WO2013183500A1 - High-voltage-harness connection structure for electric vehicle - Google Patents

High-voltage-harness connection structure for electric vehicle Download PDF

Info

Publication number
WO2013183500A1
WO2013183500A1 PCT/JP2013/064799 JP2013064799W WO2013183500A1 WO 2013183500 A1 WO2013183500 A1 WO 2013183500A1 JP 2013064799 W JP2013064799 W JP 2013064799W WO 2013183500 A1 WO2013183500 A1 WO 2013183500A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
inverter
vehicle
harness
voltage harness
Prior art date
Application number
PCT/JP2013/064799
Other languages
French (fr)
Japanese (ja)
Inventor
竜介 辛島
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2013183500A1 publication Critical patent/WO2013183500A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/04Arrangement or mounting of electrical propulsion units of the electric storage means for propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2306/00Other features of vehicle sub-units
    • B60Y2306/05Cooling

Definitions

  • the present invention relates to a high-power harness connection structure for an electric vehicle in which an inverter and a motor arranged in a front room are connected by a motor-side high-power harness.
  • a high-voltage harness connection structure for a hybrid vehicle in which a motor A and a motor B (generator) arranged in the front room (engine room) of the hybrid vehicle and an inverter are connected by a motor-side high-voltage harness is known.
  • the inverter disposed above the motor A and the motor B is set in an inclined state opened in the vehicle front direction and the vehicle width direction, and connectors (connection terminals) are provided at both ends.
  • the motor-side high-voltage harness is used for connection (see, for example, Patent Document 1).
  • the inclination setting inverter rotates in a direction approaching to motor A and motor B By doing so, it is set as the structure which opens further in the vehicle front direction. For this reason, when a front collision occurs, the deformable member from the front of the vehicle accompanying the deformation of the vehicle body and the connector of the motor-side high-voltage harness connected to the inverter may directly interfere (primary interference). There was a problem that the connector was damaged by the interference.
  • the present invention has been made paying attention to the above problem, and an object of the present invention is to provide a high-voltage harness connection structure for an electric vehicle that can prevent damage to the connector of the motor-side high-voltage harness when a front collision occurs.
  • the present invention is based on a high-voltage harness connection structure for an electric vehicle in which an inverter and a motor are arranged in a vehicle front room, and the inverter and the motor are connected via a motor-side high-voltage harness.
  • the connector provided in the inverter side edge part among the both ends of the said motor side strong electric harness was connected to the back surface position of the said inverter.
  • the motor-side high-voltage harness was connected to the peripheral surface position of the connector.
  • a cushioning component having a rigidity lower than that of the connector is disposed at a vehicle rear position facing the back surface of the connector.
  • the connector provided at the inverter side end of the motor side high voltage harness is connected to the back position of the inverter.
  • the motor-side high-voltage harness is connected to the peripheral surface of the connector, and a cushioning component having a rigidity lower than that of the connector is disposed at a vehicle rear position facing the back surface of the connector.
  • the configuration in which the motor-side high-voltage harness is connected to the rear position of the inverter prevents the primary interference in which the deformable member and the connector directly interfere with the connector from the front of the vehicle when the front collision occurs.
  • the rear surface of the connector interferes with the buffer component, and the buffer component having low rigidity is deformed by the connector having high rigidity toward the rear of the vehicle. Will move.
  • the secondary interference of the connector due to the movement of the inverter is intentionally caused to interfere with the buffer component having lower rigidity than the connector, thereby preventing the connector from being damaged.
  • the buffer part is arranged at a position where the connector interferes with the rearward movement of the inverter in the vehicle, so that the connector of the motor-side high-voltage harness can be prevented from being damaged.
  • FIG. 1 is an overall system diagram illustrating an FF plug-in hybrid vehicle to which a high-voltage harness connection structure according to a first embodiment is applied.
  • 1 is a front view showing a power train system element arrangement structure in a front room in an FF plug-in hybrid vehicle of Example 1.
  • FIG. 1 is a plan view showing a power train system element arrangement structure in a front room in an FF plug-in hybrid vehicle of Example 1.
  • FIG. 1 is a side view showing a power train system element arrangement structure in a front room in an FF plug-in hybrid vehicle of Example 1.
  • FIG. 3 is a side view showing the positional relationship between the inverter and the air cleaner in the front room in the FF plug-in hybrid vehicle of the first embodiment.
  • FIG. 5 is an operation explanatory diagram illustrating an interference operation between an inverter and an air cleaner when a front collision occurs in the FF plug-in hybrid vehicle of the first embodiment.
  • the configuration of the high-voltage harness connection structure of the FF plug-in hybrid vehicle (an example of an electric vehicle) according to the first embodiment is divided into “overall system configuration”, “power train system element arrangement configuration”, and “high-voltage harness connection configuration”. explain.
  • FIG. 1 is an overall system diagram showing an FF plug-in hybrid vehicle to which the power train element arrangement structure of the first embodiment is applied.
  • the overall system configuration of the plug-in hybrid vehicle will be described below with reference to FIG.
  • the FF plug-in hybrid vehicle includes a front room 1 on the front side of the vehicle on which the power train system elements are mounted, a center room 2 on which a driver and an occupant are seated, and a vehicle rear side on which the battery system elements are mounted.
  • the rear room 3 is divided into three spaces.
  • the “power train system element” refers to each component element that includes the electronic control system and constitutes the power train system.
  • the “battery system element” refers to each component element that includes the electronic control system and constitutes the battery system.
  • the front room 1 includes a horizontal engine 4, a first clutch 5, a motor / generator 6, a second clutch 7, and a belt type continuously variable transmission 8. It is arranged as a system element.
  • the horizontal engine 4 includes an air cleaner 9 and a starter motor 10.
  • the output shaft of the belt type continuously variable transmission 8 is drivingly connected to the left and right front wheels via a final reduction gear, a differential gear, and left and right drive shafts (not shown).
  • the horizontal engine 4 is an engine disposed in the front room 1 with the crankshaft direction as the vehicle width direction.
  • an engine controller 11 that performs various controls related to the horizontal engine 4 is arranged as a component of the engine control system.
  • the first clutch 5 is a hydraulic single-plate friction clutch or a multi-plate friction clutch interposed between the horizontal engine 4 and the motor / generator 6, and is engaged / slip-engaged / released by the first clutch oil pressure. Is controlled.
  • the motor / generator 6 is a three-phase AC permanent magnet type synchronous motor connected to the transverse engine 4 through the first clutch 5.
  • the motor / generator 6 is connected to an inverter 12 that converts a direct current to a three-phase alternating current during powering and converts a three-phase alternating current to a direct current during regeneration via a motor-side high-voltage harness 26.
  • a motor controller 13 that outputs a control command to the inverter 12 is disposed as a component of the motor control system.
  • the second clutch 7 is a hydraulic single-plate friction clutch or a multi-plate friction clutch interposed between the motor / generator 6 and the left and right front wheels as drive wheels.
  • the second clutch 7 is engaged / slip by the second clutch hydraulic pressure. The fastening / release is controlled.
  • the belt type continuously variable transmission 8 is speed-controlled to a continuously variable transmission ratio by changing the belt winding diameter by the transmission hydraulic pressure to the primary oil chamber and the secondary oil chamber.
  • the belt-type continuously variable transmission 8 has a control valve unit that regulates the line pressure from the pump discharge pressure and generates the first and second clutch hydraulic pressures and the transmission hydraulic pressure using the line pressure as an original pressure.
  • a transmission controller 14 that outputs a hydraulic control command to each hydraulic actuator of the control valve unit includes a hydraulic pressure It is arranged as a component of the control system.
  • EV mode As typical driving modes with different driving modes by the power train system, there are “EV mode”, “HEV mode” and “WSC mode”.
  • the “EV mode” is a mode in which the first clutch 5 is disengaged and the second clutch 7 is engaged to drive the motor.
  • the “HEV mode” is a mode in which both the clutches 5 and 7 are engaged to travel.
  • the “WSC mode” is a mode in which the first clutch 5 is engaged or released and the second clutch 7 is slip-engaged to travel.
  • a brake controller 21 that performs cooperative control of the regenerative braking force and the hydraulic braking force is disposed on the front side of the vehicle and at a position where the brake hydraulic pressure actuator is provided.
  • a fuel tank 22 that stores fuel for the horizontally mounted engine 4 is disposed at a position on the rear side of the vehicle and below the floor panel that defines the center room 2. Are connected by a fuel pipe 23.
  • the rear room 3 includes a traveling battery 31, a first auxiliary battery 32, a second auxiliary battery 33, a junction box 34, a first DC / DC converter 35,
  • the second DC / DC converter 36 is arranged as a battery system element.
  • a charger 37 and a charging port 38 are additionally arranged as battery system elements in association with the plug-in hybrid vehicle.
  • the traveling battery 31 is a secondary battery as a traveling power source, and for example, a laminated lithium ion battery is used.
  • the traveling battery 31 has a structure in which a large number of cells connected to each other are stacked to form a battery module, and a plurality of battery modules are arranged in the pack case via gap passages.
  • the traveling battery 31 is discharged via the junction box 34 ⁇ the battery-side high-voltage harness 39 ⁇ the inverter 12 when the motor / generator 6 performs power running control.
  • the motor / generator 6 performs regenerative control
  • charging is performed via the inverter 12 ⁇ the battery-side high-voltage harness 39 ⁇ the junction box 34.
  • the first auxiliary battery 32 is a low-voltage battery mounted as a dedicated power source for the starter motor 10 among in-vehicle auxiliary machines.
  • the second auxiliary battery 33 is a low voltage battery mounted as a power source for other auxiliary machines 40 excluding the starter motor 10.
  • the reason why the two auxiliary batteries 32 and 33 are installed is to ensure engine start when the starter motor 10 requests engine start. For example, when only one auxiliary battery is mounted, a voltage drop may occur due to simultaneous use of the starter motor 10 and other auxiliary machines 40.
  • the junction box 34 is a distribution board in which relay circuits for supplying / cutting off / distributing strong power to the traveling battery 31 are integrated. For example, when the plug connector 41 is connected to the charging port 38 (plug-in) when the vehicle stops at a charging stand or the like (plug-in), the traveling battery 31 is externally charged via the charging port 38 ⁇ charger 37 ⁇ junction box 34. If the charge amount of the first auxiliary battery 32 is insufficient, the first auxiliary battery 32 is charged with a part of the charge amount of the traveling battery 31 via the junction box 34 ⁇ the first DC / DC converter 35. The amount is secured. Similarly, if the amount of charge of the second auxiliary battery 33 is insufficient, the second auxiliary battery 33 is connected to a part of the amount of charge of the traveling battery 31 via the junction box 34 ⁇ the second DC / DC converter 36. Charge amount is secured.
  • the traveling battery 31, the first DC / DC converter 35, the second DC / DC converter 36, and the charger 37 are all in a pack structure housed in a case that covers the whole, and the air cooling fan units 51, 55, 56 and 57 are provided in each of the storage cases.
  • the air cooling fan units 51, 55, 56 and 57 are provided in each of the storage cases.
  • capacity management and temperature management of the traveling battery 31 are performed and operation control of the air cooling fan units 51, 55, 56, 57 is performed.
  • a battery controller 42 for performing the above is disposed as a component of the battery control system.
  • an integrated controller 43 that manages the energy consumption of the entire vehicle and has a function for running the vehicle with the highest efficiency is disposed as a component of the integrated control system. Information is exchanged between the integrated controller 43 and the controllers 11, 13, 14, 21, 42 via the CAN communication line 44.
  • [Configuration of powertrain elements] 2 to 4 are a front view, a plan view, and a side view showing the power train system element arrangement structure in the front room. The arrangement of power train elements will be described below with reference to FIGS.
  • the front room 1 includes a horizontal engine 4, a motor / generator 6, a belt type continuously variable transmission 8, an air cleaner 9, an engine controller 11, an inverter 12, and the like.
  • a motor controller 13 and a transmission controller 14 are arranged.
  • the horizontal engine 4 is arranged in the vehicle width direction in the right space of the front room 1 as shown in FIGS.
  • the crankshaft of the horizontal engine 4 As shown in FIG. 2, the crankshaft of the horizontal engine 4, the motor shaft of the motor / generator 6, and the input shaft of the belt type continuously variable transmission 8 are arranged in the vehicle width direction at the crankshaft position of the horizontal engine 4.
  • Coaxial arrangement (common axis A).
  • the cases of the motor / generator 6 and the belt type continuously variable transmission 8 are integrally fixed in the vehicle width direction to constitute a power unit mounted in the front room 1 of the FF hybrid vehicle. is doing.
  • the power unit in an L-shape, the upper space S is formed in the upper region of the motor / generator 6 and the belt type continuously variable transmission 8 in the front room 1 which are lower than the horizontally mounted engine 4. Forming.
  • an air cleaner 9 In the upper space S formed in the upper region of the motor / generator 6 and the belt type continuously variable transmission 8, an air cleaner 9, an engine controller 11, an inverter 12, a motor controller 13 and a transmission controller 14 are arranged.
  • the inverter 12 is positioned below the height of the horizontal engine 4, and is an upper space that is offset from the upper position of the motor / generator 6 and the belt type continuously variable transmission 8 toward the vehicle front side.
  • the air cleaner 9 is a position below the height of the horizontal engine 4 and is an upper position of the motor / generator 6 and the belt-type continuously variable transmission 8, and is adjacent to the horizontal engine 4 in the vehicle width direction.
  • the inverter 12 and the air cleaner 9 are arranged in the upper space S in the vehicle front-rear direction.
  • the power unit (horizontal engine 4, motor / generator 6, and belt type continuously variable transmission 8) is elastically supported by the suspension member 15 via a mounting member (not shown) as shown in FIG. 2.
  • the inverter 12 and the air cleaner 9 are fixed to the side member 16 via a bracket 17 in parallel with the power unit.
  • the air cleaner 9 is disposed at a position adjacent to the transverse engine 4 in the vehicle width direction, and has an air inlet 9a that is opened slightly obliquely toward the front of the vehicle, as shown in FIGS. Then, traveling wind or the like is introduced from a space formed between the horizontally placed engine 4 and the inverter 12. Furthermore, it is connected to the intake pipe 24 of the horizontally mounted engine 4 via a bellows pipe 25 that absorbs relative displacement.
  • the inverter 12 integrally includes a motor controller 13, and an engine controller 11, which is an electronic control unit, and a transmission controller 14 are stacked in a hierarchical manner in a vehicle upward space of the inverter 12. Arranged. As shown in FIG. 4, a battery-side high-voltage harness 39 extending from the traveling battery 31 mounted in the rear room 3 to the vehicle front side is connected to the vehicle rear side position of the inverter 12. The inverter 12 and the motor / generator 6 are connected by a motor-side high-voltage harness 26.
  • Both the controllers 11 and 14 arranged at the upper position of the inverter 12 hierarchically arrange the engine controllers 11 at the upper position in the occupied area in plan view of the inverter 12. Further, the transmission controller 14 is arranged in a hierarchy in the upper position in the occupied area in plan view of the inverter 12 and the upper position of the engine controller 11.
  • the signal line harness 18 connected to the engine controller 11 and the transmission controller 14 is a vehicle formed between the rear surfaces of the controllers 11 and 14 on the rear side of the vehicle and the protective plate portion 19a. Wiring is performed along the space in the width direction.
  • the protective plate portion 19a is integrally bent from the first mounting plate 19, and functions as a vertical wall that partitions between the controllers 11, 14 and the air cleaner 9 in the vehicle width direction.
  • the first attachment plate 19 is a plate that is fixed to the upper surface of the inverter 12 and sets the engine controller 11.
  • a second mounting plate 20 for setting the transmission controller 14 is fixed to the first mounting plate 19.
  • [High-voltage harness connection configuration] 5 and 6 are connection configuration diagrams of the motor-side high-voltage harness 26 with respect to the inverter 12.
  • FIG. 7 is a connection configuration diagram of the motor-side high-voltage harness 26 and the battery-side high-voltage harness 39.
  • FIG. 8 is an arrangement relationship diagram of the inverter 12 and the air cleaner 9.
  • the connection configuration of the high-voltage harness will be described with reference to FIGS.
  • the high-voltage harness connected to the inverter 12 includes a motor / generator 6 (motor), an air cleaner 9 (buffer component), a motor-side high-voltage harness 26, and an inverter connection. Plug connector 27 (connector) and motor connector 28 are provided. In addition, a battery-side high-voltage harness 39 and a plug connector 45 (connector) for connecting an inverter are provided.
  • the inverter 12 is disposed at an upper position on the front side of the vehicle in the front room 1 and is positioned at the back side of the inverter facing in the rearward direction of the vehicle, as shown in FIGS. 6 and 7, as shown in FIGS. 6 and 7. Is set. Further, as shown in FIG. 7, the harness connection terminal portion 12 b of the battery-side high-voltage harness 39 is set at the inverter back surface position facing the vehicle rearward direction of the inverter 12. Furthermore, as shown in FIGS. 5 and 6, the harness connection terminal portion 12 c of the signal line harness 18 is set at the left side position of the inverter facing the left side of the inverter 12.
