WO2021162024A1 - Method for producing wavelength conversion substrate, wavelength conversion substrate, and display - Google Patents

Method for producing wavelength conversion substrate, wavelength conversion substrate, and display Download PDF

Info

Publication number
WO2021162024A1
WO2021162024A1 PCT/JP2021/004890 JP2021004890W WO2021162024A1 WO 2021162024 A1 WO2021162024 A1 WO 2021162024A1 JP 2021004890 W JP2021004890 W JP 2021004890W WO 2021162024 A1 WO2021162024 A1 WO 2021162024A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
light
partition wall
opening
shielding layer
Prior art date
Application number
PCT/JP2021/004890
Other languages
French (fr)
Japanese (ja)
Inventor
谷野貴広
梶野佳範
石塚雅敏
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2021513475A priority Critical patent/JPWO2021162024A1/ja
Priority to KR1020227013999A priority patent/KR20220137867A/en
Priority to CN202180009884.5A priority patent/CN114981690A/en
Publication of WO2021162024A1 publication Critical patent/WO2021162024A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K59/8792Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. black layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/10Apparatus or processes specially adapted to the manufacture of electroluminescent light sources
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer

Definitions

  • the present invention relates to a method for manufacturing a wavelength conversion substrate, a wavelength conversion substrate, and a display.
  • OLED organic light emitting diode
  • LED light emitting diode
  • Patent Document 1 As a method of using an OLED as a light source, a method of using an OLED that emits blue light is known (Patent Document 1).
  • the blue subpixel transmits and scatters the light from the OLED without wavelength conversion, and the green and red subpixels change the blue light from the OLED to green and red, respectively, by the wavelength conversion material.
  • a blue emitting LED is used as in the OLED, and in addition to a method of changing a part of light to red and green with a wavelength conversion material, an ultraviolet emitting LED is used and a wavelength conversion material is used.
  • a method of changing the color to blue, green, or red is known (Patent Document 2).
  • the wavelength conversion material is patterned and arranged in the cells separated by the partition wall on the substrate in which the partition wall is formed with the size corresponding to the OLED or the subpixel of the LED as the light source.
  • a photolithography method and an inkjet method Patent Document 3 are known.
  • the wavelength conversion material is applied to the entire surface, the predetermined position is exposed, and then most of the wavelength conversion material is removed by development. Therefore, the loss of the wavelength conversion material is large, and the process also repeats the exposure and development a plurality of times.
  • the inkjet method is excellent in material efficiency because the wavelength conversion layer can be formed only at a desired position.
  • FIG. 1 shows a schematic diagram showing an example of a method of applying a wavelength conversion paste using a coating head having a plurality of ejection ports by a nozzle coating method.
  • a space (manifold) for storing the paste 5 is provided inside the coating head 4, and compressed air whose pressure is controlled is introduced through a pressure pipe 6 connected to the space while moving relative to the substrate 3.
  • This is a coating method in which the paste 5 is applied by discharging the paste 5 from the discharge port 7.
  • the viscosity of the paste can be higher than that in the inkjet method. Therefore, by designing the paste to have a high viscosity, clogging of the nozzle due to sedimentation of particle components can be suppressed.
  • the paste is applied while being continuously ejected, so that the paste is applied in stripes.
  • the partition shape suitable for the nozzle coating method is a linear shape having a uniform opening width in the direction parallel to the stripe, light leakage to subpixels adjacent to the subpixel in the direction parallel to the stripe is remarkably generated. There was a problem to do. Even in the case of a grid shape, if the partition wall in the direction orthogonal to the stripe (hereinafter referred to as the horizontal partition wall) has a narrow partition wall width, light to subpixels adjacent to the stripe in the direction parallel to the stripe is similar to the stripe shape.
  • an object of the present invention is to provide a wavelength conversion substrate capable of easily forming a wavelength conversion layer and further suppressing light diffusion to adjacent subpixels.
  • the method for manufacturing a wavelength conversion substrate of the present invention has any of the following configurations. That is, A method for manufacturing a wavelength conversion substrate having a substrate, a light-shielding layer, a partition wall, and a wavelength conversion layer, wherein the opening of the partition wall has a stripe shape, and in one stripe of the stripe shape, the light-shielding layer is in the stripe direction.
  • It has a structure in which an opening and a light-shielding portion are repeated, and the aperture ratio of the light-shielding layer in the one stripe is 5 to 70%, and further, in the one stripe, the opening of the light-shielding layer and the light-shielding portion of the light-shielding layer.
  • a method for manufacturing a wavelength conversion substrate which comprises a step of nozzle-coating a wavelength conversion paste so as to have the wavelength conversion layer having the same composition, or A method for manufacturing a wavelength conversion substrate having a substrate, a light-shielding layer, a partition wall, and a wavelength conversion layer, wherein the opening of the partition wall has a striped shape, and in one stripe of the stripe shape, the opening of the partition wall is the stripe. It has a structure in which at least two or more patterns are repeated in a direction, at least one of the repeating patterns has an opening in the light-shielding layer at the opening of the partition wall, and at least one of the repeating patterns has an opening.
  • the light-shielding layer has substantially no opening in the opening of the partition wall, and the light-shielding layer has an opening in the opening of the partition wall and the light-shielding layer has an opening in the opening of the partition wall.
  • the wavelength conversion substrate of the present invention has any of the following configurations. That is, A wavelength conversion substrate having a substrate, a light-shielding layer, a partition wall, and a wavelength conversion layer, the opening of the partition wall having a stripe shape, and in one stripe of the stripe shape, the light-shielding layer has an opening in the stripe direction.
  • the light-shielding layer has an aperture ratio of 5 to 70% in the one stripe, and either the opening of the light-shielding layer or the light-shielding portion of the light-shielding layer in the one stripe.
  • a wavelength conversion substrate having the wavelength conversion layer having the same composition or A wavelength conversion substrate having a substrate, a light-shielding layer, a partition wall, and a wavelength conversion layer, in which the opening of the partition wall is striped, and in one stripe of the stripe shape, the opening of the partition wall is in the stripe direction. It has a structure in which at least two or more patterns are repeated, at least one of the repeating patterns also has an opening in the light-shielding layer at the opening of the partition, and at least one of the repeating patterns has the partition.
  • the light-shielding layer has substantially no opening in the opening of the partition wall, and further, the light-shielding layer has an opening in the opening of the partition wall and the light-shielding layer has an opening in the opening of the partition wall.
  • the display of the present invention has the following configuration. That is, The wavelength conversion substrate and a display having an OLED or an LED as a light source.
  • the aperture ratio of the partition wall is 50 to 95% in the at least one stripe.
  • the thickness H of the partition wall, the thickness T 1 of the light-shielding layer, and the thickness T 2 of the wavelength conversion layer satisfy the following equations (1) and (2).
  • the wavelength conversion layer contains a resin.
  • the porosity of the wavelength conversion layer is preferably 0.01 to 10%.
  • the reflectance of the light-shielding layer is preferably 0.1 to 10%.
  • the wavelength conversion layer contains an inorganic phosphor.
  • the wavelength conversion layer contains quantum dots.
  • the method for manufacturing a wavelength conversion substrate of the present invention can provide a wavelength conversion substrate capable of easily forming a wavelength conversion layer and further suppressing light diffusion to adjacent subpixels.
  • FIG. 5 is a cross-sectional view taken along the line AA'of the wavelength conversion substrate shown in FIG.
  • FIG. 5 is a cross-sectional view taken along the line BB'of the wavelength conversion substrate shown in FIG.
  • It is a top view which shows one aspect of a partition wall.
  • the method for manufacturing a wavelength conversion substrate of the present invention includes a step of nozzle-applying a wavelength conversion paste so as to have a wavelength conversion layer at an opening of a partition wall of a substrate with a partition wall having a substrate, a light-shielding layer, and a partition wall.
  • the substrate has a function as a support in a substrate with a partition wall.
  • the substrate include a glass plate, a resin plate, a resin film, and the like.
  • the material of the glass plate non-alkali glass is preferable.
  • polyester, (meth) acrylic polymer, transparent polyimide, polyether sulfone and the like are preferable.
  • the thickness of the glass plate and the resin plate is preferably 1 mm or less, preferably 0.8 mm or less.
  • the thickness of the resin film is preferably 100 ⁇ m or less.
  • the substrate with partition walls has a light-shielding layer on the substrate.
  • the portion where the light-shielding layer is not formed, which is partitioned by the light-shielding layer is referred to as an opening of the light-shielding layer.
  • the portion where the light-shielding layer is formed is referred to as a light-shielding portion of the light-shielding layer.
  • the light-shielding layer preferably absorbs visible light.
  • the light emitted from the OLED or LED and the light after the light is converted by the wavelength conversion material described later are transmitted through the light-shielding portion of the light-shielding layer, so that the light-emitting point is blurred. Can be suppressed.
  • the light-shielding layer absorbs visible light, it is possible to suppress the reflected light when the display is irradiated with external light, so that the contrast of the appearance of the display is improved. Further, as will be described later, it is possible to suppress light leakage to subpixels adjacent in a direction parallel to the stripe.
  • the LED is an LED that emits ultraviolet light
  • the light-shielding layer of the present invention preferably contains a black pigment.
  • the black pigment is not particularly limited, and for example, carbon black, titanium black, chromium oxide, iron oxide, aniline black, perylene pigment or C.I. I. Examples thereof include a black pigment such as Solvent Black 123, an inorganic black pigment such as a composite oxide of carbon black, titanium, manganese, iron, copper or cobalt coated with a resin, or a combination of an organic pigment and a black pigment.
  • Carbon black, titanium nitride, and titanium oxynitride are preferable because they have high light-shielding properties.
  • the optical density (OD) value of the light-shielding layer of the present invention is preferably 2 or more, and more preferably 3 or more at a wavelength of 550 nm.
  • the substrate with a partition wall has a partition wall on the substrate. Further, in the present invention, on the surface of the substrate on the side having the partition wall, the portion where the partition wall is not formed is referred to as the opening of the partition wall.
  • the opening partitioned by the partition has a striped shape.
  • the striped shape means a shape in which substantially linear openings are continuous in a direction parallel to the straight line direction, or a shape in which the openings are repeated. Since the opening has a striped shape, the wavelength conversion layer can be easily formed by the nozzle coating method.
  • the substantially straight line shape is not limited to a perfect straight line shape, and may be meandering or deviated in a direction orthogonal to the straight line direction within a range that does not intersect the center line of the adjacent striped opening. Further, the substantially linear opening may be continuous or discontinuous with a horizontal partition wall. Further, the opening shape is not particularly limited, and examples thereof include a quadrangle, a circle, and an ellipse. In the present invention, the stripe direction or the direction parallel to the stripe means the direction parallel to the linear direction.
  • the partition wall has a function of preventing light from being transmitted from a certain subpixel to an adjacent subpixel. By having this function, it is possible to suppress color mixing due to light leakage to adjacent sub-pixels.
  • FIG. 2 shows a top view of one aspect of the light-shielding layer
  • FIG. 3 shows a top view of one aspect of the partition wall
  • FIG. 4 shows a top view of one aspect of a substrate with a partition wall in which the partition wall of FIG. 3 is formed on the substrate on which the light-shielding layer of FIG. 2 is formed.
  • FIG. 5 shows a top view of one aspect of the wavelength conversion substrate of the present invention in which a wavelength conversion layer is formed on the substrate with a partition wall shown in FIG.
  • FIGS. 6 and 7 show cross-sectional views of AA'and BB' as an example of the cross-sectional views of the wavelength conversion substrate of FIG. 5 in the direction orthogonal to the stripe direction.
  • a light-shielding layer 8 and a patterned partition wall 1 are provided on the substrate 3, and a wavelength conversion layer 9 is provided in an opening partitioned by the partition wall.
  • the opening of the partition wall has a striped shape, and in one stripe of the striped shape, the light-shielding layer has a structure in which the opening and the light-shielding portion are repeated in the stripe direction, and the light-shielding portion in the one stripe.
  • the aperture ratio of the layer is 5 to 70%.
  • the aperture ratio of the light-shielding layer in one stripe is the area of the portion where the light-shielding portion is not formed in one repeating unit having a structure in which the light-shielding layer repeats the opening and the light-shielding portion in the stripe direction. The ratio divided by the total area of. If the aperture ratio of the light-shielding layer is less than 5%, the brightness of the display may be low. On the other hand, if it is larger than 70%, light leakage to subpixels adjacent in the direction parallel to the stripe may occur remarkably.
  • the aperture ratio of the partition wall is preferably 50 to 95%.
  • the aperture ratio of the partition wall means a ratio obtained by dividing the area of the partition wall forming portion in the display area of the display by the total area of the display area of the display.
  • the aperture ratio is smaller than 50%, when the wavelength conversion paste is applied to the nozzle, the paste may easily run on the top of the partition wall.
  • the aperture ratio is larger than 95%, light may easily leak to pixels adjacent to the pixels in the direction orthogonal to the stripe direction.
  • the opening of the partition wall may be continuous in the direction parallel to the stripe, or may have a horizontal partition wall and may be discontinuous.
  • the horizontal partition wall may suppress the scattering of light in the direction parallel to the stripe.
  • the partition width of the transverse partition is large, a part of the wavelength conversion layer formed by the nozzle coating method may also exist on the transverse partition, so that the opening for the length in the direction parallel to the stripe of the repeating unit.
  • the ratio of the length in the direction parallel to the stripe is preferably 80% or more. More preferably, it is 90% or more.
  • the partition wall preferably has a reflectance of 20 to 90% per 10 ⁇ m thickness at a wavelength of 550 nm. By setting the reflectance to 20% or more, the brightness of the display can be improved by utilizing the reflection on the side surface of the partition wall. On the other hand, the reflectance is preferably 90% or less from the viewpoint of improving the partition wall pattern forming accuracy.
  • the thickness of the partition wall refers to the length of the partition wall in the direction perpendicular to the substrate (height direction).
  • the thickness of the partition wall 1 is represented by reference numeral H.
  • the length of the partition wall in the horizontal direction is the width of the partition wall.
  • the width of the partition wall 1 is represented by reference numeral L.
  • the direction parallel to the stripe is indicated by an upward arrow (the same applies to FIGS. 8, 10 to 13).
  • the thickness of the partition wall is preferably larger than the thickness of the cured product of the wavelength conversion paste when the cured product of the wavelength conversion paste is contained in the cell of the substrate with the partition wall.
  • the thickness of the partition wall 1 is preferably 0.5 ⁇ m or more, and more preferably 5 ⁇ m or more.
  • the thickness of the partition wall is preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, still more preferably 50 ⁇ m or less.
  • the width of the partition wall may be sufficient to improve the brightness by utilizing the light reflection on the side surface of the partition wall and suppress the color mixing of the light emitted from the cured product of the adjacent wavelength conversion paste due to light leakage.
  • the width of the partition wall is preferably 5 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the width of the partition wall opening in the direction orthogonal to the stripe is referred to as the partition wall opening width.
  • the shape of the partition wall has a portion where the opening width of the partition wall is large, a portion where the opening width of the partition wall is small, or a portion where a horizontal partition wall exists, and a portion where the opening width changes.
  • At least one of the above-mentioned repeating patterns of the partition wall also has an opening in the light-shielding layer at the opening of the partition wall, and at least one of the other repeating patterns has a substantially light-shielding layer at the opening of the partition wall. It is essential that there is no opening in the.
  • substantially having no opening means that defects such as pinholes in the light-shielding layer and minute openings in the light-shielding layer at the end of the repeating unit due to misalignment between the partition wall and the light-shielding layer are included. It means that you may have it.
  • the OLED or LED when the OLED or LED is arranged at a location corresponding to the opening of the light-shielding layer and emitted, the light emitted from the OLED or the LED and the light are converted by the wavelength conversion layer described later. Since the light after being light is reflected by the partition wall and concentrated in the place where the opening of the light-shielding layer exists, the probability that the light is taken out from the opening of the light-shielding layer is improved, and the brightness of the display is improved.
  • the light-shielding layers also have openings in the opening of the partition wall in a staggered manner between adjacent stripes.
  • the width of the partition wall in the direction orthogonal to the stripe becomes large, so that color mixing can be effectively suppressed.
  • the light-shielding layer has a structure in which an opening and a light-shielding portion are repeated in the stripe direction of the partition wall, and in the one stripe, both the opening of the light-shielding layer and the light-shielding portion of the light-shielding layer are formed. It is essential to have the wavelength conversion layer having the same composition. Further, in one aspect of the present invention, there is at least one pattern of partition wall opening in which the light-shielding layer has an opening in the partition wall opening, and at least one in which the light-shielding layer does not have an opening in the partition wall opening.
  • the wavelength conversion layer absorbs light in the light-shielding portion of the light-shielding layer or a place where the light-shielding layer does not have an opening, and the light scattered by the wavelength conversion layer is absorbed by the light-shielding layer.
  • the diffusion of light in the direction parallel to the stripe is suppressed, and the light leakage to the subpixels adjacent in the direction parallel to the stripe can be efficiently suppressed.
  • the wavelength conversion layer is formed in the light-shielding portion of the light-shielding layer and the portion having no opening in the light-shielding layer. The effect that the wavelength conversion layer can be easily formed and the light diffusion to the adjacent subpixels can be suppressed can be obtained.
  • the wavelength conversion layer rides on the top of the partition wall, and the light-shielding portion of the light-shielding layer does not have the wavelength conversion layer at the portion where the partition wall is interposed between the light-shielding portion of the light-shielding layer and the wavelength conversion layer. ..
  • the wavelength conversion layer contains a wavelength conversion material.
  • the wavelength conversion material refers to a material having a wavelength conversion property that absorbs an electromagnetic wave and emits an electromagnetic wave having a wavelength different from the wavelength of the absorbed electromagnetic wave.
  • a wavelength conversion substrate having a wavelength conversion material can be patterned and applied to prepare a wavelength conversion substrate, which can be combined with an OLED light source or an LED light source to form a full-color display.
  • the wavelength conversion material it is preferable to use an inorganic phosphor and / or an organic phosphor.
  • a red phosphor that is excited by blue excitation light and emits red fluorescence is placed in a region corresponding to the red subpixel. It is preferable to use it as a wavelength conversion material, and in the region corresponding to the green subpixel, it is preferable to use a green phosphor that is excited by blue excitation light and emits green fluorescence as the wavelength conversion material, and the blue subpixel. It is preferable not to use a wavelength conversion material in the region corresponding to.
  • the wavelength conversion substrate of the present invention can also be used for a display in which a blue LED or an ultraviolet light emitting LED corresponding to each subpixel is used as a backlight.
  • the light emission of each sub-pixel can be turned ON / OFF by driving an OLED or an active matrix of LEDs.
  • Inorganic phosphors emit various colors such as green and red.
  • Examples of the inorganic phosphor include those excited by excitation light having a wavelength of 400 to 500 nm and having a peak in the emission spectrum in the region of 500 to 700 nm, inorganic semiconductor fine particles called quantum dots, and the like.
  • Examples of the shape of the former inorganic phosphor include a spherical shape and a columnar shape.
  • Examples of such inorganic phosphors include YAG-based phosphors, TAG-based phosphors, sialon-based phosphors, Mn 4+ activated fluoride complex phosphors, and the like. Two or more of these may be used.
  • quantum dots are preferable. Since quantum dots have sharper peaks in the emission spectrum than other phosphors, the color reproducibility of the display can be improved.
  • quantum dot material examples include semiconductors of group II-IV, group III-V, group IV-VI, and group IV.
  • examples of these inorganic semiconductors include Si, Ge, Sn, Se, Te, B, C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeS Examples thereof include SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , Al 2 O 3 .
  • the quantum dots may contain a p-type dopant or an n-type dopant. Further, the quantum dots may have a core-shell structure. In the core-shell structure, any suitable functional layer (single layer or multiple layers) may be formed around the shell depending on the purpose, and the shell surface may be surface-treated and / or chemically modified. ..
  • the shape of the quantum dot examples include a spherical shape, a columnar shape, a flaky shape, a plate shape, an amorphous shape, and the like.
  • the average particle size of the quantum dots can be selected according to the desired emission wavelength, and is preferably 1 to 30 nm. When the average particle size of the quantum dots is 1 to 10 nm, the peaks in the emission spectrum can be sharpened in each of blue, green, and red. For example, when the average particle size of the quantum dots is about 2 nm, blue light is emitted, when it is about 3 nm, green light is emitted, and when it is about 6 nm, red light is emitted.
  • the average particle size of the quantum dots is preferably 2 nm or more, preferably 8 nm or less.
  • the average particle size of quantum dots can be measured by a dynamic light scattering method. Examples of the device for measuring the average particle size include a dynamic light scattering photometer DLS-8000 (manufactured by Otsuka Electronics Co., Ltd.).
  • Examples of the organic phosphor include a pyrromethene derivative having a basic skeleton represented by the following structural formula (A) as a phosphor that is excited by blue excitation light and emits red fluorescence, and a green one that is excited by blue excitation light.
  • Examples of the fluorescent substance that emits fluorescence include a pyrromethene derivative having a basic skeleton represented by the following structural formula (B).
  • Other examples include perylene-based derivatives, porphyrin-based derivatives, oxazine-based derivatives, and pyrazine-based derivatives that emit red or green fluorescence depending on the selection of the substituent. Two or more of these may be contained. Among these, a pyrromethene derivative is preferable because of its high quantum yield.
  • the pyrromethene derivative can be obtained, for example, by the method described in JP-A-2011-241160.
  • the organic phosphor is soluble in a solvent, a layer containing a wavelength conversion material having a desired thickness can be easily formed.
  • the wavelength conversion layer of the present invention may contain light-scattering particles. By containing the light-scattering particles, blue light and ultraviolet light are scattered in the wavelength conversion layer, so that the optical path length becomes long, and the light conversion efficiency of the wavelength conversion material can be improved.
  • the light scattering particles are preferably barium sulfate, aluminum oxide, zirconium oxide, zinc oxide, or titanium oxide. Two or more of these may be contained.
  • the refractive index of the light scattering particles at a wavelength of 587.5 nm is preferably 1.60 to 2.70.
  • the refractive index of the light-scattering particles is preferably 1.60 or more, the scattering property of blue light or ultraviolet light in the wavelength conversion layer by the light-scattering particles is improved, and the light conversion efficiency by the wavelength conversion material is likely to be improved. ..
  • the light scattered by the wavelength conversion layer is absorbed by the light-shielding layer, so that the diffusion of light in the direction parallel to the stripe is suppressed, and light leakage to the subpixels adjacent in the direction parallel to the stripe is efficient. Can be suppressed.
  • the refractive index of the light-scattering particles is set to 2.70 or less, excessive scattering by the light-scattering particles is suppressed, and the emitted light after wavelength conversion can be easily taken out of the cell.
  • the refractive index of at least one kind is in the above range.
  • the content of the light scattering particles is preferably 1% by weight or more, more preferably 3% by weight or more, and further preferably 5% by weight or more in the solid content from the viewpoint of further improving the light conversion efficiency.
  • the content of the light-scattering particles is preferably 70% by weight or less, more preferably 60% by weight or less, and 50% by weight or less in the solid content from the viewpoint of suppressing a decrease in luminous efficiency due to concentration quenching of the wavelength conversion material. Is even more preferable.
  • the solid content here means all the components contained in the wavelength conversion paste except for volatile components such as a solvent. The amount of solid content can be determined by heating the wavelength conversion paste at 150 ° C. for 1 hour and measuring the residue obtained by evaporating the volatile components.
  • the wavelength conversion layer is preferably formed by curing the wavelength conversion paste.
  • the wavelength conversion paste is a paste material containing a wavelength conversion material, and can be easily applied to a substrate with a partition wall by a nozzle coating method by appropriately designing the composition.
  • the method of curing the wavelength conversion paste is not particularly limited, but a method of curing a wavelength conversion paste containing a polymerizable compound with heat or light, or a method of volatilizing a solvent from a wavelength conversion paste containing a solvent and curing the solvent. And so on.
  • the wavelength conversion paste may contain a monomer as a polymerizable compound.
  • the monomer in the present invention refers to a compound that polymerizes with an active species generated by the reaction of a polymerization initiator described later.
  • the monomer in the present invention is preferably a compound having an ethylenically unsaturated double bond in the molecule.
  • the monomer preferably has two or more ethylenically unsaturated double bonds in the molecule.
  • the monomer preferably has a (meth) acrylic group.
  • the double bond equivalent of the monomer is preferably 400 g / mol or less from the viewpoint of further improving the sensitivity in pattern processing.
  • Examples of the monomer include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, diethylene glycol dimethacrylate, and triethylene.
  • Glycol dimethacrylate tetraethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, trimethylolpropandiacrylate, trimethylolpropanetriacrylate, trimethylolpropanedimethacrylate, trimethylolpropanetrimethacrylate, 1,3-butanediol diacrylate, 1, 3-Butanediol Dimethacrylate, Neopentyl Glycol Diacrylate, 1,4-Butanediol Diacrylate, 1,4-Butanediol Dimethacrylate, 1,6-Hexanediol Diacrylate, 1,9-Nonanediol Dimethacrylate, 1 , 10-decanediol dimethacrylate, dimethylol-tricyclodecanediacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol
  • the content of the monomer in the wavelength conversion paste is preferably 1% by weight or more, more preferably 10% by weight or more, and 30% by weight or more in the solid content from the viewpoint of increasing the solid content of the wavelength conversion paste. Is even more preferable.
  • the content of the monomer is preferably 80% by weight or less, more preferably 70% by weight or less in the solid content.
  • the wavelength conversion paste may contain a polymerization initiator.
  • the polymerization initiator is reacted by light irradiation or heating, so that the polymerization of the monomer proceeds by the active species generated from the polymerization initiator and the wavelength conversion paste is cured. Can be done.
  • the polymerization initiator is any radical initiator or cation initiator, that is, any one that reacts with light (including ultraviolet rays and electron beams) or heat to generate active species such as radicals and cations. good. Among these, a radical initiator is preferable.
  • the polymerization initiator include 2-methyl- [4- (methylthio) phenyl] -2-morpholinopropane-1-one and 2-dimethylamino-2- (4-methylbenzyl) -1- (4-).
  • ⁇ -Aminoalkylphenone compounds such as morpholin-4-yl-phenyl) -butane-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1; 2,4 , 6-trimethylbenzoylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl) -phosphine oxide, etc.
  • the wavelength conversion paste suppresses coloring due to the polymerization initiator, so that the 2,4,6-trimethylbenzoylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphin oxide, bis (2) , 6-Dimethoxybenzoyl)-(2,4,4-trimethylpentyl) -phosphine oxide and the like, preferably containing an acylphosphine oxide-based polymerization initiator.
  • the content of the polymerization initiator in the wavelength conversion paste is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, based on the solid content, from the viewpoint of efficiently advancing radical curing.
  • the content of the polymerization initiator is preferably 20% by weight or less, more preferably 10% by weight or less in the solid content.
  • the wavelength conversion paste may appropriately contain a polymer, a solvent, a dispersant and the like.
  • the polymer when the wavelength conversion paste contains a polymer, includes, for example, a silicone resin such as polyvinyl acetate, polyvinyl alcohol, ethyl cellulose, methyl cellulose, polyethylene, polymethyl siloxane or polymethyl phenyl siloxane, polystyrene, butadiene / styrene.
  • a silicone resin such as polyvinyl acetate, polyvinyl alcohol, ethyl cellulose, methyl cellulose, polyethylene, polymethyl siloxane or polymethyl phenyl siloxane, polystyrene, butadiene / styrene.
  • Preferred examples include copolymers, polystyrene, polyvinylpyrrolidone, polyamides, high molecular weight polyethers, copolymers of ethylene oxide and propylene oxide, polyacrylamides or acrylic resins.
  • the wavelength conversion paste contains a solvent
  • a solvent for example, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butanol, pentanol, 4-methyl-2-pentanol, 3 -Alcohols such as methyl-2-butanol, 3-methyl-3-methoxy-1-butanol, diacetone alcohol; glycols such as ethylene glycol and propylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol Ethers such as monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethyl ether, diethy
  • the viscosity of the wavelength conversion paste is measured when a rheometer (HAAKE MARS; manufactured by Thermo Fisher Scientific Co., Ltd.) is equipped with a Plate P35 TIL manufactured by the same company and the gap is set to 200 ⁇ m.
  • the viscosity at a shear rate of 1 sec -1 is preferably 1,000 to 500,000 mPa ⁇ s.
  • the viscosity is more preferably 3,000 mPa ⁇ s or more, and further preferably 5,000 mPa ⁇ s or more. Further, by setting the viscosity to 500,000 mPa ⁇ s or less, it becomes easy to stably discharge even when pressurized with low-pressure compressed air.
  • the viscosity is more preferably 400,000 mPa ⁇ s or less, and even more preferably 300,000 mPa ⁇ s or less.
  • the dispersant when the wavelength conversion paste contains a dispersant, the dispersant may be, for example, "Disperbyk” (registered trademark) 106, 108, 110, 180, 190, 2001, 2155, 140, 145 (all, commodities).
  • the name, manufactured by Big Chemie Co., Ltd.) and the like are preferably mentioned.
  • the thickness H of the partition wall, the thickness T 1 of the light-shielding layer, and the thickness T 2 of the wavelength conversion layer preferably satisfy the following equations (1) and (2).
  • H / 100 ⁇ T 1 ⁇ H / 3 (1) H / 2 ⁇ T 2 ⁇ H (2)
  • the light-shielding layer may be thin and the light-shielding property may be deteriorated.
  • T 1 > H / 3 the light-shielding layer is thick, and when the light passes through the opening of the light-shielding layer, the light is absorbed by the side surface of the light-shielding layer, and the brightness may decrease.
  • the thickness of the wavelength conversion layer is thin, so that light absorption and scattering in the wavelength conversion layer are less likely to occur, and light leaks to subpixels adjacent in the direction parallel to the stripe. May be more likely to occur.
  • T 2 > H since the wavelength conversion layer is raised above the partition wall, a gap may be formed when the wavelength conversion substrate is bonded to the OLED substrate or the LED substrate, and light may easily leak to the adjacent cell. ..
  • the wavelength conversion substrate of the present invention is preferably produced by applying a wavelength conversion paste to a substrate with a partition wall by a nozzle coating method and curing the substrate.
  • a paste having the same composition as the wavelength conversion paste is nozzle-coated on the subpixel for blue light emission except that the wavelength conversion layer is not included. ..
  • a light scattering paste containing light scattering particles it is preferable to apply to the nozzle.
  • a light-scattering paste can be easily formed, and the light scattered in the light-scattering layer is absorbed by the light-shielding layer to suppress the diffusion of light in the direction parallel to the stripe, and the direction parallel to the stripe. Light leakage to subpixels adjacent to the can be efficiently suppressed.
  • the display of the present invention has the wavelength conversion substrate and a light source.
  • a light source selected from a blue OLED, a blue LED, and an ultraviolet light emitting LED capable of driving an active matrix is preferable.
  • the display of the present invention will be described with reference to an example of a display having the wavelength conversion substrate of the present invention and a blue OLED.
  • a photosensitive polyimide resin is applied onto a glass substrate having a TFT pattern capable of driving an active matrix, and an insulating film is formed by a photolithography method. After sputtering aluminum as the back electrode layer, patterning is performed by a photolithography method to form a back electrode layer in an opening without an insulating film.
  • Alq3 tris (8-quinolinolato) aluminum
  • dicyanomethylenepyrine, quinacridone, and 4,4'-bis (2) were formed on Alq3 as a light emitting layer.
  • 2-Diphenylvinyl Form a white light emitting layer doped with biphenyl.
  • N, N'-diphenyl-N, N'-bis ( ⁇ -naphthyl) -1,1'-biphenyl-4,4'-diamine is formed as a hole transport layer by a vacuum vapor deposition method.
  • ITO Indium Tin Oxide
  • a display can be manufactured by adhering the OLED thus obtained to face the above-mentioned wavelength conversion substrate with a sealing agent.
  • the wavelength conversion substrate itself of the present invention may have an OLED or an LED.
  • a display can be manufactured by forming a partition wall on an OLED or a substrate having an LED, then forming a wavelength conversion layer, and then forming a light-shielding layer on the partition wall and the wavelength conversion layer.
  • the wavelength conversion substrate of the present invention further has a flattening layer between the partition wall and the light-shielding layer.
  • a partition wall is formed on the substrate having the OLED or LED, a wavelength conversion layer is formed, a flat layer is formed, and then a light-shielding layer is formed on the flat layer. Is preferable because the light-shielding layer is uniformly formed and the contrast of the display is improved.
  • the porosity of the wavelength conversion layer is preferably 0.01 to 10%.
  • it is larger than 10% light scattering in the wavelength conversion layer becomes excessive, it becomes difficult to extract light, and the brightness may decrease.
  • the wavelength conversion substrate itself of the present invention has an OLED or an LED
  • the light-shielding layer permeates into the voids of the wavelength conversion layer, and light absorption may be strengthened. be.
  • the raw materials used to prepare the wavelength conversion paste are as follows.
  • Light-scattering particles AA-1.5 (alumina, average particle size 1.6 ⁇ m, alumina, manufactured by Sumitomo Chemical Co., Ltd.)
  • Wavelength conversion material 1 Lumidot 640 CdSe (red quantum dot material, manufactured by Sigma-Aldrich)
  • Wavelength conversion material 2 Lumidot 530 CdSe (green quantum dot material, manufactured by Sigma-Aldrich)
  • Photopolymerization Initiator "Irgacure” (registered trademark) OXE01 (manufactured by BASF Japan Ltd.)
  • Monomer NK-9PG (polypropylene glycol # 400 dimethacrylate, which is a bifunctional methacrylate) (manufactured by Shin Nakamura Chemical Industry Co., Ltd.)
  • the mixture was filtered through an SHP-400 filter (manufactured by Loki Techno Co., Ltd.) while applying a pressure of 100 to 400 kPa with air to obtain a wavelength conversion paste for red subpixels.
  • a wavelength conversion paste for green subpixels was obtained in the same manner except that the wavelength conversion material 1 was replaced with the wavelength conversion material 2.
  • a light scattering paste for blue subpixels was obtained in the same manner except that the wavelength conversion material 1 was not added.
  • a pre-dispersion solution was supplied to an Ultra Apex Mill (manufactured by Kotobuki Kogyo) equipped with a centrifuge separator filled with 75% of 0.05 mm ⁇ zirconia beads, and the mixture was dispersed at a rotation speed of 8 m / s for 3 hours to achieve a solid content concentration of 25.
  • a black pigment dispersion having a mass% and a colorant / resin (mass ratio) 80/20 was obtained.
  • the solid content concentration of the polysiloxane solution was determined by the following method. 1.5 g of the polysiloxane solution was weighed in an aluminum cup and heated at 250 ° C. for 30 minutes using a hot plate to evaporate the liquid content. The weight of the solid content remaining in the aluminum cup after heating was weighed, and the solid content concentration of the polysiloxane solution was determined from the ratio to the weight before heating.
  • the weight average molecular weight of polysiloxane was determined by the following method. Using a GPC analyzer (HLC-8220; manufactured by Toso Co., Ltd.) and tetrahydrofuran as a fluidized bed, GPC analysis was performed based on JIS K 7252-3 (established on March 20, 2008), and the polystyrene-equivalent weight average was obtained. The molecular weight was measured.
  • the content ratio of each repeating unit in the polysiloxane was determined by the following method. A polysiloxane solution is injected into an NMR sample tube manufactured by "Teflon" (registered trademark) with a diameter of 10 mm, and 29 Si-NMR measurement is performed. The content ratio of each repeating unit was calculated from the ratio of the integrated values of. 29 Si-NMR measurement conditions are shown below.
  • a resin composition for a light-shielding layer is applied on a 10 cm square non-alkali glass substrate (manufactured by AGC Technoglass Co., Ltd., thickness 0.7 mm) with a spin coater so that the film thickness after curing is 1.5 ⁇ m. , 90 ° C. for 10 minutes.
  • a mask aligner PEM-6M manufactured by Union Optical Co., Ltd.
  • ultraviolet rays are emitted to 100 mJ through a photomask corresponding to the light-shielding layer shapes of Examples 1 to 5 and Comparative Examples 1 to 3 described later. Exposure was performed with an exposure amount of / cm 2.
  • a patterned substrate was obtained by developing with an alkaline developer of a 0.5% by mass aqueous solution of tetramethylammonium hydroxide and then washing with pure water.
  • the obtained patterning substrate is held in a hot air oven at 230 ° C. for 30 minutes and cured to have a repeating structure in the shape of the light-shielding layer shape schematic diagram (FIGS. 2, 9, or 14) described in Examples or Comparative Examples.
  • the light-shielding layer having the unit cell of (indicated by a square dotted line in the figure) formed a light-shielding layer in which a pattern was formed in a range of 7 cm square.
  • the resin composition for partition walls was spin-coated on the substrate on which the light-shielding layer was formed, and dried using a hot plate (SCW-636, manufactured by SCREEN Semiconductor Solutions Co., Ltd.) at a temperature of 90 ° C. for 2 minutes.
  • a dry film was prepared.
  • the prepared dry film was formed into a partition shape of Examples 1 to 5 and Comparative Examples 1 to 3 described later by using a parallel light mask aligner (PLA-501F, manufactured by Canon Inc.) and using an ultrahigh pressure mercury lamp as a light source.
  • the corresponding photomasks were aligned with respect to the position of the light-shielding layer and then exposed at an exposure of 200 mJ / cm 2 (i-line). Then, using an automatic developing apparatus (AD-2000, manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed with a 0.045 wt% potassium hydroxide aqueous solution for 100 seconds, and then rinsing was performed with water for 30 seconds. Further, using an oven (IHPS-222, manufactured by ESPEC CORP.), It is heated in air at a temperature of 230 ° C. for 30 minutes, and has a thickness of 22 ⁇ m on a glass substrate.
  • AD-2000 automatic developing apparatus
  • IHPS-222 manufactured by ESPEC CORP.
  • the coating head one having 51 discharge ports having a discharge port diameter of 50 ⁇ m and a discharge port length of 130 ⁇ m arranged at a pitch of 300 ⁇ m in the longitudinal direction of the coating head was used.
  • a coating device a multi-lab coater (manufactured by Toray Engineering Co., Ltd.) was used to align the position so that the discharge port at the left end of the nozzle comes to the stripe portion of about 2.75 cm from the left end of the partition pattern, and further.
  • a pressure of 500 to 1,500 kPa is applied to the coating head by air, and the traveling speed with respect to the substrate is changed within the range of 20 to 200 mm / s to change the blue sub.
  • the light scattering paste for blue subpixels was filled by applying a nozzle to the substrate with a partition while discharging the light scattering paste for pixels. Then, it was dried on a hot plate at 100 ° C. for 10 minutes, and further exposed to an exposure amount of 200 mJ / cm 2 (i-line) with an ultra-high pressure mercury lamp in a nitrogen atmosphere to cure.
  • the paste in the coating head is replaced with the wavelength conversion paste for green subpixels, aligned with the partition substrate at the same position as above, and then the coating head position is shifted by +100 ⁇ m in the direction orthogonal to the stripe of the partition wall and coated in the same manner. It was dried, exposed and cured. Furthermore, the paste in the coating head is replaced with the wavelength conversion paste for red subpixels, aligned with the substrate with partition at the same position as when the light scattering paste for blue subpixels was applied, and then +200 ⁇ m in the direction orthogonal to the stripes of the partition.
  • each wavelength conversion layer is 20 ⁇ m at the center of the unit cell for the partition-walled substrate having the shapes shown in FIGS. 3, 8, 10 to 12, and the partition wall-shaped substrate having the shape shown in FIG.
  • the pressure and the traveling speed at the time of coating were adjusted so as to be 20 ⁇ m at the central portion of the opening of the partition wall in the orthogonal direction.
  • a wavelength conversion paste and a light scattering paste were applied and cured to the substrate with a partition wall of Comparative Example 3 by the following method to prepare a wavelength conversion substrate.
  • ML Dispenser
  • a stage SHOT mini (registered trademark) 200SX-SS, manufactured by Musashi Engineering Co., Ltd.
  • a nozzle SHN-0.2N, manufactured by Musashi Engineering Co., Ltd.
  • -5000XII manufactured by Musashi Engineering Co., Ltd. was used.
  • a light scattering paste for blue subpixels was applied to a portion of the opening of the partition wall where the light-shielding layer also had an opening by dropping the light scattering paste for blue subpixels through a nozzle.
  • a light scattering paste for blue subpixels was applied. Then, it was dried on a hot plate at 100 ° C. for 10 minutes, and further exposed to an exposure amount of 200 mJ / cm 2 (i-line) with an ultra-high pressure mercury lamp in a nitrogen atmosphere to cure.
  • the paste of the dispenser is replaced with the wavelength conversion paste for green subpixels, and after aligning with the substrate with the partition wall at the above-mentioned first applied portion, the portion of +100 ⁇ m in the direction orthogonal to the stripe of the partition partition, and from that portion, Apply in the same way to a total of 4 locations, -300 ⁇ m and +300 ⁇ m in the direction orthogonal to the partition stripes, and -300 ⁇ m and +300 ⁇ m in the direction parallel to the partition stripes, and dry and expose. It was cured.
  • the paste of the dispenser is replaced with the wavelength conversion paste for red subpixels, and after aligning with the substrate with the partition wall at the first applied portion, the partition wall is formed at +200 ⁇ m in the direction orthogonal to the stripe of the partition partition and from that location.
  • a wavelength conversion substrate in which subpixels of three colors of blue, green, and red were painted in a range of 5 pixels was produced.
  • the discharge amount was adjusted so that the thickness of each wavelength conversion layer was 20 ⁇ m at the center of the unit cell.
  • a photomask having one circular opening with a diameter of 30 ⁇ m formed is placed on the blue light source, and a light-shielding layer is also opened at the opening of the partition wall on the photomask.
  • the wavelength conversion substrate was arranged so that the surface on which the partition wall was formed was on the photomask side so that the center of the portion having the above was overlapped with the center of the hole of the photomask. While irradiating with blue light, the two-dimensional spectral radiance was measured from the substrate surface side on which the partition wall was not formed using a two-dimensional spectral radiance meter (SR-5000M, manufactured by Topcon Techno House Co., Ltd.).
  • the brightness evaluation standard is A when the relative value of the brightness is 95 or more and A when the relative value of the brightness is 95 or more and less than 95 when the blue light brightness at the center of the unit cell on the hole of the photomask of Example 1 is set to 100.
  • the light from the blue light source is passed through the photomask of the partition wall on which the light scattering layer for the blue subpixel near the center of the substrate is formed, as in the case of the evaluation of the luminance.
  • the light-shielding layer was also irradiated to the center of the portion having the opening, and the two-dimensional spectral radiance was measured using SR-5000M. Light diffusion in the longitudinal direction, i.e., in the direction parallel to the stripes, was evaluated.
  • the brightness of the blue light at the center of the opening of the light-shielding layer on the hole of the photomask is set to 100
  • the brightness of the opening of the light-shielding layer on the lower side in the direction parallel to the stripe is measured to diffuse the light in the vertical direction.
  • the evaluation criteria were A when no light emission was observed below the lower limit of detection, C when the relative value of brightness was less than 1, and E when it was 1 or more.
  • E since the center of the sub-pixels adjacent in the direction parallel to the stripe emits light with a certain brightness or more, the light diffusion is large and unsuitable.
  • the light from the blue light source is irradiated to the center of the unit cell in which the wavelength conversion layer for the green subpixel is formed through the photomask, as in the case of the evaluation of the brightness.
  • the two-dimensional spectral radiance was measured using SR-5000M.
  • the relative value of the red light brightness in the adjacent red subpixel wavelength conversion layer was measured when the green light brightness at the center of the unit cell on the hole of the photomask was set to 100.
  • the evaluation criteria for color mixing were A when the red light brightness was not observed below the detection limit, C when the red light brightness was less than 1, and D when the red light brightness was 1 or more.
  • Comparative Example 3 in which the light-shielding layer does not have an opening in the opening of the partition wall and does not have a wavelength conversion layer is unsuitable because the vertical light diffusion is remarkable.
  • a wavelength conversion substrate capable of easily forming a wavelength conversion layer and further suppressing light diffusion to adjacent subpixels, which can be usefully used for a wavelength conversion type display.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

A method for producing a wavelength conversion substrate having a substrate, a light shielding layer, a partition wall, and a wavelength conversion layer, wherein openings in the partition wall have a striped shape, the light shielding layer has a structure in which the openings and light shielding sections alternate repeatedly in the stripe direction in one of the stripes of the striped shape, the opening ratio of the light shielding layer in the one stripe is 5-70%, and said method for producing a wavelength conversion substrate includes a step in which a wavelength conversion paste is applied by nozzle so as to obtain a wavelength conversion layer having the same composition in the openings in the light shielding layer and in the light shielding sections of the light shielding layer in the one stripe. The present invention provides: a wavelength conversion substrate that makes it possible to easily form a wavelength conversion layer and in which it possible to suppress the diffusion of light to adjacent subpixels; a display using the wavelength conversion substrate; and a method for producing the wavelength conversion substrate.

