WO2021161825A1 - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
WO2021161825A1
WO2021161825A1 PCT/JP2021/003457 JP2021003457W WO2021161825A1 WO 2021161825 A1 WO2021161825 A1 WO 2021161825A1 JP 2021003457 W JP2021003457 W JP 2021003457W WO 2021161825 A1 WO2021161825 A1 WO 2021161825A1
Authority
WO
WIPO (PCT)
Prior art keywords
tube
along
tank
flat plate
tubes
Prior art date
Application number
PCT/JP2021/003457
Other languages
French (fr)
Japanese (ja)
Inventor
慎吾 大野
孝博 宇野
隆一郎 稲垣
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to DE112021001022.0T priority Critical patent/DE112021001022T5/en
Priority to CN202180014092.7A priority patent/CN115103994A/en
Publication of WO2021161825A1 publication Critical patent/WO2021161825A1/en
Priority to US17/884,210 priority patent/US20220381514A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • F28D1/05383Assemblies of conduits connected to common headers, e.g. core type radiators with multiple rows of conduits or with multi-channel conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • F28D1/0391Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits a single plate being bent to form one or more conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/12Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
    • F28F1/126Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element consisting of zig-zag shaped fins
    • F28F1/128Fins with openings, e.g. louvered fins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/26Arrangements for connecting different sections of heat-exchange elements, e.g. of radiators

