WO2022138197A1 - Substrate with barrier ribs, wavelength conversion substrate, display, and method for manufacturing wavelength conversion substrate - Google Patents

Substrate with barrier ribs, wavelength conversion substrate, display, and method for manufacturing wavelength conversion substrate Download PDF

Info

Publication number
WO2022138197A1
WO2022138197A1 PCT/JP2021/045294 JP2021045294W WO2022138197A1 WO 2022138197 A1 WO2022138197 A1 WO 2022138197A1 JP 2021045294 W JP2021045294 W JP 2021045294W WO 2022138197 A1 WO2022138197 A1 WO 2022138197A1
Authority
WO
WIPO (PCT)
Prior art keywords
partition wall
substrate
wavelength conversion
width
cell
Prior art date
Application number
PCT/JP2021/045294
Other languages
French (fr)
Japanese (ja)
Inventor
石塚雅敏
梶野佳範
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202180083251.9A priority Critical patent/CN116802713A/en
Priority to JP2021574794A priority patent/JPWO2022138197A1/ja
Priority to KR1020237004923A priority patent/KR20230121028A/en
Publication of WO2022138197A1 publication Critical patent/WO2022138197A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness

Definitions

  • the present invention relates to a substrate with a partition wall, a wavelength conversion substrate, a display, and a method for manufacturing a wavelength conversion substrate.
  • OLED displays use an organic light emitting diode (OLED) or light emitting diode (LED) driven by an active matrix as a light source, and display at least a part of the light in full color by changing it with a wavelength conversion material.
  • OLED organic light emitting diode
  • LED light emitting diode
  • These displays are characterized by the fact that multiple panels made in units can be combined in any shape and joined together, and the image can be controlled by a controller or the like to form a display of any size and resolution. It is called technology.
  • Patent Document 1 As a method of using an OLED as a light source, a method of using an OLED that emits blue light is known (Patent Document 1). In this case, in the blue subpixel, the light from the OLED is transmitted and scattered without wavelength conversion, and in the green and red subpixels, the blue light from the OLED is converted into green and red by the wavelength conversion material, respectively. It is transparent.
  • a blue light emitting LED is used as in the OLED, and in addition to a method of converting a part of light into red and green with a wavelength conversion material, an ultraviolet light emitting LED is used as a wavelength conversion material.
  • An ultraviolet light emitting LED is used as a wavelength conversion material.
  • the wavelength conversion material In these wavelength conversion type displays, it is necessary to arrange the wavelength conversion material in a pattern with a size corresponding to the OLED which is the light source and the subpixel of the LED.
  • a photolithography method and an inkjet method Patent Document 3
  • the wavelength conversion material is applied to the entire surface, exposed at a predetermined position, and then most of the material is removed by development. Therefore, the loss of the wavelength conversion material is large, and the process also repeats exposure and development multiple times. There were challenges that were necessary and complicated.
  • the inkjet method is excellent in material efficiency because the wavelength conversion layer can be formed only at a desired position.
  • FIG. 1 shows a schematic diagram showing a method of applying the wavelength conversion paste by the nozzle application method.
  • the nozzle coating method has a space (manifold) for storing the paste 2 inside the coating head 1, and while relatively moving the coating head 1 facing the substrate 3, the pressurized pipe 4 connected to the space.
  • this pixel is filled with a coating liquid corresponding to red, green, and blue, and each pixel functions as a sub-pixel, and each sub-pixel is collectively one pixel. It becomes.
  • the viscosity of the paste can be higher than that of the inkjet method. Therefore, by designing the viscosity higher, it is possible to suppress the clogging of the nozzle due to the sedimentation of the particle components, so it is especially used in the coating of paste containing particles. ing.
  • the partition walls that partition the wavelength conversion materials of each color are becoming thinner.
  • a fine line pattern having a partition wall width of 20 ⁇ m or less is formed by a photolithography method, the adhesion between the partition wall and the base substrate is insufficient due to the thinning, and the partition wall is peeled off from the base during development. Occurs. This problem is particularly likely to occur at the outer periphery of the pattern. Therefore, it is conceivable to make the width of the partition wall constituting the outer peripheral portion of the pattern relatively thicker than the width of the partition wall existing inside.
  • the discharge amount may not be stable immediately after the start of discharge of the coating liquid, so coating is performed up to the space (opening 7) surrounded by the partition wall used as a pixel in actual use.
  • the discharge of the liquid is started. That is, the coating is started from the time point up to the outer peripheral portion of the region where the partition wall is provided. At this time, if the thickness of the partition wall constituting the outer periphery of the area where the partition wall is provided is thicker than the width of the inner partition wall, the coating liquid rides on the partition wall having the thick width, and the state continues for a while.
  • the thick partition wall constituting the outer circumference is present, and the thick partition wall constituting the outer periphery is present at the jointed portion. Since they are joined to each other, the area of the non-pixel portion becomes large, and there is a problem that the joined portion is visually recognized as uneven when displaying on a display.
  • the substrate with a partition wall of the present invention has the following configuration. That is, it is a substrate with a partition wall having a substrate and a partition wall in which a pattern is formed on the substrate, and the cells partitioned by the partition wall have a region arranged in a grid pattern, and the outer edge of the region is formed.
  • the outermost partition wall formed or formed to surround the region has a width wider than the width of the partition wall forming other than the outer edge of the region, and is on an extension of the row of the grid array.
  • a substrate with a partition wall that has a portion lower in height than the other portion on at least one side intersecting with the other portion and the portion lower in height than the other portion satisfies the following (1) or (2). ,. (1) When connected to a cell, the width at the connection portion shall be narrower than the width of the cell. (2) When not connected to a cell, the area should be larger than the area of the nearest cell.
  • one of the preferred embodiments of the substrate with a partition wall of the present invention is a substrate with a partition wall satisfying the above (2), and the maximum width of a portion having a lower height than other parts of the partition wall located on the outermost side is set. It is a substrate with a partition wall, which is 98% or less of the width of the partition wall located on the outermost side corresponding to the portion having a height lower than the other portion showing the maximum width.
  • one of the preferred embodiments of the substrate with a partition wall of the present invention is that the partition wall located on the outermost side is higher in the partition wall in a direction orthogonal to the extension line of the row of the grid-like arrangement than the other parts.
  • the width of the portion where the proportion of the low portion of the portion is 50% or more and the proportion of the portion having a lower height than the other portion is 50% or more is the partition wall in which the portion is present. It is a substrate with a partition wall, which is 20% or less of the width of the above.
  • a material for a display device such as a light emitting material or a wavelength conversion material such as a phosphor is used by reducing the variation in the film thickness of the material filled in the cells partitioned by the partition wall. In that case, it is possible to provide a display device having little variation in brightness and high display quality.
  • the substrate with a partition wall of the present invention has a substrate and a partition wall.
  • the substrate has a function as a support in a substrate with a partition wall.
  • the substrate include a glass plate, a resin plate, a resin film, and the like. Further, these may be provided with a functional layer such as a color filter.
  • a functional layer such as a color filter.
  • the material of the glass plate non-alkali glass is preferable.
  • the material of the resin plate and the resin film polyester, (meth) acrylic polymer, transparent polyimide, polyether sulfone and the like are preferable.
  • the thickness of the glass plate and the resin plate is preferably 1 mm or less, preferably 0.8 mm or less.
  • the thickness of the resin film is preferably 100 ⁇ m or less.
  • the substrate with a partition wall has a partition wall on the substrate.
  • the surface of the substrate on the side having the partition wall has cells partitioned by the partition wall, and the cells are opened on the surface surrounded by the top of the partition wall so that the fluorescent substance paste or the like can be filled. is doing.
  • the cells partitioned by the partition wall are arranged in a grid pattern. It is planned that the region in which the cells are arranged in a grid pattern will be a region corresponding to pixels when the wavelength conversion substrate is used.
  • the grid-like arrangement refers to an arrangement having at least one set of parallel-arranged partition walls in a group of cells arranged on a substrate surface. With such a grid-like arrangement, the wavelength conversion layer can be easily formed by the nozzle coating method by sweeping the nozzle while discharging the coating material in parallel with the partition walls arranged in parallel.
  • the parallelism in the group of partition walls arranged in parallel is completely parallel, but when the nozzle for discharging the object to be coated is swept along the partition wall, the cell to be coated has an object to be coated. It is permissible for the bulkhead to be serpentine, curved or skewed to the extent that it can be filled.
  • the outermost partition wall formed so as to form the outer edge of the region in which the cells are arranged in a grid pattern or to surround the region is other than the outer edge of the region. It has a width wider than the width of the partition wall forming the above (hereinafter, the outermost partition wall is referred to as a "frame portion" for convenience).
  • FIG. 2 shows an enlarged view of the vicinity of the frame portion of the substrate with a partition wall in which the width of the outer edge portion (corresponding to the frame portion) of the group of cells partitioned by the conventional partition wall is larger than the width of the partition wall existing between the cells.
  • the partition wall 6 is a color element in which cells are partitioned corresponding to each pixel of a red pixel (10R), a green pixel (10G), and a blue pixel (10B), and each pixel is grouped together. That is, the partition wall pattern portion 8 is formed as a pixel pattern in which pixels (referred to as RGB pixels (10) for convenience) are arranged at an arbitrary pitch.
  • a frame portion 9 is provided on the outermost circumference of the partition wall pattern so as to surround the inner cell. Further, the substrate with a partition wall has a region where no partition wall is formed on the outside of the frame portion 9. In the present invention, the region where the outer partition wall of the frame portion 9 is not formed is referred to as a non-pixel portion (non-pixel portion 12) for convenience.
  • the cells are arranged in a grid pattern, and when the outer shape of the cells is rectangular when viewed from the upper surface, it is stable to apply the cells in the long side direction using a nozzle. It is preferable from the viewpoint of sex. Therefore, in each figure, the coating material is discharged from the side of the region where the partition wall is not provided, in parallel with the partition wall forming the long side of the cell (hereinafter, may be referred to as “vertical partition wall” for convenience). The following will be described with reference to an example on the premise that the nozzle is swept and the coating is performed.
  • the inner dimension width in the direction orthogonal to the vertical partition wall is defined as the cell horizontal width WA
  • the internal dimension in the direction parallel to the vertical partition wall is defined as the cell vertical width LA .
  • the width of the partition wall between adjacent cells is defined as the cell spacing wall width LB.
  • the areas of the red pixels (10R), the green pixels (10G), and the blue pixels ( 10B ) are set to SR, SG, and SB, respectively, and the minimum value among the areas of the RGB pixels is the cell minimum area S. Let it be RGB MIN .
  • the width of the partition wall located on the outermost side (frame portion) that the nozzle first reaches is defined as the frame portion vertical width LF (see FIG. 2).
  • the frame portion vertical width LF see FIG. 2
  • the columnar flow coating liquid from the nozzle runs on the frame portion 9, the coating liquid is disturbed, and the pixel film thickness at the pattern start portion fluctuates. Becomes larger.
  • the width of the frame portion that also serves as the short side of the cell is about the same as the width of the partition wall that partitions the cells, that is, the cell spacing wall width (LB).
  • the partition wall width As described above, in such a substrate with a partition wall, if a fine pattern having a partition wall width of 20 ⁇ m or less is used, the partition wall is peeled off during processing, which makes stable processing difficult.
  • connection type buffer portion 13 the portion having a height lower than that of other portions of the frame portion.
  • the frame portion 9 is the same.
  • the portion is also connected to the outside of the region where the partition wall is provided, that is, the non-pixel portion 12.
  • WF the width of the connection type shock absorber 13 is constant, but in that case, in order to reduce the change in coatability due to the application of the coating liquid on the frame portion 9, WF > ( WA /).
  • WF ⁇ ( WA / 2) is further preferable in order to reduce the change in the filling amount of the coating liquid into the RGB pixels 10. Further, from the viewpoint of pattern workability and prevention of pattern peeling, it is preferable that WA > WF .
  • connection type shock absorber 13 has a width narrower than the width of the connected cell at the portion (connection portion) connected to the cell, but is in the region where the partition wall is provided. It also has a widened part until it is connected to the outside.
  • the width of the widest portion is the maximum value WF MAX of the width of the connection type buffer portion
  • the width of the narrowest portion is the minimum value WF of the width of the connection type buffer portion.
  • the vertical width ( LF ) of the frame portion is preferably LF > LB in order to maintain the pattern processability of the partition wall and the stability of coating, and LF ⁇ LA / 2. preferable.
  • the height of the partition wall forming the frame portion corresponding to the connection type buffer portion 13 is lower, because the cushioning effect can be easily obtained, and it is 1 / of the height of the other portion of the partition wall forming the frame portion. It is usually 2 or less. This height is preferably 1/4 or less of the height of the other portion of the partition wall forming the frame portion, and most preferably the height is zero (that is, the substrate is exposed). The same can be said for the height of the partition wall forming the frame portion corresponding to the stand-alone shock absorber described later.
  • the connected buffer or the stand-alone buffer described later When the connected buffer or the stand-alone buffer described later is connected to the cell or the non-pixel portion, and the height of the partition wall forming the frame portion corresponding to the connected buffer or the stand-alone buffer is zero. Is that the line segment connecting the ends of the frame portion on the connected cell side or the non-pixel portion side is the boundary between the connected buffer portion or the stand-alone buffer portion (and the relationship between the connected buffer portion and the cell). Connection).
  • the connected buffer is connected to an adjacent (that is, provided corresponding to the adjacent pixel) connected buffer to form one connected buffer.
  • the action of the stand-alone shock absorber described later can be further obtained, higher coating stability can be realized, and further, the thickness of the object to be coated to be filled in the cell is not sufficient. It is possible to suppress the uniformity, and when such a substrate with a partition wall is used as a wavelength conversion substrate, it is possible to prevent display unevenness on the outer peripheral portion of the display.
  • the portion of the frame portion that is lower in height than the rest of the frame portion is not connected to the cell (stand-alone shock absorber 14).
  • the stand-alone shock absorber 14 has an effect of substantially reducing the vertical width of the frame portion when focused on the sweep direction of the nozzle, and reduces the instability of coating due to the coating liquid from the nozzle riding on the frame portion. be able to.
  • the area of the stand-alone shock absorber is larger than the cell minimum area ( SRGB MIN ), that is, it is preferable that SF> SRGB MIN .
  • the width ( LBF ) of the partition wall separating the stand-alone shock absorber and the cell existing in the vicinity thereof is LBF > LB from the viewpoint of partition wall workability, and the coating instability due to the stand-alone shock absorber 14 It is preferable that LBF ⁇ LA / 2 so as not to hinder the effect of reduction.
  • the maximum value ( LFO ) of the width of the stand-alone shock absorber 14 is 98% or less of the vertical width ( LF ) of the frame portion in which the stand-alone shock absorber 14 exists. Is preferable. By doing so, it is possible to suppress the peeling of the pattern from the frame portion provided with the independent buffer portion 14, and to suppress the decrease in the yield.
  • the ( LFO / LF ) is more preferably 95% or less, still more preferably 90% or less.
  • the stand-alone shock absorber 14 may be surrounded on all sides by a partition wall, but as shown in FIGS. 10 and 11, the wall forms a wall on the side opposite to the side where the partition wall constituting the RGB pixel 10 is provided. The part does not have to exist.
  • Such a configuration is effective in reducing the substantial width of the frame portion from the viewpoint of sweeping the nozzle while suppressing the peeling of the partition wall by the frame portion, and is extremely advantageous in stabilizing the coating.
  • the height of the partition wall forming the frame portion corresponding to the stand-alone shock absorber 14 is 1/20 or more of the height of the other portion of the frame portion, which is a viewpoint of suppressing peeling of the partition wall. It is preferable from.
  • the proportion of a portion having a lower height than other parts is 50% in the frame portion in the direction orthogonal to the extension line of the row of the grid-like arrangement intersecting the frame portion.
  • the width of the portion having the above-mentioned portion and having a portion having a height lower than the other portion of 50% or more may be 20% or less of the width of the partition wall in which the portion exists. Preferred (hereinafter, such a portion may be referred to as a "split portion").
  • the width of the cut portion is preferably 10% or less of the vertical width of the frame portion.
  • FIG. 14 shows a groove having a cross-sectional shape of LD3 in which a square is added to the top of a trapezoidal cross section when viewed in a direction perpendicular to the extension line of a frame portion 9 intersecting on an extension line of a row of grid-like arrangements.
  • a certain cutting groove portion 15 is provided (see the cross-sectional view taken along the line AA').
  • the connection type buffer portion 13 or the strip-shaped portion which is the groove, that is, the split portion is present. Will be there.
  • FIG. 15 is a modified example in which the frame portion 9 is provided with a groove having a semicircular cross-sectional shape.
  • the partition wall thickness (HD) of the split groove portion 15 is the partition wall film thickness ( H ) of the frame portion from the viewpoint of further suppressing the partition wall of the frame portion from peeling from the base in the partition wall pattern developing step. It is preferable that 1/20 or more of F ), that is, HD > 1/20 HF . Further, in order to improve the cutting accuracy, HD ⁇ HF is preferable, and HD ⁇ 1 / 2HF is more preferable.
  • FIG. 16 shows an example in which a split groove portion 15 having a rectangular opening in the shape of an opening is provided in a frame portion 9 intersecting on an extension line of a row of grid-like arrangements.
  • the connection type buffer portion 13 or the portion of the opening having a rectangular hole occupies 50% or more.
  • FIGS. 18 to 20 show an example in which the frame portion 9 intersecting on the extension line of the rows of the grid arrangement is in contact with the connection type shock absorber portion 13 and the frame portion 9 is provided with the split groove portion 15 which is a notch portion.
  • the connection type buffer portion 13 when viewed in the direction perpendicular to the extension line of the row of the grid-like arrangement, it is a connection type buffer portion 13, or a strip-shaped portion in which the notched portion occupies 50% or more. (Refer to the AA'cross section in each figure), that is, there is a split portion. Since the strip-shaped portion has a width of 20% or less of the vertical width ( LF ) of the frame portion, it is easy to divide the strip-shaped portion.
  • FIGS. 21 to 22 are examples in which the frame portion 9 has the independent cushioning portion 14, and in the example shown in FIG. 21, the description of the split portion is the same as that described in FIG. In the example shown in 22, the content described in FIG. 16 is incorporated.
  • the portion of the frame that is in contact with the nearest cell is the upper end of the frame 20, and the boundary of the split groove 15 that is closer to the upper end of the frame is the upper end of the split groove 21.
  • the width ( LD1 ) of the upper end portion 20 of the frame and the upper end portion 21 of the cutting groove is LB ⁇ from the viewpoint of improving the accuracy of cutting. It is preferably LD1 .
  • the width ( LD2 ) of the upper end portion 20 of the frame and the lower end portion 22 of the cutting groove is preferably LD2 ⁇ LF from the viewpoint of improving the accuracy of cutting.
  • L D2 ⁇ 1 / 2LF because it is possible to realize a display with less image deviation and unevenness across the substrate.
  • the width from the upper end portion 21 of the splitting groove to the lower end portion 22 of the splitting groove is the splitting groove portion width ( LD3 )
  • the ratio of the splitting groove portion width to the vertical width of the frame portion ( LD3 / LF ) as described above. ) Is preferably 20% or less, more preferably 10% or less.
  • Examples of the method of cutting the substrate include scribing cutting and laser cutting.
  • Examples of scribing cutting include wheel scribing and laser scribing.
  • Examples of the laser cutting include cutting using a fiber laser, a YAG laser, a CO 2 laser, a UV laser, an excima laser, an LD laser, a nanosecond pulse laser, a picosecond pulse laser, and a femtosecond pulse laser. ..
  • the substrate with a partition wall of the present invention can be preferably used as a member of a display device. It is preferable that each cell is provided as a pattern corresponding to a pixel. Examples of the number of pixels of the display include 2,000 pixels vertically and 4,000 pixels horizontally. The number of pixels affects the resolution (fineness) of the displayed image. Therefore, it is necessary to form a number of pixels according to the required image resolution and the screen size of the display, and it is preferable to determine the pattern formation dimension of the partition wall accordingly. Further, it is preferable that the partition wall has a liquid-repellent property so that the coating liquid applied by the nozzle coating method flows into the cell without remaining on the top of the partition wall.
  • the partition wall When the partition wall is filled with a material (wavelength conversion material) that converts the wavelength of an electromagnetic wave into another wavelength to form a wavelength conversion layer, light is transmitted / scattered from one pixel to an adjacent pixel. It is preferable to have a function to prevent the above.
  • a material wavelength conversion material
  • the height of the partition wall is preferably larger than the thickness of the cured product of the wavelength conversion paste when the cured product of the wavelength conversion paste is contained in the cell of the substrate with the partition wall.
  • the height of the partition wall 6 is preferably 0.5 ⁇ m or more, and more preferably 5 ⁇ m or more.
  • the height of the partition wall is preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, still more preferably 50 ⁇ m or less, from the viewpoint of more efficiently extracting light emission at the bottom of the layer containing the wavelength conversion light emitting material.
  • the cell spacing wall width may be sufficient to improve the brightness by utilizing the light reflection on the side surface of the partition wall and suppress the color mixing of the light emitted from the cured product of the adjacent wavelength conversion paste due to light leakage.
  • the cell spacing wall width is preferably 0.5 ⁇ m or more, and more preferably 10 ⁇ m or more.
  • the cells partitioned by the partition walls in the partition wall-equipped substrate may be filled with a wavelength conversion material.
  • the wavelength conversion material refers to a material having a wavelength conversion property that absorbs an electromagnetic wave and emits an electromagnetic wave having a wavelength different from the wavelength of the absorbed electromagnetic wave.
  • a wavelength conversion substrate containing a wavelength conversion material is patterned and applied to prepare a wavelength conversion substrate, which can be combined with an OLED light source or an LED light source to form a full-color display.
  • an inorganic phosphor or an organic phosphor can be used as the wavelength conversion material.
  • a red phosphor that is excited by blue excitation light and emits red fluorescence is placed in a region corresponding to the red subpixel. It is preferable to use it as a wavelength conversion material, and in the region corresponding to the green subpixel, it is preferable to use a green phosphor that is excited by blue excitation light and emits green fluorescence as a wavelength conversion material, and it is preferable to use a blue subpixel. It is preferable not to use a wavelength conversion material in the region corresponding to.
  • the wavelength conversion substrate of the present invention can also be used for a display of a method using a blue LED or an ultraviolet light emitting LED corresponding to each subpixel as a backlight.
  • the light emission of each subpixel can be turned ON / OFF by driving the OLED or the active matrix of the LED.
  • the inorganic phosphor emits each color such as green and red.
  • Inorganic phosphors include those excited by excitation light with a wavelength of 400 to 500 nm and having a peak in the emission spectrum in the region of 500 to 700 nm, and nanoscale particles having unique optical characteristics according to quantum mechanics called quantum dots. Examples include inorganic semiconductor fine particles. Examples of the shape of the former inorganic phosphor include a spherical shape and a columnar shape. Examples of such inorganic phosphors include YAG-based phosphors, TAG-based phosphors, sialon-based phosphors, Mn 4+ activated fluoride complex phosphors, and the like. Two or more of these may be used.
  • the quantum dot material is preferable. Since quantum dots have sharper peaks in the emission spectrum than other phosphors, the color reproducibility of the display can be improved. By using quantum dots with a relatively small particle size of several nm, it is possible to suppress the residue of inorganic phosphor particles on the partition wall and improve the bonding accuracy when manufacturing panels. Become. Further, for the same reason, it is possible to improve the accuracy of splitting by using quantum dots.
  • Examples of the material of the quantum dot include semiconductors of group II-IV, group III-V, group IV-VI, and group IV.
  • Examples of these inorganic semiconductors include Si, Ge, Sn, Se, Te, B, C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, and the like.
  • Quantum dots may contain a p-type dopant or an n-type dopant. Further, the quantum dots may have a core-shell structure. In the core-shell structure, any suitable functional layer (single layer or multiple layers) may be formed around the shell depending on the purpose, and the surface of the shell may be surface-treated and / or chemically modified. ..
  • the shape of the quantum dot examples include a spherical shape, a columnar shape, a flaky shape, a plate shape, an amorphous shape, and the like.
  • the average particle size of the quantum dots can be selected according to the desired emission wavelength, and is preferably 1 to 30 nm. When the average particle size of the quantum dots is 1 to 10 nm, the peak in the emission spectrum can be sharpened in each of blue, green and red. For example, when the average particle size of the quantum dots is about 2 nm, blue light is emitted, when it is about 3 nm, green light is emitted, and when it is about 6 nm, red light is emitted.
  • the average particle size of the quantum dots is preferably 2 nm or more, and preferably 8 nm or less.
  • the average particle size of the quantum dots can be measured by a dynamic light scattering method. Examples of the device for measuring the average particle size include a dynamic light scattering photometer DLS-8000 (manufactured by Otsuka Electronics Co., Ltd.).
  • Examples of the organic phosphor include a phosphor that is excited by blue excitation light and emits red fluorescence, and a phosphor that is excited by blue excitation light and emits green fluorescence, such as a pyrromethene derivative.
  • Other examples include a perylene-based derivative, a porphyrin-based derivative, an oxazine-based derivative, and a pyrazine-based derivative that emit red or green fluorescence depending on the selection of the substituent. Two or more of these may be contained.
  • a pyrromethene derivative is preferable because of its high quantum yield.
  • the pyrromethene derivative can be obtained, for example, by the method described in JP-A-2011-241160.
  • the organic phosphor is soluble in a solvent, a layer containing a wavelength conversion material having a desired thickness can be easily formed.
  • the wavelength conversion layer may contain light scattering particles.
  • the light-scattering particles blue light and ultraviolet light are scattered in the wavelength conversion layer, so that the optical path length becomes long, and the light conversion efficiency of the wavelength conversion material can be improved.
  • the light-scattering particles are preferably barium sulfate, aluminum oxide, zirconium oxide, zinc oxide, or titanium oxide. Two or more of these may be contained.
  • the refractive index of the light-scattering particles at a wavelength of 587.5 nm is preferably 1.60 to 2.70.
  • the refractive index of the light-scattering particles By setting the refractive index of the light-scattering particles to 1.60 or more, the scattering property of blue light in the wavelength conversion layer by the light-scattering particles is improved, and the light conversion efficiency by the wavelength conversion material is likely to be improved.
  • the refractive index of the light-scattering particles to 2.70 or less, excessive scattering by the light-scattering particles is suppressed, and the emitted light after wavelength conversion can be easily taken out of the cell.
  • the refractive index of at least one kind is in the above range.
  • the content of the light-scattering particles is preferably 1% by weight or more, more preferably 5% by weight or more, and further preferably 10% by weight or more in the solid content from the viewpoint of further improving the light conversion efficiency.
  • the content of the light-scattering particles is preferably 70% by weight or less, more preferably 60% by weight or less, and 50% by weight or less in the solid content from the viewpoint of suppressing the decrease in luminous efficiency due to the concentration quenching of the wavelength conversion material. Is even more preferable.
  • the solid content here means all the components contained in the wavelength conversion paste, excluding the volatile components such as the solvent. The amount of solid content can be determined by heating the wavelength conversion paste at 150 ° C.
  • the wavelength conversion layer is preferably formed by curing the wavelength conversion paste.
  • the wavelength conversion paste is a paste material containing a wavelength conversion material, and can be easily applied to a substrate with a partition wall by a nozzle coating method by appropriately designing the composition.
  • the method of curing the wavelength conversion paste is not particularly limited, but a method of curing a wavelength conversion paste containing a polymerizable compound with heat or light, or a method of volatilizing a solvent from a wavelength conversion paste containing a solvent to cure it. And so on.
  • the wavelength conversion paste may contain a monomer as a polymerizable compound.
  • the monomer in the present invention refers to a compound polymerized by an active species generated by the reaction of a polymerization initiator described later.
  • the monomer used for the wavelength conversion paste is preferably a compound having an ethylenically unsaturated double bond in the molecule.
  • the monomer preferably has two or more ethylenically unsaturated double bonds in the molecule.
  • the monomer preferably has a (meth) acrylic group.
  • the double bond equivalent of the monomer is preferably 400 g / mol or less from the viewpoint of further improving the sensitivity in pattern processing.
  • Examples of the monomer include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, diethylene glycol dimethacrylate, and triethylene.
  • Glycol dimethacrylate tetraethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, trimethylolpropane diacrylate, trimethylolpropanetriacrylate, trimethylolpropanedimethacrylate, trimethylolpropanetrimethacrylate, 1,3-butanediol diacrylate, 1, 3-Butanediol dimethacrylate, neopentyl glycol diacrylate, 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol dimethacrylate, 1 , 10-Decandiol Dimethacrylate, Dimethyrol-Tricyclodecanediacrylate, Pentaerythritol Triacrylate, Pentaerythritol Tetraacrylate, Pentaerythritol
  • the content of the monomer in the wavelength conversion paste is preferably 1% by weight or more, more preferably 10% by weight or more, still more preferably 30% by weight or more in the solid content from the viewpoint of increasing the solid content ratio of the wavelength conversion paste.
  • the content of the monomer is preferably 80% by weight or less, more preferably 70% by weight or less in the solid content.
  • the wavelength conversion paste may contain a polymerization initiator.
  • the polymerization initiator is reacted by light irradiation or heating, so that the polymerization of the monomer proceeds by the active species generated from the polymerization initiator, and the exposed portion of the wavelength conversion paste is exposed. Can be cured.
  • the polymerization initiator may be any radical initiator or cation initiator, that is, any one that reacts with light (including ultraviolet rays and electron beams) or heat to generate active species such as radicals and cations. good. Among these, a radical initiator is preferable.
  • the polymerization initiator include 2-methyl- [4- (methylthio) phenyl] -2-morpholinopropane-1-one and 2-dimethylamino-2- (4-methylbenzyl) -1- (4-).
  • ⁇ -Aminoalkylphenone compounds such as morpholin-4-yl-phenyl) -butane-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1; 2,4 , 6-trimethylbenzoylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphinoxide, bis (2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl) -phosphinoxide, etc.
  • Phenylphenone compound 2,2-diethoxyacetophenone, 2,3-diethoxyacetophenone, 4-t-butyldichloroacetophenone, benzalacetophenone, 4-azidobenzalacetopheno Acetphenone compounds such as 2-phenyl-2-oxyacetate compounds; ethyl 4-dimethylaminobenzoate, 4-dimethylaminobenzoic acid (2-ethyl) hexyl, ethyl 4-diethylaminobenzoate, Examples thereof include benzoic acid ester compounds such as 2-benzoyl methyl benzoate. Two or more of these may be contained.
  • the wavelength conversion paste contains 2,4,6-trimethylbenzoylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and bis (2,6-dimethoxy) in order to suppress coloration caused by the polymerization initiator. It is preferable to contain an acylphosphine oxide-based polymerization initiator such as benzoyl)-(2,4,4-trimethylpentyl) -phosphine oxide.
  • the content of the polymerization initiator in the wavelength conversion paste is preferably 0.01% by weight or more, preferably 0.1% by weight or more, based on the solid content, from the viewpoint of efficiently advancing the reaction by the polymerization initiator. More preferred.
  • the content of the polymerization initiator is preferably 20% by weight or less, more preferably 10% by weight or less in the solid content.
  • the wavelength conversion paste may appropriately contain a polymer, a solvent, a dispersant and the like.
  • the polymer may be, for example, a silicon resin such as polyvinyl acetate, polyvinyl alcohol, ethyl cellulose, methyl cellulose, polyethylene, polymethyl siloxane or polymethyl phenyl siloxane, polystyrene, butadiene / styrene copolymer, polystyrene, etc.
  • a silicon resin such as polyvinyl acetate, polyvinyl alcohol, ethyl cellulose, methyl cellulose, polyethylene, polymethyl siloxane or polymethyl phenyl siloxane, polystyrene, butadiene / styrene copolymer, polystyrene, etc.
  • Preferred examples include polyvinylpyrrolidone, polyamide, high molecular weight polyether, copolymer of ethylene oxide and propylene oxide, polyacrylamide, acrylic resin and the like.
  • the solvent may be, for example, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butanol, pentanol, 4-methyl-2-pentanol, 3-methyl-2.
  • -Alcohols such as butanol, 3-methyl-3-methoxy-1-butanol, diacetone alcohol; glycols such as ethylene glycol and propylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene Ethers such as glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethyl ether; methyl ethyl ketone, acetyl acetone, methyl Ketones such as propyl ketone, methyl butyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, 2-heptanone; amide
  • the viscosity of the wavelength conversion paste is 1 sec -1 when measured by attaching the Plate P35 Ti L manufactured by the same company to a rheometer (HAAKE MARS; Thermo Fisher Scientific Co., Ltd.) and setting the gap to 200 ⁇ m.
  • the viscosity at the shear rate of is preferably 1,000 to 500,000 mPa ⁇ s. By setting the viscosity to 1000 mPa ⁇ s or more, even when the paste is stored for a long period of time after preparation, particle components such as (B) light-scattering particles are less likely to settle.
  • the viscosity is more preferably 3,000 mPa ⁇ s or more, and further preferably 5,000 mPa ⁇ s or more.
  • the viscosity is more preferably 400,000 mPa ⁇ s or less, and further preferably 300,000 mPa ⁇ s or less.
  • the dispersant may be, for example, "Disperbyk” (registered trademark) 106, 108, 110, 180, 190, 2001, 2155, 140, 145 (hereinafter, trade name. Big Chemie). Co., Ltd.) and the like are preferable.
  • the wavelength conversion substrate of the present invention is preferably produced by applying a wavelength conversion paste to the substrate with a partition wall of the present invention by a nozzle coating method and curing the substrate.
  • the display device of the present invention has the wavelength conversion substrate and a light source.
  • a light source selected from a blue OLED, a blue LED, and an ultraviolet light emitting LED capable of driving an active matrix is preferable.
  • a photosensitive polyimide resin is applied onto a glass substrate having a TFT pattern capable of driving an active matrix, and an insulating film is formed by a photolithography method. After sputtering aluminum as the back electrode layer, patterning is performed by a photolithography method to form a back electrode layer in an opening without an insulating film.
  • Alq 3 tris (8-quinolinolato) aluminum
  • dicyanomethylenepyran, quinacridone, and 4,4'-bis were formed on Alq 3 as a light emitting layer.
  • 2,2-Diphenylvinyl A white light emitting layer doped with biphenyl is formed.
  • N, N'-diphenyl-N, N'-bis ( ⁇ -naphthyl) -1,1'-biphenyl-4,4'-diamine is formed as a hole transport layer by a vacuum vapor deposition method.
  • ITO is formed into a film by sputtering as a transparent electrode to produce an OLED having a blue light emitting layer.
  • a display can be manufactured by adhering the OLED thus obtained to face the above-mentioned wavelength conversion substrate with a sealing agent.
  • the wavelength conversion board itself of the present invention may have an OLED or an LED.
  • a display can be manufactured by sequentially forming a partition wall and a wavelength conversion layer on a substrate having an OLED or an LED.
  • the solid content concentration of the polysiloxane solution was determined by the following method. 1.5 g of the polysiloxane solution was weighed in an aluminum cup and heated at 250 ° C. for 30 minutes using a hot plate to evaporate the liquid. The weight of the solid content remaining in the aluminum cup after heating was weighed, and the solid content concentration of the polysiloxane solution was determined from the ratio to the weight before heating.
  • the weight average molecular weight of polysiloxane was determined by the following method. Using a gel permeation chromatography (GPC) device (HLC-8220; manufactured by Toso Co., Ltd.) and using tetrahydrofuran as a fluidized layer, "JIS K 7252-3 (established date: March 20, 2008). GPC analysis was performed based on "day)", and the polystyrene-equivalent weight average molecular weight was measured.
  • GPC gel permeation chromatography
  • the content ratio of each repeating unit in polysiloxane was determined by the following method. A polysiloxane solution is injected into a 10 mm diameter "Teflon”® sample tube and 29 Si-NMR (Nuclear Magnetic Resonance) measurements are performed to give a specific organosilane to the integrated value of the entire silicon derived from the organosilane. The content ratio of each repeating unit was calculated from the ratio of the integrated value of silicon derived from. 29 Si-NMR measurement conditions are shown below.
  • the raw materials used to prepare the wavelength conversion paste are as follows.
  • Light-scattering particles 1 AA-1.5 (alumina, average particle size 1.6 ⁇ m, manufactured by Sumitomo Chemical Co., Ltd.)
  • Wavelength conversion material 1 Lumidot 530 CdSe (green quantum dot material, manufactured by Sigma-Aldrich)
  • Wavelength conversion material 2 Lumidot 640 CdSe (red quantum dot material, manufactured by Sigma-Aldrich)
  • Photopolymerization Initiator 1 "Irgacure” (registered trademark) OXE01 (manufactured by BASF Japan Ltd.)
  • Monomer 1 NK-9PG (polypropylene glycol # 400 dimethacrylate, which is a bifunctional methacrylate) (manufactured by Shin Nakamura Chemical Industry Co., Ltd.)
  • Polymer 1 "Etocell” (registered trademark) STD7 (I) (cellulose ethyl ether
  • a wavelength conversion paste for green subpixels After partial weighing, kneading with a 3-roller kneader, filtering with an SHP-400 filter (manufactured by Loki Techno Co., Ltd.) while applying a pressure of 100 to 400 kPa with air to obtain a wavelength conversion paste for green subpixels. rice field. Further, a wavelength conversion paste for red subpixels was obtained in the same manner except that the wavelength conversion material 1 was replaced with the wavelength conversion material 2. Further, a light scattering paste for blue subpixels was obtained in the same manner except that the wavelength conversion material 1 was not added.
  • a resin composition for partition walls was spin-coated on a 10 cm square non-alkali glass substrate (made by AGC Technoglass Co., Ltd., thickness 0.7 mm) and hot plate (SCW-636, manufactured by SCREEN Semiconductor Solutions Co., Ltd.). ) was dried at a temperature of 90 ° C. for 2 minutes to prepare a dry film.
  • the prepared dry film was formed into the partition wall shapes of Examples 1 to 17 and Comparative Examples 1 to 4, which will be described later, using a parallel light mask aligner (PLA-501F, manufactured by Canon Inc.) and using an ultrahigh pressure mercury lamp as a light source.
  • Exposure was performed with an exposure amount of 200 mJ / cm 2 (i-line) via a corresponding photomask. Then, using an automatic developing device (AD-2000, manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed for 100 seconds with a 0.045 wt% potassium hydroxide aqueous solution, and then rinsing was performed with water for 30 seconds. Further, using an oven (IHPS-222, manufactured by Espec Co., Ltd.), it is heated in air at a temperature of 230 ° C. for 30 minutes, and a pattern is formed on a glass substrate in the shape of FIGS. 2 to 22 having a height of 20 ⁇ m. A substrate with a partition wall was produced.
  • the outline of the shape and arrangement of the partition walls (including the frame portion) in the partition wall-equipped substrate used in each Example and Comparative Example is as follows.
  • Example 1 FIG. 5
  • Example 2 FIG. Example 3: FIG. Example 4: FIG. 9
  • Example 5 FIG. 10
  • Example 6 FIG. 11
  • Example 7 FIG. 12
  • Example 8 FIG. 13
  • Example 9 FIG. 14
  • Example 10 FIG. Example 11: FIG. Example 12: FIG. 17
  • Example 13 FIG. Example 14: FIG. 19
  • Example 16 FIG. 21
  • FIG. 22 Comparative Example 1: FIG. 2 Comparative Example 2: FIG. 3 Comparative Example 3: FIG. 4 Comparative Example 4: FIG.
  • the minimum value SRGB MIN was obtained from the measured SR, SG , and SB .
  • the height of the partition wall in which the connected buffer or the stand-alone buffer is connected to the cell or the non-pixel portion and forms the frame portion corresponding to the connected buffer or the stand-alone buffer is zero.
  • the line segment connecting the ends of the frame portion on the connected cell side or the non-pixel portion side was regarded as the boundary of the connected buffer portion or the stand-alone buffer portion.
  • the shape of the partition wall of the prepared substrate with a partition wall was observed with an optical microscope, and the number of defects such as chips was measured.
  • the ratio of the number of partition wall lattices with defects to the total number of lattices was A, 1% or more and less than 10% was B, and 10% or more was C.
  • a to B are pass levels, A is the best, and B is the next best.
  • a wavelength conversion paste is applied to the substrates with partition walls of Examples 1 to 17 and Comparative Examples 1 to 4 by the following method, and then the applied paste is dried and cured, and then a laser microscope (color 3D laser microscope VK-9710) is applied. , (Manufactured by KEYENCE CORPORATION), an optical microscope image was taken from the top surface in camera mode, and the film thickness at the center of the cell was measured.
  • the coating head one having 51 discharge ports having a discharge port diameter of 50 ⁇ m and a discharge port length of 130 ⁇ m arranged at a pitch of 300 ⁇ m in the longitudinal direction of the coating head was used.
  • a multi-lab coater manufactured by Toray Engineering Co., Ltd.
  • a pressure of 500 to 1,500 kPa is applied to the coating head by air, and the traveling speed with respect to the substrate is 20 to 200 mm.
  • Wavelength conversion for green subpixels is performed by applying a nozzle to the substrate with a partition wall in a direction parallel to the long side direction of the partition wall while ejecting the wavelength conversion paste for green subpixels while changing the wavelength within the range of / s. Filled with paste. Next, by shifting the base position by 100 ⁇ m in the direction perpendicular to the stripe of the partition wall, applying in the same manner, and further shifting by 100 ⁇ m and applying in the same manner again, the entire range of 7 cm in length and 1.5 cm in width is applied. A wavelength conversion paste for green subpixels was applied to the cells.
  • the wavelength conversion substrate produced by the above method was observed with a laser microscope, and the RGB pixel film thickness was evaluated.
  • the maximum value in any color pixel is the minimum in the film thickness of each subpixel of continuous RGB pixels at the coating start position in the center of the partition pattern and the film thickness of each continuous subpixel in the center of coating in the center of the partition pattern.
  • the film thickness of pixels of the same color is defined as D when it is 20% or more thicker than the value, C when it is 15% or more and less than 20% thick, B when it is 10% or more and less than 15% thick, and A when it is less than 10% thick.
  • the wavelength conversion substrates obtained in each Example and Comparative Example were irradiated with blue light to evaluate the display characteristics.
  • As the blue light source a blue backlight light source for LCD taken out by disassembling a commercially available liquid crystal monitor (SW2700PT, manufactured by BenQ) was used.
  • the display characteristics were evaluated based on the following criteria.
  • C The display quality is low due to visible display unevenness on the inner peripheral portion of the display surface.
  • D There is clearly visible display unevenness in the inner peripheral portion of the display surface, there is a difference in brightness between the in-plane central portion and the outer peripheral portion, and the display quality is extremely low.
  • the wavelength conversion substrate obtained in each Example and Comparative Example was cut into a frame portion by a scribing device (MTC series, manufactured by Samsung Diamond Industrial Co., Ltd.), and the cutting accuracy was evaluated.
  • the substrate after cutting the scribing was photographed with an optical microscope image from the top surface with a laser microscope (color 3D laser microscope VK-9710, manufactured by KEYENCE CORPORATION) in camera mode, and evaluated based on the following criteria.
  • A It is divided at the frame portion, there is no local division, cracks, cracks, etc. in the pixel portion, and there are no defects such as peeling or partial defects in the partition wall of the lattice portion and the frame portion.
  • B It is divided at the frame portion, and there are no local divisions, cracks, cracks, etc. in the pixel portion, but there are defects such as peeling and partial defects in the partition wall of the lattice portion and the frame portion.
  • C Although it is divided at the frame portion, there are local divisions, cracks, cracks, etc. at the pixel portion.
  • D Locally or entirely, it is divided outside the frame.
  • the first embodiment has good display characteristics because it has an area connecting the cell and the non-pixel portion
  • the second embodiment has an area connecting the cell and the non-pixel portion
  • the area of the cell in the frame portion is the embodiment. Since it is larger than 1, the variation in the film thickness of the monochromatic pixel is improved and the display characteristics are further improved.
  • Comparative Example 1 with respect to Examples 1 and 2, since there is no region connecting the cell and the non-pixel portion in the frame portion and there is no buffer portion in the frame portion, the monochromatic pixel film thickness variation is large and the display characteristics are improved. It was bad. Further, in Comparative Example 2 and Comparative Example 3, although the variation in the film thickness of the monochromatic pixel was low, the partition wall was peeled off at the time of pattern processing because the frame portion was not present, and the display characteristics were remarkably inferior.
  • Examples 7 and 8 have a connection type shock absorber and have a large area thereof with a partition wall, the display characteristics are better.
  • Example 9 has a connection type buffer portion and a split groove portion as in Example 1, not only the display characteristics are good, but also the split accuracy is also good.
  • Example 10 the display characteristics are good as in Example 1, the film thickness of the split groove portion is extremely thin, or the split groove portion is provided in contact with the connection type buffer portion. Therefore, the cutting accuracy was even better than that of Example 9.
  • the 16th embodiment has the groove portion for cutting in addition to having the independent cushioning portion as in the 4th embodiment, not only the display characteristics are good but also the cutting accuracy is good.
  • the breaking accuracy of Example 17 was even better than that of Example 16.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The present invention addresses the problem of providing a substrate with barrier ribs, with which it is possible to implement a display device with little brightness unevenness and high display quality by reducing unevenness in pixel film thickness in a display region of a display. This substrate with barrier ribs has a substrate and barrier ribs formed on the substrate, and is characterized by having a region in which cells demarcated by the barrier ribs and opened upward are arranged in a grid shape, and in that the outermost barrier rib that forms the outer edge of the region or is formed so as to surround the region has a width wider than the width of barrier ribs that form portions other than the outer edge of the region, and has a portion having a height lower than other portions on at least one side in a direction in which the columns of the grid-shaped arrangement extend, and the portion having a lower height than the other portions satisfies the following (1) or (2). (1) When the portion is connected to a cell, the width of a connection is narrower than the width of the cell. (2) When the portion is not connected to any cell, the area of the portion is larger than the area of a cell closest thereto.