Description

波長変換基板の製造方法、波長変換基板、およびディスプレイWavelength conversion board manufacturing method, wavelength conversion board, and display
 本発明は、波長変換基板の製造方法、波長変換基板、およびディスプレイに関する。 The present invention relates to a method for manufacturing a wavelength conversion substrate, a wavelength conversion substrate, and a display.
 近年、スマートフォンやタブレットなどの情報端末機器の発展や、テレビをはじめとするフラットパネルディスプレイの高精細化に伴い、ディスプレイの高性能化の要求は更に高まっている。中でも、高性能のディスプレイとして、波長変換型の有機発光ダイオード(OLED)ディスプレイ、および発光ダイオード(LED)ディスプレイが注目されている。これらのディスプレイは、光源としてアクティブマトリクス駆動されるOLEDやLEDを用い、その光の少なくとも一部を波長変換材料により変化させることでフルカラー表示させる方式のディスプレイであり、コントラストや色再現性に優れる。 In recent years, with the development of information terminal devices such as smartphones and tablets and the high definition of flat panel displays such as televisions, the demand for higher performance of displays has further increased. Among them, wavelength conversion type organic light emitting diode (OLED) displays and light emitting diode (LED) displays are attracting attention as high-performance displays. These displays use OLEDs or LEDs driven by an active matrix as a light source, and display in full color by changing at least a part of the light with a wavelength conversion material, and are excellent in contrast and color reproducibility.
 光源にOLEDを用いる方法としては、青色発光のOLEDを用いる方法が知られている(特許文献1)。この場合、青色のサブピクセルではOLEDからの光を波長変換することなく透過・散乱させ、緑色、赤色のサブピクセルでは、波長変換材料によりOLEDからの青色光をそれぞれ緑、赤に変化させる。 As a method of using an OLED as a light source, a method of using an OLED that emits blue light is known (Patent Document 1). In this case, the blue subpixel transmits and scatters the light from the OLED without wavelength conversion, and the green and red subpixels change the blue light from the OLED to green and red, respectively, by the wavelength conversion material.
 光源にLEDを用いる方法としては、OLEDと同様に青色発光のLEDを用い、一部の光を波長変換材料で赤、緑に変色させる方式に加え、紫外線発光のLEDを用い、波長変換材料で青、緑、赤に変色させる方式が知られている(特許文献2)。 As a method of using an LED as a light source, a blue emitting LED is used as in the OLED, and in addition to a method of changing a part of light to red and green with a wavelength conversion material, an ultraviolet emitting LED is used and a wavelength conversion material is used. A method of changing the color to blue, green, or red is known (Patent Document 2).
 これらの波長変換型のディスプレイには、光源であるOLEDやLEDのサブピクセルと対応するサイズで隔壁が形成された基板の、隔壁で区切られたセル内に、波長変換材料をパターン化して配置する必要がある。波長変換材料のパターン化方法としては、フォトリソグラフィ法、およびインクジェット法(特許文献3)が知られている。 In these wavelength conversion type displays, the wavelength conversion material is patterned and arranged in the cells separated by the partition wall on the substrate in which the partition wall is formed with the size corresponding to the OLED or the subpixel of the LED as the light source. There is a need. As a method for patterning a wavelength conversion material, a photolithography method and an inkjet method (Patent Document 3) are known.
特表2006-501617号Special Table 2006-501617 特表2016-523450号Special table 2016-523450 国際公開第2018/123103号International Publication No. 2018/123103
 しかしながら、フォトリソグラフィ法では、波長変換材料を全面に塗布し、所定位置を露光した後、大半を現像により除去することから、波長変換材料のロスが大きく、また工程も露光・現像を複数回繰り返す必要があり複雑である課題があった。また、インクジェット法は、所望の位置のみに波長変換層を形成できることから材料効率に優れるが、インクジェットで波長変換材料を含むインクを塗布するには、インクの粘度を低く設計する必要があるため、インク中で波長変換材料などの粒子成分が沈降し、インクジェットノズルが詰まりやすくなる課題があった。 However, in the photolithography method, the wavelength conversion material is applied to the entire surface, the predetermined position is exposed, and then most of the wavelength conversion material is removed by development. Therefore, the loss of the wavelength conversion material is large, and the process also repeats the exposure and development a plurality of times. There were challenges that were necessary and complicated. In addition, the inkjet method is excellent in material efficiency because the wavelength conversion layer can be formed only at a desired position. However, in order to apply an ink containing a wavelength conversion material by inkjet, it is necessary to design the ink to have a low viscosity. There is a problem that particle components such as a wavelength conversion material settle in the ink and the inkjet nozzle is easily clogged.
 一方、ペーストの塗布方法として、塗布ヘッドの吐出口からペーストを連続的に吐出させながら、基板に対し塗布ヘッドの位置を相対的に移動することで塗布するノズル塗布法が知られている。ノズル塗布法により、複数の吐出口を有する塗布ヘッドを用いて波長変換ペーストを塗布する方法の一例を示した模式図を図1に示す。塗布ヘッド4の内部にペースト5を貯留する空間(マニホールド)を持ち、基板3に対向し相対的に移動しながら、その空間に接続された加圧配管6を通して圧力を制御された圧縮空気を導入することで吐出口7からペースト5を吐出することで塗布する塗布方法である。ノズル塗布法では、ペーストの粘度はインクジェット法に比べて高粘度まで対応できることから、粘度を高く設計することにより粒子成分の沈降によるノズルの詰まりを抑制できる。 On the other hand, as a paste coating method, a nozzle coating method is known in which the paste is continuously discharged from the discharge port of the coating head and the position of the coating head is moved relative to the substrate. FIG. 1 shows a schematic diagram showing an example of a method of applying a wavelength conversion paste using a coating head having a plurality of ejection ports by a nozzle coating method. A space (manifold) for storing the paste 5 is provided inside the coating head 4, and compressed air whose pressure is controlled is introduced through a pressure pipe 6 connected to the space while moving relative to the substrate 3. This is a coating method in which the paste 5 is applied by discharging the paste 5 from the discharge port 7. In the nozzle coating method, the viscosity of the paste can be higher than that in the inkjet method. Therefore, by designing the paste to have a high viscosity, clogging of the nozzle due to sedimentation of particle components can be suppressed.
 しかしながら、ノズル塗布法ではペーストを連続的に吐出しながら塗布するためストライプ状に塗布することになる。ここで、ノズル塗布法に適した隔壁形状として、ストライプに平行な方向に均一な開口幅の直線形状とした場合には、ストライプに平行な方向に隣接するサブピクセルへの光漏れが顕著に発生する課題があった。また、格子形状とした場合にも、ストライプに直交する方向の隔壁(以後、横隔壁という)の隔壁幅が細い場合にはストライプ形状と同様にストライプに平行な方向に隣接するサブピクセルへの光漏れが発生し、太い場合には該隔壁上にペーストが乗り上げる課題があった。また、上記のいずれも、ストライプに平行な方向の隔壁の隔壁幅が細い場合は、ストライプに直交する方向に隣接する開口のサブピクセルに光が漏れて混色する課題があった。 However, in the nozzle coating method, the paste is applied while being continuously ejected, so that the paste is applied in stripes. Here, when the partition shape suitable for the nozzle coating method is a linear shape having a uniform opening width in the direction parallel to the stripe, light leakage to subpixels adjacent to the subpixel in the direction parallel to the stripe is remarkably generated. There was a problem to do. Even in the case of a grid shape, if the partition wall in the direction orthogonal to the stripe (hereinafter referred to as the horizontal partition wall) has a narrow partition wall width, light to subpixels adjacent to the stripe in the direction parallel to the stripe is similar to the stripe shape. Leakage occurred, and when it was thick, there was a problem that the paste ran on the partition wall. Further, in any of the above, when the partition wall width of the partition wall in the direction parallel to the stripe is narrow, there is a problem that light leaks to the subpixels of the openings adjacent in the direction orthogonal to the stripe and the colors are mixed.
 そこで、本発明は、波長変換層を容易に形成でき、さらに隣接サブピクセルへの光拡散を抑制できる波長変換基板を提供することを課題とする。 Therefore, an object of the present invention is to provide a wavelength conversion substrate capable of easily forming a wavelength conversion layer and further suppressing light diffusion to adjacent subpixels.
 上記課題を解決するため、本発明の波長変換基板の製造方法は次のいずれかの構成を有する。すなわち、
 基板、遮光層、隔壁、および波長変換層を有する波長変換基板の製造方法であって、該隔壁の開口部がストライプ形状となり、該ストライプ形状の1つのストライプにおいて、該遮光層が該ストライプ方向に開口部と遮光部を繰り返す構造を有し、該1つのストライプにおける該遮光層の開口率が5~70%であり、さらに該1つのストライプにおいて該遮光層の開口部と該遮光層の遮光部のいずれにも、同一組成の該波長変換層を有するように波長変換ペーストをノズル塗布する工程を有する波長変換基板の製造方法、または、
 基板、遮光層、隔壁、および波長変換層を有する波長変換基板の製造方法であって、該隔壁の開口部がストライプ形状となり、該ストライプ形状の1つのストライプにおいて、該隔壁の開口部が該ストライプ方向に少なくとも2種以上のパターンを繰り返す構造を有し、該繰り返しパターンのうち少なくとも1種は該隔壁の開口部において該遮光層も開口部を有し、また該繰り返しパターンのうち少なくとも1種は該隔壁の開口部において該遮光層は実質的に開口部を有さず、さらに該隔壁の開口部において該遮光層が開口部を有する箇所と、該隔壁の開口部において該遮光層が開口部を有しない箇所のいずれにも、同一組成の該波長変換層を有するように波長変換基板の該開口部に波長変換ペーストをノズル塗布する工程を有する波長変換基板の製造方法、である。
In order to solve the above problems, the method for manufacturing a wavelength conversion substrate of the present invention has any of the following configurations. That is,
A method for manufacturing a wavelength conversion substrate having a substrate, a light-shielding layer, a partition wall, and a wavelength conversion layer, wherein the opening of the partition wall has a stripe shape, and in one stripe of the stripe shape, the light-shielding layer is in the stripe direction. It has a structure in which an opening and a light-shielding portion are repeated, and the aperture ratio of the light-shielding layer in the one stripe is 5 to 70%, and further, in the one stripe, the opening of the light-shielding layer and the light-shielding portion of the light-shielding layer. A method for manufacturing a wavelength conversion substrate, which comprises a step of nozzle-coating a wavelength conversion paste so as to have the wavelength conversion layer having the same composition, or
A method for manufacturing a wavelength conversion substrate having a substrate, a light-shielding layer, a partition wall, and a wavelength conversion layer, wherein the opening of the partition wall has a striped shape, and in one stripe of the stripe shape, the opening of the partition wall is the stripe. It has a structure in which at least two or more patterns are repeated in a direction, at least one of the repeating patterns has an opening in the light-shielding layer at the opening of the partition wall, and at least one of the repeating patterns has an opening. The light-shielding layer has substantially no opening in the opening of the partition wall, and the light-shielding layer has an opening in the opening of the partition wall and the light-shielding layer has an opening in the opening of the partition wall. This is a method for manufacturing a wavelength conversion substrate, which comprises a step of applying a wavelength conversion paste to the opening of the wavelength conversion substrate so as to have the wavelength conversion layer having the same composition in any of the portions having the same composition.
 本発明の波長変換基板は次のいずれかの構成を有する。すなわち、
 基板、遮光層、隔壁、および波長変換層を有する波長変換基板であって、該隔壁の開口部がストライプ形状であり、該ストライプ形状の1つのストライプにおいて、該遮光層が該ストライプ方向に開口部と遮光部を繰り返す構造を有し、該1つのストライプにおける該遮光層の開口率が5~70%であり、さらに該1つのストライプにおいて該遮光層の開口部と該遮光層の遮光部のいずれにも、同一組成の該波長変換層を有する波長変換基板、または、
 基板、遮光層、隔壁、および波長変換層を有する波長変換基板であって、該隔壁の開口部がストライプ形状であり、該ストライプ形状の1つのストライプにおいて、該隔壁の開口部が該ストライプ方向に少なくとも2種以上のパターンを繰り返す構造を有し、該繰り返しパターンのうち少なくとも1種は該隔壁の開口部において該遮光層も開口部を有し、また該繰り返しパターンのうち少なくとも1種は該隔壁の開口部において該遮光層は実質的に開口部を有さず、さらに該隔壁の開口部において該遮光層が開口部を有する箇所と、該隔壁の開口部において該遮光層が開口部を有しない箇所のいずれにも、同一組成の該波長変換層を有する波長変換基板、である。
The wavelength conversion substrate of the present invention has any of the following configurations. That is,
A wavelength conversion substrate having a substrate, a light-shielding layer, a partition wall, and a wavelength conversion layer, the opening of the partition wall having a stripe shape, and in one stripe of the stripe shape, the light-shielding layer has an opening in the stripe direction. The light-shielding layer has an aperture ratio of 5 to 70% in the one stripe, and either the opening of the light-shielding layer or the light-shielding portion of the light-shielding layer in the one stripe. Also, a wavelength conversion substrate having the wavelength conversion layer having the same composition, or
A wavelength conversion substrate having a substrate, a light-shielding layer, a partition wall, and a wavelength conversion layer, in which the opening of the partition wall is striped, and in one stripe of the stripe shape, the opening of the partition wall is in the stripe direction. It has a structure in which at least two or more patterns are repeated, at least one of the repeating patterns also has an opening in the light-shielding layer at the opening of the partition, and at least one of the repeating patterns has the partition. The light-shielding layer has substantially no opening in the opening of the partition wall, and further, the light-shielding layer has an opening in the opening of the partition wall and the light-shielding layer has an opening in the opening of the partition wall. A wavelength conversion substrate having the wavelength conversion layer having the same composition in any of the places where the wavelength is not formed.
 本発明のディスプレイは次の構成を有する。すなわち、
上記波長変換基板と、OLEDまたはLEDを光源として有するディスプレイ、である。
The display of the present invention has the following configuration. That is,
The wavelength conversion substrate and a display having an OLED or an LED as a light source.
 本発明の波長変換基板の製造方法は、前記隔壁の開口率が、前記少なくとも1つのストライプにおいて50~95%であることが好ましい。 In the method for manufacturing a wavelength conversion substrate of the present invention, it is preferable that the aperture ratio of the partition wall is 50 to 95% in the at least one stripe.
 本発明の波長変換基板の製造方法は、前記隔壁の厚みH、前記遮光層の厚みT、および前記波長変換層の厚みTが下式(1)および(2)を満たすことが好ましい。 In the method for manufacturing a wavelength conversion substrate of the present invention, it is preferable that the thickness H of the partition wall, the thickness T 1 of the light-shielding layer, and the thickness T 2 of the wavelength conversion layer satisfy the following equations (1) and (2).
   H/100≦T≦H/3  (1)
   H/2≦T≦H  (2)
 本発明の波長変換基板の製造方法は、前記隔壁と前記遮光層の間に、さらに平坦化層を有することが好ましい。
H / 100 ≤ T 1 ≤ H / 3 (1)
H / 2 ≤ T 2 ≤ H (2)
In the method for manufacturing a wavelength conversion substrate of the present invention, it is preferable to further have a flattening layer between the partition wall and the light-shielding layer.
 本発明の波長変換基板の製造方法は、前記波長変換層が、樹脂を含有することが好ましい。 In the method for manufacturing a wavelength conversion substrate of the present invention, it is preferable that the wavelength conversion layer contains a resin.
 本発明の波長変換基板の製造方法は、前記波長変換層の空隙率が0.01~10%であることが好ましい。 In the method for manufacturing a wavelength conversion substrate of the present invention, the porosity of the wavelength conversion layer is preferably 0.01 to 10%.
 本発明の波長変換基板の製造方法は、前記遮光層の反射率が0.1~10%であることが好ましい。 In the method for manufacturing a wavelength conversion substrate of the present invention, the reflectance of the light-shielding layer is preferably 0.1 to 10%.
 本発明の波長変換基板の製造方法は、前記波長変換層が、無機蛍光体を含有することが好ましい。 In the method for manufacturing a wavelength conversion substrate of the present invention, it is preferable that the wavelength conversion layer contains an inorganic phosphor.
 本発明の波長変換基板の製造方法は、前記波長変換層が、量子ドットを含有することが好ましい。 In the method for manufacturing a wavelength conversion substrate of the present invention, it is preferable that the wavelength conversion layer contains quantum dots.
 本発明の波長変換基板の製造方法では、波長変換層を容易に形成でき、さらに隣接サブピクセルへの光拡散を抑制できる波長変換基板を提供できる。 The method for manufacturing a wavelength conversion substrate of the present invention can provide a wavelength conversion substrate capable of easily forming a wavelength conversion layer and further suppressing light diffusion to adjacent subpixels.
ノズル塗布法によるペースト塗布方法を示した模式図である。It is a schematic diagram which showed the paste application method by the nozzle application method. 遮光層の一態様を示す上面図である。It is a top view which shows one aspect of a light-shielding layer. 隔壁の一態様を示す上面図である。It is a top view which shows one aspect of a partition wall. 隔壁付き基板の一態様を示す上面図である。It is a top view which shows one aspect of the substrate with a partition wall. 図4に示した隔壁付き基板に波長変換層を形成した、本発明の波長変換基板の一態様を示す上面図である。It is a top view which shows one aspect of the wavelength conversion substrate of this invention which formed the wavelength conversion layer on the substrate with a partition wall shown in FIG. 図5に示した波長変換基板のA-A’における断面図である。FIG. 5 is a cross-sectional view taken along the line AA'of the wavelength conversion substrate shown in FIG. 図5に示した波長変換基板のB-B’における断面図である。FIG. 5 is a cross-sectional view taken along the line BB'of the wavelength conversion substrate shown in FIG. 隔壁の一態様を示す上面図である。It is a top view which shows one aspect of a partition wall. 遮光層の一態様を示す上面図である。It is a top view which shows one aspect of a light-shielding layer. 隔壁の一態様を示す上面図である。It is a top view which shows one aspect of a partition wall. 隔壁の一態様を示す上面図である。It is a top view which shows one aspect of a partition wall. 隔壁の一態様を示す上面図である。It is a top view which shows one aspect of a partition wall. 隔壁の一態様を示す上面図である。It is a top view which shows one aspect of a partition wall. 遮光層の一態様を示す上面図である。It is a top view which shows one aspect of a light-shielding layer.
 本発明の波長変換基板の製造方法は、基板、遮光層、隔壁を有する隔壁付き基板の隔壁の開口部に波長変換層を有するように波長変換ペーストをノズル塗布する工程を有する。 The method for manufacturing a wavelength conversion substrate of the present invention includes a step of nozzle-applying a wavelength conversion paste so as to have a wavelength conversion layer at an opening of a partition wall of a substrate with a partition wall having a substrate, a light-shielding layer, and a partition wall.
 本発明において、基板は、隔壁付き基板における支持体としての機能を有する。基板としては、例えば、ガラス板、樹脂板、樹脂フイルムなどが挙げられる。ガラス板の材質としては、無アルカリガラスが好ましい。樹脂板および樹脂フイルムの材質としては、ポリエステル、(メタ)アクリルポリマ、透明ポリイミド、ポリエーテルスルフォン等が好ましい。ガラス板および樹脂板の厚みは、1mm以下が好ましく、0.8mm以下が好ましい。樹脂フイルムの厚みは、100μm以下が好ましい。 In the present invention, the substrate has a function as a support in a substrate with a partition wall. Examples of the substrate include a glass plate, a resin plate, a resin film, and the like. As the material of the glass plate, non-alkali glass is preferable. As the material of the resin plate and the resin film, polyester, (meth) acrylic polymer, transparent polyimide, polyether sulfone and the like are preferable. The thickness of the glass plate and the resin plate is preferably 1 mm or less, preferably 0.8 mm or less. The thickness of the resin film is preferably 100 μm or less.
 本発明において、隔壁付き基板は基板上に遮光層を有する。また、本発明では、基板の遮光層を有する側の面において、該遮光層で区画された遮光層未形成の箇所を遮光層の開口部という。また、該遮光層が形成されている箇所を遮光層の遮光部という。 In the present invention, the substrate with partition walls has a light-shielding layer on the substrate. Further, in the present invention, on the surface of the substrate on the side having the light-shielding layer, the portion where the light-shielding layer is not formed, which is partitioned by the light-shielding layer, is referred to as an opening of the light-shielding layer. Further, the portion where the light-shielding layer is formed is referred to as a light-shielding portion of the light-shielding layer.
 本発明において、遮光層は、可視光を吸収することが好ましい。可視光を吸収することにより、OLEDやLEDから発光した光や、その光が後述する波長変換材料で変換された後の光が、遮光層の遮光部を透過することにより発光点がぼやけることを抑制できる。また、遮光層が可視光を吸収することにより、ディスプレイに外光が照射された場合の反射光を抑制できることから、ディスプレイ外観のコントラストが向上する。さらに、後述のように、ストライプに平行な方向に隣接するサブピクセルへの光漏れを抑制できる。LEDが紫外線発光のLEDの場合は、可視光に加え紫外光も吸収することが好ましい。 In the present invention, the light-shielding layer preferably absorbs visible light. By absorbing visible light, the light emitted from the OLED or LED and the light after the light is converted by the wavelength conversion material described later are transmitted through the light-shielding portion of the light-shielding layer, so that the light-emitting point is blurred. Can be suppressed. Further, since the light-shielding layer absorbs visible light, it is possible to suppress the reflected light when the display is irradiated with external light, so that the contrast of the appearance of the display is improved. Further, as will be described later, it is possible to suppress light leakage to subpixels adjacent in a direction parallel to the stripe. When the LED is an LED that emits ultraviolet light, it is preferable to absorb ultraviolet light in addition to visible light.
 本発明の遮光層は、黒色顔料を含有することが好ましい。黒色顔料としては、特に限定は無く、例えば、カーボンブラック、チタンブラック、酸化クロム、酸化鉄、アニリンブラック、ペリレン系顔料若しくはC.I.ソルベントブラック123等の黒色顔料、又は、樹脂で被覆されたカーボンブラック、チタン、マンガン、鉄、銅若しくはコバルトの複合酸化物等の無機系ブラック顔料又は有機顔料と黒色顔料との組み合わせが挙げられるが、高い遮光性を有することから、カーボンブラック又はチタン窒化物、チタン酸窒化物が好ましい。 The light-shielding layer of the present invention preferably contains a black pigment. The black pigment is not particularly limited, and for example, carbon black, titanium black, chromium oxide, iron oxide, aniline black, perylene pigment or C.I. I. Examples thereof include a black pigment such as Solvent Black 123, an inorganic black pigment such as a composite oxide of carbon black, titanium, manganese, iron, copper or cobalt coated with a resin, or a combination of an organic pigment and a black pigment. Carbon black, titanium nitride, and titanium oxynitride are preferable because they have high light-shielding properties.
 本発明の遮光層の光学濃度(OD)値は、波長550nmにおいて2以上であることが好ましく、3以上であることがより好ましい。 The optical density (OD) value of the light-shielding layer of the present invention is preferably 2 or more, and more preferably 3 or more at a wavelength of 550 nm.
