WO2021161560A1 - Electric motor protection structure - Google Patents

Electric motor protection structure Download PDF

Info

Publication number
WO2021161560A1
WO2021161560A1 PCT/JP2020/031340 JP2020031340W WO2021161560A1 WO 2021161560 A1 WO2021161560 A1 WO 2021161560A1 JP 2020031340 W JP2020031340 W JP 2020031340W WO 2021161560 A1 WO2021161560 A1 WO 2021161560A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
panel
cooling component
vehicle
generator
Prior art date
Application number
PCT/JP2020/031340
Other languages
French (fr)
Japanese (ja)
Inventor
憲史 梅村
清貴 石川
Original Assignee
三菱自動車工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱自動車工業株式会社 filed Critical 三菱自動車工業株式会社
Priority to JP2022500217A priority Critical patent/JP7327632B2/en
Publication of WO2021161560A1 publication Critical patent/WO2021161560A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/02Arrangement in connection with cooling of propulsion units with liquid cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/40Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the assembly or relative disposition of components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • This disclosure relates to a protective structure for a motor mounted on a vehicle.
  • the motor protection structure according to the present disclosure is a simple structure and is related to improving the protection performance of the motor against external force.
  • the protective structure of the motor comprises at least one motor mounted on the vehicle, a planar panel partitioning between the motor and the passenger compartment, and a refrigerant for cooling the motor.
  • a cooling component including a heat exchanger configured to transfer heat to a medium other than the refrigerant is provided, and the cooling component is integrally fixed to the side of the surface of the motor facing the panel. Will be done.
  • FIG. 1 is a schematic view of a vehicle to which a protective structure for an electric motor as an embodiment is applied.
  • FIG. 2 is a perspective view schematically showing the internal structure of the cooling component shown in FIG.
  • FIG. 3A is a schematic diagram for explaining the protection performance of the protection structure shown in FIG. 1 against an external force.
  • FIG. 3B is a schematic diagram for explaining the protection performance of the protection structure shown in FIG. 1 against an external force.
  • FIG. 3C is a schematic diagram for explaining the protection performance of the protection structure shown in FIG. 1 against an external force.
  • FIG. 4 is a schematic view of a vehicle to which a motor protection structure as a modified example is applied.
  • FIG. 1 is a schematic side view showing the inside of the vehicle 10 to which the protection structure of the electric motor is applied.
  • An engine room 12 (which may also be called a motor room or a compartment room) is provided at the front of the vehicle 10, and a vehicle room 11 is provided behind the engine room 12.
  • a driving force generating device such as a motor 1, a generator 2, and an engine 3 is arranged in the engine room 12. These driving force generating devices are connected to each other so as to be able to transmit power via a transmission or a transaxle (not shown).
  • the motor 1 is, for example, a three-phase AC type synchronous motor, and has both a function of rotating a motor shaft (rotor rotation shaft) with the electric power of the battery 13 and a function of generating power by utilizing the inertial power of the vehicle 10.
  • the generator 2 generator
  • the generator 2 is, for example, a three-phase AC type synchronous generator, and utilizes the function of rotating the crankshaft of the engine 3 with the electric power of the battery 13 (starter function) and the rotational power of the crankshaft. It also has the function of generating electricity.
  • the engine 3 is an internal combustion engine (gasoline engine, diesel engine) that burns gasoline or light oil.
  • a device that generates a rotational force by the interaction between a current flowing through a rotor and a magnetic field is called an "motor".
  • the motor 1 of this embodiment is an "motor”.
  • the generator 2 of the present embodiment generates an induced current by rotating the rotor in a magnetic field, but it is possible to generate a rotational force by passing a current through the rotor. That is, the generator 2 of this embodiment can function as an "motor” and can be regarded as a kind of "motor”. In this sense, it is possible to define “motor” as a concept including the motor 1 and the generator 2. Therefore, the "motor” described herein may be referred to as a “motor or generator or motor generator” and may be understood as such.
  • the motor 1, the generator 2, and the engine 3 are arranged so as to overlap each other when viewed from the front of the vehicle 10.
  • the generator 2 is arranged diagonally upward on the front side of the motor 1.
  • the engine 3 is arranged in front of the generator 2 so as to cover the front surface of the generator 2.
  • the motor 1 and the generator 2 are arranged behind the engine 3.
  • a transmission and a transaxle (not shown) are arranged on one side in the vehicle width direction in each of the motor 1, the generator 2, and the engine 3.
  • the rotation shafts (rotor shaft and crankshaft) of the motor 1, the generator 2, and the engine 3 are arranged parallel to each other in the vehicle width direction, for example.
  • the vehicle compartment 11 and the engine compartment 12 are partitioned by a planar panel 4.
  • the panel 4 is also called a bulkhead or a firewall.
  • the panel 4 referred to here includes a floor panel and a dash panel.
  • the panel 4 is arranged substantially horizontally below the passenger compartment 11, and is formed in a shape that protrudes upward at the front portion of the passenger compartment 11.
  • one plate material may be bent to form the panel 4, or a plurality of plate materials may be joined together to form the panel 4.
  • the battery 13 and the inverter 14 are arranged below the passenger compartment 11 (below the panel 4).
  • the battery 13 is, for example, a lithium ion battery or a nickel hydrogen battery, and is a secondary battery capable of supplying a high voltage direct current of several hundred volts.
  • the battery 13 is electrically connected to the motor 1 and the generator 2 via the inverter 14.
  • the battery 13 can supply electric power to the motor 1 and the generator 2. Further, the battery 13 can be charged by the regenerative power of the motor 1 or the generated power of the generator 2, and can also be charged by receiving power supplied from the outside of the vehicle (external charging).
  • the inverter 14 is a power conversion device for converting DC power on the battery 13 side and AC power on the motor 1 and the generator 2, and is interposed on a power line connecting the battery 13 and the motor 1 and the generator 2. ..
  • the inverter 14 is also called a power drive unit (PDU), and incorporates an inverter circuit and an electronic control device.
  • Inverter circuits include switch elements such as IGBTs (Insulated Gate Bipolar Transistors) and MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors).
  • the electronic control device has a function of controlling the operating state (on / off timing and drive frequency) of the switch element.
  • the inverter 14 and each of the motor 1 and the generator 2 are connected by a high-voltage cable 15 for three-phase alternating current.
  • the high-voltage cable 15 is connected to each of the first connector 16 provided on the outer surface of the motor 1 and the second connector 17 provided on the outer surface of the generator 2.
  • the high-voltage cable 15 is detachable from each of the first connector 16 and the second connector 17.
  • These first connector 16 and second connector 17 are preferably arranged in the vicinity of the cooling component 5, which will be described later.
  • the first connector 16 of the motor 1 to which the cooling component 5 is attached is arranged at a position adjacent to the cooling component 5.
  • a cooling component 5 is attached to the outer surface of the motor 1.
  • the cooling component 5 is a component including at least a heat exchanger 7 for cooling the motor 1, and is fixed to one of a plurality of electric motors (motor 1 and generator 2) provided in the vehicle 10.
  • the heat exchanger 7 has a function of transferring the heat of the refrigerant that cools the motor 1 to another medium.
  • the cooling component 5 is integrally fixed to the motor 1 on the side of the surface of the motor 1 facing the panel 4.
  • the cooling component 5 is provided with a first inflow port and a first inflow port serving as an inlet / outlet for a refrigerant for cooling the motor 1, and a second inflow port and a second inflow port serving as an inlet / outlet for a medium for cooling the refrigerant. .
  • Specific examples of the refrigerant and medium referred to here include cooling water, cooling oil, cold air, and various coolants.
  • the cooling component 5 is fixed at a position where the separation distance between the cooling component 5 and the panel 4 is smaller than the separation distance between the motor 1 or the generator 2 and the panel 4. More preferably, the separation distance between the cooling component 5 and the panel 4 is fixed at a position smaller than the separation distance between the first connector 16 or the second connector 17 and the panel 4. That is, even if the motor 1 and the generator 2 approach the panel 4 by an external force, the cooling component 5 is configured to come into contact with the panel 4 before the first connector 16 and the second connector 17. Further, as shown in FIG. 1, the first connector 16 of this embodiment is arranged behind and below the cooling component 5. As a result, the distance between the first connector 16 and the inverter 14 can be made closer while separating the first connector 16 from the panel 4 than the cooling component 5. Therefore, the high-voltage cable 15 can be shortened while improving the protection of the first connector 16.
  • the cooling component 5 has a structure in which a laminated heat exchanger 7 is built inside a hollow casing 6.
  • the heat exchanger 7 has a structure in which a plurality of plates 8 are laminated in a multi-layered manner with a gap between them.
  • a corrugated fin 9 is installed between the plurality of plates 8.
  • the corrugated fin 9 is a plate-shaped member having a corrugated cross-sectional shape so as to come into contact with each of the two plates 8.
  • These refrigerants and media circulate in a groove-like space sandwiched between the plate 8 and the corrugated fins 9.
  • the flow direction of the refrigerant flowing through the former layer is set so as to be orthogonal to the flow direction of the medium flowing through the latter layer.
  • the stacking direction of the plurality of plates 8 is set so as to coincide with the direction from the motor 1 to the panel 4.
  • the stacking direction referred to here may be read and understood as, for example, the normal direction of the plate 8.
  • the direction perpendicular to the flow direction of the refrigerant and the medium flowing through each layer may be defined as the “stacking direction”.
  • the cooling component 5 is arranged at a position on the surface of the panel 4 facing a slope whose front is inclined diagonally upward (that is, the plate 8 of the heat exchanger 7 is arranged on the slope of the panel 4. (Arranged so as to face each other).
  • This slope is provided, for example, at the front end of the floor panel or the lower end of the dash panel.
  • the cooling component 5 is arranged at a position facing the flat surface portion 18 of the panel 4.
  • the flat surface portion 18 is a portion formed in a flat shape, and is a portion provided substantially parallel to the plate 8 located on the side closest to the panel 4 in the plate 8 of the heat exchanger 7.
  • FIG. 1 by arranging the cooling component 5 on a flat portion, the contact area when the cooling component 5 comes into contact with the panel 4 increases, and the pressure acting on the cooling component 5 decreases. As a result, the impact is easily absorbed, and the cushioning performance of the cooling component 5 is improved.
  • the cooling component 5 is attached to the outer surface of the motor 1.
  • the cooling component 5 is arranged at a position where it comes into contact with the panel 4 before the motor 1 and the generator 2. Therefore, as shown in FIG. 3B, when the cooling component 5 comes into contact with the panel 4, the separation distance between the motor 1 and the generator 2 and the panel 4 is secured, and direct contact is avoided. Further, the cooling component 5 is arranged at a position where it comes into contact with the panel 4 before the first connector 16 and the second connector 17. Therefore, when the cooling component 5 comes into contact with the panel 4, the separation distance between the first connector 16 and the second connector 17 and the panel 4 is also secured.
  • the motor protection structure of the present embodiment is provided with a motor 1, a panel 4, and a cooling component 5 mounted on the vehicle 10.
  • the panel 4 is provided so as to partition between the motor 1 and the vehicle interior 11.
  • the cooling component 5 is integrally fixed to the side of the surface of the motor 1 facing the panel 4.
  • the cooling component 5 includes a heat exchanger 7 that transfers the heat of the refrigerant that cools the motor 1 to another medium.
  • the motor 1 is arranged behind the engine 3 mounted on the vehicle 10. Thereby, for example, it is possible to suppress the occurrence of deformation and damage of the motor 1 due to the contact between the motor 1 pushed by the engine 3 and the panel 4 at the time of the front collision of the vehicle 10.
  • some kind of cushioning member (crash box, cushion member, etc.) can be arranged at the position of the engine 3 in FIG.
  • the protection performance of the motor 1 can be improved without arranging such a buffer member.
  • the heat exchanger 7 has a structure in which a plurality of plates 8 are laminated with a gap. As shown in FIG. 2, these plates 8 are laminated in the direction from the motor 1 toward the panel 4. Since the stacking direction of the heat exchanger 7 corresponds to the direction from the motor 1 to the panel 4, the impact can be absorbed by the deformation of the plate 8 in the thickness direction, and the cushioning function of the cooling component 5 can be improved. can. Further, since there is a gap through which the refrigerant flows between the plurality of plates 8, it is possible to secure a deformation allowance (maximum amount of deformation) of the plates 8 and improve the shock absorption efficiency. Therefore, the protection performance of the electric motor (motor 1 and generator 2) can be improved.
  • the first connector 16 of the motor 1 is arranged at a position adjacent to the cooling component 5.
  • the cooling component 5 can be brought into contact with the panel 4 at least before the first connector 16. Therefore, the first connector 16 can be protected more reliably, and the protection performance of the electric motor (motor 1 and generator 2) can be improved.
  • the first connector 16 is arranged behind the vehicle 10 with respect to the cooling component 5.
  • the distance between the first connector 16 and the inverter 14 is increased while the first connector 16 is separated from the panel 4 by the cooling component 5. You can get closer. Therefore, the high-voltage cable 15 can be shortened while improving the protection of the first connector 16, and the configuration of the electric motor (motor 1 and generator 2) can be further simplified.
  • the cooling component 5 is arranged at a position on the surface of the panel 4 facing a slope whose front surface is inclined diagonally upward.
  • the cooling component 5 is fixed to the motor 1 which is one of a plurality of electric motors provided in the vehicle.
  • the position where the cooling component 5 is fixed is set at a position where the separation distance between the cooling component 5 and the panel 4 is smaller than the separation distance between the motor 1 or the generator 2 and the panel 4. That is, the fixing position of the cooling component 5 is determined so that the cooling component 5 is located closer to the panel 4 than the motor 1 and the generator 2 in the state where the cooling component 5 is attached.
  • the cooling component 5 is arranged at a position facing the flat surface portion 18 of the panel 4.
  • the end surface of the cooling component 5 close to the panel 4 can be brought into surface contact with the panel 4, and the contact area between the cooling component 5 and the panel 4 can be increased.
  • the cooling component 5 is fixed to the surface of the motor 1 at a position facing the flat surface portion 18 of the panel 4, but the positional relationship between the cooling component 5 and the panel 4 has such a relationship.
  • the cooling component 5 may be arranged at a position facing the bent portion 19 of the panel 4.
  • the bent portion 19 is a portion having a shape in which two surfaces are joined across a ridge line, and is formed by bending, for example, a planar member.
  • Motor (motor, drive unit) 2 Generator (motor, drive unit) 3 Engine (internal combustion engine, drive unit) 4 Panel 5 Cooling parts 6 Casing 7 Heat exchanger 8 Plate 9 Corrugated fin 10 Vehicle 11 Vehicle room 12 Engine room 13 Battery 14 Inverter 15 High-voltage cable 16 First connector 17 Second connector 18 Flat part 19 Bent part

