이밍 정보를 획득하는 방법
[방법 #1]과 같이, 기존의 3GPP Rel-15 NR 시스템에서 SS/PBCH 블록의 전송이 허용되지 않는 슬롯 (또는 심볼)에서 SS/PBCH 블록의 전송이 허용될 수 있다. 단말이 새롭게 전송이 허용된 슬롯 (또는 심볼)에서 SS/PBCH 블록 검출(detection)을 통해 셀 식별(cell identification)(예, 초기 접속, 셀 선택, 또는 RRM 측정 등을 위한 셀 식별)을 시도할 때, SS/PBCH 블록 내의 신호 및/또는 PBCH 페이로드(payload) 등을 통해, 검출된 SS/PBCH 블록에 대응하는 셀 타이밍(예, 프레임/서브프레임/슬롯/심볼 등의 타이밍 경계(timing boundary)) 정보를 획득할 수 있는 방법을 제안한다.
3GPP Rel-15 NR에서는, 도 12(a) 내지 도 12(c)에 도시된 바와 같이 5 msec 윈도우 내에서 최대 64개의 SS/PBCH 블록 전송이 가능하고, 각 64개의 SS/PBCH 블록 (후보) 인덱스 별로 서로 다른 {PBCH DM-RS 시퀀스 인덱스 및 PBCH 페이로드 정보}와의 조합이 정의되어 있다. 구체적으로, 64개의 SS/PBCH 블록을 시간 축 상에서 연속한 8개의 SS/PBCH 블록 단위로 그룹핑(grouping)하고, 각 그룹에 포함된 8개의 SS/PBCH 블록은 8개의 PBCH DM-RS 시퀀스 인덱스에 의해 구별되고, 8개의 그룹은 PBCH 페이로드 내의 3 비트에 의해 구별될 수 있다.
단말은, 다음과 같은 구체적인 방법들을 통해, 추가로 전송되는 SS/PBCH 블록에 대응하는 셀 타이밍을 획득할 수 있다.
- 옵션 1: 추가적인 PBCH 페이로드를 활용
- 옵션 2: 추가적인 PBCH DM-RS 시퀀스들을 활용
- 옵션 3: PBCH DM-RS의 위상 천이(phase shift) 정보를 활용
- 옵션 4: PBCH DM-RS가 매핑되는 RE의 위치 정보를 활용
- 옵션 5: 추가적인 DL RS(Downlink Reference Signal) 전송을 활용
이하에서는, 도 13(a)에서 정의된 "CASE 1"에 상기 각 옵션을 적용하는 구체적인 방법들을 제안한다.
- 옵션 1(추가적인 PBCH 페이로드를 활용): 도 13(a)에서 전반 64개 SS/PBCH 블록 (후보) 인덱스와 후반 64개 SS/PBCH 블록 (후보) 인덱스를 구분하기 위해, PBCH 페이로드의 1비트 정보가 활용될 수 있다. 예를 들어, 상기 1비트 정보는, MIB에서 남는(spare) 1 비트일 수도 있고, 기존에 사용되는 특정 필드의 전체 또는 일부가 재해석될 수도 있다. 상기 1비트 값이 '0'이면, 단말은 전반 64개 SS/PBCH 블록 (후보) 인덱스 중에서 하나에 대응하는 셀 타이밍을 획득하고, 상기 1비트 값이 '1'이면, 단말은 후반 64개 SS/PBCH 블록 (후보) 인덱스 중에서 하나에 대응하는 셀 타이밍을 획득할 수 있다.
- 옵션 2(추가적인 PBCH DM-RS 시퀀스들을 활용): 도 13(a)에서 전반 64개 SS/PBCH 블록 (후보) 인덱스와 후반 64개 SS/PBCH 블록 (후보) 인덱스를 구분하기 위해, PBCH DMRS 시퀀스 개수를 16개로 증가시킬 수 있다. 즉, PBCH DMRS 시퀀스 인덱스가 #0~7이면, 단말은 (기존과 같이) 전반 64개 SS/PBCH 블록 (후보) 인덱스 중에서 하나에 대응하는 셀 타이밍을 획득하고, PBCH DMRS 시퀀스 인덱스가 #8~15이면, 단말은 후반부 64개 SS/PBCH 블록 (후보) 인덱스 중에서 하나에 대응하는 셀 타이밍을 획득할 수 있다. 또는, 발견된 PBCH DMRS 시퀀스 인덱스가 N(예, N은 8~15 중 하나)이면, 단말은, PBCH DMRS 시퀀스 인덱스가 'N-8'인 (기존과 같이) 전반 64개 SS/PBCH 블록 (후보) 인덱스 중 하나에 대응하는 셀 타이밍으로부터, 2.5 msec 만큼 더한 값을 실제 셀 타이밍으로 인지할 수 있다.
- 옵션 3(PBCH DM-RS의 위상 천이 정보를 활용): 도 13(a)에서 전반 64개 SS/PBCH 블록 (후보) 인덱스와 후반 64개 SS/PBCH 블록 (후보) 인덱스를 구분하기 위해, 전반의 SSS와 PBCH DMRS 간 위상 오프셋과 후반의 SSS와 PBCH DMRS 간 위상 오프셋이 다르게 설정될 수 있다. 일 예로, 전반의 SSS와 PBCH DMRS 간 위상 오프셋은 0°(즉, SSS와 PBCH DMRS의 위상을 동일하게 설정), 후반의 SSS와 PBCH DMRS 간 위상 오프셋은 180°(즉, SSS와 PBCH DMRS의 위상을 다르게 설정)로 설정되어 전송될 수 있다. 즉, 발견된 SS/PBCH 블록 내 SSS와 PBCH DMRS 간 위상 오프셋이 0°로 추정되면, 단말은 (기존과 같이) 전반 64개 SS/PBCH 블록 (후보) 인덱스 중 하나에 대응하는 셀 타이밍을 획득한다. 또는, SSS와 PBCH DMRS 간 위상 오프셋이 180°로 추정되면, 단말은 후반부 64개 SS/PBCH 블록 (후보) 인덱스 중 하나에 대응하는 셀 타이밍을 획득할 수 있다. 또는, 실시예에 따라, 발견된 SSS와 PBCH DMRS 간 위상 오프셋이 180°이면, 단말은, 위상 오프셋이 0°인 전반 64개 SS/PBCH 블록 (후보) 인덱스 중 하나에 대응하는 셀 타이밍으로부터 2.5 msec 만큼 더한 값을 실제 셀 타이밍으로 인지할 수 있다.
- 옵션 4(PBCH DM-RS가 매핑되는 RE의 위치 정보를 활용): 다음의 표 6과 같이, PBCH DMRS의 RE 위치는 셀 ID 값에 의해 결정된다. 이때, 표 6의 v 값은 v-shift로 정의된다. 예를 들어, 도 13(a)에서 전반 64개 SS/PBCH 블록 (후보) 인덱스와 후반 64개 SS/PBCH 블록 (후보) 인덱스를 구분하기 위해, 전반의 PBCH DMRS의 RE 위치는 기존과 동일하게 v-shift 값으로 정의되고, 후반의 PBCH DMRS의 RE 위치는
Figure PCTKR2021001900-appb-img-000001
로 정의될 수 있으며, a 값은 사전에 정의될 수 있다. 예를 들어, a 값은 4의 배수를 제외한 정수(예, 2)일 수 있다. 즉, 발견된 SS/PBCH 블록 내 PBCH DMRS의 RE 위치가
Figure PCTKR2021001900-appb-img-000002
로 판단되면, 단말은 (기존과 같이) 전반 64개 SS/PBCH 블록 (후보) 인덱스 중 하나에 대응하는 셀 타이밍을 획득하고, PBCH DMRS의 RE 위치가
Figure PCTKR2021001900-appb-img-000003
로 판단되면, 단말은 후반 64개 SS/PBCH 블록 (후보) 인덱스 중 하나에 대응하는 셀 타이밍을 획득할 수 있다.
Figure PCTKR2021001900-appb-img-000004