 本発明において、隔壁付き基板は基板上に隔壁を有する。また、本発明では、基板の隔壁を有する側の面において、該隔壁で区画された隔壁未形成の箇所を隔壁の開口部という。 In the present invention, the substrate with a partition wall has a partition wall on the substrate. Further, in the present invention, on the surface of the substrate on the side having the partition wall, the portion where the partition wall is not formed is referred to as the opening of the partition wall.
 本発明において、隔壁で区画された開口部はストライプ形状を有する。ストライプ形状とは、略直線状の開口が、該直線方向に平行な方向に連続する形状、あるいは、繰り返す形状をいう。開口部がストライプ形状であることにより、ノズル塗布法により容易に波長変換層を形成できる。略直線状は、完全な直線形状には限られず、隣接するストライプ形状の開口部の中心線と交差しない範囲で蛇行や直線方向に直交する方向へのズレがあってもよい。また、略直線状の開口とは、開口が連続していてもよく、横隔壁を有して不連続であってもよい。また、開口形状も特に限定されず、例えば四角形、円形、楕円形などが挙げられる。なお、本発明において、ストライプ方向、あるいはストライプに平行な方向とは、該直線方向に平行な方向のことを言う。 In the present invention, the opening partitioned by the partition has a striped shape. The striped shape means a shape in which substantially linear openings are continuous in a direction parallel to the straight line direction, or a shape in which the openings are repeated. Since the opening has a striped shape, the wavelength conversion layer can be easily formed by the nozzle coating method. The substantially straight line shape is not limited to a perfect straight line shape, and may be meandering or deviated in a direction orthogonal to the straight line direction within a range that does not intersect the center line of the adjacent striped opening. Further, the substantially linear opening may be continuous or discontinuous with a horizontal partition wall. Further, the opening shape is not particularly limited, and examples thereof include a quadrangle, a circle, and an ellipse. In the present invention, the stripe direction or the direction parallel to the stripe means the direction parallel to the linear direction.
 隔壁は、あるサブピクセルから隣接するサブピクセルに光が透過するのを防止する機能を有することが好ましい。該機能を有することにより、隣接するサブピクセルへの光漏れによる混色を抑制できる。 It is preferable that the partition wall has a function of preventing light from being transmitted from a certain subpixel to an adjacent subpixel. By having this function, it is possible to suppress color mixing due to light leakage to adjacent sub-pixels.
 図2に、遮光層の一態様の上面図を、また図3に、隔壁の一態様の上面図を示す。また、図4に、図2の遮光層を形成した基板上に図3の隔壁を形成した隔壁付き基板の一態様の上面図を示す。また、図5に、図4に示した隔壁付き基板に波長変換層を形成した、本発明の波長変換基板の一態様の上面図を示す。また、図6および7に、図5の波長変換基板における、ストライプ方向に直交する方向の断面図の一例として、A-A’およびB-B’における断面図を示す。基板3上に、遮光層8およびパターン形成された隔壁1を有し、隔壁で区画された開口部内に波長変換層9を有する。 FIG. 2 shows a top view of one aspect of the light-shielding layer, and FIG. 3 shows a top view of one aspect of the partition wall. Further, FIG. 4 shows a top view of one aspect of a substrate with a partition wall in which the partition wall of FIG. 3 is formed on the substrate on which the light-shielding layer of FIG. 2 is formed. Further, FIG. 5 shows a top view of one aspect of the wavelength conversion substrate of the present invention in which a wavelength conversion layer is formed on the substrate with a partition wall shown in FIG. Further, FIGS. 6 and 7 show cross-sectional views of AA'and BB' as an example of the cross-sectional views of the wavelength conversion substrate of FIG. 5 in the direction orthogonal to the stripe direction. A light-shielding layer 8 and a patterned partition wall 1 are provided on the substrate 3, and a wavelength conversion layer 9 is provided in an opening partitioned by the partition wall.
 本発明の一態様では、隔壁の開口部がストライプ形状となり、該ストライプ形状の1つのストライプにおいて、遮光層がストライプ方向に開口部と遮光部を繰り返す構造を有し、該1つのストライプにおける該遮光層の開口率が5~70%であることを必須とする。ここで、1つのストライプにおける遮光層の開口率とは、遮光層がストライプ方向に開口部と遮光部を繰り返す構造の1つの繰り返し単位において、遮光部未形成の箇所の面積を、1つの繰り返し単位の総面積で除した割合を言う。遮光層の開口率が5%より小さい場合、ディスプレイの輝度が低くなることがある。また、70%より大きい場合、ストライプに平行な方向に隣接するサブピクセルへの光漏れが顕著に発生することがある。 In one aspect of the present invention, the opening of the partition wall has a striped shape, and in one stripe of the striped shape, the light-shielding layer has a structure in which the opening and the light-shielding portion are repeated in the stripe direction, and the light-shielding portion in the one stripe. It is essential that the aperture ratio of the layer is 5 to 70%. Here, the aperture ratio of the light-shielding layer in one stripe is the area of the portion where the light-shielding portion is not formed in one repeating unit having a structure in which the light-shielding layer repeats the opening and the light-shielding portion in the stripe direction. The ratio divided by the total area of. If the aperture ratio of the light-shielding layer is less than 5%, the brightness of the display may be low. On the other hand, if it is larger than 70%, light leakage to subpixels adjacent in the direction parallel to the stripe may occur remarkably.
 本発明において、隔壁の開口率は50~95%であることが好ましい。ここで、隔壁の開口率とは、ディスプレイの表示領域における隔壁形成部の面積を、ディスプレイの表示領域の総面積で除した割合を言う。開口率が50%よりも小さい場合、波長変換ペーストをノズル塗布した際に隔壁頂部へのペーストの乗り上げが発生しやすくなることがある。また、開口率が95%よりも大きい場合、ストライプ方向に直交する方向に隣接する画素に光が漏れやすくなることがある。 In the present invention, the aperture ratio of the partition wall is preferably 50 to 95%. Here, the aperture ratio of the partition wall means a ratio obtained by dividing the area of the partition wall forming portion in the display area of the display by the total area of the display area of the display. When the aperture ratio is smaller than 50%, when the wavelength conversion paste is applied to the nozzle, the paste may easily run on the top of the partition wall. Further, when the aperture ratio is larger than 95%, light may easily leak to pixels adjacent to the pixels in the direction orthogonal to the stripe direction.
 本発明において、隔壁の開口部はストライプに平行な方向に連続していてもよく、横隔壁を有して不連続であってもよい。隔壁が光の透過・散乱防止機能を有する場合、横隔壁によってストライプに平行な方向への光の散乱が抑制されることがある。ただし、横隔壁の隔壁幅が太い場合、横隔壁上にもノズル塗布法で形成した波長変換層の一部が存在することがあるから、繰り返し単位のストライプに平行な方向の長さに対する開口部のストライプに平行な方向の長さの割合が、80%以上であることが好ましい。より好ましくは90%以上である。 In the present invention, the opening of the partition wall may be continuous in the direction parallel to the stripe, or may have a horizontal partition wall and may be discontinuous. When the partition wall has a function of preventing light transmission / scattering, the horizontal partition wall may suppress the scattering of light in the direction parallel to the stripe. However, when the partition width of the transverse partition is large, a part of the wavelength conversion layer formed by the nozzle coating method may also exist on the transverse partition, so that the opening for the length in the direction parallel to the stripe of the repeating unit. The ratio of the length in the direction parallel to the stripe is preferably 80% or more. More preferably, it is 90% or more.
 隔壁は、波長550nmにおける厚み10μmあたりの反射率が20~90%であることが好ましい。反射率を20%以上とすることにより、隔壁側面における反射を利用してディスプレイの輝度を向上させることができる。一方で、隔壁パターン形成精度を向上させる観点から、反射率は、90%以下が好ましい。ここで、隔壁の厚みとは、基板に対して垂直方向(高さ方向)の隔壁の長さを指す。図6および7に示す隔壁付き基板の場合、隔壁1の厚みは符号Hで表される。なお、隔壁の基板に水平方向の長さは、隔壁の幅とする。図6および7に示す隔壁付き基板の場合、隔壁1の幅は符号Lで表される。図3において、ストライプに平行な方向を上向きの矢印で示す(図8、10~13においても同様)。 The partition wall preferably has a reflectance of 20 to 90% per 10 μm thickness at a wavelength of 550 nm. By setting the reflectance to 20% or more, the brightness of the display can be improved by utilizing the reflection on the side surface of the partition wall. On the other hand, the reflectance is preferably 90% or less from the viewpoint of improving the partition wall pattern forming accuracy. Here, the thickness of the partition wall refers to the length of the partition wall in the direction perpendicular to the substrate (height direction). In the case of the partition wall-equipped substrate shown in FIGS. 6 and 7, the thickness of the partition wall 1 is represented by reference numeral H. The length of the partition wall in the horizontal direction is the width of the partition wall. In the case of the partition wall-equipped substrate shown in FIGS. 6 and 7, the width of the partition wall 1 is represented by reference numeral L. In FIG. 3, the direction parallel to the stripe is indicated by an upward arrow (the same applies to FIGS. 8, 10 to 13).
 隔壁の厚みは、隔壁付き基板のセル内に波長変換ペーストの硬化物を有する場合、波長変換ペーストの硬化物の厚みよりも大きいことが好ましい。具体的には、隔壁1の厚みは、0.5μm以上が好ましく、5μm以上がより好ましい。一方、色変換発光材料を含有する層の底部における発光をより効率良く取り出す観点から、隔壁の厚みは、100μm以下が好ましく、70μm以下がより好ましく、50μm以下がさらに好ましい。また、隔壁の幅は、隔壁側面における光反射を利用し輝度を向上させ、光漏れによる隣接する波長変換ペーストの硬化物からの発光の混色を抑制するために十分なものであればよい。具体的には、隔壁の幅は、5μm以上が好ましく、10μm以上がより好ましい。 The thickness of the partition wall is preferably larger than the thickness of the cured product of the wavelength conversion paste when the cured product of the wavelength conversion paste is contained in the cell of the substrate with the partition wall. Specifically, the thickness of the partition wall 1 is preferably 0.5 μm or more, and more preferably 5 μm or more. On the other hand, from the viewpoint of more efficiently extracting light emission at the bottom of the layer containing the color conversion light emitting material, the thickness of the partition wall is preferably 100 μm or less, more preferably 70 μm or less, still more preferably 50 μm or less. Further, the width of the partition wall may be sufficient to improve the brightness by utilizing the light reflection on the side surface of the partition wall and suppress the color mixing of the light emitted from the cured product of the adjacent wavelength conversion paste due to light leakage. Specifically, the width of the partition wall is preferably 5 μm or more, and more preferably 10 μm or more.
 本発明において、ストライプに直交する方向の隔壁の開口部の幅を隔壁の開口部幅という。本発明の一態様では、隔壁の形状は、隔壁の開口部幅が大きい箇所と、隔壁の開口部幅が小さい箇所あるいは横隔壁が存在する箇所を有し、これらの開口部幅が変化する箇所、あるいは横隔壁で区切られた2種以上のパターンを、ストライプに平行な方向に繰り返す構造を有することを必須とする。また、上記の隔壁の繰り返しパターンのうち、少なくとも1種は隔壁の開口部において遮光層も開口部を有し、また他の繰り返しパターンのうち少なくとも1種は隔壁の開口部において遮光層は実質的に開口部を有しないことを必須とする。ここで「実質的に開口部を有しない」とは、遮光層のピンホールなどの欠陥や、隔壁と遮光層のアライメントのズレに起因する繰り返し単位端部の遮光層の微小な開口部などは有していてもよいことをいう。このような構成とすることにより、遮光層の開口部に対応する箇所にOLEDまたはLEDを配置し発光させた際に、OLEDやLEDから発光した光や、その光が後述する波長変換層で変換された後の光が隔壁により反射され、遮光層の開口部が存在する箇所に集中するため、遮光層の開口部から光が取り出される確率が向上することで、ディスプレイの輝度が向上する。 In the present invention, the width of the partition wall opening in the direction orthogonal to the stripe is referred to as the partition wall opening width. In one aspect of the present invention, the shape of the partition wall has a portion where the opening width of the partition wall is large, a portion where the opening width of the partition wall is small, or a portion where a horizontal partition wall exists, and a portion where the opening width changes. Or, it is essential to have a structure in which two or more types of patterns separated by a horizontal partition wall are repeated in a direction parallel to the stripe. Further, at least one of the above-mentioned repeating patterns of the partition wall also has an opening in the light-shielding layer at the opening of the partition wall, and at least one of the other repeating patterns has a substantially light-shielding layer at the opening of the partition wall. It is essential that there is no opening in the. Here, "substantially having no opening" means that defects such as pinholes in the light-shielding layer and minute openings in the light-shielding layer at the end of the repeating unit due to misalignment between the partition wall and the light-shielding layer are included. It means that you may have it. With such a configuration, when the OLED or LED is arranged at a location corresponding to the opening of the light-shielding layer and emitted, the light emitted from the OLED or the LED and the light are converted by the wavelength conversion layer described later. Since the light after being light is reflected by the partition wall and concentrated in the place where the opening of the light-shielding layer exists, the probability that the light is taken out from the opening of the light-shielding layer is improved, and the brightness of the display is improved.
 本発明において、隣接するストライプ間において、隔壁の開口部において遮光層も開口部を有する箇所が千鳥状に配置されていることが好ましい。このような構成では、ストライプに直交する方向の隔壁幅が大きくなることから、混色を効果的に抑制できる。 In the present invention, it is preferable that the light-shielding layers also have openings in the opening of the partition wall in a staggered manner between adjacent stripes. In such a configuration, the width of the partition wall in the direction orthogonal to the stripe becomes large, so that color mixing can be effectively suppressed.
 本発明の一態様では、遮光層が、隔壁のストライプ方向に開口部と遮光部を繰り返す構造を有し、該1つのストライプにおいて該遮光層の開口部と該遮光層の遮光部のいずれにも、同一組成の該波長変換層を有することを必須とする。また、本発明の一態様では、隔壁の開口部において該遮光層が開口部を有する少なくとも1種のパターンの隔壁の開口部と、隔壁の開口部において該遮光層が開口部を有しない少なくとも1種のパターンの隔壁の開口部のいずれにも、同一組成の波長変換層を有することを必須とする。このような構成とすることで、遮光層の遮光部や、遮光層に開口部を有しない箇所において、波長変換層が光吸収すること、および波長変換層で散乱された光が遮光層により吸収されることでストライプに平行な方向への光の拡散が抑制され、ストライプに平行な方向に隣接するサブピクセルへの光漏れを効率的に抑制できる。本発明の波長変換基板の製造方法では、波長変換ペーストをノズル塗布することにより、上記の遮光層の遮光部や、遮光層に開口部を有しない箇所にも波長変換層が形成されるため、波長変換層を容易に形成でき、さらに隣接サブピクセルへの光拡散を抑制できるという効果が得られる。 In one aspect of the present invention, the light-shielding layer has a structure in which an opening and a light-shielding portion are repeated in the stripe direction of the partition wall, and in the one stripe, both the opening of the light-shielding layer and the light-shielding portion of the light-shielding layer are formed. It is essential to have the wavelength conversion layer having the same composition. Further, in one aspect of the present invention, there is at least one pattern of partition wall opening in which the light-shielding layer has an opening in the partition wall opening, and at least one in which the light-shielding layer does not have an opening in the partition wall opening. It is essential to have a wavelength conversion layer of the same composition in each of the openings of the partition wall of the species pattern. With such a configuration, the wavelength conversion layer absorbs light in the light-shielding portion of the light-shielding layer or a place where the light-shielding layer does not have an opening, and the light scattered by the wavelength conversion layer is absorbed by the light-shielding layer. By doing so, the diffusion of light in the direction parallel to the stripe is suppressed, and the light leakage to the subpixels adjacent in the direction parallel to the stripe can be efficiently suppressed. In the method for manufacturing a wavelength conversion substrate of the present invention, by applying the wavelength conversion paste to the nozzle, the wavelength conversion layer is formed in the light-shielding portion of the light-shielding layer and the portion having no opening in the light-shielding layer. The effect that the wavelength conversion layer can be easily formed and the light diffusion to the adjacent subpixels can be suppressed can be obtained.
 なお、隔壁の頂部に波長変換層が乗り上げてしまい、遮光層の遮光部と波長変換層の間に隔壁を介している箇所については、遮光層の遮光部に波長変換層を有することにはならない。 It should be noted that the wavelength conversion layer rides on the top of the partition wall, and the light-shielding portion of the light-shielding layer does not have the wavelength conversion layer at the portion where the partition wall is interposed between the light-shielding portion of the light-shielding layer and the wavelength conversion layer. ..
 本発明において、波長変換層は、波長変換材料を含有する。本発明において、波長変換材料とは、電磁波を吸収し、吸収した電磁波の波長と異なる波長の電磁波を放射する、波長変換性を有する材料をいう。波長変換材料を有する波長変換ペーストをパターン化して塗布して波長変換基板を作製し、OLED光源やLED光源と組み合わせることによりフルカラーのディスプレイとすることができる。 In the present invention, the wavelength conversion layer contains a wavelength conversion material. In the present invention, the wavelength conversion material refers to a material having a wavelength conversion property that absorbs an electromagnetic wave and emits an electromagnetic wave having a wavelength different from the wavelength of the absorbed electromagnetic wave. A wavelength conversion substrate having a wavelength conversion material can be patterned and applied to prepare a wavelength conversion substrate, which can be combined with an OLED light source or an LED light source to form a full-color display.
 波長変換材料としては、無機蛍光体および/または有機蛍光体を用いることが好ましい。例えば、青色光を発光するOLEDと、波長変換基板とを組み合わせたディスプレイの場合、赤色のサブピクセルに対応する領域には、青色の励起光により励起されて赤色の蛍光を発する赤色用蛍光体を波長変換材料として用いることが好ましく、緑色のサブピクセルに対応する領域には、青色の励起光により励起されて緑色の蛍光を発する緑色用蛍光体を波長変換材料として用いることが好ましく、青色サブピクセルに対応する領域には、波長変換材料を用いないことが好ましい。同様に、各サブピクセルに対応した青色LEDや紫外線発光LEDをバックライトとして用いる方式のディスプレイにも、本発明の波長変換基板を用いることができる。各サブピクセルの発光のON/OFFは、OLEDやLEDのアクティブマトリクス駆動によって可能となる。 As the wavelength conversion material, it is preferable to use an inorganic phosphor and / or an organic phosphor. For example, in the case of a display in which an OLED that emits blue light and a wavelength conversion substrate are combined, a red phosphor that is excited by blue excitation light and emits red fluorescence is placed in a region corresponding to the red subpixel. It is preferable to use it as a wavelength conversion material, and in the region corresponding to the green subpixel, it is preferable to use a green phosphor that is excited by blue excitation light and emits green fluorescence as the wavelength conversion material, and the blue subpixel. It is preferable not to use a wavelength conversion material in the region corresponding to. Similarly, the wavelength conversion substrate of the present invention can also be used for a display in which a blue LED or an ultraviolet light emitting LED corresponding to each subpixel is used as a backlight. The light emission of each sub-pixel can be turned ON / OFF by driving an OLED or an active matrix of LEDs.
 無機蛍光体は、緑色や赤色などの各色を発光する。無機蛍光体としては、波長400~500nmの励起光により励起され、発光スペクトルが500~700nmの領域にピークを有するものや、量子ドットと称される無機半導体微粒子などが挙げられる。前者の無機蛍光体の形状としては、例えば、球状、柱状などが挙げられる。かかる無機蛍光体としては、例えば、YAG系蛍光体、TAG系蛍光体、サイアロン系蛍光体、Mn4+付活フッ化物錯体蛍光体等が挙げられる。これらを2種以上用いてもよい。 Inorganic phosphors emit various colors such as green and red. Examples of the inorganic phosphor include those excited by excitation light having a wavelength of 400 to 500 nm and having a peak in the emission spectrum in the region of 500 to 700 nm, inorganic semiconductor fine particles called quantum dots, and the like. Examples of the shape of the former inorganic phosphor include a spherical shape and a columnar shape. Examples of such inorganic phosphors include YAG-based phosphors, TAG-based phosphors, sialon-based phosphors, Mn 4+ activated fluoride complex phosphors, and the like. Two or more of these may be used.
 これらの中でも、量子ドットが好ましい。量子ドットは他の蛍光体に比較して発光スペクトルにおけるピークがシャープであることから、ディスプレイの色再現性を高めることができる。 Among these, quantum dots are preferable. Since quantum dots have sharper peaks in the emission spectrum than other phosphors, the color reproducibility of the display can be improved.
 量子ドットの材料としては、例えば、II-IV族、III-V族、IV-VI族、IV族の半導体などが挙げられる。これらの無機半導体としては、例えば、Si、Ge、Sn、Se、Te、B、C(ダイアモンドを含む)、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si、Ge、Alなどが挙げられる。これらを2種以上用いてもよい。 Examples of the quantum dot material include semiconductors of group II-IV, group III-V, group IV-VI, and group IV. Examples of these inorganic semiconductors include Si, Ge, Sn, Se, Te, B, C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeS Examples thereof include SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , Al 2 O 3 . Two or more of these may be used.
 量子ドットは、p型ドーパントまたはn型ドーパントを含有してもよい。また、量子ドットは、コアシェル構造を有してもよい。コアシェル構造においては、シェルの周囲に目的に応じて任意の適切な機能層(単一層または複数層)が形成されていてもよく、シェル表面に表面処理および/または化学修飾がなされていてもよい。 The quantum dots may contain a p-type dopant or an n-type dopant. Further, the quantum dots may have a core-shell structure. In the core-shell structure, any suitable functional layer (single layer or multiple layers) may be formed around the shell depending on the purpose, and the shell surface may be surface-treated and / or chemically modified. ..
 量子ドットの形状としては、例えば、球状、柱状、燐片状、板状、不定形等が挙げられる。量子ドットの平均粒子径は、所望の発光波長に応じて選択することができ、1~30nmが好ましい。量子ドットの平均粒子径が1~10nmであれば、青色、緑色および赤色のそれぞれにおいて、発光スペクトルにおけるピークをよりシャープにすることができる。例えば、量子ドットの平均粒子径が約2nmの場合には青色光を、約3nmの場合には緑色光を、約6nmの場合には赤色光を発光する。量子ドットの平均粒子径は2nm以上が好ましく、8nm以下が好ましい。量子ドットの平均粒子径は、動的光散乱法により測定することができる。平均粒子径の測定装置としては、ダイナミック光散乱光度計DLS-8000(大塚電子(株)製)などが挙げられる。 Examples of the shape of the quantum dot include a spherical shape, a columnar shape, a flaky shape, a plate shape, an amorphous shape, and the like. The average particle size of the quantum dots can be selected according to the desired emission wavelength, and is preferably 1 to 30 nm. When the average particle size of the quantum dots is 1 to 10 nm, the peaks in the emission spectrum can be sharpened in each of blue, green, and red. For example, when the average particle size of the quantum dots is about 2 nm, blue light is emitted, when it is about 3 nm, green light is emitted, and when it is about 6 nm, red light is emitted. The average particle size of the quantum dots is preferably 2 nm or more, preferably 8 nm or less. The average particle size of quantum dots can be measured by a dynamic light scattering method. Examples of the device for measuring the average particle size include a dynamic light scattering photometer DLS-8000 (manufactured by Otsuka Electronics Co., Ltd.).