  • the motor / generator 6 is disposed at a lower position on the rear side of the vehicle than the inverter 12, and the harness connection terminal portion 6a of the motor-side high-voltage harness 26 is disposed on the motor upper surface facing the vehicle upward direction as shown in FIG. Is set.
  • the motor-side high-voltage harness 26 includes a U-phase wire bundle 26a, a V-phase wire bundle 26b, a W-phase wire bundle 26c, and an earth wire bundle 26d as shown in FIGS. It is configured by bundling and covering the whole of these four wire bundles with one tube.
  • an inverter-connecting plug connector 27 is provided at the inverter-side end, and a motor-connecting connector 28 is provided at the motor-side end.
  • the motor-side high-voltage harness 26 is provided by connecting the plug connector 27 to the harness connection terminal portion 12 a of the inverter 12 and connecting the motor connection connector 28 to the harness connection terminal portion 6 a of the motor / generator 6. At this time, as shown in FIG. 7, the motor-side high-voltage harness 26 passes through a detour path that changes its direction downward from the plug upper surface position of the plug connector 27 while gradually bending after moving upward in the vehicle. The wiring reaching the harness connection position (harness connection terminal portion 6a) of the motor / generator 6 is used.
  • the plug connector 27 has a flat box shape with a hexahedron, a plug front surface Pf facing the vehicle front direction, a plug back surface Pb facing the vehicle rear direction, and the vehicle up-down and left-right directions. And plug peripheral surfaces Pu, Pd, Pl, and Pr.
  • a harness connection terminal portion 27 a connected to the harness connection terminal portion 12 a of the inverter 12 is provided on the plug front surface Pf.
  • a harness connecting portion 27b that connects the motor-side high-voltage harness 26 excluding the ground wire bundle 26d is provided at the position of the plug upper surface Pu facing the vehicle upward direction.
  • the plug connector 27 is provided with an air cleaner 9 made of a resin molded product having rigidity lower than that of the plug connector 27 at a vehicle rearward separation position facing the plug back surface Pb.
  • the battery-side high-voltage harness 39 is a strong electric wire that connects the inverter 12 and the traveling battery 31 and through which the discharging direct current from the traveling battery 31 and the charging direct current from the inverter 12 flow, as shown in FIG. This is composed of the harnesses 39a and 39b. Of both ends of the battery-side high-voltage harness 39, an inverter-connecting plug connector 45 is provided at the inverter-side end, and a battery-connecting connector (not shown) is provided at the battery-side end.
  • the battery-side high-voltage harness 39 is provided by connecting the plug connector 45 to the harness connection terminal portion 12 b of the inverter 12 and connecting the battery connection connector to a harness connection terminal portion outside the drawing of the traveling battery 31.
  • the harness connection position PM in the vehicle width direction of the battery-side high-voltage harness 39 is represented by the inverter-side harness connection position PL and the motor-side harness connection position PR in the vehicle-width direction of the motor-side high-voltage harness 26 as shown in FIG. The position is set between.
  • the battery-side high-voltage harness 39 is connected to the inverter 12 from the lower side of the vehicle. It is routed toward the traveling battery 31 at the rear of the vehicle (see FIG. 4).
  • the plug connector 45 is covered with a cover plate 46 fixed to the inverter 12 in order to avoid direct interference with surrounding members when a front collision occurs.
  • the operation in the high-voltage harness connection structure of the FF plug-in hybrid vehicle according to the first embodiment will be described by dividing it into “the arrangement operation of the air cleaner and the inverter”, “the arrangement operation of the controller above the inverter”, and “the high-voltage harness connection operation”.
  • the air cleaner 9 disposed above the horizontal engine 4 is disposed in the upper space S formed in the upper region of the motor / generator 6 and the belt-type continuously variable transmission 8.
  • the front room 1 only needs to secure a room height dimension H (see FIG. 2) that allows the height dimension of the horizontally placed engine 4.
  • the air cleaner 9 and the inverter 12 are arranged side by side in the vehicle front-rear direction in the upper space S formed in the upper region of the motor / generator 6 and the belt type continuously variable transmission 8.
  • the width of each of the air cleaner 9 and the inverter 12 is set to a width that can be accommodated in the upper space S, and the combined width of the horizontal engine 4, the motor / generator 6, and the belt type continuously variable transmission 8 can be obtained. It is only necessary to secure the allowable room width dimension W (see FIG. 2).
  • the height dimension H and the width dimension W of the front room 1 where the power train elements are arranged are not defined by the layout of the air cleaner 9 and the inverter 12, and the height dimension H and the width dimension of the front room 1 are set. W can be reduced, and the front room 1 can be made compact.
  • the horizontal engine 4, the motor / generator 6 and the belt type continuously variable transmission 8 are elastically supported with respect to the suspension member 15, and the inverter 12 is fixedly supported with respect to the side member 16.
  • the inverter is supported with respect to the power unit, vibrations from the engine and the motor / generator are transmitted to the inverter as they are, and the inverter is liable to malfunction, and the inverter durability is reduced.
  • the vibration from the horizontally placed engine 4 and the motor / generator 6 is transmitted to the inverter 12 through the elastic support portion ⁇ the suspension member 15 ⁇ the side member 16, and the inverter 12 is connected to the engine. Protected against vibration and motor vibration.
  • the inverter 12 is disposed in the front region of the upper space S that is offset from the upper position of the motor / generator 6 and the belt type continuously variable transmission 8 to the vehicle front side.
  • region of the upper space S which is the upper position of the motor / generator 6 and the belt-type continuously variable transmission 8, and adjoins the horizontal engine 4 in the vehicle width direction was employ
  • the relative distance between the inverter 12 and the motor / generator 6 is displaced, so that the length of the motor-side high-voltage harness 26 that connects the inverter 12 and the motor / generator 6 can be absorbed by the relative displacement. It is necessary to ensure this.
  • the air cleaner 9 is connected to the intake pipe 24 of the horizontal engine 4 so that the length of the bellows pipe 25 connected to the horizontal engine 4 should be as close to the horizontal engine 4 as possible. good.
  • the length of the motor-side high-voltage harness 26 sufficient to absorb the relative displacement and prevent the harness from being cut off by increasing the distance between the inverter 12 and the motor / generator 6 due to the vehicle front-side offset arrangement. Is secured.
  • the arrangement of the air cleaner 9 adjacent to the engine shortens the length of the bellows pipe 25 connected to the horizontally mounted engine 4, so that not only the space efficiency is improved but also the resistance to introducing clean air into the engine is kept low.
  • the first embodiment employs a configuration in which the electronic control units (the engine controller 11 and the transmission controller 14) that control the power train system are arranged in a hierarchical manner in the vehicle upper space of the inverter 12. .
  • the vehicle upward space of the inverter 12 arranged in the front room 1 is utilized as an installation space for the electronic control unit. Therefore, space efficiency can be improved as compared with the case where the electronic control unit is arranged at a position independent of the inverter.
  • the horizontal engine 4 and the motor / generator 6 are arranged in the vehicle width direction in the front room 1 to form an upper space S in the upper region of the motor / generator 6 and the belt type continuously variable transmission 8.
  • region among the upper spaces S was employ
  • electronic control units are arranged on the inverter 12 in a layered manner, the space in which the inverter 12 is to be arranged requires a wide space in the vehicle vertical direction.
  • the upper space S is formed in the upper region of the motor / generator 6 and the belt type continuously variable transmission 8, as shown in FIG. 4, the motor / generator 6 and the belt type continuously variable transmission 8 are directly above.
  • the engine controller 11 is arranged at the upper position of the inverter 12, and the transmission controller 14 is arranged at the upper position of the engine controller 11.
  • the number of harnesses connected to the engine controller 11 and the number of harnesses connected to the transmission controller 14 are compared, the number of harnesses connected to the engine controller 11 that performs various controls related to the horizontally placed engine 4 is determined as the transmission controller. More than the number of harnesses connected to 14. For this reason, if the connection work to the engine controller 11 having a large number of harnesses is to be performed after the connection work to the transmission controller 14, the trouble of performing the work while avoiding the harnesses of the transmission controller 14 already routed. Cost. Therefore, when the engine controller 11 and the transmission controller 14 are assembled, the connection work to the engine controller 11 having a large number of harnesses is performed first, and then the connection work to the transmission controller 14 having a small number of harnesses is performed. Efficiency is improved.
  • the signal line harness 18 connected to the engine controller 11 and the transmission controller 14 is disposed in the vehicle width direction space formed between the rear surface of the both controllers 11 and 14 on the vehicle rear side and the protective plate portion 19a. Adopted a configuration of wiring along. For example, in the case of a frontal collision without a protective plate, the inverter 12 and both controllers 11 and 14 move to the rear side of the vehicle, and both controllers 11 and 14 are connected to the air cleaner 9 on the rear side of the vehicle with the signal line harness 18 interposed therebetween. have a finger in the pie. At this time, the signal line harness 18 sandwiched between the controllers 11 and 14 and the air cleaner 9 is easily damaged.
  • the plug connector 27 provided at the inverter side end of the motor side high-voltage harness 26 is connected to the rear surface position of the inverter 12.
  • the motor-side high-voltage harness 26 is connected to the plug upper surface Pu, and the air cleaner 9 is less rigid than the plug connector 27 at a vehicle rearwardly spaced position facing the plug rear surface Pb. Is placed. That is, the motor-side high-voltage harness 26 is connected to the rear surface position of the inverter 12 to prevent primary interference in which the deformable member from the front of the vehicle and the plug connector 27 directly interfere with the deformation of the vehicle body when a front collision occurs. Is done.
  • the plug back surface Pb of the plug connector 27 interferes with the air cleaner 9 and is rigid.
  • the high-plug connector 27 moves toward the rear of the vehicle while deforming the low-rigidity air cleaner 9.
  • the secondary interference of the plug connector 27 due to the movement of the inverter 12 is intentionally caused to interfere with the air cleaner 9 having a lower rigidity than the plug connector 27, thereby preventing the plug connector 27 from being damaged.
  • the motor-side high-voltage harness 26 is connected to the plug upper surface Pu of the plug connector 27 so that it does not directly interfere with the air cleaner 9 even if it is pinched between the air cleaner 9.
  • the air cleaner 9 is disposed at a position where the plug connector 27 interferes with the backward movement of the inverter 12 in the vehicle, so that the plug connector 27 of the motor-side high-voltage harness 26 is prevented from being damaged.
  • the motor / generator 6 is connected to the motor / generator 6 via a detour path in which the motor-side high-voltage harness 26 is gradually bent from the position of the plug upper surface of the plug connector 27 toward the vehicle upper direction and then gently bent. Adopted a configuration to reach the harness connection position. For example, when traveling on a rough road, a relative displacement occurs between the inverter 12 fixed to the vehicle body and the motor / generator 6 elastically supported by the vehicle body. Further, when a front collision occurs, a large relative displacement occurs between the inverter 12 and the motor / generator 6.
  • the motor-side high-voltage harness 26 is configured not to go from the inverter 12 to the motor / generator 6 on the lower side but to temporarily draw a curved line that bends gently toward the upper side.
  • This wiring configuration ensures a sufficient margin for bending and twisting of the motor-side high-voltage harness 26. Therefore, the relative displacement absorption between the inverter 12 and the motor / generator 6 when traveling on a rough road is of course possible.
  • the motor-side high-voltage harness 26 is prevented from being damaged or cut even with a large relative displacement between the inverter 12 and the motor / generator 6.
  • the harness connection position PM in the vehicle width direction of the battery-side high-voltage harness 39 is set to a position between the inverter-side harness connection position PL and the motor-side harness connection position PR in the vehicle width direction of the motor-side high-voltage harness 26.
  • a configuration to set was adopted. That is, when a side collision occurs from the left side of the vehicle, the plug connector 27 or the like at the inverter side harness connection position PL serves as a protective member for the harness connection position PM, and when a side collision occurs from the right side of the vehicle, the motor side harness connection position PR changes.
  • the motor-side high-voltage harness 26 or the like serves as a protective member at the harness connection position PM. Therefore, when a side collision occurs from the left-right direction of the vehicle, damage to the plug connector 45 and the harness connecting portion 45a existing at the harness connection position PM is prevented.
  • the battery-side high-voltage harness 39 is routed from the vehicle lower direction of the inverter 12 toward the traveling battery 31 at the rear of the vehicle. That is, even when the inverter 12 moves toward the rear of the vehicle when a front collision occurs, the air cleaner 9 is prevented from interfering with the plug connector 45 and the battery-side high-voltage harness 39 that are set to escape downward in the vehicle. Therefore, even if the inverter 12 moves toward the rear of the vehicle when a front collision occurs, damage to the connecting portion of the battery-side high-voltage harness 39 due to interference with the air cleaner 9 is prevented.
  • An electric vehicle in which an inverter 12 and a motor (motor / generator 6) are arranged in a front room 1 of the vehicle, and the inverter 12 and the motor (motor / generator 6) are connected via a motor-side high-voltage harness 26.
  • a connector (plug connector 27) provided at an inverter side end portion of both end portions of the motor side high-voltage harness 26 is connected to a rear position of the inverter 12,
  • the motor-side high-voltage harness 26 is connected to the peripheral surface position of the connector (plug connector 27),
  • a shock absorbing component (air cleaner 9) having rigidity lower than that of the connector (plug connector 27) is disposed at a vehicle rear position facing the back surface of the connector (plug connector 27) (FIG. 8). For this reason, it is possible to prevent damage to the connector (plug connector 27) of the motor-side high-voltage harness 26 when a front collision occurs.
  • the inverter 12 is arranged at an upper position on the front side of the vehicle,
  • the motor (motor / generator 6) is arranged at a lower position on the vehicle rear side than the inverter 12,
  • a harness connecting portion 27b is provided at an upper surface position (a position of the plug upper surface Pu) facing the vehicle upward direction.
  • the motor-side high-voltage harness 26 is routed from the upper surface position of the connector (plug connector 27) (the position of the plug upper surface Pu) via a detour path that changes its direction downward while bending toward the vehicle upward direction, It was set as the wiring which reaches
  • the inverter 12 and the traveling battery 31 are connected via a battery-side high-voltage harness 39,
  • the inverter 12 is provided with a harness connection terminal portion 12b of the battery-side high-voltage harness 39,
  • the harness connection position PM in the vehicle width direction of the battery-side high-voltage harness 39 is set to a position between the inverter-side harness connection position PL and the motor-side harness connection position PR in the vehicle-width direction of the motor-side high-voltage harness 26 ( FIG. 7).
  • a connector (plug connector 45) is provided at the inverter-side end of the battery-side high-voltage harness 39, and the harness connecting portion 45a to the connector (plug connector 45) is set at the lower surface of the plug.
  • the battery-side high-voltage harness 39 was routed from the vehicle lower direction of the inverter 12 toward the traveling battery 31 at the rear of the vehicle (FIG. 7). For this reason, in addition to the effect of (3), it is possible to prevent damage to the connecting portion of the battery-side high-voltage harness 39 due to interference with the buffer member (air cleaner 9) when a front collision occurs.
  • the buffer component is a resin molded product (air cleaner 9) disposed in the front room 1 as a power train element (FIG. 8).
  • air cleaner 9) disposed in the front room 1 as a power train element (FIG. 8).
  • the existing resin molded product (air cleaner 9) arranged in the front room 1 is used as it is, so that it is highly deformable when a front collision occurs at low cost. It can be a cushioning component.
  • the high-voltage harness connection structure of the electric vehicle according to the present invention has been described based on the first embodiment.
  • the specific configuration is not limited to the first embodiment, and the claims relate to each claim. Design changes and additions are allowed without departing from the scope of the invention.
  • the cushioning component may be an example in which a resin molded component is newly added to the front surface of the metal component arranged at the vehicle rear position facing the rear surface of the inverter in the front room.
  • a relay box made of a resin molded product to which a motor harness is connected is arranged in the front room. Therefore, the relay box may be used as a buffer part.
  • Example 1 shows an example in which the high-voltage harness connection structure of the present invention is applied to an FF plug-in hybrid vehicle.
  • the high-voltage harness connection structure of the present invention has a configuration in which the inverter and the motor arranged in the front room are connected via the motor-side high-voltage harness, the FF hybrid vehicle without the plug-in structure and the drive
  • the present invention can also be applied to an electric vehicle or the like equipped with only a motor as a source.