Figure PCTKR2021001900-appb-img-000005
- 옵션 5(추가적인 DL RS 전송을 활용): 예를 들어, 도 13(a)에서 전반 64개 SS/PBCH 블록 (후보) 인덱스와 후반 64개 SS/PBCH 블록 (후보) 인덱스를 구분하기 위해, 전반에 DL RS #1가 전송되고, 후반에 DL RS #2가 전송될 수 있다. DL RS #1 및 DL RS #2는 연동된 SS/PBCH 블록과 TDM(Time Division Multiplexing) 및/또는 FDM(Frequency Division Multiplexing)된 자원 위치로 사전에 정의될 수 있으며, 두 RS 간 서로 다른 시퀀스가 정의될 수도 있다. 즉, 발견된 SS/PBCH 블록과 연동된 DL RS #1이 전송되었다고 판단되면, 단말은 (기존과 같이) 전반 64개 SS/PBCH 블록 (후보) 인덱스 중 하나에 대응하는 셀 타이밍을 획득할 수 있고, DL RS#2가 전송되었다고 판단되면, 단말은 후반 64개 SS/PBCH 블록 (후보) 인덱스 중 하나에 대응하는 셀 타이밍을 획득할 수 있다.
[방법 #3] QCL 관계에 있는 SS/PBCH 블록들을 알려주는 방법
단말이 동일 S_윈도우 내에서 또는 상이한 S_윈도우 간 수신된 복수의 SS/PBCH 블록을 기반으로 셀 식별을 수행할 때, 해당 SS/PBCH 블록들이 QCL 관계에 있는지 알려주는 방법이 필요할 수 있다. 이때, 단말이 S_윈도우 내에 존재하는 SS/PBCH 블록 (후보) 인덱스들 중 몇 개의 간격으로 QCL 관계임을 가정할 수 있는지 시그널링될 수 있으며, 해당 값(예를 들어, QCL 관계에 있는 SS/PBCH 블록들간의 간격을 나타내는 값)은 QCL_para로 정의될 수 있다. 즉, S_윈도우 #1에서 검출된 SS/PBCH 블록 (후보) 인덱스 값이 N이고, 다음 S_윈도우인 S_윈도우 #2에서 검출된 SS/PBCH 블록 (후보) 인덱스 값이 M일 때, (N mod QCL_para) 값과 (M mod QCL_para) 값이 동일하면, 단말은 두 SS/PBCH 블록이 QCL 관계에 있다고 가정할 수 있다. 이와 같이 QCL_para 값에 의해 modulo 연산을 취한 SS/PBCH 블록 후보 인덱스(예, SS/PBCH 블록 후보 인덱스 mod QCL_para) 값이 SS/PBCH 블록 인덱스로 정의될 수도 있다.
QCL_para 값의 경우, QCL_para를 위한 후보 값들이 사전에 정의되고, 후보 값들 중에서 실제 단말에 의해 적용될 특정 값이 QCL_para 값으로 시그널링될 수 있다. 이때, 후보 값들은 특징적으로 64와 약수 관계에 있을 수 있다. 일 예로, {64, 32, 16, 8} (또는 {64, 32})이 후보 값으로 사전에 정의되고, 그 중에서 특정 값이 QCL_para 값으로 설정될 수 있다. QCL_para 값이 설정될 때, QCL_para 값은 아래와 같은 방법들 중 하나 이상의 방법에 의해 시그널링될 수 있다. 이에 따라, S_윈도우 내에는, 동일한 QCL 관계에 있는 하나 이상의 SS/PBCH 블록(예, 최대 (64/QCL_para)개의 SS/PBCH 블록)이 구성/전송될 수 있다.
- 옵션 A(추가적인 PBCH 페이로드, 셀-특정 RRC 시그널링 또는 UE-전용(UE-dedicated) RRC 시그널링을 활용): 일 예로, QCL_para를 위한 후보 값들이 {64, 32, 16, 8}로 사전에 정의될 수 있고, 후보 값들 중에서 특정 값이 PBCH 페이로드, 셀-특정 RRC 시그널링, 또는 UE-전용 RRC 시그널링 상 2비트에 기초하여 시그널링될 수 있다. 예를 들어, 상기 PBCH 페이로드는, PBCH 에서 남는(spare) 비트일 수도 있고, 혹은 기존에 사용되는 특정 필드의 전체 또는 일부가 재해석될 수도 있다.
- 옵션 B(추가적인 PBCH DM-RS 시퀀스들을 활용): 일 예로, PBCH DMRS 시퀀스의 개수를 16개로 증가시킬 수 있다. 예를 들어, PBCH DMRS 시퀀스 인덱스가 #0~7이면, 단말은 QCL_para 값을 64로 인지하고, PBCH DMRS 시퀀스 인덱스가 #8~15이면, 단말은 QCL_para 값을 32로 인지할 수 있다.
- 옵션 C(PBCH DM-RS의 위상 천이 정보를 활용): 일 예로, 전반의 SSS와 PBCH DMRS 간 위상 오프셋이 0°이면, 단말은 QCL_para 값을 64로 인지하고, SSS와 PBCH DMRS 간 위상 오프셋이 180°이면, 단말은 QCL_para 값을 32로 인지할 수 있다.
- 옵션 D(PBCH DM-RS가 매핑되는 RE의 위치 정보를 활용): 일 예로, 발견된 SS/PBCH 블록 내 PBCH DMRS의 RE 위치가
Figure PCTKR2021001900-appb-img-000006
로 판단되면, 단말은 QCL_para 값을 64로 인지하고, PBCH DMRS의 RE 위치가
Figure PCTKR2021001900-appb-img-000007
로 판단되면, 단말은 QCL_para 값을 32로 인지할 수 있다.
- 옵션 E(추가적인 DL RS 전송을 활용): 일 예로, 발견된 SS/PBCH 블록과 연동된 DL RS #1이 전송되었다고 판단되면, 단말은 QCL_para 값을 64로 인지하고, DL RS# 2가 전송되었다고 판단되면, 단말은 QCL_para 값을 32로 인지할 수 있다.
[방법 #4] 64개보다 적은 수의 SS/PBCH 블록이 전송될 수 있을 때, 기지국이 실제 전송하는 SS/PBCH 블록 인덱스를 알려주는 방법
이하에서는, 상기 [방법 #3]과 같이 64개보다 적은 개수(=K)의 SS/PBCH 블록이 전송될 수 있을 때, 기지국이 실제 전송하는 SS/PBCH 블록 인덱스(예를 들어, 기지국에 의해 실제 전송되는 SS/PBCH 블록에 대응하는 SS/PBCH 블록 인덱스)를 단말에게 알려주는 방법을 제안한다. 구체적으로, 8-비트의 비트맵을 통해 각 그룹(각 그룹은 8개 SS/PBCH 블록 (후보) 인덱스와 연동됨)의 유무(presence/absence)를 알려줄 수 있을 때, 단말은 8-비트 비트맵의 K/8번째 이후 비트 정보를 무시하거나, 또는 K/8번째 이후 비트 정보가 0으로 시그널링 되는 것을 기대할 수 있다. 이때, 각 그룹의 유무를 알려준다는 것은, 각 그룹에서 SS/PBCH 블록이 실제 전송되는지 여부를 알려주는 것을 의미할 수 있다. 또는, 64-비트 비트맵을 통해 각 SS/PBCH 블록 인덱스의 유무(presence/absence)를 알려줄 수 있을 때, 단말은 64-비트 비트맵의 K번째 이후 비트 정보를 무시하거나, 또는 K번째 이후 비트 정보로 0이 시그널링 되는 것을 기대할 수 있다. 이때, 각 SS/PBCH 블록 인덱스의 유무를 알려준다는 것은, 각 SS/PBCH 블록 후보 인덱스가 실제 전송되는 SS/PBCH 블록에 대응하는지 여부를 알려주는 것을 의미할 수 있다.
최대 64개의 SS/PBCH 블록이 전송될 수 있을 때, ServingCellConfigCommonSIB IE 상의 groupPresence (8-비트 비트맵) RRC 파라미터와 inOneGroup(8-비트 비트맵) RRC 파라미터의 조합(총 16비트)에 기초하여, 64개 SS/PBCH 블록 중 실제 전송되는 SS/PBCH 블록이 무엇인지 시그널링될 수 있다(예, 도 8 참조). 이때, groupPresence 상 각 비트는 연속한 8개의 SS/PBCH 블록 인덱스를 대표할 수 있다. 구체적으로, groupPresence의 첫번째 비트는 SS/PBCH 블록 후보 인덱스 #0~7, 두번째 비트는 SS/PBCH 블록 인덱스 #8~15를 대표할 수 있다. 또한, inOneGroup 상 n번째 비트는 각 그룹 내 n번째 SS/PBCH 블록 인덱스들을 대표할 수 있다. 구체적으로, inOneGroup의 첫번째 비트는 각 그룹 내 첫번째 SS/PBCH 블록 인덱스인, #0/8/16/24/32/40/48/56를 대표할 수 있다. 예를 들어, groupPresence 가 '11000000', inOneGroup 가 '00110000' 이 시그널링 된다면, 총 64개 SS/PBCH 블록 인덱스 중에서 #2/3/10/11에 대응하는 SS/PBCH 블록들이 실제 전송된다는 것을 의미할 수 있다.
그러나, 만약 상기 [방법#3]과 같이 64개보다 적은 개수(=K; 예, QCL_para)의 SS/PBCH 블록이 전송될 수 있을 때, groupPresence 상 일부 비트 정보는 유효하지(valid) 않게 될 수 있다. 일 예로, K가 32이면(예, QCL_para=32), 각 그룹을 구성하는 SS/PBCH 블록 인덱스는 8개로 유지되며, groupPresence 상 LSB 4 비트(첫 4비트 또는 제일 왼쪽(leftmost)의 4비트) 또는 MSB 4비트만 유효하고, 나머지 4 비트는 유효하지 않거나 나머지 4 비트는 '0' 이 시그널링 될 수 있다. 또는, 단말은, 나머지 4 비트를 무시(IGNORE)하거나, 나머지 4비트 값으로'0'이 시그널링 되는 것을 기대할 수 있다. 일반화하면, 64보다 작은 K에 대하여, 각 그룹을 구성하는 SS/PBCH 블록 인덱스는 8개로 유지되며, groupPresence 상 LSB (8/64*K) 비트(즉, 첫 (8/64*K) 비트 또는 제일 왼쪽(leftmost)의 (8/64*K) 비트) 또는 MSB (8/64*K) 비트만 유효하고, 나머지 (8-8/64*K) 비트는 유효하지 않을 수 있다. 또는, 단말이 나머지 (8-8/64*K) 비트를 무시하거나, 나머지 (8-8/64*K) 비트 값으로 '0'이 시그널링 되는 것을 기대할 수 있다.
또는, K가 64보다 작은 경우, 각 그룹을 구성하는 SS/PBCH 블록 인덱스 개수를 K가 64일 때와 다르게 설정하고, 다르게 설정된 SS/PBCH 블록 인덱스 개수에 기초하여 groupPresence 및/또는 inOneGroup을 해석할 수 있다. 일 예로, K가 32이면, 각 그룹을 구성하는 SS/PBCH 블록 인덱스 개수는 2개로 설정될 수 있고, groupPresenceinOneGroup 를 합한 16-비트 비트맵을 통해 그룹 별 유무가 시그널링 될 수 있다. 이때, 그룹핑 방법으로서, 연속한 2개의 SS/PBCH 블록 인덱스가 페어링(pairing)(예, SS/PBCH 블록 인덱스 #0/1이 첫번째 그룹으로 설정)되거나, 16개 간격의 SS/PBCH 블록 인덱스들이 페어링(SS/PBCH 블록 인덱스 #0/16이 첫 번째 그룹, SS/PBCH 블록 인덱스 #1/17이 두번째 그룹으로 설정)될 수 있다. 다른 일 예로, K가 16이면, 각 그룹을 구성하는 SS/PBCH 블록 인덱스 개수가 1개로 설정될 수 있고, groupPresenceinOneGroup를 합한 16-비트 비트맵을 통해 각 SS/PBCH 블록 인덱스의 유무가 시그널링 될 수 있다. 또 다른 일 예로, K가 8(예, QCL_para = 8)이면, inOneGroup 8-비트 비트맵을 통해 각 SS/PBCH 블록 인덱스의 유무가 시그널링 될 수 있다. 이때, groupPresence이 시그널링 되지 않거나, groupPresence이 모두 '0' 으로 시그널링되거나, 단말이 시그널링된 groupPresence을 무시하거나, groupPresence가 특정 값(예, 모두 '0'값)으로 시그널링 되는 것을 기대할 수 있다. 또는, K가 8(예, QCL_para = 8)이면, groupPresence 8-비트 비트맵을 통해 각 SS/PBCH 블록 인덱스의 유무가 시그널링 될 수 있다. 이때, inOneGroup 이 시그널링 되지 않거나, inOneGroup 이 모두 '0' 으로 시그널링되거나, 단말이 시그널링된 inOneGroup 을 무시하거나, inOneGroup 가 특정 값(예, 모두 '0'값)으로 시그널링 되는 것을 기대할 수 있다.
한편, UE-전용 RRC 시그널링의 경우, 최대 64개의 SS/PBCH 블록이 전송될 수 있으면(K=64), 시그널링 오버헤드의 고려 없이 64-비트 풀(full) 비트맵이 전송될 수 있다. 그러나, 64개보다 적은 개수(=K)의 SS/PBCH 블록이 전송될 수 있을 때, 해당 비트맵의 크기(또는 비트 폭(bit width))는 K-비트로 설정되거나, 또는 해당 비트맵 상 LSB K 비트(즉, 첫 K 비트, 또는 제일 왼쪽의 K 비트) 또는 MSB K 비트만 유효하고 나머지 (64-K) 비트는 유효하지 않거나, 나머지 (64-K) 비트는 '0'으로 시그널링 되거나, 단말이 해당 비트맵 상 나머지 (64-K) 비트를 무시하거나 해당 비트맵 상 나머지 (64-K) 비트 값이 0'으로 시그널링 되는 것을 기대할 수 있다.
도 14는, [방법 #4]의 일 실시예에 따른 기지국과 단말의 동작을 나타내는 흐름도이다.
도 14를 참조하면, 기지국은 복수의 SS/PBCH 블록 후보 중에서 QCL 관계에 있는 SS/PBCH 블록들 사이의 간격 Q에 관한 정보를 단말에게 전송할 수 있다(S1400). 이때, Q는 시간 윈도우 내에서 최대 전송될 수 있는 SS/PBCH 블록 개수를 의미할 수 있고, (연속한) SS/PBCH 블록 후보의 개수로 정의될 수 있으며, 시간 윈도우에서 정의된 SS/PBCH 블록 후보들의 개수보다 작은 값일 수 있다. 또한, Q는, 전술한 바와 같이, [방법 #3]의 QCL_para, 또는 [방법 #4]의 K에 대응할 수 있다.
기지국은, 복수의 SS/PBCH 블록 중에서 실제 전송되는 SS/PBCH 블록을 지시하기 위한 비트맵을 단말에게 전송할 수 있다(S1410). 이때, 비트맵은, 기지국에 의해 실제 전송되는 SS/PBCH 블록의 위치를 지시하기 위한 것일 수 있다. 예를 들어, 비트맵은, 시간 윈도우 내에 정의된 복수의 SS/PBCH 블록 후보를 복수의 그룹으로 나눌 때, 각 그룹에서 SS/PBCH 블록이 실제 전송되는지 나타내는 비트맵을 포함할 수 있다. 구체적으로, 시간 윈도우 내에 64개의 SS/PBCH 블록 후보가 정의되어 있고, 64개의 SS/PBCH 블록 후보를 8개의 SS/PBCH 블록 후보 단위로 그룹핑하면, 8-비트 크기의 비트맵을 통해, 각 그룹에서 SS/PBCH 블록이 전송되는지 지시할 수 있다.
단말은, Q에 기반하여 결정된 하나 이상의 비트를 제외한 비트맵으로부터, 실제 전송되는 SS/PBCH 블록의 전송 위치에 관한 정보를 획득할 수 있다. Q에 관한 정보가 수신되면, 시간 윈도우 내에서 최대 Q개의 SS/PBCH 블록만 전송될 수 있으므로, 상기 비트맵에서 하나 이상의 비트는 유효하지 않은 비트로 인지될 수 있다. 예를 들어, Q가 32로 설정된 경우, 8-비트 크기의 비트맵에서 Q/8번째 이후의 비트는 유효하지 않은 비트일 수 있다. 이에 따라, 단말은, 8-비트 크기의 비트맵에서 Q/8번째 이후의 비트 정보를 무시하거나, Q/8번째 이후 비트 정보가 모두 특정 값(예, '0')으로 시그널링 되는 것을 기대할 수 있다. 즉, 단말은, 8-비트 크기의 비트맵에서 Q/8번째 이후의 비트를 제외한 비트맵으로부터, 실제 전송되는 SS/PBCH 블록의 전송 위치에 관한 정보를 획득할 수 있다.
또한, 실시예에 따라, 실제 전송되는 SS/PBCH 블록을 지시하기 위한 비트맵은, 상기 각 그룹에 관한 정보를 지시하기 위한 비트맵(예, groupPresence 파라미터)과 그룹 내 각각의 SS/PBCH 블록 후보에 관한 정보를 지시하기 위한 비트맵(예, inOneGroup 파라미터)의 조합을 의미할 수도 있다.
[방법 #5] 제안한 [방법 #1] 내지 [방법 #4]들의 적용 여부를 알리는 방법
FR3에서 서비스하는 기지국이라 할지라도, 상기 [방법 #1] 및/또는 [방법 #2] 및/또는 [방법 #3] 및/또는 [방법 #4]을 포함하는 제안 방법들의 적용 여부는, 기지국에 따라, 또는 비면허 대역인지(예, SS/PBCH 블록이 비면허 대역에서 전송되는지) 여부에 따라 결정될 수 있다. 이때, 제안 방법들의 적용 여부를 알리기 위하여, SS/PBCH 블록이 전송될 수 있는 동기화 래스터(synchronization raster)가 다르게 정의될 수 있다.
일 예로, FR3에서의 동기화 래스터 셋(synchronization raster set) #1(예, 면허 대역과 관련된 셋)과 동기화 래스터 셋 #2(예, 비면허 대역과 관련된 셋)가 정의될 수 있다. 이때, 동기화 래스터 셋 #1 과 동기화 래스터 셋 #2 간 주파수 오프셋 및/또는 간격(interval)이 다르게 설정될 수 있다. 동기화 래스터 셋 #1에 속한 동기화 래스터에 기반한 SS/PBCH 블록이 발견되면, 단말은 FR2와 동일한 SS/PBCH 블록임을 인지할 수 있다(예, 도 12(a) 내지 도 12(c) 참조). 이때, FR2와 동일한 SS/PBCH 블록은, FR2에서 정의된 SS/PBCH 블록을 의미할 수 있으며, 예를 들어, 도 12(a) 내지 도 12(c)에 도시된 바에 따라 전송되는 SS/PBCH 블록을 의미할 수 있다. 반면, 동기화 래스터 셋 #2에 포함된 동기화 래스터에 기반한 SS/PBCH 블록이 발견되면, 단말은 상기 [방법#1] 및/또는 [방법#2] 및/또는 [방법#3] 및/또는 [방법#4]를 포함하는 제안 방법들에서와 같이, (FR2 동작과 달리) FR3에서 향상된(enhanced) SS/PBCH 블록임을 인지할 수 있다. 이때, FR3에서 향상된 SS/PBCH 블록은, [방법 #1] 내지 [방법 #4] 중 적어도 하나가 적용된 SS/PBCH 블록을 의미할 수 있으며, 예를 들어, 도 13(a) 내지 도 13(c)에 도시된 바에 따라 전송되는 SS/PBCH 블록을 의미할 수 있다.
[방법 #5-1] SCS에 따라 동기화 래스터를 다르게 설정하는 방법
예를 들어, 2 GHz 대역폭(대략 2.16 GHz)을 갖는 WiGig 시스템과의 공존 및 (Rel-15 NR 시스템에서 가정한) 4096 FFT(Fast Fourier Transform) 크기를 고려하여, 480 kHz 및/또는 960 kHz SCS의 SS/PBCH 블록이 도입될 수 있다. WiGig 시스템은 비허가된(unlicensed) 60 GHz 이상의 주파수 대역에서 동작하는 무선 통신 시스템의 일 예이다. 이때, 단말이 해당 주파수 대역에서 수행해야 하는 셀 검출/식별 과정의 복잡도를 고려하여, SCS에 따라 동기화 래스터가 다르게 정의될 수 있다. 또한, SCS에 따라 최대 주파수 대역폭이 다르다는 것을 고려하여, 특정 주파수 대역 내에서 SCS에 따른 동기화 래스터의 개수가 다르게 정의될 수 있다. 일 예로, WiGig의 채널 대역폭(예, 2.16 GHz) 내에서 960 kHz SCS의 SS/PBCH 블록이 위치할 수 있는 동기화 래스터는 1개, 120 kHz SCS의 SS/PBCH 블록이 위치할 수 있는 동기화 래스터는 5개일 수 있으며, 총 6개 래스터의 위치는 각각 상이할 수 있다. 예를 들어, 도 15를 참조하면, 120 kHz SCS의 SS/PBCH 블록이 위치할 수 있는 동기화 래스터는 {A,C,D,E,F}이고, 960 kHz SCS의 SS/PBCH 블록이 위치할 수 있는 동기화 래스터는 B이며, 6개 동기화 래스터 {A,B,C,D,E,F} 각각의 위치는 모두 상이하다. 이에 따라, 단말이 동기화 래스터 {A,C,D,E,F} 중 하나에서 SS/PBCH 블록 검출을 시도하는 경우, 120 kHz SCS만을 가정하고, 동기화 래스터 B에서 SS/PBCH 블록 검출을 시도하는 경우, 960 kHz SCS만을 가정할 수 있다.
도 16은 [방법 #5]의 일 실시예에 따른 기지국과 단말의 동작을 나타내는 흐름도이다.
도 16을 참조하면, 기지국은, 제1 동기화 래스터 셋과 비면허 대역을 위한 제2 동기화 래스터 셋에 관한 정보를 단말에게 전송할 수 있다(S1600). 이때, 제1 동기화 래스터 셋 및 제2 동기화 래스터 셋은, 각각 전술한 동기화 래스터 셋 #1 및 동기화 래스터 셋 #2에 대응할 수 있다. 제1 동기화 래스터 셋은, 면허 대역을 위해 설정된 하나 이상의 동기화 래스터를 포함할 수 있으며, 제2 동기화 래스터 셋은 비면허 대역을 위해 설정된 하나 이상의 동기화 래스터를 포함할 수 있다. 이때, 제1 동기화 래스터 셋과 제2 동기화 래스터 셋은 주파수 오프셋 및/또는 간격이 다르게 설정될 수 있다.
기지국은, 제1 동기화 래스터 셋 또는 제2 동기화 래스터 셋에 포함되는 동기화 래스터에 기초하여 SS/PBCH 블록을 단말에게 전송할 수 있다(S1610). 단말은, 수신된 SS/PBCH 블록에 기초하여 셀 타이밍을 획득할 수 있다(S1620). 이때, 단말은, 수신된 SS/PBCH 블록이 어떤 동기화 래스터 셋에 기반한 것인지에 따라, SS/PBCH 블록을 다르게 인지할 수 있다. 예를 들어, 제1 동기화 래스터 셋에 포함된 동기화 래스터에 기반한 SS/PBCH 블록이면, 단말은 전술한 도 12(a) 내지 도 12(c)에 도시된 바에 따라 전송된 SS/PBCH 블록으로 인지할 수 있다. 또는, 제2 동기화 래스터 셋에 포함된 동기화 래스터에 기반한 SS/PBCH 블록이면, 단말은 전술한 [방법 #1] 내지 [방법 #4] 중 적어도 하나가 적용된 SS/PBCH 블록으로 인지할 수 있다. 이때, [방법 #1] 내지 [방법 #4] 중 적어도 하나가 적용된 SS/PBCH 블록은, 도 13(a) 내지 도 13(c)에 도시된 바에 따라 전송된 SS/PBCH 블록을 포함할 수 있다.
추가적으로, 비면허 대역을 위해 설정된 제2 동기화 래스터 셋은, SCS에 따라 다르게 설정된 동기화 래스터들을 포함할 수 있다. 예를 들어, [방법 #5-1]과 같이, 120 kHz SCS를 위한 동기화 래스터와 960 kHz SCS를 위한 동기화 래스터가 비면허 대역에서 동작하는 WiGig의 채널 대역폭 내에서 서로 다르게 설정될 수 있다. 예를 들어, 도 16에 도시된 바와 같이, 120 kHz SCS를 위한 동기화 래스터는 동기화 래스터 {A,C,D,E,F} 5개를 포함할 수 있고, 960 kHz SCS를 위한 동기화 래스터는 1개의 동기화 래스터 B를 포함할 수 있다. 이때, SCS에 따라 서로 다르게 설정된 동기화 래스터들의 위치는 서로 상이할 수 있다. 이에 따라, 동기화 래스터 {A,C,D,E,F} 중 하나에서 SS/PBCH 블록이 검출되면, 단말은 해당 SS/PBCH 블록의 SCS를 120 kHz로 인지하고, 동기화 래스터 B에서 SS/PBCH 블록이 검출되면, 단말은 해당 SS/PBCH 블록의 SCS를 960 kHz로 인지할 수 있다.
[방법 #6] 480 kHz 및/또는 960 kHz SCS의 SS/PBCH 블록의 심볼 위치
전술한 바와 같이, 2 GHz 대역폭(대략 2.16 GHz)을 갖는 WiGig 시스템과의 공존 및 (Rel-15 NR 시스템에서 가정한) 4096 FFT 크기를 고려하여, 480 kHz 및/또는 960 kHz SCS의 SS/PBCH 블록이 도입될 수 있다. 이하에서는, 480 kHz 및/또는 960 kHz의 SS/PBCH 블록의 (OFDM) 심볼 위치에 대하여 제안한다. 단말은, 제안된 (OFDM) 심볼 위치에서 480 kHz 및/또는 960 kHz SCS의 SS/PBCH 블록이 전송되는 것을 기대할 수 있다. 이하에서는, 480 kHz 및/또는 960 kHz SCS의 SS/PBCH 블록의 심볼 위치에 대하여, 다음의 3가지 approach에 기반한 디자인을 제안하고자 한다.
- Approach 1: 480/960 kHz SCS SS/PBCH 블록의 심볼 위치는 기존에 정의된 120/240 kHz SCS SS/PBCH 블록의 심볼 위치에 정렬(align)되어(또는 맞추어) 결정될 수 있다. Approach 1의 경우, SS/PBCH 블록이 480 kHz 또는 960 kHz SCS으로 전송되고, 해당 SS/PBCH 블록이 포함된 반송파(carrier)/BWP에서 송수신하는 DL/UL 제어/데이터 채널/신호가 120 kHz 또는 240 kHz SCS이더라도, 멀티플렉싱하기 용이하다는 장점이 있다. 일 예로, 도 17(a) 및 도 17(b)와 같이, 480/960 kHz SCS의 SS/PBCH 블록이 구성될 수 있다. 도 17(a)는 p번째 1/16 msec 시간 윈도우 내에서 각 SCS에 따른 SS/PBCH 블록의 구성(또는 SS/PBCH 블록 패턴)을 나타내고, 도 17(b)는 도 17(a)에 이어서'p+1'번째 1/16msec 시간 윈도우 내에서 각 SCS에 따른 SS/PBCH 블록 패턴을 나타낸다. 구체적으로, 도 11 및 도 17(a)를 참조하면, 240 kHz SCS의 SS/PBCH 블록의 경우(1700), 첫번째 슬롯의 심볼 #8/9/10/11에서 SS/PBCH 블록 (후보) 인덱스 'n', 첫번째 슬롯의 심볼 #12/13에서 SS/PBCH 블록 (후보) 인덱스 'n+1'의 일부가 정의/전송될 수 있다. 또한, 도 17(a)를 참조하면, 480 kHz SCS의 SS/PBCH 블록의 경우(1701), 동일 1/16 msec 시간 윈도우 내에서, 240 kHZ SCS의 SS/PBCH 블록의 심볼 위치에 맞추어, 두번째 슬롯의 심볼 #2/3/4/5에서 SS/PBCH 블록 (후보) 인덱스 'i', 두번째 슬롯의 심볼 #6/7/8/9에서 SS/PBCH 블록 (후보) 인덱스 'i+1', 두번째 슬롯의 심볼 #10/11/12/13에서 SS/PBCH 블록 (후보) 인덱스 'i+2'가 정의/전송될 수 있다. 또한, 960 kHz SCS의 SS/PBCH 블록의 경우(1702), 동일 1/16 msec 시간 윈도우 내에서, 240kHz SCS의 SS/PBCH 블록의 심볼 위치에 맞추어, 세번째 슬롯의 심볼 #4/5/6/7에서 SS/PBCH 블록 (후보) 인덱스 m, 세번째 슬롯의 심볼 #8/9/10/11에서 SS/PBCH 블록 (후보) 인덱스 'm+1', 세번째 슬롯의 심볼 #12/13 및 네번째 슬롯의 심볼 #0/1에서 SS/PBCH 블록 (후보) 인덱스 'm+2', 네번째 슬롯의 심볼 #2/3/4/5에서 SS/PBCH 블록 (후보) 인덱스 'm+3', 네번째 슬롯의 심볼 #6/7/8/9에서 SS/PBCH 블록 (후보) 인덱스 'm+4', 네번째 슬롯의 심볼 #10/11/12/13에서 SS/PBCH 블록 (후보) 인덱스 'm+5'가 정의/전송될 수 있다.