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

This electric motor protection structure is provided with: an electric motor mounted on a vehicle; a sheet-like panel that partitions between the motor and a vehicle cabin; and a cooling component including a heat exchanger that transfers heat from a refrigerant that cools the motor to a medium separate from the refrigerant. The cooling component is fixed integrally to a surface of the electric motor on a side opposing the panel. With the protection structure, when the electric motor approaches the panel due to an external force, the cooling component contacts the panel earlier than the electric motor, whereby the motor and a connector are protected.

Description

電動機の保護構造Motor protection structure
 本開示は、車両に搭載される電動機の保護構造に関する。 This disclosure relates to a protective structure for a motor mounted on a vehicle.
 関連技術として、車両に搭載される電動機において、給電ケーブルが接続されるコネクタを保護するための各種構造が提案されている。例えば、車両衝突時の外力によって電動機が移動し、周囲の他部品と接触する可能性があることから、あらかじめコネクタの強度を向上させておくことが検討されている。また、電動機のコネクタの近傍に突起を形成しておき、車両衝突時にコネクタよりも先に突起が電動機の周囲の他部品に接触するようにした構造も知られている(日本国特開2019-099003号公報、日本国特開2018-083510号公報、及び日本国特開2018-114899号公報を参照)。 As a related technology, various structures have been proposed for protecting the connector to which the power supply cable is connected in the motor mounted on the vehicle. For example, since the motor may move due to an external force at the time of a vehicle collision and come into contact with other surrounding parts, it is considered to improve the strength of the connector in advance. It is also known that a protrusion is formed in the vicinity of the connector of the motor so that the protrusion comes into contact with other parts around the motor before the connector in the event of a vehicle collision (Japanese Patent Laid-Open No. 2019- (See Japanese Patent Application Laid-Open No. 099003, Japanese Patent Application Laid-Open No. 2018-083510, and Japanese Patent Application Laid-Open No. 2018-114899).
 しかしながら、電動機のコネクタの強度を向上させるための補強構造を設けるように設計すれば、重量増加や構造の複雑化を招き、製造コストや生産性の面でのデメリットが生じうる。また、コネクタの周囲に保護部材を配置した場合も同様であり、重量増加や構造の複雑化を避けることはできない。このような実情を踏まえ、より簡素かつ手軽な構成で、電動機のコネクタを効果的に保護できるようにすることが望ましい。 However, if it is designed to provide a reinforcing structure to improve the strength of the connector of the motor, the weight will increase and the structure will become complicated, which may cause disadvantages in terms of manufacturing cost and productivity. Further, the same applies when the protective member is arranged around the connector, and it is unavoidable to increase the weight and complicate the structure. Based on this situation, it is desirable to be able to effectively protect the connector of the motor with a simpler and easier configuration.
 本開示に係る電動機の保護構造は、簡素な構造で、外力に対する電動機の保護性能を向上させることに関連する。 The motor protection structure according to the present disclosure is a simple structure and is related to improving the protection performance of the motor against external force.
 本開示の一態様によれば、電動機の保護構造は、車両に搭載される少なくとも一つの電動機と、前記電動機と車室との間を区画する面状のパネルと、前記電動機を冷却する冷媒の熱を前記冷媒とは別の媒質へ移動させるように構成された熱交換器を含む冷却部品とを備え、前記冷却部品は、前記電動機の表面のうち前記パネルに対向する側に一体的に固定される。 According to one aspect of the present disclosure, the protective structure of the motor comprises at least one motor mounted on the vehicle, a planar panel partitioning between the motor and the passenger compartment, and a refrigerant for cooling the motor. A cooling component including a heat exchanger configured to transfer heat to a medium other than the refrigerant is provided, and the cooling component is integrally fixed to the side of the surface of the motor facing the panel. Will be done.
図1は、実施例としての電動機の保護構造が適用された車両の模式図である。FIG. 1 is a schematic view of a vehicle to which a protective structure for an electric motor as an embodiment is applied. 図2は、図1に示す冷却部品の内部構造を模式的に示す斜視図である。FIG. 2 is a perspective view schematically showing the internal structure of the cooling component shown in FIG. 図3Aは、図1に示す保護構造の外力に対する保護性能を説明するための模式図である。FIG. 3A is a schematic diagram for explaining the protection performance of the protection structure shown in FIG. 1 against an external force. 図3Bは、図1に示す保護構造の外力に対する保護性能を説明するための模式図である。FIG. 3B is a schematic diagram for explaining the protection performance of the protection structure shown in FIG. 1 against an external force. 図3Cは、図1に示す保護構造の外力に対する保護性能を説明するための模式図である。FIG. 3C is a schematic diagram for explaining the protection performance of the protection structure shown in FIG. 1 against an external force. 図4は、変形例としての電動機の保護構造が適用された車両の模式図である。FIG. 4 is a schematic view of a vehicle to which a motor protection structure as a modified example is applied.
[1.構成]
 図1~図4を参照して、実施例及び変形例としての電動機の保護構造を説明する。図中の方位を表す矢印(前後上下)は、車両10を基準にして定められる方向を意味する。図1は、電動機の保護構造が適用された車両10の内部を透視して示す模式的な側面図である。車両10の前部にはエンジンルーム12(モータールームやコンパートメントルームとも呼ばれてもよい)が設けられ、その後方に車室11が設けられる。エンジンルーム12には、モータ1,ジェネレータ2,エンジン3などの駆動力生成装置が配置される。これらの駆動力生成装置は、図示しない変速装置やトランスアクスルを介して、互いに動力伝達可能に連結される。
[1. composition]
The protective structure of the electric motor as an embodiment and a modified example will be described with reference to FIGS. 1 to 4. The arrows (front-back, up-down) indicating the directions in the figure mean the directions determined with reference to the vehicle 10. FIG. 1 is a schematic side view showing the inside of the vehicle 10 to which the protection structure of the electric motor is applied. An engine room 12 (which may also be called a motor room or a compartment room) is provided at the front of the vehicle 10, and a vehicle room 11 is provided behind the engine room 12. A driving force generating device such as a motor 1, a generator 2, and an engine 3 is arranged in the engine room 12. These driving force generating devices are connected to each other so as to be able to transmit power via a transmission or a transaxle (not shown).
 モータ1は、例えば三相交流型の同期電動機であり、バッテリ13の電力でモータ軸(ロータの回転軸)を回転させる機能と、車両10の慣性動力を利用して発電する機能とを併せ持つ。また、ジェネレータ2(発電機)は、例えば三相交流型の同期発電機であり、バッテリ13の電力でエンジン3のクランク軸を回転させる機能(スタータ機能)と、クランク軸の回転動力を利用して発電する機能とを併せ持つ。エンジン3は、ガソリンや軽油を燃焼とする内燃機関(ガソリンエンジン,ディーゼルエンジン)である。 The motor 1 is, for example, a three-phase AC type synchronous motor, and has both a function of rotating a motor shaft (rotor rotation shaft) with the electric power of the battery 13 and a function of generating power by utilizing the inertial power of the vehicle 10. Further, the generator 2 (generator) is, for example, a three-phase AC type synchronous generator, and utilizes the function of rotating the crankshaft of the engine 3 with the electric power of the battery 13 (starter function) and the rotational power of the crankshaft. It also has the function of generating electricity. The engine 3 is an internal combustion engine (gasoline engine, diesel engine) that burns gasoline or light oil.