Description

隔壁付き基板、波長変換基板、および、ディスプレイ、ならびに、波長変換基板の製造方法A method for manufacturing a substrate with a partition wall, a wavelength conversion substrate, a display, and a wavelength conversion substrate.
 本発明は、隔壁付き基板、波長変換基板、および、ディスプレイ、ならびに、波長変換基板の製造方法に関する。 The present invention relates to a substrate with a partition wall, a wavelength conversion substrate, a display, and a method for manufacturing a wavelength conversion substrate.
 近年、スマートフォンやタブレットなどの情報端末機器の発展や、テレビをはじめとするフラットパネルディスプレイの高精細化に伴い、ディスプレイの高性能化の要求は更に高まっている。中でも、高性能のディスプレイとして、波長変換型のOLEDディスプレイ、およびLEDディスプレイが注目されている。これらのディスプレイは、光源としてアクティブマトリクス駆動される有機発光ダイオード(OLED)や発光ダイオード(LED)を用い、その光の少なくとも一部を波長変換材料により変化させることでフルカラー表示させる方式のディスプレイであり、コントラストや色再現性に優れる。これらのディスプレイはユニット単位で作製したパネルを複数枚、自由な形に組み合わせて接合し、コントローラー等により映像を制御することで任意のサイズおよび解像度のディスプレイを形成できることが特徴として挙げられ、タイリング技術と呼ばれている。 In recent years, with the development of information terminal devices such as smartphones and tablets and the increasing definition of flat panel displays such as televisions, the demand for higher performance displays is increasing. Among them, wavelength conversion type OLED displays and LED displays are attracting attention as high-performance displays. These displays use an organic light emitting diode (OLED) or light emitting diode (LED) driven by an active matrix as a light source, and display at least a part of the light in full color by changing it with a wavelength conversion material. , Excellent in contrast and color reproducibility. These displays are characterized by the fact that multiple panels made in units can be combined in any shape and joined together, and the image can be controlled by a controller or the like to form a display of any size and resolution. It is called technology.
 光源にOLEDを用いる方法としては、青色発光のOLEDを用いる方法が知られている(特許文献1)。この場合、青色のサブピクセルではOLEDからの光を波長変換することなく透過・散乱させ、緑色、赤色のサブピクセルでは、波長変換材料によってOLEDからの青色光をそれぞれ緑色、赤色に変換して、透過させている。 As a method of using an OLED as a light source, a method of using an OLED that emits blue light is known (Patent Document 1). In this case, in the blue subpixel, the light from the OLED is transmitted and scattered without wavelength conversion, and in the green and red subpixels, the blue light from the OLED is converted into green and red by the wavelength conversion material, respectively. It is transparent.
 光源にLEDを用いる方法としては、OLEDと同様に青色発光のLEDを用い、一部の光を波長変換材料で赤色、緑色に変換させる方式に加え、紫外線発光のLEDを用い、波長変換材料で青色、緑色、赤色に変換させる方式が知られている(特許文献2)。 As a method of using an LED as a light source, a blue light emitting LED is used as in the OLED, and in addition to a method of converting a part of light into red and green with a wavelength conversion material, an ultraviolet light emitting LED is used as a wavelength conversion material. A method for converting to blue, green, and red is known (Patent Document 2).
 これらの波長変換型のディスプレイには、光源であるOLEDやLEDのサブピクセルに対応するサイズで、波長変換材料をパターン化して配置する必要がある。波長変換材料のパターン化方法としては、フォトリソグラフィ法、およびインクジェット法(特許文献3)が知られている。しかしながら、フォトリソグラフィ法では、波長変換材料を全面に塗布し、所定位置を露光した後、大半を現像により除去することから、波長変換材料のロスが大きく、また工程も露光・現像を複数回繰り返す必要があり複雑である課題があった。また、インクジェット法は、所望の位置のみに波長変換層を形成できることから材料効率に優れるが、インクジェットで波長変換材料を含むインクを塗布するには、インクの粘度を低く設計する必要があるため、インク中で波長変換材料などの粒子成分が沈降し、インクジェットノズルが詰まりやすくなる課題があった。 In these wavelength conversion type displays, it is necessary to arrange the wavelength conversion material in a pattern with a size corresponding to the OLED which is the light source and the subpixel of the LED. As a method for patterning a wavelength conversion material, a photolithography method and an inkjet method (Patent Document 3) are known. However, in the photolithography method, the wavelength conversion material is applied to the entire surface, exposed at a predetermined position, and then most of the material is removed by development. Therefore, the loss of the wavelength conversion material is large, and the process also repeats exposure and development multiple times. There were challenges that were necessary and complicated. In addition, the inkjet method is excellent in material efficiency because the wavelength conversion layer can be formed only at a desired position. However, in order to apply an ink containing a wavelength conversion material by inkjet, it is necessary to design the ink to have a low viscosity. There is a problem that particle components such as a wavelength conversion material settle in the ink, and the inkjet nozzle is easily clogged.
 一方、ペーストの塗布方法としてノズル塗布法が知られている。この方法を応用するとき、波長変換材料を含む塗液をペースト状にしてノズルから吐出することとなる。ノズル塗布法による波長変換ペーストの塗布方法を示した模式図を図1に示す。ノズル塗布法とは、塗布ヘッド1の内部にペースト2を貯留する空間(マニホールド)を持ち、基板3に対向した塗布ヘッド1を相対的に移動させながら、その空間に接続された加圧配管4を通して圧力を制御された圧縮空気を導入することで吐出孔5からペースト2を吐出することで隔壁6によって区画された開口部7(セル)に塗液を塗布充填して画素を形成する塗布方法である。ここでこの画素には、RGB表示を行う場合には、赤色、緑色、青色に対応する塗液が充填されることとなり、各画素はサブピクセルとして機能し、各サブピクセルをまとめて1つのピクセルとなる。ノズル塗布法では、ペーストの粘度はインクジェット法に比べて高粘度まで対応できることから、粘度を高く設計することにより粒子成分の沈降によるノズルの詰まりを抑制できるため、特に粒子入りペーストの塗布において用いられている。 On the other hand, the nozzle coating method is known as a paste coating method. When this method is applied, the coating liquid containing the wavelength conversion material is made into a paste and discharged from the nozzle. FIG. 1 shows a schematic diagram showing a method of applying the wavelength conversion paste by the nozzle application method. The nozzle coating method has a space (manifold) for storing the paste 2 inside the coating head 1, and while relatively moving the coating head 1 facing the substrate 3, the pressurized pipe 4 connected to the space. A coating method in which a coating liquid is applied and filled in an opening 7 (cell) partitioned by a partition wall 6 by discharging a paste 2 from a discharge hole 5 by introducing compressed air whose pressure is controlled through the coating method to form pixels. Is. Here, when RGB display is performed, this pixel is filled with a coating liquid corresponding to red, green, and blue, and each pixel functions as a sub-pixel, and each sub-pixel is collectively one pixel. It becomes. In the nozzle coating method, the viscosity of the paste can be higher than that of the inkjet method. Therefore, by designing the viscosity higher, it is possible to suppress the clogging of the nozzle due to the sedimentation of the particle components, so it is especially used in the coating of paste containing particles. ing.
特表2006-501617号公報Special Table 2006-501617 特表2016-523450号公報Special Table 2016-523450 Gazette 国際公開第2018/123103号International Publication No. 2018/123103
 ディスプレイ高精細化のため、各色の波長変換材料を区画する隔壁の細線化が進んでいる。しかし、隔壁の幅が20μm以下となる細線パターンをフォトリソグラフィ法で形成する場合においては、細線化に伴い隔壁と下地基板との密着力が不足し、現像途中で隔壁が下地から剥離するという問題が生じる。特にパターン外周部にてこの問題が発生しやすい。そこで、パターン外周部を構成する隔壁の幅を内側に存在する隔壁の幅よりも相対的に太くすることが考えられる。一方、ノズル塗布法においては、塗液の吐出開始直後は吐出量が安定しないことがあるので、実使用において画素として用いられる隔壁で囲まれた空間(開口部7)に至るまでの間において塗液の吐出が開始されることが行われている。すなわち、隔壁が設けられた領域の外周部に至るまでの時点から塗布を開始することが行われる。このとき、隔壁が設けられた領域の外周を構成する隔壁の太さが内側の隔壁の幅よりも太い隔壁パターンにあっては、塗液が当該太い幅の隔壁に乗り上げ、その状態がしばらく続くことで、ノズルと隔壁が設けられた基板との間隙が急峻に変化してビードが崩れ、その後しばらく塗布性が安定しない、すなわち定常的な塗布が崩れてしまう、という問題が生じる。その結果、画素となる部分における塗膜の膜厚が安定しないという問題が生じ、ディスプレイ外周部の表示ムラの原因となる。また、当該太い幅の隔壁の上に塗布された塗液は乾燥後に残渣として残るので、ディスプレイパネルを作製する際に、貼り合わせ時の貼合不良の原因にも繋がる。 In order to improve the definition of the display, the partition walls that partition the wavelength conversion materials of each color are becoming thinner. However, when a fine line pattern having a partition wall width of 20 μm or less is formed by a photolithography method, the adhesion between the partition wall and the base substrate is insufficient due to the thinning, and the partition wall is peeled off from the base during development. Occurs. This problem is particularly likely to occur at the outer periphery of the pattern. Therefore, it is conceivable to make the width of the partition wall constituting the outer peripheral portion of the pattern relatively thicker than the width of the partition wall existing inside. On the other hand, in the nozzle coating method, the discharge amount may not be stable immediately after the start of discharge of the coating liquid, so coating is performed up to the space (opening 7) surrounded by the partition wall used as a pixel in actual use. The discharge of the liquid is started. That is, the coating is started from the time point up to the outer peripheral portion of the region where the partition wall is provided. At this time, if the thickness of the partition wall constituting the outer periphery of the area where the partition wall is provided is thicker than the width of the inner partition wall, the coating liquid rides on the partition wall having the thick width, and the state continues for a while. This causes a problem that the gap between the nozzle and the substrate provided with the partition wall suddenly changes and the bead collapses, and then the coatability is not stable for a while, that is, the steady coating collapses. As a result, there arises a problem that the film thickness of the coating film in the portion to be a pixel is not stable, which causes display unevenness on the outer peripheral portion of the display. Further, since the coating liquid applied on the thick partition wall remains as a residue after drying, it also leads to a cause of poor bonding at the time of bonding when manufacturing a display panel.
 また、ユニット単位で作製した隔壁パターンをタイリング技術にて複数枚接合する場合についてみると、当該外周を構成する太い幅の隔壁が存することにより、その接合部では外周を構成する太い幅の隔壁同士が接合されるため非画素部の面積が大きくなり、ディスプレイ表示の際に、接合部がムラとして視認されてしまうという課題がある。 Further, looking at the case where a plurality of partition wall patterns manufactured for each unit are joined by the tying technique, the thick partition wall constituting the outer circumference is present, and the thick partition wall constituting the outer periphery is present at the jointed portion. Since they are joined to each other, the area of the non-pixel portion becomes large, and there is a problem that the joined portion is visually recognized as uneven when displaying on a display.
 そこで、本発明は、隔壁パターンが設けられた基板の画素となる部分における膜厚のバラツキの低減ができる隔壁パターン付き基板を提供すること、および表示品位の高いディスプレイを提供することを課題とする。 Therefore, it is an object of the present invention to provide a substrate with a partition wall pattern capable of reducing the variation in film thickness in the pixel portion of the substrate provided with the partition wall pattern, and to provide a display with high display quality. ..
 また、本発明の好ましい態様にあっては、タイリングの際に接合部の面積を極小化することができる隔壁パターン付き基板を提供することを課題とする。 Further, in a preferred embodiment of the present invention, it is an object to provide a substrate with a partition wall pattern capable of minimizing the area of the joint portion at the time of tiling.
 上記課題を解決するため、本発明の隔壁付き基板は次の構成を有する。すなわち、基板と該基板上にパターン形成された隔壁とを有した隔壁付き基板であって、前記隔壁によって区画されたセルが格子状に配列された領域を有し、かつ、前記領域の外縁を形成し、または、前記領域を囲むよう形成された、最も外側に位置する隔壁は、前記領域の外縁以外を形成する隔壁の幅よりも広い幅を有するとともに、前記格子状配列の列の延長線上で交差する少なくとも一方の側で他所よりも高さの低い部分を有しており、かつ、当該他所よりも高さの低い部分は、次の(1)または(2)を充足する隔壁付き基板、である。
(1)セルに接続している場合は、接続部における幅は、当該セルの幅よりも狭い幅であること。
(2)セルに接続していない場合は、最も近傍のセルの面積よりも大きな面積であること。
In order to solve the above problems, the substrate with a partition wall of the present invention has the following configuration. That is, it is a substrate with a partition wall having a substrate and a partition wall in which a pattern is formed on the substrate, and the cells partitioned by the partition wall have a region arranged in a grid pattern, and the outer edge of the region is formed. The outermost partition wall formed or formed to surround the region has a width wider than the width of the partition wall forming other than the outer edge of the region, and is on an extension of the row of the grid array. A substrate with a partition wall that has a portion lower in height than the other portion on at least one side intersecting with the other portion and the portion lower in height than the other portion satisfies the following (1) or (2). ,.
(1) When connected to a cell, the width at the connection portion shall be narrower than the width of the cell.
(2) When not connected to a cell, the area should be larger than the area of the nearest cell.
 また、本発明の隔壁付き基板の好ましい態様のひとつは、前記(2)を充足する隔壁付き基板であって、前記最も外側に位置する隔壁の他所よりも高さの低い部分の最大幅は、当該最大幅を示す他所よりも高さの低い部分に対応する最も外側に位置する隔壁の幅の98%以下である隔壁付き基板、である。 Further, one of the preferred embodiments of the substrate with a partition wall of the present invention is a substrate with a partition wall satisfying the above (2), and the maximum width of a portion having a lower height than other parts of the partition wall located on the outermost side is set. It is a substrate with a partition wall, which is 98% or less of the width of the partition wall located on the outermost side corresponding to the portion having a height lower than the other portion showing the maximum width.
 また、本発明の隔壁付き基板の好ましい態様のひとつは、前記最も外側に位置する隔壁において、当該隔壁内に、前記格子状配列の列の延長線に直交する方向にみて、他所よりも高さの低い部分の存在する割合が50%以上となる部分を有し、かつ、当該他所よりも高さの低い部分の存在する割合が50%以上となる部分の幅は、その部分が存する前記隔壁の幅の20%以下である隔壁付き基板、である。 Further, one of the preferred embodiments of the substrate with a partition wall of the present invention is that the partition wall located on the outermost side is higher in the partition wall in a direction orthogonal to the extension line of the row of the grid-like arrangement than the other parts. The width of the portion where the proportion of the low portion of the portion is 50% or more and the proportion of the portion having a lower height than the other portion is 50% or more is the partition wall in which the portion is present. It is a substrate with a partition wall, which is 20% or less of the width of the above.
 本発明の隔壁付き基板は、隔壁によって区画されたセルに充填される材料の膜厚バラツキを低減することで、発光材料や蛍光体などの波長変換材料などの表示装置用の材料が用いられた場合には、輝度バラツキが少なく表示品位の高いディスプレイ装置を提供できる。 In the substrate with a partition wall of the present invention, a material for a display device such as a light emitting material or a wavelength conversion material such as a phosphor is used by reducing the variation in the film thickness of the material filled in the cells partitioned by the partition wall. In that case, it is possible to provide a display device having little variation in brightness and high display quality.
ノズル塗布法によるペーストの塗布方法を示した模式図である。It is a schematic diagram which showed the paste application method by the nozzle application method. 従来の隔壁付き基板の一態様を示す上面図である。It is a top view which shows one aspect of the conventional substrate with a partition wall. 従来の隔壁付き基板の一態様を示す上面図である。It is a top view which shows one aspect of the conventional substrate with a partition wall. 従来の隔壁付き基板の一態様を示す上面図である。It is a top view which shows one aspect of the conventional substrate with a partition wall. 本発明の隔壁付き基板の一態様を示す上面図である。It is a top view which shows one aspect of the substrate with a partition wall of this invention. 本発明の隔壁付き基板の別な一態様を示す上面図である。It is a top view which shows another aspect of the substrate with a partition wall of this invention. 本発明に属さない隔壁付き基板の一態様を示す上面図である。It is a top view which shows one aspect of the substrate with a partition wall which does not belong to this invention. 本発明の隔壁付き基板の別な一態様を示す上面図である。It is a top view which shows another aspect of the substrate with a partition wall of this invention. 本発明の隔壁付き基板の別な一態様を示す上面図である。It is a top view which shows another aspect of the substrate with a partition wall of this invention. 本発明の隔壁付き基板の別な一態様を示す上面図である。It is a top view which shows another aspect of the substrate with a partition wall of this invention. 本発明の隔壁付き基板の別な一態様を示す上面図である。It is a top view which shows another aspect of the substrate with a partition wall of this invention. 本発明の隔壁付き基板の別な一態様を示す上面図である。It is a top view which shows another aspect of the substrate with a partition wall of this invention. 本発明の隔壁付き基板の別な一態様を示す上面図である。It is a top view which shows another aspect of the substrate with a partition wall of this invention. 本発明の隔壁付き基板の別な一態様を示す上面図および部分断面図である。It is a top view and a partial sectional view which shows another aspect of the substrate with a partition wall of this invention. 本発明の隔壁付き基板の別な一態様を示す上面図および部分断面図である。It is a top view and a partial sectional view which shows another aspect of the substrate with a partition wall of this invention. 本発明の隔壁付き基板の別な一態様を示す上面図および部分断面図である。It is a top view and a partial sectional view which shows another aspect of the substrate with a partition wall of this invention. 本発明の隔壁付き基板の別な一態様を示す上面図および部分断面図である。It is a top view and a partial sectional view which shows another aspect of the substrate with a partition wall of this invention. 本発明の隔壁付き基板の別な一態様を示す上面図および部分断面図である。It is a top view and a partial sectional view which shows another aspect of the substrate with a partition wall of this invention. 本発明の隔壁付き基板の別な一態様を示す上面図および部分断面図である。It is a top view and a partial sectional view which shows another aspect of the substrate with a partition wall of this invention. 本発明の隔壁付き基板の別な一態様を示す上面図および部分断面図である。It is a top view and a partial sectional view which shows another aspect of the substrate with a partition wall of this invention. 本発明の隔壁付き基板の別な一態様を示す上面図および部分断面図である。It is a top view and a partial sectional view which shows another aspect of the substrate with a partition wall of this invention. 本発明の隔壁付き基板の別な一態様を示す上面図および部分断面図である。It is a top view and a partial sectional view which shows another aspect of the substrate with a partition wall of this invention.
 本発明の隔壁付き基板は、基板と隔壁とを有する。 The substrate with a partition wall of the present invention has a substrate and a partition wall.
 本発明において、基板は、隔壁付き基板における支持体としての機能を有する。基板としては、例えば、ガラス板、樹脂板、樹脂フイルムなどが挙げられる。また、これらにカラーフィルター等の機能層が設けられたものであってもよい。ガラス板の材質としては、無アルカリガラスが好ましい。樹脂板および樹脂フイルムの材質としては、ポリエステル、(メタ)アクリルポリマ、透明ポリイミド、ポリエーテルスルフォン等が好ましい。ガラス板および樹脂板の厚みは、1mm以下が好ましく、0.8mm以下が好ましい。樹脂フイルムの厚みは、100μm以下が好ましい。 In the present invention, the substrate has a function as a support in a substrate with a partition wall. Examples of the substrate include a glass plate, a resin plate, a resin film, and the like. Further, these may be provided with a functional layer such as a color filter. As the material of the glass plate, non-alkali glass is preferable. As the material of the resin plate and the resin film, polyester, (meth) acrylic polymer, transparent polyimide, polyether sulfone and the like are preferable. The thickness of the glass plate and the resin plate is preferably 1 mm or less, preferably 0.8 mm or less. The thickness of the resin film is preferably 100 μm or less.
 本発明において、隔壁付き基板は基板上に隔壁を有する。また、本発明では、基板の隔壁を有する側の面において、該隔壁で区画されたセルを有し、当該セルは蛍光体ペーストなどが充填可能であるように隔壁頂部で囲まれた面において開口している。 In the present invention, the substrate with a partition wall has a partition wall on the substrate. Further, in the present invention, the surface of the substrate on the side having the partition wall has cells partitioned by the partition wall, and the cells are opened on the surface surrounded by the top of the partition wall so that the fluorescent substance paste or the like can be filled. is doing.
 本発明において、隔壁で区画されたセルは格子状に配列されている。このセルが格子状に配列された領域が、波長変換基板とされたときには画素に対応した領域となることが予定されている。本発明において、格子状の配列とは、基板面上に配列されたセルの群において、少なくとも一組の平行に配列された隔壁の群を有する配列をいう。このような格子状の配列とすることにより、該平行に配列された隔壁に平行に塗布物を吐出しつつノズルを掃引することで、容易に、ノズル塗布法によって波長変換層を形成できる。なお、前記の平行に配列された隔壁の群における平行度は完全に平行であることが望ましいが、被塗布物を吐出するノズルを当該隔壁に沿って掃引を行ったときにセルに被塗布物を充填することが可能な程度であれば、隔壁に蛇行や湾曲や斜行があっても許容される。 In the present invention, the cells partitioned by the partition wall are arranged in a grid pattern. It is planned that the region in which the cells are arranged in a grid pattern will be a region corresponding to pixels when the wavelength conversion substrate is used. In the present invention, the grid-like arrangement refers to an arrangement having at least one set of parallel-arranged partition walls in a group of cells arranged on a substrate surface. With such a grid-like arrangement, the wavelength conversion layer can be easily formed by the nozzle coating method by sweeping the nozzle while discharging the coating material in parallel with the partition walls arranged in parallel. It is desirable that the parallelism in the group of partition walls arranged in parallel is completely parallel, but when the nozzle for discharging the object to be coated is swept along the partition wall, the cell to be coated has an object to be coated. It is permissible for the bulkhead to be serpentine, curved or skewed to the extent that it can be filled.
 本発明の隔壁付き基板は、前記のセルが格子状に配列された領域の外縁を形成し、または、前記領域を囲むように形成された、最も外側に位置する隔壁は、前記領域の外縁以外を形成する隔壁の幅よりも広い幅を有している(以下、係る最も外側に位置する隔壁を便宜的に、「額縁部」と称することがある)。 In the substrate with a partition wall of the present invention, the outermost partition wall formed so as to form the outer edge of the region in which the cells are arranged in a grid pattern or to surround the region is other than the outer edge of the region. It has a width wider than the width of the partition wall forming the above (hereinafter, the outermost partition wall is referred to as a "frame portion" for convenience).