- Approach 2: 기존에 정의된 SS/PBCH 블록 패턴들 중 하나가 480 kHz 및/또는 960 kHz SCS에 적용될 수 있다. 전술한 바와 같이, SSB 버스트 세트 내에서 SSB 후보(또는 SS/PBCH 블록 후보)의 시간 위치는, SCS에 따라 Case A 내지 Case E와 같이 정의될 수 있고, 기존에 정의된 SS/PBCH 블록 패턴들은, 전술한 Case A 내지 Case E에 따른 SS/PBCH 블록 패턴들을 포함할 수 있다. 각 case에서 SSB 후보 (또는 SS/PBCH 블록 후보)의 시작 심볼의 인덱스는 다음과 같이 주어질 수 있다. 이때, n은 0 이상의 정수이며 각 case에 따라 다른 값을 가질 수 있다.
- Case A/C: {2, 8} + 14*n
- Case B/D: {4, 8, 16, 20} + 28*n
- Case E: {8, 12, 16, 20, 32, 36, 40, 44} + 56*n
도 18(a)는 각 Case(Case A 내지 Case E)에 따른 SS/PBCH 블록 패턴들을 나타내며, Approach2에 따르면, 도 18(a)에 도시된 SS/PBCH 블록 패턴들 중 하나가 480 kHz 및/또는 960 kHz SCS의 SS/PBCH 블록에 적용될 수 있다. Approach2에서는 적어도 SS/PBCH 블록과 CORESET #0 및 초기 활성 DL/UL BWP(initial active DL/UL BWP)의 SCS들이 동일하다고 가정할 수 있다. 이때, 복수의 DL 신호/채널 간 SCS는 동일하므로, 복수의 DL 신호/채널을 동시에 수신하는 단말의 구현이 용이하다는 장점이 있다.
- Approach 2-1: 480 kHz SCS에서는, 도 18(a)에 도시된 바와 같이 기존에 정의된 SS/PBCH 블록 패턴들 중 하나가 적용되고, 960 kHz SCS에서는, 확장 가능한 디자인(scalable design)을 고려하여 480 kHz SCS의 SS/PBCH 블록의 전송 구간 이내에 하나의 960 kHz SCS의 SS/PBCH 블록만 위치하도록 결정될 수 있다. 일 예로, 480 kHz SCS에서는, Case A 또는 Case C와 같은 기존 SS/PBCH 블록 패턴이 적용될 수 있다. 도 18(b)를 참조하면, SS/PBCH 블록은, 480 kHz SCS의 슬롯 내 심볼 #2/3/4/5(1800)에 대응하는 960 kHz SCS의 슬롯 내 심볼 #4/5/6/7/8/9/10/11(1810) 중 특정 4개의 연속한 심볼(예, 심볼 #4/5/6/7)(1820)에 위치할 수 있다. 즉, 480 kHz SCS의 SS/PBCH 블록이 480 kHz SCS의 슬롯 내 심볼 #2/3/4/5(1800)에서 전송될 때, 480 kHz SCS의 SS/PBCH 블록의 전송 구간에 대응하는 960 kHz SCS의 슬롯 내 심볼 #4~11(1810) 이내에 하나의 960 kHz SCS의 SS/PBCH 블록만 위치할 수 있다. 이에 따라, 도 18(b)에 도시된 바와 같이, 960 kHz SCS의 슬롯 내 심볼 #4~11(1810) 중 4개의 연속한 심볼 #4/5/6/7(1820)에서 하나의 960 kHz SCS의 SS/PBCH 블록이 전송될 수 있다. 유사하게, 도 18(b)를 참조하면, SS/PBCH 블록은, 480 kHz SCS의 슬롯 내 심볼 #8/9/10/11(1801)에 대응하는 960 kHz SCS의 슬롯 내 심볼 #2/3/4/5/6/7/8/9(1811) 중 특정 4개의 연속한 심볼(예, 심볼 #2/3/4/5)(1821)에 위치할 수 있다.
- Approach 3: 120/240 kHz SCS의 SS/PBCH 블록 패턴을 정의할 때, 서로 다른 SCS 간 공존을 고려하여 60 kHz SCS을 참조(reference) SCS로 설정하고, 참조 SCS를 기준으로 120/240 kHz SCS의 SS/PBCH 블록 패턴을 정의한 방법이 유사하게 적용될 수 있다. 예를 들어, 480/960 kHz SCS의 경우, 60 kHz SCS이 아닌 별도의 참조 SCS를 기준으로, 480 및/또는 960 kHz SS/PBCH 블록의 심볼 위치가 결정될 수 있다. 이때, 예, 별도의 참조 SCS는, 도 19에 도시된 바와 같이, 240 kHz SCS가 참조 SCS로 설정될 수 있다. Approach3에 따르면, "SS/PBCH 블록"과 "SS/PBCH 블록이 포함된 반송파/BWP에서 송수신되면서, 참조 SCS보다 작은 (또는 이하의) SCS에 기반한 DL/UL 제어/데이터 채널/신호"는 공존하지 않을 수 있다. Approach 3는 기존의 SS/PBCH 블록 패턴을 재사용할 수 있다는 장점이 있다.
[방법 #7] 480 kHz 및/또는 960 kHz SCS의 SS/PBCH블록이 전송되는 슬롯
2 GHz 대역폭(대략 2.16 GHz)을 가지는 WiGig 시스템과의 공존 및 (Rel-15 NR 시스템에서 가정한) 4096 FFT 크기를 고려하여, 480 kHz 및/또는 960 kHz SCS의 SS/PBCH 블록이 도입될 수 있다. 이하에서는, 480 kHz 및/또는 960 kHz SCS의 SS/PBCH 블록의 슬롯 위치에 대해 제안한다. 단말은 제안된 슬롯 위치에서 480 kHz 및/또는 960 kHz SCS의 SS/PBCH 블록 전송을 기대할 수 있다.
480 kHz SCS의 SS/PBCH 블록의 경우, [방법 #6]에서 제안한 3 가지 approach에 기반한 각 슬롯 (또는 슬롯 그룹) 내 SS/PBCH 블록의 위치를 인접한 슬롯들 (또는 슬롯 그룹들)에 적용하면, 도 20(a)에 도시된 바와 같이, 1 msec 동안(예, 32개 슬롯 동안) 최대 64개의 SS/PBCH 블록이 전송될 수 있다. 즉, 도 20(a)를 참조하면, 1 msec 내에 64개의 SS/PBCH 블록 후보(또는 SSB 후보)가 존재할 수 있고, SS/PBCH 블록 후보는 시간 순서에 따라 #0부터 #63까지 인덱싱될 수 있다(SS/PBCH 블록 후보 인덱스).
이때, 도 20(b) 또는 도 20(c)와 같이, 전술한 [방법 #1]을 적용하여 SS/PBCH 블록이 전송되는 슬롯(이하에서는, 편의상, SS/PBCH 블록의 슬롯으로 지칭한다.)을 확장할 수 있다. 예를 들어, 도 20(b)에 도시된 바와 같이, 120/240 kHz SCS의 SS/PBCH 블록에서 고려된 슬롯 갭들을 동일하게 적용하여, 추가적인 SS/PBCH 블록의 슬롯 위치가 결정될 수 있다. 이에 따라, 480 kHz SCS의 SS/PBCH 블록의 슬롯들(또는 SS/PBCH 블록 후보들이 정의된 슬롯들)은, S_윈도우 내에서, 240 kHz SCS인 SS/PBCH 블록의 슬롯에 정렬하여 위치할 수 있다. 구체적으로, 도 20(b)를 참조하면, 1msec에 대응하는 연속한 32개의 슬롯(2000)에서 SS/PBCH 블록의 전송이 허용되고, 다음 8개의 슬롯 갭(2001)에서는 SS/PBCH 블록의 전송이 허용되지 않는다. 또한, [방법 #1]을 적용하여, 8개의 슬롯 갭(2001) 다음에 위치하는 연속한 32개의 슬롯(2002)에서 SS/PBCH 블록의 전송이 허용되며, 다음 8개의 슬롯 갭(2003)에서는 SS/PBCH 블록의 전송이 허용되지 않는다. 또는, 비면허 대역에서 추가 CAP 없이 전송 가능한 구조를 고려하여, 도 20(c)와 같이, 슬롯 갭 없이 추가적인 SS/PBCH 블록의 슬롯 위치가 결정될 수도 있다. 구체적으로, 도 20(c)를 참조하면, [방법 #1]을 적용하여 추가된 SS/PBCH 블록의 슬롯들(2011)과 기존에 정의된 SS/PBCH 블록의 슬롯들(2000) 사이에는 슬롯 갭이 없고, 이에 따라, SS/PBCH 블록이 연속한 슬롯들에서 전송될 수 있는 기회가 증가한다.
또한, [방법 #2]를 적용하여, 64개 이상의 SS/PBCH 블록 후보 인덱스들이 정의되고 시그널링 될 수 있으며, [방법 #3]을 적용하여, SS/PBCH 블록 후보 인덱스들 간 QCL 관계가 정의되고 시그널링 될 수 있다. 또한, [방법 #4]를 적용하여, 실제 전송된 SS/PBCH 블록들에 관한 정보가 수신될 수 있다.
960 kHz SCS의 SS/PBCH 블록의 경우, [방법 #6]에서 제안한 3가지 approach에 기반한 각 슬롯 (또는 슬롯 그룹) 내 SS/PBCH 블록의 위치를 인접한 슬롯들 (또는 슬롯 그룹들)에 적용하면, 도 21(a)에 도시된 바와 같이, 0.5 msec 동안(예, 32 슬롯 동안)(2100) 최대 64개의 SS/PBCH 블록이 전송될 수 있다. 또는, [방법 #6]에서 제안한 Approach 2-1에 따르면 하나의 슬롯 내에 하나의 SS/PBCH 블록이 전송되므로, 1 msec 동안(예, 64개 슬롯 동안) 최대 64개의 SS/PBCH 블록이 전송될 수 있다.
이때, 도 21(b) 또는 도 21(c)와 같이, 전술한 [방법 #1]을 적용하여 SS/PBCH 블록이 전송되는 슬롯을 확장할 수 있다. 예를 들어, 도 21(b)와 같이, 120/240 kHz SCS SS/PBCH 블록에서 고려된 슬롯 갭들을 동일하게 적용하여 추가적인 SS/PBCH 블록의 슬롯 위치가 결정될 수 있다. 구체적으로, 도 21(b)를 참조하면, 1 msec에 대응하는 연속한 64개의 슬롯(2110)에서 최대 128개의 SS/PBCH 블록의 전송이 허용되고, 다음 16개의 슬롯 갭(2111)에서는 SS/PBCH 블록의 전송이 허용되지 않는다. 또한, [방법 #1]을 적용하여, 16개의 슬롯 갭(2111) 다음에 위치하는 연속한 64개의 슬롯 (2112)에서 SS/PBCH 블록의 전송이 허용되며, 다음 16개의 슬롯 갭(2113)에서는 다시 SS/PBCH 블록의 전송이 허용되지 않는다. 또는, 비면허 대역에서 추가 CAP 없이 전송 가능한 구조를 고려하여, 도 21(c)와 같이, 슬롯 갭 없이 추가적인 SS/PBCH 블록의 슬롯 위치가 결정될 수도 있다.
또한, [방법 #2]를 적용하여, 64개 이상의 SS/PBCH 블록 후보 인덱스들이 정의되고 시그널링 될 수 있으며, [방법 #3]을 적용하여, SS/PBCH 블록 후보 인덱스들 간 QCL 관계가 정의되고 시그널링 될 수 있다. 또한, [방법 #4]를 적용하여, 실제 전송된 SS/PBCH 블록들에 관한 정보가 수신될 수 있다.
상기 제안 방법들에서 서로 다른 SS/PBCH 블록 (후보) 인덱스 값을 갖는 SS/PBCH 블록들이 QCL 관계에 있을 수 있다. 특징적으로, (심볼 갭 없이) 연속한 N개의 SS/PBCH 블록 (후보) 인덱스 값을 갖는 SS/PBCH 블록들이 QCL 관계에 있다고 사전에 설정/정의될 수 있다. 일 예로, 도 19에서 960 kHz SCS SS/PBCH 블록의 경우, N이 4이면, 첫번째 슬롯의 심볼 #8부터 연속한 4개의 SS/PBCH 블록 후보 인덱스 값을 갖는 SS/PBCH 블록들이 QCL 관계에 있다고 정의되거나 설정될 수 있다. 또는, N이 2이면, 첫번째 슬롯의 심볼 #8부터 연속한 4개의 SS/PBCH 블록 후보 인덱스 중에서 앞의 2개 또는 뒤의 2개 인덱스 값을 갖는 SS/PBCH 블록들이 QCL 관계에 있다고 정의되거나 설정될 수 있다. 이때, QCL 관계에 있는 연속한 SS/PBCH 블록의 MIB, SIB 등의 셀-공통 RRC 시그널링을 통해 설정)될 수 있다.
960 kHz SCS (또는 그 이상의 SCS)의 경우, 대략 100 ns가 소요되는 BST(Beam Switching interruption Time)를 고려할 때, CP 길이보다 BST가 클 수 있다. 따라서, 960 kHz SCS의 경우 (또는, 960 kHz 이상의 SCS에서 BST 보다 CP 길이가 짧을 수 있는 경우), 심볼 갭 없이 연속한 N개의 SS/PBCH 블록 (후보) 인덱스 값을 갖는 SS/PBCH 블록들이 QCL 관계에 있다고 설정/정의될 수 있다. 마찬가지로, 480 kHz SCS의 SS/PBCH 블록의 경우에도, (심볼 갭 없이) 연속한 N개의 SS/PBCH 블록 (후보) 인덱스 값을 갖는 SS/PBCH 블록들이 QCL 관계에 있다고 설정/정의될 수 있다.
참고로, 기존 NR-U(예, 60 GHz 미만의 공유 스펙트럼(또는 비면허 대역)에서 동작하면서, 240 kHz 이하의 SCS가 적용되는)에서는 불연속한 SS/PBCH 블록 (후보) 인덱스 값을 갖는 SS/PBCH 블록들이 QCL 관계에 있다고 설정/정의되었다. 예를 들어,
Figure PCTKR2021001900-appb-img-000008
값이 동일한 SSB(들)(또는 SS/PBCH 블록(들))은 QCL 관계에 있다고 가정된다.
Figure PCTKR2021001900-appb-img-000009
는 SSB의 PBCH의 DM-RS 시퀀스 인덱스를 나타내고,
Figure PCTKR2021001900-appb-img-000010
은 (i)ssbPositionQCL-Relationship에 의해 제공될 수 있다. (ii) ssbPositionQCL-Relationship이 제공되지 않는다면,
Figure PCTKR2021001900-appb-img-000011
은 표 7에 기반하여 SSB의 MIB로부터 획득될 수 있다. 표 7은 subCarrierSpacingCommon와 ssb-SubcarrierOffset의 LSB의 조합과
Figure PCTKR2021001900-appb-img-000012
의 맵핑 관계를 나타낸다.
Figure PCTKR2021001900-appb-img-000013
값은, subCarrierSpacingCommon 값과 ssb-SubcarrierOffset의 LSB 값의 조합에 의해 지시될 수 있다.
subCarrierSpacingCommon LSB of ssb-SubcarrierOffset
Figure PCTKR2021001900-appb-img-000014
scs15or60 0 1
scs15or60 1 2
scs30or120 0 4
scs30or120 1 8
ssbSubcarrierSpacingCommon은 오직 공유 스펙트럼 없이 동작(operation without shared spectrum)하는 경우의 RMSI의 SCS를 나타낸다. 단말은 디스커버리 버스트 전송 윈도우 내에서 서빙 셀 상에서 전송되는 SSB들의 개수가
Figure PCTKR2021001900-appb-img-000015
보다 많지 않다고 가정한다. 단말은 SSB 인덱스를
Figure PCTKR2021001900-appb-img-000016
, 또는
Figure PCTKR2021001900-appb-img-000017
로 결정할 수 있다. 여기서,
Figure PCTKR2021001900-appb-img-000018
는 후보 SSB 인덱스(또는 SSB 후보 인덱스 또는 SS/PBCH 블록 후보 인덱스)를 나타낸다. 따라서, 하나 이상의 후보 SSB가 하나의 SSB 인덱스에 대응할 수 있다. 동일한 SSB 인덱스에 대응하는 후보 SSB들은 QCL 관계에 있다.
또는, 960 kHz SCS의 경우 (또는 960 kHz 이상의 SCS에서 BST보다 CP 길이가 짧을 수 있는 경우), 서로 다른 QCL 관계에 있는 SS/PBCH 블록 (후보) 인덱스 간에는 적어도 하나의 심볼 갭이 기대될 수 있다. 일 예로, 도 19에서 첫번째 슬롯의 심볼 #8/9/10/11에서 SS/PBCH 블록 (후보) 인덱스 'm+1', 첫번째 슬롯의 심볼 #12/13 및 두번째 슬롯의 심볼 #0/1에서 SS/PBCH 블록 (후보) 인덱스 'm+2', 두번째 슬롯의 심볼 #2/3/4/5에서 SS/PBCH 블록 (후보) 인덱스 'm+3'에 대응하는 SS/PBCH 블록이 전송될 수 있을 때, SS/PBCH 블록 (후보) 인덱스 'm+1'과 SS/PBCH 블록 (후보) 인덱스 'm+3'는 QCL 관계에 있지 않으며, N이 1인 경우, 단말은 SS/PBCH 블록 (후보) 인덱스 'm+2'에 대응하는 SS/PBCH 블록의 전송을 기대하지 않을 수 있다. 한편, 480 kHz SCS의 경우 (또는, 480 kHz 이하의 SCS에서 BST보다 CP 길이가 긴 경우), 동일한 상황에서 단말은 SS/PBCH 블록 (후보) 인덱스 'm+2'에 대응하는 SS/PBCH 블록의 전송을 기대할 수 있다.
[방법 #8] 기지국에 의해 수행되는 LBT scheme을 시그널링 받는 방법
단말은, (특정 구간 동안의) 하향링크 신호/채널 전송을 위해 기지국이 수행하는 LBT scheme을 시그널링 받을 수 있다. 만약 시그널링 받은 LBT scheme이 채널의 idle/busy 여부를 판단하지 않고 전송을 허용하는 scheme이라면, 단말은 (해당 구간 동안) 해당 기지국으로부터 SS/PBCH 블록을 수신할 때, QCL 관계에 있는SS/PBCH 블록이 S_윈도우 내에서 한 번만 전송된다고 가정할 수 있다.
(FR3의 특정 비면허 대역에서 동작하는) 기지국은, 특정 상황에 따라 (예, 간섭 레벨이 낮거나, 하향링크 전송의 성공 확률이 높아 충돌 발생 빈도가 낮다고 판단되거나, 전송 빈도가 낮거나, 전송 전력이 낮은 등의 상황에 따라) 채널의 idle/busy 여부에 대한 판단 없이, 전송이 허용될 수 있다. 편의상, 채널의 idle/busy 여부에 대한 판단 없이 전송이 허용되는 LBT scheme을 LBT scheme A로 명명하며, 채널이 idle 상태라고 판단될 때에만 전송이 허용되는 LBT scheme을 LBT scheme B로 명명한다. 이때, 기지국은, 상위 계층 시그널링 또는 (UE-특정 또는 그룹-공통) DCI를 통해, 기지국에 의해 수행되는 LBT scheme이 LBT scheme A인지 LBT scheme B인지 단말에게 지시할 수 있다. 예를 들어, 상위 계층 시그널링은, 셀-특정 RRC 시그널링, UE-특정 RRC 시그널링, 또는 MAC(Medium Access Control)-CE(Control Element)를 포함할 수 있다. 또는, 상기 [방법 #5]와 같이, 단말은, SS/PBCH 블록이 전송될 수 있는 동기화 래스터에 따라, 기지국에 의해 수행되는 LBT scheme이 LBT scheme A인지 LBT scheme B인지 인지할 수 있다. 일 예로, 동기화 래스터 셋 #1에 속한 동기화 래스터에 기반한 SS/PBCH 블록이 발견되면, 단말은, SS/PBCH 블록에 대해 기지국에 의해 수행되는 LBT scheme이 LBT scheme A임을 인지할 수 있다. 반면, 동기화 래스터 셋 #2에 속한 동기화 래스터에 기반한 SS/PBCH 블록이 발견되면, 단말은, SS/PBCH 블록에 대해 기지국에 의해 수행되는 LBT scheme이 LBT scheme #B임을 인지할 수 있다. 하기에서, 특정 LBT scheme이 지시된다는 것은 상위 계층 시그널링을 통해 명시적으로 설정/지시된다는 것을 의미할 수 있고, 또는 단말이 동기화 래스터에 기반하여 암묵적으로 알게되는 것을 의미할 수도 있다.
예를 들어, LBT scheme B가 지시되면, 도 13(a) 및 상기 제안 방법들과 같이, S_윈도우 내에서 QCL 관계에 있는 SS/PBCH 블록들에게 복수의 전송 기회가 주어진다. 일 예로, 240 kHz SCS의 경우, 도 13(a)와 같이 5 msec 윈도우 내에 SS/PBCH 블록 (후보) 인덱스 #0~127이 정의되고, QCL_para 값이 64이면, 해당 5 msec 윈도우 내에서 SS/PBCH 블록 (후보) 인덱스 #N(예, N<64)과 SS/PBCH 블록 (후보) 인덱스 #(N+64)는 QCL 관계에 있을 수 있다. 또는, 5 msec 윈도우 내에 정의되는 SS/PBCH 블록 (후보) 인덱스를 M으로 나타낼 때(예, 0≤M≤127), (M mod 64) 값이 동일한 SS/PBCH 블록 후보 인덱스들은 QCL 관계에 있을 수 있다. 5 msec 윈도우 내에서 동일 빔을 갖는 SS/PBCH 블록이 두 번 전송될 수 있는 기회를 제공함으로써, 기지국의 LBT 실패를 보상할 수 있다. 그리고, 단말은, 기지국의 LBT 성공/실패에 따라, QCL 관계에 있는 SS/PBCH 블록들 중 일부가 기지국으로부터 전송될 수 있다고 가정할 수 있다.
이에 따라, 단말은 (S_윈도우 내에서) SS/PBCH 블록을 통해 RLM/RRM 등의 측정을 수행할 때, S_윈도우의 전체 구간에서 측정을 수행할 수 있다. 예를 들어, 특정 SS/PBCH 블록 (후보) 인덱스에 대응하는 무선 링크 모니터링을 위해, 단말은, 특정 SS/PBCH 블록 (후보) 인덱스와 QCL 관계에 있는 SS/PBCH 블록 (후보) 인덱스들을 모두 활용할 수 있다. 이때, 특정 SS/PBCH 블록(후보)는, MIB가 획득된 SS/PBCH 블록을 포함할 수 있다. 또한, 무선 링크 모니터링은, SS/PBCH 블록에 기반한 PUSCH/SRS(Sounding Reference Signal)의 경로 손실 측정(PL(path loss) estimation)을 포함할 수 있다. 이 경우, 단말은, MIB의 획득을 위해 사용한 것과 동일한 SS/PBCH 블록 인덱스를 갖는 SS/PBCH (후보) 블록(들)로부터 얻은 RS 자원을 이용하여, PL을 계산할 수 있다.
반면, LBT scheme A가 지시되면, 단말은 (S_윈도우 내에서) 특정 QCL_para개의 SS/PBCH 블록들만 전송됨을 가정할 수 있다. 예를 들어, 도 13(a)에서 QCL_para가 64이면, 단말은 SS/PBCH 블록 (후보) 인덱스 #0~63에 대응하는 SS/PBCH 블록 수신만 기대할 수 있다. 기지국은 LBT scheme A를 사용할 것이므로, 채널이 idle 상태인지 여부와 상관없이, 항상 SS/PBCH 블록 등의 하향링크 신호를 전송할 수 있다. 이로 인해, 단말이 (S_윈도우 내에서) SS/PBCH 블록을 통해 RLM/RRM 등의 측정을 수행할 때, S_윈도우 내에서 특정 (압축된) 구간 동안만 측정을 수행하고, 나머지 구간에서는 측정을 수행하지 않을 수 있어, 전력 소모가 감소하는 효과를 기대할 수 있다. 예를 들어, 단말은, MIB의 획득을 위해 사용한 SS/PBCH 블록으로부터 얻은 RS 자원만 이용하여, PL을 계산할 수 있다. LBT scheme A가 지시되면, 특정 구간 동안 LBT scheme A이 유효할 수 있으며, 해당 특정 구간은 사전에 정의되거나 설정될 수 있다. 예를 들어, 해당 특정 구간은, SIB 정보가 변경될 수 있는 주기(예, 1 sec)로 정의되거나 설정될 수 있다.
또한, LBT scheme은, 서빙 셀뿐만 아니라 인접 셀(neighbor cell)에 대해서도 상위 계층 시그널링(예, MeasObjectNR IE(Information Element)와 같은 RRC 시그널링)을 통해 지시될 수 있다. 예를 들어, 인접 셀에 대하여 LBT scheme A가 지시되면, 단말은 S_윈도우 내에서(예, S_윈도우 시작 시점부터) QCL_para 개수의 SS/PBCH 블록을 통해서만 해당 인접 셀에 대한 RRM 측정을 수행하고, 그 외의 구간에서는 RRM 측정을 수행하지 않을 수 있다.
또한, 지시된 LBT scheme에 따라, 단말이 Type0-PDCCH CSS 셋을 모니터링 하는 방법이 달라질 수 있다. LBT scheme B가 지시되면, 단말은, (S_윈도우 내에서) 특정 SS/PBCH 블록 (후보) 인덱스와 QCL 관계에 있는 모든 SS/PBCH 블록 (후보) 인덱스에 대응하는 Type0-PDCCH CSS 셋이 전송될 수 있다고 가정할 수 있다. 반면, LBT scheme A가 지시되면, 단말은 (S_윈도우 내에서) 특정 SS/PBCH 블록 (후보) 인덱스와 QCL 관계에 있는 복수의 SS/PBCH 블록 (후보) 인덱스 중 하나 (예, S_윈도우 내에서, 특정 SS/PBCH 블록 (후보) 인덱스와 QCL 관계에 있는 첫번째 SS/PBCH 블록 (후보) 인덱스)에 대응하는 Type0-PDCCH CSS 셋만 전송될 수 있다고 가정할 수 있다. S_윈도우 내에서 특정 SS/PBCH 블록 (후보) 인덱스와 QCL 관계에 있는 첫번째 SS/PBCH 블록 (후보) 인덱스는, S_윈도우 내에서 첫 QCL_para 개수의 SS/PBCH 블록을 의미할 수 있다.
추가로, 지시된 LBT scheme에 따라 PDSCH의 수신 방법이 달라질 수 있다. 예를 들어, LBT scheme B가 지시되면, 단말은, (S_윈도우 내에서) 특정 SS/PBCH 블록 (후보) 인덱스와 QCL 관계에 있는 모든 SS/PBCH 블록 (후보) 인덱스들의 자원(예, RB)에는 PDSCH 매핑이 되지 않는다고 가정할 수 있다. 예를 들어, PDSCH에 실리는 코드워드는 PDSCH 전송을 위해 할당된 모든 자원(예, RB)의 양을 고려하여 생성되지만, PDSCH 전송을 위해 할당된 자원(예, RB)이 특정 SS/PBCH 블록 (후보)와 QCL 관계에 있는 SS/PBCH 블록 (후보)의 자원(예, RB)과 겹치는 경우, 겹치는 자원에는 PDSCH가 매핑되지 않을 수 있다. 이때, 특정 SS/PBCH 블록 (후보) 인덱스는, 기지국이 단말에게 실제로 전송된다고 알려준 SS/PBCH 블록 (후보) 인덱스를 포함한다(도 9 참조).