 有機蛍光体としては、例えば、青色の励起光により励起され赤色の蛍光を発する蛍光体として、下記構造式(A)で表される基本骨格を有するピロメテン誘導体、青色の励起光により励起され緑色の蛍光を発する蛍光体として、下記構造式(B)で表される基本骨格を有するピロメテン誘導体などが挙げられる。その他には、置換基の選択により赤色または緑色の蛍光を発するペリレン系誘導体、ポルフィリン系誘導体、オキサジン系誘導体、ピラジン系誘導体などが挙げられる。これらを2種以上含有してもよい。これらの中でも、量子収率が高いことから、ピロメテン誘導体が好ましい。ピロメテン誘導体は、例えば、特開2011-241160号公報に記載の方法により得ることができる。 Examples of the organic phosphor include a pyrromethene derivative having a basic skeleton represented by the following structural formula (A) as a phosphor that is excited by blue excitation light and emits red fluorescence, and a green one that is excited by blue excitation light. Examples of the fluorescent substance that emits fluorescence include a pyrromethene derivative having a basic skeleton represented by the following structural formula (B). Other examples include perylene-based derivatives, porphyrin-based derivatives, oxazine-based derivatives, and pyrazine-based derivatives that emit red or green fluorescence depending on the selection of the substituent. Two or more of these may be contained. Among these, a pyrromethene derivative is preferable because of its high quantum yield. The pyrromethene derivative can be obtained, for example, by the method described in JP-A-2011-241160.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 有機蛍光体は溶媒に可溶なため、所望の厚みの波長変換材料を含有する層を容易に形成することができる。 Since the organic phosphor is soluble in a solvent, a layer containing a wavelength conversion material having a desired thickness can be easily formed.
 本発明の波長変換層は、光散乱性粒子を含有してもよい。光散乱性粒子を含有することにより、波長変換層内で青色光や紫外光が散乱されることにより光路長が長くなり、波長変換材料による光変換効率を向上させることができる。 The wavelength conversion layer of the present invention may contain light-scattering particles. By containing the light-scattering particles, blue light and ultraviolet light are scattered in the wavelength conversion layer, so that the optical path length becomes long, and the light conversion efficiency of the wavelength conversion material can be improved.
 光散乱性粒子としては、硫酸バリウム、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛、酸化チタンのいずれかであるのが好ましい。これらを2種以上含有してもよい。 The light scattering particles are preferably barium sulfate, aluminum oxide, zirconium oxide, zinc oxide, or titanium oxide. Two or more of these may be contained.
 光散乱性粒子の波長587.5nmにおける屈折率は、1.60~2.70が好ましい。光散乱性粒子の屈折率を1.60以上とすることにより、光散乱性粒子による波長変換層内における青色光または紫外光の散乱性が向上し、波長変換材料による光変換効率が向上しやすい。また、波長変換層により散乱された光が遮光層により吸収されることでストライプに平行な方向への光の拡散が抑制され、ストライプに平行な方向に隣接するサブピクセルへの光漏れを効率的に抑制できる。一方、光散乱性粒子の屈折率を2.70以下とすることにより、光散乱性粒子による過剰な散乱を抑制し、波長変換後の発光光をセル外に取り出し易くなる。光散乱性粒子を2種以上含有する場合は、少なくとも1種の屈折率が上記範囲にあることが好ましい。 The refractive index of the light scattering particles at a wavelength of 587.5 nm is preferably 1.60 to 2.70. By setting the refractive index of the light-scattering particles to 1.60 or more, the scattering property of blue light or ultraviolet light in the wavelength conversion layer by the light-scattering particles is improved, and the light conversion efficiency by the wavelength conversion material is likely to be improved. .. In addition, the light scattered by the wavelength conversion layer is absorbed by the light-shielding layer, so that the diffusion of light in the direction parallel to the stripe is suppressed, and light leakage to the subpixels adjacent in the direction parallel to the stripe is efficient. Can be suppressed. On the other hand, by setting the refractive index of the light-scattering particles to 2.70 or less, excessive scattering by the light-scattering particles is suppressed, and the emitted light after wavelength conversion can be easily taken out of the cell. When two or more kinds of light scattering particles are contained, it is preferable that the refractive index of at least one kind is in the above range.
 光散乱性粒子の含有量は、光変換効率をより向上させる観点から、固形分中、1重量%以上が好ましく、3重量%以上がより好ましく、5重量%以上がさらに好ましい。一方、光散乱性粒子の含有量は、波長変換材料の濃度消光による発光効率低下を抑制する観点から、固形分中、70重量%以下が好ましく、60重量%以下がより好ましく、50重量%以下がさらに好ましい。ここでいう固形分とは、波長変換ペーストに含まれる成分のうち、溶媒等の揮発性の成分を除いた全成分のことを意味する。固形分の量は、波長変換ペーストを、150℃で1時間加熱して揮発性の成分を蒸発させた残分を量ることにより求めることができる。 The content of the light scattering particles is preferably 1% by weight or more, more preferably 3% by weight or more, and further preferably 5% by weight or more in the solid content from the viewpoint of further improving the light conversion efficiency. On the other hand, the content of the light-scattering particles is preferably 70% by weight or less, more preferably 60% by weight or less, and 50% by weight or less in the solid content from the viewpoint of suppressing a decrease in luminous efficiency due to concentration quenching of the wavelength conversion material. Is even more preferable. The solid content here means all the components contained in the wavelength conversion paste except for volatile components such as a solvent. The amount of solid content can be determined by heating the wavelength conversion paste at 150 ° C. for 1 hour and measuring the residue obtained by evaporating the volatile components.
 本発明において、波長変換層は、波長変換ペーストを硬化させて形成することが好ましい。波長変換ペーストは、波長変換材料を含有するペースト材料であり、適切に組成設計することによりノズル塗布法で隔壁付き基板に容易に塗布できる。波長変換ペーストを硬化させる方法は特に限定されないが、重合性化合物を含有する波長変換ペーストを熱や光で硬化させる方法や、溶媒を含有する波長変換ペーストから加熱により溶媒を揮発させて硬化させる方法などが挙げられる。 In the present invention, the wavelength conversion layer is preferably formed by curing the wavelength conversion paste. The wavelength conversion paste is a paste material containing a wavelength conversion material, and can be easily applied to a substrate with a partition wall by a nozzle coating method by appropriately designing the composition. The method of curing the wavelength conversion paste is not particularly limited, but a method of curing a wavelength conversion paste containing a polymerizable compound with heat or light, or a method of volatilizing a solvent from a wavelength conversion paste containing a solvent and curing the solvent. And so on.
 本発明において、波長変換ペーストは、重合性化合物として、モノマーを含有してもよい。本発明におけるモノマーとは、後述する重合開始剤の反応により発生した活性種により重合する化合物をいう。 In the present invention, the wavelength conversion paste may contain a monomer as a polymerizable compound. The monomer in the present invention refers to a compound that polymerizes with an active species generated by the reaction of a polymerization initiator described later.
 本発明におけるモノマーは、分子中にエチレン性不飽和二重結合を有する化合物であることが好ましい。モノマーは、分子中に2つ以上のエチレン性不飽和二重結合を有することが好ましい。ラジカル重合性のしやすさを考えると、モノマーは、(メタ)アクリル基を有することが好ましい。また、モノマーの二重結合当量は、パターン加工における感度をより向上させる観点から、400g/mol以下が好ましい。 The monomer in the present invention is preferably a compound having an ethylenically unsaturated double bond in the molecule. The monomer preferably has two or more ethylenically unsaturated double bonds in the molecule. Considering the ease of radical polymerization, the monomer preferably has a (meth) acrylic group. The double bond equivalent of the monomer is preferably 400 g / mol or less from the viewpoint of further improving the sensitivity in pattern processing.
 モノマーとしては、例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、1,3-ブタンジオールジアクリレート、1,3-ブタンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリペンタエリスリトールヘプタアクリレート、トリペンタエリスリトールオクタアクリレート、テトラペンタエリスリトールノナアクリレート、テトラペンタエリスリトールデカアクリレート、ペンタペンタエリスリトールウンデカアクリレート、ペンタペンタエリスリトールドデカアクリレート、トリペンタエリスリトールヘプタメタクリレート、トリペンタエリスリトールオクタメタクリレート、テトラペンタエリスリトールノナメタクリレート、テトラペンタエリスリトールデカメタクリレート、ペンタペンタエリスリトールウンデカメタクリレート、ペンタペンタエリスリトールドデカメタクリレート、ジメチロール-トリシクロデカンジアクリレート等が挙げられる。これらを2種以上含有してもよい。 Examples of the monomer include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, diethylene glycol dimethacrylate, and triethylene. Glycol dimethacrylate, tetraethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, trimethylolpropandiacrylate, trimethylolpropanetriacrylate, trimethylolpropanedimethacrylate, trimethylolpropanetrimethacrylate, 1,3-butanediol diacrylate, 1, 3-Butanediol Dimethacrylate, Neopentyl Glycol Diacrylate, 1,4-Butanediol Diacrylate, 1,4-Butanediol Dimethacrylate, 1,6-Hexanediol Diacrylate, 1,9-Nonanediol Dimethacrylate, 1 , 10-decanediol dimethacrylate, dimethylol-tricyclodecanediacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, pentaerythritol trimethacrylate, pentaerythritol tetramethacrylate, dipentaerythritol pentaacrylate, dipentaerythritol hexaacrylate, trypenta Ellislitol heptaacrylate, trypentaerythritol octaacrylate, tetrapentaerythritol nonaacrylate, tetrapentaerythritol decaacrylate, pentapentaerythritol undecaacrylate, pentapentaerythritol dodecaacrylate, trypentaerythritol heptamethacrylate, trypentaerythritol octamethacrylate, tetrapentaerythritol Examples thereof include nona methacrylate, tetrapentaerythritol decamethacrylate, pentapentaerythritol undecamethacrylate, pentapentaerythritol dodecamethacrylate, and dimethyrole-tricyclodecanediacrylate. Two or more of these may be contained.
 本発明において、波長変換ペースト中におけるモノマーの含有量は、波長変換ペーストの固形分率を高める観点から、固形分中、1重量%以上が好ましく、10重量%以上がより好ましく、30重量%以上がさらに好ましい。一方、ノズルからの吐出を安定化させる観点から、モノマーの含有量は、固形分中、80重量%以下が好ましく、70重量%以下がより好ましい。 In the present invention, the content of the monomer in the wavelength conversion paste is preferably 1% by weight or more, more preferably 10% by weight or more, and 30% by weight or more in the solid content from the viewpoint of increasing the solid content of the wavelength conversion paste. Is even more preferable. On the other hand, from the viewpoint of stabilizing the discharge from the nozzle, the content of the monomer is preferably 80% by weight or less, more preferably 70% by weight or less in the solid content.
 本発明において、波長変換ペーストは、重合開始剤を含有してもよい。重合開始剤およびモノマーを含有することにより、光照射、あるいは加熱などで重合開始剤を反応させることにより、重合開始剤から発生した活性種によってモノマーの重合が進行し、波長変換ペーストを硬化することができる。 In the present invention, the wavelength conversion paste may contain a polymerization initiator. By containing the polymerization initiator and the monomer, the polymerization initiator is reacted by light irradiation or heating, so that the polymerization of the monomer proceeds by the active species generated from the polymerization initiator and the wavelength conversion paste is cured. Can be done.
 重合開始剤は、ラジカル開始剤やカチオン開始剤、すなわち、光(紫外線、電子線を含む)、または熱により反応し、ラジカルやカチオンなどの活性種を発生させるものであればどのようなものでもよい。これらの中でも、ラジカル開始剤であることが好ましい。重合開始剤としては、例えば、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1などのα-アミノアルキルフェノン化合物;2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)-ホスフィンオキサイドなどのアシルホスフィンオキサイド化合物;1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)オキシム、1-[4-(フェニルチオ)フェニル]オクタン-1,2-ジオン=2-(O-ベンゾイルオキシム)]、1-フェニル-1,2-ブタジオン-2-(O-メトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(O-エトキシカルボニル)オキシム、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)などのオキシムエステル化合物;ベンジルジメチルケタールなどのベンジルケタール化合物;2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトンなどのα-ヒドロキシケトン化合物;ベンゾフェノン、4,4-ビス(ジメチルアミノ)ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、O-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4,4-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アルキル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノンなどのベンゾフェノン化合物;2,2-ジエトキシアセトフェノン、2,3-ジエトキシアセトフェノン、4-t-ブチルジクロロアセトフェノン、ベンザルアセトフェノン、4-アジドベンザルアセトフェノンなどのアセトフェノン化合物;2-フェニル-2-オキシ酢酸メチルなどの芳香族ケトエステル化合物;4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(2-エチル)ヘキシル、4-ジエチルアミノ安息香酸エチル、2-ベンゾイル安息香酸メチルなどの安息香酸エステル化合物などが挙げられる。これらを2種以上含有してもよい。 The polymerization initiator is any radical initiator or cation initiator, that is, any one that reacts with light (including ultraviolet rays and electron beams) or heat to generate active species such as radicals and cations. good. Among these, a radical initiator is preferable. Examples of the polymerization initiator include 2-methyl- [4- (methylthio) phenyl] -2-morpholinopropane-1-one and 2-dimethylamino-2- (4-methylbenzyl) -1- (4-). Α-Aminoalkylphenone compounds such as morpholin-4-yl-phenyl) -butane-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1; 2,4 , 6-trimethylbenzoylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, bis (2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl) -phosphine oxide, etc. Acylphosphine oxide compounds; 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) oxime, 1- [4- (phenylthio) phenyl] octane-1,2-dione = 2- (O-benzoyl) Oxime)], 1-phenyl-1,2-butadion-2- (O-methoxycarbonyl) oxime, 1,3-diphenylpropanthrion-2- (O-ethoxycarbonyl) oxime, etanone, 1- [9-ethyl Oxime ester compounds such as -6- (2-methylbenzoyl) -9H-carbazole-3-yl]-, 1- (O-acetyloxime); benzyl ketal compounds such as benzyl dimethyl ketal; 2-hydroxy-2-methyl -1-Phenylpropan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ) Ketones, α-hydroxyketone compounds such as 1-hydroxycyclohexyl-phenylketone; benzophenone, 4,4-bis (dimethylamino) benzophenone, 4,4-bis (diethylamino) benzophenone, methyl O-benzoyl benzoate, 4- Phenylbenzophenone, 4,4-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4'-methyl-diphenylsulfide, alkylated benzophenone, 3,3', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, etc. Benzoyl compounds of; 2,2-diethoxyacetophenone, 2,3-diethoxyacetophenone, 4-t-butyldichloroacetophenone, benzalacetophenone, 4-azidobenzalacetopheno Acetphenone compounds such as 2-phenyl-2-oxyacetate compounds; ethyl 4-dimethylaminobenzoate, 4-dimethylaminobenzoic acid (2-ethyl) hexyl, ethyl 4-diethylaminobenzoate, Examples thereof include benzoic acid ester compounds such as 2-benzoyl methyl benzoate. Two or more of these may be contained.
 本発明において、波長変換ペーストは、重合開始剤による着色を抑制するため、2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)-ホスフィンオキサイド等のアシルホスフィンオキサイド系重合開始剤を含有することが好ましい。 In the present invention, the wavelength conversion paste suppresses coloring due to the polymerization initiator, so that the 2,4,6-trimethylbenzoylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphin oxide, bis (2) , 6-Dimethoxybenzoyl)-(2,4,4-trimethylpentyl) -phosphine oxide and the like, preferably containing an acylphosphine oxide-based polymerization initiator.
 本発明において、波長変換ペースト中における重合開始剤の含有量は、ラジカル硬化を効率的に進める観点から、固形分中、0.01重量%以上が好ましく、0.1重量%以上がより好ましい。一方、残留した重合開始剤の溶出等を抑制し、黄変をより向上させる観点から、重合開始剤の含有量は、固形分中、20重量%以下が好ましく、10重量%以下がより好ましい。 In the present invention, the content of the polymerization initiator in the wavelength conversion paste is preferably 0.01% by weight or more, more preferably 0.1% by weight or more, based on the solid content, from the viewpoint of efficiently advancing radical curing. On the other hand, from the viewpoint of suppressing elution of the residual polymerization initiator and further improving yellowing, the content of the polymerization initiator is preferably 20% by weight or less, more preferably 10% by weight or less in the solid content.
 本発明において、波長変換ペーストは、ポリマー、溶媒、分散剤などを適宜含んでいても良い。 In the present invention, the wavelength conversion paste may appropriately contain a polymer, a solvent, a dispersant and the like.
 本発明において、波長変換ペーストにポリマーを含む場合には、ポリマーとして、例えば、ポリビニルアセテート、ポリビニルアルコール、エチルセルロース、メチルセルロース、ポリエチレン、ポリメチルシロキサン若しくはポリメチルフェニルシロキサン等のシリコーン樹脂、ポリスチレン、ブタジエン/スチレンコポリマー、ポリスチレン、ポリビニルピロリドン、ポリアミド、高分子量ポリエーテル、エチレンオキサイドとプロピレンオキサイドとの共重合体、ポリアクリルアミド又はアクリル樹脂などが好ましく挙げられる。 In the present invention, when the wavelength conversion paste contains a polymer, the polymer includes, for example, a silicone resin such as polyvinyl acetate, polyvinyl alcohol, ethyl cellulose, methyl cellulose, polyethylene, polymethyl siloxane or polymethyl phenyl siloxane, polystyrene, butadiene / styrene. Preferred examples include copolymers, polystyrene, polyvinylpyrrolidone, polyamides, high molecular weight polyethers, copolymers of ethylene oxide and propylene oxide, polyacrylamides or acrylic resins.
 本発明において、波長変換ペーストに溶媒を含む場合には、溶媒として、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、t-ブタノール、ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシ-1-ブタノール、ジアセトンアルコールなどのアルコール類;エチレングリコール、プロピレングリコールなどのグリコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチルエーテルなどのエーテル類;メチルエチルケトン、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、2-ヘプタノンなどのケトン類;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類;エチルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類;トルエン、キシレン、ヘキサン、シクロヘキサンなどの芳香族または脂肪族炭化水素;γ-ブチロラクトン、N-メチル-2-ピロリドン、ジメチルスルホキシドなどが好ましく挙げられる。 In the present invention, when the wavelength conversion paste contains a solvent, as the solvent, for example, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butanol, pentanol, 4-methyl-2-pentanol, 3 -Alcohols such as methyl-2-butanol, 3-methyl-3-methoxy-1-butanol, diacetone alcohol; glycols such as ethylene glycol and propylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol Ethers such as monomethyl ether, propylene glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethyl ether; methyl ethyl ketone , Acetylacetone, methylpropylketone, methylbutylketone, methylisobutylketone, diisobutylketone, cyclopentanone, 2-heptanone and other ketones; dimethylformamide, dimethylacetamide and other amides; ethylacetate, propylacetate, butylacetate, isobutyl Acetates such as acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, ethyl lactate, butyl lactate; toluene, xylene, hexane, Aromatic or aliphatic hydrocarbons such as cyclohexane; γ-butyrolactone, N-methyl-2-pyrrolidone, dimethylsulfoxide and the like are preferred.
 本発明において、波長変換ペーストの粘度は、レオメータ(HAAKE MARS;サーモフィッシャーサイエンティフィック(株)製)に、同社製のPlate P35 Ti Lを装着し、ギャップを200μmに設定して測定した際に、1sec-1のせん断速度における粘度が1,000~500,000mPa・sであることが好ましい。粘度を1,000mPa・s以上とすることにより、ペーストを作製後に長期保存した場合でも光散乱性粒子などの粒子成分が沈降し生じにくくなる。粘度は3,000mPa・s以上であることがより好ましく、5,000mPa・s以上であることがさらに好ましい。また、粘度を500,000mPa・s以下とすることにより、低圧の圧縮空気での加圧でも安定的に吐出されやすくなる。粘度は400,000mPa・s以下であることがより好ましく、300,000mPa・s以下であることがさらに好ましい。 In the present invention, the viscosity of the wavelength conversion paste is measured when a rheometer (HAAKE MARS; manufactured by Thermo Fisher Scientific Co., Ltd.) is equipped with a Plate P35 TIL manufactured by the same company and the gap is set to 200 μm. The viscosity at a shear rate of 1 sec -1 is preferably 1,000 to 500,000 mPa · s. By setting the viscosity to 1,000 mPa · s or more, particle components such as light-scattering particles are less likely to settle even when the paste is stored for a long period of time after preparation. The viscosity is more preferably 3,000 mPa · s or more, and further preferably 5,000 mPa · s or more. Further, by setting the viscosity to 500,000 mPa · s or less, it becomes easy to stably discharge even when pressurized with low-pressure compressed air. The viscosity is more preferably 400,000 mPa · s or less, and even more preferably 300,000 mPa · s or less.
 本発明において、波長変換ペーストに分散剤を含む場合には、分散剤として、例えば、“Disperbyk”(登録商標)106、108、110、180、190、2001、2155、140、145(以上、商品名、ビックケミー(株)製)などが好ましく挙げられる。 In the present invention, when the wavelength conversion paste contains a dispersant, the dispersant may be, for example, "Disperbyk" (registered trademark) 106, 108, 110, 180, 190, 2001, 2155, 140, 145 (all, commodities). The name, manufactured by Big Chemie Co., Ltd.) and the like are preferably mentioned.
 本発明において、隔壁の厚みH、遮光層の厚みT、および波長変換層の厚みTは下式(1)および(2)を満たすことが好ましい。
H/100≦T≦H/3  (1)
H/2≦T≦H  (2)
 (1)において、H/100>Tの場合、遮光層の厚みが薄く遮光性が低下することがある。また、T>H/3の場合、遮光層の厚みが厚く、遮光層の開口部を光が通過する際に遮光層の側面で光が吸収され、輝度が低下することがある。(2)において、H/2>Tの場合、波長変換層の厚みが薄いため波長変換層での光吸収や散乱が起こりにくくなり、ストライプに平行な方向に隣接するサブピクセルへの光漏れが発生しやすくなることがある。T>Hの場合、波長変換層が隔壁よりも盛り上がっているため、波長変換基板とOLED基板やLED基板を貼り合わせた際に隙間ができて、光が隣接セルに漏れやすくなることがある。
In the present invention, the thickness H of the partition wall, the thickness T 1 of the light-shielding layer, and the thickness T 2 of the wavelength conversion layer preferably satisfy the following equations (1) and (2).
H / 100 ≤ T 1 ≤ H / 3 (1)
H / 2 ≤ T 2 ≤ H (2)
In (1), when H / 100> T 1 , the light-shielding layer may be thin and the light-shielding property may be deteriorated. Further, when T 1 > H / 3, the light-shielding layer is thick, and when the light passes through the opening of the light-shielding layer, the light is absorbed by the side surface of the light-shielding layer, and the brightness may decrease. In (2), when H / 2> T 2 , the thickness of the wavelength conversion layer is thin, so that light absorption and scattering in the wavelength conversion layer are less likely to occur, and light leaks to subpixels adjacent in the direction parallel to the stripe. May be more likely to occur. When T 2 > H, since the wavelength conversion layer is raised above the partition wall, a gap may be formed when the wavelength conversion substrate is bonded to the OLED substrate or the LED substrate, and light may easily leak to the adjacent cell. ..