Definitions

  • the present disclosure relates to a heat exchanger that exchanges heat between a heat medium and air.
  • heat exchangers such as radiators and evaporators are provided with a plurality of metal tubes through which a heat medium passes.
  • heat exchanger takes place between the heat medium passing through the inside of the tube and the air passing through the outside of the tube.
  • a plurality of tubes are often brazed to the plate member in a state of being inserted into a metal plate member forming a part of the tank. ..
  • the joint portion between the tube and the plate member tends to be distorted due to thermal expansion or contraction due to the temperature of the heat medium.
  • the tube thickness needs to be relatively thin so that heat exchange can be performed efficiently. Therefore, if the above-mentioned distortion occurs at the joint portion between the tube and the plate member, a part of the tube may be damaged.
  • damage due to strain occurs at a position of the tube at the boundary between the flat plate portion and the curved portion. Especially likely to occur.
  • the heat exchanger according to the present disclosure is a heat exchanger that exchanges heat between a heat medium and air.
  • This heat exchanger is a tubular member through which a heat medium passes, and includes a plurality of tubes arranged so as to be arranged along a stacking direction, and a tank to which each tube is connected.
  • the tube has a pair of flat plate portions facing each other and a curved portion curved so as to connect the ends of the respective flat plate portions, and the normal directions of the flat plate portions are laminated. It is arranged along the direction.
  • the tank has a plate-shaped plate member in which a plurality of insertion holes for inserting a tube are formed, and a container member in which a space for storing a heat medium is formed inside.
  • the plate member includes a first portion whose normal direction is along the longitudinal direction of the tube, and a second portion extending from the end of the first portion along the direction of air flow toward the container member. have. When viewed along the stacking direction, the boundary between the first portion and the second portion is arranged at a position on the tube that is closer to the flat plate portion than the boundary between the flat plate portion and the curved portion.
  • the boundary between the first portion and the second portion of the plate member is the boundary between the flat plate portion and the curved portion of the tube when viewed along the stacking direction. It has been found that the strain of the tube at the time of thermal expansion or contraction tends to be relatively large in a configuration in which the tube is arranged on the curved portion side.
  • the boundary between the first portion and the second portion of the plate member is larger than the boundary between the flat plate portion and the curved portion of the tube when viewed along the stacking direction.
  • the configuration is such that it is arranged at a position on the flat plate side. In such a configuration, the deformation of the plate member that occurs starting from the boundary between the first portion and the second portion is received by the flat plate portion instead of the curved portion of the tube. This makes it possible to reduce the maximum value of distortion generated in the tube as compared with the conventional case.
  • a heat exchanger capable of reducing distortion at a joint portion of a tube is provided.
  • FIG. 1 is a diagram showing an overall configuration of a heat exchanger according to the present embodiment.
  • FIG. 2 is an enlarged view of a part of the heat exchanger of FIG.
  • FIG. 3 is a diagram showing fins included in the heat exchanger of FIG. 1 and tubes arranged above and below the fins.
  • FIG. 4 is a diagram showing the configuration of the tube and the magnitude of the strain generated at the joint portion of the tube.
  • FIG. 5 is a diagram showing a configuration of a plate member included in the heat exchanger of FIG.
  • the configuration of the heat exchanger 10 according to this embodiment will be described.
  • the heat exchanger 10 is a heat exchanger mounted on a vehicle (not shown). As shown in FIG. 1, the heat exchanger 10 is configured as a composite heat exchanger in which the radiator 100 and the evaporator 200 are combined and integrated.
  • the radiator 100 is a heat exchanger for cooling cooling water that has become hot through a heating element (not shown) by heat exchange with air.
  • the "heating element” referred to here is a device mounted on the vehicle and requiring cooling, for example, an internal combustion engine, an intercooler, a motor, an inverter, a battery, or the like.
  • the evaporator 200 is a part of an air conditioner (not shown) mounted on a vehicle, and is a heat exchanger for evaporating a liquid phase refrigerant by heat exchange with air.
  • the radiator 100 includes a pair of tanks 110 and 120, a tube 130, and fins 140. Note that the fins 140 are not shown in FIG.
  • Both tanks 110 and 120 are metal containers for temporarily storing cooling water, which is a heat medium. These are formed as elongated containers having a substantially cylindrical shape, and are arranged in a state in which the longitudinal direction thereof is along the vertical direction. The tanks 110 and 120 are arranged at positions separated from each other along the horizontal direction, and the tubes 130 and fins 140 described later are arranged between them.
  • the tank 110 has a plate member 300 and a container member 400, and is formed by combining these and brazing each other.
  • the plate member 300 is a plate-shaped member, and a plurality of insertion holes 301 for inserting the tube 130 are formed.
  • the container member 400 is a member in which a space for storing cooling water is formed inside. The entire surface of the container member 400 on the tube 130 side is open, and the opening is watertightly closed by the plate member 300.
  • a part of the plate member 300 constituting the tank 110 is also a member constituting the tank 210 included in the evaporator 200.
  • Such a configuration can also be said to be a configuration in which the plate member 300 constituting the tank 110 and the plate member 300 constituting the tank 210 are connected so as to be integrated.
  • a part of the container member 400 constituting the tank 110 is also a member constituting the tank 210.
  • Such a configuration can also be said to be a configuration in which the container member 400 constituting the tank 110 and the container member 400 constituting the tank 210 are connected so as to be integrated.
  • the tank 110 is integrated with the tank 210.
  • the tank 120 is integrated with the tank 220 by a structure similar to this, that is, a structure in which the plate member 300 and the container member 400 are joined to each other.
  • FIG. 1 shows a state in which the container member 400 is removed from the plate member 300 in order to show the internal configurations of the tank 110 and the tank 210.
  • Receiving portions 111 and 112 are formed in the tank 110. All of these are provided as a portion for receiving the cooling water after passing through the heating element.
  • the receiving portion 111 is provided at a position on the upper side of the tank 110.
  • the receiving portion 112 is provided at a position on the lower side of the tank 110.
  • the internal space of the tank 110 is divided into upper and lower parts by a separator S3.
  • the cooling water supplied from the receiving portion 111 flows into a portion of the internal space of the tank 110 on the upper side of the separator S3.
  • the cooling water supplied from the receiving portion 112 flows into a portion of the internal space of the tank 110 below the separator S3.
  • the tank 120 is formed with discharge portions 121 and 122. All of these are provided as parts for discharging the cooling water after being subjected to heat exchange to the outside.
  • the discharge portion 121 is provided at a position on the upper side of the tank 120.
  • the discharge portion 122 is provided at a position on the lower side of the tank 120.
  • a separator similar to the separator S3 is arranged at a position at the same height as the separator S3.
  • the internal space of the tank 120 is divided into upper and lower parts by the separator.
  • the cooling water that has flowed into the internal space above the separator in the tank 120 is discharged to the outside from the discharge unit 121.
  • the cooling water that has flowed into the internal space below the separator in the tank 120 is discharged to the outside from the discharge unit 122.
  • the tube 130 is a tubular member through which cooling water passes, and the radiator 100 is provided with a plurality of tubes 130.
  • Each tube 130 is an elongated straight tube and is arranged so as to extend in the horizontal direction.
  • One end of the tube 130 is connected to the tank 110, and the other end is connected to the tank 120.
  • the internal space of the tank 110 is communicated with the internal space of the tank 120 via the respective tubes 130.
  • Each tube 130 is arranged so as to be arranged in the vertical direction, that is, along the longitudinal direction of the tank 110 or the like.
  • the fins 140 are arranged between the tubes 130 adjacent to each other along the vertical direction, but as described above, the fins 140 are not shown in FIG.
  • the direction in which a plurality of tubes 130 are lined up, that is, the vertical direction in the present embodiment is also referred to as a "stacking direction" below.
  • the cooling water supplied to the tank 110 from the outside flows into the tank 120 through the inside of each tube 130.
  • the direction in which the air passes is perpendicular to both the longitudinal direction of the tank 110 and the longitudinal direction of the tube 130, and is a direction from the radiator 100 to the evaporator 200.
  • a fan (not shown) for sending air in the above direction is provided in the vicinity of the heat exchanger 10.
  • the fin 140 is a corrugated fin formed by bending a metal plate in a wavy shape. As described above, the fins 140 are arranged at positions between the tubes 130 adjacent to each other in the vertical direction. That is, in the radiator 100, the fins 140 and the tubes 130 are laminated so as to be alternately arranged along the stacking direction.
  • FIG. 2 is an enlarged view showing the configuration of the fin 140 and its vicinity after viewing the radiator 100 along the direction of air flow. As shown in FIG. 2, the tops of the wavy fins 140 are in contact with and brazed to the surfaces of adjacent tubes 130 in the stacking direction.
  • the heat of the cooling water is transferred to the air through the tube 130 and also to the air through the tube 130 and the fins 140. That is, the contact area with the air is increased by the fins 140, whereby heat exchange between the air and the cooling water is efficiently performed.
  • the configuration of the evaporator 200 will be described with reference to FIG. 1 again.
  • the evaporator 200 includes a pair of tanks 210 and 220, a tube 230, and fins 140.
  • Both tanks 210 and 220 are containers for temporarily storing the refrigerant, which is a heat medium. These are formed as elongated containers having a substantially cylindrical shape, and are arranged in a state in which the longitudinal direction thereof is along the vertical direction. The tanks 210 and 220 are arranged at positions separated from each other along the horizontal direction, and the tubes 230 and fins 140 are arranged between them.
  • the tanks 210 and 220 have the same configuration as the tanks 110 and 120 described above. As described above, the tank 210 is integrated with the tank 110 included in the radiator 100, and is configured by joining the plate member 300 and the container member 400 to each other. Similarly, the tank 220 is integrated with the tank 120 of the radiator 100, and is configured by joining the plate member 300 and the container member 400 to each other.
  • the tank 210 is formed with a receiving portion 211 and a discharging portion 212.
  • the receiving portion 211 is a portion for receiving the refrigerant circulating in the air conditioner.
  • a low-temperature liquid-phase refrigerant is supplied to the receiving unit 211 after passing through an expansion valve (not shown) provided in the air conditioner.
  • the receiving portion 211 is provided at a position near the upper end portion of the tank 210.
  • the discharge unit 212 is a part for discharging the refrigerant after being subjected to heat exchange to the outside.
  • the gas phase refrigerant evaporated by heat exchange in the evaporator 200 is discharged to the outside from the discharge unit 212, and then supplied to a compressor (not shown) provided in the air conditioner.
  • the discharge portion 212 is provided at a position near the lower end portion of the tank 210.
  • the internal space of the tank 210 is divided into three upper and lower parts by separators S1 and S2.
  • the receiving portion 211 is provided at a position further above the separator S1 on the upper side.
  • the discharge portion 212 is provided at a position further below the separator S2 on the lower side.
  • the internal space of the tank 220 is divided into upper and lower parts by a separator (not shown).
  • the position where the separator is provided is lower than the separator S1 and higher than the separator S2.
  • the tube 230 is a tubular member through which the refrigerant passes, and the evaporator 200 is provided with a plurality of tubes 230.
  • Each tube 230 is an elongated straight tube and is arranged so as to extend in the horizontal direction.
  • One end of the tube 230 is connected to the tank 210, and the other end is connected to the tank 220.
  • the internal space of the tank 210 is communicated with the internal space of the tank 220 via the respective tubes 230.
  • Each tube 230 is arranged so as to be lined up in the vertical direction, that is, in the stacking direction.
  • each tube 230 is arranged at a position adjacent to the tube 130 along the direction of air flow. That is, the same number of tubes 230 as the tubes 130 are provided, and the tubes 230 are arranged at the same height as the respective tubes 130.
  • the refrigerant supplied from the outside to the receiving portion 211 flows into the portion above the separator S1 in the internal space of the tank 210.
  • the refrigerant passes through the inside of the tube 230 arranged above the separator S1 and flows into a portion of the internal space of the tank 220 above the separator (not shown). After that, the refrigerant passes through the inside of the tube 230 arranged above the separator and below the separator S1 and flows into the portion of the internal space of the tank 210 between the separator S1 and the separator S2. do.
  • the refrigerant passes through the inside of the tube 230 arranged above the separator S2 and below the separator in the tank 220, and enters the portion of the internal space of the tank 220 below the separator. Inflow.
  • the refrigerant passes through the inside of the tube 230 arranged below the separator S2, flows into a portion of the internal space of the tank 220 below the separator S2, and then is discharged to the outside from the discharge portion 212.
  • each tube 230 When the refrigerant passes through the inside of each tube 230 as described above, it is heated by the air passing through the outside of the tube 230 and evaporates, and changes from a liquid phase to a gas phase.
  • the air is the air that has passed through the radiator 100 and the temperature has risen. Air loses heat as it passes outside the tube 230, thus lowering its temperature.
  • Fins 140 are arranged between the tubes 230 adjacent to each other along the stacking direction.
  • the fin 140 is a fin 140 included in the radiator 100 described above.
  • each fin 140 is arranged so as to extend from between the tubes 130 included in the radiator 100 to between the tubes 230 included in the evaporator 200. That is, each fin 140 is shared between the radiator 100 and the evaporator 200.
  • the fins 140 and the tubes 230 are laminated so as to be alternately arranged along the stacking direction, similarly to the radiator 100 described with reference to FIG.
  • the tops of the wavy fins 140 are in contact with and waxed against the surfaces of adjacent tubes 230 in the stacking direction.
  • the heat of the air is transferred to the refrigerant through the tube 230 and also to the refrigerant through the tube 230 and the fins 140. That is, the contact area with air is increased by the fins 140, whereby heat exchange between air and the refrigerant is efficiently performed.
  • the heat of the cooling water passing through the inside of the tube 130 is further transferred to the refrigerant passing through the inside of the tube 230 by heat conduction through the fins 140.
  • the heat from the cooling water is recovered in addition to the heat from the air, so that the operating efficiency of the air conditioner is further improved.
  • a reinforcing plate 11 which is a plate-shaped member is arranged at a position on the uppermost side of the tubes 130 and 230 arranged on the uppermost side.
  • a reinforcing plate 12 which is a plate-shaped member is arranged at a position further below the tubes 130 and 230 arranged on the lowermost side.
  • Reinforcing plates 11 and 12 are metal plates provided to reinforce the tube 130 and the like to prevent their deformation.
  • the direction from the radiator 100 to the evaporator 200 that is, the direction in which air flows through these is the x direction
  • the x axis is set along the same direction.
  • the direction perpendicular to the x direction that is, the direction from the tank 120 to the tank 110, that is, the longitudinal direction of the tube 130 or the like is the y direction
  • the y axis is set along the same direction. ..
  • the direction is perpendicular to both the x direction and the y direction, and the direction from the lower side to the upper side, that is, the longitudinal direction of the tank 110 or the like is the z direction, and z is along the same direction.
  • the axis is set.
  • the description will be given using the x-direction, y-direction, and z-direction defined as described above.
  • FIG. 3 shows a cross section of one fin 140 and tubes 130 and 230 arranged on both upper and lower sides thereof.
  • each of the tubes 130 and 230 has a flat cross section extending in the x direction.
  • a flow path FP1 through which cooling water passes is formed inside the tube 130.
  • An inner fin IF1 is arranged in the flow path FP1.
  • a flow path FP2 through which the refrigerant passes is formed inside the tube 230.
  • An inner fin IF2 is arranged in the flow path FP2.
  • a gap is formed between the tube 130 and the tube 230 arranged at the same height.
  • a plurality of louvers 141 are formed on the fin 140.
  • the louver 141 is formed by cutting up a part of the fins 140. Specifically, a plurality of linear notches extending along the z direction are formed on the flat plate-shaped portion of the fin 140 so as to be lined up along the x direction, and then the portion between the notches adjacent to each other.
  • the louver 141 is formed by twisting. By passing the air through the gap formed in the vicinity of the louver 141, heat exchange with the air is performed more efficiently.
  • the shape of such a louver 141 the same shape as the louver formed on the conventional fin can be adopted.
  • the tube 130 is a tubular member formed by bending a single metal plate and then brazing the ends thereof.
  • the tube 130 has a flat cross section extending along the x direction. In the cross section, the tube 130 has a flat plate portion 131 and a curved portion 132.
  • the flat plate portion 131 is a portion formed in a flat plate shape, and is arranged so that its normal line is along the z-axis. In other words, each tube 130 is arranged so that the normal direction of the flat plate portion 131 is along the stacking direction. Two flat plate portions 131 are provided, and these are arranged so as to face each other in the vertical direction. Such a flat plate portion 131 can be said to be a pair of flat plate-shaped portions of the tube 130 facing each other.
  • the curved portion 132 is a portion that is curved so as to connect the ends of the vertically arranged flat plate portions 131.
  • One curved portion 132 is provided on each of a portion on the x-direction side of the flat plate portion 131 and a portion on the ⁇ x direction side of the flat plate portion 131.
  • the dotted lines DL1 and DL2 shown in FIG. 4 indicate the boundary between the flat plate portion 131 and the curved portion 132.
  • the shape of the curved portion 132 on the x-direction side and the shape of the curved portion 132 on the ⁇ x direction side are not the same as each other.
  • the shapes of the curved portions 132 may be the same as each other and may be arranged so as to be symmetrical with respect to the yz plane.
  • the shapes of the curved portions 132 on both sides along the x direction are curved in an arc shape like the curved portions 132 on the x direction side of the present embodiment.
  • the configuration may not have a crimping portion such as the ⁇ x direction side of the form.
  • Such a tube 130 may be integrally formed as a whole by, for example, extrusion molding.
  • the shape of the tube 230 is almost the same as the shape of the tube 130 as described above, the specific illustration thereof will be omitted.
  • the portion of the tube 230 corresponding to the flat plate portion 131 is also hereinafter referred to as “flat plate portion 231”.
  • the portion of the tube 230 corresponding to the curved portion 132 is also hereinafter referred to as “curved portion 232”.
  • the graph shown in the lower portion of FIG. 4 schematically shows the magnitude of strain generated at the joint portion between the tube 130 and the plate member 300 when thermal expansion occurs in the tube 130.
  • the above-mentioned "joint portion” is a portion of the tube 130 that is joined to the edge of the insertion hole 301.
  • the strain as described above occurs when the tube 130 in a state of being restrained by brazing with respect to the plate member 300 expands or contracts due to the temperature of the heat medium.
  • the plate member 300 is deformed due to the difference in thermal expansion between the tube 130 and the tube 230.
  • distortion occurs at the joint portion between the tube 130 and the plate member 300.
  • Similar strain can occur not only at the tube 130 but also at the junction of the tube 230.
  • the distortion generated at the joint portion tends to be the largest at the position of the boundary indicated by the dotted lines DL1 and DL2. It is considered that this is because the stress at the time of thermal expansion or the like tends to be concentrated on the curved portion 132 as the rigidity of the tube 130 increases in the curved portion 132. For this reason, damage to the tube 130 due to distortion tends to occur particularly easily at the above boundary or a portion closer to the curved portion 132. The same applies to the tube 230.
  • the heat exchanger 10 is configured to reduce the above-mentioned distortion and prevent damage to the tubes 130 and 230 by devising the shape of the plate member 300.
  • FIG. 5 is a cross-sectional view showing the configuration of the plate member 300 included in the tank 110 and the tank 210 and its vicinity. In FIG. 5, the container member 400 is not shown. Since the shapes of the plate members 300 included in the tank 120 and the tank 220 are the same as the shapes of the plate members 300 shown in FIG. 5, the description thereof will be omitted.
  • the plate member 300 has a first portion 310, a second portion 320, a third portion 330, a fourth portion 340, and a fifth portion 350.
  • the first portion 310 is a portion formed in a substantially flat plate shape, and its normal direction is along the longitudinal direction of the tube 130 or the like, that is, the y direction.
  • the first portion 310 is formed on each side of the plate member 300 with a central position along the x-axis.
  • the first portion 310 formed at a position closer to the ⁇ x direction than the center is a portion in which a plurality of insertion holes 301 for inserting the tube 130 are formed.
  • the first portion 310 formed at a position on the x-direction side of the center is a portion in which a plurality of insertion holes 301 for inserting the tube 230 are formed.
  • the first portion 310 is formed in a substantially flat plate shape as described above, it does not have to be a perfect flat plate shape.
  • a burring process may be applied to a portion near the insertion hole 301, and the portion may locally project to the y-direction side or the ⁇ y-direction side.
  • the second portion 320 is a portion formed so as to extend from the end of the first portion 310 along the direction of air flow toward the container member 400 side, that is, the y direction side.
  • the second portion 320 is provided on both the x-direction side and the ⁇ x-direction side of the first portion 310.
  • the boundary between the first portion 310 and the second portion 320 is indicated by the dotted lines DL11 and DL12.
  • Most of the insertion hole 301 is formed in the first portion 310, but a part of the insertion hole 301 also overlaps with the second portion 320.
  • the second portion 320 provided on the x-direction side of the first portion 310 is provided as an inclined portion so as to approach the y-direction side toward the x-direction side.
  • the second portion 320 provided on the ⁇ x direction side of the first portion 310 is provided as a portion inclined so as to approach the y direction side toward the ⁇ x direction side.
  • the third portion 330 is a portion formed so as to extend in the y direction from each of the pair of second portions 320 provided on the central side of the plate member 300 among the four second portions 320 in total. Is.
  • the third portion 330 is formed so as to extend linearly along the normal direction of the first portion 310 from the end portion of the pair of second portions 320 opposite to the first portion 310. ..
  • Each of the pair of third portions 330 formed in this way has a flat plate shape.
  • the flat surface formed on the inner surface side of the third portion 330 is a surface for abutting and joining the container member 400.
  • the boundary between the second portion 320 and the third portion 330 is indicated by the dotted line DL13.
  • the fourth part 340 is a portion of each third part 330 that is curved so as to connect the ends opposite to the second part 320. That is, the fourth portion 340 connects the ends of the pair of third portions 330 on the y-direction side.
  • the plate member 300 is bent in an arc shape at the fourth portion 340. In FIG. 5, the boundary between the third portion 330 and the fourth portion 340 is indicated by the dotted line DL14.
  • connection portion 360 the pair of third portions 330 and the fourth portion 340 between them connect between the plate member 300 included in the radiator 100 and the plate member 300 included in the evaporator 200, respectively. It functions as an integral part of the plate member 300. Therefore, the pair of the third portion 330 and the fourth portion 340 between them are also referred to as "connection portion 360" below.
  • the radiator 100 composed of the tank 110, the tank 120, the tube 130, and the fins 140 corresponds to the "first heat exchanger” and is the first heat.
  • the cooling water passing through the exchange section corresponds to the "first heat medium”.
  • the evaporator 200 composed of the tank 210, the tank 220, the tube 230, and the fins 140 corresponds to the "second heat exchange section", and the refrigerant passing through the second heat exchange section corresponds to the "second heat exchange section”. do.
  • the first heat exchange section and the second heat exchange section are arranged so as to line up along the direction of air flow, and the plate member 300 included in the first heat exchange section and the second heat exchange section are arranged.
  • the plate member 300 provided in the portion is connected so as to be integrated via the connection portion 360 described above.
  • connection portion 360 of the present embodiment the fourth portion 340 is continuously formed in the entire connection portion 360 along the z direction.
  • the fourth portion 340 may be interrupted at one or a plurality of locations along the z direction.
  • the fifth portion 350 is a portion formed so as to extend in the y direction from each of the pair of second portions 320 located on the outer side along the x-axis of the four second portions 320 in total. Is.
  • the fifth portion 350 is formed so as to extend linearly along the normal direction of the first portion 310 from the end portion of the pair of second portions 320 opposite to the first portion 310. ..
  • Each fifth portion 350 is arranged so as to face the third portion 330 along the direction of air flow.
  • the flat surface formed on the inner surface side of the fifth portion 350 is a surface for abutting and joining the container member 400.
  • Such a fifth portion 350 is arranged so as to face the third portion 330 along the direction of air flow and is joined to the container member 400 together with the third portion 330 by the method of the first portion 310. It can also be said to be a portion formed so as to extend along the linear direction.
  • the boundary between the second portion 320 and the fifth portion 350 is indicated by the dotted line DL15.
  • the dotted line DL21 and the dotted line DL22 indicate the boundary between the flat plate portion 131 and the curved portion 132 and the boundary between the flat plate portion 231 and the curved portion 232, respectively.
  • the boundary (DL11, DL12) between the first portion 310 and the second portion 320 is the flat plate portion 131 of the tube 130. It is arranged at a position closer to the flat plate portion 131 than the boundary (DL21, DL22) between the curved portion 132 and the curved portion 132.
  • the boundary (DL11, DL12) between the first portion 310 and the second portion 320 is the tube 230. It is arranged at a position closer to the flat plate portion 231 than the boundary (DL21, DL22) between the flat plate portion 231 and the curved portion 232.
  • the boundary between the first portion 310 and the second portion 320 of the plate member 300 is the tube 130 when viewed along the stacking direction as shown in FIG. It was found that the strain of the tube 130 at the time of thermal expansion or contraction tends to be relatively large in the configuration where the flat plate portion 131 and the curved portion 132 are arranged at the boundary or on the curved portion 132 side of the boundary. Has been obtained. Similarly, in a configuration in which the boundary between the first portion 310 and the second portion 320 is arranged on the boundary between the flat plate portion 231 and the curved portion 232 of the tube 230, or on the curved portion 232 side thereof. It has been found that the strain of the tube 230 tends to be relatively large during thermal expansion or contraction.
  • the boundary between the first portion 310 and the second portion 320 of the plate member 300 becomes the starting point of the deformation of the plate member 300 at the time of thermal expansion of the tube 130 or the like, and the strain due to the deformation is the strain of the tube 130. It is considered that this is because it concentrates on the curved portion 132 and the curved portion 232 of the tube 230.
  • the boundary between the first portion 310 and the second portion 320 of the plate member 300 is the tube 130.
  • the configuration is such that the flat plate portion 131 and the curved portion 132 are arranged at a position closer to the flat plate portion 131 than the boundary.
  • the boundary between the first portion 310 and the second portion 320 of the plate member 300 is closer to the flat plate portion 231 than the boundary between the flat plate portion 231 and the curved portion 232 of the tube 230. It is configured to be placed at a position.
  • the plate member 300 is deformed starting from the boundary between the first portion 310 and the second portion 320 at the flat plate portions 131 and 231 instead of the curved portions 132 and 232.
  • the strain is diffused over a wide range of the joint portion, so that the maximum value of the strain generated in the tubes 130 and 230 can be reduced as compared with the conventional case.
  • the above-mentioned "maximum value of distortion” is the peak value of distortion shown in the graph at the bottom of FIG.
  • the connecting portion 360 is formed so that the gap between the pair of third portions 330 adjacent to each other is substantially zero.
  • the radiator 100 and the evaporator 200 are in close proximity to each other, and the length of the fins 140 along the x direction is relatively short.
  • the strain due to thermal expansion of the tubes 130 and 230 is caused when the fins 140 are long. It will be bigger than that.
  • the distortion of the joint portion is suppressed by devising the shape of the plate member 300 as described above. Therefore, even in a configuration in which the fins 140 are shortened in consideration of heat conduction, it is possible to prevent the tube 130 and the like from being damaged due to strain.
  • the deformation of the plate member 300 when the tubes 130 and 230 are thermally expanded or the like occurs from the boundary between the first portion 310 and the second portion 320 as described above.
  • the plate member 300 tends to be deformed in the direction in which the second portion 320 is inclined toward the x-direction side or the-direction side, starting from the boundary indicated by the dotted line DL11 in FIG.
  • the shape of the second portion 320 is devised so that most of the deformation is absorbed by the second portion 320 and the influence on the joint portion is reduced.
  • each second portion 320 has a shape that is substantially arcuately curved so as to be convex toward the outside of the tank 110 or the like.
  • the second portion 320 locally protrudes toward the inside of the tank 110 or the like.
  • Such a portion locally protruding inward of the tank 110 or the like is also referred to as a "bent portion 321" below.
  • One bent portion 321 is formed in each of the four second portions 320.
  • the position where the bent portion 321 is formed is a position in the second portion 320 that does not overlap with the joint portion such as the tube 130. Specifically, it is a position closer to the container member 400 than the tip of the tube 130.
  • the second portion 320 is provided with a function as a "leaf spring” that absorbs strain. Since the second portion 320 is easily deformed in the whole including the bent portion 321, it is possible to prevent the strain caused by the thermal expansion of the tubes 130 and 230 from being concentrated on the joint portion with the tubes 130 and 230. Will be done. As a result, the maximum value of distortion is further reduced. As described above, in the present embodiment, the distortion is further reduced by forming the bent portion 321 so as to project inward of the tank 110 or the like in the second portion 320.
  • the radius of curvature of the bent portion 321 is preferably larger than the radius of curvature of the fourth portion 340.
  • the "radius of curvature” in this case is the radius of curvature on the surface of the one protruding in an arc shape in the cross section as shown in FIG.
  • the inner surfaces of the third portion 330 and the fifth portion 350 are surfaces for abutting and brazing the container member 400.
  • L1 the length of the inner surface of the third portion 330 along the y direction
  • L2 the length of the inner surface of the fifth portion 350 along the y direction
  • the dimensions of each part are set so that L1 ⁇ L2.
  • the "length along the y direction" in the above corresponds to the length along the normal direction of the first portion 310.
  • the plate member 300 Due to its structure, the plate member 300 has a relatively high rigidity near the central portion where the connecting portion 360 is formed, while the rigidity near the end portion where the fifth portion 350 is formed is relatively low. It has become. Therefore, in the present embodiment, L1 ⁇ L2 is set as described above, and the joint area in the fifth portion 350 is made larger than the joint area in the third portion 330. As a result, the rigidity in the vicinity of the end portion where the fifth portion 350 is formed is increased, so that the balance of the rigidity of each portion of the plate member 300 can be evenly approached. As a result, the maximum value of distortion generated in the plate member 300 can be further reduced.
  • the length of the fifth portion 350 along the normal direction of the first portion 310 is made longer than the length of the third portion 330 along the same direction, thereby maximizing the distortion. It is configured to reduce the value.
  • the length (L1) of the third portion 330 along the normal direction of the first portion 310 is preferably 0.8 mm or more.
  • the third portion 330 and the fifth portion 350 are all arranged closer to the container member 400 than the tips of the tubes 130 and 230. That is, it is preferable that the third portion 330 and the fifth portion 350 are arranged at positions so that the tubes 130 and 230 are not sandwiched between them.
  • the heat exchanger 10 is configured as a composite heat exchanger in which the radiator 100 and the evaporator 200 are combined has been described.
  • the device for reducing distortion as described above can also be applied to a single heat exchanger that is not a composite type.
  • a single heat exchanger 10 composed of only the radiator 100, among the plate members 300 shown in FIG. 5, the first portion 310, the second portion 320, and the third portion 330 on the ⁇ x direction side.
  • the plate member 300 may be configured so as to have only the fifth portion 350.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