반면, LBT scheme A가 지시되면, 단말은, (S_윈도우 내에서) 특정 SS/PBCH 블록 (후보) 인덱스와 QCL 관계에 있는 복수의 SS/PBCH 블록 (후보) 인덱스 중 하나(예, S_윈도우 내에서 특정 SS/PBCH 블록 (후보) 인덱스와 QCL 관계에 있는 첫번째 SS/PBCH 블록 (후보) 인덱스)의 자원(예, RB)에만 PDSCH가 매핑되지 않고, QCL 관계에 있는 나머지 SS/PBCH 블록 (후보) 인덱스들의 자원(예, RB)에는 PDSCH가 매핑될 수 있다고 가정할 수 있다. 이에 따라, QCL 관계에 있는 나머지 SS/PBCH 블록 (후보) 인덱스들의 자원(예, RB)과 PDSCH 자원(예, RB)이 겹치는 경우, PDSCH를 위해 할당된 모든 자원(예, RB)에 PDSCH가 매핑될 수 있다.
그리고, 지시된 LBT scheme에 따라, PDSCH TDRA(Time Domain Resource Allocation) 방법이 달라질 수 있다. 기지국으로부터 특정 TDRA 테이블을 설정받기 전에는, 단말은 디폴트(default) TDRA 테이블을 통해 PDSCH를 스케줄링받을 수 있다. 이때, 디폴트 TDRA 테이블은, 공유 스펙트럼 액세스(shared spectrum access) 동작이 수행되는지 여부에 따라 다르게 정의될 수 있다. 예를 들어, LBT scheme B가 지시되면, 기지국으로부터 특정 TDRA 테이블을 설정받기 전에는, 단말은 공유 스펙트럼 액세스 동작을 위해 정의된 디폴트 TDRA 테이블을 통해 PDSCH를 스케줄링 받을 수 있다. 반면, LBT scheme A가 지시되면, 기지국으로부터 특정 TDRA 테이블을 설정받기 전에는, 단말은 공유 스펙트럼 액세스 이외의 동작을 위해 정의된 디폴트 TDRA 테이블을 통해 PDSCH를 스케줄링 받을 수 있다. 각각의 TDRA 테이블은 복수의 열을 포함하며, 각 열은 (1)슬롯 내의 DMRS 심볼 인덱스, (2)PDSCH 매핑 타입, (3)PDCCH-to-PDSCH 슬롯 오프셋, (4)슬롯 내의 PDSCH 시작 심볼 인덱스, (5)PDSCH 심볼 개수 중 적어도 하나를 포함할 수 있다.
도 22는 제안된 [방법 #8]에 따른 기지국과 단말의 동작을 나타내는 흐름도이다.
도 22를 참조하면, 기지국은, 기지국에 의해 수행되는 CAP(또는 LBT)에 관한 정보를 전송할 수 있다(S2200). 이때, 기지국에 의해 수행되는 CAP는, 채널이 유휴 상태에 있는지 여부와 상관없이 전송이 허용되는 제1 CAP 또는 유휴 상태에 있는 채널에서만 전송이 허용되는 제2 CAP를 포함할 수 있다. 예를 들어, 제1 CAP는 전술한 LBT scheme A, 제2 CAP는 전술한 LBT scheme B에 대응할 수 있다. CAP에 관한 정보는, 상위 계층 시그널링 또는 DCI를 통해 단말에게 전송될 수 있다.
기지국은, 수행되는 CAP에 기초하여 SS/PBCH 블록을 단말에게 전송할 수 있다(S2210). 기지국이 제1 CAP를 수행하는 경우, 기지국은 채널이 유휴 상태인지 여부와 상관없이, SS/PBCH 블록을 전송할 수 있고, 기지국이 제2 CAP를 수행하는 경우, 채널이 유휴 상태인지 확인하여 채널이 유휴 상태일 때만 SS/PBCH 블록을 전송할 수 있다.
단말은 수신된 SS/PBCH 블록에 기초하여 시간 동기를 획득할 수 있다(S2220). 단말은, SS/PBCH 블록을 수신할 때, 기지국에 의해 수행되는 CAP에 따라 SS/PBCH 블록의 전송을 다르게 인지할 수 있다. 예를 들어, 제2 CAP이 수행되는 경우, 기지국은 채널이 유휴 상태일 때만 SS/PBCH 블록을 전송할 수 있기 떄문에, 전술한 S_윈도우 내에서 QCL 관계에 있는 SS/PBCH 블록들에게 복수의 전송 기회가 주어질 수 있다. 이에 따라, 단말은, QCL 관계에 있는 SS/PBCH 블록들 중 일부가 기지국에 의해 전송될 것이라고 기대할 수 있다. 그러나, 제1 CAP이 수행되는 경우, 기지국은 채널이 유휴 상태인지 여부와 상관없이 SS/PBCH 블록을 전송할 수 있기 때문에, S_윈도우 내에서 QCL 관계에 있는 SS/PBCH 블록들에게 한번의 전송 기회가 주어질 수 있다. 이에 따라, 단말은, SS/PBCH 블록 후보 인덱스가 QCL_para보다 작은 SS/PBCH 블록 후보들(또는 QCL_para 개수의 SS/PBCH 블록 후보들)에서만 SS/PBCH 블록의 전송을 기대할 수 있다.
[방법 #9] 하나의 셀 내에 복수의 뉴머롤로지를 갖는 SS/PBCH 블록이 설정되는 방법
하나의 셀 내에 서로 다른 뉴머롤로지(numerology)를 갖는 SS/PBCH 블록들이 (BWP 별로) 설정될 수 있다. 일 예로, 초기(initial) BWP #0에는 120 kHz SCS의 SS/PBCH 블록 수신이 설정되고, BWP #1에는 480 kHz SCS (또는 960 kHz SCS)의 SS/PBCH 블록 수신이 설정될 수 있다. 단말이 BWP #1에서 설정된 480 kHz SCS (또는 960 kHz SCS)의 SS/PBCH 블록에 기반하여 RRM 측정 등을 수행하는 도중에 BWP #0로 스위칭 된 경우, 단말이 RRM 측정 등의 수행을 이어나갈 수 있도록, 120 kHz SCS의 SS/PBCH 블록 인덱스와 480 kHz SCS (또는 960 kHz SCS)의 SS/PBCH 블록 인덱스 간 QCL 관계가 설정될 수 있다. 예를 들어, 120 kHz SCS의 SS/PBCH 블록 (후보) 인덱스 n과 480 kHz SCS (또는 960 kHz SCS)의 SS/PBCH 블록 (후보) 인덱스 m이 QCL 관계에 있다고 설정되거나, 또는 동일한 SS/PBCH 블록 (후보) 인덱스 간에는 QCL 관계가 가정될 수 있도록 규칙이 설정될 수 있다.
단말이 초기 접속 단계에서 복수의 SCS을 가정하는 경우의 구현 복잡도를 고려하여, 초기 접속 단계에서 SS/PBCH 블록에 적용될 SCS 값의 개수를 최소화할 수 있다. 예를 들어, 초기 접속 단계의 SS/PBCH 블록에는 120 kHz SCS만 적용되도록 제한될 수 있다. 반면, 초기 접속 이후 (단말의 지원 여부에 따라) 초기 BWP가 아닌 별도의 전용(dedicated) BWP의 경우, 480 kHz SCS 또는 960 kHz SCS이 설정될 수 있다. 초기 BWP가 아닌 별도의 전용 BWP에서도 RRM 측정 등을 위해 120 kHz SCS의 SS/PBCH 블록을 수신해야 한다면, 단말은 RRM 측정 등을 수행하기 위해 뉴머롤로지를 자주 변경해야 한다는 단점이 있다. 이와 같은 단점을 고려하여, 초기 접속 단계가 아닌 다른 목적(예, RRM 측정, 무선 링크 모니터링, 후보 빔 검출(candidate beam detection), 빔 실패 검출(beam failure detection), 빔 관리(beam management) 등)을 위해서는, 480 kHz SCS 및/또는 960 kHz SCS의 SS/PBCH 블록이 정의될 수 있다. 이때, 동일 셀 내에서도, BWP 별로 서로 다른 SCS 값을 갖는 SS/PBCH 블록이 설정될 수 있다. 일 예로, BWP #0에 대해서는 120 kHz SCS 기반 SS/PBCH 블록 수신이 설정되고, BWP #1에 대해서는 BWP #1에 설정된 뉴머롤로지와 같은 480 kHz SCS (또는 960 kHz SCS 기반) SS/PBCH 블록 수신이 설정될 수 있다.
단말은 SS/PBCH 블록 수신을 통해 RRM 측정, 무선 링크 모니터링, 후보 빔 검출, 빔 실패 검출, 빔 관리 등을 수행할 수 있는데, BWP 전환(switching) 시에도 단말이 특정 SS/PBCH 블록 (후보) 인덱스를 통해 수행한 RRM 측정, 무선 링크 모니터링, 후보 빔 검출, 빔 실패 검출, 빔 관리 등을 계속 수행할 수 있어야 성능이 유지될 수 있다. 이를 지원하기 위해, 동일 셀 내에 설정된 서로 다른 뉴머롤로지 기반 SS/PBCH 블록 (후보) 인덱스 간 QCL 관계 설정이 필요할 수 있다. 단말은, 사전에 정의된 규칙에 따라, 120 kHz SCS의 SS/PBCH 블록 (후보) 인덱스 n과 480 kHz SCS (또는 960 kHz SCS)의 SS/PBCH 블록 (후보) 인덱스 n은 QCL 관계에 있고, 서로 다른 인덱스는 QCL 관계에 있지 않다고 가정할 수 있다. 또는, 120 kHz SCS의 SS/PBCH 블록 (후보) 인덱스 n과 480 kHz SCS (또는 960 kHz SCS)의 SS/PBCH 블록 (후보) 인덱스 m 간의 QCL 관계가 성립한다는 것이 RRC 시그널링에 의해 설정될 수 있다.
또한, 단말은, 초기 접속 단계에서 SIB1 등의 RRC 시그널링을 통해 획득한 ssb-PositionsInBurst 값(표 8 참조)이 120 kHz SCS의 SS/PBCH 블록 (후보) 인덱스 및 480 kHz SCS (또는 960 kHz SCS)의 SS/PBCH 블록 (후보) 인덱스에도 동일하게 적용된다고 가정할 수 있다.
For operation with shared spectrum channel access, a UE assumes that transmission of SS/PBCH blocks in a half frame is within a discovery burst transmission window that starts from the first symbol of the first slot in a half-frame.
The UE can be provided per serving cell by DiscoveryBurst-WindowLength a duration of the discovery burst transmission window. If DiscoveryBurst-WindowLength is not provided, the UE assumes that the duration of the discovery burst transmission window is a half frame. For a serving cell, the UE assumes that a periodicity of the discovery burst transmission window is same as a periodicity of half frames for receptions of SS/PBCH blocks in the serving cell. The UE assumes that one or more SS/PBCH blocks indicated by ssb-PositionsInBurst may be transmitted within the discovery burst transmission window and have candidate SS/PBCH blocks indexes corresponding to SS/PBCH block indexes provided by ssb-PositionsInBurst. If MSB k,
Figure PCTKR2021001900-appb-img-000019
, of ssb-PositionsInBurst is set to 1, the UE assumes that SS/PBCH block(s) within the discovery burst transmission window with candidate SS/PBCH block index(es) corresponding to SS/PBCH block index equal to k-1 may be transmitted;
if MSB k is set to 0, the UE assumes that the SS/PBCH block(s) are not
transmitted.
일 예로, 64개 SS/PBCH 블록 (후보) 인덱스 중에서, 인덱스 #0~31에 대응하는 SS/PBC 블록만 실제 전송되고 인덱스 #32~63에 대응하는 SS/PBCH 블록은 전송되지 않는다고 설정된 경우, 단말은, (초기) BWP 상에서 설정된 120 kHz SCS의 SS/PBCH 블록뿐만 아니라, (전용) BWP 상에서 설정된 480 kHz SCS (또는 960 kHz SCS)의 SS/PBCH 블록에도 상기 설정이 동일하게 적용된다고 가정할 수 있다. 또는, 64개 SS/PBCH 블록 (후보) 인덱스 중에서 어떤 SS/PBCH 블록 (후보) 인덱스에 대응하는 SS/PBCH 블록이 전송되는지 알려주는 ssb-PositionsInBurst 파라미터가 BWP (또는 SS/PBCH 블록의 SCS)에 따라 별도로 설정될 수 있다.
제안하는 방법에서 RRM 측정은, 무선 링크 모니터링, 후보 빔 검출, 빔 실패검출, 빔 관리 용도로도 확장 적용될 수 있으며, 서빙 셀(Pcell 및/또는 PSCell 및/또는 Scell)뿐만 아니라 인접 셀 측정 관점에서도 동일 방법을 확장하여 적용될 수 있다.
또는, 시그널링 복잡도를 고려하여, 초기 접속 단계의 SS/PBCH 블록에는 120 kHz SCS만 적용되도록 제한될 때, 480 kHz SCS 또는 960 kHz SCS 기반 SS/PBCH 블록은 (PCell 또는 PSCell이 아닌) SCell에만 적용될 수 있도록 규칙이 정해질 수 있다.
도 23은 제안하는 방법에 따른 단말의 동작을 나타내는 흐름도이다.
도 23을 참조하면, 단말은, 비면허 대역 상에 위치하는 복수의 SS/PBCH 블록 후보(SS/PBCH block candidate) 내에서 SS/PBCH 블록을 수신할 수 있다(S2300). SS/PBCH 블록의 전송을 위해 설정된 시간 윈도우(time window) 내에는 SS/PBCH 블록이 전송될 수 있는 SS/PBCH 블록 후보들이 정의되어 있고, 단말은 시간 윈도우 내에 정의된 SS/PBCH 블록 후보들 중에서 일부를 통해 전송된 SS/PBCH 블록을 수신할 수 있다. 이때, 시간 윈도우는 5 msec(예, 하프 프레임) 구간으로 설정될 수 있으나, 이에 한정되지 않으며, 기지국에 의해 다른 값으로 설정될 수도 있다. 시간 윈도우는 [방법 #1] 등에서 전술한 S_윈도우에 대응할 수 있다.
시간 윈도우 내에 정의된 복수의 SS/PBCH 블록 후보의 위치는 SS/PBCH 블록의 부반송파 간격(SCS, Subcarrier Spacing)에 따라 다르게 결정될 수 있다. 구체적으로, SS/PBCH 블록의 SCS가 240 kHz로 설정된 것에 기초하여, 복수의 SS/PBCH 블록 후보는, 시간 윈도우의 전반(first half) 구간 및 후반 구간(second half) 모두에 위치할 수 있다. 이때, 시간 윈도우의 전반 구간 및 후반 구간은, 시간 윈도우가 동일한 크기의 2개의 시간 구간으로 나누어질 때, 첫번째 시간 구간 및 두번째 시간 구간을 의미할 수 있다. 예를 들어, 시간 윈도우가 5 msec로 설정된 경우, 전반 구간 및 후반 구간은 각각 전반 2.5 msec 구간 및 후반 2.5 msec 구간을 의미할 수 있으며, 5 msec 윈도우 내에 정의된 SS/PBCH 블록 후보들은 전반 2.5 msec 구간 및 후반 2.5 msec 구간 모두에 위치할 수 있다. 보다 구체적으로, 전반 구간에서, SS/PBCH 블록 후보들이 정의된 연속된 슬롯들 이후에 SS/PBCH 블록 후보들이 정의되지 않은 연속된 슬롯들이 위치할 수 있다. 예를 들어, SS/PBCH 블록의 SCS가 240 kHz, 시간 윈도우가 5 msec로 설정된 경우, 전반 구간은 40개의 슬롯을 포함할 수 있고, SS/PBCH 블록 후보들이 정의된 연속한 슬롯들은, 전반 구간에서 1)슬롯 #0(또는 첫번째 슬롯)으로부터 연속한 16개의 슬롯 및 2)슬롯 #20(또는 21번째 슬롯)으로부터 연속한 16개의 슬롯을 포함할 수 있다. 그리고, SS/PBCH 블록 후보들이 정의되지 않은 연속된 슬롯들은, 슬롯 #16부터 연속한 4개의 슬롯, 슬롯 #36부터 연속한 4개의 슬롯을 포함할 수 있다. 전반 구간에서 정의된 SS/PBCH 블록 후보의 위치는 후반 구간에도 유사하게 적용될 수 있다. 이에 따라, 제안하는 방법에 따르면, 시간 윈도우의 전반 구간뿐 아니라 후반 구간에서도 SS/PBCH 블록 후보의 위치를 정의함으로써, SS/PBCH 블록이 전송될 수 있는 슬롯들을 확장시킬 수 있으며, 기지국의 CAP 실패를 보상할 수 있다.
2) Transmitter (Entity A; 예, 기지국)
[방법 #1A] SS/PBCH 블록의 전송 기회를 증가하는 방법
SS/PBCH 블록 전송이 허용되지 않은 슬롯(도 12(a) 내지 도 12(c) 참조)에서도 SS/PBCH 블록 전송을 허용함으로써 SS/PBCH 블록의 전송 기회를 증가시킬 수 있다. 일 예로, 240 kHz SCS의 경우, 도 13(a)와 같이, 연속한 16개의 슬롯(1300)에서 SS/PBCH 블록 버스트의 전송을 허용하고, 다음 연속한 4개의 슬롯(1301)에서 SS/PBCH 블록 버스트의 전송을 허용하지 않는 규칙이 확장될 수 있다. 즉, 슬롯 인덱스 #40~55(1302) 및 슬롯 인덱스 #60~75(1303)에서 추가적인 SS/PBCH 블록들의 전송이 허용될 수 있다. 이때, 각 0.25 msec마다 슬롯 레벨에서 SS/PBCH 블록을 전송하는 방법은 도 11과 같을 수 있다. 이때, SS/PBCH 블록 (후보) 인덱스 값은 #0~127 까지 이며, 각 SS/PBCH 블록 (후보) 인덱스마다 단일 위치의 SS/PBCH 블록과 연동될 수 있다.
다른 일 예로, 240 kHz SCS의 경우, 도 13(b)와 같이, SS/PBCH 블록 버스트의 전송이 허용되지 않는 슬롯을 고려하지 않고, 5 msec 윈도우 내에 존재하는 모든 슬롯에서 SS/PBCH 블록의 전송이 허용될 수 있다. 이때, 각 0.25 msec마다 슬롯 레벨에서 SS/PBCH 블록을 전송하는 방법은 도 11과 같을 수 있다. 도 13(a)와 같이 SS/PBCH 블록의 전송이 허용되지 않는 슬롯(1301)이 정의된 경우, 단말이 SS/PBCH 블록의 전송이 허용되지 않는 슬롯(1301)에서 PRACH 또는 PUCCH와 같은 상향링크 전송을 수행할 수 있도록 하여, 시스템 성능을 향상시킬 수 있다. 하지만, 비면허 대역의 동작 특성 상, 전송 노드가 실제로 전송하기 전에 CAP가 완료되어야 한다는 것을 고려할 때, SS/PBCH 블록들이 최대한 연속한 슬롯에서 전송될 수 있도록 하는 것이 유리할 수 있다. 이때, SS/PBCH 블록 (후보) 인덱스는 #0~159 까지 이며, 각 SS/PBCH 블록 (후보) 인덱스마다 단일 위치의 SS/PBCH 블록과 연동될 수 있다.
또 다른 일 예로, 120 kHz SCS의 경우, 도 13(c)와 같이, SS/PBCH 블록 버스트의 전송이 허용되지 않는 슬롯을 고려하지 않고 (5 msec 윈도우 내에 존재하는) 모든 슬롯에서 SS/PBCH 블록의 전송이 허용될 수 있다. 이때, 각 0.25 msec마다 슬롯 레벨에서 SS/PBCH 블록이 전송되는 방법은 도 11과 같을 수 있다. 비면허 대역의 동작 특성 상, 전송 노드가 실제로 전송하기 전에 CAP가 완료되어야 한다는 것을 고려할 때, 도 13(b)에서와 같이, SS/PBCH 블록들이 최대한 연속한 슬롯에서 전송될 수 있도록 하는 것이 유리할 수 있다. 이때, SS/PBCH 블록 (후보) 인덱스는 0부터 79까지이며, 각 SS/PBCH 블록 (후보) 인덱스마다 단일 위치의 SS/PBCH 블록과 연동될 수 있다.
[방법 #2A] [방법 #1]을 적용하여, 셀 타이밍 정보를 획득하는 방법
[방법 #1]과 같이, 기존의 3GPP Rel-15 NR 시스템에서 SS/PBCH 블록의 전송이 허용되지 않는 슬롯 (또는 심볼)에서 SS/PBCH 블록의 전송이 허용될 수 있다. 단말이 새롭게 전송이 허용된 슬롯 (또는 심볼)에서 SS/PBCH 블록 검출(detection)을 통해 셀 식별(cell identification)(예, 초기 접속, 셀 선택, 또는 RRM 측정 등을 위한 셀 식별)을 시도할 때, 기지국이 검출된 SS/PBCH 블록에 대응하는 셀 타이밍(예, 프레임/서브프레임/슬롯/심볼 등의 타이밍 경계(timing boundary)) 정보를 SS/PBCH 블록 내의 신호 및/또는 PBCH 페이로드 등을 통해 시그널링 할 수 있는 방법을 제안한다.
3GPP Rel-15 NR에서는, 도 12(a) 내지 도 12(c)에 도시된 바와 같이 5 msec 윈도우 내에서 최대 64개의 SS/PBCH 블록 전송이 가능하고, 각 64개의 SS/PBCH 블록 (후보) 인덱스 별로 서로 다른 {PBCH DM-RS 시퀀스 인덱스 및 PBCH 페이로드 정보}와의 조합이 정의되어 있다. 구체적으로, 64개의 SS/PBCH 블록을 시간 축 상에서 연속한 8개의 SS/PBCH 블록 단위로 그룹핑(grouping)하고, 각 그룹 내의 8개의 SS/PBCH 블록은 8개의 PBCH DM-RS 시퀀스 인덱스에 의해 구별되고, 8개의 그룹은 PBCH 페이로드 내의 3 비트에 의해 구별될 수 있다.
단말은, 다음과 같은 구체적인 방법들을 통해, 추가로 전송되는 SS/PBCH 블록에 대응하는 셀 타이밍을 획득할 수 있다.
- 옵션 1: 추가적인 PBCH 페이로드를 활용
- 옵션 2: 추가적인 PBCH DM-RS 시퀀스들을 활용
- 옵션 3: PBCH DM-RS의 위상 천이(phase shift) 정보를 활용
- 옵션 4: PBCH DM-RS가 매핑되는 RE의 위치 정보를 활용
- 옵션 5: 추가적인 DL RS(Downlink Reference Signal) 전송을 활용
이하에서는, 도 13(a)에서 정의된 "CASE 1"에 상기 각 옵션을 적용하는 구체적인 방법들을 제안한다.
- 옵션 1(추가적인 PBCH 페이로드를 활용): 도 13(a)에서 전반 64개 SS/PBCH 블록 (후보) 인덱스와 후반 64개 SS/PBCH 블록 (후보) 인덱스를 구분하기 위해, PBCH 페이로드의 1비트 정보가 활용될 수 있다. 예를 들어, 상기 1비트 정보는, MIB에서 남는(spare) 1 비트일 수도 있고, 기존에 사용되는 특정 필드의 전체 또는 일부가 재해석될 수도 있다.
- 옵션 2(추가적인 PBCH DM-RS 시퀀스들을 활용): 도 13(a)에서 전반 64개 SS/PBCH 블록 (후보) 인덱스와 후반 64개 SS/PBCH 블록 (후보) 인덱스를 구분하기 위해, PBCH DMRS 시퀀스 개수를 16개로 증가시킬 수 있다. 즉, 전반의 PBCH DMRS 시퀀스 인덱스는 #0~7이고, 후반의 PBCH DMRS 시퀀스 인덱스는 #8~15로 전송될 수 있다.
- 옵션 3(PBCH DM-RS의 위상 천이 정보를 활용): 도 13(a)에서 전반 64개 SS/PBCH 블록 (후보) 인덱스와 후반 64개 SS/PBCH 블록 (후보) 인덱스를 구분하기 위해, 전반의 SSS와 PBCH DMRS 간 위상 오프셋과 후반의 SSS와 PBCH DMRS 간 위상 오프셋이 다르게 설정될 수 있다. 일 예로, 전반의 SSS와 PBCH DMRS 간 위상 오프셋은 0°(즉, SSS와 PBCH DMRS의 위상을 동일하게 설정), 후반의 SSS와 PBCH DMRS 간 위상 오프셋은 180°(즉, SSS와 PBCH DMRS의 위상을 다르게 설정)로 설정되어 전송될 수 있다.
- 옵션 4(PBCH DM-RS가 매핑되는 RE의 위치 정보를 활용): 도 13(a)에서 전반 64개 SS/PBCH 블록 (후보) 인덱스와 후반 64개 SS/PBCH 블록 (후보) 인덱스를 구분하기 위해, 전반의 PBCH DMRS의 RE 위치는 기존과 동일하게 v-shift 값으로 정의되고, 후반의 PBCH DMRS의 RE 위치는
Figure PCTKR2021001900-appb-img-000020
로 정의될 수 있으며, a 값은 사전에 정의될 수 있다. 예를 들어, a 값은 4의 배수를 제외한 정수(예, 2)일 수 있다.
- 옵션 5(추가적인 DL RS 전송을 활용): 예를 들어, 도 13(a)에서 전반 64개 SS/PBCH 블록 (후보) 인덱스와 후반 64개 SS/PBCH 블록 (후보) 인덱스를 구분하기 위해, 전반에 DL RS #1가 전송되고, 후반에 DL RS #2가 전송될 수 있다. DL RS #1 및 DL RS #2는 연동된 SS/PBCH 블록과 TDM 및/또는 FDM된 자원 위치로 사전에 정의될 수 있으며, 두 RS 간 서로 다른 시퀀스가 정의될 수도 있다.
[방법 #3A] QCL 관계에 있는 SS/PBCH 블록들을 알려주는 방법
단말이 동일 S_윈도우 내에서 또는 상이한 S_윈도우 간 수신된 복수의 SS/PBCH 블록을 기반으로 셀 식별을 수행할 때, 기지국이 해당 SS/PBCH 블록들이 QCL 관계에 있는지 알려주는 방법이 필요할 수 있다. 이때, 기지국은, 단말이 S_윈도우 내에 존재하는 SS/PBCH 블록 (후보) 인덱스들 중 몇 개의 간격으로 QCL 관계임을 가정할 수 있는지 시그널링 할 수 있으며, 해당 값(예를 들어, QCL 관계에 있는 SS/PBCH 블록들간의 간격을 나타내는 값)은 QCL_para로 정의될 수 있다. 즉, S_윈도우 #1에서 검출된 SS/PBCH 블록 (후보) 인덱스 값이 N이고, 다음 S_윈도우인 S_윈도우 #2에서 검출된 SS/PBCH 블록 (후보) 인덱스 값이 M일 때, N mod QCL_para 값과 M mod QCL_para 값이 동일하면, 단말은 두 SS/PBCH 블록이 QCL 관계에 있다고 가정할 수 있다. 이와 같이 QCL_para 값에 의해 modulo 연산을 취한 SS/PBCH 블록 후보 인덱스(예, SS/PBCH 블록 후보 인덱스 mod QCL_para) 값이 SS/PBCH 블록 인덱스로 정의될 수도 있다.
QCL_para 값의 경우, QCL_para를 위한 후보 값들이 사전에 정의되고, 기지국은 후보 값들 중에서 실제 단말에 의해 적용될 특정 값을 QCL_para 값으로 전송할 수 있다. 이때, 후보 값들은 특징적으로 64와 약수 관계에 있을 수 있다. 일 예로, {64, 32, 16, 8} (또는 {64, 32})이 후보 값으로 사전에 정의되고, 기지국은 그 중에서 특정 값을 QCL_para 값으로 설정해줄 수 있다.