 本発明の波長変換基板は、隔壁付き基板に、波長変換ペーストを、ノズル塗布法で塗布し、硬化することで作製することが好ましい。 The wavelength conversion substrate of the present invention is preferably produced by applying a wavelength conversion paste to a substrate with a partition wall by a nozzle coating method and curing the substrate.
 本発明において、光源に青色OLEDや青色LEDを用いる場合、青色発光用のサブピクセルには、波長変換層を含まないこと以外は波長変換ペーストと同様の組成を有するペーストをノズル塗布することが好ましい。特に、ディスプレイの視野角向上の観点から、光散乱性粒子を含有する、光散乱ペーストをノズル塗布することが好ましい。光散乱ペーストをノズル塗布して光散乱層を形成することにより、波長変換層の場合と同様に、遮光層の遮光部や、遮光層に開口部を有しない箇所にも光散乱ペーストが形成されるため、光散乱ペーストを容易に形成でき、さらに光散乱層においてで散乱された光が遮光層により吸収されることでストライプに平行な方向への光の拡散が抑制され、ストライプに平行な方向に隣接するサブピクセルへの光漏れを効率的に抑制できる。 In the present invention, when a blue OLED or a blue LED is used as a light source, it is preferable that a paste having the same composition as the wavelength conversion paste is nozzle-coated on the subpixel for blue light emission except that the wavelength conversion layer is not included. .. In particular, from the viewpoint of improving the viewing angle of the display, it is preferable to apply a light scattering paste containing light scattering particles to the nozzle. By applying the light scattering paste to the nozzle to form the light scattering layer, the light scattering paste is formed in the light-shielding portion of the light-shielding layer and the portion having no opening in the light-shielding layer as in the case of the wavelength conversion layer. Therefore, a light-scattering paste can be easily formed, and the light scattered in the light-scattering layer is absorbed by the light-shielding layer to suppress the diffusion of light in the direction parallel to the stripe, and the direction parallel to the stripe. Light leakage to subpixels adjacent to the can be efficiently suppressed.
 次に、本発明のディスプレイについて説明する。本発明のディスプレイは、前記波長変換基板と、光源とを有する。光源としては、アクティブマトリックス駆動が可能な青色OLED、青色LED、紫外発光LEDから選ばれた光源が好ましい。 Next, the display of the present invention will be described. The display of the present invention has the wavelength conversion substrate and a light source. As the light source, a light source selected from a blue OLED, a blue LED, and an ultraviolet light emitting LED capable of driving an active matrix is preferable.
 本発明のディスプレイについて、本発明の波長変換基板と青色OLEDを有するディスプレイの一例を挙げて説明する。アクティブマトリックス駆動が可能なTFTパターンを有するガラス基板上に、感光性ポリイミド樹脂を塗布し、フォトリソグラフィ法により絶縁膜を形成する。背面電極層としてアルミニウムをスパッタした後、フォトリソグラフィ法によりパターニングを行い、絶縁膜の無い開口部に背面電極層を形成する。続いて、電子輸送層としてトリス(8-キノリノラト)アルミニウム(以下、Alq3と略す)を真空蒸着法により成膜した後、発光層としてAlq3にジシアノメチレンピラン、キナクリドン、4,4’-ビス(2,2-ジフェニルビニル)ビフェニルをドーピングした白色発光層を形成する。次に、正孔輸送層としてN,N’-ジフェニル-N,N’-ビス(α-ナフチル)-1,1’-ビフェニル-4,4’-ジアミンを真空蒸着法にて成膜する。最後に、透明電極としてITO(Indium Tin Oxide)をスパッタリングにて成膜し、青色発光層を有するOLEDを作製する。このようにして得られたOLEDを前述の波長変換基板と対向させて封止剤により貼り合せることにより、ディスプレイを作製できる。 The display of the present invention will be described with reference to an example of a display having the wavelength conversion substrate of the present invention and a blue OLED. A photosensitive polyimide resin is applied onto a glass substrate having a TFT pattern capable of driving an active matrix, and an insulating film is formed by a photolithography method. After sputtering aluminum as the back electrode layer, patterning is performed by a photolithography method to form a back electrode layer in an opening without an insulating film. Subsequently, tris (8-quinolinolato) aluminum (hereinafter abbreviated as Alq3) was formed as an electron transport layer by a vacuum deposition method, and then dicyanomethylenepyrine, quinacridone, and 4,4'-bis (2) were formed on Alq3 as a light emitting layer. , 2-Diphenylvinyl) Form a white light emitting layer doped with biphenyl. Next, N, N'-diphenyl-N, N'-bis (α-naphthyl) -1,1'-biphenyl-4,4'-diamine is formed as a hole transport layer by a vacuum vapor deposition method. Finally, ITO (Indium Tin Oxide) is formed as a transparent electrode by sputtering to produce an OLED having a blue light emitting layer. A display can be manufactured by adhering the OLED thus obtained to face the above-mentioned wavelength conversion substrate with a sealing agent.
 なお、本発明の波長変換基板自体がOLEDやLEDを有していてもよい。この場合、OLEDやLEDを有する基板上に隔壁を形成した後、波長変換層を形成し、さらにその後に隔壁と波長変換層の上に遮光層を形成することでディスプレイを作製できる。 The wavelength conversion substrate itself of the present invention may have an OLED or an LED. In this case, a display can be manufactured by forming a partition wall on an OLED or a substrate having an LED, then forming a wavelength conversion layer, and then forming a light-shielding layer on the partition wall and the wavelength conversion layer.
 本発明の波長変換基板は、隔壁と遮光層の間に、さらに平坦化層を有することも好ましい。特に、本発明の波長変換基板自体がOLEDやLEDを有する場合、OLEDやLEDを有する基板上に隔壁を形成した後、波長変換層を形成し、平坦層を形成した後に平坦層上に遮光層を形成することで、遮光層が均質に形成され、ディスプレイのコントラストが向上することから好ましい。 It is also preferable that the wavelength conversion substrate of the present invention further has a flattening layer between the partition wall and the light-shielding layer. In particular, when the wavelength conversion substrate itself of the present invention has an OLED or LED, a partition wall is formed on the substrate having the OLED or LED, a wavelength conversion layer is formed, a flat layer is formed, and then a light-shielding layer is formed on the flat layer. Is preferable because the light-shielding layer is uniformly formed and the contrast of the display is improved.
 本発明において、波長変換層の空隙率は0.01~10%であることが好ましい。0.01%よりも小さい低空隙率の波長変換層とするためには一般に樹脂成分を多くする必要があり、相対的に波長変換材料の含有量が少なくなることがある。また、10%よりも大きい場合、波長変換層における光散乱が過剰となり、光が取り出しにくくなり輝度が低下することがある。また、特に、本発明の波長変換基板自体がOLEDやLEDを有する場合、波長変換層の上に遮光層を形成する際に遮光層が波長変換層の空隙に染み込み、光吸収が強くなることがある。 In the present invention, the porosity of the wavelength conversion layer is preferably 0.01 to 10%. In order to obtain a wavelength conversion layer having a low porosity of less than 0.01%, it is generally necessary to increase the amount of the resin component, and the content of the wavelength conversion material may be relatively small. On the other hand, if it is larger than 10%, light scattering in the wavelength conversion layer becomes excessive, it becomes difficult to extract light, and the brightness may decrease. Further, in particular, when the wavelength conversion substrate itself of the present invention has an OLED or an LED, when the light-shielding layer is formed on the wavelength conversion layer, the light-shielding layer permeates into the voids of the wavelength conversion layer, and light absorption may be strengthened. be.
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれらの範囲に限定されない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these ranges.
 (光散乱性粒子の平均粒子径の測定方法)
 粒度分布測定装置(MT3300;日機装(株)製)の水を満たした試料室に光散乱性粒子を投入し、300秒間超音波処理を行った後に粒度分布を測定し、累積分布に対して50%となる粒子径を平均粒子径とした。
(Measuring method of average particle size of light scattering particles)
Light-scattering particles were placed in a water-filled sample chamber of a particle size distribution measuring device (MT3300; manufactured by Nikkiso Co., Ltd.), ultrasonically treated for 300 seconds, and then the particle size distribution was measured. The particle size to be% was defined as the average particle size.
 (波長変換ペースト、光散乱ペーストの原料)
 波長変換ペーストの作製に用いた原料は次のとおりである。
光散乱性粒子:AA-1.5(アルミナ、平均粒子径1.6μm、アルミナ、住友化学(株)製)
波長変換材料1:Lumidot 640 CdSe(赤色量子ドット材料、シグマアルドリッチ社製)
波長変換材料2:Lumidot 530 CdSe(緑色量子ドット材料、シグマアルドリッチ社製) 
光重合開始剤:“Irgacure”(登録商標) OXE01(BASFジャパン(株)製)
モノマー:NK-9PG(2官能メタクリレートであるポリプロピレングリコール#400ジメタクリレート)(新中村化学工業(株)製)
ポリマー:“エトセル”(登録商標)STD7(I)(セルロースエチルエーテル)(DDPスペシャルティ・プロダクツ・ジャパン(株)製)
溶媒:プロピレングリコールモノメチルエーテルアセテート(富士フイルム和光純薬(株)製)
 (波長変換ペースト、光散乱ペーストの調製)
 光散乱性粒子を25重量部、波長変換材料1を5重量部、光重合開始剤を0.1重量部、モノマーを34.9重量部、ポリマーを15重量部、溶媒を20重量部秤量した後、3本ローラー混練機にて混練した後、空気によって100~400kPaの圧力をかけながらSHP-400フィルター((株)ロキテクノ製)でろ過し、赤色サブピクセル用波長変換ペーストを得た。また、波長変換材料1を波長変換材料2に置き換えた以外は同様にして、緑色サブピクセル用波長変換ペーストを得た。また、波長変換材料1を加えないこと以外は同様にして、青色サブピクセル用光散乱ペーストを得た。
(Raw material for wavelength conversion paste and light scattering paste)
The raw materials used to prepare the wavelength conversion paste are as follows.
Light-scattering particles: AA-1.5 (alumina, average particle size 1.6 μm, alumina, manufactured by Sumitomo Chemical Co., Ltd.)
Wavelength conversion material 1: Lumidot 640 CdSe (red quantum dot material, manufactured by Sigma-Aldrich)
Wavelength conversion material 2: Lumidot 530 CdSe (green quantum dot material, manufactured by Sigma-Aldrich)
Photopolymerization Initiator: "Irgacure" (registered trademark) OXE01 (manufactured by BASF Japan Ltd.)
Monomer: NK-9PG (polypropylene glycol # 400 dimethacrylate, which is a bifunctional methacrylate) (manufactured by Shin Nakamura Chemical Industry Co., Ltd.)
Polymer: "Etocell" (registered trademark) STD7 (I) (cellulose ethyl ether) (manufactured by DDP Specialty Products Japan Co., Ltd.)
Solvent: Propylene glycol monomethyl ether acetate (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
(Preparation of wavelength conversion paste and light scattering paste)
Weighed 25 parts by weight of light-scattering particles, 5 parts by weight of wavelength conversion material 1, 0.1 parts by weight of photopolymerization initiator, 34.9 parts by weight of monomer, 15 parts by weight of polymer, and 20 parts by weight of solvent. Then, after kneading with a three-roller kneader, the mixture was filtered through an SHP-400 filter (manufactured by Loki Techno Co., Ltd.) while applying a pressure of 100 to 400 kPa with air to obtain a wavelength conversion paste for red subpixels. Further, a wavelength conversion paste for green subpixels was obtained in the same manner except that the wavelength conversion material 1 was replaced with the wavelength conversion material 2. Further, a light scattering paste for blue subpixels was obtained in the same manner except that the wavelength conversion material 1 was not added.
 (アクリルポリマー(P-1)の合成)
 文献(特許第3120476号公報;実施例1)記載の方法により、メチルメタクリレート/メタクリル酸/スチレン共重合体(質量比30/40/30)を合成後、グリシジルメタクリレート40重量部を付加させ、精製水で再沈、濾過、乾燥することにより、平均分子量(Mw)40,000、酸価110(mgKOH/g)のアクリルポリマー(P-1)粉末を得た。
(Synthesis of acrylic polymer (P-1))
After synthesizing a methyl methacrylate / methacrylic acid / styrene copolymer (mass ratio 30/40/30) by the method described in the literature (Patent No. 312476; Example 1), 40 parts by weight of glycidyl methacrylate is added and purified. By reprecipitation with water, filtration, and drying, an acrylic polymer (P-1) powder having an average molecular weight (Mw) of 40,000 and an acid value of 110 (mgKOH / g) was obtained.
 (黒色顔料分散液の調整)
 黒色顔料として窒化チタン粒子(日清エンジニアリング(株)製)を200g、アクリルポリマー(P-1)のプロピレングリコールモノメチルエーテルアセテート(以下、PGMEA)35重量%溶液を114g、高分子分散剤として3級アミノ基と4級アンモニウム塩を有するディスパービックLPN-21116を25g及びPGMEA661gをタンクに仕込み、ホモミキサーで20分撹拌し、予備分散液を得た。その後、0.05mmφジルコニアビーズを75%充填した遠心分離セパレーターを具備したウルトラアペックスミル(寿工業製)に予備分散液を供給し、回転速度8m/sで3時間分散を行い、固形分濃度25質量%、着色材/樹脂(質量比)=80/20の黒色顔料分散液を得た。
(Adjustment of black pigment dispersion)
200 g of titanium nitride particles (manufactured by Nisshin Engineering Co., Ltd.) as a black pigment, 114 g of a 35 wt% solution of propylene glycol monomethyl ether acetate (hereinafter, PGMEA) of an acrylic polymer (P-1), and a third grade as a polymer dispersant. 25 g of Disperbic LPN-21116 having an amino group and a quaternary ammonium salt and 661 g of PGMEA were charged into a tank, and the mixture was stirred with a homomixer for 20 minutes to obtain a preliminary dispersion. After that, a pre-dispersion solution was supplied to an Ultra Apex Mill (manufactured by Kotobuki Kogyo) equipped with a centrifuge separator filled with 75% of 0.05 mmφ zirconia beads, and the mixture was dispersed at a rotation speed of 8 m / s for 3 hours to achieve a solid content concentration of 25. A black pigment dispersion having a mass% and a colorant / resin (mass ratio) = 80/20 was obtained.
 (遮光層用樹脂組成物の調整)
 PGMEAを33.31gに、光重合開始剤としてアデカアークルズ(登録商標)NCI-831を0.35g添加し、固形分が溶解するまで撹拌した。さらに、アクリルポリマー(P-1)のPGMEA35重量%溶液を5.55g、多官能モノマーとしてジペンタエリスリトールヘキサアクリレート(日本化薬(株)製)を2.81g、密着改良剤として製KBM5103(信越化学(株)製)を0.60g、界面活性剤としてシリコーン系界面活性剤BYK333のPGMEA10重量%溶液を0.40g添加し、室温にて1時間撹拌し、感光性レジストを得た。この感光性レジストに黒色顔料分散液を56.98g添加することで全固形分濃度20%、黒色顔料/樹脂(質量比)=58/42の遮光層用樹脂組成物を調製した。
(Adjustment of resin composition for light-shielding layer)
To 33.31 g of PGMEA, 0.35 g of ADEKA ARKULS (registered trademark) NCI-831 was added as a photopolymerization initiator, and the mixture was stirred until the solid content was dissolved. Furthermore, 5.55 g of PGMEA35 wt% solution of acrylic polymer (P-1), 2.81 g of dipentaerythritol hexaacrylate (manufactured by Nippon Kayaku Co., Ltd.) as a polyfunctional monomer, and KBM5103 (Shinetsu) manufactured as an adhesion improver. 0.60 g (manufactured by Chemical Co., Ltd.) and 0.40 g of a 10% by weight solution of silicone-based surfactant BYK333 as a surfactant were added, and the mixture was stirred at room temperature for 1 hour to obtain a photosensitive resist. By adding 56.98 g of a black pigment dispersion to this photosensitive resist, a resin composition for a light-shielding layer having a total solid content concentration of 20% and a black pigment / resin (mass ratio) = 58/42 was prepared.
 (ポリシロキサン溶液の分析方法)
 ポリシロキサン溶液の固形分濃度は、以下の方法により求めた。アルミカップにポリシロキサン溶液を1.5g秤取し、ホットプレートを用いて250℃で30分間加熱して液分を蒸発させた。加熱後のアルミカップに残った固形分の重量を秤量して、加熱前の重量に対する割合からポリシロキサン溶液の固形分濃度を求めた。
(Analytical method of polysiloxane solution)
The solid content concentration of the polysiloxane solution was determined by the following method. 1.5 g of the polysiloxane solution was weighed in an aluminum cup and heated at 250 ° C. for 30 minutes using a hot plate to evaporate the liquid content. The weight of the solid content remaining in the aluminum cup after heating was weighed, and the solid content concentration of the polysiloxane solution was determined from the ratio to the weight before heating.
 ポリシロキサンの重量平均分子量は、以下の方法により求めた。GPC分析装置(HLC-8220;東ソー(株)製)を用い、流動層としてテトラヒドロフランを用いて、JIS K 7252-3(2008/03/20制定)に基づきGPC分析を行い、ポリスチレン換算の重量平均分子量を測定した。 The weight average molecular weight of polysiloxane was determined by the following method. Using a GPC analyzer (HLC-8220; manufactured by Toso Co., Ltd.) and tetrahydrofuran as a fluidized bed, GPC analysis was performed based on JIS K 7252-3 (established on March 20, 2008), and the polystyrene-equivalent weight average was obtained. The molecular weight was measured.
 ポリシロキサン中の各繰り返し単位の含有比率は、以下の方法により求めた。ポリシロキサン溶液を直径10mmの“テフロン”(登録商標)製NMRサンプル管に注入して29Si-NMR測定を行い、オルガノシランに由来するSi全体の積分値に対する、特定のオルガノシランに由来するSiの積分値の割合から各繰り返し単位の含有比率を算出した。29Si-NMR測定条件を以下に示す。
装置:核磁気共鳴装置(JNM-GX270、日本電子(株)製)
測定法:ゲーテッドデカップリング法
測定核周波数:53.6693MHz(29Si核)
スペクトル幅:20,000Hz
パルス幅:12μs(45°パルス)
パルス繰り返し時間:30.0秒
溶媒:アセトン-d6
基準物質:テトラメチルシラン
測定温度:23℃
試料回転数:0.0Hz
 (ポリシロキサン溶液の合成)
 1,000mLの三口フラスコに、トリフルオロプロピルトリメトキシシランを147.32g(0.675mol)、3-メタクリロキシプロピルメチルジメトキシシランを40.66g(0.175mol)、3-トリメトキシシリルプロピルコハク酸無水物を26.23g(0.10mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを12.32g(0.05mol)、ジブチルヒドロキシトルエンを0.808g、PGMEAを171.62g仕込み、室温で撹拌しながら水52.65gにリン酸2.265g(仕込みモノマーに対して1.0重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、フラスコを70℃のオイルバスに浸けて90分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液温度(内温)が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、昇温および加熱撹拌中、窒素95体積%、酸素5体積%の混合気体を0.05L/分流した。反応中に副生成物であるメタノール、水が合計131.35g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン溶液を得た。なお、得られたポリシロキサンの重量平均分子量は4,000であった。また、ポリシロキサンにおける、トリフルオロプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランに由来する繰り返し単位のモル比は、それぞれ67.5mol%、17.5mol%、10mol%、5mol%であった。
The content ratio of each repeating unit in the polysiloxane was determined by the following method. A polysiloxane solution is injected into an NMR sample tube manufactured by "Teflon" (registered trademark) with a diameter of 10 mm, and 29 Si-NMR measurement is performed. The content ratio of each repeating unit was calculated from the ratio of the integrated values of. 29 Si-NMR measurement conditions are shown below.
Device: Nuclear magnetic resonance device (JNM-GX270, manufactured by JEOL Ltd.)
Measurement method: Gated decoupling method Measurement nuclear frequency: 53.6693 MHz ( 29 Si nucleus)
Spectral width: 20,000 Hz
Pulse width: 12 μs (45 ° pulse)
Pulse repetition time: 30.0 seconds Solvent: Acetone-d6
Reference substance: Tetramethylsilane Measurement temperature: 23 ° C
Sample rotation speed: 0.0Hz
(Synthesis of polysiloxane solution)
147.32 g (0.675 mol) of trifluoropropyltrimethoxysilane, 40.66 g (0.175 mol) of 3-methacryloxypropylmethyldimethoxysilane, 3-trimethoxysilylpropylsuccinic acid in a 1,000 mL three-mouth flask. 26.23 g (0.10 mol) of anhydride, 12.32 g (0.05 mol) of 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane, 0.808 g of dibutylhydroxytoluene, and 171.62 g of PGMEA. A phosphoric acid aqueous solution prepared by dissolving 2.265 g of phosphoric acid (1.0% by weight based on the charged monomer) in 52.65 g of water was added over 30 minutes with stirring at room temperature. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 90 minutes, and then the temperature of the oil bath was raised to 115 ° C. over 30 minutes. One hour after the start of the temperature rise, the solution temperature (internal temperature) reached 100 ° C., and the mixture was heated and stirred for 2 hours (internal temperature was 100 to 110 ° C.) to obtain a polysiloxane solution. During the temperature rise and heating and stirring, a mixed gas of 95% by volume of nitrogen and 5% by volume of oxygen was flowed at 0.05 L / fraction. A total of 131.35 g of methanol and water, which are by-products, were distilled off during the reaction. PGMEA was added to the obtained polysiloxane solution so that the solid content concentration was 40% by weight to obtain a polysiloxane solution. The weight average molecular weight of the obtained polysiloxane was 4,000. It is also derived from trifluoropropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-trimethoxysilylpropylsuccinic anhydride, and 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane in polysiloxane. The molar ratio of the repeating unit was 67.5 mol%, 17.5 mol%, 10 mol%, and 5 mol%, respectively.
 (隔壁用樹脂組成物の調整)
 白色顔料として、二酸化チタン顔料(R-960、BASFジャパン(株)製)5.00gに、樹脂としてポリシロキサン溶液5.00gを混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し、顔料分散液を得た。次に、顔料分散液9.98g、ジアセトンアルコール0.71g、ポリシロキサン溶液1.57g、光重合開始剤として、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(О-アセチルオキシム)(BASFジャパン(株)製)0.050g、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(BASFジャパン(株)製)0.400g、光塩基発生剤として、2-(3-ベンゾイルフェニル)プロピオン酸1,2-ジイソプロピル-3-[ビス(ジメチルアミノ)メチレン]グアニジニウム(富士フイルム和光純薬(株)製)0.100g、光重合性化合物として、ジペンタエリスリトールヘキサアクリレート(新日本薬業(株)製)1.20g、撥液化合物として、光重合性フッ素含有化合物(“メガファック”(登録商標)RS-76-E、DIC(株)製)の40重量%PGMEA希釈溶液1.00g、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート((株)ダイセル製)0.100g、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート](BASFジャパン(株)製)0.030g、アクリル系界面活性剤(“BYK”(登録商標)352、ビックケミージャパン(株)製)のPGMEA10重量%希釈溶液0.100g(濃度500ppmに相当)を、溶媒PGMEA4.76gに溶解させ、撹拌した。次いで、5.0μmのフィルターでろ過を行い、隔壁用樹脂組成物を得た。
(Adjustment of resin composition for partition wall)
5.00 g of titanium dioxide pigment (R-960, manufactured by BASF Japan Ltd.) as a white pigment is mixed with 5.00 g of a polysiloxane solution as a resin, and dispersed using a mill-type disperser filled with zirconia beads. Then, a pigment dispersion was obtained. Next, 9.98 g of the pigment dispersion, 0.71 g of the diacetone alcohol, 1.57 g of the polysiloxane solution, and as a photopolymerization initiator, etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H- Carbazole-3-yl]-, 1- (О-acetyloxime) (manufactured by BASF Japan Co., Ltd.) 0.050 g, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (BASF Japan Co., Ltd.) (Manufactured by) 0.400 g, as a photobase generator, 2- (3-benzoylphenyl) propionic acid 1,2-diisopropyl-3- [bis (dimethylamino) methylene] guanidinium (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 0.100 g, dipentaerythritol hexaacrylate (manufactured by Shin Nihon Yakuhin Co., Ltd.) 1.20 g as a photopolymerizable compound, photopolymerizable fluorine-containing compound ("Megafuck" (registered trademark) RS) as a liquid repellent compound -76-E, manufactured by DIC Co., Ltd. 1.00 g of 40 wt% PGMEA diluted solution, 3', 4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (manufactured by Daicel Co., Ltd.) 0.100 g , Ethylene bis (oxyethylene) bis [3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate] (manufactured by BASF Japan Co., Ltd.) 0.030 g, acrylic solvent ("BYK"("BYK") 0.100 g (corresponding to a concentration of 500 ppm) of PGMEA 10 wt% diluted solution (registered trademark) 352, manufactured by Big Chemie Japan Co., Ltd. was dissolved in 4.76 g of the solvent PGMEA and stirred. Then, filtration was performed with a 5.0 μm filter to obtain a resin composition for a partition wall.