A heat exchanger (10) comprises: a plurality of tubes (130, 230) disposed so as to be lined up along the layering direction; and tanks (110, 210, 120, 220) to which the respective tubes are connected. The tubes each include: flat plate parts (131, 231) formed in a pair of flat plate shapes which oppose each other; and curved parts (132, 232) curving so as to connect the ends of the respective flat plate parts. A plate member (300) of the tanks includes: a first portion (310) in which a direction normal thereto goes along the longitudinal direction of the tubes; and a second portion (320) extending toward the container member from an end of the first section, the end extending along the direction in which air flows. When seen along the layering direction of the tubes, a boundary between the first portion and the second portion is disposed at a position of the tubes more on the flat plate part side than a boundary between the flat plate part and the curved part.

Description

熱交換器Heat exchanger 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年2月14日に出願された日本国特許出願2020-023492号に基づくものであって、その優先権の利益を主張するものであり、その特許出願の全ての内容が、参照により本明細書に組み込まれる。 This application is based on Japanese Patent Application No. 2020-023492, which was filed on February 14, 2020, and claims the benefit of its priority. Incorporated herein by reference.
 本開示は、熱媒体と空気との間で熱交換を行う熱交換器に関する。 The present disclosure relates to a heat exchanger that exchanges heat between a heat medium and air.
 例えばラジエータや蒸発器等のような熱交換器は、熱媒体の通る金属製のチューブを複数本備えている。熱交換器では、チューブの内側を通る熱媒体と、チューブの外側を通る空気との間で熱交換が行われる。 For example, heat exchangers such as radiators and evaporators are provided with a plurality of metal tubes through which a heat medium passes. In the heat exchanger, heat exchange takes place between the heat medium passing through the inside of the tube and the air passing through the outside of the tube.
 下記特許文献1に記載されているように、複数のチューブは、タンクの一部を構成する金属製のプレート部材に挿通された状態で、当該プレート部材に対してろう接されていることが多い。このような構成の熱交換器においては、熱媒体の温度に起因した熱膨張もしくは収縮に伴って、チューブとプレート部材との接合部分に歪みが生じる傾向がある。 As described in Patent Document 1 below, a plurality of tubes are often brazed to the plate member in a state of being inserted into a metal plate member forming a part of the tank. .. In a heat exchanger having such a configuration, the joint portion between the tube and the plate member tends to be distorted due to thermal expansion or contraction due to the temperature of the heat medium.
特許第3674120号公報Japanese Patent No. 3674120
 熱交換が効率的に行われるように、チューブの板厚は比較的薄くしておく必要がある。このため、チューブとプレート部材との接合部分において上記のような歪みが生じると、チューブの一部が破損してしまう可能性がある。上記特許文献1に記載されているような、チューブの断面が扁平形状となっている熱交換器においては、チューブのうち平板部と湾曲部との境界となる位置において、歪みに起因した破損が特に生じやすい。 The tube thickness needs to be relatively thin so that heat exchange can be performed efficiently. Therefore, if the above-mentioned distortion occurs at the joint portion between the tube and the plate member, a part of the tube may be damaged. In a heat exchanger having a flat cross section as described in Patent Document 1, damage due to strain occurs at a position of the tube at the boundary between the flat plate portion and the curved portion. Especially likely to occur.
 本開示は、チューブの接合部分における歪みを低減することのできる熱交換器、を提供することを目的とする。 It is an object of the present disclosure to provide a heat exchanger that can reduce distortion at the joint portion of a tube.
 本開示に係る熱交換器は、熱媒体と空気との間で熱交換を行う熱交換器である。この熱交換器は、内部を熱媒体が通る管状の部材であって、積層方向に沿って並ぶように配置された複数のチューブと、それぞれのチューブが接続されたタンクと、を備える。チューブは、互いに対向する一対の平板状に形成された平板部と、それぞれの平板部の端部同士を繋ぐように湾曲している湾曲部と、を有し、平板部の法線方向が積層方向に沿うように配置されたものである。タンクは、チューブを挿通するための挿通穴が複数形成された板状のプレート部材と、熱媒体を貯えるための空間が内側に形成された容器部材と、を有するものである。プレート部材は、その法線方向がチューブの長手方向に沿っている第1部分と、空気の流れる方向に沿った第1部分の端部から、容器部材に向かって伸びている第2部分と、を有している。積層方向に沿って見た場合においては、第1部分と第2部分との境界が、チューブのうち、平板部と湾曲部との境界、よりも平板部側となる位置に配置されている。 The heat exchanger according to the present disclosure is a heat exchanger that exchanges heat between a heat medium and air. This heat exchanger is a tubular member through which a heat medium passes, and includes a plurality of tubes arranged so as to be arranged along a stacking direction, and a tank to which each tube is connected. The tube has a pair of flat plate portions facing each other and a curved portion curved so as to connect the ends of the respective flat plate portions, and the normal directions of the flat plate portions are laminated. It is arranged along the direction. The tank has a plate-shaped plate member in which a plurality of insertion holes for inserting a tube are formed, and a container member in which a space for storing a heat medium is formed inside. The plate member includes a first portion whose normal direction is along the longitudinal direction of the tube, and a second portion extending from the end of the first portion along the direction of air flow toward the container member. have. When viewed along the stacking direction, the boundary between the first portion and the second portion is arranged at a position on the tube that is closer to the flat plate portion than the boundary between the flat plate portion and the curved portion.
 本発明者らが行った実験等によれば、積層方向に沿って見た場合において、プレート部材のうち第1部分と第2部分との境界が、チューブのうち平板部と湾曲部との境界、もしくはそれよりも湾曲部側に配置されているような構成においては、熱膨張時もしくは収縮時におけるチューブの歪みが比較的大きくなりやすいという知見が得られている。 According to the experiments conducted by the present inventors, the boundary between the first portion and the second portion of the plate member is the boundary between the flat plate portion and the curved portion of the tube when viewed along the stacking direction. It has been found that the strain of the tube at the time of thermal expansion or contraction tends to be relatively large in a configuration in which the tube is arranged on the curved portion side.
 これは、プレート部材のうち第1部分と第2部分との境界が、チューブの熱膨張時等におけるプレート部材の変形の起点となり、当該変形に伴う歪みがチューブの湾曲部に集中してしまうためと考えられる。 This is because the boundary between the first portion and the second portion of the plate member becomes the starting point of deformation of the plate member during thermal expansion of the tube, and the strain due to the deformation is concentrated on the curved portion of the tube. it is conceivable that.
 そこで、上記構成の熱交換器では、積層方向に沿って見た場合において、プレート部材のうち第1部分と第2部分との境界が、チューブのうち平板部と湾曲部との境界、よりも平板部側となる位置に配置された構成としている。このような構成においては、第1部分と第2部分との境界を起点として生じるプレート部材の変形を、チューブの湾曲部ではなく平板部で受けることとなる。これにより、チューブで生じる歪みの最大値を従来よりも低減することが可能となる。 Therefore, in the heat exchanger having the above configuration, the boundary between the first portion and the second portion of the plate member is larger than the boundary between the flat plate portion and the curved portion of the tube when viewed along the stacking direction. The configuration is such that it is arranged at a position on the flat plate side. In such a configuration, the deformation of the plate member that occurs starting from the boundary between the first portion and the second portion is received by the flat plate portion instead of the curved portion of the tube. This makes it possible to reduce the maximum value of distortion generated in the tube as compared with the conventional case.
 本開示によれば、チューブの接合部分における歪みを低減することのできる熱交換器が提供される。 According to the present disclosure, a heat exchanger capable of reducing distortion at a joint portion of a tube is provided.
図1は、本実施形態に係る熱交換器の全体構成を示す図である。FIG. 1 is a diagram showing an overall configuration of a heat exchanger according to the present embodiment. 図2は、図1の熱交換器の一部を拡大して示す図である。FIG. 2 is an enlarged view of a part of the heat exchanger of FIG. 図3は、図1の熱交換器が備えるフィン、及びその上下に配置されたチューブを示す図である。FIG. 3 is a diagram showing fins included in the heat exchanger of FIG. 1 and tubes arranged above and below the fins. 図4は、チューブの構成と、チューブの接合部分で生じる歪みの大きさとを示す図である。FIG. 4 is a diagram showing the configuration of the tube and the magnitude of the strain generated at the joint portion of the tube. 図5は、図1の熱交換器が備えるプレート部材の構成を示す図である。FIG. 5 is a diagram showing a configuration of a plate member included in the heat exchanger of FIG.
 以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。 Hereinafter, the present embodiment will be described with reference to the attached drawings. In order to facilitate understanding of the description, the same components are designated by the same reference numerals as much as possible in each drawing, and duplicate description is omitted.
 本実施形態に係る熱交換器10の構成について説明する。熱交換器10は、不図示の車両に搭載される熱交換器である。図1に示されるように、熱交換器10は、ラジエータ100と蒸発器200とを組み合わせて一体化した複合型の熱交換器として構成されている。 The configuration of the heat exchanger 10 according to this embodiment will be described. The heat exchanger 10 is a heat exchanger mounted on a vehicle (not shown). As shown in FIG. 1, the heat exchanger 10 is configured as a composite heat exchanger in which the radiator 100 and the evaporator 200 are combined and integrated.
 ラジエータ100は、不図示の発熱体を通り高温となった冷却水を、空気との熱交換によって冷却するための熱交換器である。ここでいう「発熱体」とは、上記車両に搭載され冷却を必要とする機器のことであって、例えば内燃機関、インタークーラ、モーター、インバーター、バッテリ等のことである。蒸発器200は、車両に搭載される不図示の空調装置の一部であって、空気との熱交換によって液相の冷媒を蒸発させるための熱交換器である。 The radiator 100 is a heat exchanger for cooling cooling water that has become hot through a heating element (not shown) by heat exchange with air. The "heating element" referred to here is a device mounted on the vehicle and requiring cooling, for example, an internal combustion engine, an intercooler, a motor, an inverter, a battery, or the like. The evaporator 200 is a part of an air conditioner (not shown) mounted on a vehicle, and is a heat exchanger for evaporating a liquid phase refrigerant by heat exchange with air.
 先ず、ラジエータ100の構成について説明する。ラジエータ100は、一対のタンク110、120と、チューブ130と、フィン140と、を備えている。尚、図1においてはフィン140の図示が省略されている。 First, the configuration of the radiator 100 will be described. The radiator 100 includes a pair of tanks 110 and 120, a tube 130, and fins 140. Note that the fins 140 are not shown in FIG.
 タンク110、120はいずれも、熱媒体である冷却水を一時的に貯えるための金属製の容器である。これらは略円柱形状の細長い容器として形成されており、その長手方向を上下方向に沿わせた状態で配置されている。タンク110、120は、水平方向に沿って互いに離間した位置に配置されており、両者の間には後述のチューブ130及びフィン140が配置されている。 Both tanks 110 and 120 are metal containers for temporarily storing cooling water, which is a heat medium. These are formed as elongated containers having a substantially cylindrical shape, and are arranged in a state in which the longitudinal direction thereof is along the vertical direction. The tanks 110 and 120 are arranged at positions separated from each other along the horizontal direction, and the tubes 130 and fins 140 described later are arranged between them.
 タンク110は、プレート部材300と容器部材400とを有しており、これらを組み合わせて互いにろう接することにより形成されている。プレート部材300は板状の部材であって、チューブ130を挿通するための挿通穴301が複数形成されている。容器部材400は、冷却水を貯えるための空間が内側に形成された部材である。容器部材400のうちチューブ130側の面は全体が開口しており、当該開口がプレート部材300によって水密に塞がれている。 The tank 110 has a plate member 300 and a container member 400, and is formed by combining these and brazing each other. The plate member 300 is a plate-shaped member, and a plurality of insertion holes 301 for inserting the tube 130 are formed. The container member 400 is a member in which a space for storing cooling water is formed inside. The entire surface of the container member 400 on the tube 130 side is open, and the opening is watertightly closed by the plate member 300.
 図1に示されるように、タンク110を構成するプレート部材300は、その一部が、蒸発器200が有するタンク210を構成する部材ともなっている。このような構成は、タンク110を構成するプレート部材300と、タンク210を構成するプレート部材300とが、一体となるように接続されている構成、ということもできる。 As shown in FIG. 1, a part of the plate member 300 constituting the tank 110 is also a member constituting the tank 210 included in the evaporator 200. Such a configuration can also be said to be a configuration in which the plate member 300 constituting the tank 110 and the plate member 300 constituting the tank 210 are connected so as to be integrated.
 また、タンク110を構成する容器部材400は、その一部がタンク210を構成する部材ともなっている。このような構成は、タンク110を構成する容器部材400と、タンク210を構成する容器部材400とが、一体となるように接続されている構成、ということもできる。 In addition, a part of the container member 400 constituting the tank 110 is also a member constituting the tank 210. Such a configuration can also be said to be a configuration in which the container member 400 constituting the tank 110 and the container member 400 constituting the tank 210 are connected so as to be integrated.
 上記構成により、タンク110はタンク210と一体化されている。これと同様の構成、すなわち、プレート部材300と容器部材400とを互いに接合した構成により、タンク120はタンク220と一体化されている。図1においては、タンク110及びタンク210の内部の構成を示すため、容器部材400をプレート部材300から取り外した状態が示されている。 With the above configuration, the tank 110 is integrated with the tank 210. The tank 120 is integrated with the tank 220 by a structure similar to this, that is, a structure in which the plate member 300 and the container member 400 are joined to each other. FIG. 1 shows a state in which the container member 400 is removed from the plate member 300 in order to show the internal configurations of the tank 110 and the tank 210.
 タンク110には、受入部111、112が形成されている。これらはいずれも、上記の発熱体を通った後の冷却水を受け入れるための部分として設けられている。受入部111は、タンク110のうち上方側となる位置に設けられている。受入部112は、タンク110のうち下方側となる位置に設けられている。 Receiving portions 111 and 112 are formed in the tank 110. All of these are provided as a portion for receiving the cooling water after passing through the heating element. The receiving portion 111 is provided at a position on the upper side of the tank 110. The receiving portion 112 is provided at a position on the lower side of the tank 110.
 図1に示されるように、タンク110の内部空間は、セパレータS3によって上下2つに分けられている。受入部111から供給された冷却水は、タンク110の内部空間のうちセパレータS3よりも上方側の部分に流入する。受入部112から供給された冷却水は、タンク110の内部空間のうちセパレータS3よりも下方側の部分に流入する。 As shown in FIG. 1, the internal space of the tank 110 is divided into upper and lower parts by a separator S3. The cooling water supplied from the receiving portion 111 flows into a portion of the internal space of the tank 110 on the upper side of the separator S3. The cooling water supplied from the receiving portion 112 flows into a portion of the internal space of the tank 110 below the separator S3.
 タンク120には、排出部121、122が形成されている。これらはいずれも、熱交換に供された後の冷却水を外部へと排出するための部分として設けられている。排出部121は、タンク120のうち上方側となる位置に設けられている。排出部122は、タンク120のうち下方側となる位置に設けられている。 The tank 120 is formed with discharge portions 121 and 122. All of these are provided as parts for discharging the cooling water after being subjected to heat exchange to the outside. The discharge portion 121 is provided at a position on the upper side of the tank 120. The discharge portion 122 is provided at a position on the lower side of the tank 120.
 タンク120の内部には、セパレータS3と同じ高さとなる位置に、セパレータS3と同様のセパレータが配置されている。タンク120の内部空間は、当該セパレータによって上下2つに分けられている。タンク120のうち当該セパレータよりも上方側の内部空間に流入した冷却水は、排出部121から外部へと排出される。タンク120のうち当該セパレータよりも下方側の内部空間に流入した冷却水は、排出部122から外部へと排出される。 Inside the tank 120, a separator similar to the separator S3 is arranged at a position at the same height as the separator S3. The internal space of the tank 120 is divided into upper and lower parts by the separator. The cooling water that has flowed into the internal space above the separator in the tank 120 is discharged to the outside from the discharge unit 121. The cooling water that has flowed into the internal space below the separator in the tank 120 is discharged to the outside from the discharge unit 122.