기지국이 QCL_para 값을 단말에게 설정해줄 때, 아래와 같은 방법들 중 하나 이상의 방법을 통해 전송할 수 있다. 이에 따라, S_윈도우 내에는, 동일한 QCL 관계에 있는 하나 이상의 SS/PBCH 블록(예, 최대 64/QCL_para개의 SS/PBCH 블록)이 구성/전송될 수 있다.
- 옵션 A(추가적인 PBCH 페이로드, 셀-특정 RRC 시그널링 또는 UE-전용(UE-dedicated) RRC 시그널링을 활용): 일 예로, QCL_para를 위한 후보 값들이 {64, 32, 16, 8}로 사전에 정의될 수 있고, PBCH 페이로드, 셀-특정 RRC 시그널링, 또는 UE-전용 RRC 시그널링 상 2비트에 기초하여 후보 값들 중에서 특정 값을 시그널링할 수 있다.
- 옵션 B(추가적인 PBCH DM-RS 시퀀스들을 활용): 일 예로, PBCH DMRS 시퀀스의 개수를 16개로 증가시킬 수 있다. 예를 들어, QCL_para 값이 64인 경우, 기지국은 인덱스가 #0~7인 PBCH DMRS 시퀀스를 사용하고, , QCL para 값이 32인 경우, 인덱스가 #8~15인 PBCH DMRS 시퀀스를 사용할 수 있다.
- 옵션 C(PBCH DM-RS의 위상 천이 정보를 활용): 일 예로, QCL_para 값이 64인 경우, 기지국은 전반의 SSS와 PBCH DMRS 간 위상 오프셋을 0°로 설정하고, QCL_para 값이 32인 경우, 기지국은 SSS와 PBCH DMRS 간 위상 오프셋을 180°로 설정할 수 있다.
- 옵션 D(PBCH DM-RS가 매핑되는 RE의 위치 정보를 활용): 일 예로, QCL_para값이 64인 경우, 기지국은 PBCH DMRS를 위치가
Figure PCTKR2021001900-appb-img-000021
인 RE에 매핑하고, QCL_para 값이 32인 경우, 기지국은 PBCH DMRS를 위치가
Figure PCTKR2021001900-appb-img-000022
인 RE에 매핑할 수 있다.
- 옵션 E(추가적인 DL RS 전송을 활용): 일 예로, QCL_para값이 64인 경우, 기지국은 SS/PBCH 블록과 연동된 DL RS #1을 추가적으로 전송하고, QCL_para 값이 32인 경우, 기지국은 SS/PBCH 블록과 연동된 DL RS# 2를 추가적으로 전송할 수 있다.
[방법 #4A] 64개보다 적은 수의 SS/PBCH 블록이 전송될 수 있을 때, 기지국이 실제 전송하는 SS/PBCH 블록을 알려주는 방법
이하에서는, 상기 [방법 #3]과 같이 64개보다 적은 개수(=K)의 SS/PBCH 블록이 전송될 수 있을 때, 기지국이 실제 전송하는 SS/PBCH 블록 인덱스(예를 들어, 기지국이 실제 전송하는 SS/PBCH 블록에 대응하는 SS/PBCH 블록 후보 인덱스)를 알려주는 방법을 제안한다.
구체적으로, 8-비트의 비트맵을 통해 각 그룹(각 그룹은 8개 SS/PBCH 블록 (후보) 인덱스와 연동됨)의 유무(presence/absence)를 알려줄 수 있을 때, 단말은 8-비트 비트맵의 K/8번째 이후 비트 정보를 무시하거나, 또는 K/8번째 이후 비트 정보가 0으로 시그널링 되는 것을 기대할 수 있다. 또는, 64-비트 비트맵을 통해 각 SS/PBCH 블록 인덱스의 유무(presence/absence)를 알려줄 수 있을 때, 단말은 64-비트 비트맵의 K번째 이후 비트 정보를 무시하거나, 또는 K번째 이후 비트 정보로 0이 시그널링 되는 것을 기대할 수 있다.
최대 64개의 SS/PBCH 블록이 전송될 수 있을 때, ServingCellConfigCommonSIB IE 상의 groupPresence (8-비트 비트맵) RRC 파라미터와 inOneGroup(8-비트 비트맵) RRC 파라미터의 조합(총 16비트)을 활용하여, 64개 SS/PBCH 블록 중 실제 전송되는 SS/PBCH 블록이 무엇인지 시그널링될 수 있다(예, 도 8 참조). 이때, groupPresence 상 각 비트는 연속한 8개의 SS/PBCH 블록 인덱스를 대표할 수 있다. 구체적으로, groupPresence의 첫번째 비트는 SS/PBCH 블록 인덱스 #0~7, 두번째 비트는 SS/PBCH 블록 인덱스 #8~15를 대표할 수 있다. 또한, inOneGroup 상 n번째 비트는 각 그룹 내 n번째 SS/PBCH 블록 인덱스들을 대표할 수 있다. 구체적으로, inOneGroup의 첫번째 비트는 각 그룹 내 첫번째 SS/PBCH 블록 인덱스인, #0/8/16/24/32/40/48/56를 대표할 수 있다. 예를 들어, groupPresence 가 '11000000', inOneGroup 가 '00110000' 이 시그널링 된다면, 총 64개 SS/PBCH 블록 인덱스 중에서 #2/3/10/11에 대응하는 SS/PBCH 블록들이 실제 전송된다는 것을 의미할 수 있다.
그러나, 만약 상기 [방법#3]과 같이 64개보다 적은 개수(=K; 예, QCL_para)의 SS/PBCH 블록이 전송될 수 있을 때, groupPresence 상 일부 비트 정보는 유효하지(valid) 않게 될 수 있다. 일 예로, K가 32이면(예, QCL_para=32), 각 그룹을 구성하는 SS/PBCH 블록 인덱스는 8개로 유지되며, groupPresence 상 LSB 4 비트(첫 4비트 또는 제일 왼쪽(leftmost)의 4비트)만 유효하고, 나머지 4 비트는 유효하지 않을 수 있다. 또는, 단말이 나머지 4 비트를 무시(IGNORE)하거나, 나머지 4비트 값으로'0'이 시그널링 되는 것을 기대할 수 있다. 일반화하면, 64보다 작은 K에 대하여, 각 그룹을 구성하는 SS/PBCH 블록 인덱스는 8개로 유지되며, groupPresence 상 LSB (8/64*K) 비트만 유효하고, 나머지 (8-8/64*K) 비트는 유효하지 않을 수 있다. 또는, 단말이 나머지 (8-8/64*K) 비트를 무시하거나, 나머지 (8-8/64*K) 비트 값으로 '0'이 시그널링 되는 것을 기대할 수 있다.
또는, K가 64보다 작은 경우, 각 그룹을 구성하는 SS/PBCH 블록 인덱스 개수를 K가 64일 때와 다르게 설정하고, 다르게 설정된 SS/PBCH 블록 인덱스 개수에 기초하여 groupPresence 및/또는 inOneGroup을 해석할 수 있다. 일 예로, K가 32이면, 각 그룹을 구성하는 SS/PBCH 블록 인덱스 개수는 2개로 설정될 수 있고, groupPresenceinOneGroup를 합한 16-비트 비트맵을 통해 그룹 별 유무가 시그널링 될 수 있다. 이때, 그룹핑 방법으로서, 연속한 2개의 SS/PBCH 블록 인덱스가 페어링(pairing)(예, SS/PBCH 블록 인덱스 #0/1이 첫번째 그룹으로 설정)되거나, 16개 간격의 SS/PBCH 블록 인덱스들이 페어링(SS/PBCH 블록 인덱스 #0/16이 첫 번째 그룹, SS/PBCH 블록 인덱스 #1/17이 두번째 그룹으로 설정)될 수 있다. 이때, 16개 간격의 SS/PBCH 블록 인덱스들은, 16개 SS/PBCH 블록 간격으로 서로 이격된 SS/PBCH 블록 인덱스들을 의미할 수 있다. 다른 일 예로, K가 16이면, 각 그룹을 구성하는 SS/PBCH 블록 인덱스 개수가 1개로 설정될 수 있고, groupPresenceinOneGroup를 합한 16-비트 비트맵을 통해 각 SS/PBCH 블록 인덱스의 유무가 시그널링 될 수 있다. 또 다른 일 예로, K가 8(예, QCL_para = 8)이면, inOneGroup 8-비트 비트맵을 통해 각 SS/PBCH 블록 인덱스의 유무가 시그널링 될 수 있다. 이때, groupPresence이 시그널링 되지 않거나, 단말이 시그널링된 groupPresence을 무시하거나, groupPresence가 특정 값(예, 모두 '0'값)으로 시그널링 되는 것을 기대할 수 있다.
한편, UE-전용 RRC 시그널링의 경우, 최대 64개의 SS/PBCH 블록이 전송될 수 있으면(K=64), 시그널링 오버헤드의 고려 없이 64-비트 풀(full) 비트맵이 전송될 수 있다. 그러나, 64개보다 적은 개수(=K)의 SS/PBCH 블록이 전송될 수 있을 때, 해당 비트맵의 크기(또는 비트 폭(bit width))는 K-비트로 설정되거나, 또는 해당 비트맵 상 LSB K 비트(즉, 첫 K 비트 또는 제일 왼쪽의 K 비트)만 유효하고 나머지 (64-K) 비트는 유효하지 않거나, 단말이 해당 비트맵 상 나머지 (64-K) 비트를 무시하거나 해당 비트맵 상 나머지 (64-K) 비트 값이 0'으로 시그널링 되는 것을 기대할 수 있다.
[방법 #5A] 제안한 [방법 #1/1A] 내지 [방법 #4/4A]들의 적용 여부를 알리는 방법
FR3에서 서비스하는 기지국이라 할지라도, 상기 [방법 #1/1A] 및/또는 [방법 #2/2A] 및/또는 [방법 #3/3A] 및/또는 [방법 #4/4A]을 포함하는 제안 방법들의 적용 여부는, 기지국에 따라, 또는 비면허 대역인지(예, SS/PBCH 블록이 비면허 대역에서 전송되는지) 여부에 따라 결정될 수 있다. 이때, 제안 방법들의 적용 여부를 알리기 위하여, SS/PBCH 블록이 전송될 수 있는 동기화 래스터(synchronization raster)가 다르게 정의될 수 있다. 구체적으로, 기지국은, SS/PBCH 블록이 전송될 수 있는 동기화 래스터에 기반하여, 전술한 [방법 #1/1A] 내지 [방법 #4/4A]가 적용된 SS/PBCH 블록인지 단말에게 알릴 수 있다.
일 예로, FR3에서의 동기화 래스터 셋(synchronization raster set) #1(예, 면허 대역과 관련된 셋)과 동기화 래스터 셋 #2(예, 비면허 대역과 관련된 셋)가 정의될 수 있다. 이때, 동기화 래스터 셋 #1 과 동기화 래스터 셋 #2 간 주파수 오프셋 및/또는 간격(interval)이 다르게 설정될 수 있다. 기지국은, 동기화 래스터 셋 #1에 속한 동기화 래스터에 기반한 SS/PBCH 블록을 전송함으로써, FR2와 동일한 SS/PBCH 블록임을 단말에게 알릴 수 있다. 이에 따라, 동기화 래스터 셋 #1에 속한 동기화 래스터에 기반한 SS/PBCH 블록이 발견되면, 단말은 FR2와 동일한 SS/PBCH 블록임을 인지할 수 있다(예, 도 12(a) 내지 도 12(c) 참조). 이때, FR2와 동일한 SS/PBCH 블록은, FR2에서 정의된 SS/PBCH 블록을 의미할 수 있으며, 예를 들어, 도 12(a) 내지 도 12(c)에 도시된 바에 따라 전송되는 SS/PBCH 블록을 의미할 수 있다. 반면, 기지국은, 동기화 래스터 셋 #2에 속한 동기화 래스터에 기반한 SS/PBCH 블록을 전송함으로써, [방법 #1/1A] 내지 [방법 #4/4A]가 적용된 SS/PBCH 블록임을 단말에게 알릴 수 있다. 이에 따라, 동기화 래스터 셋 #2에 포함된 동기화 래스터에 기반한 SS/PBCH 블록이 발견되면, 단말은 상기 [방법#1/1A] 및/또는 [방법#2/2A] 및/또는 [방법#3/3A] 및/또는 [방법#4/4A]를 포함하는 제안 방법들에서와 같이, (FR2 동작과 달리) FR3에서 향상된(enhanced) SS/PBCH 블록임을 인지할 수 있다. 이때, FR3에서 향상된 SS/PBCH 블록은, [방법 #1/1A] 내지 [방법 #4/4A] 중 적어도 하나가 적용된 SS/PBCH 블록을 의미할 수 있으며, 예를 들어, 도 13(a) 내지 도 13(c)에 도시된 바에 따라 전송되는 SS/PBCH 블록을 의미할 수 있다.
[방법 #5A-1] SCS에 따라 동기화 래스터를 다르게 설정하는 방법
FR3에서 복수의 SCS를 갖는 SS/PBCH 블록이 정의될 수 있을 때, 단말이 해당 주파수 대역에서 수행해야 하는 셀 검출/식별 과정의 복잡도를 고려하여, SCS에 따라 동기화 래스터가 다르게 정의될 수 있다. 또한, SCS에 따라 최대 주파수 대역폭이 다르다는 것을 고려하여, 특정 주파수 대역 내에서 SCS에 따른 동기화 래스터의 개수가 다르게 정의될 수 있다. 일 예로, WiGig의 채널 대역폭(예, 2.16 GHz) 내에서 960 kHz SCS의 SS/PBCH 블록이 위치할 수 있는 동기화 래스터는 1개, 120 kHz SCS의 SS/PBCH 블록이 위치할 수 있는 동기화 래스터는 5개일 수 있으며, 총 6개 래스터의 위치는 각각 상이할 수 있다. 예를 들어, 도 16을 참조하면, 120 kHz SCS의 SS/PBCH 블록이 위치할 수 있는 동기화 래스터는 {A,C,D,E,F}이고, 960 kHz SCS의 SS/PBCH 블록이 위치할 수 있는 동기화 래스터는 B이며, 6개 동기화 래스터 {A,B,C,D,E,F} 각각의 위치는 모두 상이하다. 기지국이 동기화 래스터 {A,C,D,E,F} 중 하나에서 SS/PBCH 블록을 전송하는 경우, 120 kHz SCS의 SS/PBCH 블록만 전송할 수 있고, 동기화 래스터 B에서 SS/PBCH 블록을 전송하는 경우, 960 kHz SCS의 SS/PBCH 블록만 전송할 수 있다.
[방법 #6A] 480 kHz 및/또는 960 kHz SCS의 SS/PBCH 블록의 심볼 위치
전술한 바와 같이, 2 GHz 대역폭(대략 2.16 GHz)을 갖는 WiGig 시스템과의 공존 및 (Rel-15 NR 시스템에서 가정한) 4096 FFT 크기를 고려하여, 480 kHz 및/또는 960 kHz SCS의 SS/PBCH 블록이 도입될 수 있다. 이하에서는, 480 kHz 및/또는 960 kHz의 SS/PBCH 블록의 (OFDM) 심볼 위치에 대하여 제안한다. 즉, 기지국은 제안된 (OFDM) 심볼 위치에서 480 kHz 및/또는 960 kHz SCS의 SS/PBCH 블록을 전송할 수 있다.
이하에서는, 480 kHz 및/또는 960 kHz SCS의 SS/PBCH 블록의 심볼 위치에 대하여, 다음의 3가지 approach에 기반한 디자인을 제안하고자 한다.
- Approach 1: 480/960 kHz SCS SS/PBCH 블록의 심볼 위치는 기존에 정의된 120/240 kHz SCS SS/PBCH 블록의 심볼 위치에 정렬(align)되어(또는 맞추어) 결정될 수 있다. Approach 1의 경우, SS/PBCH 블록이 480 kHz 또는 960 kHz SCS으로 전송되고, 해당 SS/PBCH 블록이 포함된 반송파(carrier)/BWP에서 송수신하는 DL/UL 제어/데이터 채널/신호가 120 kHz 또는 240 kHz SCS이더라도, 멀티플렉싱하기 용이하다는 장점이 있다. 일 예로, 도 17(a) 및 도 17(b)와 같이, 480/960 kHz SCS의 SS/PBCH 블록이 구성될 수 있다. 도 17(a)는 p번째 1/16 msec 시간 윈도우 내에서 각 SCS에 따른 SS/PBCH 블록의 구성(또는 SS/PBCH 블록 패턴)을 나타내고, 도 17(b)는 도 17(a)에 이어서'p+1'번째 1/16msec 시간 윈도우 내에서 각 SCS에 따른 SS/PBCH 블록 패턴을 나타낸다. 구체적으로, 도 11 및 도 17(a)를 참조하면, 240 kHz SCS의 SS/PBCH 블록의 경우(1700), 첫번째 슬롯의 심볼 #8/9/10/11에서 SS/PBCH 블록 (후보) 인덱스 'n', 첫번째 슬롯의 심볼 #12/13에서 SS/PBCH 블록 (후보) 인덱스 'n+1'의 일부가 정의/전송될 수 있다. 또한, 도 17(a)를 참조하면, 480 kHz SCS의 SS/PBCH 블록의 경우(1701), 동일 1/16 msec 시간 윈도우 내에서, 240 kHZ SCS의 SS/PBCH 블록의 심볼 위치에 맞추어, 두번째 슬롯의 심볼 #2/3/4/5에서 SS/PBCH 블록 (후보) 인덱스 'i', 두번째 슬롯의 심볼 #6/7/8/9에서 SS/PBCH 블록 (후보) 인덱스 'i+1', 두번째 슬롯의 심볼 #10/11/12/13에서 SS/PBCH 블록 (후보) 인덱스 'i+2'가 정의/전송될 수 있다. 또한, 960 kHz SCS의 SS/PBCH 블록의 경우(1702), 동일 1/16 msec 시간 윈도우 내에서, 240kHz SCS의 SS/PBCH 블록의 심볼 위치에 맞추어, 세번째 슬롯의 심볼 #4/5/6/7에서 SS/PBCH 블록 (후보) 인덱스 m, 세번째 슬롯의 심볼 #8/9/10/11에서 SS/PBCH 블록 (후보) 인덱스 'm+1', 세번째 슬롯의 심볼 #12/13 및 네번째 슬롯의 심볼 #0/1에서 SS/PBCH 블록 (후보) 인덱스 'm+2', 네번째 슬롯의 심볼 #2/3/4/5에서 SS/PBCH 블록 (후보) 인덱스 'm+3', 네번째 슬롯의 심볼 #6/7/8/9에서 SS/PBCH 블록 (후보) 인덱스 'm+4', 네번째 슬롯의 심볼 #10/11/12/13에서 SS/PBCH 블록 (후보) 인덱스 'm+5'가 정의/전송될 수 있다.
- Approach 2: 기존에 정의된 SS/PBCH 블록 패턴들 중 하나가 480 kHz 및/또는 960 kHz SCS에 적용될 수 있다. Approach2에서는 적어도 SS/PBCH 블록과 CORESET #0 및 초기 활성 DL/UL BWP(initial active DL/UL BWP)의 SCS들이 동일하다고 가정할 수 있다. 이때, 복수의 DL 신호/채널 간 SCS는 동일하므로, 복수의 DL 신호/채널을 동시에 수신하는 단말의 구현이 용이하다는 장점이 있다.
- Approach 2-1: 480 kHz SCS에서는, 도 18(a)에 도시된 바와 같이 기존에 정의된 SS/PBCH 블록 패턴들 중 하나가 적용되고, 960 kHz SCS에서는, 확장 가능한 디자인(scalable design)을 고려하여 480 kHz SCS의 SS/PBCH 블록의 전송 구간 이내에 하나의 960 kHz SCS의 SS/PBCH 블록만 위치하도록 결정될 수 있다. 일 예로, 480 kHz SCS에서는, Case A 또는 Case C와 같은 기존 SS/PBCH 블록 패턴이 적용될 수 있다. 도 18(b)를 참조하면, SS/PBCH 블록은, 480 kHz SCS의 슬롯 내 심볼 #2/3/4/5(1800)에 대응하는 960 kHz SCS의 슬롯 내 심볼 #4/5/6/7/8/9/10/11(1810) 중 특정 4개의 연속한 심볼(예, 심볼 #4/5/6/7)(1820)에 위치할 수 있다. 유사하게, 도 18(b)를 참조하면, SS/PBCH 블록은, 480 kHz SCS의 슬롯 내 심볼 #8/9/10/11(1801)에 대응하는 960 kHz SCS의 슬롯 내 심볼 #2/3/4/5/6/7/8/9(1811) 중 특정 4개의 연속한 심볼(예, 심볼 #2/3/4/5)(1821)에 위치할 수 있다.
- Approach 3: 120/240 kHz SCS의 SS/PBCH 블록 패턴을 정의할 때, 서로 다른 SCS 간 공존을 고려하여 60 kHz SCS을 참조(reference) SCS로 설정하고, 참조 SCS를 기준으로 120/240 kHz SCS의 SS/PBCH 블록 패턴을 정의한 방법이 유사하게 적용될 수 있다. 예를 들어, 480/960 kHz SCS의 경우, 60 kHz SCS이 아닌 별도의 참조 SCS를 기준으로, 480 및/또는 960 kHz SS/PBCH 블록의 심볼 위치가 결정될 수 있다. Approach3에 따르면, "SS/PBCH 블록"과 "SS/PBCH 블록이 포함된 반송파/BWP에서 송수신되면서, 참조 SCS보다 작은 (또는 이하의) SCS에 기반한 DL/UL 제어/데이터 채널/신호"는 공존하지 않을 수 있다. Approach 3는 기존의 SS/PBCH 블록 패턴을 재사용할 수 있다는 장점이 있다.
[방법 #7A] 480 kHz 및/또는 960 kHz SCS의 SS/PBCH 블록이 전송되는 슬롯
2 GHz 대역폭(대략 2.16 GHz)을 가지는 WiGig 시스템과의 공존 및 (Rel-15 NR 시스템에서 가정한) 4096 FFT 크기를 고려하여, 480 kHz 및/또는 960 kHz SCS의 SS/PBCH 블록이 도입될 수 있다. 이하에서는, 480 kHz 및/또는 960 kHz SCS의 SS/PBCH 블록의 슬롯 위치에 대해 제안한다. 기지국은 제안된 슬롯 위치에서 480 kHz 및/또는 960 kHz SCS의 SS/PBCH 블록을 전송할 수 있다.
480 kHz SCS의 SS/PBCH 블록의 경우, [방법 #6]에서 제안한 3 가지 approach에 기반한 각 슬롯 (또는 슬롯 그룹) 내 SS/PBCH 블록의 위치를 인접한 슬롯들 (또는 슬롯 그룹들)에 적용하면, 도 20(a)에 도시된 바와 같이, 1 msec 동안(예, 32개 슬롯 동안) 최대 64개의 SS/PBCH 블록이 전송될 수 있다.
480 kHz SCS의 SS/PBCH 블록의 경우, [방법 #6]에서 제안한 3 가지 approach에 기반한 각 슬롯 (또는 슬롯 그룹) 내 SS/PBCH 블록의 위치를 인접한 슬롯들 (또는 슬롯 그룹들)에 적용하면, 도 20(a)에 도시된 바와 같이, 1 msec 동안(예, 32개 슬롯 동안) 최대 64개의 SS/PBCH 블록이 전송될 수 있다. 즉, 도 20(a)를 참조하면, 1 msec 내에 64개의 SS/PBCH 블록 후보(또는 SSB 후보)가 존재할 수 있고, SS/PBCH 블록 후보는 시간 순서에 따라 #0부터 #63까지 인덱싱 될 수 있다(SS/PBCH 블록 후보 인덱스).
이때, 도 20(b) 또는 도 20(c)와 같이, 전술한 [방법 #1]을 적용하여 SS/PBCH 블록이 전송되는 슬롯(이하에서는, 편의상, SS/PBCH 블록의 슬롯으로 지칭한다.)을 확장할 수 있다. 예를 들어, 도 20(b)에 도시된 바와 같이, 120/240 kHz SCS의 SS/PBCH 블록에서 고려된 슬롯 갭들을 동일하게 적용하여, 추가적인 SS/PBCH 블록의 슬롯 위치가 결정될 수 있다. 또는, 비면허 대역에서 추가 CAP 없이 전송 가능한 구조를 고려하여, 도 20(c)와 같이, 슬롯 갭 없이 추가적인 SS/PBCH 블록의 슬롯 위치가 결정될 수도 있다.
또한, 기지국은, [방법 #2A]를 적용하여, 64개 이상의 SS/PBCH 블록 후보 인덱스들을 정의하고 단말에게 전송(또는 시그널링)할 수 있으며, [방법 #3A]을 적용하여, SS/PBCH 블록 후보 인덱스들 간 QCL 관계를 정의하고 시그널링 할 수 있고, [방법 #4A]를 적용하여, 실제 전송된 SS/PBCH 블록들에 관한 정보를 단말에게 전송할 수 있다.
960 kHz SCS의 SS/PBCH 블록의 경우, [방법 #6A]에서 제안한 3가지 approach에 기반한 각 슬롯 (또는 슬롯 그룹) 내 SS/PBCH 블록의 위치를 인접한 슬롯들 (또는 슬롯 그룹들)에 적용하면, 도 21(a)에 도시된 바와 같이, 0.5 msec 동안(예, 32 슬롯 동안)(2100) 최대 64개의 SS/PBCH 블록이 전송될 수 있다. 또는, [방법 #6A]에서 제안한 Approach 2-1에 따르면 하나의 슬롯 내에 하나의 SS/PBCH 블록이 전송되므로, 1 msec 동안(예, 64개 슬롯 동안) 최대 64개의 SS/PBCH 블록이 전송될 수 있다.
이때, 도 21(b) 또는 도 21(c)와 같이, 전술한 [방법 #1A]을 적용하여 SS/PBCH 블록이 전송되는 슬롯을 확장할 수 있다. 예를 들어, 도 21(b)와 같이, 120/240 kHz SCS SS/PBCH 블록에서 고려된 슬롯 갭들을 동일하게 적용하여 추가적인 SS/PBCH 블록의 슬롯 위치가 결정될 수 있다. 또는, 비면허 대역에서 추가 CAP 없이 전송 가능한 구조를 고려하여, 도 21(c)와 같이, 슬롯 갭 없이 추가적인 SS/PBCH 블록의 슬롯 위치가 결정될 수도 있다.
블록의 슬롯 위치가 결정될 수도 있다.
또한, 기지국은, [방법 #2A]를 적용하여, 64개 이상의 SS/PBCH 블록 후보 인덱스들을 정의하고 단말에게 전송할 수 있으며, [방법 #3A]을 적용하여, SS/PBCH 블록 후보 인덱스들 간 QCL 관계를 정의하고 단말에게 전송할 수 있다. 또한, 기지국은, [방법 #4A]를 적용하여, 실제 전송된 SS/PBCH 블록들에 관한 정보를 단말에게 전송할 수 있다.
상기 제안 방법들에서 서로 다른 SS/PBCH 블록 (후보) 인덱스 값을 갖는 SS/PBCH 블록들이 QCL 관계에 있을 수 있다. 특징적으로, (심볼 갭 없이) 연속한 N개의 SS/PBCH 블록 (후보) 인덱스 값을 갖는 SS/PBCH 블록들이 QCL 관계에 있다고 사전에 설정/정의될 수 있다. 일 예로, 도 19에서 960 kHz SCS SS/PBCH 블록의 경우, N이 4이면, 첫번째 슬롯의 심볼 #8부터 연속한 4개의 SS/PBCH 블록 후보 인덱스 값을 갖는 SS/PBCH 블록들이 QCL 관계에 있다고 정의되거나 설정될 수 있다. 또는, N이 2이면, 첫번째 슬롯의 심볼 #8부터 연속한 4개의 SS/PBCH 블록 후보 인덱스 중에서 앞의 2개 또는 뒤의 2개 인덱스 값을 갖는 SS/PBCH 블록들이 QCL 관계에 있다고 정의되거나 설정될 수 있다. 이때, QCL 관계에 있는 연속한 SS/PBCH 블록의 MIB, SIB 등의 셀-공통 RRC 시그널링을 통해 설정)될 수 있다.
960 kHz SCS (또는 그 이상의 SCS)의 경우, 대략 100 ns가 소요되는 BST(Beam Switching interruption Time)를 고려할 때, CP 길이보다 BST가 클 수 있다. 따라서, 960 kHz SCS의 경우 (또는, 960 kHz 이상의 SCS에서 BST 보다 CP 길이가 짧을 수 있는 경우), 심볼 갭 없이 연속한 N개의 SS/PBCH 블록 (후보) 인덱스 값을 갖는 SS/PBCH 블록들이 QCL 관계에 있다고 설정/정의될 수 있다. 마찬가지로, 480 kHz SCS의 SS/PBCH 블록의 경우에도, (심볼 갭 없이) 연속한 N개의 SS/PBCH 블록 (후보) 인덱스 값을 갖는 SS/PBCH 블록들이 QCL 관계에 있다고 설정/정의될 수 있다.