 一般に、回転子を流れる電流と磁界との相互作用により回転力を生成する装置は「電動機」と呼ばれる。本実施例のモータ1は「電動機」である。また、本実施例のジェネレータ2は、磁界内で回転子を回転させることで誘導電流を生成するものであるが、その回転子に電流を流すことで回転力を発生させることが可能である。つまり、本実施例のジェネレータ2は「電動機」として機能させることが可能であり、「電動機」の一種と見なすことができる。このような意味で、モータ1やジェネレータ2を含む概念として「電動機」を定義することが可能である。したがって、本願明細書に記載される「電動機」は、「モータまたはジェネレータまたはモータジェネレータ」と表記してもよく、そのように理解しても差し支えない。 Generally, a device that generates a rotational force by the interaction between a current flowing through a rotor and a magnetic field is called an "motor". The motor 1 of this embodiment is an "motor". Further, the generator 2 of the present embodiment generates an induced current by rotating the rotor in a magnetic field, but it is possible to generate a rotational force by passing a current through the rotor. That is, the generator 2 of this embodiment can function as an "motor" and can be regarded as a kind of "motor". In this sense, it is possible to define "motor" as a concept including the motor 1 and the generator 2. Therefore, the "motor" described herein may be referred to as a "motor or generator or motor generator" and may be understood as such.
 モータ1とジェネレータ2とエンジン3は、車両10の正面視で互いに重なるように配置される。例えば、ジェネレータ2はモータ1よりも前方側において斜め上方に配置される。また、エンジン3は、ジェネレータ2よりも前方において、ジェネレータ2の前面を覆うように配置される。言い換えれば、モータ1及びジェネレータ2はエンジン3の後方に配置される。また、図示しない変速装置やトランスアクスルは、モータ1,ジェネレータ2,エンジン3の各々における車幅方向の一側に配置される。また、モータ1,ジェネレータ2,エンジン3の各々の回転軸(ローター軸及びクランク軸)は、例えば車幅方向に互いに平行に配置される。 The motor 1, the generator 2, and the engine 3 are arranged so as to overlap each other when viewed from the front of the vehicle 10. For example, the generator 2 is arranged diagonally upward on the front side of the motor 1. Further, the engine 3 is arranged in front of the generator 2 so as to cover the front surface of the generator 2. In other words, the motor 1 and the generator 2 are arranged behind the engine 3. Further, a transmission and a transaxle (not shown) are arranged on one side in the vehicle width direction in each of the motor 1, the generator 2, and the engine 3. Further, the rotation shafts (rotor shaft and crankshaft) of the motor 1, the generator 2, and the engine 3 are arranged parallel to each other in the vehicle width direction, for example.
 車室11とエンジンルーム12との間は、面状のパネル4で区画される。パネル4は、バルクヘッドやファイアーウォールとも呼ばれる。ここでいうパネル4には、フロアパネルやダッシュパネルが含まれる。図1に示すように、パネル4は車室11の下方においてほぼ水平に配置されるとともに、車室11の前部において上方に迫り上がった形状に形成される。なお、図1に示すような形状のパネル4の形成に際し、一枚の板材を屈曲させて形成してもよいし、複数の板材をつなぎ合わせて形成してもよい。 The vehicle compartment 11 and the engine compartment 12 are partitioned by a planar panel 4. The panel 4 is also called a bulkhead or a firewall. The panel 4 referred to here includes a floor panel and a dash panel. As shown in FIG. 1, the panel 4 is arranged substantially horizontally below the passenger compartment 11, and is formed in a shape that protrudes upward at the front portion of the passenger compartment 11. When forming the panel 4 having the shape shown in FIG. 1, one plate material may be bent to form the panel 4, or a plurality of plate materials may be joined together to form the panel 4.
 車室11の下方(パネル4よりも下方)には、バッテリ13とインバータ14とが配置される。バッテリ13は、例えばリチウムイオン電池やニッケル水素電池であり、数百ボルトの高電圧直流電流を供給しうる二次電池である。バッテリ13は、インバータ14を介してモータ1及びジェネレータ2に電気的に接続される。バッテリ13は、モータ1及びジェネレータ2に電力を供給可能とされる。また、バッテリ13は、モータ1の回生電力やジェネレータ2の発電電力で充電可能であるとともに、車両外部からの給電を受けて充電すること(外部充電)も可能である。 The battery 13 and the inverter 14 are arranged below the passenger compartment 11 (below the panel 4). The battery 13 is, for example, a lithium ion battery or a nickel hydrogen battery, and is a secondary battery capable of supplying a high voltage direct current of several hundred volts. The battery 13 is electrically connected to the motor 1 and the generator 2 via the inverter 14. The battery 13 can supply electric power to the motor 1 and the generator 2. Further, the battery 13 can be charged by the regenerative power of the motor 1 or the generated power of the generator 2, and can also be charged by receiving power supplied from the outside of the vehicle (external charging).
インバータ14は、バッテリ13側の直流電力とモータ1及びジェネレータ2側の交流電力とを変換するための電力変換装置であり、バッテリ13とモータ1及びジェネレータ2とをつなぐ動力線上に介装される。インバータ14はパワードライブユニット(PDU)とも呼ばれ、インバータ回路と電子制御装置とを内蔵する。インバータ回路には、IGBT(Insulated Gate Bipolar Transistor)やMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)などのスイッチ素子が含まれる。また、電子制御装置は、スイッチ素子の作動状態(オンオフのタイミングや駆動周波数)を制御する機能を持つ。 The inverter 14 is a power conversion device for converting DC power on the battery 13 side and AC power on the motor 1 and the generator 2, and is interposed on a power line connecting the battery 13 and the motor 1 and the generator 2. .. The inverter 14 is also called a power drive unit (PDU), and incorporates an inverter circuit and an electronic control device. Inverter circuits include switch elements such as IGBTs (Insulated Gate Bipolar Transistors) and MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors). In addition, the electronic control device has a function of controlling the operating state (on / off timing and drive frequency) of the switch element.
 インバータ14とモータ1及びジェネレータ2の各々との間は、三相交流用の高圧ケーブル15で接続される。高圧ケーブル15は、図1に示すように、モータ1の外表面に設けられる第一コネクタ16と、ジェネレータ2の外表面に設けられる第二コネクタ17との各々に接続される。高圧ケーブル15は、第一コネクタ16,第二コネクタ17の各々に対して着脱可能とされる。これらの第一コネクタ16,第二コネクタ17は、好ましくは後述する冷却部品5の近傍に配置される。本実施例では、冷却部品5が取り付けられるモータ1の第一コネクタ16が、冷却部品5に隣接する位置に配置される。 The inverter 14 and each of the motor 1 and the generator 2 are connected by a high-voltage cable 15 for three-phase alternating current. As shown in FIG. 1, the high-voltage cable 15 is connected to each of the first connector 16 provided on the outer surface of the motor 1 and the second connector 17 provided on the outer surface of the generator 2. The high-voltage cable 15 is detachable from each of the first connector 16 and the second connector 17. These first connector 16 and second connector 17 are preferably arranged in the vicinity of the cooling component 5, which will be described later. In this embodiment, the first connector 16 of the motor 1 to which the cooling component 5 is attached is arranged at a position adjacent to the cooling component 5.
 モータ1の外表面には、冷却部品5が取り付けられる。冷却部品5は、少なくともモータ1を冷却するための熱交換器7を含む部品であり、車両10に設けられる複数の電動機(モータ1やジェネレータ2)の一つに固定される。熱交換器7は、モータ1を冷却する冷媒の熱を他の媒質へ移動させる機能を持つ。冷却部品5は、モータ1の表面のうちパネル4に対向する側において、モータ1に一体的に固定される。冷却部品5には、モータ1を冷却する冷媒の出入口となる第一流入口及び第一流出口と、その冷媒を冷却するための媒質の出入口となる第二流入口及び第二流出口とが設けられる。ここでいう冷媒や媒質の具体例としては、冷却水,冷却オイル,冷風,各種クーラントなどが挙げられる。 A cooling component 5 is attached to the outer surface of the motor 1. The cooling component 5 is a component including at least a heat exchanger 7 for cooling the motor 1, and is fixed to one of a plurality of electric motors (motor 1 and generator 2) provided in the vehicle 10. The heat exchanger 7 has a function of transferring the heat of the refrigerant that cools the motor 1 to another medium. The cooling component 5 is integrally fixed to the motor 1 on the side of the surface of the motor 1 facing the panel 4. The cooling component 5 is provided with a first inflow port and a first inflow port serving as an inlet / outlet for a refrigerant for cooling the motor 1, and a second inflow port and a second inflow port serving as an inlet / outlet for a medium for cooling the refrigerant. .. Specific examples of the refrigerant and medium referred to here include cooling water, cooling oil, cold air, and various coolants.