 (遮光層の形成)
 10cm角の無アルカリガラス基板(AGCテクノグラス(株)製、厚み0.7mm)上に、遮光層用樹脂組成物を、キュア後の膜厚が1.5μmになるようにスピンコーターで塗布し、90℃で10分間プリベークを行った。この塗布膜にマスクアライナーPEM-6M(ユニオン光学(株)製)を用い、後述する実施例1~5、および比較例1~3の遮光層形状に対応するフォトマスクを介して、紫外線を100mJ/cmの露光量で露光した。次に、テトラメチルアンモニウムヒドロキシドの0.5質量%水溶液のアルカリ現像液で現像し、続いて純水洗浄することにより、パターニング基板を得た。得られたパターニング基板を熱風オーブン中230℃で30分保持しキュアを行なうことで、実施例または比較例に記載の遮光層形状概略図(図2、9、または14)の形状で、繰り返し構造の単位格子(図中に四角点線で記載)を有する遮光層が、7cm角の範囲にパターン形成された遮光層を形成した。
(Formation of light-shielding layer)
A resin composition for a light-shielding layer is applied on a 10 cm square non-alkali glass substrate (manufactured by AGC Technoglass Co., Ltd., thickness 0.7 mm) with a spin coater so that the film thickness after curing is 1.5 μm. , 90 ° C. for 10 minutes. A mask aligner PEM-6M (manufactured by Union Optical Co., Ltd.) is used for this coating film, and ultraviolet rays are emitted to 100 mJ through a photomask corresponding to the light-shielding layer shapes of Examples 1 to 5 and Comparative Examples 1 to 3 described later. Exposure was performed with an exposure amount of / cm 2. Next, a patterned substrate was obtained by developing with an alkaline developer of a 0.5% by mass aqueous solution of tetramethylammonium hydroxide and then washing with pure water. The obtained patterning substrate is held in a hot air oven at 230 ° C. for 30 minutes and cured to have a repeating structure in the shape of the light-shielding layer shape schematic diagram (FIGS. 2, 9, or 14) described in Examples or Comparative Examples. The light-shielding layer having the unit cell of (indicated by a square dotted line in the figure) formed a light-shielding layer in which a pattern was formed in a range of 7 cm square.
 (遮光層形状、開口形状の評価方法)
 作製した隔壁付き基板を、レーザー顕微鏡(カラー3Dレーザ顕微鏡 VK-9710、(株)キーエンス製)で上面方向からカメラモードで光学顕微鏡像を撮影し、図2、9および14における各パラメータの箇所を、付属のソフトウェアで測定した。
(Evaluation method of light-shielding layer shape and opening shape)
The prepared substrate with a partition wall was photographed with an optical microscope image from the top surface with a laser microscope (color 3D laser microscope VK-9710, manufactured by KEYENCE CORPORATION) in camera mode, and the locations of each parameter in FIGS. 2, 9 and 14 were observed. , Measured with the attached software.
 (隔壁付き基板の作製)
 上記遮光層が形成された基板上に隔壁用樹脂組成物をスピンコートし、ホットプレート(SCW-636、(株)SCREENセミコンダクータソリュージョンズ製)を用いて、温度90℃で2分間乾燥し乾燥膜を作製した。作製した乾燥膜を、パラレルライトマスクアライナー(PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、後述する実施例1~5、および比較例1~3の隔壁形状に対応するフォトマスクを遮光層の位置に対しアライメントして配置した後に、露光量200mJ/cm(i線)で露光した。その後、自動現像装置(AD-2000、滝沢産業(株)製)を用いて、0.045重量%水酸化カリウム水溶液を用いて100秒間シャワー現像し、次いで水を用いて30秒間リンスした。さらに、オーブン(IHPS-222、エスペック(株)製)を用いて、空気中、温度230℃で30分間加熱し、ガラス基板上に、厚み22μmであり、実施例または比較例に記載の隔壁形状概略図(図3、8、10~13)の形状で、繰り返し構造の単位格子(図中に四角点線で記載)を有する隔壁が、対応する遮光層形状概略図(図2、9、または14)の形状の遮光層上に、7cm角の範囲にパターン形成された隔壁付き基板を作製した。
(Manufacturing of substrate with partition wall)
The resin composition for partition walls was spin-coated on the substrate on which the light-shielding layer was formed, and dried using a hot plate (SCW-636, manufactured by SCREEN Semiconductor Solutions Co., Ltd.) at a temperature of 90 ° C. for 2 minutes. A dry film was prepared. The prepared dry film was formed into a partition shape of Examples 1 to 5 and Comparative Examples 1 to 3 described later by using a parallel light mask aligner (PLA-501F, manufactured by Canon Inc.) and using an ultrahigh pressure mercury lamp as a light source. The corresponding photomasks were aligned with respect to the position of the light-shielding layer and then exposed at an exposure of 200 mJ / cm 2 (i-line). Then, using an automatic developing apparatus (AD-2000, manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed with a 0.045 wt% potassium hydroxide aqueous solution for 100 seconds, and then rinsing was performed with water for 30 seconds. Further, using an oven (IHPS-222, manufactured by ESPEC CORP.), It is heated in air at a temperature of 230 ° C. for 30 minutes, and has a thickness of 22 μm on a glass substrate. A partition wall having a repeating structure unit cell (shown by a square dotted line in the figure) in the shape of the schematic view (FIGS. 3, 8, 10 to 13) corresponds to the light-shielding layer shape schematic view (FIGS. 2, 9, or 14). ), A substrate with a partition wall in which a pattern was formed in an area of 7 cm square was produced.
 (隔壁形状、開口形状の評価方法)
 作製した隔壁付き基板を、レーザー顕微鏡(カラー3Dレーザ顕微鏡 VK-9710、(株)キーエンス製)で上面方向からカメラモードで光学顕微鏡像を撮影し、図3、8、10~13における各パラメータの箇所を付属のソフトウェアで測定した。
(Evaluation method of partition wall shape and opening shape)
An optical microscope image of the prepared substrate with a partition wall was taken from the top surface with a laser microscope (color 3D laser microscope VK-9710, manufactured by KEYENCE CORPORATION) in camera mode, and the parameters of each parameter in FIGS. 3, 8, 10 to 13 were taken. The location was measured with the attached software.
 (輝度の評価方法)
 実施例1~5、および比較例1、2の各隔壁付き基板に、以下手法で波長変換ペースト、および光散乱ペーストを塗布・硬化し、波長変換基板を作製した。
(Brightness evaluation method)
A wavelength conversion paste and a light scattering paste were applied and cured to the substrates with partition walls of Examples 1 to 5 and Comparative Examples 1 and 2 by the following method to prepare a wavelength conversion substrate.
 塗布ヘッドとして、吐出口直径50μm、吐出口長130μmの吐出口を塗布ヘッドの長手方向に300μmピッチで51個配列して有するものを用いた。塗布装置としては、マルチラボコータ(東レエンジニアリング(株)製)を用いて、ノズルの左端の吐出口が、隔壁パターンの左端から約2.75cmのストライプ部にくるように位置をアライメントし、さらにストライプに平行な方向とノズルの進行方向をアライメントした後、前記塗布ヘッドに空気によって500~1,500kPaの圧力をかけ、基板に対する進行速度を20~200mm/sの範囲内で変化させて青色サブピクセル用光散乱ペーストを吐出させながら、前記隔壁付き基板にノズル塗布することにより、青色サブピクセル用光散乱ペーストを充填した。その後、ホットプレート上で100℃10分乾燥し、さらに窒素雰囲気下で超高圧水銀灯により露光量200mJ/cm(i線)で露光して硬化させた。次に、塗布ヘッド内のペーストを緑色サブピクセル用波長変換ペーストに入れ替え、上記と同一の位置に隔壁基板とアライメントした後、隔壁のストライプに直交する方向に+100μm塗布ヘッド位置をずらして同様に塗布し、乾燥、露光して硬化させた。さらに塗布ヘッド内のペーストを赤色サブピクセル用波長変換ペーストに入れ替え、上記の青色サブピクセル用光散乱ペースト塗布時と同一の位置に隔壁付き基板とアライメントした後、隔壁のストライプに直交する方向に+200μm塗布ヘッド位置をずらして同様に塗布し、乾燥、露光して硬化させることにより、青、緑、赤の3色のサブピクセルを塗り分けた波長変換基板を作製した。このとき各波長変換層の厚みが、図3、8、10~12の形状の隔壁付き基板については単位格子の中央部において20μmとなるように、図13の形状の隔壁付き基板についてはストライプに直交する方向の隔壁の開口部の中央部において20μmとなるように塗布時の圧力、進行速度を調整した。 As the coating head, one having 51 discharge ports having a discharge port diameter of 50 μm and a discharge port length of 130 μm arranged at a pitch of 300 μm in the longitudinal direction of the coating head was used. As a coating device, a multi-lab coater (manufactured by Toray Engineering Co., Ltd.) was used to align the position so that the discharge port at the left end of the nozzle comes to the stripe portion of about 2.75 cm from the left end of the partition pattern, and further. After aligning the direction parallel to the stripe and the traveling direction of the nozzle, a pressure of 500 to 1,500 kPa is applied to the coating head by air, and the traveling speed with respect to the substrate is changed within the range of 20 to 200 mm / s to change the blue sub. The light scattering paste for blue subpixels was filled by applying a nozzle to the substrate with a partition while discharging the light scattering paste for pixels. Then, it was dried on a hot plate at 100 ° C. for 10 minutes, and further exposed to an exposure amount of 200 mJ / cm 2 (i-line) with an ultra-high pressure mercury lamp in a nitrogen atmosphere to cure. Next, the paste in the coating head is replaced with the wavelength conversion paste for green subpixels, aligned with the partition substrate at the same position as above, and then the coating head position is shifted by +100 μm in the direction orthogonal to the stripe of the partition wall and coated in the same manner. It was dried, exposed and cured. Furthermore, the paste in the coating head is replaced with the wavelength conversion paste for red subpixels, aligned with the substrate with partition at the same position as when the light scattering paste for blue subpixels was applied, and then +200 μm in the direction orthogonal to the stripes of the partition. By shifting the position of the coating head and applying in the same manner, drying, exposing and curing, a wavelength conversion substrate in which subpixels of three colors of blue, green and red were painted separately was produced. At this time, the thickness of each wavelength conversion layer is 20 μm at the center of the unit cell for the partition-walled substrate having the shapes shown in FIGS. 3, 8, 10 to 12, and the partition wall-shaped substrate having the shape shown in FIG. The pressure and the traveling speed at the time of coating were adjusted so as to be 20 μm at the central portion of the opening of the partition wall in the orthogonal direction.
 比較例3の隔壁付き基板には、以下手法で波長変換ペースト、および光散乱ペーストを塗布・硬化し、波長変換基板を作製した。 A wavelength conversion paste and a light scattering paste were applied and cured to the substrate with a partition wall of Comparative Example 3 by the following method to prepare a wavelength conversion substrate.
 塗布装置として、ステージ(SHOT mini(登録商標)200SX-SS、武蔵エンジニアリング(株)製)を、吐出装置として、ノズル(SHN-0.2N、武蔵エンジニアリング(株)製)を接続したディスペンサ(ML-5000XII、武蔵エンジニアリング(株)製)を用いた。隔壁付き基板のパターン中央付近において、隔壁の開口部において遮光層も開口部を有する箇所に、青色サブピクセル用光散乱ペーストを、ノズルを介して滴下することで塗布した。さらに、塗布した箇所から、隔壁のストライプに直交する方向に-300μmの箇所と+300μmの箇所、および隔壁のストライプに平行な方向に-300μmの箇所と+300μmの箇所の計4か所にも同様に青色サブピクセル用光散乱ペーストを塗布した。その後、ホットプレート上で100℃10分乾燥し、さらに窒素雰囲気下で超高圧水銀灯により露光量200mJ/cm(i線)で露光して硬化させた。次にディスペンサのペーストを緑色サブピクセル用波長変換ペーストに入れ替え、上記の最初に塗布した箇所に隔壁付き基板とアライメントした後、隔壁のストライプに直交する方向に+100μmの箇所、および、その箇所から、隔壁のストライプに直交する方向に-300μmの箇所と+300μmの箇所、および隔壁のストライプに平行な方向に-300μmの箇所と+300μmの箇所の計4か所に同様に塗布し、乾燥、露光して硬化させた。さらにディスペンサのペーストを赤色サブピクセル用波長変換ペーストに入れ替え、上記の最初に塗布した箇所に隔壁付き基板とアライメントした後、隔壁のストライプに直交する方向に+200μmの箇所、および、その箇所から、隔壁のストライプに直交する方向に-300μmの箇所と+300μmの箇所、および隔壁のストライプに平行な方向に-300μmの箇所と+300μmの箇所の計4か所に同様に塗布し、乾燥、露光して硬化させることにより、5ピクセルの範囲に青、緑、赤の3色のサブピクセルを塗り分けた波長変換基板を作製した。このとき各波長変換層の厚みが、単位格子の中央部において20μmとなるように吐出量を調整した。 Dispenser (ML) to which a stage (SHOT mini (registered trademark) 200SX-SS, manufactured by Musashi Engineering Co., Ltd.) is connected as a coating device, and a nozzle (SHN-0.2N, manufactured by Musashi Engineering Co., Ltd.) is connected as a discharge device. -5000XII, manufactured by Musashi Engineering Co., Ltd. was used. In the vicinity of the center of the pattern of the substrate with a partition wall, a light scattering paste for blue subpixels was applied to a portion of the opening of the partition wall where the light-shielding layer also had an opening by dropping the light scattering paste for blue subpixels through a nozzle. Further, from the applied place, the same applies to a total of four places, -300 μm and +300 μm in the direction orthogonal to the partition wall stripe, and -300 μm and +300 μm in the direction parallel to the partition wall stripe. A light scattering paste for blue subpixels was applied. Then, it was dried on a hot plate at 100 ° C. for 10 minutes, and further exposed to an exposure amount of 200 mJ / cm 2 (i-line) with an ultra-high pressure mercury lamp in a nitrogen atmosphere to cure. Next, the paste of the dispenser is replaced with the wavelength conversion paste for green subpixels, and after aligning with the substrate with the partition wall at the above-mentioned first applied portion, the portion of +100 μm in the direction orthogonal to the stripe of the partition partition, and from that portion, Apply in the same way to a total of 4 locations, -300 μm and +300 μm in the direction orthogonal to the partition stripes, and -300 μm and +300 μm in the direction parallel to the partition stripes, and dry and expose. It was cured. Furthermore, the paste of the dispenser is replaced with the wavelength conversion paste for red subpixels, and after aligning with the substrate with the partition wall at the first applied portion, the partition wall is formed at +200 μm in the direction orthogonal to the stripe of the partition partition and from that location. Apply in the same way to a total of 4 locations, -300 μm and +300 μm in the direction orthogonal to the stripes, and -300 μm and +300 μm in the direction parallel to the partition partition stripes, and dry, expose and cure. By doing so, a wavelength conversion substrate in which subpixels of three colors of blue, green, and red were painted in a range of 5 pixels was produced. At this time, the discharge amount was adjusted so that the thickness of each wavelength conversion layer was 20 μm at the center of the unit cell.
 上記手法で作製した実施例1~3、および比較例1~3の波長変換基板の、基板中央付近の青色サブピクセル用光散乱層が形成された1つの単位格子の中央(比較例3については最初に青色サブピクセル用光散乱ペーストを塗布した箇所)に青色光を照射した。青色光源としては、市販の液晶モニター(SW2700PT、BenQ社製)を分解して取り出したLCD用青色バックライトを用いた。また、単位格子中央のみに光を照射するため、青色光源上に、直径30μmの円形の開口が1つ形成されたフォトマスクを配置し、その上に、隔壁の開口部において遮光層も開口部を有する箇所の中心が、フォトマスクの穴の中央と重なるように、波長変換基板を、隔壁の形成された面がフォトマスク側になるように配置した。青色光を照射しながら、2次元分光放射輝度計(SR-5000M、(株)トプコンテクノハウス製)を用いて隔壁の形成されていない基板面側から2次元分光放射輝度を測定した。このとき、輝度評価基準は、実施例1のフォトマスクの穴上の単位格子中央の青色光輝度を100とした際に、輝度の相対値が95以上の場合をA、80以上95未満の場合をB、それ未満をCとした。 The center of one unit cell in which the light scattering layer for blue subpixels near the center of the wavelength conversion substrates of Examples 1 to 3 and Comparative Examples 1 to 3 produced by the above method is formed (for Comparative Example 3). The place where the light scattering paste for blue subpixels was first applied) was irradiated with blue light. As the blue light source, a blue backlight for LCD taken out by disassembling a commercially available liquid crystal monitor (SW2700PT, manufactured by BenQ) was used. Further, in order to irradiate light only at the center of the unit cell, a photomask having one circular opening with a diameter of 30 μm formed is placed on the blue light source, and a light-shielding layer is also opened at the opening of the partition wall on the photomask. The wavelength conversion substrate was arranged so that the surface on which the partition wall was formed was on the photomask side so that the center of the portion having the above was overlapped with the center of the hole of the photomask. While irradiating with blue light, the two-dimensional spectral radiance was measured from the substrate surface side on which the partition wall was not formed using a two-dimensional spectral radiance meter (SR-5000M, manufactured by Topcon Techno House Co., Ltd.). At this time, the brightness evaluation standard is A when the relative value of the brightness is 95 or more and A when the relative value of the brightness is 95 or more and less than 95 when the blue light brightness at the center of the unit cell on the hole of the photomask of Example 1 is set to 100. Was B, and less than that was C.
 (縦方向光拡散の評価方法)
 輝度の評価用に作製した波長変換基板について、輝度の評価時と同様に、青色光源からの光を、フォトマスクを介して、基板中央付近の青色サブピクセル用光散乱層が形成された隔壁の開口部において遮光層も開口部を有する箇所の中央に照射して、SR-5000Mを用いて2次元分光放射輝度を測定した。縦方向、すなわち、ストライプに平行な方向の光拡散を評価した。このとき、フォトマスクの穴上の、遮光層の開口部中央の青色光輝度を100とした際に、ストライプに平行な方向下側の遮光層の開口部の輝度を測定し、縦方向光拡散評価基準は、検出下限以下で発光が観測されなかった場合をA、輝度の相対値が1未満の場合をC、1以上の場合をEとした。Eの場合、ストライプに平行な方向に隣接するサブピクセルの中央が一定以上の輝度で発光していることになるため、光拡散が大きく不適である。
(Evaluation method of vertical light diffusion)
Regarding the wavelength conversion substrate manufactured for the evaluation of the luminance, the light from the blue light source is passed through the photomask of the partition wall on which the light scattering layer for the blue subpixel near the center of the substrate is formed, as in the case of the evaluation of the luminance. In the opening, the light-shielding layer was also irradiated to the center of the portion having the opening, and the two-dimensional spectral radiance was measured using SR-5000M. Light diffusion in the longitudinal direction, i.e., in the direction parallel to the stripes, was evaluated. At this time, when the brightness of the blue light at the center of the opening of the light-shielding layer on the hole of the photomask is set to 100, the brightness of the opening of the light-shielding layer on the lower side in the direction parallel to the stripe is measured to diffuse the light in the vertical direction. The evaluation criteria were A when no light emission was observed below the lower limit of detection, C when the relative value of brightness was less than 1, and E when it was 1 or more. In the case of E, since the center of the sub-pixels adjacent in the direction parallel to the stripe emits light with a certain brightness or more, the light diffusion is large and unsuitable.
 (混色の評価方法)
 輝度の評価用に作製した波長変換基板について、輝度の評価時と同様に、青色光源からの光を、フォトマスクを介して、緑色サブピクセル用波長変換層が形成された単位格子の中央に照射し、SR-5000Mを用いて2次元分光放射輝度を測定した。このとき、フォトマスクの穴上の単位格子中央の緑色光輝度を100とした際の、隣接する赤色サブピクセル用波長変換層における赤色光輝度の相対値を測定した。混色の評価基準は、赤色光輝度が検出限界以下で観測されなかった場合をA、赤色光輝度が1未満の場合をC、赤色光輝度が1以上の場合をDとした。
(Evaluation method of color mixing)
Regarding the wavelength conversion substrate prepared for the evaluation of the brightness, the light from the blue light source is irradiated to the center of the unit cell in which the wavelength conversion layer for the green subpixel is formed through the photomask, as in the case of the evaluation of the brightness. Then, the two-dimensional spectral radiance was measured using SR-5000M. At this time, the relative value of the red light brightness in the adjacent red subpixel wavelength conversion layer was measured when the green light brightness at the center of the unit cell on the hole of the photomask was set to 100. The evaluation criteria for color mixing were A when the red light brightness was not observed below the detection limit, C when the red light brightness was less than 1, and D when the red light brightness was 1 or more.
 (横隔壁頂部乗りの評価方法)
 上記手法で作製した波長変換基板について、横隔壁上に波長変換層が存在するかどうか、および存在する場合はその厚みをレーザー顕微鏡で観察した。横隔壁上に波長変換層が見られない場合をA、横隔壁上に波長変換層が見られるが、その厚みが1μm未満の場合をB、厚みが1μm以上3μm未満の場合をC、厚みが3μm以上10μm未満の場合をD、10μm以上の場合をEとした。Eの場合、波長変換基板とOLED基板やLED基板を貼り合わせた際に広い隙間ができるために不適である。
(Evaluation method for riding on the top of the horizontal bulkhead)
With respect to the wavelength conversion substrate produced by the above method, whether or not the wavelength conversion layer was present on the transverse partition wall, and if so, the thickness thereof was observed with a laser microscope. A when the wavelength conversion layer is not seen on the transverse partition, B when the wavelength conversion layer is seen on the transverse partition but the thickness is less than 1 μm, C when the thickness is 1 μm or more and less than 3 μm, the thickness is The case of 3 μm or more and less than 10 μm was designated as D, and the case of 10 μm or more was designated as E. In the case of E, it is unsuitable because a wide gap is formed when the wavelength conversion substrate is bonded to the OLED substrate or the LED substrate.
 (評価結果)
 評価結果を表1に示す。実施例1~5はいずれも良好であった。遮光層の開口率が大きく、また隔壁の開口部において該遮光層も開口部を有する1種のパターンのみからなる比較例1は、輝度が低く不適であった。横隔壁の幅が大きな比較例2は、横隔壁頂部乗りが顕著であり、またその流動方向や流動度合いもランダムだったため隔壁開口中央の膜厚ムラも極めて大きく、他の評価は実施できなかった。
(Evaluation results)
The evaluation results are shown in Table 1. All of Examples 1 to 5 were good. Comparative Example 1 in which the aperture ratio of the light-shielding layer was large and the light-shielding layer also had an opening in the opening of the partition wall was unsuitable because of low brightness. In Comparative Example 2 in which the width of the transverse partition wall was large, the ride on the top of the transverse partition wall was remarkable, and the flow direction and the degree of flow were random, so that the film thickness unevenness at the center of the partition wall opening was extremely large, and other evaluations could not be performed. ..
 隔壁の開口部において遮光層が開口部を有しない箇所に波長変換層を有しない比較例3は、縦方向光拡散が顕著であり不適であった。 Comparative Example 3 in which the light-shielding layer does not have an opening in the opening of the partition wall and does not have a wavelength conversion layer is unsuitable because the vertical light diffusion is remarkable.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
1 隔壁
2 開口部
3 基板
4 塗布ヘッド
5 ペースト
6 加圧配管
7 吐出口
8 遮光層
9 波長変換層
1 Partition 2 Opening 3 Substrate 4 Coating head 5 Paste 6 Pressurized piping 7 Discharge port 8 Light-shielding layer 9 Wavelength conversion layer
 本発明によれば、波長変換層を容易に形成でき、さらに隣接サブピクセルへの光拡散を抑制できる波長変換基板を提供でき、波長変換型ディスプレイに有用に利用できる。 According to the present invention, it is possible to provide a wavelength conversion substrate capable of easily forming a wavelength conversion layer and further suppressing light diffusion to adjacent subpixels, which can be usefully used for a wavelength conversion type display.