또는, 960 kHz SCS의 경우 (또는 960 kHz 이상의 SCS에서 BST보다 CP 길이가 짧을 수 있는 경우), 서로 다른 QCL 관계에 있는 SS/PBCH 블록 (후보) 인덱스 간에는 적어도 하나의 심볼 갭이 기대될 수 있다. 일 예로, 도 19에서 첫번째 슬롯의 심볼 #8/9/10/11에서 SS/PBCH 블록 (후보) 인덱스 'm+1', 첫번째 슬롯의 심볼 #12/13 및 두번째 슬롯의 심볼 #0/1에서 SS/PBCH 블록 (후보) 인덱스 'm+2', 두번째 슬롯의 심볼 #2/3/4/5에서 SS/PBCH 블록 (후보) 인덱스 'm+3'이 전송될 수 있을 때, SS/PBCH 블록 (후보) 인덱스 'm+1'과 SS/PBCH 블록 (후보) 인덱스 'm+3'는 QCL 관계에 있지 않으며, N이 1인 경우, SS/PBCH 블록 (후보) 인덱스 'm+2'에 대응하는 SS/PBCH 블록의 전송은 생략될 수 있다. 한편, 480 kHz SCS의 경우(또는, 480 kHz 이하의 SCS에서 BST보다 CP 길이가 긴 경우), 동일한 상황에서 기지국은 SS/PBCH 블록 (후보) 인덱스 'm+2'에 대응하는 SS/PBCH 블록을 전송할 수 있다.
[방법 #8A] 기지국이 수행하는 LBT scheme을 시그널링 하는 방법
기지국은 (특정 구간 동안의) 하향링크 신호/채널 전송을 위해 수행하는 LBT scheme을 단말에게 전송(또는 시그널링)할 수 있다. 전술한 바와 같이, LBT는 전술한 CAP와 혼용될 수 있다. 만약 단말에게 시그널링 한 LBT scheme이 채널의 idle/busy 여부를 판단하지 않고 전송이 허용되는 scheme이라면, 기지국은 (해당 구간 동안) SS/PBCH 블록을 전송할 때, QCL 관계에 있는 SS/PBCH 블록을 S_윈도우 내에서 한 번만 전송할 수 있다.
일 예로, 240 kHz SCS의 경우, 도 13(a)와 같이 5 msec 윈도우 내에 SS/PBCH 블록 (후보) 인덱스 #0~127이 정의되고, QCL_para 값이 64이면, 해당 5 msec 윈도우 내에서 SS/PBCH 블록 (후보) 인덱스 #N(예, N<64)과 SS/PBCH 블록 (후보) 인덱스 #(N+64)는 QCL 관계에 있을 수 있다. 이에 따라, 5 msec 윈도우 내에서 동일 빔을 갖는 SS/PBCH 블록이 두 번 전송될 수 있는 기회를 제공함으로써, 기지국의 LBT 실패를 보상할 수 있다.
한편, (FR3 의 특정 비면허 대역에서 동작하는) 기지국은, 특정 상황에 따라 (예, 간섭 레벨이 낮거나, 하향링크 전송의 성공 확률이 높아 충돌 발생 빈도가 낮다고 판단되거나, 전송 빈도가 낮거나, 전송 전력이 낮은 등의 상황에 따라) 채널의 idle/busy 여부 판단 없이, 전송이 허용될 수 있다. 편의상, 채널의 idle/busy 여부 판단 없이 전송이 허용되는 LBT scheme을 LBT scheme A로 명명하며, 채널이 idle 상태라고 판단될 때에만 전송이 허용되는 LBT scheme을 LBT scheme B로 명명한다. 이때, 기지국은, 상위 계층 시그널링 또는 (UE-특정 또는 그룹-공통) DCI를 통해, 기지국에 의해 수행되는 LBT scheme이 LBT scheme A인지 LBT scheme B인지 단말에게 지시할 수 있다. 예를 들어, 상위 계층 시그널링은, 셀-특정 RRC 시그널링, UE-특정 RRC 시그널링, 또는 MAC(Medium Access Control)-CE(Control Element)를 포함할 수 있다. 또는, 상기 [방법 #5A]와 같이, 기지국은, SS/PBCH 블록이 전송될 수 있는 동기화 래스터에 기반하여, 기지국에 의해 수행되는 LBT scheme이 LBT scheme A인지 LBT scheme B인지 단말에게 알릴 수 있다. 일 예로, 기지국은, 동기화 래스터 셋 #1에 속한 동기화 래스터에 기반한 SS/PBCH 블록을 전송함으로써, 기지국에 의해 수행되는 LBT scheme이 LBT scheme A임을 단말에게 알릴 수 있다. 반면, 기지국은, 동기화 래스터 셋 #2에 속한 동기화 래스터에 기반한 SS/PBCH 블록을 전송함으로써, 기지국에 의해 수행되는 LBT scheme이 LBT scheme #B임을 알릴 수 있다. 하기에서, 특정 LBT scheme이 지시되는 것은, 상위 계층 시그널링을 통해 명시적으로 설정/지시되는 것을 의미할 수 있고, 또는 단말이 동기화 래스터에 기반하여 암묵적으로 알게되는 것을 의미할 수도 있다.
예를 들어, LBT scheme B가 지시되면, 도 13(a) 및 상기 제안 방법들과 같이, S_윈도우 내에서 QCL 관계에 있는 SS/PBCH 블록들에게 복수의 전송 기회가 주어지고, 기지국은, LBT 성공/실패에 따라 QCL 관계에 있는 SS/PBCH 블록들 중 일부를 단말에게 전송할 수 있다. 이에 따라, 단말은 (S_윈도우 내에서) SS/PBCH 블록을 통해 RLM/RRM 등의 측정을 수행할 때, S_윈도우의 전체 구간에서 측정을 수행할 수 있다. 예를 들어, 특정 SS/PBCH 블록 (후보) 인덱스에 대응하는 무선 링크 모니터링을 위해, 단말은, 특정 SS/PBCH 블록 (후보) 인덱스와 QCL 관계에 있는 SS/PBCH 블록 (후보) 인덱스들을 모두 활용할 수 있다. 이때, 특정 SS/PBCH 블록(후보)는, MIB가 획득된 SS/PBCH 블록을 포함할 수 있다. 또한, 무선 링크 모니터링은, SS/PBCH 블록에 기반한 PUSCH/SRS(Sounding Reference Signal)의 경로 손실 측정(PL(path loss) estimation)을 포함할 수 있다. 이 경우, 단말은, MIB의 획득을 위해 사용한 것과 동일한 SS/PBCH 블록 인덱스를 갖는 SS/PBCH (후보) 블록(들)로부터 얻은 RS 자원을 이용하여, PL을 계산할 수 있다.
반면, LBT scheme A가 지시되었다면, 기지국은 (S_윈도우 내에서) 특정 QCL_para개의 SS/PBCH 블록들만 단말에게 전송할 수 있다. 즉, 도 13(a)에서 QCL_para가 64이면, 기지국은 SS/PBCH 블록 (후보) 인덱스 #0~63에 대응하는 SS/PBCH 블록만 전송할 수 있다. 기지국은 LBT scheme A를 사용할 것이므로, 채널이 idle 상태인지 여부와 상관없이, 항상 SS/PBCH 블록 등의 하향링크 신호를 전송할 수 있다. 이로 인해, 단말이 (S_윈도우 내에서) SS/PBCH 블록을 통해 RLM/RRM 등의 측정을 수행할 때, S_윈도우 내에서 특정 (압축된) 구간 동안만 측정을 수행하고, 나머지 구간에서는 측정을 수행하지 않을 수 있어, 전력 소모가 감소하는 효과를 기대할 수 있다. 예를 들어, 단말은, MIB의 획득을 위해 사용한 SS/PBCH 블록으로부터 얻은 RS 자원만 이용하여, PL을 계산할 수 있다.
LBT scheme A가 지시되면, 특정 구간 동안 LBT scheme A이 유효할 수 있으며, 해당 특정 구간은 사전에 정의되거나 설정될 수 있다. 예를 들어, 해당 특정 구간은, SIB 정보가 변경될 수 있는 주기(예, 1 sec)로 정의되거나 설정될 수 있다. 또한, 기지국은, 상위 계층 시그널링(예, MeasObjectNR IE(Information Element)와 같은 RRC 시그널링)을 통해, 서빙 셀뿐만 아니라 인접 셀(neighbor cell)에 대한 LBT scheme을 지시할 수 있다. 예를 들어, 기지국이 인접 셀에 대하여 LBT scheme A를 지시하면, 단말은 S_윈도우 내에서(예, S_윈도우 시작 시점부터) QCL_para 개수의 SS/PBCH 블록을 통해서만 해당 인접 셀에 대한 RRM 측정을 수행하고, 그 외의 구간에서는 RRM 측정을 수행하지 않을 수 있다.
또한, 지시된 LBT scheme에 따라, 단말이 Type0-PDCCH CSS 셋을 모니터링 하는 방법이 달라질 수 있다. LBT scheme B를 지시하는 경우, 기지국은, LBT의 성공 여부에 따라, (S_윈도우 내에서) 특정 SS/PBCH 블록 (후보) 인덱스와 QCL 관계에 있는 모든 SS/PBCH 블록 (후보) 인덱스에 대응하는 Type0-PDCCH CSS 셋 중 일부를 단말에게 전송할 수 있다. 반면, LBT scheme A를 지시하는 경우, 기지국은 (S_윈도우 내에서) 특정 SS/PBCH 블록 (후보) 인덱스와 QCL 관계에 있는 복수의 SS/PBCH 블록 (후보) 인덱스 중 하나(예, S_ 윈도우 내에서 특정 SS/PBCH 블록 (후보) 인덱스와 QCL 관계에 있는 첫번째 SS/PBCH 블록 (후보) 인덱스)에 대응하는 Type0-PDCCH CSS 셋만 단말에게 전송할 수 있다. S_윈도우 내에서 특정 SS/PBCH 블록 (후보) 인덱스와 QCL 관계에 있는 첫번째 SS/PBCH 블록 (후보) 인덱스는, S_윈도우 내에서 첫 QCL_para 개수의 SS/PBCH 블록을 의미할 수 있다.
추가로, 기지국이 지시하는 LBT scheme에 따라 PDSCH의 매핑 방법이 달라질 수 있다. LBT scheme B을 지시하는 경우, 기지국은 (S_윈도우 내에서) 특정 SS/PBCH 블록 (후보) 인덱스와 QCL 관계에 있는 모든 SS/PBCH 블록 (후보) 인덱스들의 자원(예, RB)에는 PDSCH를 매핑하지 않을 수 있다. 예를 들어, PDSCH에 실리는 코드워드는 PDSCH 전송을 위해 할당된 모든 자원(예, RB)의 양을 고려하여 생성되지만, PDSCH 전송을 위해 할당된 자원(예, RB)이 특정 SS/PBCH 블록 (후보)와 QCL 관계에 있는 SS/PBCH 블록 (후보)의 자원(예, RB)과 겹치는 경우, 기지국은 겹치는 자원(예, RB)에는 PDSCH를 매핑하지 않을 수 있다. 이때, 특정 SS/PBCH 블록 (후보) 인덱스는, 기지국이 단말에게 실제로 전송된다고 알려준 SS/PBCH 블록 (후보) 인덱스를 포함한다(도 9 참조).
반면, LBT scheme A를 지시하는 경우, 기지국은, (S_윈도우 내에서) 특정 SS/PBCH 블록 (후보) 인덱스와 QCL 관계에 있는 복수의 SS/PBCH 블록 (후보) 인덱스 중 하나(예, S_윈도우 내에서 특정 SS/PBCH 블록 (후보) 인덱스와 QCL 관계에 있는 첫번째 SS/PBCH 블록 (후보) 인덱스)의 자원(예, RB)에만 PDSCH를 매핑하지 않을 수 있다. 그리고, 기지국은, 상기 특정 SS/PBCH 블록 (후보) 인덱스와 QCL 관계에 있는 나머지 SS/PBCH 블록 (후보) 인덱스들의 자원(예, RB)에는 PDSCH를 매핑할 수 있다. 이에 따라, QCL 관계에 있는 나머지 SS/PBCH 블록 (후보) 인덱스들의 자원(예, RB)과 PDSCH 자원(예, RB)이 겹치는 경우, 기지국은 PDSCH를 위해 할당된 모든 자원(예, RB)에 PDSCH를 매핑할 수 있다.
그리고, 지시된 LBT scheme에 따라, PDSCH TDRA(Time Domain Resource Allocation) 방법이 달라질 수 있다. 기지국은, 단말에게 특정 TDRA 테이블을 설정하기 전에는, 디폴트 TDRA 테이블을 통해 PDSCH를 스케줄링하고, 스케줄링한 PDSCH를 단말에게 전송할 수 있다. 이때, 디폴트 TDRA 테이블은, 공유 스펙트럼 액세스(shared spectrum access) 동작이 수행되는지 여부에 따라 다르게 정의될 수 있다. 예를 들어, LBT scheme B를 지시하는 경우, 기지국은, 특정 TDRA 테이블을 단말에게 설정하기 전에는, 공유 스펙트럼 액세스 동작을 위해 정의된 디폴트 TDRA 테이블을 통해 PDSCH를 스케줄링 할 수 있다. 반면, 만약 LBT scheme A를 지시하는 경우, 기지국은, 특정 TDRA 테이블을 단말에게 설정하기 전에는, 공유 스펙트럼 액세스 이외의 동작을 위해 정의된 디폴트 TDRA 테이블을 통해 PDSCH를 스케줄링 할 수 있다. 각각의 TDRA 테이블은 복수의 열을 포함하며, 각 열은 (1)슬롯 내의 DMRS 심볼 인덱스, (2)PDSCH 매핑 타입, (3)PDCCH-to-PDSCH 슬롯 오프셋, (4)슬롯 내의 PDSCH 시작 심볼 인덱스, (5)PDSCH 심볼 개수 중 적어도 하나를 포함할 수 있다.
[방법 #9A] 하나의 셀 내에 복수의 뉴머롤로지를 갖는 SS/PBCH 블록
기지국은, 하나의 셀 내에 서로 다른 뉴머롤로지를 갖는 SS/PBCH 블록들을 (BWP 별로) 설정할 수 있다. 일 예로 기지국은, 초기 BWP #0에는 120 kHz SCS의 SS/PBCH 블록 수신을 설정하고, BWP #1에는 480 kHz SCS(또는 960 kHz SCS)의 SS/PBCH 블록 수신을 설정할 수 있다. 단말이 BWP #1에서 설정된 480 kHz SCS (또는 960 kHz SCS)의 SS/PBCH 블록에 기반하여 RRM 측정 등을 수행하는 도중에 BWP #0로 스위칭 된 경우, 단말이 RRM 측정 등의 수행을 이어나갈 수 있도록, 기지국은 120 kHz SCS의 SS/PBCH 블록 인덱스와 480 kHz SCS (또는 960 kHz SCS)의 SS/PBCH 블록 인덱스 간 QCL 관계를 설정할 수 있다. 즉, 기지국은, 120 kHz SCS의 SS/PBCH 블록 (후보) 인덱스 n과 480 kHz SCS(또는 960 kHz SCS)의 SS/PBCH 블록 (후보) 인덱스 m이 QCL 관계에 있다고 설정하거나, 또는 동일한 SS/PBCH 블록 (후보) 인덱스 간에는 QCL 관계가 가정될 수 있도록 규칙을 정할 수 있다.
단말이 초기 접속 단계에서 복수의 SCS을 가정하는 경우의 구현 복잡도를 고려하여, 초기 접속 단계에서 SS/PBCH 블록에 적용될 SCS 값의 개수를 최소화할 수 있다. 예를 들어, 기지국은, 초기 접속 단계의 SS/PBCH 블록에 120 kHz SCS만 적용하도록 제한될 수 있다. 반면, 초기 접속 이후 (단말의 지원 여부에 따라) 초기 BWP가 아닌 별도의 전용(dedicated) BWP의 경우, 기지국은 480 kHz SCS 또는 960 kHz SCS를 설정할 수 있다. 단말이 초기 BWP가 아닌 별도의 전용 BWP에서도 RRM 측정 등을 위해 120 kHz SCS의 SS/PBCH 블록을 수신해야 한다면, RRM 측정 등을 수행하기 위해 뉴머롤로지를 자주 변경해야 한다는 단점이 있다. 이와 같은 단점을 고려하여, 기지국은, 초기 접속 단계가 아닌 다른 목적(예, RRM 측정, 무선 링크 모니터링, 후보 빔 검출, 빔 실패 검출, 빔 관리 등)을 위해서는, 480 kHz SCS 및/또는 960 kHz SCS의 SS/PBCH 블록을 정의할 수 있다. 이때, 기지국은, 동일 셀 내에서도, BWP 별로 서로 다른 SCS 값을 갖는 SS/PBCH 블록을 설정할 수 있다. 일 예로, 기지국은, BWP #0에 대해서는 120 kHz SCS 기반 SS/PBCH 블록을 설정하고, BWP #1에 대해서는 BWP #1에 설정된 뉴머롤로지와 같은 480 kHz SCS (또는 960 kHz SCS 기반) SS/PBCH 블록을 설정할 수 있다.
단말은 SS/PBCH 블록 수신을 통해 RRM 측정, 무선 링크 모니터링, 후보 빔 검출, 빔 실패 검출, 빔 관리 등을 수행할 수 있는데, BWP 전환(switching) 시에도 단말이 특정 SS/PBCH 블록 (후보) 인덱스를 통해 수행한 RRM 측정, 무선 링크 모니터링, 후보 빔 검출, 빔 실패 검출, 빔 관리 등을 계속 수행할 수 있어야 성능이 유지될 수 있다. 이를 지원하기 위해, 동일 셀 내에 설정된 서로 다른 뉴머롤로지 기반 SS/PBCH 블록 (후보) 인덱스 간 QCL 관계 설정이 필요할 수 있다. 기지국은, 사전에 정의된 규칙에 따라, 120 kHz SCS의 SS/PBCH 블록 (후보) 인덱스 n과 480 kHz SCS (또는 960 kHz SCS)의 SS/PBCH 블록 (후보) 인덱스 n은 QCL 관계에 있고, 서로 다른 인덱스는 QCL 관계에 있지 않은 것으로 설정할 수 있다. 또는, 기지국은, 120 kHz SCS의 SS/PBCH 블록 (후보) 인덱스 n과 480 kHz SCS (또는 960 kHz SCS)의 SS/PBCH 블록 (후보) 인덱스 m이 QCL 관계에 있는 것으로 설정할 수 있고, 상기 QCL 관계에 관한 설정을 RRC 시그널링을 통해 단말에게 전달할 수 있다.
또한, 단말은, 초기 접속 단계에서 SIB1 등의 RRC 시그널링을 통해 획득한 ssb-PositionsInBurst 값(표 8 참조)이 120 kHz SCS의 SS/PBCH 블록 (후보) 인덱스 및 480 kHz SCS (또는 960 kHz SCS)의 SS/PBCH 블록 (후보) 인덱스에도 동일하게 적용된다고 가정할 수 있다.
일 예로, 64개 SS/PBCH 블록 (후보) 인덱스 중에서, 인덱스 #0~31에 대응하는 SS/PBC 블록만 실제 전송되고 인덱스 #32~63에 대응하는 SS/PBCH 블록은 전송되지 않는다고 설정된 경우, 기지국은, (초기) BWP 상에서 정의된 120 kHz SCS의 SS/PBCH 블록뿐만 아니라, (전용) BWP 상에서 정의된 480 kHz SCS (또는 960 kHz SCS)의 SS/PBCH 블록에도 상기 설정을 동일하게 적용할 수 있다. 또는, 기지국은, 64개 SS/PBCH 블록 (후보) 인덱스 중에서 어떤 SS/PBCH 블록 (후보) 인덱스에 대응하는 SS/PBCH 블록을 전송하는지 알려주는 ssb-PositionsInBurst 파라미터를 BWP (또는 SS/PBCH 블록의 SCS)에 따라 별도로 설정할 수 있다.
제안하는 방법에서 RRM 측정은, 무선 링크 모니터링, 후보 빔 검출, 빔 실패검출, 빔 관리 용도로도 확장 적용될 수 있으며, 서빙 셀(Pcell 및/또는 PSCell 및/또는 Scell)뿐만 아니라 인접 셀 측정 관점에서도 동일 방법을 확장하여 적용될 수 있다.
또는, 시그널링 복잡도를 고려하여, 초기 접속 단계의 SS/PBCH 블록에는 120 kHz SCS만 적용되도록 제한될 때, 480 kHz SCS 또는 960 kHz SCS 기반 SS/PBCH 블록은 (PCell 또는 PSCell이 아닌) SCell에만 적용될 수 있도록 규칙이 정해질 수 있다.
도 24는 제안하는 방법에 따른 기지국의 동작을 나타내는 흐름도이다.
도 24를 참조하면, 기지국은 SS/PBCH 블록의 부반송파 간격(Subcarrier Spacing; SCS)을 설정할 수 있다(S2400). 이때, SS/PBCH 블록의 SCS는, 실시예에 따라 상위 계층 시그널링(예를 들어, RRC 시그널링) 등을 통해 단말에게 명시적으로 전달되거나, 또는 묵시적으로 전달될 수도 있다. 기지국은, 설정된 SCS에 기초하여, 복수의 SS/PBCH 블록 후보 중에서 SS/PBCH 블록을 단말에게 전송(S2410)할 수 있다. 이때, 복수의 SS/PBCH 블록 후보의 위치는, SS/PBCH 블록의 SCS에 따라 다르게 정의될 수 있다. 예를 들어, SS/PBCH 블록의 SCS가 240 kHz로 설정된 경우, 복수의 SS/PBCH 블록 후보는 전술한 [방법 #1]의 'CASE 1'에 따라 결정될 수 있다. 구체적으로, 복수의 SS/PBCH 블록 후보는, SS/PBCH 블록의 전송을 위해 설정된 시간 윈도우 내에 정의될 수 있고, SS/PBCH 블록의 SCS가 240 kHz로 설정된 것에 기초하여, 복수의 SS/PBCH 블록 후보는, 시간 윈도우의 전반 구간 및 후반 구간 모두에 위치할 수 있다. 이에 따라, 시간 윈도우 내에서 SS/PBCH 블록의 전송 기회가 증가할 수 있으며, 기지국이 CAP에 실패하는 경우를 고려하여, SS/PBCH 블록을 효과적으로 전송할 수 있다.
3) Receiver & Transmitter (Between Receiver and Transmitter)
도 25는 본 명세서의 제안에 따른 단말과 기지국의 동작을 나타내는 흐름도이다. 도 25를 참조하면, 기지국은 FR3에서 정의된 동기화 래스터에 기초하여 SS/PBCH 블록을 단말에게 전송할 수 있다(S2400). 구체적으로, 기지국은, FR에서 정의된 동기화 래스터를 중심 주파수로 하여, SS/PBCH 블록을 단말에게 전송할 수 있으며, 동기화 래스터는 도 15에 도시된 바에 따라 정의될 수 있다. 이때, [방법 #1]을 적용하여, 5 msec 윈도우 내에서 FR2에서 정의된 SS/PBCH 블록 전송 가능 위치에 추가적으로, SS/PBCH 블록 전송 가능 위치가 FR3 상에 정의될 수 있다. SS/PBCH 블록 전송 가능 위치는, 5 msec 윈도우 내에서 SS/PBCH 블록이 전송될 수 위치를 의미할 수 있으며, 전술한 SS/PBCH 블록 후보의 위치에 대응한다. 또한, 기지국은, [방법 #4] 및 [방법 #4A]를 적용하여, 실제 전송을 시도한 SS/PBCH 블록에 대응하는 SS/PBCH 블록 후보 인덱스들을 단말에게 전송할 수 있다.
단말은, 기지국으로부터 수신한 SS/PBCH 블록에 기초하여 셀 타이밍 또는 복수의 SS/PBCH 블록 간 QCL 관계를 획득할 수 있다(S2410). 구체적으로, 단말은, [방법 #2]를 적용하여, 검출된 SS/PBCH 블록을 통해 셀 타이밍을 획득할 수 있으며, [방법 #3]을 적용하여, 검출된 복수의 SS/PBCH 블록 간 QCL 관계를 획득할 수 있다. 본 명세서에서 제안한 방법들에 따르면, FR3의 비면허 대역에서 SS/PBCH 블록의 전송 기회를 증가시킴으로써, 기지국의 CAP 실패로 인해, SS/PBCH 블록의 전송이 실패할 확률을 줄일 수 있다.
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 26은 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 26을 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 27은 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 27을 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 26의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
본 명세서에서, 적어도 하나의 메모리(예, 104 또는 204)는 지시들 또는 프로그램들을 저장할 수 있으며, 상기 지시들 또는 프로그램들은, 실행될 때, 상기 적어도 하나의 메모리에 작동 가능하게(operably) 연결되는 적어도 하나의 프로세서로 하여금 본 명세의 몇몇 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
본 명세서에서, 컴퓨터 판독 가능한(readable) 저장(storage) 매체(medium)은 적어도 하나의 지시 또는 컴퓨터 프로그램을 저장할 수 있으며, 상기 적어도 하나의 지시 또는 컴퓨터 프로그램은 적어도 하나의 프로세서에 의해 실행될 때 상기 적어도 하나의 프로세서로 하여금 본 명세의 몇몇 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
본 명세서에서, 프로세싱 기기(device) 또는 장치(apparatus)는 적어도 하나의 프로세서와 상기 적어도 하나의 프로세서여 연결 가능한 적어도 하나의 컴퓨터 메모리를 포함할 수 있다. 상기 적어도 하나의 컴퓨터 메모리는 지시들 또는 프로그램들을 저장할 수 있으며, 상기 지시들 또는 프로그램들은, 실행될 때, 상기 적어도 하나의 메모리에 작동 가능하게(operably) 연결되는 적어도 하나의 프로세서로 하여금 본 명세의 몇몇 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
도 28은 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 26 참조).
도 28을 참조하면, 무선 기기(100, 200)는 도 27의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 27의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 27의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 26, 100a), 차량(도 26, 100b-1, 100b-2), XR 기기(도 26, 100c), 휴대 기기(도 26, 100d), 가전(도 26, 100e), IoT 기기(도 26, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 26, 400), 기지국(도 26, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 28에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
여기서, 본 명세의 무선 기기(100, 200)에서 구현되는 무선 통신 기술은 LTE, NR 및 6G뿐만 아니라 저전력 통신을 위한 Narrowband Internet of Things를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN(Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100, 200)에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC(enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100, 200)에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.
도 29는 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 29를 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 28의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다.