 冷却部品5は、冷却部品5とパネル4との離隔距離が、モータ1やジェネレータ2とパネル4との離隔距離よりも小さくなる位置に固定される。より好ましくは、冷却部品5とパネル4との離隔距離が、第一コネクタ16や第二コネクタ17とパネル4との離隔距離よりも小さくなる位置に固定される。つまり、モータ1やジェネレータ2が外力によってパネル4に接近したとしても、冷却部品5が第一コネクタ16や第二コネクタ17よりも先にパネル4に接触するように構成される。また、本実施例の第一コネクタ16は、図1に示すように、冷却部品5よりも後方かつ下方に配置される。これにより、第一コネクタ16をパネル4に対して冷却部品5よりも離隔させつつ、第一コネクタ16とインバータ14との距離を近づけることができる。したがって、第一コネクタ16の保護性を高めつつ、高圧ケーブル15を短縮することができる。 The cooling component 5 is fixed at a position where the separation distance between the cooling component 5 and the panel 4 is smaller than the separation distance between the motor 1 or the generator 2 and the panel 4. More preferably, the separation distance between the cooling component 5 and the panel 4 is fixed at a position smaller than the separation distance between the first connector 16 or the second connector 17 and the panel 4. That is, even if the motor 1 and the generator 2 approach the panel 4 by an external force, the cooling component 5 is configured to come into contact with the panel 4 before the first connector 16 and the second connector 17. Further, as shown in FIG. 1, the first connector 16 of this embodiment is arranged behind and below the cooling component 5. As a result, the distance between the first connector 16 and the inverter 14 can be made closer while separating the first connector 16 from the panel 4 than the cooling component 5. Therefore, the high-voltage cable 15 can be shortened while improving the protection of the first connector 16.
 冷却部品5の具体例を図2に示す。この冷却部品5は、中空のケーシング6の内部に積層型の熱交換器7が内蔵された構造を持つ。熱交換器7は、複数のプレート8を互いに隙間をあけて多層状に積層した構造を持つ。また、複数のプレート8の間には、コルゲートフィン9が内装される。コルゲートフィン9は、二枚のプレート8の各々に接触すべく断面形状が波形に形成された板状部材である。コルゲートフィン9を設けることで、複数のプレート8の間での熱伝達が促進され、熱交換の効率が向上する。 A specific example of the cooling component 5 is shown in FIG. The cooling component 5 has a structure in which a laminated heat exchanger 7 is built inside a hollow casing 6. The heat exchanger 7 has a structure in which a plurality of plates 8 are laminated in a multi-layered manner with a gap between them. Further, a corrugated fin 9 is installed between the plurality of plates 8. The corrugated fin 9 is a plate-shaped member having a corrugated cross-sectional shape so as to come into contact with each of the two plates 8. By providing the corrugated fins 9, heat transfer between the plurality of plates 8 is promoted, and the efficiency of heat exchange is improved.
 熱交換器7の内部には、図2に示すように、モータ1を冷却する冷媒(例えば冷却オイル)が流通する層と冷媒を冷却する媒質(例えばエンジン冷却水)が流通する層とが交互に積層される。これらの冷媒,媒質は、プレート8とコルゲートフィン9とに挟まれる溝状の空間内を流通する。また、前者の層を流れる冷媒の流通方向は、後者の層を流れる媒質の流通方向に対して直交するように設定される。各層における流通方向を直交させることで、冷媒,媒質が互いに混ざり合わない構造を容易に形成することができる。 Inside the heat exchanger 7, as shown in FIG. 2, a layer through which a refrigerant (for example, cooling oil) for cooling the motor 1 flows and a layer in which a medium for cooling the refrigerant (for example, engine cooling water) flows alternately. It is laminated on. These refrigerants and media circulate in a groove-like space sandwiched between the plate 8 and the corrugated fins 9. Further, the flow direction of the refrigerant flowing through the former layer is set so as to be orthogonal to the flow direction of the medium flowing through the latter layer. By making the flow directions of the layers orthogonal to each other, it is possible to easily form a structure in which the refrigerant and the medium do not mix with each other.
 複数のプレート8の積層方向は、図2に示すように、モータ1からパネル4へ向かう方向に一致するように設定される。ここでいう積層方向は、例えばプレート8の法線方向と読み替えて理解してもよい。あるいは、各層を流れる冷媒,媒質の流通方向に垂直な方向を「積層方向」と定義してもよい。このようなレイアウトにより、例えば冷却部品5の熱交換器7に外力が作用した場合に、プレート8の厚み方向への変形によって衝撃が吸収され、冷却部品5が緩衝部材として機能する。 As shown in FIG. 2, the stacking direction of the plurality of plates 8 is set so as to coincide with the direction from the motor 1 to the panel 4. The stacking direction referred to here may be read and understood as, for example, the normal direction of the plate 8. Alternatively, the direction perpendicular to the flow direction of the refrigerant and the medium flowing through each layer may be defined as the “stacking direction”. With such a layout, for example, when an external force acts on the heat exchanger 7 of the cooling component 5, the impact is absorbed by the deformation of the plate 8 in the thickness direction, and the cooling component 5 functions as a buffer member.
 図1に示すように、冷却部品5は、パネル4の表面のうち、前方が斜め上に傾斜した斜面に対向する位置に配置される(つまり、熱交換器7のプレート8がパネル4の斜面に対向するように配置される)。この斜面は、例えばフロアパネルの前端部やダッシュパネルの下端部に設けられる。冷却部品5を傾斜面に対向させることで、冷却部品5がパネル4に接触したときの反力を、前方斜め下向きに作用させることができる。したがって、車室11のスペースが確保されやすくなり、乗員保護性能が向上する。 As shown in FIG. 1, the cooling component 5 is arranged at a position on the surface of the panel 4 facing a slope whose front is inclined diagonally upward (that is, the plate 8 of the heat exchanger 7 is arranged on the slope of the panel 4. (Arranged so as to face each other). This slope is provided, for example, at the front end of the floor panel or the lower end of the dash panel. By making the cooling component 5 face the inclined surface, the reaction force when the cooling component 5 comes into contact with the panel 4 can be applied diagonally forward and downward. Therefore, the space of the vehicle interior 11 is easily secured, and the occupant protection performance is improved.
 冷却部品5は、パネル4の平面部18に対向する位置に配置される。平面部18は平面状に形成された部位であって、熱交換器7のプレート8のうち、最もパネル4に近い側に位置するプレート8に対してほぼ平行に設けられる部位である。図1に示すように、平面状の部位に冷却部品5を配置することで、冷却部品5がパネル4に接触したときの接触面積が増大し、冷却部品5に作用する圧力が減少する。これにより、衝撃が吸収されやすくなり、冷却部品5の緩衝性能が向上する。 The cooling component 5 is arranged at a position facing the flat surface portion 18 of the panel 4. The flat surface portion 18 is a portion formed in a flat shape, and is a portion provided substantially parallel to the plate 8 located on the side closest to the panel 4 in the plate 8 of the heat exchanger 7. As shown in FIG. 1, by arranging the cooling component 5 on a flat portion, the contact area when the cooling component 5 comes into contact with the panel 4 increases, and the pressure acting on the cooling component 5 decreases. As a result, the impact is easily absorbed, and the cushioning performance of the cooling component 5 is improved.
[2.作用,効果]
 図3Aに示すように、車両10の前方から外力(図中に黒矢印で示す)が作用したときに、エンジン3がエンジンルーム12内で車両10の後方側へと押し込まれる場合がある。この場合、エンジン3がジェネレータ2に接触してジェネレータ2を後方へと押し込み、モータ1及びジェネレータ2がパネル4に向かって移動する。モータ1及びジェネレータ2とパネル4との離隔距離は、徐々に減少する。