Claims (13)

  1.  基板、遮光層、隔壁、および波長変換層を有する波長変換基板の製造方法であって、該隔壁の開口部がストライプ形状となり、該ストライプ形状の1つのストライプにおいて、該遮光層が該ストライプ方向に開口部と遮光部を繰り返す構造を有し、該1つのストライプにおける該遮光層の開口率が5~70%であり、さらに該1つのストライプにおいて該遮光層の開口部と該遮光層の遮光部のいずれにも、同一組成の該波長変換層を有するように波長変換ペーストをノズル塗布する工程を有する波長変換基板の製造方法。 A method for manufacturing a wavelength conversion substrate having a substrate, a light-shielding layer, a partition wall, and a wavelength conversion layer, wherein the opening of the partition wall has a stripe shape, and in one stripe of the stripe shape, the light-shielding layer is in the stripe direction. It has a structure in which an opening and a light-shielding portion are repeated, and the aperture ratio of the light-shielding layer in the one stripe is 5 to 70%, and further, in the one stripe, the opening of the light-shielding layer and the light-shielding portion of the light-shielding layer. A method for manufacturing a wavelength conversion substrate, each of which comprises a step of nozzle-coating a wavelength conversion paste so as to have the wavelength conversion layer having the same composition.
  2.  基板、遮光層、隔壁、および波長変換層を有する波長変換基板の製造方法であって、該隔壁の開口部がストライプ形状となり、該ストライプ形状の1つのストライプにおいて、該隔壁の開口部が該ストライプ方向に少なくとも2種以上のパターンを繰り返す構造を有し、該繰り返しパターンのうち少なくとも1種は該隔壁の開口部において該遮光層も開口部を有し、また該繰り返しパターンのうち少なくとも1種は該隔壁の開口部において該遮光層は実質的に開口部を有さず、さらに該隔壁の開口部において該遮光層が開口部を有する箇所と、該隔壁の開口部において該遮光層が開口部を有しない箇所のいずれにも、同一組成の該波長変換層を有するように波長変換基板の該開口部に波長変換ペーストをノズル塗布する工程を有する波長変換基板の製造方法。 A method for manufacturing a wavelength conversion substrate having a substrate, a light-shielding layer, a partition wall, and a wavelength conversion layer, wherein the opening of the partition wall has a striped shape, and in one stripe of the stripe shape, the opening of the partition wall is the stripe. It has a structure in which at least two or more patterns are repeated in a direction, at least one of the repeating patterns has an opening in the light-shielding layer at the opening of the partition wall, and at least one of the repeating patterns has an opening. The light-shielding layer has substantially no opening in the opening of the partition wall, and the light-shielding layer has an opening in the opening of the partition wall and the light-shielding layer has an opening in the opening of the partition wall. A method for manufacturing a wavelength conversion substrate, which comprises a step of applying a wavelength conversion paste to the opening of the wavelength conversion substrate so as to have the wavelength conversion layer having the same composition in any of the portions having the same composition.
  3.  前記隔壁の開口率が、前記少なくとも1つのストライプにおいて50~95%である請求項1または2記載の波長変換基板の製造方法。 The method for manufacturing a wavelength conversion substrate according to claim 1 or 2, wherein the aperture ratio of the partition wall is 50 to 95% in the at least one stripe.
  4.  前記隔壁の厚みH、前記遮光層の厚みT、および前記波長変換層の厚みTが下式(1)および(2)を満たす請求項1~3のいずれか1項記載の波長変換基板の製造方法。
       H/100≦T≦H/3  (1)
       H/2≦T≦H  (2)
    The wavelength conversion substrate according to any one of claims 1 to 3, wherein the thickness H of the partition wall, the thickness T 1 of the light-shielding layer, and the thickness T 2 of the wavelength conversion layer satisfy the following equations (1) and (2). Manufacturing method.
    H / 100 ≤ T 1 ≤ H / 3 (1)
    H / 2 ≤ T 2 ≤ H (2)
  5.  前記隔壁と前記遮光層の間に、さらに平坦化層を有する請求項1~4のいずれか1項記載の波長変換基板の製造方法。 The method for manufacturing a wavelength conversion substrate according to any one of claims 1 to 4, further comprising a flattening layer between the partition wall and the light-shielding layer.
  6.  前記波長変換層が、樹脂を含有する請求項1~5のいずれか1項記載の波長変換基板の製造方法。 The method for manufacturing a wavelength conversion substrate according to any one of claims 1 to 5, wherein the wavelength conversion layer contains a resin.
  7.  前記波長変換層の空隙率が0.01~10%である請求項1~6のいずれか1項記載の波長変換基板の製造方法。 The method for manufacturing a wavelength conversion substrate according to any one of claims 1 to 6, wherein the wavelength conversion layer has a porosity of 0.01 to 10%.
  8.  前記遮光層の反射率が0.1~10%である請求項1~7のいずれか1項記載の波長変換基板の製造方法。 The method for manufacturing a wavelength conversion substrate according to any one of claims 1 to 7, wherein the light-shielding layer has a reflectance of 0.1 to 10%.
  9.  前記波長変換層が、無機蛍光体を含有する請求項1~8のいずれか1項記載の波長変換基板の製造方法。 The method for manufacturing a wavelength conversion substrate according to any one of claims 1 to 8, wherein the wavelength conversion layer contains an inorganic phosphor.
  10.  前記波長変換層が、量子ドットを含有する請求項1~8のいずれか1項記載の波長変換基板の製造方法。 The method for manufacturing a wavelength conversion substrate according to any one of claims 1 to 8, wherein the wavelength conversion layer contains quantum dots.
  11.  基板、遮光層、隔壁、および波長変換層を有する波長変換基板であって、該隔壁の開口部がストライプ形状であり、該ストライプ形状の1つのストライプにおいて、該遮光層が該ストライプ方向に開口部と遮光部を繰り返す構造を有し、該1つのストライプにおける該遮光層の開口率が5~70%であり、さらに該1つのストライプにおいて該遮光層の開口部と該遮光層の遮光部のいずれにも、同一組成の該波長変換層を有する波長変換基板。 A wavelength conversion substrate having a substrate, a light-shielding layer, a partition wall, and a wavelength conversion layer, the opening of the partition wall having a stripe shape, and in one stripe of the stripe shape, the light-shielding layer has an opening in the stripe direction. The light-shielding layer has an aperture ratio of 5 to 70% in the one stripe, and either the opening of the light-shielding layer or the light-shielding portion of the light-shielding layer in the one stripe. Also, a wavelength conversion substrate having the wavelength conversion layer having the same composition.
  12.  基板、遮光層、隔壁、および波長変換層を有する波長変換基板であって、該隔壁の開口部がストライプ形状であり、該ストライプ形状の1つのストライプにおいて、該隔壁の開口部が該ストライプ方向に少なくとも2種以上のパターンを繰り返す構造を有し、該繰り返しパターンのうち少なくとも1種は該隔壁の開口部において該遮光層も開口部を有し、また該繰り返しパターンのうち少なくとも1種は該隔壁の開口部において該遮光層は実質的に開口部を有さず、さらに該隔壁の開口部において該遮光層が開口部を有する箇所と、該隔壁の開口部において該遮光層が開口部を有しない箇所のいずれにも、同一組成の該波長変換層を有する波長変換基板。 A wavelength conversion substrate having a substrate, a light-shielding layer, a partition wall, and a wavelength conversion layer, in which the opening of the partition wall is striped, and in one stripe of the stripe shape, the opening of the partition wall is in the stripe direction. It has a structure in which at least two or more patterns are repeated, at least one of the repeating patterns also has an opening in the light-shielding layer at the opening of the partition, and at least one of the repeating patterns has the partition. The light-shielding layer has substantially no opening in the opening of the partition wall, and further, the light-shielding layer has an opening in the opening of the partition wall and the light-shielding layer has an opening in the opening of the partition wall. A wavelength conversion substrate having the wavelength conversion layer having the same composition in any of the places where the wavelength is not formed.
  13.  請求項11または12記載の波長変換基板と、OLEDまたはLEDを光源として有するディスプレイ。 A display having the wavelength conversion substrate according to claim 11 or 12 and an OLED or LED as a light source.
PCT/JP2021/004890 2020-02-13 2021-02-10 Method for producing wavelength conversion substrate, wavelength conversion substrate, and display WO2021162024A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021513475A JPWO2021162024A1 (en) 2020-02-13 2021-02-10
KR1020227013999A KR20220137867A (en) 2020-02-13 2021-02-10 Method for manufacturing wavelength conversion substrate, wavelength conversion substrate, and display
CN202180009884.5A CN114981690A (en) 2020-02-13 2021-02-10 Method for manufacturing wavelength conversion substrate, and display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-022111 2020-02-13
JP2020022111 2020-02-13