 チューブ130は、内部を冷却水が通る管状の部材であって、ラジエータ100に複数本備えられている。それぞれのチューブ130は細長い直線状の管となっており、水平方向に沿って伸びるように配置されている。チューブ130は、その一端がタンク110に接続されており、その他端がタンク120に接続されている。これにより、タンク110の内部空間は、それぞれのチューブ130を介して、タンク120の内部空間と連通されている。 The tube 130 is a tubular member through which cooling water passes, and the radiator 100 is provided with a plurality of tubes 130. Each tube 130 is an elongated straight tube and is arranged so as to extend in the horizontal direction. One end of the tube 130 is connected to the tank 110, and the other end is connected to the tank 120. As a result, the internal space of the tank 110 is communicated with the internal space of the tank 120 via the respective tubes 130.
 それぞれのチューブ130は、上下方向、つまりタンク110等の長手方向に沿って並ぶように配置されている。尚、上下方向に沿って互いに隣り合うチューブ130の間にはフィン140が配置されているのであるが、先に述べたように、図1においてはフィン140の図示が省略されている。複数のチューブ130が並んでいる方向、すなわち本実施形態では上下方向のことを、以下では「積層方向」とも称する。 Each tube 130 is arranged so as to be arranged in the vertical direction, that is, along the longitudinal direction of the tank 110 or the like. The fins 140 are arranged between the tubes 130 adjacent to each other along the vertical direction, but as described above, the fins 140 are not shown in FIG. The direction in which a plurality of tubes 130 are lined up, that is, the vertical direction in the present embodiment is also referred to as a "stacking direction" below.
 外部からタンク110に供給された冷却水は、それぞれのチューブ130の内側を通ってタンク120へと流入する。冷却水は、チューブ130の内側を通る際において、チューブ130の外側を通過する空気によって冷却されその温度を低下させる。尚、当該空気が通過する方向は、タンク110の長手方向及びチューブ130の長手方向のいずれに対しても垂直な方向であって、ラジエータ100から蒸発器200へと向かう方向となっている。熱交換器10の近傍には、上記の方向に空気を送り出すための不図示のファンが設けられている。 The cooling water supplied to the tank 110 from the outside flows into the tank 120 through the inside of each tube 130. When the cooling water passes through the inside of the tube 130, it is cooled by the air passing through the outside of the tube 130 to lower its temperature. The direction in which the air passes is perpendicular to both the longitudinal direction of the tank 110 and the longitudinal direction of the tube 130, and is a direction from the radiator 100 to the evaporator 200. A fan (not shown) for sending air in the above direction is provided in the vicinity of the heat exchanger 10.
 フィン140は、金属板を波状に折り曲げることによって形成されたコルゲートフィンである。上記のように、フィン140は、上下方向において互いに隣り合うチューブ130の間となる位置に配置されている。つまり、ラジエータ100では、フィン140とチューブ130とが、積層方向に沿って交互に並ぶように積層されている。図2は、ラジエータ100を空気の流れる方向に沿って見た上で、フィン140及びその近傍の構成を拡大して示す図である。図2に示されるように、波状に形成されたフィン140のそれぞれの頂部は、積層方向において隣り合うチューブ130の表面に当接しており、且つろう接されている。 The fin 140 is a corrugated fin formed by bending a metal plate in a wavy shape. As described above, the fins 140 are arranged at positions between the tubes 130 adjacent to each other in the vertical direction. That is, in the radiator 100, the fins 140 and the tubes 130 are laminated so as to be alternately arranged along the stacking direction. FIG. 2 is an enlarged view showing the configuration of the fin 140 and its vicinity after viewing the radiator 100 along the direction of air flow. As shown in FIG. 2, the tops of the wavy fins 140 are in contact with and brazed to the surfaces of adjacent tubes 130 in the stacking direction.
 チューブ130の内側を冷却水が通っているときにおいては、冷却水の熱がチューブ130を介して空気に伝達されるほか、チューブ130及びフィン140を介しても空気に伝達される。つまり、空気との接触面積がフィン140によって大きくなっており、これにより空気と冷却水との熱交換が効率的に行われる。 When the cooling water passes through the inside of the tube 130, the heat of the cooling water is transferred to the air through the tube 130 and also to the air through the tube 130 and the fins 140. That is, the contact area with the air is increased by the fins 140, whereby heat exchange between the air and the cooling water is efficiently performed.
 再び図1を参照しながら、蒸発器200の構成について説明する。蒸発器200は、一対のタンク210、220と、チューブ230と、フィン140と、を備えている。 The configuration of the evaporator 200 will be described with reference to FIG. 1 again. The evaporator 200 includes a pair of tanks 210 and 220, a tube 230, and fins 140.
 タンク210、220はいずれも、熱媒体である冷媒を一時的に貯えるための容器である。これらは略円柱形状の細長い容器として形成されており、その長手方向を上下方向に沿わせた状態で配置されている。タンク210、220は、水平方向に沿って互いに離間した位置に配置されており、両者の間にはチューブ230及びフィン140が配置されている。 Both tanks 210 and 220 are containers for temporarily storing the refrigerant, which is a heat medium. These are formed as elongated containers having a substantially cylindrical shape, and are arranged in a state in which the longitudinal direction thereof is along the vertical direction. The tanks 210 and 220 are arranged at positions separated from each other along the horizontal direction, and the tubes 230 and fins 140 are arranged between them.
 タンク210、220は、先に述べたタンク110、120と同様の構成を有している。先に述べたように、タンク210は、ラジエータ100が有するタンク110と一体化されており、プレート部材300と容器部材400とを互いに接合することによって構成されている。同様に、タンク220は、ラジエータ100が有するタンク120と一体化されており、プレート部材300と容器部材400とを互いに接合することによって構成されている。 The tanks 210 and 220 have the same configuration as the tanks 110 and 120 described above. As described above, the tank 210 is integrated with the tank 110 included in the radiator 100, and is configured by joining the plate member 300 and the container member 400 to each other. Similarly, the tank 220 is integrated with the tank 120 of the radiator 100, and is configured by joining the plate member 300 and the container member 400 to each other.
 タンク210には、受入部211と排出部212とが形成されている。受入部211は、空調装置を循環する冷媒を受け入れるための部分である。受入部211には、空調装置が備える不図示の膨張弁を通過した後の、低温の液相冷媒が供給される。受入部211は、タンク210のうち上方側の端部近傍となる位置に設けられている。排出部212は、熱交換に供された後の冷媒を外部へと排出するための部分である。蒸発器200における熱交換によって蒸発した気相の冷媒は、排出部212から外部へと排出された後、空調装置が備える不図示の圧縮機へと供給される。排出部212は、タンク210のうち下方側の端部近傍となる位置に設けられている。 The tank 210 is formed with a receiving portion 211 and a discharging portion 212. The receiving portion 211 is a portion for receiving the refrigerant circulating in the air conditioner. A low-temperature liquid-phase refrigerant is supplied to the receiving unit 211 after passing through an expansion valve (not shown) provided in the air conditioner. The receiving portion 211 is provided at a position near the upper end portion of the tank 210. The discharge unit 212 is a part for discharging the refrigerant after being subjected to heat exchange to the outside. The gas phase refrigerant evaporated by heat exchange in the evaporator 200 is discharged to the outside from the discharge unit 212, and then supplied to a compressor (not shown) provided in the air conditioner. The discharge portion 212 is provided at a position near the lower end portion of the tank 210.
 図1に示されるように、タンク210の内部空間は、セパレータS1、S2によって上下3つに分けられている。受入部211は、上方側のセパレータS1よりも更に上方側となる位置に設けられている。排出部212は、下方側のセパレータS2よりも更に下方側となる位置に設けられている。 As shown in FIG. 1, the internal space of the tank 210 is divided into three upper and lower parts by separators S1 and S2. The receiving portion 211 is provided at a position further above the separator S1 on the upper side. The discharge portion 212 is provided at a position further below the separator S2 on the lower side.
 タンク220の内部空間は、不図示のセパレータによって上下2つに分けられている。当該セパレータが設けられている位置は、セパレータS1よりも低く、且つセパレータS2よりも高い位置となっている。 The internal space of the tank 220 is divided into upper and lower parts by a separator (not shown). The position where the separator is provided is lower than the separator S1 and higher than the separator S2.
 チューブ230は、内部を冷媒が通る管状の部材であって、蒸発器200に複数本備えられている。それぞれのチューブ230は細長い直線状の管となっており、水平方向に沿って伸びるように配置されている。チューブ230は、その一端がタンク210に接続されており、その他端がタンク220に接続されている。これにより、タンク210の内部空間は、それぞれのチューブ230を介して、タンク220の内部空間と連通されている。 The tube 230 is a tubular member through which the refrigerant passes, and the evaporator 200 is provided with a plurality of tubes 230. Each tube 230 is an elongated straight tube and is arranged so as to extend in the horizontal direction. One end of the tube 230 is connected to the tank 210, and the other end is connected to the tank 220. As a result, the internal space of the tank 210 is communicated with the internal space of the tank 220 via the respective tubes 230.
 それぞれのチューブ230は、上下方向、つまり積層方向に沿って並ぶように配置されている。本実施形態では、それぞれのチューブ230が、空気の流れる方向に沿ってチューブ130と隣り合う位置に配置されている。つまり、チューブ230は、チューブ130と同じ数だけ設けられており、それぞれのチューブ130と同じ高さとなる位置に配置されている。 Each tube 230 is arranged so as to be lined up in the vertical direction, that is, in the stacking direction. In the present embodiment, each tube 230 is arranged at a position adjacent to the tube 130 along the direction of air flow. That is, the same number of tubes 230 as the tubes 130 are provided, and the tubes 230 are arranged at the same height as the respective tubes 130.
 外部から受入部211へと供給された冷媒は、タンク210の内部空間のうちセパレータS1よりも上方側の部分に流入する。当該冷媒は、セパレータS1よりも上方側に配置されたチューブ230の内側を通り、タンク220の内部空間のうち不図示のセパレータよりも上方側の部分に流入する。その後、冷媒は、当該セパレータよりも上方側であり且つセパレータS1よりも下方側に配置されたチューブ230の内側を通り、タンク210の内部空間のうちセパレータS1とセパレータS2との間の部分に流入する。 The refrigerant supplied from the outside to the receiving portion 211 flows into the portion above the separator S1 in the internal space of the tank 210. The refrigerant passes through the inside of the tube 230 arranged above the separator S1 and flows into a portion of the internal space of the tank 220 above the separator (not shown). After that, the refrigerant passes through the inside of the tube 230 arranged above the separator and below the separator S1 and flows into the portion of the internal space of the tank 210 between the separator S1 and the separator S2. do.
 更にその後、冷媒は、セパレータS2よりも上方側であり且つタンク220内のセパレータよりも下方側に配置されたチューブ230の内側を通り、タンク220の内部空間のうちセパレータよりも下方側の部分に流入する。当該冷媒は、セパレータS2よりも下方側に配置されたチューブ230の内側を通り、タンク220の内部空間のうちセパレータS2よりも下方側の部分に流入した後、排出部212から外部へと排出される。 Further, after that, the refrigerant passes through the inside of the tube 230 arranged above the separator S2 and below the separator in the tank 220, and enters the portion of the internal space of the tank 220 below the separator. Inflow. The refrigerant passes through the inside of the tube 230 arranged below the separator S2, flows into a portion of the internal space of the tank 220 below the separator S2, and then is discharged to the outside from the discharge portion 212. NS.
 冷媒は、上記のように各チューブ230の内側を通る際において、チューブ230の外側を通過する空気によって加熱されて蒸発し、液相から気相へと変化する。当該空気は、ラジエータ100を通過して温度が上昇した後の空気である。空気は、チューブ230の外側を通過する際において熱を奪われるため、その温度を低下させる。 When the refrigerant passes through the inside of each tube 230 as described above, it is heated by the air passing through the outside of the tube 230 and evaporates, and changes from a liquid phase to a gas phase. The air is the air that has passed through the radiator 100 and the temperature has risen. Air loses heat as it passes outside the tube 230, thus lowering its temperature.
 積層方向に沿って互いに隣り合うチューブ230の間には、図1においては不図示のフィン140が配置されている。このフィン140は、先に述べたラジエータ100が備えるフィン140である。図3に示されるように、それぞれのフィン140は、ラジエータ100が備えるチューブ130の間から、蒸発器200が備えるチューブ230の間まで伸びるように配置されている。つまり、ラジエータ100と蒸発器200との間では、それぞれのフィン140が共有されている。 Fins 140 (not shown in FIG. 1) are arranged between the tubes 230 adjacent to each other along the stacking direction. The fin 140 is a fin 140 included in the radiator 100 described above. As shown in FIG. 3, each fin 140 is arranged so as to extend from between the tubes 130 included in the radiator 100 to between the tubes 230 included in the evaporator 200. That is, each fin 140 is shared between the radiator 100 and the evaporator 200.
 このため、蒸発器200では、図2を参照しながら説明したラジエータ100と同様に、フィン140とチューブ230とが、積層方向に沿って交互に並ぶように積層されている。波状に形成されたフィン140のそれぞれの頂部は、積層方向において隣り合うチューブ230の表面に当接しており、且つろう接されている。 Therefore, in the evaporator 200, the fins 140 and the tubes 230 are laminated so as to be alternately arranged along the stacking direction, similarly to the radiator 100 described with reference to FIG. The tops of the wavy fins 140 are in contact with and waxed against the surfaces of adjacent tubes 230 in the stacking direction.
 チューブ230の内側を冷媒が通っているときにおいては、空気の熱がチューブ230を介して冷媒に伝達されるほか、チューブ230及びフィン140を介しても冷媒に伝達される。つまり、空気との接触面積がフィン140によって大きくなっており、これにより空気と冷媒との熱交換が効率的に行われる。 When the refrigerant passes through the inside of the tube 230, the heat of the air is transferred to the refrigerant through the tube 230 and also to the refrigerant through the tube 230 and the fins 140. That is, the contact area with air is increased by the fins 140, whereby heat exchange between air and the refrigerant is efficiently performed.
 本実施形態では更に、チューブ130の内側を通る冷却水の熱が、フィン140を介した熱伝導によっても、チューブ230の内側を通る冷媒へと伝えられる。蒸発器200では、空気からの熱に加えて冷却水からの熱も回収されるので、空調装置の動作効率が更に高くなっている。 In the present embodiment, the heat of the cooling water passing through the inside of the tube 130 is further transferred to the refrigerant passing through the inside of the tube 230 by heat conduction through the fins 140. In the evaporator 200, the heat from the cooling water is recovered in addition to the heat from the air, so that the operating efficiency of the air conditioner is further improved.
 図1に示されるように、最も上方側に配置されたチューブ130、230の更に上方側となる位置には、板状の部材である補強プレート11が配置されている。また、最も下方側に配置されたチューブ130、230の更に下方側となる位置には、板状の部材である補強プレート12が配置されている。補強プレート11、12は、チューブ130等を補強してその変形を防止するために設けられた金属板である。 As shown in FIG. 1, a reinforcing plate 11 which is a plate-shaped member is arranged at a position on the uppermost side of the tubes 130 and 230 arranged on the uppermost side. Further, a reinforcing plate 12 which is a plate-shaped member is arranged at a position further below the tubes 130 and 230 arranged on the lowermost side. Reinforcing plates 11 and 12 are metal plates provided to reinforce the tube 130 and the like to prevent their deformation.
 図1においては、ラジエータ100から蒸発器200へと向かう方向、すなわち、これらを通るように空気が流れる方向がx方向となっており、同方向に沿ってx軸が設定されている。また、x方向に対して垂直な方向であって、タンク120からタンク110に向かう方向、すなわちチューブ130等の長手方向がy方向となっており、同方向に沿ってy軸が設定されている。更に、x方向及びy方向のいずれに対しても垂直な方向であって、下方側から上方側に向かう方向、すなわちタンク110等の長手方向がz方向となっており、同方向に沿ってz軸が設定されている。以降においては、上記のように定義されたx方向、y方向、及びz方向を用いて説明を行う。 In FIG. 1, the direction from the radiator 100 to the evaporator 200, that is, the direction in which air flows through these is the x direction, and the x axis is set along the same direction. Further, the direction perpendicular to the x direction, that is, the direction from the tank 120 to the tank 110, that is, the longitudinal direction of the tube 130 or the like is the y direction, and the y axis is set along the same direction. .. Further, the direction is perpendicular to both the x direction and the y direction, and the direction from the lower side to the upper side, that is, the longitudinal direction of the tank 110 or the like is the z direction, and z is along the same direction. The axis is set. Hereinafter, the description will be given using the x-direction, y-direction, and z-direction defined as described above.
 図3には、一つのフィン140と、その上下両側に配置されたチューブ130、230の断面とが示されている。同図に示されるように、チューブ130、230は、いずれもx方向に沿って伸びるような扁平形状の断面を有している。チューブ130の内部には冷却水の通る流路FP1が形成されている。流路FP1にはインナーフィンIF1が配置されている。同様に、チューブ230の内部には冷媒の通る流路FP2が形成されている。流路FP2にはインナーフィンIF2が配置されている。同じ高さとなる位置に配置されたチューブ130とチューブ230との間には隙間が形成されている。 FIG. 3 shows a cross section of one fin 140 and tubes 130 and 230 arranged on both upper and lower sides thereof. As shown in the figure, each of the tubes 130 and 230 has a flat cross section extending in the x direction. A flow path FP1 through which cooling water passes is formed inside the tube 130. An inner fin IF1 is arranged in the flow path FP1. Similarly, a flow path FP2 through which the refrigerant passes is formed inside the tube 230. An inner fin IF2 is arranged in the flow path FP2. A gap is formed between the tube 130 and the tube 230 arranged at the same height.