[2. Action, effect]
As shown in FIG. 3A, when an external force (indicated by a black arrow in the figure) acts from the front of the vehicle 10, the engine 3 may be pushed toward the rear side of the vehicle 10 in the engine room 12. In this case, the engine 3 comes into contact with the generator 2 and pushes the generator 2 backward, and the motor 1 and the generator 2 move toward the panel 4. The separation distance between the motor 1 and the generator 2 and the panel 4 gradually decreases.
 一方、モータ1の外表面には、冷却部品5が取り付けられている。冷却部品5は、モータ1及びジェネレータ2よりも先にパネル4に接触する位置に配置される。したがって、図3Bに示すように、冷却部品5がパネル4に接触したときに、モータ1及びジェネレータ2とパネル4との離隔距離が確保され、直接的な接触が回避される。また、冷却部品5は、第一コネクタ16や第二コネクタ17よりも先にパネル4に接触する位置に配置される。したがって、冷却部品5がパネル4に接触したときに、第一コネクタ16及び第二コネクタ17とパネル4との離隔距離も確保される。 On the other hand, the cooling component 5 is attached to the outer surface of the motor 1. The cooling component 5 is arranged at a position where it comes into contact with the panel 4 before the motor 1 and the generator 2. Therefore, as shown in FIG. 3B, when the cooling component 5 comes into contact with the panel 4, the separation distance between the motor 1 and the generator 2 and the panel 4 is secured, and direct contact is avoided. Further, the cooling component 5 is arranged at a position where it comes into contact with the panel 4 before the first connector 16 and the second connector 17. Therefore, when the cooling component 5 comes into contact with the panel 4, the separation distance between the first connector 16 and the second connector 17 and the panel 4 is also secured.
 モータ1及びジェネレータ2がパネル4に向かってさらに移動すると、図3Cに示すように、パネル4とモータ1とに挟まれた冷却部品5が圧縮変形する。この圧縮変形の過程で、外力のエネルギーが吸収される。これにより、モータ1,ジェネレータ2,第一コネクタ16,第二コネクタ17とパネル4との接触が防止されるとともに、変形や破損が抑制される。なお、モータ1の移動に伴い、インバータ14から第一コネクタ16までの距離が変化する。しかし、インバータ14と第一コネクタ16との間をつなぐ高圧ケーブル15が可撓性を有するものであれば、このような変形は無理なく許容される。 When the motor 1 and the generator 2 further move toward the panel 4, as shown in FIG. 3C, the cooling component 5 sandwiched between the panel 4 and the motor 1 is compressed and deformed. In the process of this compressive deformation, the energy of the external force is absorbed. As a result, contact between the motor 1, the generator 2, the first connector 16, the second connector 17, and the panel 4 is prevented, and deformation and damage are suppressed. As the motor 1 moves, the distance from the inverter 14 to the first connector 16 changes. However, as long as the high-voltage cable 15 connecting the inverter 14 and the first connector 16 has flexibility, such deformation is reasonably tolerated.
 (1)本実施例の電動機の保護構造には、車両10に搭載されるモータ1とパネル4と冷却部品5とが設けられる。パネル4は、モータ1と車室11との間を区画するように設けられる。冷却部品5は、モータ1の表面のうちパネル4に対向する側に一体的に固定される。また、冷却部品5には、モータ1を冷却する冷媒の熱を他の媒質へ移動させる熱交換器7が含まれる。このような構成により、モータ1とパネル4との接触によるモータ1の変形,破損の発生を抑制することができる。また、モータ1とパネル4との間に保護部材や補強構造を追加する必要がなく、重量増加や構造の複雑化を回避することができる。したがって、簡素な構造で電動機(モータ1やジェネレータ2)の保護性能を向上させることができる。 (1) The motor protection structure of the present embodiment is provided with a motor 1, a panel 4, and a cooling component 5 mounted on the vehicle 10. The panel 4 is provided so as to partition between the motor 1 and the vehicle interior 11. The cooling component 5 is integrally fixed to the side of the surface of the motor 1 facing the panel 4. Further, the cooling component 5 includes a heat exchanger 7 that transfers the heat of the refrigerant that cools the motor 1 to another medium. With such a configuration, it is possible to suppress the occurrence of deformation and damage of the motor 1 due to the contact between the motor 1 and the panel 4. Further, it is not necessary to add a protective member or a reinforcing structure between the motor 1 and the panel 4, and it is possible to avoid an increase in weight and a complicated structure. Therefore, the protection performance of the motor (motor 1 and generator 2) can be improved with a simple structure.
 (2)図1に示すように、モータ1は、車両10に搭載されるエンジン3の後方に配置される。これにより、例えば車両10の前突時にエンジン3によって押し込まれたモータ1とパネル4との接触によるモータ1の変形,破損の発生を抑制することができる。なお、エンジン3が搭載されない車両10においては、図1中のエンジン3の位置に何らかの緩衝部材(クラッシュボックス,クッション部材など)を配置することが可能である。これに対し、エンジン3が搭載される車両10においては、そのような緩衝部材を配置する空間的な余裕がない場合がある。一方、上記の保護構造によれば、そのような緩衝部材を配置することなく、モータ1の保護性能を向上させることができるという利点がある。 (2) As shown in FIG. 1, the motor 1 is arranged behind the engine 3 mounted on the vehicle 10. Thereby, for example, it is possible to suppress the occurrence of deformation and damage of the motor 1 due to the contact between the motor 1 pushed by the engine 3 and the panel 4 at the time of the front collision of the vehicle 10. In the vehicle 10 in which the engine 3 is not mounted, some kind of cushioning member (crash box, cushion member, etc.) can be arranged at the position of the engine 3 in FIG. On the other hand, in the vehicle 10 on which the engine 3 is mounted, there may be no space for arranging such a cushioning member. On the other hand, according to the above-mentioned protection structure, there is an advantage that the protection performance of the motor 1 can be improved without arranging such a buffer member.
 (3)熱交換器7は、隙間をあけて複数のプレート8を積層した構造を持つ。これらのプレート8は、図2に示すように、モータ1からパネル4へ向かう方向に積層される。熱交換器7の積層方向がモータ1からパネル4へ向かう方向に対応することで、プレート8の厚み方向への変形によって衝撃を吸収することができ、冷却部品5の緩衝機能を向上させることができる。また、複数のプレート8の間には冷媒の流れる隙間があることから、プレート8の変形代(最大変形量)を確保することができ、衝撃の吸収効率を高めることができる。したがって、電動機(モータ1やジェネレータ2)の保護性能を向上させることができる。 (3) The heat exchanger 7 has a structure in which a plurality of plates 8 are laminated with a gap. As shown in FIG. 2, these plates 8 are laminated in the direction from the motor 1 toward the panel 4. Since the stacking direction of the heat exchanger 7 corresponds to the direction from the motor 1 to the panel 4, the impact can be absorbed by the deformation of the plate 8 in the thickness direction, and the cushioning function of the cooling component 5 can be improved. can. Further, since there is a gap through which the refrigerant flows between the plurality of plates 8, it is possible to secure a deformation allowance (maximum amount of deformation) of the plates 8 and improve the shock absorption efficiency. Therefore, the protection performance of the electric motor (motor 1 and generator 2) can be improved.
 (4)モータ1の第一コネクタ16は、図1に示すように、冷却部品5に隣接する位置に配置される。このようなレイアウトにより、モータ1及びジェネレータ2がパネル4に向かって移動したときに、少なくとも第一コネクタ16よりも先に冷却部品5をパネル4に接触させることができる。したがって、第一コネクタ16をより確実に保護することができ、電動機(モータ1やジェネレータ2)の保護性能を向上させることができる。 (4) As shown in FIG. 1, the first connector 16 of the motor 1 is arranged at a position adjacent to the cooling component 5. With such a layout, when the motor 1 and the generator 2 move toward the panel 4, the cooling component 5 can be brought into contact with the panel 4 at least before the first connector 16. Therefore, the first connector 16 can be protected more reliably, and the protection performance of the electric motor (motor 1 and generator 2) can be improved.