 図2に従来の隔壁で区画されたセルの群の外縁部(額縁部に対応)の幅がセル間に存する隔壁の幅よりも大きな隔壁付き基板の額縁部近傍を拡大したものを示す。波長変換基板とする場合、隔壁6は、赤色画素(10R)、緑色画素(10G)、青色画素(10B)の各画素に対応してセルを区画し、各画素をまとめた一つの色要素、すなわちピクセル(便宜的に、RGBピクセル(10)という)が任意のピッチで配列されたピクセルパターンとして隔壁パターン部8を形成している。この例では、隔壁パターンの最外周に、内側のセルを囲むように、額縁部9が設けられている。また、この隔壁付き基板は、額縁部9の外側に隔壁が形成されていない領域を有している。本発明においては、かかる額縁部9の外側の隔壁が形成されていない領域を、便宜的に、非画素部(非画素部12)と称する。 FIG. 2 shows an enlarged view of the vicinity of the frame portion of the substrate with a partition wall in which the width of the outer edge portion (corresponding to the frame portion) of the group of cells partitioned by the conventional partition wall is larger than the width of the partition wall existing between the cells. In the case of a wavelength conversion substrate, the partition wall 6 is a color element in which cells are partitioned corresponding to each pixel of a red pixel (10R), a green pixel (10G), and a blue pixel (10B), and each pixel is grouped together. That is, the partition wall pattern portion 8 is formed as a pixel pattern in which pixels (referred to as RGB pixels (10) for convenience) are arranged at an arbitrary pitch. In this example, a frame portion 9 is provided on the outermost circumference of the partition wall pattern so as to surround the inner cell. Further, the substrate with a partition wall has a region where no partition wall is formed on the outside of the frame portion 9. In the present invention, the region where the outer partition wall of the frame portion 9 is not formed is referred to as a non-pixel portion (non-pixel portion 12) for convenience.
 なおここで、セルは格子状に配列されているところ、該セルを上面からみた外形が長方形である場合には、長辺方向に向かってノズルを用いての塗布が行われることが塗布の安定性の観点から好ましい。そこで、各図においては、隔壁が設けられていない領域の側から、セルの長辺をなしている隔壁(以下、便宜上、「縦方向隔壁」ということがある)に平行に、塗布物を吐出しつつノズルの掃引がされ、塗布が行われることを前提とした例を用いて、以下説明する。また、セルにおいて、縦方向隔壁に直交する方向の内寸幅をセル横幅W、縦方向隔壁に平行な方向の内寸をセル縦幅Lとする。また、セルの短辺をなしている隔壁(以下、便宜上、「横方向隔壁」ということがある)のうち、隣り合うセル間の隔壁の幅をセル間隔壁幅Lとする。また、赤色画素(10R)、緑色画素(10G)、青色画素(10B)の各画素の面積をそれぞれS、S、Sとし、RGB各画素の面積のうち最小値をセル最小面積SRGB MINとする。また、横方向隔壁のうち、最も外側に位置する隔壁(額縁部)であってノズルが最初に到達する隔壁の幅を額縁部縦幅Lとする(図2参照)。図2に示す隔壁付き基板では、前述のようにノズル塗布法による塗布を行うとノズルからの柱状流塗液が額縁部9に乗り上げることで、塗液が乱れ、パターン開始部の画素膜厚変動が大きくなる。 Here, the cells are arranged in a grid pattern, and when the outer shape of the cells is rectangular when viewed from the upper surface, it is stable to apply the cells in the long side direction using a nozzle. It is preferable from the viewpoint of sex. Therefore, in each figure, the coating material is discharged from the side of the region where the partition wall is not provided, in parallel with the partition wall forming the long side of the cell (hereinafter, may be referred to as “vertical partition wall” for convenience). The following will be described with reference to an example on the premise that the nozzle is swept and the coating is performed. Further, in the cell, the inner dimension width in the direction orthogonal to the vertical partition wall is defined as the cell horizontal width WA , and the internal dimension in the direction parallel to the vertical partition wall is defined as the cell vertical width LA . Further, among the partition walls forming the short side of the cell (hereinafter, may be referred to as “horizontal partition wall” for convenience), the width of the partition wall between adjacent cells is defined as the cell spacing wall width LB. Further, the areas of the red pixels (10R), the green pixels (10G), and the blue pixels ( 10B ) are set to SR, SG, and SB, respectively, and the minimum value among the areas of the RGB pixels is the cell minimum area S. Let it be RGB MIN . Further, among the lateral partition walls, the width of the partition wall located on the outermost side (frame portion) that the nozzle first reaches is defined as the frame portion vertical width LF (see FIG. 2). In the substrate with a partition wall shown in FIG. 2, when coating is performed by the nozzle coating method as described above, the columnar flow coating liquid from the nozzle runs on the frame portion 9, the coating liquid is disturbed, and the pixel film thickness at the pattern start portion fluctuates. Becomes larger.
 図3および図4にあっては、セルの短辺を兼ねている額縁部の幅が、セル間を区画する隔壁の幅、すなわちセル間隔壁幅(L)と同程度である。先述したとおり、このような隔壁付き基板では、隔壁幅20μm以下のような微細パターンとすると、加工時には隔壁が剥離してしまい安定的に加工することが困難となる。 In FIGS. 3 and 4, the width of the frame portion that also serves as the short side of the cell is about the same as the width of the partition wall that partitions the cells, that is, the cell spacing wall width (LB). As described above, in such a substrate with a partition wall, if a fine pattern having a partition wall width of 20 μm or less is used, the partition wall is peeled off during processing, which makes stable processing difficult.
 図5および図6は、本発明の隔壁付き基板の例を示している。図5に示す例において、額縁部9は、セルに接続し、かつ、額縁部の他の箇所よりも高さの低い部分(接続型緩衝部13)を有しており、この例では、当該部分は隔壁が設けられた領域の外側、すなわち非画素部12、にも接続している。図5において接続型緩衝部13の幅(W)は一定であるが、その場合、額縁部9への塗液の乗上げによる塗布性の変化を小さくするためにW>(W/4)とすることが好ましく、塗液のRGBピクセル10内への充填量変化を小さくするために、W≧(W/2)とすることが更に好ましい。また、パターン加工性やパターンの剥離防止の観点よりW>Wとすることが好ましい。 5 and 6 show an example of the substrate with a partition wall of the present invention. In the example shown in FIG. 5, the frame portion 9 is connected to the cell and has a portion (connection type buffer portion 13) having a height lower than that of other portions of the frame portion. In this example, the frame portion 9 is the same. The portion is also connected to the outside of the region where the partition wall is provided, that is, the non-pixel portion 12. In FIG. 5, the width ( WF ) of the connection type shock absorber 13 is constant, but in that case, in order to reduce the change in coatability due to the application of the coating liquid on the frame portion 9, WF > ( WA /). 4) is preferable, and WF ≧ ( WA / 2) is further preferable in order to reduce the change in the filling amount of the coating liquid into the RGB pixels 10. Further, from the viewpoint of pattern workability and prevention of pattern peeling, it is preferable that WA > WF .
 また、図6に示す例においては、接続型緩衝部13は、セルに接続している部分(接続部)では、接続されたセルの幅よりも幅が狭いが、隔壁が設けられた領域の外側にも接続するまでの間に、幅が広がった部分を有している。ここで、接続型緩衝部13において、最も幅の広い部分の幅を接続型緩衝部の幅の最大値WF MAX、最も幅の狭い部分の幅を接続型緩衝部の幅の最小値WF MINとしたとき、セル内への塗液充填量変化を抑制するためにWF MIN ≧(W/2)とすることが好ましく、パターン加工性の観点より、W≧WF MAXとすることが好ましい。 Further, in the example shown in FIG. 6, the connection type shock absorber 13 has a width narrower than the width of the connected cell at the portion (connection portion) connected to the cell, but is in the region where the partition wall is provided. It also has a widened part until it is connected to the outside. Here, in the connection type buffer portion 13, the width of the widest portion is the maximum value WF MAX of the width of the connection type buffer portion, and the width of the narrowest portion is the minimum value WF of the width of the connection type buffer portion. When MIN is set, it is preferable to set WF MIN ≧ ( WA / 2) in order to suppress the change in the filling amount of the coating liquid in the cell, and from the viewpoint of pattern processability, WA ≧ WF MAX . Is preferable.
 また、額縁部縦幅(L)は、隔壁のパターン加工性と塗布の安定性を保持するため、L>Lとすることが好ましく、L≧L/2とすることがより好ましい。 Further, the vertical width ( LF ) of the frame portion is preferably LF > LB in order to maintain the pattern processability of the partition wall and the stability of coating, and LFLA / 2. preferable.
 なおここで、接続型緩衝部13に対応する額縁部をなす隔壁の高さは、低ければ低いほど緩衝効果を得られ易いので好ましく、額縁部をなす隔壁の他の部分の高さの1/2以下とすることが通常である。この高さは、額縁部をなす隔壁の他の部分の高さの1/4以下とすることが好ましく、最も好ましくは、高さがゼロ(すなわち、基板が露出した状態)である。なお、後述する独立型緩衝部に対応する額縁部をなす隔壁の高さについても同様のことがいえる。 Here, it is preferable that the height of the partition wall forming the frame portion corresponding to the connection type buffer portion 13 is lower, because the cushioning effect can be easily obtained, and it is 1 / of the height of the other portion of the partition wall forming the frame portion. It is usually 2 or less. This height is preferably 1/4 or less of the height of the other portion of the partition wall forming the frame portion, and most preferably the height is zero (that is, the substrate is exposed). The same can be said for the height of the partition wall forming the frame portion corresponding to the stand-alone shock absorber described later.
 なお、接続型緩衝部または後述する独立型緩衝部がセルまたは非画素部に接続し、かつ、接続型緩衝部または独立型緩衝部に対応する額縁部をなす隔壁の高さがゼロである場合は、接続しているセル側または非画素部側における額縁部の端を結ぶ線分が接続型緩衝部または独立型緩衝部の境界(また、接続型緩衝部とセルとの関係にあっては接続部)とみなされる。 When the connected buffer or the stand-alone buffer described later is connected to the cell or the non-pixel portion, and the height of the partition wall forming the frame portion corresponding to the connected buffer or the stand-alone buffer is zero. Is that the line segment connecting the ends of the frame portion on the connected cell side or the non-pixel portion side is the boundary between the connected buffer portion or the stand-alone buffer portion (and the relationship between the connected buffer portion and the cell). Connection).
 図12および図13は、変形例であり、接続型緩衝部は、隣接する(すなわち隣の画素に対応して設けられている)接続型緩衝部と繋がってひとつの接続型緩衝部となっている。このような態様では、後述する独立型緩衝部による作用をさらに獲得することができ、より高い塗布の安定性を実現することができ、さらにいっそう、セルに充填される被塗布物の厚みが不均一となることを抑制することができ、このような隔壁付き基板を波長変換基板として用いた場合には、ディスプレイ外周部の表示ムラを防ぐことができる。 12 and 13 are modified examples, in which the connected buffer is connected to an adjacent (that is, provided corresponding to the adjacent pixel) connected buffer to form one connected buffer. There is. In such an embodiment, the action of the stand-alone shock absorber described later can be further obtained, higher coating stability can be realized, and further, the thickness of the object to be coated to be filled in the cell is not sufficient. It is possible to suppress the uniformity, and when such a substrate with a partition wall is used as a wavelength conversion substrate, it is possible to prevent display unevenness on the outer peripheral portion of the display.
 次に、図8~図11を用いて本発明の別な態様について説明する。これらの態様では、額縁部に設けられた、額縁部の他所よりも高さが低い部分はセルに接続されていない(独立型緩衝部14)。この独立型緩衝部14は、ノズルの掃引方向に着眼すれば、実質的に額縁部縦幅を減少させる作用を有し、ノズルからの塗液が額縁部に乗り上げることによる塗布の不安定性を減らすことができる。緩衝部の面積(S)は広いほどこの作用は大きいが、塗布の安定性への寄与の観点からは、最も近傍のセルの面積よりも広い開口面積、更に望ましくは最も近傍のセルの体積よりも大きな体積、を有していることが必要である。RGB各画素においてセルの開口面積および体積が異なる場合、独立型緩衝部の面積は、セル最小面積(SRGB MIN)より大きいことが望ましく、すなわち、S>SRGB MINとなることが好ましい。塗液の蓄液能の点で最近傍のセルの塗液蓄液能よりも大きな能力を持たせることで、実質的な額縁部縦幅の減少効果を獲得して、塗布の安定化をはかることができるからである。緩衝部の面積(S)は大きいほど好ましいが、大きすぎると額縁部による隔壁の剥がれの抑制効果に影響が現れることがある。また、独立型緩衝部とその最近傍に存するセルを隔てる隔壁の幅(LBF)は隔壁加工性の観点より、LBF>Lとなることが望ましく、独立型緩衝部14による塗布不安定性低減の効果を阻害しないために、LBF<L/2となることが好ましい。 Next, another aspect of the present invention will be described with reference to FIGS. 8 to 11. In these embodiments, the portion of the frame portion that is lower in height than the rest of the frame portion is not connected to the cell (stand-alone shock absorber 14). The stand-alone shock absorber 14 has an effect of substantially reducing the vertical width of the frame portion when focused on the sweep direction of the nozzle, and reduces the instability of coating due to the coating liquid from the nozzle riding on the frame portion. be able to. The larger the area of the buffer ( SF ), the greater this effect, but from the viewpoint of contributing to the stability of application, the opening area is larger than the area of the nearest cell, and more preferably the volume of the nearest cell. It is necessary to have a larger volume. When the opening area and volume of the cell are different in each RGB pixel, it is desirable that the area of the stand-alone shock absorber is larger than the cell minimum area ( SRGB MIN ), that is, it is preferable that SF> SRGB MIN . By having a larger capacity than the coating liquid storage capacity of the nearest cell in terms of the liquid storage capacity of the coating liquid, the effect of substantially reducing the vertical width of the frame portion is obtained, and the coating is stabilized. Because it can be done. The larger the area ( SF ) of the cushioning portion is, the more preferable it is, but if it is too large, the effect of suppressing the peeling of the partition wall by the frame portion may appear. Further, it is desirable that the width ( LBF ) of the partition wall separating the stand-alone shock absorber and the cell existing in the vicinity thereof is LBF > LB from the viewpoint of partition wall workability, and the coating instability due to the stand-alone shock absorber 14 It is preferable that LBF < LA / 2 so as not to hinder the effect of reduction.
 また、本発明において、独立型緩衝部14を設ける場合、独立型緩衝部の幅の最大値(LFO)は、当該独立型緩衝部14の存する額縁部縦幅(L)の98%以下であることが好ましい。このようにすることで、独立型緩衝部14が設けられた額縁部からのパターンの剥がれを抑制し、歩留まりの低下を抑えることができる。(LFO/L)としては、さらに好ましくは95%以下、さらに好ましくは90%以下である。 Further, in the present invention, when the stand-alone shock absorber 14 is provided, the maximum value ( LFO ) of the width of the stand-alone shock absorber 14 is 98% or less of the vertical width ( LF ) of the frame portion in which the stand-alone shock absorber 14 exists. Is preferable. By doing so, it is possible to suppress the peeling of the pattern from the frame portion provided with the independent buffer portion 14, and to suppress the decrease in the yield. The ( LFO / LF ) is more preferably 95% or less, still more preferably 90% or less.
 この独立型緩衝部14は四方を隔壁で囲まれていても良いが、図10や図11に示されるように、RGBピクセル10を構成する隔壁が設けられた側とは反対側に壁となる部分が存在していなくても構わない。このような構成とすることで額縁部による隔壁の剥離を抑制しつつ、ノズルの掃引という観点からの額縁部の実質的な幅の減少に有効であり、塗布の安定化において極めて有利である。また、この場合においては、独立型緩衝部14に対応する額縁部をなす隔壁の高さは、額縁部の他の部分の高さの1/20以上であることが隔壁の剥離を抑制する観点から好ましい。 The stand-alone shock absorber 14 may be surrounded on all sides by a partition wall, but as shown in FIGS. 10 and 11, the wall forms a wall on the side opposite to the side where the partition wall constituting the RGB pixel 10 is provided. The part does not have to exist. Such a configuration is effective in reducing the substantial width of the frame portion from the viewpoint of sweeping the nozzle while suppressing the peeling of the partition wall by the frame portion, and is extremely advantageous in stabilizing the coating. Further, in this case, the height of the partition wall forming the frame portion corresponding to the stand-alone shock absorber 14 is 1/20 or more of the height of the other portion of the frame portion, which is a viewpoint of suppressing peeling of the partition wall. It is preferable from.
 また、本発明の隔壁付き基板は、額縁部内において、当該額縁部と交差する格子状配列の列の延長線に直交する方向にみて、他所よりも高さの低い部分の存在する割合が50%以上となる部分を有し、かつ、当該他所よりも高さの低い部分の存在する割合が50%以上となる部分の幅は、その部分が存する前記隔壁の幅の20%以下であることが好ましい(以下、かかる部分を「割断部」と称することがある)。また、割断部の幅は、額縁部縦幅の10%以下であることが好ましい。このような特徴を持たせることで額縁部内での割断性が向上し、タイリング技術が適用された表示装置においても、基板を跨いでの画像のズレやムラの少ない表示を実現することができる。 Further, in the substrate with a partition wall of the present invention, the proportion of a portion having a lower height than other parts is 50% in the frame portion in the direction orthogonal to the extension line of the row of the grid-like arrangement intersecting the frame portion. The width of the portion having the above-mentioned portion and having a portion having a height lower than the other portion of 50% or more may be 20% or less of the width of the partition wall in which the portion exists. Preferred (hereinafter, such a portion may be referred to as a "split portion"). Further, the width of the cut portion is preferably 10% or less of the vertical width of the frame portion. By having such a feature, the splittability in the frame portion is improved, and even in a display device to which the tiling technique is applied, it is possible to realize a display with less image deviation and unevenness across the substrate. ..
 以下、具体的に図面を用いて説明する。なお、本発明は、図を用いて説明した例に限定して解釈されるものではない。 Hereinafter, it will be specifically described using drawings. The present invention is not limited to the examples described with reference to the drawings.
 図14は、格子状配列の列の延長線上で交差する額縁部9に、当該延長線に直行する方向にみて断面が台形の頂部に方形が付加された幅がLD3の断面形状の溝である割断用溝部15が設けられた例(A-A’断面図を参照)である。この例においては、格子状配列の列の延長線に直行する方向でみると、全てが、接続型緩衝部13であるか、前記の溝である帯状の部分、すなわち割断部、が存在していることとなる。そして、当該帯状の部分は額縁部縦幅(L)の20%以下の幅であることによって、当該帯状の部分での割断が容易である。図15は、額縁部9に断面形状が半円形の溝が設けられた変形例である。これらの例では、隔壁パターンの現像工程において額縁部の隔壁が下地から剥離することをさらに抑制する観点から、割断用溝部15の隔壁膜厚(H)は、額縁部の隔壁膜厚(H)の1/20以上すなわちH>1/20Hとすることが好ましい。また割断精度を向上させるためにH<Hとすることが好ましく、H<1/2Hとすることがより好ましい。 FIG. 14 shows a groove having a cross-sectional shape of LD3 in which a square is added to the top of a trapezoidal cross section when viewed in a direction perpendicular to the extension line of a frame portion 9 intersecting on an extension line of a row of grid-like arrangements. This is an example in which a certain cutting groove portion 15 is provided (see the cross-sectional view taken along the line AA'). In this example, when viewed in the direction perpendicular to the extension line of the row of the grid array, all of them are the connection type buffer portion 13, or the strip-shaped portion which is the groove, that is, the split portion is present. Will be there. Since the strip-shaped portion has a width of 20% or less of the vertical width ( LF ) of the frame portion, it is easy to divide the strip-shaped portion. FIG. 15 is a modified example in which the frame portion 9 is provided with a groove having a semicircular cross-sectional shape. In these examples, the partition wall thickness (HD) of the split groove portion 15 is the partition wall film thickness ( H ) of the frame portion from the viewpoint of further suppressing the partition wall of the frame portion from peeling from the base in the partition wall pattern developing step. It is preferable that 1/20 or more of F ), that is, HD > 1/20 HF . Further, in order to improve the cutting accuracy, HD < HF is preferable, and HD <1 / 2HF is more preferable.
 また、別の態様として、図16は、格子状配列の列の延長線上で交差する額縁部9に開口部の形状が長方形の孔である割断用溝部15が設けられた例である。この例においては、格子状配列の列の延長線に直行する方向でみると、接続型緩衝部13であるか、前記の開口部の形状が長方形の孔の部分の占める割合が50%以上を占めている帯状の部分があり(A-A’断面図を参照)、すなわち割断部、が存在していることとなる。そして、当該帯状の部分は額縁部縦幅(L)の20%以下の幅であることによって、当該帯状の部分での割断が容易である。図17は、額縁部9に開口部の形状が楕円形の孔が設けられた変形例である。これらの例では、割断用溝部15の隔壁膜厚(H)は、割断精度を向上させるためにH<Hとすることが好ましく、H<1/2Hとすることがより好ましく、H=0とすることがさらに好ましい。 Further, as another embodiment, FIG. 16 shows an example in which a split groove portion 15 having a rectangular opening in the shape of an opening is provided in a frame portion 9 intersecting on an extension line of a row of grid-like arrangements. In this example, when viewed in the direction perpendicular to the extension line of the row of the grid array, the connection type buffer portion 13 or the portion of the opening having a rectangular hole occupies 50% or more. There is a band-shaped portion that occupies (see the A-A'cross section), that is, there is a split portion. Since the strip-shaped portion has a width of 20% or less of the vertical width ( LF ) of the frame portion, it is easy to divide the strip-shaped portion. FIG. 17 is a modified example in which the frame portion 9 is provided with a hole having an elliptical opening. In these examples, the partition wall film thickness (HD) of the split groove portion 15 is preferably HD < HF , more preferably HD <1 / 2HF , in order to improve the split accuracy. , HD = 0 is more preferred.
 また、図18~図20は、格子状配列の列の延長線上で交差する額縁部9に接続型緩衝部13に接して額縁部9に切り欠け部である割断用溝部15が設けられた例である。これらの例においては、格子状配列の列の延長線に直行する方向でみると、接続型緩衝部13であるか、前記の切り欠け部分の占める割合が50%以上を占めている帯状の部分があり(各図において、A-A’断面図を参照)、すなわち割断部、が存在していることとなる。そして、当該帯状の部分は額縁部縦幅(L)の20%以下の幅であることによって、当該帯状の部分での割断が容易である。これらの例では、切り欠け部分に対応している割断用溝部15の隔壁膜厚(H)は、割断精度を向上させるためにH<Hとすることが好ましく、H<1/2Hとすることがより好ましく、H=0とすることがさらに好ましい。 Further, FIGS. 18 to 20 show an example in which the frame portion 9 intersecting on the extension line of the rows of the grid arrangement is in contact with the connection type shock absorber portion 13 and the frame portion 9 is provided with the split groove portion 15 which is a notch portion. Is. In these examples, when viewed in the direction perpendicular to the extension line of the row of the grid-like arrangement, it is a connection type buffer portion 13, or a strip-shaped portion in which the notched portion occupies 50% or more. (Refer to the AA'cross section in each figure), that is, there is a split portion. Since the strip-shaped portion has a width of 20% or less of the vertical width ( LF ) of the frame portion, it is easy to divide the strip-shaped portion. In these examples, the partition wall thickness ( HD ) of the cutting groove portion 15 corresponding to the notched portion is preferably HD < HF in order to improve the cutting accuracy, and HD <1 /. It is more preferably 2HF , and even more preferably HD = 0.
 また図21~22に示す例は、額縁部9に独立型緩衝部14を有する場合の例であり、図21に示す例において、割断部についての説明は、図14において説明した内容を、図22に示す例は、図16において説明した内容を援用する。 Further, the examples shown in FIGS. 21 to 22 are examples in which the frame portion 9 has the independent cushioning portion 14, and in the example shown in FIG. 21, the description of the split portion is the same as that described in FIG. In the example shown in 22, the content described in FIG. 16 is incorporated.