 図2及び図3に示されるように、フィン140には複数のルーバー141が形成されている。ルーバー141は、フィン140の一部を切り起こすことによって形成されたものである。具体的には、フィン140のうち平板状の部分に対し、z方向に沿って伸びる直線状の切り込みを、x方向に沿って並ぶように複数形成した上で、互いに隣り合う切り込みの間の部分を捩じることによってルーバー141が形成されている。ルーバー141の近傍に形成された隙間を空気が通過することで、空気との間における熱交換が更に効率的に行われる。尚、このようなルーバー141の形状としては、従来のフィンに形成されるルーバーと同様の形状を採用することができる。 As shown in FIGS. 2 and 3, a plurality of louvers 141 are formed on the fin 140. The louver 141 is formed by cutting up a part of the fins 140. Specifically, a plurality of linear notches extending along the z direction are formed on the flat plate-shaped portion of the fin 140 so as to be lined up along the x direction, and then the portion between the notches adjacent to each other. The louver 141 is formed by twisting. By passing the air through the gap formed in the vicinity of the louver 141, heat exchange with the air is performed more efficiently. As the shape of such a louver 141, the same shape as the louver formed on the conventional fin can be adopted.
 チューブ130の具体的な形状について、図4を参照しながら説明する。図4に示されるように、チューブ130は、一枚の金属板を曲げ加工した上で、その端部同士をろう接することにより形成された管状の部材である。既に述べたように、チューブ130は、x方向に沿って伸びるような扁平形状の断面を有している。当該断面において、チューブ130は、平板部131と、湾曲部132と、を有している。 The specific shape of the tube 130 will be described with reference to FIG. As shown in FIG. 4, the tube 130 is a tubular member formed by bending a single metal plate and then brazing the ends thereof. As already mentioned, the tube 130 has a flat cross section extending along the x direction. In the cross section, the tube 130 has a flat plate portion 131 and a curved portion 132.
 平板部131は平板状に形成された部分であって、その法線をz軸に沿わせた状態で配置されている。換言すれば、それぞれのチューブ130は、平板部131の法線方向が積層方向に沿うように配置されている。平板部131は2つ設けられており、これらが上下方向に対向するように配置されている。このような平板部131は、チューブ130のうち、互いに対向する一対の平板状に形成された部分、ということができる。 The flat plate portion 131 is a portion formed in a flat plate shape, and is arranged so that its normal line is along the z-axis. In other words, each tube 130 is arranged so that the normal direction of the flat plate portion 131 is along the stacking direction. Two flat plate portions 131 are provided, and these are arranged so as to face each other in the vertical direction. Such a flat plate portion 131 can be said to be a pair of flat plate-shaped portions of the tube 130 facing each other.
 湾曲部132は、上下に並ぶ平板部131の端部同士を繋ぐように湾曲している部分である。湾曲部132は、平板部131よりもx方向側の部分と、平板部131よりも-x方向側の部分と、に1つずつ設けられている。図4に示される点線DL1、DL2は、平板部131と湾曲部132との境界を示すものである。 The curved portion 132 is a portion that is curved so as to connect the ends of the vertically arranged flat plate portions 131. One curved portion 132 is provided on each of a portion on the x-direction side of the flat plate portion 131 and a portion on the −x direction side of the flat plate portion 131. The dotted lines DL1 and DL2 shown in FIG. 4 indicate the boundary between the flat plate portion 131 and the curved portion 132.
 本実施形態では、x方向側にある湾曲部132の形状と、-x方向側にある湾曲部132の形状とが、互いに同一とはなっていない。このような態様に替えて、それぞれの湾曲部132の形状が互いに同一となっており、y-z平面を挟んで対称となるように配置された態様であってもよい。具体的には、例えば、x方向に沿った両側にある湾曲部132の形状が、いずれも、本実施形態のx方向側にある湾曲部132と同様に円弧状に湾曲しており、本実施形態の-x方向側のような加締め部分を有していない構成であってもよい。このようなチューブ130は、例えば、押出成形によって全体を一体に形成することとしてもよい。 In the present embodiment, the shape of the curved portion 132 on the x-direction side and the shape of the curved portion 132 on the −x direction side are not the same as each other. Instead of such an embodiment, the shapes of the curved portions 132 may be the same as each other and may be arranged so as to be symmetrical with respect to the yz plane. Specifically, for example, the shapes of the curved portions 132 on both sides along the x direction are curved in an arc shape like the curved portions 132 on the x direction side of the present embodiment. The configuration may not have a crimping portion such as the −x direction side of the form. Such a tube 130 may be integrally formed as a whole by, for example, extrusion molding.
 尚、チューブ230の形状は、以上のようなチューブ130の形状と概ね同一であるから、その具体的な図示については省略する。チューブ230のうち平板部131に対応する部分のことを、以下では「平板部231」とも称する。同様に、チューブ230のうち湾曲部132に対応する部分のことを、以下では「湾曲部232」とも称する。 Since the shape of the tube 230 is almost the same as the shape of the tube 130 as described above, the specific illustration thereof will be omitted. The portion of the tube 230 corresponding to the flat plate portion 131 is also hereinafter referred to as “flat plate portion 231”. Similarly, the portion of the tube 230 corresponding to the curved portion 132 is also hereinafter referred to as “curved portion 232”.
 図4の下方側部分に示されるグラフは、チューブ130において熱膨張が生じた際に、チューブ130とプレート部材300との接合部分において生じる歪みの大きさを模式的に示すものである。上記の「接合部分」とは、チューブ130のうち、挿通穴301の縁に対して接合されている部分のことである。 The graph shown in the lower portion of FIG. 4 schematically shows the magnitude of strain generated at the joint portion between the tube 130 and the plate member 300 when thermal expansion occurs in the tube 130. The above-mentioned "joint portion" is a portion of the tube 130 that is joined to the edge of the insertion hole 301.
 上記のような歪みは、プレート部材300に対するろう接により拘束された状態のチューブ130が、熱媒体の温度によって膨張又は収縮した際に生じるものである。例えば、チューブ130の内部を高温の冷却水が通り、且つ、チューブ230の内側を低温の冷媒が通っているときには、チューブ130とチューブ230との熱膨張差に伴ってプレート部材300が変形し、当該変形に伴って、チューブ130とプレート部材300との接合部分において歪みが生じる。また、冷却水の温度が、複数のチューブ130のそれぞれにおいて異なっている場合にも、チューブ130毎の熱膨張差に伴う歪みが生じる。同様の歪みは、チューブ130のみならずチューブ230の接合部分においても生じ得る。 The strain as described above occurs when the tube 130 in a state of being restrained by brazing with respect to the plate member 300 expands or contracts due to the temperature of the heat medium. For example, when high-temperature cooling water passes through the inside of the tube 130 and low-temperature refrigerant passes through the inside of the tube 230, the plate member 300 is deformed due to the difference in thermal expansion between the tube 130 and the tube 230. Along with the deformation, distortion occurs at the joint portion between the tube 130 and the plate member 300. Further, even when the temperature of the cooling water is different in each of the plurality of tubes 130, distortion due to the difference in thermal expansion of each tube 130 occurs. Similar strain can occur not only at the tube 130 but also at the junction of the tube 230.
 図4に示されるように、接合部分で生じる歪みは、点線DL1、DL2で示される境界の位置において最も大きくなる傾向がある。これは、湾曲部132においてはチューブ130の剛性が大きくなっていることに伴って、熱膨張等が生じた際の応力が湾曲部132に集中しやすいためと考えられる。このため、歪みに伴うチューブ130の破損は、上記の境界、もしくはそれよりも湾曲部132側となる部分において特に生じやすい傾向がある。チューブ230についても同様である。 As shown in FIG. 4, the distortion generated at the joint portion tends to be the largest at the position of the boundary indicated by the dotted lines DL1 and DL2. It is considered that this is because the stress at the time of thermal expansion or the like tends to be concentrated on the curved portion 132 as the rigidity of the tube 130 increases in the curved portion 132. For this reason, damage to the tube 130 due to distortion tends to occur particularly easily at the above boundary or a portion closer to the curved portion 132. The same applies to the tube 230.
 そこで、本実施形態に係る熱交換器10では、プレート部材300の形状を工夫することによって上記の歪みを低減し、チューブ130、230の破損を防止し得るように構成されている。 Therefore, the heat exchanger 10 according to the present embodiment is configured to reduce the above-mentioned distortion and prevent damage to the tubes 130 and 230 by devising the shape of the plate member 300.
 図5を参照しながら、プレート部材300の形状について説明する。図5は、タンク110及びタンク210が有するプレート部材300及びその近傍の構成を示す断面図である。図5においては容器部材400の図示が省略されている。尚、タンク120及びタンク220が有するプレート部材300の形状は、図5に示されるプレート部材300の形状と同じであるから、その説明は省略する。 The shape of the plate member 300 will be described with reference to FIG. FIG. 5 is a cross-sectional view showing the configuration of the plate member 300 included in the tank 110 and the tank 210 and its vicinity. In FIG. 5, the container member 400 is not shown. Since the shapes of the plate members 300 included in the tank 120 and the tank 220 are the same as the shapes of the plate members 300 shown in FIG. 5, the description thereof will be omitted.
 図5に示されるように、プレート部材300は、第1部分310と、第2部分320と、第3部分330と、第4部分340と、第5部分350と、を有している。 As shown in FIG. 5, the plate member 300 has a first portion 310, a second portion 320, a third portion 330, a fourth portion 340, and a fifth portion 350.
 第1部分310は概ね平板状に形成された部分であって、その法線方向はチューブ130等の長手方向、すなわちy方向に沿っている。第1部分310は、x軸に沿った中央となる位置を挟んで、プレート部材300の両側にそれぞれ1つずつ形成されている。中央よりも-x方向側となる位置に形成された方の第1部分310は、チューブ130を挿通するための挿通穴301が複数形成されている部分である。中央よりもx方向側となる位置に形成された方の第1部分310は、チューブ230を挿通するための挿通穴301が複数形成されている部分である。 The first portion 310 is a portion formed in a substantially flat plate shape, and its normal direction is along the longitudinal direction of the tube 130 or the like, that is, the y direction. The first portion 310 is formed on each side of the plate member 300 with a central position along the x-axis. The first portion 310 formed at a position closer to the −x direction than the center is a portion in which a plurality of insertion holes 301 for inserting the tube 130 are formed. The first portion 310 formed at a position on the x-direction side of the center is a portion in which a plurality of insertion holes 301 for inserting the tube 230 are formed.
 尚、第1部分310は、上記のように概ね平板状に形成されているのであるが、完全な平板状でなくてもよい。例えば、挿通穴301の近傍部分にバーリング加工が施されており、当該部分が局所的にy方向側、もしくは-y方向側に突出していてもよい Although the first portion 310 is formed in a substantially flat plate shape as described above, it does not have to be a perfect flat plate shape. For example, a burring process may be applied to a portion near the insertion hole 301, and the portion may locally project to the y-direction side or the −y-direction side.
 第2部分320は、空気の流れる方向に沿った第1部分310の端部から、容器部材400側、すなわちy方向側に向かって伸びるように形成された部分である。第2部分320は、第1部分310のx方向側と、-x方向側との両方に設けられている。図5においては、第1部分310と第2部分320との間の境界が点線DL11、DL12によって示されている。尚、挿通穴301は、その大部分が第1部分310に形成されているのであるが、その一部は第2部分320にも重なっている。 The second portion 320 is a portion formed so as to extend from the end of the first portion 310 along the direction of air flow toward the container member 400 side, that is, the y direction side. The second portion 320 is provided on both the x-direction side and the −x-direction side of the first portion 310. In FIG. 5, the boundary between the first portion 310 and the second portion 320 is indicated by the dotted lines DL11 and DL12. Most of the insertion hole 301 is formed in the first portion 310, but a part of the insertion hole 301 also overlaps with the second portion 320.
 第1部分310のx方向側に設けられた第2部分320は、x方向側に行くほどy方向側に近づくよう傾斜した部分として設けられている。第1部分310の-x方向側に設けられた第2部分320は、-x方向側に行くほどy方向側に近づくよう傾斜した部分として設けられている。 The second portion 320 provided on the x-direction side of the first portion 310 is provided as an inclined portion so as to approach the y-direction side toward the x-direction side. The second portion 320 provided on the −x direction side of the first portion 310 is provided as a portion inclined so as to approach the y direction side toward the −x direction side.
 第3部分330は、全部で4つある第2部分320のうち、プレート部材300の中央側に設けられている一対の第2部分320のそれぞれから、y方向側に伸びるように形成された部分である。第3部分330は、上記一対の第2部分320のうち、第1部分310とは反対側の端部から、第1部分310の法線方向に沿って直線状に伸びるように形成されている。このように形成された一対の第3部分330は、いずれも平板状となっている。第3部分330の内面側に形成された平坦な面は、容器部材400を当接させて接合するための面となっている。図5においては、第2部分320と第3部分330との間の境界が点線DL13によって示されている。 The third portion 330 is a portion formed so as to extend in the y direction from each of the pair of second portions 320 provided on the central side of the plate member 300 among the four second portions 320 in total. Is. The third portion 330 is formed so as to extend linearly along the normal direction of the first portion 310 from the end portion of the pair of second portions 320 opposite to the first portion 310. .. Each of the pair of third portions 330 formed in this way has a flat plate shape. The flat surface formed on the inner surface side of the third portion 330 is a surface for abutting and joining the container member 400. In FIG. 5, the boundary between the second portion 320 and the third portion 330 is indicated by the dotted line DL13.
 第4部分340は、それぞれの第3部分330のうち、第2部分320とは反対側の端部同士を繋ぐように湾曲している部分である。つまり、一対の第3部分330の、y方向側の端部同士を第4部分340が繋いでいる。プレート部材300は、第4部分340において円弧状に折り曲げられている。図5においては、第3部分330と第4部分340との間の境界が点線DL14によって示されている。 The fourth part 340 is a portion of each third part 330 that is curved so as to connect the ends opposite to the second part 320. That is, the fourth portion 340 connects the ends of the pair of third portions 330 on the y-direction side. The plate member 300 is bent in an arc shape at the fourth portion 340. In FIG. 5, the boundary between the third portion 330 and the fourth portion 340 is indicated by the dotted line DL14.
 図5に示されるように、一対の第3部分330とその間にある第4部分340は、ラジエータ100が備えるプレート部材300と、蒸発器200が備えるプレート部材300との間を接続し、それぞれのプレート部材300を一体化するものとして機能している。このため、一対の第3部分330とその間にある第4部分340のことを、以下では「接続部360」とも称する。 As shown in FIG. 5, the pair of third portions 330 and the fourth portion 340 between them connect between the plate member 300 included in the radiator 100 and the plate member 300 included in the evaporator 200, respectively. It functions as an integral part of the plate member 300. Therefore, the pair of the third portion 330 and the fourth portion 340 between them are also referred to as "connection portion 360" below.
 複合型の熱交換器として構成された熱交換器10においては、タンク110、タンク120、チューブ130、及びフィン140により構成されたラジエータ100が「第1熱交換部」に該当し、第1熱交換部を通る冷却水が「第1熱媒体」に該当する。また、タンク210、タンク220、チューブ230、及びフィン140により構成された蒸発器200が「第2熱交換部」に該当し、第2熱交換部を通る冷媒が「第2熱媒体」に該当する。熱交換器10では、第1熱交換部と第2熱交換部とが空気の流れる方向に沿って並ぶように配置されており、第1熱交換部が備えるプレート部材300と、第2熱交換部が備えるプレート部材300とが、上記の接続部360を介して一体となるように接続されている。 In the heat exchanger 10 configured as a composite heat exchanger, the radiator 100 composed of the tank 110, the tank 120, the tube 130, and the fins 140 corresponds to the "first heat exchanger" and is the first heat. The cooling water passing through the exchange section corresponds to the "first heat medium". Further, the evaporator 200 composed of the tank 210, the tank 220, the tube 230, and the fins 140 corresponds to the "second heat exchange section", and the refrigerant passing through the second heat exchange section corresponds to the "second heat exchange section". do. In the heat exchanger 10, the first heat exchange section and the second heat exchange section are arranged so as to line up along the direction of air flow, and the plate member 300 included in the first heat exchange section and the second heat exchange section are arranged. The plate member 300 provided in the portion is connected so as to be integrated via the connection portion 360 described above.
 尚、本実施形態の接続部360は、z方向に沿ったその全体において第4部分340が連続的に形成されている。このような態様に替えて、z方向に沿った一箇所又は複数個所において、第4部分340が途切れているような態様としてもよい。 In the connection portion 360 of the present embodiment, the fourth portion 340 is continuously formed in the entire connection portion 360 along the z direction. Instead of such an embodiment, the fourth portion 340 may be interrupted at one or a plurality of locations along the z direction.
 第5部分350は、全部で4つある第2部分320のうち、x軸に沿った外側となる位置にある一対の第2部分320のそれぞれから、y方向側に伸びるように形成された部分である。第5部分350は、上記一対の第2部分320のうち、第1部分310とは反対側の端部から、第1部分310の法線方向に沿って直線状に伸びるように形成されている。 The fifth portion 350 is a portion formed so as to extend in the y direction from each of the pair of second portions 320 located on the outer side along the x-axis of the four second portions 320 in total. Is. The fifth portion 350 is formed so as to extend linearly along the normal direction of the first portion 310 from the end portion of the pair of second portions 320 opposite to the first portion 310. ..