 (5)図1に示すように、第一コネクタ16は、冷却部品5よりも車両10の後方に配置される。これにより、モータ1の後方にバッテリ13やインバータ14が配置されたレイアウトにおいて、第一コネクタ16をパネル4に対して冷却部品5よりも離隔させつつ、第一コネクタ16とインバータ14との距離を近づけることができる。したがって、第一コネクタ16の保護性を高めつつ、高圧ケーブル15を短縮することができ、電動機(モータ1やジェネレータ2)の構成をさらに簡素にすることができる。 (5) As shown in FIG. 1, the first connector 16 is arranged behind the vehicle 10 with respect to the cooling component 5. As a result, in the layout in which the battery 13 and the inverter 14 are arranged behind the motor 1, the distance between the first connector 16 and the inverter 14 is increased while the first connector 16 is separated from the panel 4 by the cooling component 5. You can get closer. Therefore, the high-voltage cable 15 can be shortened while improving the protection of the first connector 16, and the configuration of the electric motor (motor 1 and generator 2) can be further simplified.
 (6)冷却部品5は、パネル4の表面のうち、前方が斜め上に傾斜した斜面に対向する位置に配置される。このように、冷却部品5に対向する箇所のパネル4を傾斜させることで、冷却部品5がパネル4に接触したときの反力を、前方斜め下向きに作用させることができる。つまり、モータ1及びジェネレータ2が車室11の内部に向かって移動してきたときに、モータ1及びジェネレータ2の水平方向の進入量を減少させることができる。したがって、車室11のスペースを確保することができ、乗員保護性能を向上させることができる。 (6) The cooling component 5 is arranged at a position on the surface of the panel 4 facing a slope whose front surface is inclined diagonally upward. By inclining the panel 4 at the position facing the cooling component 5 in this way, the reaction force when the cooling component 5 comes into contact with the panel 4 can be applied diagonally forward and downward. That is, when the motor 1 and the generator 2 move toward the inside of the vehicle interior 11, the amount of approach of the motor 1 and the generator 2 in the horizontal direction can be reduced. Therefore, the space of the vehicle interior 11 can be secured, and the occupant protection performance can be improved.
 (7)冷却部品5は、車両に設けられる複数の電動機の一つであるモータ1に固定される。この冷却部品5が固定される位置は、冷却部品5とパネル4との離隔距離がモータ1やジェネレータ2とパネル4との離隔距離よりも小さくなる位置に設定される。つまり、冷却部品5が取り付けられた状態において、モータ1やジェネレータ2よりも冷却部品5がパネル4の近くに位置するように、冷却部品5の固定位置が定められる。このようなレイアウトにより、モータ1及びジェネレータ2がパネル4に向かって移動したときに、モータ1やジェネレータ2よりも先に冷却部品5をパネル4に接触させることができる。したがって、モータ1やジェネレータ2を確実に保護することができ、電動機(モータ1やジェネレータ2)の保護性能を向上させることができる。 (7) The cooling component 5 is fixed to the motor 1 which is one of a plurality of electric motors provided in the vehicle. The position where the cooling component 5 is fixed is set at a position where the separation distance between the cooling component 5 and the panel 4 is smaller than the separation distance between the motor 1 or the generator 2 and the panel 4. That is, the fixing position of the cooling component 5 is determined so that the cooling component 5 is located closer to the panel 4 than the motor 1 and the generator 2 in the state where the cooling component 5 is attached. With such a layout, when the motor 1 and the generator 2 move toward the panel 4, the cooling component 5 can be brought into contact with the panel 4 before the motor 1 and the generator 2. Therefore, the motor 1 and the generator 2 can be reliably protected, and the protection performance of the motor (motor 1 and the generator 2) can be improved.
 (8)図1に示すように、冷却部品5は、パネル4の平面部18に対向する位置に配置される。これにより、モータ1及びジェネレータ2がパネル4に向かって移動したときに、パネル4に近い冷却部品5の端面をパネル4に面接触させることができ、冷却部品5とパネル4との接触面積を増大させることができる。つまり、冷却部品5に作用する圧力を減少させることができ、冷却部品5の全体を満遍なく圧縮変形させながら、その衝撃を吸収することができる。したがって、冷却部品5の緩衝性能を向上させることができる。 (8) As shown in FIG. 1, the cooling component 5 is arranged at a position facing the flat surface portion 18 of the panel 4. As a result, when the motor 1 and the generator 2 move toward the panel 4, the end surface of the cooling component 5 close to the panel 4 can be brought into surface contact with the panel 4, and the contact area between the cooling component 5 and the panel 4 can be increased. Can be increased. That is, the pressure acting on the cooling component 5 can be reduced, and the impact can be absorbed while compressing and deforming the entire cooling component 5 evenly. Therefore, the cushioning performance of the cooling component 5 can be improved.
[3.変形例]
 上記の実施例はあくまでも例示に過ぎず、本実施例で明示しない種々の変形や技術の適用を排除する意図はない。本実施例の各構成は、それらの趣旨を逸脱しない範囲で種々変形して実施することができる。また、必要に応じて取捨選択することができ、あるいは適宜組み合わせることができる。例えば、上記の実施例では、エンジンルーム12の内部にモータ1,ジェネレータ2,エンジン3が配置されたハイブリッド自動車を例示したが、ジェネレータ2やエンジン3を持たない電気自動車に上記の保護構造を適用することも可能である。
[3. Modification example]
The above examples are merely examples, and there is no intention of excluding various modifications and applications of techniques not specified in this embodiment. Each configuration of this embodiment can be variously modified and implemented without departing from the purpose thereof. In addition, it can be selected as needed, or can be combined as appropriate. For example, in the above embodiment, a hybrid vehicle in which the motor 1, generator 2, and engine 3 are arranged inside the engine room 12 is illustrated, but the above protection structure is applied to an electric vehicle that does not have the generator 2 and the engine 3. It is also possible to do.
 また、上記の実施例では、冷却部品5がパネル4の平面部18に対向する位置でモータ1の表面に固定されているが、冷却部品5とパネル4との位置関係はこのような関係に限定されない。例えば、図4に示すように、パネル4の屈曲部19に対向する位置に冷却部品5を配置してもよい。屈曲部19は、稜線を挟んで二つの面が接合された形状の部位であり、例えば面状の部材を屈曲させて形成される。屈曲部19に対向するように冷却部品5を設けることで、屈曲部19とモータ1との干渉が防止される。したがって、電動機(モータ1やジェネレータ2)の保護性能を向上させることができる。 Further, in the above embodiment, the cooling component 5 is fixed to the surface of the motor 1 at a position facing the flat surface portion 18 of the panel 4, but the positional relationship between the cooling component 5 and the panel 4 has such a relationship. Not limited. For example, as shown in FIG. 4, the cooling component 5 may be arranged at a position facing the bent portion 19 of the panel 4. The bent portion 19 is a portion having a shape in which two surfaces are joined across a ridge line, and is formed by bending, for example, a planar member. By providing the cooling component 5 so as to face the bent portion 19, interference between the bent portion 19 and the motor 1 is prevented. Therefore, the protection performance of the electric motor (motor 1 and generator 2) can be improved.
 本出願は、2020年2月13日出願の日本特許出願特願2020-022503に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2020-022503 filed on February 13, 2020, the contents of which are incorporated herein by reference.
1 モータ(電動機,駆動装置)
2 ジェネレータ(電動機,駆動装置)
3 エンジン(内燃機関,駆動装置)
4 パネル
5 冷却部品
6 ケーシング
7 熱交換器
8 プレート
9 コルゲートフィン
10 車両
11 車室
12 エンジンルーム
13 バッテリ
14 インバータ
15 高圧ケーブル
16 第一コネクタ
17 第二コネクタ
18 平面部
19 屈曲部
1 Motor (motor, drive unit)
2 Generator (motor, drive unit)
3 Engine (internal combustion engine, drive unit)
4 Panel 5 Cooling parts 6 Casing 7 Heat exchanger 8 Plate 9 Corrugated fin 10 Vehicle 11 Vehicle room 12 Engine room 13 Battery 14 Inverter 15 High-voltage cable 16 First connector 17 Second connector 18 Flat part 19 Bent part