 また、図14~22に示すように、額縁部のうち最も近傍のセルと接する部分を額縁上端部20、割断用溝部15のうち、額縁上端部に近い方の境界を割断用溝上端部21、非画素12に近い方の境界を割断用溝下端部22としたとき、額縁上端部20と割断用溝上端部21の幅(LD1)は、割断の精度を向上させる観点からL≦LD1とすることが好ましい。また、タイリング技術が用いられた表示装置において、基板を跨いでの画像のズレやムラの少ない表示を実現できることから、LD1≦1/2Lとすることが好ましく、LD1≦1/4Lとすることがより好ましい。また、額縁上端部20と割断用溝下端部22の幅(LD2)は、割断の精度を向上させる観点からLD2<Lとすることが好ましい。また、タイリング技術が用いられた表示装置において、基板を跨いでの画像のズレやムラの少ない表示を実現できることから、LD2≦1/2Lとなることがより好ましい。また、割断用溝上端部21から割断用溝下端部22までの幅を割断用溝部幅(LD3)とすると、前述の通り割断用溝部幅の額縁部縦幅に対する比率(LD3/L)は、20%以下が好ましく、10%以下がより好ましい。 Further, as shown in FIGS. 14 to 22, the portion of the frame that is in contact with the nearest cell is the upper end of the frame 20, and the boundary of the split groove 15 that is closer to the upper end of the frame is the upper end of the split groove 21. When the boundary closer to the non-pixel 12 is the lower end portion 22 of the cutting groove, the width ( LD1 ) of the upper end portion 20 of the frame and the upper end portion 21 of the cutting groove is LB from the viewpoint of improving the accuracy of cutting. It is preferably LD1 . Further, in a display device using the tiling technique, it is possible to realize a display with less image shift and unevenness across the substrate, so it is preferable to set L D1 ≤ 1 / 2L F , and L D1 ≤ 1 / 4L. It is more preferable to set it to F. Further, the width ( LD2 ) of the upper end portion 20 of the frame and the lower end portion 22 of the cutting groove is preferably LD2 < LF from the viewpoint of improving the accuracy of cutting. Further, in a display device using the tiling technique, it is more preferable that L D2 ≤ 1 / 2LF because it is possible to realize a display with less image deviation and unevenness across the substrate. Further, assuming that the width from the upper end portion 21 of the splitting groove to the lower end portion 22 of the splitting groove is the splitting groove portion width ( LD3 ), the ratio of the splitting groove portion width to the vertical width of the frame portion ( LD3 / LF ) as described above. ) Is preferably 20% or less, more preferably 10% or less.
 基板を割断する方法としてはスクライビング切断、レーザー切断を挙げることができる。スクライビング切断としては、ホイールスクライビング、レーザースクライビングを挙げることができる。レーザー切断としては、には、ファイバーレーザー、YAGレーザー、COレーザー、UVレーザー、エキシマレーザー、LDレーザー、ナノ秒パルスレーザー、ピコ秒パルスレーザー、フェムト秒パルスレーザーを用いた切断を挙げることができる。 Examples of the method of cutting the substrate include scribing cutting and laser cutting. Examples of scribing cutting include wheel scribing and laser scribing. Examples of the laser cutting include cutting using a fiber laser, a YAG laser, a CO 2 laser, a UV laser, an excima laser, an LD laser, a nanosecond pulse laser, a picosecond pulse laser, and a femtosecond pulse laser. ..
 本発明の隔壁付き基板は、ディスプレイ装置の部材として好ましく用いることができる。各セルは画素に対応したパターンとして設けることが好ましい。ディスプレイの画素数としては、例えば、縦に2,000個、横に4,000個が挙げられる。画素数は、表示される画像の解像度(きめ細かさ)に影響する。そのため、要求される画像の解像度とディスプレイの画面サイズに応じた数の画素を形成する必要があり、それに併せて、隔壁のパターン形成寸法を決定することが好ましい。また、隔壁はノズル塗布法にて塗布した塗液が隔壁頂部に残渣せずにセルに流れ込むよう撥液性を有することが好ましい。 The substrate with a partition wall of the present invention can be preferably used as a member of a display device. It is preferable that each cell is provided as a pattern corresponding to a pixel. Examples of the number of pixels of the display include 2,000 pixels vertically and 4,000 pixels horizontally. The number of pixels affects the resolution (fineness) of the displayed image. Therefore, it is necessary to form a number of pixels according to the required image resolution and the screen size of the display, and it is preferable to determine the pattern formation dimension of the partition wall accordingly. Further, it is preferable that the partition wall has a liquid-repellent property so that the coating liquid applied by the nozzle coating method flows into the cell without remaining on the top of the partition wall.
 隔壁は、セルに、電磁波の波長を他の波長に変換する材料(波長変換材料)を充填して、波長変換層を形成した場合には、ある画素から隣接する画素に光が透過・散乱するのを防止する機能を有することが好ましい。 When the partition wall is filled with a material (wavelength conversion material) that converts the wavelength of an electromagnetic wave into another wavelength to form a wavelength conversion layer, light is transmitted / scattered from one pixel to an adjacent pixel. It is preferable to have a function to prevent the above.
 隔壁の高さは、隔壁付き基板のセル内に波長変換ペーストの硬化物を有する場合、波長変換ペーストの硬化物の厚みよりも大きいことが好ましい。具体的には、隔壁6の高さは、0.5μm以上が好ましく、5μm以上がより好ましい。一方、波長変換発光材料を含有する層の底部における発光をより効率良く取り出す観点から、隔壁の高さは、100μm以下が好ましく、70μm以下がより好ましく、50μm以下がさらに好ましい。また、セル間隔壁幅は、隔壁側面における光反射を利用し輝度を向上させ、光漏れによる隣接する波長変換ペーストの硬化物からの発光の混色を抑制するために十分なものであればよい。具体的には、セル間隔壁幅は、0.5μm以上が好ましく、10μm以上がより好ましい。 The height of the partition wall is preferably larger than the thickness of the cured product of the wavelength conversion paste when the cured product of the wavelength conversion paste is contained in the cell of the substrate with the partition wall. Specifically, the height of the partition wall 6 is preferably 0.5 μm or more, and more preferably 5 μm or more. On the other hand, the height of the partition wall is preferably 100 μm or less, more preferably 70 μm or less, still more preferably 50 μm or less, from the viewpoint of more efficiently extracting light emission at the bottom of the layer containing the wavelength conversion light emitting material. Further, the cell spacing wall width may be sufficient to improve the brightness by utilizing the light reflection on the side surface of the partition wall and suppress the color mixing of the light emitted from the cured product of the adjacent wavelength conversion paste due to light leakage. Specifically, the cell spacing wall width is preferably 0.5 μm or more, and more preferably 10 μm or more.
 本発明において、隔壁付き基板における隔壁によって区画されたセルには、波長変換材料が充填されていてもよい。本発明において、波長変換材料とは、電磁波を吸収し、吸収した電磁波の波長と異なる波長の電磁波を放射する、波長変換性を有する材料をいう。波長変換材料を含んだ波長変換ペーストをパターン化して塗布して波長変換基板を作製し、OLED光源やLED光源と組み合わせることによりフルカラーのディスプレイとすることができる。 In the present invention, the cells partitioned by the partition walls in the partition wall-equipped substrate may be filled with a wavelength conversion material. In the present invention, the wavelength conversion material refers to a material having a wavelength conversion property that absorbs an electromagnetic wave and emits an electromagnetic wave having a wavelength different from the wavelength of the absorbed electromagnetic wave. A wavelength conversion substrate containing a wavelength conversion material is patterned and applied to prepare a wavelength conversion substrate, which can be combined with an OLED light source or an LED light source to form a full-color display.
 波長変換材料としては、無機蛍光体や有機蛍光体を用いることができる。例えば、青色光を発光するOLEDと、波長変換基板とを組み合わせたディスプレイの場合、赤色のサブピクセルに対応する領域には、青色の励起光により励起されて赤色の蛍光を発する赤色用蛍光体を波長変換材料として用いることが好ましく、緑色のサブピクセルに対応する領域には、青色の励起光により励起されて緑色の蛍光を発する緑色用蛍光体を波長変換材料として用いることが好ましく、青色サブピクセルに対応する領域には、波長変換材料を用いないことが好ましい。同様に、各サブピクセルに対応した青色LEDや紫外線発光LEDをバックライトとして用いる方式のディスプレイにも、本発明の波長変換基板を用いることができる。各サブピクセルの発光のON/OFFは、OLEDやLEDのアクティブマトリクス駆動によって可能となる。 As the wavelength conversion material, an inorganic phosphor or an organic phosphor can be used. For example, in the case of a display in which an OLED that emits blue light and a wavelength conversion substrate are combined, a red phosphor that is excited by blue excitation light and emits red fluorescence is placed in a region corresponding to the red subpixel. It is preferable to use it as a wavelength conversion material, and in the region corresponding to the green subpixel, it is preferable to use a green phosphor that is excited by blue excitation light and emits green fluorescence as a wavelength conversion material, and it is preferable to use a blue subpixel. It is preferable not to use a wavelength conversion material in the region corresponding to. Similarly, the wavelength conversion substrate of the present invention can also be used for a display of a method using a blue LED or an ultraviolet light emitting LED corresponding to each subpixel as a backlight. The light emission of each subpixel can be turned ON / OFF by driving the OLED or the active matrix of the LED.
 無機蛍光体は、緑色や赤色などの各色を発光する。無機蛍光体としては、波長400~500nmの励起光により励起され、発光スペクトルが500~700nmの領域にピークを有するものや、量子ドットと称される量子力学に従い独特な光学特性を有するナノスケールの無機半導体微粒子などが挙げられる。前者の無機蛍光体の形状としては、例えば、球状、柱状などが挙げられる。かかる無機蛍光体としては、例えば、YAG系蛍光体、TAG系蛍光体、サイアロン系蛍光体、Mn4+付活フッ化物錯体蛍光体等が挙げられる。これらを2種以上用いてもよい。 The inorganic phosphor emits each color such as green and red. Inorganic phosphors include those excited by excitation light with a wavelength of 400 to 500 nm and having a peak in the emission spectrum in the region of 500 to 700 nm, and nanoscale particles having unique optical characteristics according to quantum mechanics called quantum dots. Examples include inorganic semiconductor fine particles. Examples of the shape of the former inorganic phosphor include a spherical shape and a columnar shape. Examples of such inorganic phosphors include YAG-based phosphors, TAG-based phosphors, sialon-based phosphors, Mn 4+ activated fluoride complex phosphors, and the like. Two or more of these may be used.
 これらの中でも、量子ドット材料が好ましい。量子ドットは他の蛍光体に比較して発光スペクトルにおけるピークがシャープであることから、ディスプレイの色再現性を高めることができる。粒径数nmの比較的小さい粒径の量子ドットを用いることで、隔壁上への無機蛍光体粒子の残渣を抑えることができ、パネル作製の際の、貼り合わせ精度を向上させることが可能になる。また、同様の理由により、量子ドットを用いることで割断の精度を向上させることが可能となる。 Among these, the quantum dot material is preferable. Since quantum dots have sharper peaks in the emission spectrum than other phosphors, the color reproducibility of the display can be improved. By using quantum dots with a relatively small particle size of several nm, it is possible to suppress the residue of inorganic phosphor particles on the partition wall and improve the bonding accuracy when manufacturing panels. Become. Further, for the same reason, it is possible to improve the accuracy of splitting by using quantum dots.
 量子ドットの材料としては、例えば、II-IV族、III-V族、IV-VI族、IV族の半導体などが挙げられる。これらの無機半導体としては、例えば、Si、Ge、Sn、Se、Te、B、C(ダイヤモンドを含む)、P、BN、BP、BAs、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdSeZn、CdTe、HgS、HgSe、HgTe、BeS、BeSe、BeTe、MgS、MgSe、GeS、GeSe、GeTe、SnS、SnSe、SnTe、PbO、PbS、PbSe、PbTe、CuF、CuCl、CuBr、CuI、Si、Ge、Alなどが挙げられる。これらを2種以上用いてもよい。 Examples of the material of the quantum dot include semiconductors of group II-IV, group III-V, group IV-VI, and group IV. Examples of these inorganic semiconductors include Si, Ge, Sn, Se, Te, B, C (including diamond), P, BN, BP, BAs, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, and the like. GaSb, InN, InP, InAs, InSb, ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdSeZn, CdTe, HgS, HgSe, HgTe, BeS, BeSe, BeTe, MgS, MgSe, GeS, GeS Examples thereof include SnSe, SnTe, PbO, PbS, PbSe, PbTe, CuF, CuCl, CuBr, CuI, Si 3 N 4 , Ge 3 N 4 , and Al 2 O 3 . Two or more of these may be used.
 量子ドットは、p型ドーパントまたはn型ドーパントを含有してもよい。また、量子ドットは、コアシェル構造を有してもよい。コアシェル構造においては、シェルの周囲に目的に応じて任意の適切な機能層(単一層または複数層)が形成されていてもよく、シェル表面に表面処理および/または化学修飾がなされていてもよい。 Quantum dots may contain a p-type dopant or an n-type dopant. Further, the quantum dots may have a core-shell structure. In the core-shell structure, any suitable functional layer (single layer or multiple layers) may be formed around the shell depending on the purpose, and the surface of the shell may be surface-treated and / or chemically modified. ..
 量子ドットの形状としては、例えば、球状、柱状、燐片状、板状、不定形等が挙げられる。量子ドットの平均粒子径は、所望の発光波長に応じて選択することができ、1~30nmが好ましい。量子ドットの平均粒子径が1~10nmであれば、青色、緑色および赤色のそれぞれにおいて、発光スペクトルにおけるピークをよりシャープにすることができる。例えば、量子ドットの平均粒子径が約2nmの場合には青色光を、約3nmの場合には緑色光を、約6nmの場合には赤色光を発光する。量子ドットの平均粒子径は2nm以上が好ましく、8nm以下が好ましい。量子ドットの平均粒子径は、動的光散乱法により測定することができる。平均粒子径の測定装置としては、ダイナミック光散乱光度計DLS-8000(大塚電子(株)製)などが挙げられる。 Examples of the shape of the quantum dot include a spherical shape, a columnar shape, a flaky shape, a plate shape, an amorphous shape, and the like. The average particle size of the quantum dots can be selected according to the desired emission wavelength, and is preferably 1 to 30 nm. When the average particle size of the quantum dots is 1 to 10 nm, the peak in the emission spectrum can be sharpened in each of blue, green and red. For example, when the average particle size of the quantum dots is about 2 nm, blue light is emitted, when it is about 3 nm, green light is emitted, and when it is about 6 nm, red light is emitted. The average particle size of the quantum dots is preferably 2 nm or more, and preferably 8 nm or less. The average particle size of the quantum dots can be measured by a dynamic light scattering method. Examples of the device for measuring the average particle size include a dynamic light scattering photometer DLS-8000 (manufactured by Otsuka Electronics Co., Ltd.).
 有機蛍光体としては、例えば、青色の励起光により励起され赤色の蛍光を発する蛍光体および青色の励起光により励起され緑色の蛍光を発する蛍光体として、ピロメテン誘導体などが挙げられる。その他には、置換基の選択により赤色または緑色の蛍光を発するペリレン系誘導体、ポルフィリン系誘導体、オキサジン系誘導体、ピラジン系誘導体などが挙げられる。これらを2種以上含有してもよい。これらの中でも、量子収率が高いことから、ピロメテン誘導体が好ましい。ピロメテン誘導体は、例えば、特開2011-241160号公報に記載の方法により得ることができる。 Examples of the organic phosphor include a phosphor that is excited by blue excitation light and emits red fluorescence, and a phosphor that is excited by blue excitation light and emits green fluorescence, such as a pyrromethene derivative. Other examples include a perylene-based derivative, a porphyrin-based derivative, an oxazine-based derivative, and a pyrazine-based derivative that emit red or green fluorescence depending on the selection of the substituent. Two or more of these may be contained. Among these, a pyrromethene derivative is preferable because of its high quantum yield. The pyrromethene derivative can be obtained, for example, by the method described in JP-A-2011-241160.
 有機蛍光体は溶媒に可溶なため、所望の厚みの波長変換材料を含有する層を容易に形成することができる。 Since the organic phosphor is soluble in a solvent, a layer containing a wavelength conversion material having a desired thickness can be easily formed.
 本発明において、波長変換層は、光散乱性粒子を含有してもよい。光散乱性粒子を含有することにより、波長変換層内で青色光や紫外光が散乱されることにより光路長が長くなり、波長変換材料による光変換効率を向上させることができる。 In the present invention, the wavelength conversion layer may contain light scattering particles. By containing the light-scattering particles, blue light and ultraviolet light are scattered in the wavelength conversion layer, so that the optical path length becomes long, and the light conversion efficiency of the wavelength conversion material can be improved.
 光散乱性粒子としては、硫酸バリウム、酸化アルミニウム、酸化ジルコニウム、酸化亜鉛、酸化チタンのいずれかであるのが好ましい。これらを2種以上含有してもよい。 The light-scattering particles are preferably barium sulfate, aluminum oxide, zirconium oxide, zinc oxide, or titanium oxide. Two or more of these may be contained.
 光散乱性粒子の波長587.5nmにおける屈折率は、1.60~2.70が好ましい。光散乱性粒子の屈折率を1.60以上とすることにより、光散乱性粒子による波長変換層内における青色光の散乱性が向上し、波長変換材料による光変換効率が向上しやすい。一方、光散乱性粒子の屈折率を2.70以下とすることにより、光散乱性粒子による過剰な散乱を抑制し、波長変換後の発光した光がセル外に取り出し易くなる。光散乱性粒子を2種以上含有する場合は、少なくとも1種の屈折率が上記範囲にあることが好ましい。 The refractive index of the light-scattering particles at a wavelength of 587.5 nm is preferably 1.60 to 2.70. By setting the refractive index of the light-scattering particles to 1.60 or more, the scattering property of blue light in the wavelength conversion layer by the light-scattering particles is improved, and the light conversion efficiency by the wavelength conversion material is likely to be improved. On the other hand, by setting the refractive index of the light-scattering particles to 2.70 or less, excessive scattering by the light-scattering particles is suppressed, and the emitted light after wavelength conversion can be easily taken out of the cell. When two or more kinds of light-scattering particles are contained, it is preferable that the refractive index of at least one kind is in the above range.
 光散乱性粒子の含有量は、光変換効率をより向上させる観点から、固形分中、1重量%以上が好ましく、5重量%以上がより好ましく、10重量%以上がさらに好ましい。一方、光散乱性粒子の含有量は、波長変換材料の濃度消光による発光効率低下を抑制する観点から、固形分中、70重量%以下が好ましく、60重量%以下がより好ましく、50重量%以下がさらに好ましい。ここでいう固形分とは、波長変換ペーストに含まれる成分のうち、溶媒等の揮発性の成分を除いた全成分のことを意味する。固形分の量は、波長変換ペーストを、150℃で1時間加熱して揮発性の成分を蒸発させた残分を量ることにより求めることができる。 本発明の隔壁付き基板を波長変換基板として用いる場合において、波長変換層は、波長変換ペーストを硬化させて形成することが好ましい。波長変換ペーストは、波長変換材料を含有するペースト材料であり、適切に組成設計することによりノズル塗布法で隔壁付き基板に容易に塗布できる。波長変換ペーストを硬化させる方法は特に限定されないが、重合性化合物を含有する波長変換ペーストを熱や光で硬化させる方法や、溶媒を含有する波長変換ペーストから加熱により溶媒を揮発させて硬化させる方法などが挙げられる。 The content of the light-scattering particles is preferably 1% by weight or more, more preferably 5% by weight or more, and further preferably 10% by weight or more in the solid content from the viewpoint of further improving the light conversion efficiency. On the other hand, the content of the light-scattering particles is preferably 70% by weight or less, more preferably 60% by weight or less, and 50% by weight or less in the solid content from the viewpoint of suppressing the decrease in luminous efficiency due to the concentration quenching of the wavelength conversion material. Is even more preferable. The solid content here means all the components contained in the wavelength conversion paste, excluding the volatile components such as the solvent. The amount of solid content can be determined by heating the wavelength conversion paste at 150 ° C. for 1 hour and measuring the residue obtained by evaporating the volatile components. When the substrate with a partition wall of the present invention is used as the wavelength conversion substrate, the wavelength conversion layer is preferably formed by curing the wavelength conversion paste. The wavelength conversion paste is a paste material containing a wavelength conversion material, and can be easily applied to a substrate with a partition wall by a nozzle coating method by appropriately designing the composition. The method of curing the wavelength conversion paste is not particularly limited, but a method of curing a wavelength conversion paste containing a polymerizable compound with heat or light, or a method of volatilizing a solvent from a wavelength conversion paste containing a solvent to cure it. And so on.
 波長変換ペーストは、重合性化合物として、モノマーを含有してもよい。本発明におけるモノマーとは、後述する重合開始剤の反応により発生した活性種により重合する化合物をいう。 The wavelength conversion paste may contain a monomer as a polymerizable compound. The monomer in the present invention refers to a compound polymerized by an active species generated by the reaction of a polymerization initiator described later.
 波長変換ペーストに用いるモノマーは、分子中にエチレン性不飽和二重結合を有する化合物であることが好ましい。モノマーは、分子中に2つ以上のエチレン性不飽和二重結合を有することが好ましい。ラジカル重合性のしやすさを考えると、モノマーは、(メタ)アクリル基を有することが好ましい。また、モノマーの二重結合当量は、パターン加工における感度をより向上させる観点から、400g/mol以下が好ましい。 The monomer used for the wavelength conversion paste is preferably a compound having an ethylenically unsaturated double bond in the molecule. The monomer preferably has two or more ethylenically unsaturated double bonds in the molecule. Considering the ease of radical polymerization, the monomer preferably has a (meth) acrylic group. The double bond equivalent of the monomer is preferably 400 g / mol or less from the viewpoint of further improving the sensitivity in pattern processing.
 モノマーとしては、例えば、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコールジアクリレート、ジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、ポリプロピレングリコールジアクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジメタクリレート、ポリプロピレングリコールジメタクリレート、トリメチロールプロパンジアクリレート、トリメチロールプロパントリアクリレート、トリメチロールプロパンジメタクリレート、トリメチロールプロパントリメタクリレート、1,3-ブタンジオールジアクリレート、1,3-ブタンジオールジメタクリレート、ネオペンチルグリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,4-ブタンジオールジメタクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジメタクリレート、1,10-デカンジオールジメタクリレート、ジメチロール-トリシクロデカンジアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ペンタエリスリトールトリメタクリレート、ペンタエリスリトールテトラメタクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、トリペンタエリスリトールヘプタアクリレート、トリペンタエリスリトールオクタアクリレート、テトラペンタエリスリトールノナアクリレート、テトラペンタエリスリトールデカアクリレート、ペンタペンタエリスリトールウンデカアクリレート、ペンタペンタエリスリトールドデカアクリレート、トリペンタエリスリトールヘプタメタクリレート、トリペンタエリスリトールオクタメタクリレート、テトラペンタエリスリトールノナメタクリレート、テトラペンタエリスリトールデカメタクリレート、ペンタペンタエリスリトールウンデカメタクリレート、ペンタペンタエリスリトールドデカメタクリレート、ジメチロール-トリシクロデカンジアクリレート等が挙げられる。これらを2種以上含有してもよい。 Examples of the monomer include diethylene glycol diacrylate, triethylene glycol diacrylate, tetraethylene glycol diacrylate, polyethylene glycol diacrylate, dipropylene glycol diacrylate, tripropylene glycol diacrylate, polypropylene glycol diacrylate, diethylene glycol dimethacrylate, and triethylene. Glycol dimethacrylate, tetraethylene glycol dimethacrylate, polypropylene glycol dimethacrylate, trimethylolpropane diacrylate, trimethylolpropanetriacrylate, trimethylolpropanedimethacrylate, trimethylolpropanetrimethacrylate, 1,3-butanediol diacrylate, 1, 3-Butanediol dimethacrylate, neopentyl glycol diacrylate, 1,4-butanediol diacrylate, 1,4-butanediol dimethacrylate, 1,6-hexanediol diacrylate, 1,9-nonanediol dimethacrylate, 1 , 10-Decandiol Dimethacrylate, Dimethyrol-Tricyclodecanediacrylate, Pentaerythritol Triacrylate, Pentaerythritol Tetraacrylate, Pentaerythritol Trimethacrylate, Pentaerythritol Tetramethacrylate, Dipentaerythritol Pentaacrylate, Dipentaerythritol Hexaacrylate, Tripenta Ellislitol heptaacrylate, trypentaerythritol octaacrylate, tetrapentaerythritol nonaacrylate, tetrapentaerythritol decaacrylate, pentapentaerythritol undecaacrylate, pentapentaerythritol dodecaacrylate, tripentaerythritol heptamethacrylate, tripentaerythritol octamethacrylate, tetrapentaerythritol Examples thereof include nona methacrylate, tetrapentaerythritol decamethacrylate, pentapentaerythritol undecamethacrylate, pentapentaerythritol dodecamethacrylate, dimethyrole-tricyclodecanediacrylate and the like. Two or more of these may be contained.