Abstract

The present invention prevents damage to a connector for a motor-side high-voltage harness in a front collision. An inverter (12) and a motor-generator (6) are disposed in a front compartment (1) of a vehicle and connected to each other via a motor-side high-voltage harness (26). In this high-voltage-harness connection structure for an FF plug-in hybrid vehicle, a plug connector (27) provided on the inverter-side end of the aforementioned motor-side high-voltage harness (26) is connected to a position on the back surface of the inverter (12). The motor-side high-voltage harness (26) is coupled to the periphery of the plug connector (27), and an air cleaner (9) that is less rigid than the plug connector (27) is disposed, towards the rear of the vehicle, so as to face the back surface of the plug connector (27).

Description

電動車両の強電ハーネス接続構造High-voltage harness connection structure for electric vehicles
 本発明は、フロントルームに配置したインバータとモータをモータ側強電ハーネスにより接続した電動車両の強電ハーネス接続構造に関する。 The present invention relates to a high-power harness connection structure for an electric vehicle in which an inverter and a motor arranged in a front room are connected by a motor-side high-power harness.
 従来、ハイブリッド車両のフロントルーム(エンジンルーム)に配置したモータA及びモータB(ジェネレータ)とインバータをモータ側強電ハーネスにより接続したハイブリッド車両の強電ハーネス接続構造が知られている。この強電ハーネス接続構造は、モータA及びモータBの上方位置に配置したインバータを、車両前方向と車幅方向に開いた傾斜状態での設定とし、かつ、両端にコネクタ(接続端子)を設けたモータ側強電ハーネスにより接続している(例えば、特許文献1参照)。 Conventionally, a high-voltage harness connection structure for a hybrid vehicle in which a motor A and a motor B (generator) arranged in the front room (engine room) of the hybrid vehicle and an inverter are connected by a motor-side high-voltage harness is known. In this high-voltage harness connection structure, the inverter disposed above the motor A and the motor B is set in an inclined state opened in the vehicle front direction and the vehicle width direction, and connectors (connection terminals) are provided at both ends. The motor-side high-voltage harness is used for connection (see, for example, Patent Document 1).
特開2001-97052号公報Japanese Patent Laid-Open No. 2001-97052
 しかしながら、従来の強電ハーネス接続構造にあっては、車両前方から衝撃荷重が加わる衝突時(以下、「前突発生時」)、傾斜設定のインバータが、モータA及びモータBへ接近する方向に回転することで、車両前方向にさらに開いてしまう構成とされている。このため、前突発生時、車体の変形に伴う車両前方からの変形部材と、インバータに接続されるモータ側強電ハーネスのコネクタと、が直接干渉(一次干渉)することがあり、コネクタとの一次干渉によりコネクタが損傷してしまう、という問題があった。 However, in the conventional high-voltage harness connection structure, at the time of a collision in which an impact load is applied from the front of the vehicle (hereinafter referred to as “the occurrence of a front collision”), the inclination setting inverter rotates in a direction approaching to motor A and motor B By doing so, it is set as the structure which opens further in the vehicle front direction. For this reason, when a front collision occurs, the deformable member from the front of the vehicle accompanying the deformation of the vehicle body and the connector of the motor-side high-voltage harness connected to the inverter may directly interfere (primary interference). There was a problem that the connector was damaged by the interference.
 本発明は、上記問題に着目してなされたもので、前突発生時、モータ側強電ハーネスのコネクタの損傷を防止することができる電動車両の強電ハーネス接続構造を提供することを目的とする。 The present invention has been made paying attention to the above problem, and an object of the present invention is to provide a high-voltage harness connection structure for an electric vehicle that can prevent damage to the connector of the motor-side high-voltage harness when a front collision occurs.
 上記目的を達成するため、本発明は、車両のフロントルームにインバータ及びモータを配置し、前記インバータと前記モータを、モータ側強電ハーネスを介して接続した電動車両の強電ハーネス接続構造を前提とする。
この電動車両の強電ハーネス接続構造において、
前記モータ側強電ハーネスの両端部のうちインバータ側端部に設けられるコネクタを、前記インバータの背面位置に接続した。
前記モータ側強電ハーネスを、前記コネクタの周面位置に連結した。
前記コネクタの背面に対向する車両後方位置に、前記コネクタよりも剛性が低い緩衝部品を配置した。
In order to achieve the above object, the present invention is based on a high-voltage harness connection structure for an electric vehicle in which an inverter and a motor are arranged in a vehicle front room, and the inverter and the motor are connected via a motor-side high-voltage harness. .
In the high-voltage harness connection structure of this electric vehicle,
The connector provided in the inverter side edge part among the both ends of the said motor side strong electric harness was connected to the back surface position of the said inverter.
The motor-side high-voltage harness was connected to the peripheral surface position of the connector.
A cushioning component having a rigidity lower than that of the connector is disposed at a vehicle rear position facing the back surface of the connector.
 よって、モータ側強電ハーネスのインバータ側端部に設けられるコネクタは、インバータの背面位置に接続される。このモータ側強電ハーネスをインバータに接続した状態で、コネクタの周面にモータ側強電ハーネスが連結され、コネクタの背面に対向する車両後方位置に、コネクタよりも剛性が低い緩衝部品が配置される。
すなわち、インバータの背面位置にモータ側強電ハーネスを接続する構成としたことで、前突発生時、車体の変形に伴う車両前方からの変形部材とコネクタが直接干渉する一次干渉が防止される。そして、車体前部の変形に伴ってインバータが車両後方へ向かって移動するとき、コネクタの背面が緩衝部品と干渉し、剛性が高いコネクタにより剛性が低い緩衝部品を変形させながら車両後方へ向かって移動することになる。つまり、インバータの移動によるコネクタの二次干渉については、意図的にコネクタよりも剛性が低い緩衝部品と干渉させることでコネクタの損傷が防止される。
このように、前突発生時、インバータの車両後方移動によりコネクタが干渉する位置に緩衝部品を配置しておくことで、モータ側強電ハーネスのコネクタの損傷を防止することができる。
Therefore, the connector provided at the inverter side end of the motor side high voltage harness is connected to the back position of the inverter. In a state where the motor-side high-voltage harness is connected to the inverter, the motor-side high-voltage harness is connected to the peripheral surface of the connector, and a cushioning component having a rigidity lower than that of the connector is disposed at a vehicle rear position facing the back surface of the connector.
In other words, the configuration in which the motor-side high-voltage harness is connected to the rear position of the inverter prevents the primary interference in which the deformable member and the connector directly interfere with the connector from the front of the vehicle when the front collision occurs. When the inverter moves toward the rear of the vehicle along with the deformation of the front part of the vehicle body, the rear surface of the connector interferes with the buffer component, and the buffer component having low rigidity is deformed by the connector having high rigidity toward the rear of the vehicle. Will move. In other words, the secondary interference of the connector due to the movement of the inverter is intentionally caused to interfere with the buffer component having lower rigidity than the connector, thereby preventing the connector from being damaged.
As described above, when the front collision occurs, the buffer part is arranged at a position where the connector interferes with the rearward movement of the inverter in the vehicle, so that the connector of the motor-side high-voltage harness can be prevented from being damaged.
実施例1の強電ハーネス接続構造が適用されたFFプラグインハイブリッド車両を示す全体システム図である。1 is an overall system diagram illustrating an FF plug-in hybrid vehicle to which a high-voltage harness connection structure according to a first embodiment is applied. 実施例1のFFプラグインハイブリッド車両においてフロントルーム内でのパワートレーン系要素配置構造を示す正面図である。1 is a front view showing a power train system element arrangement structure in a front room in an FF plug-in hybrid vehicle of Example 1. FIG. 実施例1のFFプラグインハイブリッド車両においてフロントルーム内でのパワートレーン系要素配置構造を示す平面図である。1 is a plan view showing a power train system element arrangement structure in a front room in an FF plug-in hybrid vehicle of Example 1. FIG. 実施例1のFFプラグインハイブリッド車両においてフロントルーム内でのパワートレーン系要素配置構造を示す側面図である。1 is a side view showing a power train system element arrangement structure in a front room in an FF plug-in hybrid vehicle of Example 1. FIG. 実施例1のFFプラグインハイブリッド車両においてフロントルーム内でのインバータに対するモータ側強電ハーネスの接続構成を斜め前方から視た斜視図である。In the FF plug-in hybrid vehicle of Example 1, it is the perspective view which looked at the connection structure of the motor side heavy electric harness with respect to the inverter in a front room from diagonally forward. 実施例1のFFプラグインハイブリッド車両においてフロントルーム内でのインバータに対するモータ側強電ハーネスの接続構成を斜め後方から視た斜視図である。In the FF plug-in hybrid vehicle of Example 1, it is the perspective view which looked at the connection structure of the motor side heavy electric harness with respect to the inverter in a front room from diagonally back. 実施例1のFFプラグインハイブリッド車両においてフロントルーム内でのモータ側強電ハーネス及びバッテリ側強電ハーネスの接続構成を車両後方側から視た背面図である。In the FF plug-in hybrid vehicle of Example 1, it is the rear view which looked at the connection structure of the motor side high power harness and battery side high power harness in a front room from the vehicle rear side. 実施例1のFFプラグインハイブリッド車両においてフロントルーム内でのインバータとエアクリーナの配置関係を示す側面図である。FIG. 3 is a side view showing the positional relationship between the inverter and the air cleaner in the front room in the FF plug-in hybrid vehicle of the first embodiment. 実施例1のFFプラグインハイブリッド車両において前突発生時におけるインバータとエアクリーナの干渉作用を示す作用説明図である。FIG. 5 is an operation explanatory diagram illustrating an interference operation between an inverter and an air cleaner when a front collision occurs in the FF plug-in hybrid vehicle of the first embodiment.
 以下、本発明の電動車両の強電ハーネス接続構造を実現する最良の形態を、図面に示す実施例1に基づいて説明する。 Hereinafter, the best mode for realizing the high-voltage harness connection structure for an electric vehicle of the present invention will be described based on Example 1 shown in the drawings.
 まず、構成を説明する。
実施例1のFFプラグインハイブリッド車両(電動車両の一例)の強電ハーネス接続構造の構成を、「全体システム構成」、「パワートレーン系要素の配置構成」、「強電ハーネスの接続構成」に分けて説明する。
First, the configuration will be described.
The configuration of the high-voltage harness connection structure of the FF plug-in hybrid vehicle (an example of an electric vehicle) according to the first embodiment is divided into “overall system configuration”, “power train system element arrangement configuration”, and “high-voltage harness connection configuration”. explain.
 [全体システム構成]
 図1は、実施例1のパワートレーン系要素配置構造が適用されたFFプラグインハイブリッド車両を示す全体システム図である。以下、図1に基づいて、プラグインハイブリッド車両の全体システム構成を説明する。
[Overall system configuration]
FIG. 1 is an overall system diagram showing an FF plug-in hybrid vehicle to which the power train element arrangement structure of the first embodiment is applied. The overall system configuration of the plug-in hybrid vehicle will be described below with reference to FIG.
 FFプラグインハイブリッド車両は、図1に示すように、パワートレーン系要素を搭載する車両前方側のフロントルーム1と、ドライバや乗員が着座するセンタールーム2と、バッテリ系要素を搭載する車両後方側のリアルーム3と、の3つにスペース区分される。
ここで、「パワートレーン系要素」とは、電子制御系を含みパワートレーン系を構成する各構成要素のことをいう。「バッテリ系要素」とは、電子制御系を含みバッテリ系を構成する各構成要素のことをいう。
As shown in FIG. 1, the FF plug-in hybrid vehicle includes a front room 1 on the front side of the vehicle on which the power train system elements are mounted, a center room 2 on which a driver and an occupant are seated, and a vehicle rear side on which the battery system elements are mounted. The rear room 3 is divided into three spaces.
Here, the “power train system element” refers to each component element that includes the electronic control system and constitutes the power train system. The “battery system element” refers to each component element that includes the electronic control system and constitutes the battery system.
 前記フロントルーム1には、図1に示すように、横置きエンジン4と、第1クラッチ5と、モータ/ジェネレータ6と、第2クラッチ7と、ベルト式無段変速機8と、がパワートレーン系要素として配置される。なお、横置きエンジン4は、エアクリーナ9とスターターモータ10を有する。また、ベルト式無段変速機8の出力軸は、図外の終減速機と差動ギヤと左右のドライブシャフトを介し、左右の前輪に駆動連結される。 As shown in FIG. 1, the front room 1 includes a horizontal engine 4, a first clutch 5, a motor / generator 6, a second clutch 7, and a belt type continuously variable transmission 8. It is arranged as a system element. The horizontal engine 4 includes an air cleaner 9 and a starter motor 10. The output shaft of the belt type continuously variable transmission 8 is drivingly connected to the left and right front wheels via a final reduction gear, a differential gear, and left and right drive shafts (not shown).
 前記横置きエンジン4は、クランク軸方向を車幅方向としてフロントルーム1に配置したエンジンである。横置きエンジン4を配置したフロントルーム1には、横置きエンジン4に関連する様々な制御を行うエンジンコントローラ11が、エンジン制御系の構成要素として配置される。 The horizontal engine 4 is an engine disposed in the front room 1 with the crankshaft direction as the vehicle width direction. In the front room 1 in which the horizontal engine 4 is arranged, an engine controller 11 that performs various controls related to the horizontal engine 4 is arranged as a component of the engine control system.
 前記第1クラッチ5は、横置きエンジン4とモータ/ジェネレータ6との間に介装された油圧式の単板摩擦クラッチあるいは多板摩擦クラッチであり、第1クラッチ油圧により締結/スリップ締結/開放が制御される。 The first clutch 5 is a hydraulic single-plate friction clutch or a multi-plate friction clutch interposed between the horizontal engine 4 and the motor / generator 6, and is engaged / slip-engaged / released by the first clutch oil pressure. Is controlled.
 前記モータ/ジェネレータ6は、第1クラッチ5を介して横置きエンジン4に連結された三相交流の永久磁石型同期モータである。このモータ/ジェネレータ6には、力行時に直流を三相交流に変換し、回生時に三相交流を直流に変換するインバータ12が、モータ側強電ハーネス26を介して接続される。モータ/ジェネレータ6を配置したフロントルーム1には、インバータ12に対して制御指令を出力するモータコントローラ13が、モータ制御系の構成要素として配置される。 The motor / generator 6 is a three-phase AC permanent magnet type synchronous motor connected to the transverse engine 4 through the first clutch 5. The motor / generator 6 is connected to an inverter 12 that converts a direct current to a three-phase alternating current during powering and converts a three-phase alternating current to a direct current during regeneration via a motor-side high-voltage harness 26. In the front room 1 in which the motor / generator 6 is disposed, a motor controller 13 that outputs a control command to the inverter 12 is disposed as a component of the motor control system.
 前記第2クラッチ7は、モータ/ジェネレータ6と駆動輪である左右の前輪との間に介装された油圧式の単板摩擦クラッチあるいは多板摩擦クラッチであり、第2クラッチ油圧により締結/スリップ締結/開放が制御される。 The second clutch 7 is a hydraulic single-plate friction clutch or a multi-plate friction clutch interposed between the motor / generator 6 and the left and right front wheels as drive wheels. The second clutch 7 is engaged / slip by the second clutch hydraulic pressure. The fastening / release is controlled.
 前記ベルト式無段変速機8は、プライマリ油室とセカンダリ油室への変速油圧によりベルトの巻き付き径を変えることで無段階の変速比に変速制御される。ベルト式無段変速機8は、ポンプ吐出圧からライン圧を調圧し、ライン圧を元圧として第1,第2クラッチ油圧及び変速油圧を作り出すコントロールバルブユニットを有する。前記第1,第2クラッチ5,7及びベルト式無段変速機8を配置したフロントルーム1には、コントロールバルブユニットの各油圧アクチュエータに対して油圧制御指令を出力する変速機コントローラ14が、油圧制御系の構成要素として配置される。 The belt type continuously variable transmission 8 is speed-controlled to a continuously variable transmission ratio by changing the belt winding diameter by the transmission hydraulic pressure to the primary oil chamber and the secondary oil chamber. The belt-type continuously variable transmission 8 has a control valve unit that regulates the line pressure from the pump discharge pressure and generates the first and second clutch hydraulic pressures and the transmission hydraulic pressure using the line pressure as an original pressure. In the front room 1 in which the first and second clutches 5 and 7 and the belt type continuously variable transmission 8 are arranged, a transmission controller 14 that outputs a hydraulic control command to each hydraulic actuator of the control valve unit includes a hydraulic pressure It is arranged as a component of the control system.
 前記パワートレーン系による駆動形態が異なる代表的な走行モードとしては、「EVモード」と「HEVモード」と「WSCモード」を有する。「EVモード」は、第1クラッチ5を開放し、第2クラッチ7を締結してモータ走行するモードである。「HEVモード」は、両クラッチ5,7を締結して走行するモードである。「WSCモード」は、第1クラッチ5を締結又は開放し、第2クラッチ7をスリップ締結して走行するモードである。 As typical driving modes with different driving modes by the power train system, there are “EV mode”, “HEV mode” and “WSC mode”. The “EV mode” is a mode in which the first clutch 5 is disengaged and the second clutch 7 is engaged to drive the motor. The “HEV mode” is a mode in which both the clutches 5 and 7 are engaged to travel. The “WSC mode” is a mode in which the first clutch 5 is engaged or released and the second clutch 7 is slip-engaged to travel.
 前記センタールーム2には、図1に示すように、車両前方側であってブレーキ液圧アクチュエータが設けられた位置に、回生制動力と液圧制動力の協調制御を行うブレーキコントローラ21が配置される。また、車両後方側の位置であって、センタールーム2を画成するフロアパネルの下側位置に、横置きエンジン4への燃料を蓄える燃料タンク22が配置され、横置きエンジン4と燃料タンク22は、燃料パイプ23にて接続される。 In the center room 2, as shown in FIG. 1, a brake controller 21 that performs cooperative control of the regenerative braking force and the hydraulic braking force is disposed on the front side of the vehicle and at a position where the brake hydraulic pressure actuator is provided. . A fuel tank 22 that stores fuel for the horizontally mounted engine 4 is disposed at a position on the rear side of the vehicle and below the floor panel that defines the center room 2. Are connected by a fuel pipe 23.