Claims (9)

  1.  車両に搭載される少なくとも一つの電動機と、
     前記電動機と車室との間を区画する面状のパネルと、
     前記電動機を冷却する冷媒の熱を前記冷媒とは別の媒質へ移動させるように構成された熱交換器を含む冷却部品とを備え、
     前記冷却部品は、前記電動機の表面のうち前記パネルに対向する側に一体的に固定される、ことを特徴とする、電動機の保護構造。
    With at least one motor mounted on the vehicle,
    A planar panel that separates the motor from the passenger compartment,
    It includes a cooling component including a heat exchanger configured to transfer the heat of the refrigerant that cools the motor to a medium other than the refrigerant.
    A protective structure for a motor, wherein the cooling component is integrally fixed to a side of the surface of the motor facing the panel.
  2.  前記電動機が、前記車両に搭載されるエンジンの後方に配置されることを特徴とする、請求項1記載の電動機の保護構造。 The motor protection structure according to claim 1, wherein the motor is arranged behind an engine mounted on the vehicle.
  3.  前記熱交換器が、複数のプレートを互いに隙間をあけて積層した構造を有し、
     前記複数のプレートが、前記電動機から前記パネルへ向かう方向に積層されることを特徴とする、請求項1または2記載の電動機の保護構造。
    The heat exchanger has a structure in which a plurality of plates are laminated with a gap between them.
    The protective structure for a motor according to claim 1 or 2, wherein the plurality of plates are laminated in a direction from the motor toward the panel.
  4.  前記電動機の前記表面のうち前記冷却部品に隣接するように配置され、前記車両に搭載されるバッテリとケーブルを介して接続されるコネクタをさらに備えることを特徴とする、請求項1~3のいずれか1項に記載の電動機の保護構造。 3. The protective structure for the motor according to item 1.
  5.  前記コネクタが、前記冷却部品の後方に配置されることを特徴とする、請求項4記載の電動機の保護構造。 The motor protection structure according to claim 4, wherein the connector is arranged behind the cooling component.
  6.  前記パネルは、前記車両の前方側において斜め上方に傾斜した斜面を含み、
     前記冷却部品が、前記斜面に対向するように配置されることを特徴とする、請求項1~5のいずれか1項に記載の電動機の保護構造。
    The panel includes an obliquely upwardly sloping slope on the front side of the vehicle.
    The protective structure for an electric motor according to any one of claims 1 to 5, wherein the cooling component is arranged so as to face the slope.
  7.  前記少なくとも一つの電動機は、前記車両に搭載される複数の電動機を含み、
     前記冷却部品が、前記複数の電動機のうち一つに固定されるとともに、前記冷却部品と前記パネルとの間の離隔距離が、前記複数の電動機の各々と前記パネルとの間の離隔距離よりも小さくなるように固定されることを特徴とする、請求項1~6のいずれか1項に記載の電動機の保護構造。
    The at least one motor includes a plurality of motors mounted on the vehicle.
    The cooling component is fixed to one of the plurality of motors, and the separation distance between the cooling component and the panel is larger than the separation distance between each of the plurality of motors and the panel. The protective structure for an electric motor according to any one of claims 1 to 6, wherein the motor is fixed so as to be small.
  8.  前記パネルは、平らな面である平面部を有し、
     前記冷却部品が、前記パネルの前記平面部に対向するように配置されることを特徴とする、請求項1~7のいずれか1項に記載の電動機の保護構造。
    The panel has a flat surface that is a flat surface.
    The protective structure for an electric motor according to any one of claims 1 to 7, wherein the cooling component is arranged so as to face the flat surface portion of the panel.
  9.  前記パネルは、屈曲した面である屈曲部を有し、
     前記冷却部品が、前記パネルの前記屈曲部に対向するように配置されることを特徴とする、請求項1~7のいずれか1項に記載の電動機の保護構造。
    The panel has a bent portion that is a bent surface.
    The protective structure for an electric motor according to any one of claims 1 to 7, wherein the cooling component is arranged so as to face the bent portion of the panel.
PCT/JP2020/031340 2020-02-13 2020-08-19 Electric motor protection structure WO2021161560A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022500217A JP7327632B2 (en) 2020-02-13 2020-08-19 Motor protection structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-022503 2020-02-13
JP2020022503 2020-02-13