 それぞれの第5部分350は、空気の流れる方向に沿って第3部分330と対向するように配置されている。第5部分350の内面側に形成された平坦な面は、容器部材400を当接させて接合するための面となっている。このような第5部分350は、空気の流れる方向に沿って第3部分330と対向するように配置され、第3部分330と共に容器部材400に対して接合されるよう、第1部分310の法線方向に沿って伸びるように形成された部分、ともいうことができる。図5においては、第2部分320と第5部分350との間の境界が点線DL15によって示されている。 Each fifth portion 350 is arranged so as to face the third portion 330 along the direction of air flow. The flat surface formed on the inner surface side of the fifth portion 350 is a surface for abutting and joining the container member 400. Such a fifth portion 350 is arranged so as to face the third portion 330 along the direction of air flow and is joined to the container member 400 together with the third portion 330 by the method of the first portion 310. It can also be said to be a portion formed so as to extend along the linear direction. In FIG. 5, the boundary between the second portion 320 and the fifth portion 350 is indicated by the dotted line DL15.
 図5においては、プレート部材300の挿通穴301に挿通されているチューブ130も併せて図示されている。点線DL21及び点線DL22は、それぞれ図4の点線DL1及び点線DL2と同様に、平板部131と湾曲部132との境界や、平板部231と湾曲部232との境界を示すものである。 In FIG. 5, the tube 130 inserted into the insertion hole 301 of the plate member 300 is also shown. The dotted line DL21 and the dotted line DL22, like the dotted line DL1 and the dotted line DL2 in FIG. 4, indicate the boundary between the flat plate portion 131 and the curved portion 132 and the boundary between the flat plate portion 231 and the curved portion 232, respectively.
 図5のように、積層方向すなわちz方向に沿ってラジエータ100を見た場合においては、第1部分310と第2部分320との境界(DL11、DL12)が、チューブ130のうち、平板部131と湾曲部132との境界(DL21、DL22)、よりも平板部131側となる位置に配置されている。同様に、積層方向すなわちz方向に沿って見た場合に沿って蒸発器200を見た場合においては、第1部分310と第2部分320との境界(DL11、DL12)が、チューブ230のうち、平板部231と湾曲部232との境界(DL21、DL22)、よりも平板部231側となる位置に配置されている。 As shown in FIG. 5, when the radiator 100 is viewed along the stacking direction, that is, the z direction, the boundary (DL11, DL12) between the first portion 310 and the second portion 320 is the flat plate portion 131 of the tube 130. It is arranged at a position closer to the flat plate portion 131 than the boundary (DL21, DL22) between the curved portion 132 and the curved portion 132. Similarly, when the evaporator 200 is viewed along the stacking direction, that is, the z-direction, the boundary (DL11, DL12) between the first portion 310 and the second portion 320 is the tube 230. , It is arranged at a position closer to the flat plate portion 231 than the boundary (DL21, DL22) between the flat plate portion 231 and the curved portion 232.
 本発明者らが行った実験等によれば、図5のように積層方向に沿って見た場合において、プレート部材300のうち第1部分310と第2部分320との境界が、チューブ130のうち平板部131と湾曲部132との境界、もしくはそれよりも湾曲部132側に配置されているような構成においては、熱膨張時もしくは収縮時におけるチューブ130の歪みが比較的大きくなりやすいという知見が得られている。同様に、第1部分310と第2部分320との境界が、チューブ230のうち平板部231と湾曲部232との境界、もしくはそれよりも湾曲部232側に配置されているような構成においては、熱膨張時もしくは収縮時におけるチューブ230の歪みが比較的大きくなりやすいという知見が得られている。 According to the experiments conducted by the present inventors, the boundary between the first portion 310 and the second portion 320 of the plate member 300 is the tube 130 when viewed along the stacking direction as shown in FIG. It was found that the strain of the tube 130 at the time of thermal expansion or contraction tends to be relatively large in the configuration where the flat plate portion 131 and the curved portion 132 are arranged at the boundary or on the curved portion 132 side of the boundary. Has been obtained. Similarly, in a configuration in which the boundary between the first portion 310 and the second portion 320 is arranged on the boundary between the flat plate portion 231 and the curved portion 232 of the tube 230, or on the curved portion 232 side thereof. It has been found that the strain of the tube 230 tends to be relatively large during thermal expansion or contraction.
 これは、プレート部材300のうち第1部分310と第2部分320との境界が、チューブ130等の熱膨張時等におけるプレート部材300の変形の起点となり、当該変形に伴う歪みが、チューブ130の湾曲部132やチューブ230の湾曲部232に集中してしまうためと考えられる。 This is because the boundary between the first portion 310 and the second portion 320 of the plate member 300 becomes the starting point of the deformation of the plate member 300 at the time of thermal expansion of the tube 130 or the like, and the strain due to the deformation is the strain of the tube 130. It is considered that this is because it concentrates on the curved portion 132 and the curved portion 232 of the tube 230.
 これに対し、本実施形態に係る熱交換器10のラジエータ100では、積層方向に沿って見た場合において、プレート部材300のうち第1部分310と第2部分320との境界が、チューブ130のうち平板部131と湾曲部132との境界、よりも平板部131側となる位置に配置された構成としている。同様に、蒸発器200では、プレート部材300のうち第1部分310と第2部分320との境界が、チューブ230のうち平板部231と湾曲部232との境界、よりも平板部231側となる位置に配置された構成としている。 On the other hand, in the radiator 100 of the heat exchanger 10 according to the present embodiment, when viewed along the stacking direction, the boundary between the first portion 310 and the second portion 320 of the plate member 300 is the tube 130. Of these, the configuration is such that the flat plate portion 131 and the curved portion 132 are arranged at a position closer to the flat plate portion 131 than the boundary. Similarly, in the evaporator 200, the boundary between the first portion 310 and the second portion 320 of the plate member 300 is closer to the flat plate portion 231 than the boundary between the flat plate portion 231 and the curved portion 232 of the tube 230. It is configured to be placed at a position.
 このような構成においては、第1部分310と第2部分320との境界を起点として生じるプレート部材300の変形を、湾曲部132、232ではなく平板部131、231で受けることとなる。これにより、歪みが接合部分の広い範囲に拡散されるので、チューブ130、230で生じる歪みの最大値を従来よりも低減することが可能となっている。上記の「歪みの最大値」とは、図4の下のグラフで示される歪みのピーク値のことである。 In such a configuration, the plate member 300 is deformed starting from the boundary between the first portion 310 and the second portion 320 at the flat plate portions 131 and 231 instead of the curved portions 132 and 232. As a result, the strain is diffused over a wide range of the joint portion, so that the maximum value of the strain generated in the tubes 130 and 230 can be reduced as compared with the conventional case. The above-mentioned "maximum value of distortion" is the peak value of distortion shown in the graph at the bottom of FIG.
 本実施形態では、互いに隣り合う一対の第3部分330の間の隙間が概ね0となるように、接続部360が形成されている。これにより、ラジエータ100と蒸発器200との間が近接しており、x方向に沿ったフィン140の長さが比較的短くなっている。その結果、フィン140を介した冷却水と冷媒との間の熱伝導が効率よく行われるのであるが、その背反として、チューブ130、230の熱膨張等に伴う歪みは、フィン140が長い場合に比べると大きくなってしまう。 In the present embodiment, the connecting portion 360 is formed so that the gap between the pair of third portions 330 adjacent to each other is substantially zero. As a result, the radiator 100 and the evaporator 200 are in close proximity to each other, and the length of the fins 140 along the x direction is relatively short. As a result, heat conduction between the cooling water and the refrigerant via the fins 140 is efficiently performed, but on the contrary, the strain due to thermal expansion of the tubes 130 and 230 is caused when the fins 140 are long. It will be bigger than that.
 しかしながら、本実施形態では、上記のようにプレート部材300の形状の工夫によって接合部分の歪みが抑制される。このため、熱伝導を考慮してフィン140を短くした構成においても、歪に伴うチューブ130等の破損を防止することができる。 However, in the present embodiment, the distortion of the joint portion is suppressed by devising the shape of the plate member 300 as described above. Therefore, even in a configuration in which the fins 140 are shortened in consideration of heat conduction, it is possible to prevent the tube 130 and the like from being damaged due to strain.
 ところで、チューブ130、230の熱膨張等が生じた場合におけるプレート部材300の変形は、先に述べたように、第1部分310と第2部分320との境界を起点として生じる。例えば、図5において点線DL11で示される境界を起点として、第2部分320がx方向側もしくは-方向側へと傾く方向に、プレート部材300が変形しようとする。本実施形態では、当該変形の大部分が第2部分320によって吸収され、接合部分への影響が低減されるように、第2部分320の形状が工夫されている。 By the way, the deformation of the plate member 300 when the tubes 130 and 230 are thermally expanded or the like occurs from the boundary between the first portion 310 and the second portion 320 as described above. For example, the plate member 300 tends to be deformed in the direction in which the second portion 320 is inclined toward the x-direction side or the-direction side, starting from the boundary indicated by the dotted line DL11 in FIG. In the present embodiment, the shape of the second portion 320 is devised so that most of the deformation is absorbed by the second portion 320 and the influence on the joint portion is reduced.
 図5に示されるように、それぞれの第2部分320は、タンク110等の外側に向かって凸となるように、その全体が概ね円弧状に湾曲した形状となっている。ただし、符号「320」が付されている部分においては、第2部分320は局所的にタンク110等の内側に向けて突出している。このように、局所的にタンク110等の内側に向けて突出している部分のことを、以下では「屈曲部321」とも称する。屈曲部321は、4つの第2部分320のそれぞれに1つずつ形成されている。屈曲部321が形成されている位置は、第2部分320のうち、チューブ130等の接合部分とは重ならない位置である。具体的には、チューブ130の先端よりも更に容器部材400側となる位置である。 As shown in FIG. 5, each second portion 320 has a shape that is substantially arcuately curved so as to be convex toward the outside of the tank 110 or the like. However, in the portion with the reference numeral "320", the second portion 320 locally protrudes toward the inside of the tank 110 or the like. Such a portion locally protruding inward of the tank 110 or the like is also referred to as a "bent portion 321" below. One bent portion 321 is formed in each of the four second portions 320. The position where the bent portion 321 is formed is a position in the second portion 320 that does not overlap with the joint portion such as the tube 130. Specifically, it is a position closer to the container member 400 than the tip of the tube 130.
 このような屈曲部321が形成されているので、第2部分320には、歪みを吸収する「板ばね」としての機能が付与される。屈曲部321を含む全体において第2部分320が変形しやすくなっているので、チューブ130、230の熱膨張等に起因した歪みが、チューブ130、230との接合部分に集中してしまうことが防止される。その結果、歪みの最大値がより低減される。このように、本実施形態では、第2部分320に、タンク110等の内側に向けて突出するように屈曲部321が形成されている構成とすることで、歪みを更に低減している。 Since such a bent portion 321 is formed, the second portion 320 is provided with a function as a "leaf spring" that absorbs strain. Since the second portion 320 is easily deformed in the whole including the bent portion 321, it is possible to prevent the strain caused by the thermal expansion of the tubes 130 and 230 from being concentrated on the joint portion with the tubes 130 and 230. Will be done. As a result, the maximum value of distortion is further reduced. As described above, in the present embodiment, the distortion is further reduced by forming the bent portion 321 so as to project inward of the tank 110 or the like in the second portion 320.
 屈曲部321の曲率半径は、第4部分340の曲率半径よりも大きい方が好ましい。尚、この場合における「曲率半径」とは、図5のような断面において、円弧状に突出している方の表面における曲率半径のことである。 The radius of curvature of the bent portion 321 is preferably larger than the radius of curvature of the fourth portion 340. The "radius of curvature" in this case is the radius of curvature on the surface of the one protruding in an arc shape in the cross section as shown in FIG.
 本実施形態では、第3部分330及び第5部分350のそれぞれの内面が、容器部材400を当接させてろう接するための面となっている。図5に示されるように、第3部分330の内面のy方向に沿った長さを「L1」とし、第5部分350の内面のy方向に沿った長さを「L2」とした場合においては、L1<L2となるように、各部の寸法が設定されている。尚、上記における「y方向に沿った長さ」とは、第1部分310の法線方向に沿った長さに該当する。 In the present embodiment, the inner surfaces of the third portion 330 and the fifth portion 350 are surfaces for abutting and brazing the container member 400. As shown in FIG. 5, when the length of the inner surface of the third portion 330 along the y direction is "L1" and the length of the inner surface of the fifth portion 350 along the y direction is "L2". The dimensions of each part are set so that L1 <L2. The "length along the y direction" in the above corresponds to the length along the normal direction of the first portion 310.
 プレート部材300は、その構造上、接続部360が形成されている中央部付近の剛性が比較的高くなっている一方で、第5部分350が形成されている端部近傍の剛性が比較的低くなっている。そこで、本実施形態では上記のようにL1<L2とし、第5部分350における接合面積を、第3部分330における接合面積よりも大きくしている。これにより、第5部分350が形成されている端部近傍の剛性が高められるので、プレート部材300の各部の剛性のバランスを均等に近づけることができる。その結果として、プレート部材300で生じる歪みの最大値を更に低減することができる。 Due to its structure, the plate member 300 has a relatively high rigidity near the central portion where the connecting portion 360 is formed, while the rigidity near the end portion where the fifth portion 350 is formed is relatively low. It has become. Therefore, in the present embodiment, L1 <L2 is set as described above, and the joint area in the fifth portion 350 is made larger than the joint area in the third portion 330. As a result, the rigidity in the vicinity of the end portion where the fifth portion 350 is formed is increased, so that the balance of the rigidity of each portion of the plate member 300 can be evenly approached. As a result, the maximum value of distortion generated in the plate member 300 can be further reduced.
 このように、本実施形態では、第1部分310の法線方向に沿った第5部分350の長さを、同方向に沿った第3部分330の長さよりも長くすることで、歪の最大値を低減する構成となっている。尚、第1部分310の法線方向に沿った第3部分330の長さ(L1)は、0.8mm以上確保しておくことが好ましい。 As described above, in the present embodiment, the length of the fifth portion 350 along the normal direction of the first portion 310 is made longer than the length of the third portion 330 along the same direction, thereby maximizing the distortion. It is configured to reduce the value. The length (L1) of the third portion 330 along the normal direction of the first portion 310 is preferably 0.8 mm or more.
 また、第3部分330及び第5部分350は、いずれも、その全体がチューブ130,230の先端よりも容器部材400側に配置されている構成とした方が好ましい。つまり、第3部分330及び第5部分350は、両者の間にチューブ130,230を挟まないような位置に配置されることが好ましい。 Further, it is preferable that the third portion 330 and the fifth portion 350 are all arranged closer to the container member 400 than the tips of the tubes 130 and 230. That is, it is preferable that the third portion 330 and the fifth portion 350 are arranged at positions so that the tubes 130 and 230 are not sandwiched between them.
 以上の説明においては、熱交換器10が、ラジエータ100と蒸発器200とを組み合わせた複合型の熱交換器として構成されている場合の例について説明した。しかしながら、以上に説明したような歪みを低減するための工夫は、複合型ではない単体の熱交換器に対しても適用することができる。例えば、ラジエータ100のみからなる単体の熱交換器10とした場合には、図5に示されるプレート部材300のうち、-x方向側にある第1部分310、第2部分320、第3部分330、及び第5部分350のみを有するような形状となるように、プレート部材300を構成すればよい。 In the above description, an example in which the heat exchanger 10 is configured as a composite heat exchanger in which the radiator 100 and the evaporator 200 are combined has been described. However, the device for reducing distortion as described above can also be applied to a single heat exchanger that is not a composite type. For example, in the case of a single heat exchanger 10 composed of only the radiator 100, among the plate members 300 shown in FIG. 5, the first portion 310, the second portion 320, and the third portion 330 on the −x direction side. , And the plate member 300 may be configured so as to have only the fifth portion 350.
 以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。 The present embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Those skilled in the art with appropriate design changes to these specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the above-mentioned specific examples, its arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. The combinations of the elements included in each of the above-mentioned specific examples can be appropriately changed as long as there is no technical contradiction.