 前記リアルーム3には、図1に示すように、走行用バッテリ31と、第1補機用バッテリ32と、第2補機用バッテリ33と、ジャンクションボックス34と、第1DC/DCコンバータ35と、第2DC/DCコンバータ36と、がバッテリ系要素として配置される。なお、リアルーム3には、プラグインハイブリッド車両であることに伴い、充電器37と充電ポート38がバッテリ系要素として追加配置される。 As shown in FIG. 1, the rear room 3 includes a traveling battery 31, a first auxiliary battery 32, a second auxiliary battery 33, a junction box 34, a first DC / DC converter 35, The second DC / DC converter 36 is arranged as a battery system element. In the rear room 3, a charger 37 and a charging port 38 are additionally arranged as battery system elements in association with the plug-in hybrid vehicle.
 前記走行用バッテリ31は、走行用電源としての二次電池であり、例えば、ラミネート型リチウムイオンバッテリが用いられる。この走行用バッテリ31は、互いに接続した多数のセルを積層してバッテリモジュールとし、複数のバッテリモジュールをパックケース内に隙間通路を介して配置した構造としている。走行用バッテリ31は、モータ/ジェネレータ6が力行制御を行うとき、ジャンクションボックス34→バッテリ側強電ハーネス39→インバータ12を経由して放電する。一方、モータ/ジェネレータ6が回生制御を行うとき、インバータ12→バッテリ側強電ハーネス39→ジャンクションボックス34を経由して充電する。 The traveling battery 31 is a secondary battery as a traveling power source, and for example, a laminated lithium ion battery is used. The traveling battery 31 has a structure in which a large number of cells connected to each other are stacked to form a battery module, and a plurality of battery modules are arranged in the pack case via gap passages. The traveling battery 31 is discharged via the junction box 34 → the battery-side high-voltage harness 39 → the inverter 12 when the motor / generator 6 performs power running control. On the other hand, when the motor / generator 6 performs regenerative control, charging is performed via the inverter 12 → the battery-side high-voltage harness 39 → the junction box 34.
 前記第1補機用バッテリ32は、車載の補機類のうちスターターモータ10の専用電源として搭載した低電圧バッテリである。前記第2補機用バッテリ33は、スターターモータ10を除く他の補機類40の電源として搭載した低電圧バッテリである。ここで、2つの補機用バッテリ32,33を搭載している理由は、スターターモータ10によるエンジン始動要求時にエンジン始動を確保するためである。例えば、1つの補機用バッテリのみを搭載した場合には、スターターモータ10と他の補機類40との同時使用等を原因として電圧降下が発生することがあることによる。 The first auxiliary battery 32 is a low-voltage battery mounted as a dedicated power source for the starter motor 10 among in-vehicle auxiliary machines. The second auxiliary battery 33 is a low voltage battery mounted as a power source for other auxiliary machines 40 excluding the starter motor 10. Here, the reason why the two auxiliary batteries 32 and 33 are installed is to ensure engine start when the starter motor 10 requests engine start. For example, when only one auxiliary battery is mounted, a voltage drop may occur due to simultaneous use of the starter motor 10 and other auxiliary machines 40.
 前記ジャンクションボックス34は、走行用バッテリ31に対する強電の供給/遮断/分配等を行うリレー回路を集約させた分電盤である。例えば、充電スタンド等での停車時にプラグコネクタ41を充電ポート38に接続すると(プラグイン)、充電ポート38→充電器37→ジャンクションボックス34を経由し、走行用バッテリ31が外部充電される。また、第1補機用バッテリ32の充電量が不足すると、ジャンクションボックス34→第1DC/DCコンバータ35を経由し、走行用バッテリ31の充電量の一部で第1補機用バッテリ32の充電量が確保される。同様に、第2補機用バッテリ33の充電量が不足すると、ジャンクションボックス34→第2DC/DCコンバータ36を経由し、走行用バッテリ31の充電量の一部で第2補機用バッテリ33の充電量が確保される。 The junction box 34 is a distribution board in which relay circuits for supplying / cutting off / distributing strong power to the traveling battery 31 are integrated. For example, when the plug connector 41 is connected to the charging port 38 (plug-in) when the vehicle stops at a charging stand or the like (plug-in), the traveling battery 31 is externally charged via the charging port 38 → charger 37 → junction box 34. If the charge amount of the first auxiliary battery 32 is insufficient, the first auxiliary battery 32 is charged with a part of the charge amount of the traveling battery 31 via the junction box 34 → the first DC / DC converter 35. The amount is secured. Similarly, if the amount of charge of the second auxiliary battery 33 is insufficient, the second auxiliary battery 33 is connected to a part of the amount of charge of the traveling battery 31 via the junction box 34 → the second DC / DC converter 36. Charge amount is secured.
 前記走行用バッテリ31と前記第1DC/DCコンバータ35と前記第2DC/DCコンバータ36と前記充電器37は、何れも全体を覆うケースに収納されたパック構造であり、空冷ファンユニット51,55,56,57が収納ケースのそれぞれに設けられている。前記ジャンクションボックス34及び空冷ファンユニット51,55,56,57を配置したリアルーム3には、走行用バッテリ31の容量管理や温度管理等を行うと共に空冷ファンユニット51,55,56,57の動作制御を行うバッテリコントローラ42が、バッテリ制御系の構成要素として配置される。 The traveling battery 31, the first DC / DC converter 35, the second DC / DC converter 36, and the charger 37 are all in a pack structure housed in a case that covers the whole, and the air cooling fan units 51, 55, 56 and 57 are provided in each of the storage cases. In the rear room 3 in which the junction box 34 and the air cooling fan units 51, 55, 56, 57 are arranged, capacity management and temperature management of the traveling battery 31 are performed and operation control of the air cooling fan units 51, 55, 56, 57 is performed. A battery controller 42 for performing the above is disposed as a component of the battery control system.
 前記リアルーム3には、車両全体の消費エネルギを管理し、最高効率で車両を走らせるための機能を担う統合コントローラ43が、統合制御系の構成要素として配置される。なお、統合コントローラ43と、各コントローラ11,13,14,21,42は、CAN通信線44を介して情報交換される。 In the rear room 3, an integrated controller 43 that manages the energy consumption of the entire vehicle and has a function for running the vehicle with the highest efficiency is disposed as a component of the integrated control system. Information is exchanged between the integrated controller 43 and the controllers 11, 13, 14, 21, 42 via the CAN communication line 44.
 [パワートレーン系要素の配置構成]
 図2~図4は、フロントルーム内でのパワートレーン系要素配置構造を示す正面図、平面図、側面図である。以下、図2~図4に基づき、パワートレーン系要素の配置構成を説明する。
[Configuration of powertrain elements]
2 to 4 are a front view, a plan view, and a side view showing the power train system element arrangement structure in the front room. The arrangement of power train elements will be described below with reference to FIGS.
 前記フロントルーム1には、図2~図4に示すように、横置きエンジン4と、モータ/ジェネレータ6と、ベルト式無段変速機8と、エアクリーナ9と、エンジンコントローラ11と、インバータ12と、モータコントローラ13と、変速機コントローラ14と、が配置されている。 As shown in FIGS. 2 to 4, the front room 1 includes a horizontal engine 4, a motor / generator 6, a belt type continuously variable transmission 8, an air cleaner 9, an engine controller 11, an inverter 12, and the like. A motor controller 13 and a transmission controller 14 are arranged.
 前記横置きエンジン4は、図2及び図3に示すように、フロントルーム1の右側スペースに車幅方向に配置される。この横置きエンジン4のクランク軸とモータ/ジェネレータ6のモータ軸とベルト式無段変速機8の入力軸は、図2に示すように、横置きエンジン4のクランク軸位置にて車幅方向に同軸配置とされる(共通軸線A)。そして、横置きエンジン4の下部位置には、モータ/ジェネレータ6及びベルト式無段変速機8の各ケースが車幅方向に一体に固定され、FFハイブリッド車両のフロントルーム1に搭載したパワーユニットを構成している。このように、パワーユニットをL字状に配置することにより、フロントルーム1のうち、横置きエンジン4より高さが低いモータ/ジェネレータ6及びベルト式無段変速機8の上側領域に上部スペースSを形成している。 The horizontal engine 4 is arranged in the vehicle width direction in the right space of the front room 1 as shown in FIGS. As shown in FIG. 2, the crankshaft of the horizontal engine 4, the motor shaft of the motor / generator 6, and the input shaft of the belt type continuously variable transmission 8 are arranged in the vehicle width direction at the crankshaft position of the horizontal engine 4. Coaxial arrangement (common axis A). In the lower position of the horizontally mounted engine 4, the cases of the motor / generator 6 and the belt type continuously variable transmission 8 are integrally fixed in the vehicle width direction to constitute a power unit mounted in the front room 1 of the FF hybrid vehicle. is doing. Thus, by arranging the power unit in an L-shape, the upper space S is formed in the upper region of the motor / generator 6 and the belt type continuously variable transmission 8 in the front room 1 which are lower than the horizontally mounted engine 4. Forming.
 前記モータ/ジェネレータ6及びベルト式無段変速機8の上側領域に形成された上部スペースSには、エアクリーナ9とエンジンコントローラ11とインバータ12とモータコントローラ13と変速機コントローラ14が配置される。 In the upper space S formed in the upper region of the motor / generator 6 and the belt type continuously variable transmission 8, an air cleaner 9, an engine controller 11, an inverter 12, a motor controller 13 and a transmission controller 14 are arranged.
 前記インバータ12は、図4に示すように、横置きエンジン4の高さ以下の位置であって、モータ/ジェネレータ6とベルト式無段変速機8の上部位置から車両前方側にオフセットした上部スペースSの前側領域に配置される。一方、前記エアクリーナ9は、横置きエンジン4の高さ以下の位置であって、モータ/ジェネレータ6とベルト式無段変速機8の上部位置であり、横置きエンジン4と車幅方向に隣接する上部スペースSの後側領域に配置される。つまり、インバータ12とエアクリーナ9は、上部スペースSにおいて、車両前後方向に並んだ配置とされている。 As shown in FIG. 4, the inverter 12 is positioned below the height of the horizontal engine 4, and is an upper space that is offset from the upper position of the motor / generator 6 and the belt type continuously variable transmission 8 toward the vehicle front side. Arranged in the front region of S. On the other hand, the air cleaner 9 is a position below the height of the horizontal engine 4 and is an upper position of the motor / generator 6 and the belt-type continuously variable transmission 8, and is adjacent to the horizontal engine 4 in the vehicle width direction. Arranged in the rear region of the upper space S. That is, the inverter 12 and the air cleaner 9 are arranged in the upper space S in the vehicle front-rear direction.
 前記パワーユニット(横置きエンジン4とモータ/ジェネレータ6とベルト式無段変速機8)は、図2に示すように、サスペンションメンバ15に対し、図外のマウント部材を介して弾性支持される。一方、インバータ12とエアクリーナ9は、前記パワーユニットと並列にサイドメンバ16に対しブラケット17を介して固定される。 The power unit (horizontal engine 4, motor / generator 6, and belt type continuously variable transmission 8) is elastically supported by the suspension member 15 via a mounting member (not shown) as shown in FIG. 2. On the other hand, the inverter 12 and the air cleaner 9 are fixed to the side member 16 via a bracket 17 in parallel with the power unit.
 前記エアクリーナ9は、横置きエンジン4と車幅方向に隣接する位置に配置され、図2及び図3に示すように、車両前方に向かって少し斜め方向に開口した空気導入口9aを有する。そして、横置きエンジン4とインバータ12の間に形成されるスペースから走行風等を導入する。さらに、横置きエンジン4の吸気管24に対し、相対変位を吸収するベローズ管25を介して接続されている。 The air cleaner 9 is disposed at a position adjacent to the transverse engine 4 in the vehicle width direction, and has an air inlet 9a that is opened slightly obliquely toward the front of the vehicle, as shown in FIGS. Then, traveling wind or the like is introduced from a space formed between the horizontally placed engine 4 and the inverter 12. Furthermore, it is connected to the intake pipe 24 of the horizontally mounted engine 4 via a bellows pipe 25 that absorbs relative displacement.
 前記インバータ12は、図2に示すように、モータコントローラ13を一体に有し、インバータ12の車両上方向スペースには、電子制御ユニットであるエンジンコントローラ11と変速機コントローラ14が、階層状に重ねて配置される。そして、インバータ12の車両後方側位置には、図4に示すように、リアルーム3に搭載された走行用バッテリ31から車両前方側に延びたバッテリ側強電ハーネス39が接続される。インバータ12とモータ/ジェネレータ6は、モータ側強電ハーネス26により接続される。 As shown in FIG. 2, the inverter 12 integrally includes a motor controller 13, and an engine controller 11, which is an electronic control unit, and a transmission controller 14 are stacked in a hierarchical manner in a vehicle upward space of the inverter 12. Arranged. As shown in FIG. 4, a battery-side high-voltage harness 39 extending from the traveling battery 31 mounted in the rear room 3 to the vehicle front side is connected to the vehicle rear side position of the inverter 12. The inverter 12 and the motor / generator 6 are connected by a motor-side high-voltage harness 26.
 前記インバータ12の上部位置に配置される両コントローラ11,14は、インバータ12の平面視による占有領域内の上部位置にエンジンコントローラ11を階層配置する。さらに、インバータ12の平面視による占有領域内の上側位置であって、エンジンコントローラ11の上部位置に変速機コントローラ14を階層配置するレイアウトとされる。 Both the controllers 11 and 14 arranged at the upper position of the inverter 12 hierarchically arrange the engine controllers 11 at the upper position in the occupied area in plan view of the inverter 12. Further, the transmission controller 14 is arranged in a hierarchy in the upper position in the occupied area in plan view of the inverter 12 and the upper position of the engine controller 11.
 前記エンジンコントローラ11と前記変速機コントローラ14に接続される信号線ハーネス18は、図4に示すように、両コントローラ11,14の車両後方側の背面と保護プレート部19aの間に形成される車幅方向空間に沿って配線される。この保護プレート部19aは、図4に示すように、第1取り付けプレート19から一体に屈曲形成されたもので、両コントローラ11,14とエアクリーナ9との間を車幅方向に仕切る縦壁として機能する。第1取り付けプレート19は、図2に示すように、インバータ12の上面に固定され、エンジンコントローラ11を設定するプレートである。この第1取り付けプレート19には、変速機コントローラ14を設定する第2取り付けプレート20が固定される。 As shown in FIG. 4, the signal line harness 18 connected to the engine controller 11 and the transmission controller 14 is a vehicle formed between the rear surfaces of the controllers 11 and 14 on the rear side of the vehicle and the protective plate portion 19a. Wiring is performed along the space in the width direction. As shown in FIG. 4, the protective plate portion 19a is integrally bent from the first mounting plate 19, and functions as a vertical wall that partitions between the controllers 11, 14 and the air cleaner 9 in the vehicle width direction. To do. As shown in FIG. 2, the first attachment plate 19 is a plate that is fixed to the upper surface of the inverter 12 and sets the engine controller 11. A second mounting plate 20 for setting the transmission controller 14 is fixed to the first mounting plate 19.
 [強電ハーネスの接続構成]
 図5及び図6は、インバータ12に対するモータ側強電ハーネス26の接続構成図である。図7は、モータ側強電ハーネス26及びバッテリ側強電ハーネス39の接続構成図である。図8は、インバータ12とエアクリーナ9の配置関係図である。以下、図5~図8に基づき、強電ハーネスの接続構成を説明する。
[High-voltage harness connection configuration]
5 and 6 are connection configuration diagrams of the motor-side high-voltage harness 26 with respect to the inverter 12. FIG. 7 is a connection configuration diagram of the motor-side high-voltage harness 26 and the battery-side high-voltage harness 39. FIG. 8 is an arrangement relationship diagram of the inverter 12 and the air cleaner 9. Hereinafter, the connection configuration of the high-voltage harness will be described with reference to FIGS.
 前記インバータ12に接続される強電ハーネス接続構成としては、図5~図8に示すように、モータ/ジェネレータ6(モータ)と、エアクリーナ9(緩衝部品)と、モータ側強電ハーネス26と、インバータ接続用のプラグコネクタ27(コネクタ)と、モータ接続用コネクタ28と、を備えている。加えて、バッテリ側強電ハーネス39と、インバータ接続用のプラグコネクタ45(コネクタ)と、を備えている。 As shown in FIGS. 5 to 8, the high-voltage harness connected to the inverter 12 includes a motor / generator 6 (motor), an air cleaner 9 (buffer component), a motor-side high-voltage harness 26, and an inverter connection. Plug connector 27 (connector) and motor connector 28 are provided. In addition, a battery-side high-voltage harness 39 and a plug connector 45 (connector) for connecting an inverter are provided.
 前記インバータ12は、フロントルーム1の車両前方側の上方位置に配置され、車両後方向に臨むインバータ背面位置に、図6及び図7に示すように、モータ側強電ハーネス26のハーネス接続端子部12aが設定される。また、インバータ12の車両後方向に臨むインバータ背面位置に、図7に示すように、バッテリ側強電ハーネス39のハーネス接続端子部12bが設定される。さらに、インバータ12の車両左方向に臨むインバータ左側面位置に、図5及び図6に示すように、信号線ハーネス18のハーネス接続端子部12cが設定される。 The inverter 12 is disposed at an upper position on the front side of the vehicle in the front room 1 and is positioned at the back side of the inverter facing in the rearward direction of the vehicle, as shown in FIGS. 6 and 7, as shown in FIGS. 6 and 7. Is set. Further, as shown in FIG. 7, the harness connection terminal portion 12 b of the battery-side high-voltage harness 39 is set at the inverter back surface position facing the vehicle rearward direction of the inverter 12. Furthermore, as shown in FIGS. 5 and 6, the harness connection terminal portion 12 c of the signal line harness 18 is set at the left side position of the inverter facing the left side of the inverter 12.
 前記モータ/ジェネレータ6は、インバータ12よりも車両後方側の下方位置に配置され、車両上方向に臨むモータ上面位置に、図7に示すように、モータ側強電ハーネス26のハーネス接続端子部6aが設定される。 The motor / generator 6 is disposed at a lower position on the rear side of the vehicle than the inverter 12, and the harness connection terminal portion 6a of the motor-side high-voltage harness 26 is disposed on the motor upper surface facing the vehicle upward direction as shown in FIG. Is set.
 前記モータ側強電ハーネス26は、モータ/ジェネレータ6が3相交流モータであるため、図5~図7に示すように、U相線束26aとV相線束26bとW相線束26cとアース線束26dを有し、これら4つの線束全体を1つのチューブにより束ねて覆うことにより構成される。モータ側強電ハーネス26の両端部のうち、インバータ側端部にインバータ接続用のプラグコネクタ27が設けられ、モータ側端部にモータ接続用コネクタ28が設けられる。そして、モータ側強電ハーネス26は、プラグコネクタ27をインバータ12のハーネス接続端子部12aに接続し、モータ接続用コネクタ28をモータ/ジェネレータ6のハーネス接続端子部6aに接続することで設けられる。このとき、モータ側強電ハーネス26は、図7に示すように、プラグコネクタ27のプラグ上面位置から、車両上方向に向かった後に緩やかに屈曲しながら車両下方向に向きを変える迂回経路を経由し、モータ/ジェネレータ6のハーネス接続位置(ハーネス接続端子部6a)に到達する配索とされる。 Since the motor / generator 6 is a three-phase AC motor, the motor-side high-voltage harness 26 includes a U-phase wire bundle 26a, a V-phase wire bundle 26b, a W-phase wire bundle 26c, and an earth wire bundle 26d as shown in FIGS. It is configured by bundling and covering the whole of these four wire bundles with one tube. Of both ends of the motor-side high-voltage harness 26, an inverter-connecting plug connector 27 is provided at the inverter-side end, and a motor-connecting connector 28 is provided at the motor-side end. The motor-side high-voltage harness 26 is provided by connecting the plug connector 27 to the harness connection terminal portion 12 a of the inverter 12 and connecting the motor connection connector 28 to the harness connection terminal portion 6 a of the motor / generator 6. At this time, as shown in FIG. 7, the motor-side high-voltage harness 26 passes through a detour path that changes its direction downward from the plug upper surface position of the plug connector 27 while gradually bending after moving upward in the vehicle. The wiring reaching the harness connection position (harness connection terminal portion 6a) of the motor / generator 6 is used.