Publications (1)

Publication Number Publication Date
WO2021161560A1 true WO2021161560A1 (en) 2021-08-19

Family

ID=77292246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031340 WO2021161560A1 (en) 2020-02-13 2020-08-19 Electric motor protection structure

Country Status (2)

Country Link
JP (1) JP7327632B2 (en)
WO (1) WO2021161560A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263939A (en) * 2003-02-28 2004-09-24 Toyo Radiator Co Ltd Heat exchanger
JP2011063168A (en) * 2009-09-18 2011-03-31 Suzuki Motor Corp Cooling device for hybrid vehicle
JP2017030424A (en) * 2015-07-30 2017-02-09 トヨタ自動車株式会社 On-vehicle structure of power control unit
JP2018083510A (en) * 2016-11-22 2018-05-31 トヨタ自動車株式会社 On-vehicle structure of inverter
JP2019048549A (en) * 2017-09-08 2019-03-28 トヨタ自動車株式会社 Cooling device of rotary electric machine for vehicle

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011103634T5 (en) 2010-11-02 2013-08-01 Honda Motor Co., Ltd. Electric vehicle
JP5817627B2 (en) 2012-04-05 2015-11-18 トヨタ自動車株式会社 Electric vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004263939A (en) * 2003-02-28 2004-09-24 Toyo Radiator Co Ltd Heat exchanger
JP2011063168A (en) * 2009-09-18 2011-03-31 Suzuki Motor Corp Cooling device for hybrid vehicle
JP2017030424A (en) * 2015-07-30 2017-02-09 トヨタ自動車株式会社 On-vehicle structure of power control unit
JP2018083510A (en) * 2016-11-22 2018-05-31 トヨタ自動車株式会社 On-vehicle structure of inverter
JP2019048549A (en) * 2017-09-08 2019-03-28 トヨタ自動車株式会社 Cooling device of rotary electric machine for vehicle

Also Published As

Publication number Publication date
JP7327632B2 (en) 2023-08-16
JPWO2021161560A1 (en) 2021-08-19

Similar Documents

Publication Publication Date Title
EP2026404B1 (en) Power supply device
JP5212482B2 (en) Power supply mounting structure
US8765282B2 (en) Battery assemblies
EP2233337B1 (en) Drive device for vehicle
JP5161533B2 (en) Battery module and battery pack
JP6089403B2 (en) Battery system element arrangement structure of electric vehicle
JP2011023302A (en) Battery pack and vehicle with the same, and bind bar for the battery pack
WO2013108763A1 (en) Powertrain system element arrangement structure for hybrid vehicle
US20080310109A1 (en) Cooling structure for high voltage electrical parts of a hybrid electric vehicle
JP2018063921A (en) Cell device
JP2011020623A (en) Mounting structure of electric automobile
JP2003346759A (en) Battery system
JP6904045B2 (en) Battery pack
CN109755428A (en) It is designed to have the electrified vehicle battery packs of sacrifice mems
WO2012172650A1 (en) Cooling structure for semiconductor element
WO2013183500A1 (en) High-voltage-harness connection structure for electric vehicle
EP4070979B1 (en) Vehicle drive unit
WO2021161560A1 (en) Electric motor protection structure
JP4997056B2 (en) Bus bar structure and power converter using the same
WO2013108766A1 (en) Battery cooling structure for electric vehicle
JP4895968B2 (en) Power converter
JP6805792B2 (en) Battery pack
JP2007253661A (en) Power source device for vehicle of two power source systems and air-cooled type on-vehicle power device
WO2013108765A1 (en) Powertrain system element arrangement structure for hybrid vehicle
JP2012015072A (en) Battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500217

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918239

Country of ref document: EP

Kind code of ref document: A1