 波長変換ペースト中におけるモノマーの含有量は、波長変換ペーストの固形分率を高める観点から、固形分中、1重量%以上が好ましく、10重量%以上がより好ましく、30重量%以上がさらに好ましい。一方、ノズルからの吐出を安定化させる観点から、モノマーの含有量は、固形分中、80重量%以下が好ましく、70重量%以下がより好ましい。 The content of the monomer in the wavelength conversion paste is preferably 1% by weight or more, more preferably 10% by weight or more, still more preferably 30% by weight or more in the solid content from the viewpoint of increasing the solid content ratio of the wavelength conversion paste. On the other hand, from the viewpoint of stabilizing the discharge from the nozzle, the content of the monomer is preferably 80% by weight or less, more preferably 70% by weight or less in the solid content.
 波長変換ペーストは、重合開始剤を含有してもよい。重合開始剤およびモノマーを含有することにより、光照射、あるいは加熱などで重合開始剤を反応させることにより、重合開始剤から発生した活性種によってモノマーの重合が進行し、波長変換ペーストの露光部を硬化することができる。 The wavelength conversion paste may contain a polymerization initiator. By containing the polymerization initiator and the monomer, the polymerization initiator is reacted by light irradiation or heating, so that the polymerization of the monomer proceeds by the active species generated from the polymerization initiator, and the exposed portion of the wavelength conversion paste is exposed. Can be cured.
 重合開始剤は、ラジカル開始剤やカチオン開始剤、すなわち、光(紫外線、電子線を含む)、または熱により反応し、ラジカルやカチオンなどの活性種を発生させるものであればどのようなものでもよい。これらの中でも、ラジカル開始剤であることが好ましい。重合開始剤としては、例えば、2-メチル-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)-ブタン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1などのα-アミノアルキルフェノン化合物;2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)-ホスフィンオキサイドなどのアシルホスフィンオキサイド化合物;1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)オキシム、1-[4-(フェニルチオ)フェニル]オクタン-1,2-ジオン=2-(O-ベンゾイルオキシム)]、1-フェニル-1,2-ブタジオン-2-(O-メトキシカルボニル)オキシム、1,3-ジフェニルプロパントリオン-2-(O-エトキシカルボニル)オキシム、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)などのオキシムエステル化合物;ベンジルジメチルケタールなどのベンジルケタール化合物;2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトンなどのα-ヒドロキシケトン化合物;ベンゾフェノン、4,4-ビス(ジメチルアミノ)ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、O-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4,4-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルサルファイド、アルキル化ベンゾフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノンなどのベンゾフェノン化合物;2,2-ジエトキシアセトフェノン、2,3-ジエトキシアセトフェノン、4-t-ブチルジクロロアセトフェノン、ベンザルアセトフェノン、4-アジドベンザルアセトフェノンなどのアセトフェノン化合物;2-フェニル-2-オキシ酢酸メチルなどの芳香族ケトエステル化合物;4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸(2-エチル)ヘキシル、4-ジエチルアミノ安息香酸エチル、2-ベンゾイル安息香酸メチルなどの安息香酸エステル化合物などが挙げられる。これらを2種以上含有してもよい。 The polymerization initiator may be any radical initiator or cation initiator, that is, any one that reacts with light (including ultraviolet rays and electron beams) or heat to generate active species such as radicals and cations. good. Among these, a radical initiator is preferable. Examples of the polymerization initiator include 2-methyl- [4- (methylthio) phenyl] -2-morpholinopropane-1-one and 2-dimethylamino-2- (4-methylbenzyl) -1- (4-). Α-Aminoalkylphenone compounds such as morpholin-4-yl-phenyl) -butane-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1; 2,4 , 6-trimethylbenzoylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphinoxide, bis (2,6-dimethoxybenzoyl)-(2,4,4-trimethylpentyl) -phosphinoxide, etc. Acylphosphine oxide compound; 1-phenyl-1,2-propanedione-2- (O-ethoxycarbonyl) oxime, 1- [4- (phenylthio) phenyl] octane-1,2-dione = 2- (O-benzoyl) Oxym)], 1-Phenyl-1,2-butadion-2- (O-methoxycarbonyl) oxime, 1,3-diphenylpropanthrion-2- (O-ethoxycarbonyl) oxime, Etanone, 1- [9-ethyl Oxyme ester compounds such as -6- (2-methylbenzoyl) -9H-carbazole-3-yl]-, 1- (O-acetyloxime); benzyl ketal compounds such as benzyl dimethyl ketal; 2-hydroxy-2-methyl -1-Phenylpropan-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ) Ketones, α-hydroxyketone compounds such as 1-hydroxycyclohexyl-phenylketone; benzophenone, 4,4-bis (dimethylamino) benzophenone, 4,4-bis (diethylamino) benzophenone, methyl O-benzoylbenzoate, 4- Phenylbenzophenone, 4,4-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4'-methyl-diphenylsulfide, alkylated benzophenone, 3,3', 4,4'-tetra (t-butylperoxycarbonyl) benzophenone, etc. Phenylphenone compound; 2,2-diethoxyacetophenone, 2,3-diethoxyacetophenone, 4-t-butyldichloroacetophenone, benzalacetophenone, 4-azidobenzalacetopheno Acetphenone compounds such as 2-phenyl-2-oxyacetate compounds; ethyl 4-dimethylaminobenzoate, 4-dimethylaminobenzoic acid (2-ethyl) hexyl, ethyl 4-diethylaminobenzoate, Examples thereof include benzoic acid ester compounds such as 2-benzoyl methyl benzoate. Two or more of these may be contained.
 波長変換ペーストは、重合開始剤による着色を抑制するため、2,4,6-トリメチルベンゾイルフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-(2,4,4-トリメチルペンチル)-ホスフィンオキサイド等のアシルホスフィンオキサイド系重合開始剤を含有することが好ましい。 The wavelength conversion paste contains 2,4,6-trimethylbenzoylphenylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, and bis (2,6-dimethoxy) in order to suppress coloration caused by the polymerization initiator. It is preferable to contain an acylphosphine oxide-based polymerization initiator such as benzoyl)-(2,4,4-trimethylpentyl) -phosphine oxide.
 本発明において、波長変換ペースト中における重合開始剤の含有量は、重合開始剤による反応を効率的に進める観点から、固形分中、0.01重量%以上が好ましく、0.1重量%以上がより好ましい。一方、残留した重合開始剤の溶出等を抑制し、黄変をより向上させる観点から、重合開始剤の含有量は、固形分中、20重量%以下が好ましく、10重量%以下がより好ましい。 In the present invention, the content of the polymerization initiator in the wavelength conversion paste is preferably 0.01% by weight or more, preferably 0.1% by weight or more, based on the solid content, from the viewpoint of efficiently advancing the reaction by the polymerization initiator. More preferred. On the other hand, from the viewpoint of suppressing elution of the residual polymerization initiator and further improving yellowing, the content of the polymerization initiator is preferably 20% by weight or less, more preferably 10% by weight or less in the solid content.
 波長変換ペーストは、ポリマー、溶媒、分散剤などを適宜含んでいても良い。 The wavelength conversion paste may appropriately contain a polymer, a solvent, a dispersant and the like.
 波長変換ペーストにポリマーを含む場合には、ポリマーとして、例えば、ポリビニルアセテート、ポリビニルアルコール、エチルセルロース、メチルセルロース、ポリエチレン、ポリメチルシロキサン若しくはポリメチルフェニルシロキサン等のシリコン樹脂、ポリスチレン、ブタジエン/スチレンコポリマー、ポリスチレン、ポリビニルピロリドン、ポリアミド、高分子量ポリエーテル、エチレンオキサイドとプロピレンオキサイドとの共重合体、ポリアクリルアミド又はアクリル樹脂などが好ましく挙げられる。 When the wavelength conversion paste contains a polymer, the polymer may be, for example, a silicon resin such as polyvinyl acetate, polyvinyl alcohol, ethyl cellulose, methyl cellulose, polyethylene, polymethyl siloxane or polymethyl phenyl siloxane, polystyrene, butadiene / styrene copolymer, polystyrene, etc. Preferred examples include polyvinylpyrrolidone, polyamide, high molecular weight polyether, copolymer of ethylene oxide and propylene oxide, polyacrylamide, acrylic resin and the like.
 波長変換ペーストに溶媒を含む場合には、溶媒として、例えば、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、t-ブタノール、ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシ-1-ブタノール、ジアセトンアルコールなどのアルコール類;エチレングリコール、プロピレングリコールなどのグリコール類;エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル、プロピレングリコールモノ-t-ブチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチルエーテルなどのエーテル類;メチルエチルケトン、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、ジイソブチルケトン、シクロペンタノン、2-ヘプタノンなどのケトン類;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド類;エチルアセテート、プロピルアセテート、ブチルアセテート、イソブチルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、乳酸メチル、乳酸エチル、乳酸ブチルなどのアセテート類;トルエン、キシレン、ヘキサン、シクロヘキサンなどの芳香族または脂肪族炭化水素;γ-ブチロラクトン、N-メチル-2-ピロリドン、ジメチルスルホキシドなどが好ましく挙げられる。 When the wavelength conversion paste contains a solvent, the solvent may be, for example, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, t-butanol, pentanol, 4-methyl-2-pentanol, 3-methyl-2. -Alcohols such as butanol, 3-methyl-3-methoxy-1-butanol, diacetone alcohol; glycols such as ethylene glycol and propylene glycol; ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene Ethers such as glycol monoethyl ether, propylene glycol monopropyl ether, propylene glycol monobutyl ether, propylene glycol mono-t-butyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethyl ether; methyl ethyl ketone, acetyl acetone, methyl Ketones such as propyl ketone, methyl butyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclopentanone, 2-heptanone; amides such as dimethylformamide and dimethylacetamide; ethyl acetate, propyl acetate, butyl acetate, isobutyl acetate and ethylene glycol Acetates such as monoethyl ether acetate, propylene glycol monomethyl ether acetate, 3-methoxybutyl acetate, 3-methyl-3-methoxybutyl acetate, methyl lactate, ethyl lactate, butyl lactate; aromatics such as toluene, xylene, hexane and cyclohexane. Group or aliphatic hydrocarbons; γ-butyrolactone, N-methyl-2-pyrrolidone, dimethylsulfoxide and the like are preferably mentioned.
 波長変換ペーストの粘度は、レオメータ(HAAKE MARS;サーモフィッシャーサイエンティフィック(株)製)に、同社製のPlate P35 Ti Lを装着し、ギャップを200μmに設定して測定した際に、1sec-1のせん断速度における粘度が1,000~500,000mPa・sであることが好ましい。粘度を1000mPa・s以上とすることにより、ペーストを作製後に長期保存した場合でも(B)光散乱性粒子などの粒子成分が沈降し生じにくくなる。粘度は3,000mPa・s以上であることがより好ましく、5,000mPa・s以上であることがさらに好ましい。また、粘度を500,000mPa・s以下とすることにより、低圧の圧縮空気での加圧でも安定的に吐出されやすくなる。粘度は400,000mPa・s以下であることがより好ましく、300,000mPa・s以下であることがさらに好ましい。 The viscosity of the wavelength conversion paste is 1 sec -1 when measured by attaching the Plate P35 Ti L manufactured by the same company to a rheometer (HAAKE MARS; Thermo Fisher Scientific Co., Ltd.) and setting the gap to 200 μm. The viscosity at the shear rate of is preferably 1,000 to 500,000 mPa · s. By setting the viscosity to 1000 mPa · s or more, even when the paste is stored for a long period of time after preparation, particle components such as (B) light-scattering particles are less likely to settle. The viscosity is more preferably 3,000 mPa · s or more, and further preferably 5,000 mPa · s or more. Further, by setting the viscosity to 500,000 mPa · s or less, it becomes easy to stably discharge even when pressurized with compressed air at a low pressure. The viscosity is more preferably 400,000 mPa · s or less, and further preferably 300,000 mPa · s or less.
 波長変換ペーストに分散剤を含む場合には、分散剤として、例えば、“Disperbyk”(登録商標)106、108、110、180、190、2001、2155、140、145(以上、商品名。ビックケミー(株)製)などが好ましく挙げられる。 When the wavelength conversion paste contains a dispersant, the dispersant may be, for example, "Disperbyk" (registered trademark) 106, 108, 110, 180, 190, 2001, 2155, 140, 145 (hereinafter, trade name. Big Chemie). Co., Ltd.) and the like are preferable.
 本発明の波長変換基板は、本発明の隔壁付き基板に、波長変換ペーストを、ノズル塗布法で塗布し、硬化することで作製することが好ましい。 The wavelength conversion substrate of the present invention is preferably produced by applying a wavelength conversion paste to the substrate with a partition wall of the present invention by a nozzle coating method and curing the substrate.
 次に、本発明のディスプレイ装置について説明する。本発明のディスプレイ装置は、前記波長変換基板と、光源とを有する。光源としては、アクティブマトリクス駆動が可能な青色OLED、青色LED、紫外発光LEDから選ばれた光源が好ましい。 Next, the display device of the present invention will be described. The display device of the present invention has the wavelength conversion substrate and a light source. As the light source, a light source selected from a blue OLED, a blue LED, and an ultraviolet light emitting LED capable of driving an active matrix is preferable.
 本発明のディスプレイ装置の製造方法について、本発明の波長変換基板と青色OLEDを有するディスプレイの一例を挙げて説明する。アクティブマトリクス駆動が可能なTFTパターンを有するガラス基板上に、感光性ポリイミド樹脂を塗布し、フォトリソグラフィ法により絶縁膜を形成する。背面電極層としてアルミニウムをスパッタした後、フォトリソグラフィ法によりパターニングを行い、絶縁膜の無い開口部に背面電極層を形成する。続いて、電子輸送層としてトリス(8-キノリノラト)アルミニウム(以下、Alqと略す)を真空蒸着法により成膜した後、発光層としてAlqにジシアノメチレンピラン、キナクリドン、4,4’-ビス(2,2-ジフェニルビニル)ビフェニルをドーピングした白色発光層を形成する。次に、正孔輸送層としてN,N’-ジフェニル-N,N’-ビス(α-ナフチル)-1,1’-ビフェニル-4,4’-ジアミンを真空蒸着法にて成膜する。最後に、透明電極としてITOをスパッタリングにて成膜し、青色発光層を有するOLEDを作製する。このようにして得られたOLEDを前述の波長変換基板と対向させて封止剤により貼り合せることにより、ディスプレイを作製できる。 The method for manufacturing the display device of the present invention will be described with reference to an example of the display having the wavelength conversion substrate and the blue OLED of the present invention. A photosensitive polyimide resin is applied onto a glass substrate having a TFT pattern capable of driving an active matrix, and an insulating film is formed by a photolithography method. After sputtering aluminum as the back electrode layer, patterning is performed by a photolithography method to form a back electrode layer in an opening without an insulating film. Subsequently, tris (8-quinolinolato) aluminum (hereinafter abbreviated as Alq 3 ) was formed as an electron transport layer by a vacuum vapor deposition method, and then dicyanomethylenepyran, quinacridone, and 4,4'-bis were formed on Alq 3 as a light emitting layer. (2,2-Diphenylvinyl) A white light emitting layer doped with biphenyl is formed. Next, N, N'-diphenyl-N, N'-bis (α-naphthyl) -1,1'-biphenyl-4,4'-diamine is formed as a hole transport layer by a vacuum vapor deposition method. Finally, ITO is formed into a film by sputtering as a transparent electrode to produce an OLED having a blue light emitting layer. A display can be manufactured by adhering the OLED thus obtained to face the above-mentioned wavelength conversion substrate with a sealing agent.
 なお、本発明の波長変換基板自体がOLEDやLEDを有していてもよい。この場合、OLEDやLEDを有する基板上に隔壁と波長変換層を順次形成することでディスプレイを作製できる。 The wavelength conversion board itself of the present invention may have an OLED or an LED. In this case, a display can be manufactured by sequentially forming a partition wall and a wavelength conversion layer on a substrate having an OLED or an LED.
 以下に実施例及び比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれら具体的な例に限定して解釈されるものではない。 The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not construed as being limited to these specific examples.
 (ポリシロキサン溶液の分析方法)
 ポリシロキサン溶液の固形分濃度は、以下の方法により求めた。アルミカップにポリシロキサン溶液を1.5g秤取し、ホットプレートを用いて250℃で30分間加熱して液分を蒸発させた。加熱後のアルミカップに残った固形分の重量を秤量して、加熱前の重量に対する割合からポリシロキサン溶液の固形分濃度を求めた。
(Analysis method of polysiloxane solution)
The solid content concentration of the polysiloxane solution was determined by the following method. 1.5 g of the polysiloxane solution was weighed in an aluminum cup and heated at 250 ° C. for 30 minutes using a hot plate to evaporate the liquid. The weight of the solid content remaining in the aluminum cup after heating was weighed, and the solid content concentration of the polysiloxane solution was determined from the ratio to the weight before heating.
 ポリシロキサンの重量平均分子量は、以下の方法により求めた。ゲル・パーミエーション・クロマトグラフィー(GPC)装置(HLC-8220;東ソー(株)製)を用い、流動層としてテトラヒドロフランを用いて、「JIS K 7252-3(制定年月日:2008年3月20日)」に基づきGPC分析を行い、ポリスチレン換算の重量平均分子量を測定した。 The weight average molecular weight of polysiloxane was determined by the following method. Using a gel permeation chromatography (GPC) device (HLC-8220; manufactured by Toso Co., Ltd.) and using tetrahydrofuran as a fluidized layer, "JIS K 7252-3 (established date: March 20, 2008). GPC analysis was performed based on "day)", and the polystyrene-equivalent weight average molecular weight was measured.
 ポリシロキサン中の各繰り返し単位の含有比率は、以下の方法により求めた。ポリシロキサン溶液を直径10mmの“テフロン”(登録商標)製サンプル管に注入して29Si-NMR(核磁気共鳴)測定を行い、オルガノシランに由来するケイ素全体の積分値に対する、特定のオルガノシランに由来するケイ素の積分値の割合から各繰り返し単位の含有比率を算出した。29Si-NMR測定条件を以下に示す。
装置:核磁気共鳴装置(JNM-GX270、日本電子(株)製)
測定法:ゲーテッドデカップリング法
測定核周波数:53.6693MHz(29Si核)
スペクトル幅:20000Hz
パルス幅:12μs(45°パルス)
パルス繰り返し時間:30.0秒
溶媒:アセトン-d6
基準物質:テトラメチルシラン
測定温度:23℃
試料回転数:0.0Hz。
The content ratio of each repeating unit in polysiloxane was determined by the following method. A polysiloxane solution is injected into a 10 mm diameter "Teflon"® sample tube and 29 Si-NMR (Nuclear Magnetic Resonance) measurements are performed to give a specific organosilane to the integrated value of the entire silicon derived from the organosilane. The content ratio of each repeating unit was calculated from the ratio of the integrated value of silicon derived from. 29 Si-NMR measurement conditions are shown below.
Device: Nuclear magnetic resonance device (JNM-GX270, manufactured by JEOL Ltd.)
Measurement method: Gated decoupling method Measurement nucleus frequency: 53.6693 MHz (29Si nucleus)
Spectral width: 20000Hz
Pulse width: 12 μs (45 ° pulse)
Pulse repetition time: 30.0 seconds Solvent: Acetone-d6
Reference substance: Tetramethylsilane Measurement temperature: 23 ° C
Sample rotation speed: 0.0 Hz.
 (ポリシロキサン溶液の調製)
 1000mLの三口フラスコに、トリフルオロプロピルトリメトキシシランを147.32g(0.675mol)、3-メタクリロキシプロピルメチルジメトキシシランを40.66g(0.175mol)、3-トリメトキシシリルプロピルコハク酸無水物を26.23g(0.10mol)、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランを12.32g(0.05mol)、ジブチルヒドロキシトルエン(BHT)を0.808g、プロピレングリコールモノメチルエーテルアセテート(PGMEA)を171.62g仕込み、室温で撹拌しながら水52.65gにリン酸2.265g(仕込みモノマーに対して1.0重量%)を溶かしたリン酸水溶液を30分間かけて添加した。その後、フラスコを70℃のオイルバスに浸けて90分間撹拌した後、オイルバスを30分間かけて115℃まで昇温した。昇温開始1時間後に溶液温度(内温)が100℃に到達し、そこから2時間加熱撹拌し(内温は100~110℃)、ポリシロキサン溶液を得た。なお、昇温および加熱撹拌中、窒素95体積%、酸素5体積%の混合気体を0.05L/分流した。反応中に副生成物であるメタノール、水が合計131.35g留出した。得られたポリシロキサン溶液に、固形分濃度が40重量%となるようにPGMEAを追加し、ポリシロキサン溶液(ポリシロキサン溶液A)を得た。なお、得られたポリシロキサンの重量平均分子量は4,000であった。また、ポリシロキサンにおける、トリフルオロプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-トリメトキシシリルプロピルコハク酸無水物、3-(3,4-エポキシシクロヘキシル)プロピルトリメトキシシランに由来する繰り返し単位のモル比は、それぞれ67.5mol%、17.5mol%、10mol%、5mol%であった。
(Preparation of polysiloxane solution)
147.32 g (0.675 mol) of trifluoropropyltrimethoxysilane, 40.66 g (0.175 mol) of 3-methacryloxypropylmethyldimethoxysilane, 3-trimethoxysilylpropylsuccinic acid anhydride in a 1000 mL three-mouthed flask. 26.23 g (0.10 mol), 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane 12.32 g (0.05 mol), dibutylhydroxytoluene (BHT) 0.808 g, propylene glycol monomethyl ether acetate. 171.62 g of (PGMEA) was charged, and an aqueous phosphoric acid solution prepared by dissolving 2.265 g of phosphoric acid (1.0% by weight based on the charged monomer) in 52.65 g of water was added over 30 minutes while stirring at room temperature. Then, the flask was immersed in an oil bath at 70 ° C. and stirred for 90 minutes, and then the temperature of the oil bath was raised to 115 ° C. over 30 minutes. One hour after the start of temperature rise, the solution temperature (internal temperature) reached 100 ° C., and the mixture was heated and stirred for 2 hours (internal temperature was 100 to 110 ° C.) to obtain a polysiloxane solution. During the temperature rise and heating and stirring, a mixed gas of 95% by volume of nitrogen and 5% by volume of oxygen was flowed at 0.05 L / fraction. A total of 131.35 g of methanol and water, which are by-products, were distilled off during the reaction. PGMEA was added to the obtained polysiloxane solution so that the solid content concentration was 40% by weight to obtain a polysiloxane solution (polysiloxane solution A). The weight average molecular weight of the obtained polysiloxane was 4,000. It is also derived from trifluoropropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-trimethoxysilylpropylsuccinic acid anhydride, and 3- (3,4-epoxycyclohexyl) propyltrimethoxysilane in polysiloxane. The molar ratio of the repeating unit was 67.5 mol%, 17.5 mol%, 10 mol% and 5 mol%, respectively.
 (隔壁用樹脂組成物の調製)
 白色顔料として、二酸化チタン顔料(R-960、BASFジャパン(株)製)5.00gに、樹脂としてポリシロキサン溶液Aを5.00g混合し、ジルコニアビーズが充填されたミル型分散機を用いて分散し、顔料分散液を得た。次に、顔料分散液9.98g、DAA0.71g、ポリシロキサン溶液Aを1.57g、光重合開始剤として、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(О-アセチルオキシム)(BASFジャパン(株)製)0.050g、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(BASFジャパン(株)製)0.400g、光塩基発生剤として、2-(3-ベンゾイルフェニル)プロピオン酸1,2-ジイソプロピル-3-[ビス(ジメチルアミノ)メチレン]グアニジニウム(富士フイルム和光純薬(株)製)0.100g、光重合性化合物として、ジペンタエリスリトールヘキサアクリレート(新日本薬業(株)製)1.20g、撥液化合物として、光重合性フッ素含有化合物(“メガファック”(登録商標)RS-76-E、DIC(株)製)の40重量%PGMEA希釈溶液1.00g、3’,4’-エポキシシクロヘキシルメチル-3,4-エポキシシクロヘキサンカルボキシレート((株)ダイセル製)0.100g、エチレンビス(オキシエチレン)ビス[3-(5-tert-ブチル-4-ヒドロキシ-m-トリル)プロピオネート](BASFジャパン(株)製)0.030g、アクリル系界面活性剤(“BYK”(登録商標)352、ビックケミージャパン(株)製)のPGMEA10重量%希釈溶液0.100g(濃度500ppmに相当)を、PGMEA4.76gに溶解させ、撹拌した。次いで、5.0μmのフィルターでろ過を行い、隔壁用樹脂組成物を得た。
(Preparation of resin composition for partition wall)