Claims (28)

  1. 비면허 대역을 지원하는 무선 통신 시스템에서 단말이 하향링크 신호를 수신하는 방법에 있어서,
    비면허 대역 상에 위치하는 복수의 SS/PBCH(Synchronization Signal/Public Broadcast Channel) 블록 후보 내에서 SS/PBCH 블록을 수신하는 단계; 및
    상기 SS/PBCH 블록에 기초하여, 시간 동기를 획득하는 단계를 포함하고,
    상기 SS/PBCH 블록의 부반송파 간격(subcarrier spacing, SCS)이 240 kHz로 설정된 것에 기초하여, 상기 복수의 SS/PBCH 블록 후보는, 상기 SS/PBCH 블록의 전송을 위해 설정된 시간 윈도우의 전반(first half) 구간 및 후반 구간(second half) 모두에 위치하는, 방법.
  2. 제 1항에 있어서,
    상기 전반 구간 및 상기 후반 구간 각각에서, SS/PBCH 블록 후보들이 정의된 연속된 슬롯들 이후에 SS/PBCH 블록 후보들이 정의되지 않은 연속된 슬롯들이 위치하는, 방법.
  3. 제 1항에 있어서,
    상기 전반 구간 및 상기 후반 구간은 각각 40개의 슬롯을 포함하고,
    상기 SS/PBCH 블록 후보들이 정의된 연속한 슬롯들은, 상기 전반 구간과 상기 후반 구간 각각의 1)첫번째 슬롯으로부터 연속된 16개의 슬롯 및 2)21번째 슬롯으로부터 연속된 16개의 슬롯을 포함하는, 방법.
  4. 제 1항에 있어서,
    상기 복수의 SS/PBCH 블록 후보 중에서 QCL(Quasi-Co-Located) 관계에 있는 SS/PBCH 블록들 사이의 간격 Q에 관한 정보를 수신하는 단계;
    상기 복수의 SS/PBCH 블록 후보 중에서 상기 기지국에 의해 전송되는 SS/PBCH 블록을 지시하기 위한 비트맵을 수신하는 단계; 및
    상기 Q에 기반하여 결정된 하나 이상의 비트를 제외한 상기 비트맵으로부터, 상기 SS/PBCH 블록의 전송 위치에 관한 정보를 획득하는 단계를 더 포함하고,
    Q는 상기 시간 윈도우에서 정의된 SS/PBCH 블록 후보들의 개수보다 작은, 방법.
  5. 제 1항에 있어서,
    상기 부반송파 간격이 480 kHz인 SS/PBCH 블록 후보들이 정의된 슬롯들은, 상기 시간 윈도우 내에서, 상기 부반송파 간격이 240 kHz인 SS/PBCH 블록 후보들이 정의된 슬롯들에 정렬하여 위치하는, 방법.
  6. 제 1항에 있어서, 상기 방법은,
    상기 기지국에 의해 수행되는 CAP(Channel Access Procedure)에 관한 정보를 수신하는 단계를 더 포함하고,
    상기 CAP는, 채널이 유휴 상태에 있는지 여부와 상관없이 전송이 허용되는 제1 CAP, 또는 유휴 상태에 있는 채널에서만 전송이 허용되는 제2 CAP를 포함하는, 방법.
  7. 제 6항에 있어서,
    상기 정보가 제2 CAP에 관한 정보를 포함하는 것에 기초하여, 상기 SS/PBCH 블록은, 상기 시간 윈도우 내에서 QCL(Quasi-Co-Located) 관계에 있는 SS/PBCH 블록 후보들 중 일부를 통해 수신되고,
    상기 정보가 제1 CAP에 관한 정보를 포함하는 것에 기초하여, 상기 SS/PBCH 블록은, 상기 시간 윈도우 내에서 SS/PBCH 블록 후보 인덱스가 Q보다 작은 SS/PBCH 블록 후보들을 통해 수신되며,
    Q는 상기 시간 윈도우 내에서 QCL 관계에 있는 SS/PBCH 블록 후보들 간의 간격을 나타내는, 방법.
  8. 비면허 대역을 지원하는 무선 통신 시스템에서 동작하는 단말에 있어서,
    적어도 하나의 RF(Radio Frequency) 유닛;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작은,
    비면허 대역 상에 위치하는 복수의 SS/PBCH(Synchronization Signal/Public Broadcast Channel) 블록 후보 내에서 SS/PBCH 블록을 수신하고,
    상기 SS/PBCH 블록에 기초하여, 시간 동기를 획득하는 동작을 포함하고,
    상기 SS/PBCH 블록의 부반송파 간격(subcarrier spacing, SCS)이 240 kHz로 설정된 것에 기초하여, 상기 복수의 SS/PBCH 블록 후보는, 상기 SS/PBCH 블록의 전송을 위해 설정된 시간 윈도우의 전반(first half) 구간 및 후반 구간(second half) 모두에 위치하는, 단말.
  9. 제 8항에 있어서,
    상기 전반 구간 및 상기 후반 구간 각각에서, SS/PBCH 블록 후보들이 정의된 연속된 슬롯들 이후에 SS/PBCH 블록 후보들이 정의되지 않은 연속된 슬롯들이 위치하는, 단말.
  10. 제 8항에 있어서,
    상기 전반 구간 및 상기 후반 구간은 각각 40개의 슬롯을 포함하고,
    상기 SS/PBCH 블록 후보들이 정의된 연속한 슬롯들은, 상기 전반 구간과 상기 후반 구간 각각의 1)첫번째 슬롯으로부터 연속된 16개의 슬롯 및 2)21번째 슬롯으로부터 연속된 16개의 슬롯을 포함하는, 단말.
  11. 제 8항에 있어서, 상기 동작은,
    상기 복수의 SS/PBCH 블록 후보 중에서 QCL(Quasi-Co-Located) 관계에 있는 SS/PBCH 블록들 사이의 간격 Q에 관한 정보를 수신하고,
    상기 복수의 SS/PBCH 블록 후보 중에서 상기 기지국에 의해 전송되는 SS/PBCH 블록을 지시하기 위한 비트맵을 수신하고,
    상기 Q에 기반하여 결정된 하나 이상의 비트를 제외한 상기 비트맵으로부터, 상기 SS/PBCH 블록의 전송 위치에 관한 정보를 획득하는 동작을 더 포함하고,
    Q는 상기 시간 윈도우에서 정의된 SS/PBCH 블록 후보들의 개수보다 작은, 단말.
  12. 제 8항에 있어서,
    상기 부반송파 간격이 480 kHz인 SS/PBCH 블록 후보들이 정의된 슬롯들은, 상기 시간 윈도우 내에서, 상기 부반송파 간격이 240 kHz인 SS/PBCH 블록 후보들이 정의된 슬롯들에 정렬하여 위치하는, 단말.
  13. 제 8항에 있어서,
    상기 동작은, 상기 기지국에 의해 수행되는 CAP(Channel Access Procedure)에 관한 정보를 수신하는 동작을 더 포함하고,
    상기 CAP는, 채널이 유휴 상태에 있는지 여부와 상관없이 전송이 허용되는 제1 CAP, 또는 유휴 상태에 있는 채널에서만 전송이 허용되는 제2 CAP를 포함하는, 단말.
  14. 제 13항에 있어서,
    상기 정보가 제2 CAP에 관한 정보를 포함하는 것에 기초하여, 상기 SS/PBCH 블록은, 상기 시간 윈도우 내에서 QCL(Quasi-Co-Located) 관계에 있는 SS/PBCH 블록 후보들 중 일부를 통해 수신되고,
    상기 정보가 제1 CAP에 관한 정보를 포함하는 것에 기초하여, 상기 SS/PBCH 블록은, 상기 시간 윈도우 내에서 SS/PBCH 블록 후보 인덱스가 Q보다 작은 SS/PBCH 블록 후보들을 통해 수신되며,
    Q는 상기 시간 윈도우 내에서 QCL 관계에 있는 SS/PBCH 블록 후보들 간의 간격을 나타내는, 단말.
  15. 단말을 위한 장치에 있어서,
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작은:
    비면허 대역 상에 위치하는 복수의 SS/PBCH(Synchronization Signal/Public Broadcast Channel) 블록 후보 내에서 SS/PBCH 블록을 수신하고,
    상기 SS/PBCH 블록에 기초하여, 시간 동기를 획득하는 동작을 포함하고,
    상기 SS/PBCH 블록의 부반송파 간격(subcarrier spacing, SCS)이 240 kHz로 설정된 것에 기초하여, 상기 복수의 SS/PBCH 블록 후보는, 상기 SS/PBCH 블록의 전송을 위해 설정된 시간 윈도우의 전반(first half) 구간 및 후반 구간(second half) 모두에 위치하는, 장치.
  16. 제 15항에 있어서,
    상기 전반 구간 및 상기 후반 구간은 각각 40개의 슬롯을 포함하고,
    상기 SS/PBCH 블록 후보들이 정의된 연속한 슬롯들은, 상기 전반 구간과 상기 후반 구간 각각의 1)첫번째 슬롯으로부터 연속된 16개의 슬롯 및 2)21번째 슬롯으로부터 연속된 16개의 슬롯을 포함하는, 장치.
  17. 제 15항에 있어서, 상기 동작은,
    상기 복수의 SS/PBCH 블록 후보 중에서 QCL(Quasi-Co-Located) 관계에 있는 SS/PBCH 블록들 사이의 간격 Q에 관한 정보를 수신하고,
    상기 복수의 SS/PBCH 블록 후보 중에서 상기 기지국에 의해 전송되는 SS/PBCH 블록을 지시하기 위한 비트맵을 수신하고,
    상기 Q에 기반하여 결정된 하나 이상의 비트를 제외한 상기 비트맵으로부터, 상기 SS/PBCH 블록의 전송 위치에 관한 정보를 획득하는 동작을 더 포함하고,
    Q는 상기 시간 윈도우에서 정의된 SS/PBCH 블록 후보들의 개수보다 작은, 장치.
  18. 제 15항에 있어서,
    상기 부반송파 간격이 480 kHz인 SS/PBCH 블록 후보들이 정의된 슬롯들은, 상기 시간 윈도우 내에서, 상기 부반송파 간격이 240 kHz인 SS/PBCH 블록 후보들이 정의된 슬롯들에 정렬하여 위치하는, 장치.
  19. 제 15항에 있어서,
    상기 동작은, 상기 기지국에 의해 수행되는 CAP(Channel Access Procedure)에 관한 정보를 수신하는 동작을 더 포함하고,
    상기 CAP는, 채널이 유휴 상태에 있는지 여부와 상관없이 전송이 허용되는 제1 CAP, 또는 유휴 상태에 있는 채널에서만 전송이 허용되는 제2 CAP를 포함하는, 장치.
  20. 제 19항에 있어서,
    상기 정보가 제2 CAP에 관한 정보를 포함하는 것에 기초하여, 상기 SS/PBCH 블록은, 상기 시간 윈도우 내에서 QCL(Quasi-Co-Located) 관계에 있는 SS/PBCH 블록 후보들 중 일부를 통해 수신되고,
    상기 정보가 제1 CAP에 관한 정보를 포함하는 것에 기초하여, 상기 SS/PBCH 블록은, 상기 시간 윈도우 내에서 SS/PBCH 블록 후보 인덱스가 Q보다 작은 SS/PBCH 블록 후보들을 통해 수신되며,
    Q는 상기 시간 윈도우 내에서 QCL 관계에 있는 SS/PBCH 블록 후보들 간의 간격을 나타내는, 장치.
  21. 컴퓨터 판독 가능한 저장 매체에 있어서, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 프로그램을 포함하며, 상기 동작은:
    비면허 대역 상에 위치하는 복수의 SS/PBCH(Synchronization Signal/Public Broadcast Channel) 블록 후보 내에서 SS/PBCH 블록을 수신하고,
    상기 SS/PBCH 블록에 기초하여, 시간 동기를 획득하는 동작을 포함하고,
    상기 SS/PBCH 블록의 부반송파 간격(subcarrier spacing, SCS)이 240 kHz로 설정된 것에 기초하여, 상기 복수의 SS/PBCH 블록 후보는, 상기 SS/PBCH 블록의 전송을 위해 설정된 시간 윈도우의 전반(first half) 구간 및 후반 구간(second half) 모두에 위치하는, 컴퓨터 판독 가능한 저장 매체.
  22. 제 21항에 있어서,
    상기 전반 구간 및 상기 후반 구간은 각각 40개의 슬롯을 포함하고,
    상기 SS/PBCH 블록 후보들이 정의된 연속한 슬롯들은, 상기 전반 구간과 상기 후반 구간 각각의 1)첫번째 슬롯으로부터 연속된 16개의 슬롯 및 2)21번째 슬롯으로부터 연속된 16개의 슬롯을 포함하는, 컴퓨터 판독 가능한 저장 매체.
  23. 제 21항에 있어서, 상기 동작은,
    상기 복수의 SS/PBCH 블록 후보 중에서 QCL(Quasi-Co-Located) 관계에 있는 SS/PBCH 블록들 사이의 간격 Q에 관한 정보를 수신하고,
    상기 복수의 SS/PBCH 블록 후보 중에서 상기 기지국에 의해 전송되는 SS/PBCH 블록을 지시하기 위한 비트맵을 수신하고,
    상기 Q에 기반하여 결정된 하나 이상의 비트를 제외한 상기 비트맵으로부터, 상기 SS/PBCH 블록의 전송 위치에 관한 정보를 획득하는 동작을 더 포함하고,
    Q는 상기 시간 윈도우에서 정의된 SS/PBCH 블록 후보들의 개수보다 작은, 컴퓨터 판독 가능한 저장 매체.
  24. 제 21항에 있어서,
    상기 부반송파 간격이 480 kHz인 SS/PBCH 블록 후보들이 정의된 슬롯들은, 상기 시간 윈도우 내에서, 상기 부반송파 간격이 240 kHz인 SS/PBCH 블록 후보들이 정의된 슬롯들에 정렬하여 위치하는, 컴퓨터 판독 가능한 저장 매체.
  25. 제 21항에 있어서,
    상기 동작은, 상기 기지국에 의해 수행되는 CAP(Channel Access Procedure)에 관한 정보를 수신하는 동작을 더 포함하고,
    상기 CAP는, 채널이 유휴 상태에 있는지 여부와 상관없이 전송이 허용되는 제1 CAP, 또는 유휴 상태에 있는 채널에서만 전송이 허용되는 제2 CAP를 포함하는, 컴퓨터 판독 가능한 저장 매체.
  26. 제 25항에 있어서,
    상기 정보가 제2 CAP에 관한 정보를 포함하는 것에 기초하여, 상기 SS/PBCH 블록은, 상기 시간 윈도우 내에서 QCL(Quasi-Co-Located) 관계에 있는 SS/PBCH 블록 후보들 중 일부를 통해 수신되고,
    상기 정보가 제1 CAP에 관한 정보를 포함하는 것에 기초하여, 상기 SS/PBCH 블록은, 상기 시간 윈도우 내에서 SS/PBCH 블록 후보 인덱스가 Q보다 작은 SS/PBCH 블록 후보들을 통해 수신되며,
    Q는 상기 시간 윈도우 내에서 QCL 관계에 있는 SS/PBCH 블록 후보들 간의 간격을 나타내는, 컴퓨터 판독 가능한 저장 매체.
  27. 비면허 대역을 지원하는 무선 통신 시스템에서 기지국이 하향링크 신호를 전송하는 방법에 있어서,
    SS/PBCH(Synchronization Signal/Public Broadcast Channel) 블록의 부반송파 간격을 설정하는 단계;
    비면허 대역 상에 위치하는 복수의 SS/PBCH 블록 후보 내에서 SS/PBCH 블록을 전송하는 단계를 포함하고,
    상기 SS/PBCH 블록의 부반송파 간격(subcarrier spacing, SCS)이 240 kHz로 설정된 것에 기초하여, 상기 복수의 SS/PBCH 블록 후보는, 상기 SS/PBCH 블록의 전송을 위해 설정된 시간 윈도우의 전반(first half) 구간 및 후반 구간(second half) 모두에 위치하는, 방법.
  28. 비면허 대역을 지원하는 무선 통신 시스템에서 동작하는 기지국에 있어서,
    적어도 하나의 RF(Radio Frequency) 유닛;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작은,
    SS/PBCH(Synchronization Signal/Public Broadcast Channel) 블록의 부반송파 간격을 설정하고,
    비면허 대역 상에 위치하는 복수의 SS/PBCH 블록 후보 내에서 SS/PBCH 블록을 전송하는 동작을 포함하는 동작을 포함하고,
    상기 SS/PBCH 블록의 부반송파 간격(subcarrier spacing, SCS)이 240 kHz로 설정된 것에 기초하여, 상기 복수의 SS/PBCH 블록 후보는, 상기 SS/PBCH 블록의 전송을 위해 설정된 시간 윈도우의 전반(first half) 구간 및 후반 구간(second half) 모두에 위치하는, 기지국.
PCT/KR2021/001900 2020-02-13 2021-02-15 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 WO2021162520A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227030184A KR102565558B1 (ko) 2020-02-13 2021-02-15 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
US17/796,832 US12101276B2 (en) 2020-02-13 2021-02-15 Method and device for transmitting and receiving wireless signal in wireless communication system
US18/094,077 US11917566B2 (en) 2020-02-13 2023-01-06 Method and device for transmitting and receiving wireless signal in wireless communication system