Publications (1)

Publication Number Publication Date
WO2021162024A1 true WO2021162024A1 (en) 2021-08-19

Family

ID=77292400

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004890 WO2021162024A1 (en) 2020-02-13 2021-02-10 Method for producing wavelength conversion substrate, wavelength conversion substrate, and display

Country Status (4)

Country Link
JP (1) JPWO2021162024A1 (en)
KR (1) KR20220137867A (en)
CN (1) CN114981690A (en)
WO (1) WO2021162024A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004865A1 (en) * 2008-07-10 2010-01-14 富士電機ホールディングス株式会社 Organic el display and method for manufacturing same
WO2010146653A1 (en) * 2009-06-15 2010-12-23 富士電機ホールディングス株式会社 Color conversion filter substrate
JP2015034833A (en) * 2011-11-30 2015-02-19 シャープ株式会社 Phosphor substrate, display device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003034508A1 (en) * 2001-10-12 2005-02-03 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP2006501617A (en) 2002-10-01 2006-01-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ Electroluminescent display with improved light external coupling
US20080036367A1 (en) * 2004-08-26 2008-02-14 Idemitsu Kosan Co., Ltd. Organic El Display Device
CN103329625B (en) * 2011-02-07 2015-11-25 夏普株式会社 Organic EL display and manufacture method thereof
US9260654B2 (en) * 2011-03-11 2016-02-16 Konica Minolta, Inc. Manufacturing method for light emitting device and phosphor mixture
US8921872B2 (en) * 2011-12-09 2014-12-30 Sony Corporation Display unit and method of manufacturing the same, electronic apparatus, illumination unit, and light-emitting device and method of manufacturing the same
US9111464B2 (en) 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
JP6087872B2 (en) * 2013-08-12 2017-03-01 富士フイルム株式会社 Optical film, barrier film, light conversion member, backlight unit, and liquid crystal display device
KR102170059B1 (en) 2016-12-28 2020-10-27 디아이씨 가부시끼가이샤 Ink composition, light conversion layer and color filter
JP2019113759A (en) * 2017-12-25 2019-07-11 東京応化工業株式会社 Method for producing wavelength conversion substrate
JP6808662B2 (en) * 2018-01-15 2021-01-06 株式会社Joled Manufacturing method of organic EL display panel, organic EL display panel, organic EL display device
JP6908116B2 (en) * 2018-07-05 2021-07-21 東レ株式会社 Method for manufacturing resin composition, light-shielding film and light-shielding film

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010004865A1 (en) * 2008-07-10 2010-01-14 富士電機ホールディングス株式会社 Organic el display and method for manufacturing same
WO2010146653A1 (en) * 2009-06-15 2010-12-23 富士電機ホールディングス株式会社 Color conversion filter substrate
JP2015034833A (en) * 2011-11-30 2015-02-19 シャープ株式会社 Phosphor substrate, display device

Also Published As

Publication number Publication date
CN114981690A (en) 2022-08-30
KR20220137867A (en) 2022-10-12
JPWO2021162024A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
TWI816371B (en) Substrate and display device with partition wall
JP7216642B2 (en) Quantum dot-containing curable composition, quantum dot-containing cured product, method for producing optical member, and method for producing display device
JP7484457B2 (en) Micro LED display device
US9507206B2 (en) Quantum dot color filter and manufacturing method thereof, and display apparatus
TWI808137B (en) Negative photosensitive coloring composition, cured film and manufacturing method thereof, patterned processed substrate, substrate with partition walls, display device, touch panel
WO2015041316A1 (en) Liquid crystal display device and light conversion member
KR20160036917A (en) Self emission type photosensitive resin composition, and display device comprising color conversion layer prepared thereby
TWI576665B (en) Colored resin composition for color filter, color filter, liquid crystal display, and organic el display
JP2003229260A (en) Manufacturing method of color conversion filter
JP2012083411A (en) Color filter resin composition, color filter, and organic light-emitting display device and liquid crystal display device
TW201348272A (en) Colored resin composition for color filter, color filter, liquid crystal display, and organic EL display
WO2021162024A1 (en) Method for producing wavelength conversion substrate, wavelength conversion substrate, and display
JP7211378B2 (en) Wavelength conversion substrate, display, and method for manufacturing wavelength conversion substrate
WO2022138197A1 (en) Substrate with barrier ribs, wavelength conversion substrate, display, and method for manufacturing wavelength conversion substrate
JP5849392B2 (en) Color filter for white light emitting diode light source and display device
TW201724608A (en) Substrate with bank
JP7420138B2 (en) Pastes, substrates, displays, and substrate manufacturing methods
JP5671991B2 (en) Color filter for white light emitting diode light source and display device
JP2021096412A (en) Wavelength conversion paste, wavelength conversion substrate, display, and method of manufacturing wavelength conversion substrate
JP5757107B2 (en) Color filter for white light emitting diode light source and display device
TWI670354B (en) Self emission type photosensitive resin composition, color filter and image display device using the same
JP2022137418A (en) Waveform conversion paste, substrate, display, and method for manufacturing substrate
JP5668495B2 (en) Color filter for white light emitting diode light source and display device
JP2012201875A (en) Blue pigment dispersion, blue negative resist composition for color filter, color filter, liquid crystal display device, and organic light emitting display device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021513475

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21754241

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21754241

Country of ref document: EP

Kind code of ref document: A1