Using a mill-type disperser in which 5.00 g of titanium dioxide pigment (R-960, manufactured by BASF Japan Ltd.) was mixed with 5.00 g of polysiloxane solution A as a resin as a white pigment and filled with zirconia beads. It was dispersed to obtain a pigment dispersion. Next, 9.98 g of the pigment dispersion, 0.71 g of DAA, 1.57 g of the polysiloxane solution A, and as a photopolymerization initiator, ethylene, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole. -3-yl]-, 1- (О-acetyloxime) (manufactured by BASF Japan Co., Ltd.) 0.050 g, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide (manufactured by BASF Japan Co., Ltd.) ) 0.400 g, as a photobase generator, 2- (3-benzoylphenyl) propionic acid 1,2-diisopropyl-3- [bis (dimethylamino) methylene] guanidinium (manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.) 0 .100 g, dipentaerythritol hexaacrylate (manufactured by Shin Nihon Yakuhin Co., Ltd.) 1.20 g as a photopolymerizable compound, photopolymerizable fluorine-containing compound as a liquid repellent compound (“Megafuck” (registered trademark) RS- 76-E, 40 wt% PGMEA diluted solution of DIC Co., Ltd. 1.00 g, 3', 4'-epoxycyclohexylmethyl-3,4-epoxycyclohexanecarboxylate (manufactured by Daicel Co., Ltd.) 0.100 g, Ethylene bis (oxyethylene) bis [3- (5-tert-butyl-4-hydroxy-m-tolyl) propionate] (manufactured by BASF Japan Co., Ltd.) 0.030 g, acrylic surfactant ("BYK" (registered) 0.100 g of a 10 wt% diluted solution of PGMEA (corresponding to a concentration of 500 ppm) of 352, manufactured by Big Chemie Japan Co., Ltd. was dissolved in 4.76 g of PGMEA and stirred. Then, filtration was performed with a 5.0 μm filter to obtain a resin composition for a partition wall.
 (光散乱性粒子の平均粒子径の測定方法)
 粒度分布測定装置(MT3300;日機装(株)製)の水を満たした試料室に光散乱性粒子を投入し、300秒間超音波処理を行った後に粒度分布を測定し、累積分布に対して50%となる粒子径(d50)を平均粒子径とした。
(Measuring method of average particle size of light-scattering particles)
Light-scattering particles were placed in a water-filled sample chamber of a particle size distribution measuring device (MT3300; manufactured by Nikkiso Co., Ltd.), ultrasonically treated for 300 seconds, and then the particle size distribution was measured. The particle size (d50) to be% was taken as the average particle size.
 (波長変換ペーストの原料)
 波長変換ペーストの作製に用いた原料は次のとおりである。
光散乱性粒子1:AA-1.5(アルミナ、平均粒子径1.6μm、住友化学(株)製)
波長変換材料1:Lumidot 530 CdSe(緑色量子ドット材料、シグマアルドリッチ社製)
波長変換材料2:Lumidot 640 CdSe(赤色量子ドット材料、シグマアルドリッチ社製)
光重合開始剤1:“Irgacure”(登録商標) OXE01(BASFジャパン(株)製)
モノマー1:NK-9PG(2官能メタクリレートであるポリプロピレングリコール#400ジメタクリレート)(新中村化学工業(株)製)
ポリマー1:“エトセル”(登録商標)STD7(I)(セルロースエチルエーテル)(DDPスペシャルティ・プロダクツ・ジャパン(株)製)
溶媒1:プロピレングリコールメチルエーテルアセテート(富士フイルム和光純薬(株)製)
 (波長変換ペーストの調製)
 光散乱性粒子1を25重量部、波長変換材料1を5重量部、光重合開始剤を0.1重量部、モノマー1を34.9重量部、ポリマー1を15重量部、溶媒を20重量部秤量した後、3本ローラー混練機にて混練した後、空気によって100~400kPaの圧力をかけながらSHP-400フィルター((株)ロキテクノ製)でろ過し、緑色サブピクセル用波長変換ペーストを得た。また、波長変換材料1を波長変換材料2に置き換えた以外は同様にして、赤色サブピクセル用波長変換ペーストを得た。また、波長変換材料1を加えないこと以外は同様にして、青色サブピクセル用光散乱ペーストを得た。
(Raw material for wavelength conversion paste)
The raw materials used to prepare the wavelength conversion paste are as follows.
Light-scattering particles 1: AA-1.5 (alumina, average particle size 1.6 μm, manufactured by Sumitomo Chemical Co., Ltd.)
Wavelength conversion material 1: Lumidot 530 CdSe (green quantum dot material, manufactured by Sigma-Aldrich)
Wavelength conversion material 2: Lumidot 640 CdSe (red quantum dot material, manufactured by Sigma-Aldrich)
Photopolymerization Initiator 1: "Irgacure" (registered trademark) OXE01 (manufactured by BASF Japan Ltd.)
Monomer 1: NK-9PG (polypropylene glycol # 400 dimethacrylate, which is a bifunctional methacrylate) (manufactured by Shin Nakamura Chemical Industry Co., Ltd.)
Polymer 1: "Etocell" (registered trademark) STD7 (I) (cellulose ethyl ether) (manufactured by DDP Specialty Products Japan Co., Ltd.)
Solvent 1: Propylene glycol methyl ether acetate (manufactured by Wako Pure Chemical Industries, Ltd.)
(Preparation of wavelength conversion paste)
25 parts by weight of light-scattering particles 1, 5 parts by weight of wavelength conversion material 1, 0.1 parts by weight of photopolymerization initiator, 34.9 parts by weight of monomer 1, 15 parts by weight of polymer 1, and 20 parts by weight of solvent. After partial weighing, kneading with a 3-roller kneader, filtering with an SHP-400 filter (manufactured by Loki Techno Co., Ltd.) while applying a pressure of 100 to 400 kPa with air to obtain a wavelength conversion paste for green subpixels. rice field. Further, a wavelength conversion paste for red subpixels was obtained in the same manner except that the wavelength conversion material 1 was replaced with the wavelength conversion material 2. Further, a light scattering paste for blue subpixels was obtained in the same manner except that the wavelength conversion material 1 was not added.
 (隔壁付き基板の作製)
 10cm角の無アルカリガラス基板(AGCテクノグラス(株)製、厚み0.7mm)上に隔壁用樹脂組成物をスピンコートし、ホットプレート(SCW-636、(株)SCREENセミコンダクータソリュージョンズ製)を用いて、温度90℃で2分間乾燥し乾燥膜を作製した。作製した乾燥膜を、パラレルライトマスクアライナー(PLA-501F、キヤノン(株)製)を用いて、超高圧水銀灯を光源とし、後述する実施例1~17、および比較例1~4の隔壁形状に対応するフォトマスクを介して、露光量200mJ/cm(i線)で露光した。その後、自動現像装置(AD-2000、滝沢産業(株)製)を用いて、0.045重量%水酸化カリウム水溶液を用いて100秒間シャワー現像し、次いで水を用いて30秒間リンスした。さらに、オーブン(IHPS-222、エスペック(株)製)を用いて、空気中、温度230℃で30分間加熱し、ガラス基板上に、高さ20μmの、図2~22の形状でパターン形成された隔壁付き基板を作製した。なお、各実施例および比較例で用いた隔壁付き基板における隔壁(額縁部を含む)の形状および配置の概要は、次に示すとおりである。
(Manufacturing of substrate with partition wall)
A resin composition for partition walls was spin-coated on a 10 cm square non-alkali glass substrate (made by AGC Technoglass Co., Ltd., thickness 0.7 mm) and hot plate (SCW-636, manufactured by SCREEN Semiconductor Solutions Co., Ltd.). ) Was dried at a temperature of 90 ° C. for 2 minutes to prepare a dry film. The prepared dry film was formed into the partition wall shapes of Examples 1 to 17 and Comparative Examples 1 to 4, which will be described later, using a parallel light mask aligner (PLA-501F, manufactured by Canon Inc.) and using an ultrahigh pressure mercury lamp as a light source. Exposure was performed with an exposure amount of 200 mJ / cm 2 (i-line) via a corresponding photomask. Then, using an automatic developing device (AD-2000, manufactured by Takizawa Sangyo Co., Ltd.), shower development was performed for 100 seconds with a 0.045 wt% potassium hydroxide aqueous solution, and then rinsing was performed with water for 30 seconds. Further, using an oven (IHPS-222, manufactured by Espec Co., Ltd.), it is heated in air at a temperature of 230 ° C. for 30 minutes, and a pattern is formed on a glass substrate in the shape of FIGS. 2 to 22 having a height of 20 μm. A substrate with a partition wall was produced. The outline of the shape and arrangement of the partition walls (including the frame portion) in the partition wall-equipped substrate used in each Example and Comparative Example is as follows.
 実施例1:図5
 実施例2:図6
 実施例3:図8
 実施例4:図9
 実施例5:図10
 実施例6:図11
 実施例7:図12
 実施例8:図13
 実施例9:図14
 実施例10:図15
 実施例11:図16
 実施例12:図17
 実施例13:図18
 実施例14:図19
 実施例15:図20
 実施例16:図21
 実施例17:図22
 比較例1:図2
 比較例2:図3
 比較例3:図4
 比較例4:図7
 (隔壁パターン部寸法、額縁部寸法の評価方法)
 作製した隔壁付き基板を、レーザー顕微鏡(カラー3Dレーザー顕微鏡 VK-9710、(株)キーエンス製)で上面方向からカメラモードで光学顕微鏡像を撮影し、実施例1~17および比較例1~4におけるW、L、L、S、S、S、W、WF MAX、WF MIN、L、LFO、LBF、S、H、H、LD1、LD2、LD3を付属のソフトウェアで測定した。また、WF MAXはWの最大値、WF MINはWの最小値とした。また、測定したS、S、Sより最小値SRGB MINを求めた。なお、面積を求める際、接続型緩衝部または独立型緩衝部がセルまたは非画素部に接続し、かつ、接続型緩衝部または独立型緩衝部に対応する額縁部をなす隔壁の高さがゼロである場合は、接続しているセル側または非画素部側における額縁部の端を結ぶ線分を接続型緩衝部または独立型緩衝部の境界とみなした。
Example 1: FIG. 5
Example 2: FIG.
Example 3: FIG.
Example 4: FIG. 9
Example 5: FIG. 10
Example 6: FIG. 11
Example 7: FIG. 12
Example 8: FIG. 13
Example 9: FIG. 14
Example 10: FIG.
Example 11: FIG.
Example 12: FIG. 17
Example 13: FIG.
Example 14: FIG. 19
Example 15: FIG. 20
Example 16: FIG. 21
Example 17: FIG. 22
Comparative Example 1: FIG. 2
Comparative Example 2: FIG. 3
Comparative Example 3: FIG. 4
Comparative Example 4: FIG. 7
(Evaluation method of partition wall pattern size and frame size)
The prepared substrate with a partition wall was photographed with an optical microscope image from the top surface using a laser microscope (color 3D laser microscope VK-9710, manufactured by KEYENCE CORPORATION) in the camera mode, and in Examples 1 to 17 and Comparative Examples 1 to 4. WA , LA , LB , SR, SG , SB, WF , WF MAX , WF MIN , LF , L FO , L BF , S F , HF , HD , LD 1 , L D2 and L D3 were measured with the attached software. Further, WF MAX was set to the maximum value of WF, and WF MIN was set to the minimum value of WF . Further, the minimum value SRGB MIN was obtained from the measured SR, SG , and SB . When determining the area, the height of the partition wall in which the connected buffer or the stand-alone buffer is connected to the cell or the non-pixel portion and forms the frame portion corresponding to the connected buffer or the stand-alone buffer is zero. In the case of, the line segment connecting the ends of the frame portion on the connected cell side or the non-pixel portion side was regarded as the boundary of the connected buffer portion or the stand-alone buffer portion.
 (隔壁パターン加工性の評価方法)
 作製した隔壁付き基板について、光学顕微鏡により隔壁の形状を観察し、欠け等の欠損の数を計測した。欠損がある隔壁格子数の全格子数に占める割合が1%未満のものをA、1%以上10%未満のものをB、10%以上ものをCとした。A~Bが合格レベルであり、Aが最も優れており、Bがそれに次いで優れている。
(Evaluation method of partition wall pattern workability)
The shape of the partition wall of the prepared substrate with a partition wall was observed with an optical microscope, and the number of defects such as chips was measured. The ratio of the number of partition wall lattices with defects to the total number of lattices was A, 1% or more and less than 10% was B, and 10% or more was C. A to B are pass levels, A is the best, and B is the next best.
 (単色画素膜厚バラツキの評価方法)
 実施例1~17、および比較例1~4の各隔壁付き基板に、以下の方法で波長変換ペーストを塗布し、次いで塗布したペーストを乾燥・硬化し、レーザー顕微鏡(カラー3Dレーザー顕微鏡 VK-9710、(株)キーエンス製)で上面方向からカメラモードで光学顕微鏡像を撮影し、セルの中心部の膜厚を測定した。塗布ヘッドとして、吐出口直径50μm、吐出口長130μmの吐出口を塗布ヘッドの長手方向に300μmピッチで51個配列して有するものを用いた。塗布装置としては、マルチラボコータ(東レエンジニアリング(株)製)を用いて、ノズルの左端の吐出口が、充填対象となるセルを構成する隔壁の左端から0.5cmの直線上にくるように位置をアライメントし、さらにストライプに沿ってノズルが掃引されるようにノズルの進行方向をアライメントした後、前記塗布ヘッドに空気によって500~1,500kPaの圧力をかけ、基板に対する進行速度を20~200mm/sの範囲内で変化させて前記の緑色サブピクセル用波長変換ペーストを吐出させながら、前記隔壁付き基板に、隔壁の長辺方向と平行方向にノズル塗布することにより、緑色サブピクセル用波長変換ペーストを充填した。次に、隔壁のストライプに平行な方向に垂直な方向に100μm口金位置をずらし、同様に塗布し、さらに100μmずらして再度同様に塗布することで、長さ7cm、幅1.5cmの範囲の全セルに緑色サブピクセル用波長変換ペーストを塗布した。次に、口金位置を隔壁のストライプに平行な方向に垂直な方向に1.5cm右に動かして同様の作業を行うことを3回繰り返し、緑色サブピクセル用波長変換ペーストを7cm×6cmの範囲の前開口に塗布した。その後、ホットプレート上で100℃10分乾燥し、さらに窒素雰囲気下で超高圧水銀灯により露光量200mJ/cm(i線)で露光して硬化させ、波長変換層を形成した。このとき波長変換層の厚みが、単位格子の中央部において20μmとなるように塗布時の圧力、進行速度を調整した。
(Evaluation method of monochromatic pixel film thickness variation)
A wavelength conversion paste is applied to the substrates with partition walls of Examples 1 to 17 and Comparative Examples 1 to 4 by the following method, and then the applied paste is dried and cured, and then a laser microscope (color 3D laser microscope VK-9710) is applied. , (Manufactured by KEYENCE CORPORATION), an optical microscope image was taken from the top surface in camera mode, and the film thickness at the center of the cell was measured. As the coating head, one having 51 discharge ports having a discharge port diameter of 50 μm and a discharge port length of 130 μm arranged at a pitch of 300 μm in the longitudinal direction of the coating head was used. As a coating device, a multi-lab coater (manufactured by Toray Engineering Co., Ltd.) is used so that the discharge port at the left end of the nozzle is on a straight line 0.5 cm from the left end of the partition wall constituting the cell to be filled. After aligning the positions and aligning the traveling direction of the nozzle so that the nozzle is swept along the stripe, a pressure of 500 to 1,500 kPa is applied to the coating head by air, and the traveling speed with respect to the substrate is 20 to 200 mm. Wavelength conversion for green subpixels is performed by applying a nozzle to the substrate with a partition wall in a direction parallel to the long side direction of the partition wall while ejecting the wavelength conversion paste for green subpixels while changing the wavelength within the range of / s. Filled with paste. Next, by shifting the base position by 100 μm in the direction perpendicular to the stripe of the partition wall, applying in the same manner, and further shifting by 100 μm and applying in the same manner again, the entire range of 7 cm in length and 1.5 cm in width is applied. A wavelength conversion paste for green subpixels was applied to the cells. Next, move the base position to the right by 1.5 cm in the direction parallel to the stripe of the partition wall and repeat the same work three times, and apply the wavelength conversion paste for green subpixels in the range of 7 cm x 6 cm. It was applied to the front opening. Then, it was dried on a hot plate at 100 ° C. for 10 minutes, and further exposed to an exposure amount of 200 mJ / cm 2 (i-line) with an ultra-high pressure mercury lamp under a nitrogen atmosphere and cured to form a wavelength conversion layer. At this time, the pressure and the traveling speed at the time of coating were adjusted so that the thickness of the wavelength conversion layer was 20 μm in the central portion of the unit cell.
 上記方法で作製した波長変換基板について、レーザー顕微鏡で観察し、RGBピクセル膜厚を評価した。隔壁パターン中央の塗布開始位置における連続するRGBピクセルの各サブピクセルにおける膜厚と、隔壁パターン中央部における塗布中央部の連続する各サブピクセルの膜厚において、任意の色画素における最大値が、最小値に対して20%以上厚い場合をD、15%以上20%未満厚い場合をC、10%以上15%未満厚い場合をB、10%未満厚い場合をAとして、同一色画素同士で膜厚を比較した。膜厚の差が大きい場合、波長変換層を発光させた際の発光輝度、色度の変化がムラとして視認されてしまうため厚み差は小さいものが優良である。 The wavelength conversion substrate produced by the above method was observed with a laser microscope, and the RGB pixel film thickness was evaluated. The maximum value in any color pixel is the minimum in the film thickness of each subpixel of continuous RGB pixels at the coating start position in the center of the partition pattern and the film thickness of each continuous subpixel in the center of coating in the center of the partition pattern. The film thickness of pixels of the same color is defined as D when it is 20% or more thicker than the value, C when it is 15% or more and less than 20% thick, B when it is 10% or more and less than 15% thick, and A when it is less than 10% thick. Was compared. When the difference in film thickness is large, the change in emission luminance and chromaticity when the wavelength conversion layer is made to emit light is visually recognized as unevenness, so the one having a small difference in thickness is preferable.
 (表示特性の評価方法)
 各実施例および比較例により得られた波長変換基板に青色光を照射して、表示特性を評価した。青色光源としては、市販の液晶モニター(SW2700PT、BenQ社製)を分解して取り出したLCD用青色バックライト光源を用いた。
表示特性を、以下の基準に基づき評価した。
A:表示輝度が面内一様であり、欠陥が無く表示品位が高い。
B:表示面内外周部に注視しなければ判別できない程度に僅かに表示ムラがあるが、輝度は面内一様であり、表示品位が高い。
C:表示面内外周部に視認できる程度の表示ムラがあり表示品位が低い。
D:表示面内外周部に明確に視認できる表示ムラがあり、輝度は面内中心部と外周部で差があり、表示品位が極めて低い。
(Evaluation method of display characteristics)
The wavelength conversion substrates obtained in each Example and Comparative Example were irradiated with blue light to evaluate the display characteristics. As the blue light source, a blue backlight light source for LCD taken out by disassembling a commercially available liquid crystal monitor (SW2700PT, manufactured by BenQ) was used.
The display characteristics were evaluated based on the following criteria.
A: The display brightness is uniform in the plane, there are no defects, and the display quality is high.
B: There is slight display unevenness to the extent that it cannot be discriminated without paying close attention to the inner peripheral portion of the display surface, but the brightness is uniform in the surface and the display quality is high.
C: The display quality is low due to visible display unevenness on the inner peripheral portion of the display surface.
D: There is clearly visible display unevenness in the inner peripheral portion of the display surface, there is a difference in brightness between the in-plane central portion and the outer peripheral portion, and the display quality is extremely low.
 (割断精度の評価方法)
 各実施例および比較例により得た波長変換基板を、スクライビング装置(MTCシリーズ、三星ダイヤモンド工業社製)にて額縁部を割断し、割断精度を評価した。スクラインビング割断後の基板をレーザー顕微鏡(カラー3Dレーザー顕微鏡 VK-9710、(株)キーエンス製)で上面方向からカメラモードで光学顕微鏡像を撮影し、以下の基準に基づき評価した。
A:額縁部にて割断されており、画素部における局所的な割断、ヒビ、クラック等がなく、かつ格子部および額縁部の隔壁に剥がれや部分的欠損等の欠陥が無い。
B:額縁部にて割断されており、画素部における局所的な割断、ヒビ、クラック等は無いが、格子部および額縁部の隔壁に剥がれや部分的欠損等の欠陥が有る。
C:額縁部にて割断されているが、画素部における局所的な割断、ヒビ、クラック等がある。
D:局所的あるいは、全体的に額縁部外にて割断されている。
(Evaluation method of cutting accuracy)
The wavelength conversion substrate obtained in each Example and Comparative Example was cut into a frame portion by a scribing device (MTC series, manufactured by Samsung Diamond Industrial Co., Ltd.), and the cutting accuracy was evaluated. The substrate after cutting the scribing was photographed with an optical microscope image from the top surface with a laser microscope (color 3D laser microscope VK-9710, manufactured by KEYENCE CORPORATION) in camera mode, and evaluated based on the following criteria.
A: It is divided at the frame portion, there is no local division, cracks, cracks, etc. in the pixel portion, and there are no defects such as peeling or partial defects in the partition wall of the lattice portion and the frame portion.
B: It is divided at the frame portion, and there are no local divisions, cracks, cracks, etc. in the pixel portion, but there are defects such as peeling and partial defects in the partition wall of the lattice portion and the frame portion.
C: Although it is divided at the frame portion, there are local divisions, cracks, cracks, etc. at the pixel portion.
D: Locally or entirely, it is divided outside the frame.
 評価結果を表1に示す。 The evaluation results are shown in Table 1.
 実施例1はセルと非画素部を接続する領域を有しているため表示特性が良く、実施例2ではセルと非画素部を接続する領域を有し、かつ額縁部内セルの面積が実施例1より大きいため、単色画素膜厚バラツキが改善され表示特性が更に良好であった。実施例1、実施例2に対して比較例1では額縁部にセルと非画素部を接続する領域が無く、かつ額縁部内に緩衝部も存在しないため、単色画素膜厚バラツキが大きく表示特性が不良であった。また比較例2、比較例3は単色画素膜厚バラツキが低いものの、額縁部が存在しないため、隔壁がパターン加工時に剥離してしまい、表示特性は著しく劣位であった。 The first embodiment has good display characteristics because it has an area connecting the cell and the non-pixel portion, and the second embodiment has an area connecting the cell and the non-pixel portion, and the area of the cell in the frame portion is the embodiment. Since it is larger than 1, the variation in the film thickness of the monochromatic pixel is improved and the display characteristics are further improved. In Comparative Example 1 with respect to Examples 1 and 2, since there is no region connecting the cell and the non-pixel portion in the frame portion and there is no buffer portion in the frame portion, the monochromatic pixel film thickness variation is large and the display characteristics are improved. It was bad. Further, in Comparative Example 2 and Comparative Example 3, although the variation in the film thickness of the monochromatic pixel was low, the partition wall was peeled off at the time of pattern processing because the frame portion was not present, and the display characteristics were remarkably inferior.
 実施例3~6は、いずれも独立型緩衝部の面積が大きく、単色画素膜厚バラツキが良いため表示特性が良好であるのに対して、比較例4では独立型緩衝部を有するがその面積が小さく、単色画素膜厚バラツキが大きくなり表示特性が不良であった。 In Examples 3 to 6, the area of the stand-alone buffer portion is large and the display characteristics are good because the single-color pixel film thickness variation is good, whereas in Comparative Example 4, the stand-alone buffer portion is provided, but the area thereof is good. Was small, the single-color pixel film thickness variation was large, and the display characteristics were poor.
 実施例7、8は接続型緩衝部を有し、かつその面積が大きい隔壁付き基板であるため、表示特性はより良好であった。 Since Examples 7 and 8 have a connection type shock absorber and have a large area thereof with a partition wall, the display characteristics are better.
 実施例9は、実施例1同様に接続型緩衝部を有していることに加えて割断用溝部を有していることから、表示特性が良いだけでなく、割断精度も良好であった。 Since Example 9 has a connection type buffer portion and a split groove portion as in Example 1, not only the display characteristics are good, but also the split accuracy is also good.
 また、実施例10~15は、実施例1同様に表示特性が良く、かつ割断用溝部の膜厚が極めて薄い、あるいは割断用溝部が接続型緩衝部の一部として接して設けられていることから、実施例9より更に割断精度が良好であった。 Further, in Examples 10 to 15, the display characteristics are good as in Example 1, the film thickness of the split groove portion is extremely thin, or the split groove portion is provided in contact with the connection type buffer portion. Therefore, the cutting accuracy was even better than that of Example 9.
 また、実施例16は、実施例4同様に独立型緩衝部を有していることに加えて割断用溝部を有していることから、表示特性が良いだけでなく、割断精度も良好であり、実施例17は実施例16より更に割断精度が良好であった。 Further, since the 16th embodiment has the groove portion for cutting in addition to having the independent cushioning portion as in the 4th embodiment, not only the display characteristics are good but also the cutting accuracy is good. The breaking accuracy of Example 17 was even better than that of Example 16.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
1 塗布ヘッド
2 ペースト
3 基板
4 加圧配管
5 吐出孔
6 隔壁
7 開口部、セル
8 隔壁パターン部
9 額縁部
10 RGBピクセル
10R 赤色画素
10G 緑色画素
10B 青色画素
12 非画素部
13 接続型緩衝部
14 独立型緩衝部
15 割断用溝部
20 額縁上端部
21 割断用溝上端部
22 割断用溝下端部
1 Coating head 2 Paste 3 Substrate 4 Pressurized pipe 5 Discharge hole 6 Partition 7 Opening, Cell 8 Partition pattern 9 Frame 10 RGB pixel 10R Red pixel 10G Green pixel 10B Blue pixel 12 Non-pixel 13 Connection type buffer 14 Stand-alone cushioning part 15 Fracting groove part 20 Frame upper end part 21 Fracting groove upper end part 22 Fracting groove lower end part