 前記プラグコネクタ27は、図5及び図6に示すように、6面体による扁平ボックス形状であり、車両前方向に臨むプラグ前面Pfと、車両後方向に臨むプラグ背面Pbと、車両上下左右方向に臨むプラグ周面Pu,Pd,Pl,Prと、を有する。プラグ前面Pfに、図5に示すように、インバータ12のハーネス接続端子部12aに接続するハーネス接続端子部27aが設けられる。プラグ周面Pu,Pd,Pl,Prのうち、車両上方向に臨むプラグ上面Puの位置に、アース線束26dを除いたモータ側強電ハーネス26を連結するハーネス連結部27bが設けられる。そして、プラグコネクタ27は、図8に示すように、プラグ背面Pbに対向する車両後方離間位置に、プラグコネクタ27よりも剛性が低い樹脂成型品によるエアクリーナ9が配置される。 As shown in FIGS. 5 and 6, the plug connector 27 has a flat box shape with a hexahedron, a plug front surface Pf facing the vehicle front direction, a plug back surface Pb facing the vehicle rear direction, and the vehicle up-down and left-right directions. And plug peripheral surfaces Pu, Pd, Pl, and Pr. As shown in FIG. 5, a harness connection terminal portion 27 a connected to the harness connection terminal portion 12 a of the inverter 12 is provided on the plug front surface Pf. Of the plug peripheral surfaces Pu, Pd, Pl, and Pr, a harness connecting portion 27b that connects the motor-side high-voltage harness 26 excluding the ground wire bundle 26d is provided at the position of the plug upper surface Pu facing the vehicle upward direction. As shown in FIG. 8, the plug connector 27 is provided with an air cleaner 9 made of a resin molded product having rigidity lower than that of the plug connector 27 at a vehicle rearward separation position facing the plug back surface Pb.
 前記バッテリ側強電ハーネス39は、インバータ12と走行用バッテリ31を接続し、走行用バッテリ31からの放電直流とインバータ12からの充電直流が流れる強電線であるため、図7に示すように、2本のハーネス39a,39bにより構成される。バッテリ側強電ハーネス39の両端部のうち、インバータ側端部にインバータ接続用のプラグコネクタ45が設けられ、バッテリ側端部に図外のバッテリ接続用コネクタが設けられる。そして、バッテリ側強電ハーネス39は、プラグコネクタ45をインバータ12のハーネス接続端子部12bに接続し、バッテリ接続用コネクタを走行用バッテリ31の図外のハーネス接続端子部に接続することで設けられる。このとき、バッテリ側強電ハーネス39の車幅方向におけるハーネス接続位置PMを、図7に示すように、モータ側強電ハーネス26の車幅方向におけるインバータ側ハーネス接続位置PLとモータ側ハーネス接続位置PRとの間の位置に設定している。そして、プラグコネクタ27と同様に、6面体による扁平ボックス形状を持つプラグコネクタ45へのハーネス連結部45aをプラグ下面位置に設定することで、バッテリ側強電ハーネス39を、インバータ12の車両下方向から車両後方の走行用バッテリ31に向かって配索している(図4参照)。
なお、プラグコネクタ45は、図5に示すように、前突発生時に周囲部材との直接干渉を回避するため、インバータ12に固定したカバープレート46により覆っている。
Since the battery-side high-voltage harness 39 is a strong electric wire that connects the inverter 12 and the traveling battery 31 and through which the discharging direct current from the traveling battery 31 and the charging direct current from the inverter 12 flow, as shown in FIG. This is composed of the harnesses 39a and 39b. Of both ends of the battery-side high-voltage harness 39, an inverter-connecting plug connector 45 is provided at the inverter-side end, and a battery-connecting connector (not shown) is provided at the battery-side end. The battery-side high-voltage harness 39 is provided by connecting the plug connector 45 to the harness connection terminal portion 12 b of the inverter 12 and connecting the battery connection connector to a harness connection terminal portion outside the drawing of the traveling battery 31. At this time, the harness connection position PM in the vehicle width direction of the battery-side high-voltage harness 39 is represented by the inverter-side harness connection position PL and the motor-side harness connection position PR in the vehicle-width direction of the motor-side high-voltage harness 26 as shown in FIG. The position is set between. Then, similarly to the plug connector 27, by setting the harness connecting portion 45a to the plug connector 45 having a flat box shape with a hexahedron at the lower surface position of the plug, the battery-side high-voltage harness 39 is connected to the inverter 12 from the lower side of the vehicle. It is routed toward the traveling battery 31 at the rear of the vehicle (see FIG. 4).
As shown in FIG. 5, the plug connector 45 is covered with a cover plate 46 fixed to the inverter 12 in order to avoid direct interference with surrounding members when a front collision occurs.
 次に、作用を説明する。
実施例1のFFプラグインハイブリッド車両の強電ハーネス接続構造における作用を、「エアクリーナとインバータの配置作用」、「インバータ上部へのコントローラ配置作用」、「強電ハーネス接続作用」に分けて説明する。
Next, the operation will be described.
The operation in the high-voltage harness connection structure of the FF plug-in hybrid vehicle according to the first embodiment will be described by dividing it into “the arrangement operation of the air cleaner and the inverter”, “the arrangement operation of the controller above the inverter”, and “the high-voltage harness connection operation”.
 [エアクリーナとインバータの配置作用]
 車両の設計仕様として、全長・車幅・車高が決まっている場合、センタールーム2からの前方視野の拡大、室容積の拡大、デザイン自由度の確保を達成するためには、パワートレーン系要素を配置するフロントルーム1をできる限りコンパクト化することが必要である。以下、これを反映するエアクリーナ9とインバータ12の配置作用を説明する。
[Air cleaner and inverter arrangement]
If the overall design, vehicle width, and vehicle height are determined as the vehicle design specifications, the powertrain system elements must be used to increase the forward view from the center room 2, increase the room volume, and ensure design flexibility. It is necessary to make the front room 1 in which the space is arranged as compact as possible. Hereinafter, the arrangement | positioning effect | action of the air cleaner 9 and the inverter 12 which reflects this is demonstrated.
 上記のように、実施例1では、横置きエンジン4の上方位置に配置されるエアクリーナ9を、モータ/ジェネレータ6及びベルト式無段変速機8の上側領域に形成した上部スペースSに配置した。この構成により、フロントルーム1は、横置きエンジン4の高さ寸法を許容するルーム高さ寸法H(図2参照)を確保するだけで良い。 As described above, in the first embodiment, the air cleaner 9 disposed above the horizontal engine 4 is disposed in the upper space S formed in the upper region of the motor / generator 6 and the belt-type continuously variable transmission 8. With this configuration, the front room 1 only needs to secure a room height dimension H (see FIG. 2) that allows the height dimension of the horizontally placed engine 4.
 また、実施例1では、エアクリーナ9とインバータ12を、モータ/ジェネレータ6及びベルト式無段変速機8の上側領域に形成した上部スペースSに車両前後方向に並べて配置した。この構成により、エアクリーナ9とインバータ12の各横幅は、上部スペースSに収まる幅寸法に設定するだけで、横置きエンジン4とモータ/ジェネレータ6とベルト式無段変速機8を合わせた幅寸法を許容するルーム幅寸法W(図2参照)を確保するだけで良い。 In the first embodiment, the air cleaner 9 and the inverter 12 are arranged side by side in the vehicle front-rear direction in the upper space S formed in the upper region of the motor / generator 6 and the belt type continuously variable transmission 8. With this configuration, the width of each of the air cleaner 9 and the inverter 12 is set to a width that can be accommodated in the upper space S, and the combined width of the horizontal engine 4, the motor / generator 6, and the belt type continuously variable transmission 8 can be obtained. It is only necessary to secure the allowable room width dimension W (see FIG. 2).
 したがって、パワートレーン系要素を配置するフロントルーム1の高さ寸法Hと幅寸法Wが、エアクリーナ9とインバータ12の配置レイアウトにより規定されることがなく、フロントルーム1の高さ寸法Hと幅寸法Wを縮小可能であり、フロントルーム1のコンパクト化を図ることができる。 Therefore, the height dimension H and the width dimension W of the front room 1 where the power train elements are arranged are not defined by the layout of the air cleaner 9 and the inverter 12, and the height dimension H and the width dimension of the front room 1 are set. W can be reduced, and the front room 1 can be made compact.
 実施例1では、横置きエンジン4、モータ/ジェネレータ6及びベルト式無段変速機8を、サスペンションメンバ15に対して弾性支持し、インバータ12を、サイドメンバ16に対して固定支持した構成を採用した。
例えば、パワーユニットに対しインバータを支持した場合には、エンジンやモータ/ジェネレータからの振動が、そのままインバータに伝達され、インバータに不具合が発生し易いし、インバータ耐久性も低下する。
これに対し、横置きエンジン4やモータ/ジェネレータ6からの振動が、弾性支持部→サスペンションメンバ15→サイドメンバ16を経由し、減衰振動がインバータ12に伝達されることになり、インバータ12がエンジン振動やモータ振動から保護される。
In the first embodiment, the horizontal engine 4, the motor / generator 6 and the belt type continuously variable transmission 8 are elastically supported with respect to the suspension member 15, and the inverter 12 is fixedly supported with respect to the side member 16. did.
For example, when the inverter is supported with respect to the power unit, vibrations from the engine and the motor / generator are transmitted to the inverter as they are, and the inverter is liable to malfunction, and the inverter durability is reduced.
On the other hand, the vibration from the horizontally placed engine 4 and the motor / generator 6 is transmitted to the inverter 12 through the elastic support portion → the suspension member 15 → the side member 16, and the inverter 12 is connected to the engine. Protected against vibration and motor vibration.
 実施例1では、インバータ12を、モータ/ジェネレータ6及びベルト式無段変速機8の上部位置から車両前方側にオフセットした上部スペースSの前側領域に配置する。そして、エアクリーナ9を、モータ/ジェネレータ6及びベルト式無段変速機8の上部位置であり、横置きエンジン4と車幅方向に隣接する上部スペースSの後側領域に配置した構成を採用した。
例えば、パワーユニットの振動時には、インバータ12とモータ/ジェネレータ6の相対間隔が変位することで、インバータ12とモータ/ジェネレータ6を接続するモータ側強電ハーネス26の長さとしては、相対変位を吸収できる長さを確保する必要がある。一方、エアクリーナ9は、横置きエンジン4の吸気管24に接続されることで、横置きエンジン4と接続するベローズ管25の長さを短くするには、できる限り横置きエンジン4に近い方が良い。
これに対し、インバータ12の車両前方側オフセット配置により、モータ/ジェネレータ6との間隔が長くなることで、相対変位を吸収してハーネス切れを防止するのに十分なモータ側強電ハーネス26の長さが確保される。一方、エアクリーナ9のエンジン隣接配置により、横置きエンジン4と接続するベローズ管25の長さが短くなることで、スペース効率が向上するだけでなく、清浄空気のエンジン導入抵抗が低く抑えられる。
In the first embodiment, the inverter 12 is disposed in the front region of the upper space S that is offset from the upper position of the motor / generator 6 and the belt type continuously variable transmission 8 to the vehicle front side. And the structure which has arrange | positioned the air cleaner 9 in the rear side area | region of the upper space S which is the upper position of the motor / generator 6 and the belt-type continuously variable transmission 8, and adjoins the horizontal engine 4 in the vehicle width direction was employ | adopted.
For example, when the power unit vibrates, the relative distance between the inverter 12 and the motor / generator 6 is displaced, so that the length of the motor-side high-voltage harness 26 that connects the inverter 12 and the motor / generator 6 can be absorbed by the relative displacement. It is necessary to ensure this. On the other hand, the air cleaner 9 is connected to the intake pipe 24 of the horizontal engine 4 so that the length of the bellows pipe 25 connected to the horizontal engine 4 should be as close to the horizontal engine 4 as possible. good.
On the other hand, the length of the motor-side high-voltage harness 26 sufficient to absorb the relative displacement and prevent the harness from being cut off by increasing the distance between the inverter 12 and the motor / generator 6 due to the vehicle front-side offset arrangement. Is secured. On the other hand, the arrangement of the air cleaner 9 adjacent to the engine shortens the length of the bellows pipe 25 connected to the horizontally mounted engine 4, so that not only the space efficiency is improved but also the resistance to introducing clean air into the engine is kept low.
 [インバータ上部へのコントローラ配置作用]
 フロントルーム1にパワートレーン系要素として電子制御ユニットを配置する場合、電子制御ユニットを、スペース効率を向上させて配置することが必要である。以下、これを反映するインバータ上部へのコントローラ配置作用を説明する。
[Controller placement on top of inverter]
When arranging an electronic control unit as a power train system element in the front room 1, it is necessary to arrange the electronic control unit with improved space efficiency. Hereinafter, the controller placement action on the upper part of the inverter reflecting this will be described.
 上記のように、実施例1では、インバータ12の車両上方向スペースに、パワートレーン系を制御する電子制御ユニット(エンジンコントローラ11と変速機コントローラ14)を階層状に重ねて配置する構成を採用した。
この構成を採用したことにより、フロントルーム1に配置されたインバータ12の車両上方向スペースが、電子制御ユニットの設置スペースとして活用される。したがって、インバータから独立した位置に電子制御ユニットを配置する場合に比べ、スペース効率の向上が図られる。
As described above, the first embodiment employs a configuration in which the electronic control units (the engine controller 11 and the transmission controller 14) that control the power train system are arranged in a hierarchical manner in the vehicle upper space of the inverter 12. .
By adopting this configuration, the vehicle upward space of the inverter 12 arranged in the front room 1 is utilized as an installation space for the electronic control unit. Therefore, space efficiency can be improved as compared with the case where the electronic control unit is arranged at a position independent of the inverter.
 実施例1では、フロントルーム1に、横置きエンジン4とモータ/ジェネレータ6を車幅方向に配置することで、モータ/ジェネレータ6及びベルト式無段変速機8の上側領域に上部スペースSを形成する。そして、上部スペースSのうち車両前方側領域に、インバータ12を配置する構成を採用した。
インバータ12に電子制御ユニットを階層状に重ねて配置する場合、インバータ12を配置しようとするスペースは、車両上下方向に広いスペースが必要である。これに対し、モータ/ジェネレータ6及びベルト式無段変速機8の上側領域に上部スペースSを形成した場合、図4に示すように、モータ/ジェネレータ6及びベルト式無段変速機8の真上領域よりも、真上領域から車両前方側に外れた車両前方側領域の方がより広いスペースを確保できる。
したがって、上部スペースSのうち車両前方側領域にインバータ12を配置することで、インバータ12に電子制御ユニット(エンジンコントローラ11と変速機コントローラ14)を階層状に重ねて配置するのに十分なスペースが確保される。
In the first embodiment, the horizontal engine 4 and the motor / generator 6 are arranged in the vehicle width direction in the front room 1 to form an upper space S in the upper region of the motor / generator 6 and the belt type continuously variable transmission 8. To do. And the structure which arrange | positions the inverter 12 in the vehicle front side area | region among the upper spaces S was employ | adopted.
When electronic control units are arranged on the inverter 12 in a layered manner, the space in which the inverter 12 is to be arranged requires a wide space in the vehicle vertical direction. On the other hand, when the upper space S is formed in the upper region of the motor / generator 6 and the belt type continuously variable transmission 8, as shown in FIG. 4, the motor / generator 6 and the belt type continuously variable transmission 8 are directly above. It is possible to secure a wider space in the vehicle front side region that deviates from the region directly above the vehicle front side than in the region.
Therefore, by arranging the inverter 12 in the vehicle front side region in the upper space S, there is enough space to arrange the electronic control units (the engine controller 11 and the transmission controller 14) on the inverter 12 in a layered manner. Secured.
 実施例1では、インバータ12の上部位置にエンジンコントローラ11を配置し、さらに、エンジンコントローラ11の上部位置に変速機コントローラ14を配置する構成を採用した。
エンジンコントローラ11に接続されるハーネス数と変速機コントローラ14に接続されるハーネス数を比較すると、横置きエンジン4に関連する様々な制御を行うエンジンコントローラ11に接続されるハーネス数が、変速機コントローラ14に接続されるハーネス数よりも多い。このため、ハーネス数が多いエンジンコントローラ11への接続作業を、変速機コントローラ14への接続作業の後で行おうとすると、既に配索されている変速機コントローラ14のハーネスを避けながら行うという手間を要する。
したがって、エンジンコントローラ11と変速機コントローラ14を組み付けるとき、ハーネス数が多いエンジンコントローラ11への接続作業を先に行った後、ハーネス数が少ない変速機コントローラ14への接続作業を行うことで、作業効率が向上する。
In the first embodiment, the engine controller 11 is arranged at the upper position of the inverter 12, and the transmission controller 14 is arranged at the upper position of the engine controller 11.
When the number of harnesses connected to the engine controller 11 and the number of harnesses connected to the transmission controller 14 are compared, the number of harnesses connected to the engine controller 11 that performs various controls related to the horizontally placed engine 4 is determined as the transmission controller. More than the number of harnesses connected to 14. For this reason, if the connection work to the engine controller 11 having a large number of harnesses is to be performed after the connection work to the transmission controller 14, the trouble of performing the work while avoiding the harnesses of the transmission controller 14 already routed. Cost.
Therefore, when the engine controller 11 and the transmission controller 14 are assembled, the connection work to the engine controller 11 having a large number of harnesses is performed first, and then the connection work to the transmission controller 14 having a small number of harnesses is performed. Efficiency is improved.
 実施例1では、エンジンコントローラ11と変速機コントローラ14に接続される信号線ハーネス18を、両コントローラ11,14の車両後方側の背面と保護プレート部19aの間に形成される車幅方向空間に沿って配線する構成を採用した。
例えば、保護プレートが無い状況での前突時には、インバータ12及び両コントローラ11,14が車両後方側へ移動し、両コントローラ11,14が、信号線ハーネス18を挟みながら車両後方側のエアクリーナ9と干渉する。このとき、両コントローラ11,14とエアクリーナ9により挟まれた信号線ハーネス18が損傷しやすくなる。
これに対し、前突時、両コントローラ11,14が車両後方側へ移動しても、保護プレート部19aがエアクリーナ9と干渉することになる。このため、両コントローラ11,14の車両後方側の背面と保護プレート部19aの間に形成される車幅方向空間に沿って配線された信号線ハーネス18が損傷から保護される。
In the first embodiment, the signal line harness 18 connected to the engine controller 11 and the transmission controller 14 is disposed in the vehicle width direction space formed between the rear surface of the both controllers 11 and 14 on the vehicle rear side and the protective plate portion 19a. Adopted a configuration of wiring along.
For example, in the case of a frontal collision without a protective plate, the inverter 12 and both controllers 11 and 14 move to the rear side of the vehicle, and both controllers 11 and 14 are connected to the air cleaner 9 on the rear side of the vehicle with the signal line harness 18 interposed therebetween. have a finger in the pie. At this time, the signal line harness 18 sandwiched between the controllers 11 and 14 and the air cleaner 9 is easily damaged.
On the other hand, even if both controllers 11 and 14 move to the vehicle rear side at the time of a front collision, the protective plate portion 19a interferes with the air cleaner 9. For this reason, the signal line harness 18 wired along the vehicle width direction space formed between the rear surfaces of the controllers 11 and 14 on the vehicle rear side and the protective plate portion 19a is protected from damage.