Claims (7)

  1.  熱媒体と空気との間で熱交換を行う熱交換器(10)であって、
     内部を熱媒体が通る管状の部材であって、積層方向に沿って並ぶように配置された複数のチューブ(130,230)と、
     それぞれの前記チューブが接続されたタンク(110,210,120,220)と、を備え、
     前記チューブは、互いに対向する一対の平板状に形成された平板部(131,231)と、それぞれの前記平板部の端部同士を繋ぐように湾曲している湾曲部(132,232)と、を有し、前記平板部の法線方向が前記積層方向に沿うように配置されたものであり、
     前記タンクは、前記チューブを挿通するための挿通穴(301)が複数形成された板状のプレート部材(300)と、前記熱媒体を貯えるための空間が内側に形成された容器部材(400)と、を有するものであり、
     前記プレート部材は、
     その法線方向が前記チューブの長手方向に沿っている第1部分(310)と、
     空気の流れる方向に沿った前記第1部分の端部から、前記容器部材に向かって伸びている第2部分(320)と、を有しており、
     前記積層方向に沿って見た場合においては、
     前記第1部分と前記第2部分との境界が、前記チューブのうち、前記平板部と前記湾曲部との境界、よりも前記平板部側となる位置に配置されている熱交換器。
    A heat exchanger (10) that exchanges heat between a heat medium and air.
    A tubular member through which a heat medium passes, and a plurality of tubes (130, 230) arranged so as to be arranged along the stacking direction.
    A tank (110, 210, 120, 220) to which each of the tubes is connected is provided.
    The tube includes a pair of flat plate portions (131, 231) that face each other, and curved portions (132, 232) that are curved so as to connect the ends of the respective flat plate portions. Is arranged so that the normal direction of the flat plate portion is along the stacking direction.
    The tank has a plate-shaped plate member (300) in which a plurality of insertion holes (301) for inserting the tube are formed, and a container member (400) in which a space for storing the heat medium is formed inside. And have
    The plate member
    The first portion (310) whose normal direction is along the longitudinal direction of the tube, and
    It has a second portion (320) extending from the end of the first portion along the direction of air flow toward the container member.
    When viewed along the stacking direction,
    A heat exchanger in which the boundary between the first portion and the second portion is located on the flat plate portion side of the tube so as to be closer to the flat plate portion than the boundary between the flat plate portion and the curved portion.
  2.  複数の前記チューブ及び前記タンクにより構成され、第1熱媒体と空気との間で熱交換を行う部分である第1熱交換部(100)と、
     複数の前記チューブ及び前記タンクにより構成され、第2熱媒体と空気との間で熱交換を行う部分である第2熱交換部(200)とが、空気の流れる方向に沿って並ぶように配置されており、
     前記第1熱交換部が備える前記プレート部材と、前記第2熱交換部が備える前記プレート部材とが、接続部(360)を介して一体となるように接続されている、請求項1に記載の熱交換器。
    A first heat exchange unit (100), which is composed of a plurality of the tubes and the tank and is a portion for heat exchange between the first heat medium and air,
    The second heat exchange section (200), which is composed of the plurality of tubes and the tank and is a portion for heat exchange between the second heat medium and air, is arranged so as to be lined up along the direction of air flow. Has been
    The first aspect of the present invention, wherein the plate member included in the first heat exchange section and the plate member included in the second heat exchange section are integrally connected via a connecting portion (360). Heat exchanger.
  3.  前記接続部は、
     互いに隣り合う一対の前記第2部分のうち、前記第1部分とは反対側の端部から、前記第1部分の法線方向に沿って伸びるように形成された一対の第3部分(330)と、
     それぞれの前記第3部分のうち、前記第2部分とは反対側の端部同士を繋ぐように湾曲している第4部分(340)と、を有している、請求項2に記載の熱交換器。
    The connection part
    A pair of third portions (330) formed so as to extend along the normal direction of the first portion from an end portion of the pair of adjacent second portions adjacent to each other on the side opposite to the first portion. When,
    The heat according to claim 2, further comprising a fourth portion (340) of each of the third portions, which is curved so as to connect the ends opposite to the second portion. Exchanger.
  4.  前記第1部分の法線方向に沿った前記第3部分の長さが、0.8mm以上である、請求項3に記載の熱交換器。 The heat exchanger according to claim 3, wherein the length of the third portion along the normal direction of the first portion is 0.8 mm or more.
  5.  それぞれの前記プレート部材には、
     空気の流れる方向に沿って前記第3部分と対向するように配置され、前記第3部分と共に前記容器部材に対して接合されるよう、前記第1部分の法線方向に沿って伸びるように形成された第5部分(350)、が更に形成されている、請求項3又は4に記載の熱交換器。
    For each of the plate members,
    It is arranged so as to face the third portion along the direction of air flow, and is formed so as to extend along the normal direction of the first portion so as to be joined to the container member together with the third portion. The heat exchanger according to claim 3 or 4, wherein the fifth portion (350) is further formed.
  6.  前記第1部分の法線方向に沿った前記第5部分の長さが、同方向に沿った前記第3部分の長さよりも長い、請求項5に記載の熱交換器。 The heat exchanger according to claim 5, wherein the length of the fifth portion along the normal direction of the first portion is longer than the length of the third portion along the same direction.
  7.  前記第2部分には、前記タンクの内側に向けて突出するように屈曲部(321)が形成されている、請求項1乃至6のいずれか1項に記載の熱交換器。 The heat exchanger according to any one of claims 1 to 6, wherein a bent portion (321) is formed in the second portion so as to project toward the inside of the tank.
PCT/JP2021/003457 2020-02-14 2021-02-01 Heat exchanger WO2021161825A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
DE112021001022.0T DE112021001022T5 (en) 2020-02-14 2021-02-01 heat exchanger
CN202180014092.7A CN115103994A (en) 2020-02-14 2021-02-01 Heat exchanger
US17/884,210 US20220381514A1 (en) 2020-02-14 2022-08-09 Heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-023492 2020-02-14
JP2020023492A JP2021127868A (en) 2020-02-14 2020-02-14 Heat exchanger