Claims (8)

  1. 基板と該基板上に形成された隔壁とを有した隔壁付き基板であって、前記隔壁によって区画されたセルが格子状に配列された領域を有し、かつ、前記領域の外縁を形成し、または、前記領域を囲むよう形成された、最も外側に位置する隔壁は、前記領域の外縁以外を形成する隔壁の幅よりも広い幅を有するとともに、前記格子状配列の列の延長線上で交差する少なくとも一方の側では他所よりも高さの低い部分を有しており、かつ、当該他所よりも高さの低い部分は、次の(1)または(2)を充足することを特徴とする隔壁付き基板。
     (1)セルに接続している場合は、接続部における幅は、当該セルの幅よりも狭い幅であること
     (2)セルに接続していない場合は、最も近傍のセルの面積よりも大きな面積であること
    A substrate with a partition wall having a substrate and a partition wall formed on the substrate, wherein the cells partitioned by the partition wall have a region arranged in a grid pattern and form an outer edge of the region. Alternatively, the outermost partition wall formed so as to surround the region has a width wider than the width of the partition wall forming other than the outer edge of the region and intersects on an extension of the row of the grid array. A partition wall having a portion lower in height than the other portion on at least one side, and the portion lower in height than the other portion satisfies the following (1) or (2). With board.
    (1) When connected to a cell, the width at the connection part is narrower than the width of the cell. (2) When not connected to a cell, it is larger than the area of the nearest cell. Being an area
  2. 前記(2)を充足する隔壁付き基板において、前記最も外側に位置する隔壁の他所よりも高さの低い部分の最大幅は、当該最大幅を示す他所よりも高さの低い部分に対応する最も外側に位置する隔壁の幅の98%以下であることを特徴とする請求項1記載の隔壁付き基板。 In the substrate with a partition wall satisfying the above (2), the maximum width of the portion having a lower height than the other part of the partition wall located on the outermost side corresponds to the portion having a height lower than the other part showing the maximum width. The substrate with a partition wall according to claim 1, wherein the width of the partition wall located on the outer side is 98% or less.
  3.  前記最も外側に位置する隔壁において、当該隔壁内に、前記格子状配列の列の延長線に直交する方向にみて、他所よりも高さの低い部分の存在する割合が50%以上となる部分を有し、かつ、当該他所よりも高さの低い部分の存在する割合が50%以上となる部分の幅は、その部分が存する前記隔壁の幅の20%以下であることを特徴とする請求項1または2記載の隔壁付き基板。 In the outermost partition wall, a portion in the partition wall in which a portion having a height lower than that of other portions is present at 50% or more in a direction orthogonal to the extension line of the row of the grid-like arrangement. The claim is characterized in that the width of a portion having 50% or more of a portion having a height lower than that of the other portion is 20% or less of the width of the partition wall in which the portion exists. The substrate with a partition wall according to 1 or 2.
  4. 請求項1~3のいずれかに記載の隔壁付き基板の前記格子状に配列されたセル内に、電磁波の波長を他の波長に変換する材料が充填された波長変換基板。 A wavelength conversion substrate in which a material for converting the wavelength of an electromagnetic wave into another wavelength is filled in the cells arranged in a grid pattern of the substrate with a partition wall according to any one of claims 1 to 3.
  5. 請求項4に記載の波長変換基板と、有機発光ダイオードおよび発光ダイオードの何れかまたは両方とが具備されたディスプレイ装置。 A display device including the wavelength conversion substrate according to claim 4 and / or an organic light emitting diode and / or a light emitting diode.
  6. 前記電磁波の波長を他の波長に変換する材料として量子ドット蛍光体が用いられた請求項5に記載のディスプレイ装置。 The display device according to claim 5, wherein a quantum dot phosphor is used as a material for converting the wavelength of the electromagnetic wave into another wavelength.
  7. 前記電磁波の波長を他の波長に変換する材料として無機蛍光体が用いられた請求項5または6に記載のディスプレイ装置。 The display device according to claim 5 or 6, wherein an inorganic phosphor is used as a material for converting the wavelength of the electromagnetic wave into another wavelength.
  8. 請求項1~3のいずれかに記載の隔壁付き基板に、電磁波の波長を他の波長に変換する材料をノズルから吐出して塗布を行う工程を有する波長変換基板の製造方法であって、前記の塗布は隔壁付き基板の前記他所よりも高さの低い部分が存在する最も外側に位置する隔壁の側から当該部分を通るように塗布を行うことを特徴とする、波長変換基板の製造方法。 The method for manufacturing a wavelength conversion substrate, which comprises a step of ejecting a material for converting the wavelength of an electromagnetic wave into another wavelength from a nozzle and applying the substrate to the substrate with a partition wall according to any one of claims 1 to 3. A method for manufacturing a wavelength conversion substrate, wherein the coating is performed so as to pass through the portion of the substrate with a partition wall from the side of the partition wall located on the outermost side where a portion having a height lower than that of the other portion is present.
PCT/JP2021/045294 2020-12-25 2021-12-09 Substrate with barrier ribs, wavelength conversion substrate, display, and method for manufacturing wavelength conversion substrate WO2022138197A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180083251.9A CN116802713A (en) 2020-12-25 2021-12-09 Substrate with partition wall, wavelength conversion substrate, display, and method for manufacturing wavelength conversion substrate
JP2021574794A JPWO2022138197A1 (en) 2020-12-25 2021-12-09
KR1020237004923A KR20230121028A (en) 2020-12-25 2021-12-09 Substrate with barrier rib, wavelength conversion substrate, and display, and manufacturing method of wavelength conversion substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-216343 2020-12-25
JP2020216343 2020-12-25