 [強電ハーネス接続作用]
 上記のように、フロントルーム1の車両前方側の上方位置にインバータ12を配置したことに伴いインバータ12に接続される2つのモータ側強電ハーネス26及びバッテリ側強電ハーネス39については、衝突対策を施しておく必要がある。以下、図9に基づき、これを反映する強電ハーネス接続作用を説明する。
[High-voltage harness connection]
As described above, with respect to the two motor-side high-voltage harnesses 26 and the battery-side high-voltage harness 39 that are connected to the inverter 12 as a result of arranging the inverter 12 in the upper position on the front side of the vehicle in the front room 1, measures against collisions are taken. It is necessary to keep. Hereinafter, based on FIG. 9, the high-voltage harness connecting action reflecting this will be described.
 実施例1では、モータ側強電ハーネス26のインバータ側端部に設けられるプラグコネクタ27は、インバータ12の背面位置に接続される。このモータ側強電ハーネス26をインバータ12に接続した状態で、プラグ上面Puにモータ側強電ハーネス26が連結され、プラグ背面Pbに対向する車両後方離間位置に、プラグコネクタ27よりも剛性が低いエアクリーナ9が配置される。
すなわち、モータ側強電ハーネス26をインバータ12の背面位置に接続する構成としたことで、前突発生時、車体の変形に伴う車両前方からの変形部材とプラグコネクタ27が直接干渉する一次干渉が防止される。そして、サイドメンバ16の屈曲変形等に伴ってインバータ12が、図9の矢印Bに示すように、車両後方へ向かって移動するとき、プラグコネクタ27のプラグ背面Pbがエアクリーナ9と干渉し、剛性が高いプラグコネクタ27により剛性が低いエアクリーナ9を変形させながら車両後方へ向かって移動することになる。つまり、インバータ12の移動によるプラグコネクタ27の二次干渉については、意図的にプラグコネクタ27よりも剛性が低いエアクリーナ9と干渉させることで、プラグコネクタ27の損傷が防止される。なお、モータ側強電ハーネス26は、プラグコネクタ27のプラグ上面Puに連結されることで、エアクリーナ9との間に挟まれることがあってもエアクリーナ9と直接干渉することはない。
このように、前突発生時、インバータ12の車両後方移動によりプラグコネクタ27が干渉する位置にエアクリーナ9を配置しておくことで、モータ側強電ハーネス26のプラグコネクタ27の損傷が防止される。
In the first embodiment, the plug connector 27 provided at the inverter side end of the motor side high-voltage harness 26 is connected to the rear surface position of the inverter 12. In a state where the motor-side high-voltage harness 26 is connected to the inverter 12, the motor-side high-voltage harness 26 is connected to the plug upper surface Pu, and the air cleaner 9 is less rigid than the plug connector 27 at a vehicle rearwardly spaced position facing the plug rear surface Pb. Is placed.
That is, the motor-side high-voltage harness 26 is connected to the rear surface position of the inverter 12 to prevent primary interference in which the deformable member from the front of the vehicle and the plug connector 27 directly interfere with the deformation of the vehicle body when a front collision occurs. Is done. When the inverter 12 moves toward the rear of the vehicle as indicated by the arrow B in FIG. 9 due to the bending deformation of the side member 16, the plug back surface Pb of the plug connector 27 interferes with the air cleaner 9 and is rigid. The high-plug connector 27 moves toward the rear of the vehicle while deforming the low-rigidity air cleaner 9. In other words, the secondary interference of the plug connector 27 due to the movement of the inverter 12 is intentionally caused to interfere with the air cleaner 9 having a lower rigidity than the plug connector 27, thereby preventing the plug connector 27 from being damaged. The motor-side high-voltage harness 26 is connected to the plug upper surface Pu of the plug connector 27 so that it does not directly interfere with the air cleaner 9 even if it is pinched between the air cleaner 9.
Thus, when the front collision occurs, the air cleaner 9 is disposed at a position where the plug connector 27 interferes with the backward movement of the inverter 12 in the vehicle, so that the plug connector 27 of the motor-side high-voltage harness 26 is prevented from being damaged.
 実施例1では、モータ側強電ハーネス26を、プラグコネクタ27のプラグ上面位置から、車両上方向に向かった後に緩やかに屈曲しながら車両下方向に向きを変える迂回経路を経由し、モータ/ジェネレータ6のハーネス接続位置に到達する配索とする構成を採用した。
例えば、悪路走行時等においては、車体に固定されるインバータ12と車体に弾性支持されるモータ/ジェネレータ6との間で相対変位が生じる。さらに、前突発生時には、インバータ12とモータ/ジェネレータ6との間で大きな相対変位が生じる。
これに対し、モータ側強電ハーネス26を、インバータ12から下側のモータ/ジェネレータ6に向かうのではなく、一旦、上側に向かって緩やかに屈曲する曲線を描いて迂回する配索構成とした。この配索構成により、モータ側強電ハーネス26の曲げ余裕代や捩り余裕代が十分に確保される
したがって、悪路走行時等におけるインバータ12とモータ/ジェネレータ6の相対変位吸収は勿論のこと、前突発生時、インバータ12とモータ/ジェネレータ6の大きな相対変位に対してもモータ側強電ハーネス26の損傷や切断が防止される。
In the first embodiment, the motor / generator 6 is connected to the motor / generator 6 via a detour path in which the motor-side high-voltage harness 26 is gradually bent from the position of the plug upper surface of the plug connector 27 toward the vehicle upper direction and then gently bent. Adopted a configuration to reach the harness connection position.
For example, when traveling on a rough road, a relative displacement occurs between the inverter 12 fixed to the vehicle body and the motor / generator 6 elastically supported by the vehicle body. Further, when a front collision occurs, a large relative displacement occurs between the inverter 12 and the motor / generator 6.
On the other hand, the motor-side high-voltage harness 26 is configured not to go from the inverter 12 to the motor / generator 6 on the lower side but to temporarily draw a curved line that bends gently toward the upper side. This wiring configuration ensures a sufficient margin for bending and twisting of the motor-side high-voltage harness 26. Therefore, the relative displacement absorption between the inverter 12 and the motor / generator 6 when traveling on a rough road is of course possible. When a collision occurs, the motor-side high-voltage harness 26 is prevented from being damaged or cut even with a large relative displacement between the inverter 12 and the motor / generator 6.
 実施例1では、バッテリ側強電ハーネス39の車幅方向におけるハーネス接続位置PMを、モータ側強電ハーネス26の車幅方向におけるインバータ側ハーネス接続位置PLとモータ側ハーネス接続位置PRとの間の位置に設定する構成を採用した。
すなわち、車両左方向からの側突発生時には、インバータ側ハーネス接続位置PLのプラグコネクタ27等がハーネス接続位置PMにとって防護部材となり、車両右方向からの側突発生時には、モータ側ハーネス接続位置PRのモータ側強電ハーネス26等がハーネス接続位置PMの防護部材となる。
したがって、車両左右方向からの側突発生時には、ハーネス接続位置PMに存在するプラグコネクタ45やハーネス連結部45aの損傷が防止される。
In the first embodiment, the harness connection position PM in the vehicle width direction of the battery-side high-voltage harness 39 is set to a position between the inverter-side harness connection position PL and the motor-side harness connection position PR in the vehicle width direction of the motor-side high-voltage harness 26. A configuration to set was adopted.
That is, when a side collision occurs from the left side of the vehicle, the plug connector 27 or the like at the inverter side harness connection position PL serves as a protective member for the harness connection position PM, and when a side collision occurs from the right side of the vehicle, the motor side harness connection position PR changes. The motor-side high-voltage harness 26 or the like serves as a protective member at the harness connection position PM.
Therefore, when a side collision occurs from the left-right direction of the vehicle, damage to the plug connector 45 and the harness connecting portion 45a existing at the harness connection position PM is prevented.
 実施例1では、バッテリ側強電ハーネス39を、インバータ12の車両下方向から車両後方の走行用バッテリ31に向かって配索する構成を採用した。
すなわち、前突発生時、インバータ12が車両後方へ向かって移動しても、車両下方向に逃がして設定されるプラグコネクタ45やバッテリ側強電ハーネス39と、エアクリーナ9の干渉が回避される。
したがって、前突発生時、インバータ12が車両後方へ向かって移動しても、エアクリーナ9との干渉によるバッテリ側強電ハーネス39の連結部の損傷が防止される。
In the first embodiment, a configuration in which the battery-side high-voltage harness 39 is routed from the vehicle lower direction of the inverter 12 toward the traveling battery 31 at the rear of the vehicle is employed.
That is, even when the inverter 12 moves toward the rear of the vehicle when a front collision occurs, the air cleaner 9 is prevented from interfering with the plug connector 45 and the battery-side high-voltage harness 39 that are set to escape downward in the vehicle.
Therefore, even if the inverter 12 moves toward the rear of the vehicle when a front collision occurs, damage to the connecting portion of the battery-side high-voltage harness 39 due to interference with the air cleaner 9 is prevented.
 次に、効果を説明する。
実施例1のFFプラグインハイブリッド車両の強電ハーネス接続構造にあっては、下記に列挙する効果を得ることができる。
Next, the effect will be described.
In the high-voltage harness connection structure of the FF plug-in hybrid vehicle of the first embodiment, the effects listed below can be obtained.
 (1) 車両のフロントルーム1にインバータ12及びモータ(モータ/ジェネレータ6)を配置し、前記インバータ12と前記モータ(モータ/ジェネレータ6)を、モータ側強電ハーネス26を介して接続した電動車両(FFプラグインハイブリッド車両)の強電ハーネス接続構造において、
 前記モータ側強電ハーネス26の両端部のうちインバータ側端部に設けられるコネクタ(プラグコネクタ27)を、前記インバータ12の背面位置に接続し、
 前記モータ側強電ハーネス26を、前記コネクタ(プラグコネクタ27)の周面位置に連結し、
 前記コネクタ(プラグコネクタ27)の背面に対向する車両後方位置に、前記コネクタ(プラグコネクタ27)よりも剛性が低い緩衝部品(エアクリーナ9)を配置した(図8)。
  このため、前突発生時、モータ側強電ハーネス26のコネクタ(プラグコネクタ27)の損傷を防止することができる。
(1) An electric vehicle in which an inverter 12 and a motor (motor / generator 6) are arranged in a front room 1 of the vehicle, and the inverter 12 and the motor (motor / generator 6) are connected via a motor-side high-voltage harness 26. FF plug-in hybrid vehicle)
A connector (plug connector 27) provided at an inverter side end portion of both end portions of the motor side high-voltage harness 26 is connected to a rear position of the inverter 12,
The motor-side high-voltage harness 26 is connected to the peripheral surface position of the connector (plug connector 27),
A shock absorbing component (air cleaner 9) having rigidity lower than that of the connector (plug connector 27) is disposed at a vehicle rear position facing the back surface of the connector (plug connector 27) (FIG. 8).
For this reason, it is possible to prevent damage to the connector (plug connector 27) of the motor-side high-voltage harness 26 when a front collision occurs.
 (2) 前記フロントルーム1のうち、車両前方側の上方位置に前記インバータ12を配置し、
 前記インバータ12よりも車両後方側の下方位置に前記モータ(モータ/ジェネレータ6)を配置し、
 前記コネクタ(プラグコネクタ27)の周面(プラグ周面Pu,Pd,Pl,Pr)のうち、車両上方向に臨む上面位置(プラグ上面Puの位置)にハーネス連結部27bを設け、
 前記モータ側強電ハーネス26を、前記コネクタ(プラグコネクタ27)の上面位置(プラグ上面Puの位置)から、車両上方向に向かった後に屈曲しながら車両下方向に向きを変える迂回経路を経由し、前記モータ(モータ/ジェネレータ6)のハーネス接続位置(ハーネス接続端子部6a)に到達する配索とした(図7)。
  このため、(1)の効果に加え、走行中におけるインバータ12とモータ(モータ/ジェネレータ6)の相対変位吸収は勿論のこと、前突発生時、インバータ12とモータ(モータ/ジェネレータ6)の大きな相対変位に対してもモータ側強電ハーネス26の損傷や切断を防止することができる。
(2) In the front room 1, the inverter 12 is arranged at an upper position on the front side of the vehicle,
The motor (motor / generator 6) is arranged at a lower position on the vehicle rear side than the inverter 12,
Among the peripheral surfaces (plug peripheral surfaces Pu, Pd, Pl, Pr) of the connector (plug connector 27), a harness connecting portion 27b is provided at an upper surface position (a position of the plug upper surface Pu) facing the vehicle upward direction.
The motor-side high-voltage harness 26 is routed from the upper surface position of the connector (plug connector 27) (the position of the plug upper surface Pu) via a detour path that changes its direction downward while bending toward the vehicle upward direction, It was set as the wiring which reaches | attains the harness connection position (harness connection terminal part 6a) of the said motor (motor / generator 6) (FIG. 7).
For this reason, in addition to the effect of (1), not only the relative displacement absorption of the inverter 12 and the motor (motor / generator 6) during traveling, but also the large amount of the inverter 12 and motor (motor / generator 6) when a front collision occurs. It is possible to prevent the motor-side high-voltage harness 26 from being damaged or cut even with respect to the relative displacement.
 (3) 前記インバータ12と走行用バッテリ31を、バッテリ側強電ハーネス39を介して接続し、
 前記インバータ12に、前記バッテリ側強電ハーネス39のハーネス接続端子部12bを設け、
 前記バッテリ側強電ハーネス39の車幅方向におけるハーネス接続位置PMを、前記モータ側強電ハーネス26の車幅方向におけるインバータ側ハーネス接続位置PLとモータ側ハーネス接続位置PRとの間の位置に設定した(図7)。
  このため、(1)又は(2)の効果に加え、車両左右方向からの側突発生時、バッテリ側強電ハーネス39のハーネス接続位置PMに存在する接続部品(プラグコネクタ45)の損傷を防止することができる。
(3) The inverter 12 and the traveling battery 31 are connected via a battery-side high-voltage harness 39,
The inverter 12 is provided with a harness connection terminal portion 12b of the battery-side high-voltage harness 39,
The harness connection position PM in the vehicle width direction of the battery-side high-voltage harness 39 is set to a position between the inverter-side harness connection position PL and the motor-side harness connection position PR in the vehicle-width direction of the motor-side high-voltage harness 26 ( FIG. 7).
For this reason, in addition to the effect of (1) or (2), when a side collision occurs from the left-right direction of the vehicle, damage to the connection component (plug connector 45) existing at the harness connection position PM of the battery-side high-voltage harness 39 is prevented. be able to.
 (4) 前記バッテリ側強電ハーネス39のインバータ側端部にコネクタ(プラグコネクタ45)を設け、該コネクタ(プラグコネクタ45)へのハーネス連結部45aをプラグ下面位置に設定し、
 前記バッテリ側強電ハーネス39を、前記インバータ12の車両下方向から車両後方の前記走行用バッテリ31に向かって配索した(図7)。
  このため、(3)の効果に加え、前突発生時、緩衝部材(エアクリーナ9)との干渉によるバッテリ側強電ハーネス39の連結部の損傷を防止することができる。
(4) A connector (plug connector 45) is provided at the inverter-side end of the battery-side high-voltage harness 39, and the harness connecting portion 45a to the connector (plug connector 45) is set at the lower surface of the plug.
The battery-side high-voltage harness 39 was routed from the vehicle lower direction of the inverter 12 toward the traveling battery 31 at the rear of the vehicle (FIG. 7).
For this reason, in addition to the effect of (3), it is possible to prevent damage to the connecting portion of the battery-side high-voltage harness 39 due to interference with the buffer member (air cleaner 9) when a front collision occurs.
 (5) 前記緩衝部品は、パワートレーン系要素として前記フロントルーム1に配置される樹脂成型品(エアクリーナ9)とした(図8)。
  このため、(1)~(4)の効果に加え、フロントルーム1に配置される既存の樹脂成型品(エアクリーナ9)をそのまま利用することで、低コストにて前突発生時に変形性の高い緩衝部品にすることができる。
(5) The buffer component is a resin molded product (air cleaner 9) disposed in the front room 1 as a power train element (FIG. 8).
For this reason, in addition to the effects of (1) to (4), the existing resin molded product (air cleaner 9) arranged in the front room 1 is used as it is, so that it is highly deformable when a front collision occurs at low cost. It can be a cushioning component.
 以上、本発明の電動車両の強電ハーネス接続構造を実施例1に基づき説明してきたが、具体的な構成については、この実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。 As described above, the high-voltage harness connection structure of the electric vehicle according to the present invention has been described based on the first embodiment. However, the specific configuration is not limited to the first embodiment, and the claims relate to each claim. Design changes and additions are allowed without departing from the scope of the invention.
 実施例1では、緩衝部品として、フロントルーム1に配置される横置きエンジン4のエアクリーナ9を利用する例を示した。しかし、緩衝部品としては、フロントルームのインバータの背面に対向する車両後方位置に配置される金属部品の前面に、新たに樹脂成型部品を追加するような例としても良い。また、電気自動車の場合、フロントルームにモータ用ハーネスが接続される樹脂成型品によるリレーボックスが配置されるため、このリレーボックスを緩衝部品として利用する例としても良い。 In the first embodiment, an example in which the air cleaner 9 of the horizontal engine 4 disposed in the front room 1 is used as a buffer part is shown. However, the cushioning component may be an example in which a resin molded component is newly added to the front surface of the metal component arranged at the vehicle rear position facing the rear surface of the inverter in the front room. In the case of an electric vehicle, a relay box made of a resin molded product to which a motor harness is connected is arranged in the front room. Therefore, the relay box may be used as a buffer part.
 実施例1では、インバータ12の車両上方向スペースに、パワートレーン系を制御する電子制御ユニットを階層状に重ねて配置する例を示した。しかし、インバータ12の車両上方向スペースには、電子制御ユニットを配置しない例であっても良い。 In the first embodiment, an example in which electronic control units that control the power train system are arranged in a hierarchical manner in the space above the inverter 12 in the vehicle is shown. However, the example which does not arrange | position an electronic control unit in the vehicle upper direction space of the inverter 12 may be sufficient.
 実施例1では、本発明の強電ハーネス接続構造をFFプラグインハイブリッド車両に適用する例を示した。しかし、本発明の強電ハーネス接続構造は、フロントルームに配置したインバータとモータを、モータ側強電ハーネスを介して接続する構成を備えたものであれば、プラグイン構造を持たないFFハイブリッド車両や駆動源としてモータのみを搭載した電気自動車等に対しても適用することができる。 Example 1 shows an example in which the high-voltage harness connection structure of the present invention is applied to an FF plug-in hybrid vehicle. However, if the high-voltage harness connection structure of the present invention has a configuration in which the inverter and the motor arranged in the front room are connected via the motor-side high-voltage harness, the FF hybrid vehicle without the plug-in structure and the drive The present invention can also be applied to an electric vehicle or the like equipped with only a motor as a source.
関連出願の相互参照Cross-reference of related applications
 本出願は、2012年6月5日に日本国特許庁に出願された特願2012-127961に基づいて優先権を主張し、その全ての開示は完全に本明細書で参照により組み込まれる。 This application claims priority based on Japanese Patent Application No. 2012-127916 filed with the Japan Patent Office on June 5, 2012, the entire disclosure of which is fully incorporated herein by reference.