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR20200017688 2020-02-13
KR10-2020-0017688 2020-02-13
KR20200097374 2020-08-04
KR10-2020-0097374 2020-08-04
KR20200133310 2020-10-15
KR10-2020-0133310 2020-11-15
KR20210005608 2021-01-14
KR10-2021-0005608 2021-01-14

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US17/796,832 A-371-Of-International US12101276B2 (en) 2020-02-13 2021-02-15 Method and device for transmitting and receiving wireless signal in wireless communication system
US18/094,077 Continuation US11917566B2 (en) 2020-02-13 2023-01-06 Method and device for transmitting and receiving wireless signal in wireless communication system

Publications (1)

Publication Number Publication Date
WO2021162520A1 true WO2021162520A1 (ko) 2021-08-19

Family

ID=77292560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/001900 WO2021162520A1 (ko) 2020-02-13 2021-02-15 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Country Status (3)

Country Link
US (1) US12101276B2 (ko)
KR (1) KR102565558B1 (ko)
WO (1) WO2021162520A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220263619A1 (en) * 2021-02-17 2022-08-18 Samsung Electronics Co., Ltd. Method and apparatus of pdcch enhancement for higher frequency range

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180136917A (ko) * 2017-06-15 2018-12-26 엘지전자 주식회사 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치
WO2019016987A1 (en) * 2017-07-20 2019-01-24 Nec Corporation SYSTEM AND METHODS FOR USE IN TRANSMITTING AND RECEIVING SYSTEM INFORMATION IN ADVANCED WIRELESS COMMUNICATION
KR20190011699A (ko) * 2017-07-25 2019-02-07 삼성전자주식회사 Nr 비면허 스펙트럼에 대한 ss 블록 시간 위치들 및 ss 버스트 세트 구성을 위한 장치 및 방법
KR101999702B1 (ko) * 2017-11-17 2019-07-12 엘지전자 주식회사 하향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2019194652A1 (ko) * 2018-04-05 2019-10-10 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019017751A1 (ko) * 2017-07-21 2019-01-24 엘지전자 주식회사 무선 통신 시스템에서 채널 상태 정보 참조 신호를 송수신하는 방법 및 이를 위한 장치
US11109448B2 (en) 2018-12-11 2021-08-31 Samsung Electronics Co., Ltd. Method and apparatus for timing configuration of discovery signal and channel
JP6937796B2 (ja) * 2019-06-07 2021-09-22 シャープ株式会社 端末装置、基地局装置、および、通信方法
US20210022096A1 (en) * 2019-10-07 2021-01-21 Prerana Rane Ssb index to prach occasion mapping
US12004237B2 (en) * 2020-09-21 2024-06-04 Samsung Electronics Co., Ltd. Method and apparatus for spatial setting determination during a random access procedure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180136917A (ko) * 2017-06-15 2018-12-26 엘지전자 주식회사 동기 신호 블록을 송수신하는 방법 및 이를 위한 장치
WO2019016987A1 (en) * 2017-07-20 2019-01-24 Nec Corporation SYSTEM AND METHODS FOR USE IN TRANSMITTING AND RECEIVING SYSTEM INFORMATION IN ADVANCED WIRELESS COMMUNICATION
KR20190011699A (ko) * 2017-07-25 2019-02-07 삼성전자주식회사 Nr 비면허 스펙트럼에 대한 ss 블록 시간 위치들 및 ss 버스트 세트 구성을 위한 장치 및 방법
KR101999702B1 (ko) * 2017-11-17 2019-07-12 엘지전자 주식회사 하향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2019194652A1 (ko) * 2018-04-05 2019-10-10 엘지전자 주식회사 비면허 대역을 지원하는 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치

Also Published As

Publication number Publication date
US12101276B2 (en) 2024-09-24
US20240031110A1 (en) 2024-01-25
KR20220131386A (ko) 2022-09-27
KR102565558B1 (ko) 2023-08-11

Similar Documents

Publication Publication Date Title
WO2020167060A1 (ko) 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
WO2020032740A1 (ko) 무선 통신 시스템에서 신호를 송수신하기 위한 방법 및 이를 위한 장치
WO2020171677A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020032726A1 (ko) 무선 통신 시스템에서 통신 장치가 wus 신호를 감지 또는 송신하는 방법 및 장치
WO2020032751A1 (ko) 무선 통신 시스템에서 wus 신호를 전송하는 방법 및 이를 위한 장치
WO2020167048A1 (ko) 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
WO2020145784A1 (ko) 비면허 대역에서 장치의 채널 접속 절차
WO2021091306A1 (ko) 채널 점유 시간 내에서 물리 상향링크 공유 채널을 송수신하는 방법 및 이를 위한 장치
WO2020167051A1 (ko) 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
WO2020032713A1 (ko) 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 단말과 기지국의 동작 방법 및 이를 지원하는 장치
WO2020032739A1 (ko) 협대역 사물 인터넷을 지원하는 무선 통신 시스템에서 단말과 기지국의 동작 방법 및 이를 지원하는 장치
WO2021091300A1 (ko) 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
WO2020167058A1 (ko) 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
WO2020145575A1 (ko) 무선 통신 시스템에서 단말의 빔 실패 보고 방법 및 이를 지원하는 단말 및 기지국
WO2021153826A1 (ko) 반송파 집성을 지원하는 무선 통신 시스템에서 시스템 정보의 송수신 방법 및 그 장치
WO2020060315A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 단말의 임의 접속 절차 방법 및 이를 지원하는 장치들
WO2020184965A1 (ko) 사이드링크를 지원하는 무선통신시스템에서 복수의 안테나 리모트 유닛들을 제어하는 방법 및 이를 위한 장치
WO2022216048A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021206400A1 (ko) 채널 접속 절차를 수행하는 방법 및 이를 위한 장치
WO2021029732A1 (ko) 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
WO2020226406A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2023055179A1 (ko) 무선 통신 시스템에서 랜덤 액세스 절차 수행 방법 및 장치
WO2021206409A1 (ko) 채널 접속 절차를 수행하는 방법 및 이를 위한 장치
WO2021066603A1 (ko) 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
WO2021162520A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754140

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 17796832

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20227030184

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21754140

Country of ref document: EP

Kind code of ref document: A1