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/884,210 Continuation US20220381514A1 (en) 2020-02-14 2022-08-09 Heat exchanger

Publications (1)

Publication Number Publication Date
WO2021161825A1 true WO2021161825A1 (en) 2021-08-19

Family

ID=77293012

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003457 WO2021161825A1 (en) 2020-02-14 2021-02-01 Heat exchanger

Country Status (5)

Country Link
US (1) US20220381514A1 (en)
JP (1) JP2021127868A (en)
CN (1) CN115103994A (en)
DE (1) DE112021001022T5 (en)
WO (1) WO2021161825A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176895A (en) * 1996-12-16 1998-06-30 Zexel Corp Heat exchanger
KR20080075983A (en) * 2007-02-14 2008-08-20 한라공조주식회사 Evaporator
JP2011064379A (en) * 2009-09-16 2011-03-31 Showa Denko Kk Heat exchanger
JP2011089729A (en) * 2009-10-23 2011-05-06 Denso Corp Duplex heat exchanger
JP2012037132A (en) * 2010-08-06 2012-02-23 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2012102928A (en) * 2010-11-09 2012-05-31 Mitsubishi Heavy Ind Ltd Heat exchanger, and vehicle air conditioner including the same
US20180029446A1 (en) * 2015-03-19 2018-02-01 Hanon Systems Vehicle heat exchanger
JP2019105380A (en) * 2017-12-08 2019-06-27 株式会社デンソー Heat exchanger

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3674120B2 (en) 1995-11-29 2005-07-20 株式会社デンソー Heat exchanger
US6230793B1 (en) * 1997-02-06 2001-05-15 Calsonic Kansei Corporation Integral type heat exchanger
KR101344520B1 (en) * 2007-01-12 2013-12-24 한라비스테온공조 주식회사 Heat Exchanger
EA201500857A1 (en) 2010-05-26 2016-06-30 Селекта Байосайенсиз, Инк. COMBINED VACCINES WITH SYNTHETIC NANO CARRIERS

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10176895A (en) * 1996-12-16 1998-06-30 Zexel Corp Heat exchanger
KR20080075983A (en) * 2007-02-14 2008-08-20 한라공조주식회사 Evaporator
JP2011064379A (en) * 2009-09-16 2011-03-31 Showa Denko Kk Heat exchanger
JP2011089729A (en) * 2009-10-23 2011-05-06 Denso Corp Duplex heat exchanger
JP2012037132A (en) * 2010-08-06 2012-02-23 Mitsubishi Heavy Ind Ltd Heat exchanger
JP2012102928A (en) * 2010-11-09 2012-05-31 Mitsubishi Heavy Ind Ltd Heat exchanger, and vehicle air conditioner including the same
US20180029446A1 (en) * 2015-03-19 2018-02-01 Hanon Systems Vehicle heat exchanger
JP2019105380A (en) * 2017-12-08 2019-06-27 株式会社デンソー Heat exchanger

Also Published As

Publication number Publication date
CN115103994A (en) 2022-09-23
JP2021127868A (en) 2021-09-02
DE112021001022T5 (en) 2022-11-24
US20220381514A1 (en) 2022-12-01

Similar Documents

Publication Publication Date Title
WO2017064940A1 (en) Heat exchanger
US10359238B2 (en) Heat exchanger and side plate
EP2639539A1 (en) Tube for heat exchanger
JP2008036650A (en) Method of manufacturing heat exchanger
JP6439454B2 (en) Heat exchanger
WO2019111849A1 (en) Heat exchanger
JP4253968B2 (en) Duplex heat exchanger for vehicles
JP6711317B2 (en) Heat exchanger
US20230029816A1 (en) Heat exchanger
WO2021161825A1 (en) Heat exchanger
WO2021161826A1 (en) Heat exchanger
JP2001174190A (en) Double heat exchanger
JP2007278557A (en) Heat exchanger
JP2004183960A (en) Heat exchanger
WO2020110639A1 (en) Heat exchanger
WO2020022171A1 (en) Heat exchanger
WO2021152984A1 (en) Heat exchanger
WO2022172638A1 (en) Heat exchanger
KR200234727Y1 (en) Condenser assembly for air-conditioner oh vehicle
JP6106546B2 (en) Heat exchanger
WO2021019953A1 (en) Heat exchange unit
WO2020241375A1 (en) Heat exchanger
WO2021020108A1 (en) Shutter device for vehicle
JPH10153358A (en) Stacked type heat exchanger
JP2004069258A (en) Flat tube, and method of manufacturing heat exchanger using flat tube

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21753757

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21753757

Country of ref document: EP

Kind code of ref document: A1