Claims (5)

  1.  車両のフロントルームにインバータ及びモータを配置し、前記インバータと前記モータを、モータ側強電ハーネスを介して接続した電動車両の強電ハーネス接続構造において、
     前記モータ側強電ハーネスの両端部のうちインバータ側端部に設けられるコネクタを、前記インバータの背面位置に接続し、
     前記モータ側強電ハーネスを、前記コネクタの周面位置に連結し、
     前記コネクタの背面に対向する車両後方位置に、前記コネクタよりも剛性が低い緩衝部品を配置した
     ことを特徴とする電動車両の強電ハーネス接続構造。
    In a high-voltage harness connection structure for an electric vehicle in which an inverter and a motor are arranged in a front room of the vehicle, and the inverter and the motor are connected via a motor-side high-voltage harness,
    The connector provided at the inverter side end of both ends of the motor side high-voltage harness is connected to the back position of the inverter,
    The motor-side high-voltage harness is connected to the peripheral surface position of the connector,
    A high-voltage harness connection structure for an electric vehicle, wherein a shock-absorbing component having rigidity lower than that of the connector is disposed at a vehicle rear position facing the back surface of the connector.
  2.  請求項1に記載された電動車両の強電ハーネス接続構造において、
     前記フロントルームのうち、車両前方側の上方位置に前記インバータを配置し、
     前記インバータよりも車両後方側の下方位置に前記モータを配置し、
     前記コネクタの周面のうち、車両上方向に臨む上面位置にハーネス連結部を設け、
     前記モータ側強電ハーネスを、前記コネクタの上面位置から、車両上方向に向かった後に屈曲しながら車両下方向に向きを変える迂回経路を経由し、前記モータのハーネス接続位置に到達する配索とした
     ことを特徴とする電動車両の強電ハーネス接続構造。
    In the high-voltage harness connection structure for an electric vehicle according to claim 1,
    In the front room, the inverter is arranged at an upper position on the vehicle front side,
    The motor is arranged at a lower position on the vehicle rear side than the inverter,
    Of the peripheral surface of the connector, a harness connecting portion is provided at an upper surface position facing the vehicle upward direction,
    The motor-side high-voltage harness is routed from the upper surface position of the connector to reach the harness connection position of the motor via a detour path that changes the direction of the vehicle downward while bending after being directed upward of the vehicle. A structure for connecting a high-voltage harness of an electric vehicle.
  3.  請求項1又は2に記載された電動車両の強電ハーネス接続構造において、
     前記インバータと走行用バッテリを、バッテリ側強電ハーネスを介して接続し、
     前記インバータに、前記バッテリ側強電ハーネスのハーネス接続端子部を設け、
     前記バッテリ側強電ハーネスの車幅方向におけるハーネス接続位置を、前記モータ側強電ハーネスの車幅方向におけるインバータ側ハーネス接続位置とモータ側ハーネス接続位置との間の位置に設定した
     ことを特徴とする電動車両の強電ハーネス接続構造。
    In the high-voltage harness connection structure for an electric vehicle according to claim 1 or 2,
    The inverter and the battery for travel are connected via a battery-side high-voltage harness,
    The inverter is provided with a harness connection terminal portion of the battery-side high-voltage harness,
    The harness connection position in the vehicle width direction of the battery-side high-voltage harness is set to a position between the inverter-side harness connection position and the motor-side harness connection position in the vehicle-width direction of the motor-side high-voltage harness. High-voltage harness connection structure for vehicles.
  4.  請求項3に記載された電動車両の強電ハーネス接続構造において、
     前記バッテリ側強電ハーネスのインバータ側端部にコネクタを設け、該コネクタへのハーネス連結部を下面位置に設定し、
     前記バッテリ側強電ハーネスを、前記インバータの車両下方向から車両後方の前記走行用バッテリに向かって配索した
     ことを特徴とする電動車両の強電ハーネス接続構造。
    In the high-voltage harness connection structure for an electric vehicle according to claim 3,
    A connector is provided at the inverter side end of the battery-side high-voltage harness, and the harness connecting portion to the connector is set at the lower surface position.
    The high-voltage harness connection structure for an electric vehicle, wherein the battery-side high-voltage harness is routed from the vehicle lower direction of the inverter toward the travel battery at the rear of the vehicle.
  5.  請求項1から4までの何れか1項に記載された電動車両の強電ハーネス接続構造において、
     前記緩衝部品は、パワートレーン系要素として前記フロントルームに配置される樹脂成型品とした
     ことを特徴とする電動車両の強電ハーネス接続構造。
    In the high-voltage harness connection structure for an electric vehicle according to any one of claims 1 to 4,
    The shock-absorbing component is a resin molded product that is disposed in the front room as a power train element.
PCT/JP2013/064799 2012-06-05 2013-05-28 High-voltage-harness connection structure for electric vehicle WO2013183500A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-127961 2012-06-05
JP2012127961 2012-06-05