Publications (1)

Publication Number Publication Date
WO2022138197A1 true WO2022138197A1 (en) 2022-06-30

Family

ID=82157716

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045294 WO2022138197A1 (en) 2020-12-25 2021-12-09 Substrate with barrier ribs, wavelength conversion substrate, display, and method for manufacturing wavelength conversion substrate

Country Status (5)

Country Link
JP (1) JPWO2022138197A1 (en)
KR (1) KR20230121028A (en)
CN (1) CN116802713A (en)
TW (1) TW202230836A (en)
WO (1) WO2022138197A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261106A (en) * 2005-02-16 2006-09-28 Toray Ind Inc Component for plasma display and manufacturing method, manufacturing method of back board for plasma display, and plasma display
JP2007095696A (en) * 2005-09-29 2007-04-12 Samsung Sdi Co Ltd Plasma display panel
JP2009104953A (en) * 2007-10-24 2009-05-14 Fuji Electric Holdings Co Ltd Organic el display panel
CN103647013A (en) * 2013-10-28 2014-03-19 吴震 Wavelength conversion device manufacturing method and light-emitting device
WO2014129067A1 (en) * 2013-02-19 2014-08-28 Jsr株式会社 Wavelength conversion film, wavelength conversion substrate, wavelength conversion element and display element

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050072424A (en) 2002-10-01 2005-07-11 코닌클리케 필립스 일렉트로닉스 엔.브이. Electroluminescent display with improved light outcoupling
US9111464B2 (en) 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
KR102466272B1 (en) 2016-12-28 2022-11-14 디아이씨 가부시끼가이샤 Ink composition, light conversion layer, and color filter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006261106A (en) * 2005-02-16 2006-09-28 Toray Ind Inc Component for plasma display and manufacturing method, manufacturing method of back board for plasma display, and plasma display
JP2007095696A (en) * 2005-09-29 2007-04-12 Samsung Sdi Co Ltd Plasma display panel
JP2009104953A (en) * 2007-10-24 2009-05-14 Fuji Electric Holdings Co Ltd Organic el display panel
WO2014129067A1 (en) * 2013-02-19 2014-08-28 Jsr株式会社 Wavelength conversion film, wavelength conversion substrate, wavelength conversion element and display element
CN103647013A (en) * 2013-10-28 2014-03-19 吴震 Wavelength conversion device manufacturing method and light-emitting device

Also Published As

Publication number Publication date
KR20230121028A (en) 2023-08-17
TW202230836A (en) 2022-08-01
JPWO2022138197A1 (en) 2022-06-30
CN116802713A (en) 2023-09-22

Similar Documents

Publication Publication Date Title
JP7484457B2 (en) Micro LED display device
TWI783160B (en) Resin composition, light-shielding film, and method for producing light-shielding film
US9507206B2 (en) Quantum dot color filter and manufacturing method thereof, and display apparatus
TWI827639B (en) Light-emitting diodes with light coupling and conversion layers and methods of forming pixel
WO2018225782A1 (en) Curable composition containing quantum dots, cured material containing quantum dots, method for manufacturing optical member, and method for manufacturing display device
US11056619B2 (en) Quantum dot materials and method of manufacturing thereof
KR20120001712A (en) Highly efficient organic light emitting device and method for manufacturing the same
TWI808137B (en) Negative photosensitive coloring composition, cured film and manufacturing method thereof, patterned processed substrate, substrate with partition walls, display device, touch panel
US20190348576A1 (en) Display device using quantum dots
TWI814067B (en) Chelating agents for quantum dot precursor materials in color conversion layers for micro-leds
JP2023539189A (en) LED device with blue photoluminescent material and red/green quantum dots
JP2014066749A (en) Color filter and display device
JP2010128310A (en) Color filter and white color emitting diode light source liquid crystal display device
WO2022138197A1 (en) Substrate with barrier ribs, wavelength conversion substrate, display, and method for manufacturing wavelength conversion substrate
JP2005353426A (en) Filter substrate and color display using it
JP2007293305A (en) Printed material and method for manufacturing printed material
JP7211378B2 (en) Wavelength conversion substrate, display, and method for manufacturing wavelength conversion substrate
JP7420138B2 (en) Pastes, substrates, displays, and substrate manufacturing methods
Yue P‐12.4: quantum dot photoresist for color filter application
WO2021162024A1 (en) Method for producing wavelength conversion substrate, wavelength conversion substrate, and display
US20220069174A1 (en) Blue color converter for micro leds
JP2021096412A (en) Wavelength conversion paste, wavelength conversion substrate, display, and method of manufacturing wavelength conversion substrate
JP2007265869A (en) Organic electroluminescent element and display device
KR101822876B1 (en) Photoresist composition for forming a color filter and display substrate including a color filter
JP5777856B2 (en) Color filter for LED backlight and manufacturing method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021574794

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910346

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180083251.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910346

Country of ref document: EP

Kind code of ref document: A1