Publications (1)

Publication Number Publication Date
WO2013183500A1 true WO2013183500A1 (en) 2013-12-12

Family

ID=49711893

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/064799 WO2013183500A1 (en) 2012-06-05 2013-05-28 High-voltage-harness connection structure for electric vehicle

Country Status (1)

Country Link
WO (1) WO2013183500A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060324A (en) * 2014-09-17 2016-04-25 トヨタ自動車株式会社 Protection structure of wire harness
JP2018024384A (en) * 2016-08-12 2018-02-15 トヨタ自動車株式会社 Structure for mounting power control unit on vehicle
JP2019119314A (en) * 2017-12-28 2019-07-22 スズキ株式会社 Power supply device of electric vehicle
CN110395100A (en) * 2018-04-20 2019-11-01 本田技研工业株式会社 Vehicle
CN113891813A (en) * 2019-05-31 2022-01-04 日产自动车株式会社 Hybrid electric vehicle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004357432A (en) * 2003-05-29 2004-12-16 Toyota Motor Corp Motor unit and vehicle equipped therewith
JP2007008423A (en) * 2005-07-04 2007-01-18 Auto Network Gijutsu Kenkyusho:Kk Shield conductive body
JP2011006050A (en) * 2009-05-22 2011-01-13 Nissan Motor Co Ltd Electric component mounting structure for electric vehicle
JP2012059395A (en) * 2010-09-06 2012-03-22 Yazaki Corp Conducting path structure and wire harness

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004357432A (en) * 2003-05-29 2004-12-16 Toyota Motor Corp Motor unit and vehicle equipped therewith
JP2007008423A (en) * 2005-07-04 2007-01-18 Auto Network Gijutsu Kenkyusho:Kk Shield conductive body
JP2011006050A (en) * 2009-05-22 2011-01-13 Nissan Motor Co Ltd Electric component mounting structure for electric vehicle
JP2012059395A (en) * 2010-09-06 2012-03-22 Yazaki Corp Conducting path structure and wire harness

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060324A (en) * 2014-09-17 2016-04-25 トヨタ自動車株式会社 Protection structure of wire harness
JP2018024384A (en) * 2016-08-12 2018-02-15 トヨタ自動車株式会社 Structure for mounting power control unit on vehicle
JP2019119314A (en) * 2017-12-28 2019-07-22 スズキ株式会社 Power supply device of electric vehicle
CN110395100A (en) * 2018-04-20 2019-11-01 本田技研工业株式会社 Vehicle
CN110395100B (en) * 2018-04-20 2022-10-25 本田技研工业株式会社 Vehicle with a steering wheel
CN113891813A (en) * 2019-05-31 2022-01-04 日产自动车株式会社 Hybrid electric vehicle

Similar Documents

Publication Publication Date Title
US9090218B2 (en) Battery system component layout structure for electrically driven vehicle
WO2013108763A1 (en) Powertrain system element arrangement structure for hybrid vehicle
US9174520B2 (en) Electric vehicle
US8517127B2 (en) Vehicle component mounting arrangement
CN108367660B (en) Mounting structure of high-voltage control device unit
US8622161B2 (en) Installation structure for electrical equipment in rear vehicle body
JP4924671B2 (en) Electric vehicle mounting structure
US20120055721A1 (en) Vehicle component mounting arrangement
JP5018837B2 (en) Electric vehicle mounting structure
JP5446537B2 (en) Electric vehicle mounting structure
WO2010073464A1 (en) Temperature regulating structure for electrical storage device
WO2013183500A1 (en) High-voltage-harness connection structure for electric vehicle
WO2009014254A1 (en) Vehicle with internal combustion engine and rotating electric machine as power sources
JP4968292B2 (en) Electric vehicle mounting structure
EP2000344B1 (en) Structure for mounting electrical machinery and electric vehicle
JP6787204B2 (en) Automotive high voltage unit case, high voltage unit, and vehicle
JP2007307984A (en) Electric equipment wiring connection structure, and electric-driven vehicle
JP5807596B2 (en) Electric vehicle
US11912133B2 (en) Vehicle drive unit
WO2013108766A1 (en) Battery cooling structure for electric vehicle
WO2013108765A1 (en) Powertrain system element arrangement structure for hybrid vehicle
WO2013183501A1 (en) Cooling-air exhaust-duct structure for electric vehicle
JP5947073B2 (en) Automobile
WO2014045708A1 (en) Vehicle-mounted power unit
JP7327632B2 (en) Motor protection structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13800974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13800974

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP