WO2021159715A1 - 一种双通道共像面的全景环带光学成像装置 - Google Patents

一种双通道共像面的全景环带光学成像装置 Download PDF

Info

Publication number
WO2021159715A1
WO2021159715A1 PCT/CN2020/117970 CN2020117970W WO2021159715A1 WO 2021159715 A1 WO2021159715 A1 WO 2021159715A1 CN 2020117970 W CN2020117970 W CN 2020117970W WO 2021159715 A1 WO2021159715 A1 WO 2021159715A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical system
panoramic
annulus
image plane
imaging
Prior art date
Application number
PCT/CN2020/117970
Other languages
English (en)
French (fr)
Inventor
白剑
王佳
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Publication of WO2021159715A1 publication Critical patent/WO2021159715A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B17/00Systems with reflecting surfaces, with or without refracting elements
    • G02B17/08Catadioptric systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/2433Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring outlines by shadow casting
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V8/00Prospecting or detecting by optical means
    • G01V8/10Detecting, e.g. by using light barriers
    • G01V8/12Detecting, e.g. by using light barriers using one transmitter and one receiver
    • G01V8/14Detecting, e.g. by using light barriers using one transmitter and one receiver using reflectors

Definitions

  • the invention relates to a lens imaging device, in particular to a dual-channel common image plane panoramic ring-belt optical imaging device.
  • the panoramic ring-belt optical system is based on the imaging method of the cylindrical plane projection method. It has the advantage of large field of view imaging. It can detect the circular cylinder around the system 360°. It has been widely used in space detection, security monitoring, machine vision, Fields such as smart home, pipe insight, unmanned driving, etc. More and more applications require lightweight and detailed detection of optical systems with a large field of view, such as power transmission line monitoring, avoid the use of multiple lenses for shooting or complex control systems to control lens rotation monitoring, and use a single panoramic view
  • the ring-belt optical system can realize the monitoring of objects in a 360° range around the power line pole.
  • the front reflective surface of the panoramic ring-shaped optical system Due to the front reflective surface of the panoramic ring-shaped optical system, the light from the front small field of view cannot enter the optical system for imaging. Therefore, an image of the ring-shaped area is formed on the image surface, and the middle circular image surface area cannot be used, resulting in image utilization.
  • the researchers designed several methods to eliminate the blind area to complement the circular image surface. Most of the current implementation methods are to modify the front reflective surface of the optical system.
  • the front small field of view light can enter the optical system to image the circular area of the detector target surface by coating the dichroic film and the transflective film.
  • the field of view of the panoramic annular optical system when it is used is a cylindrical area that surrounds the system 360°, so the light from the central small field of view into the optical system is not ideal for actual promotion and application.
  • the purpose of the present invention is to overcome the deficiencies of the prior art, and provide a device for combining imaging with a panoramic ring-shaped optical system and a telephoto system, using a single detector to monitor a wide range of contours of objects in the lateral field of view of the device And for the detailed enlargement of the target object, the central circular image surface area wasted by purely using the panoramic ring-belt optical system for imaging is rationally used.
  • the entire device does not have a large increase in size in the axial direction, and the structure is relatively compact.
  • a dual-channel common image plane panoramic annulus optical imaging device including a panoramic annulus optical system and a lateral field of view telephoto optical system.
  • the cylindrical wide-field panoramic annulus optical system is used to detect the contours of objects around the system , Use the side-field telephoto optical system to observe the detailed features of the target object.
  • the panoramic ring-belt optical system includes a panoramic ring-belt block head unit, a half mirror, a subsequent lens group, and a detector target surface that are sequentially arranged along the optical axis A;
  • the lateral field-of-view telephoto optical system includes a telephoto lens group arranged along the optical axis B, and also includes a half mirror of the panoramic ring belt optical system, a subsequent lens group, and a detector target surface;
  • optical axis A and the optical axis B are perpendicular, and the intersection of the two is the center of the half mirror; the angle between the half mirror and the optical axis A and the optical axis B is 45° ;
  • the panoramic ring-shaped optical system and the side-field telephoto optical system share a detector, and the light reaches the target surface of the detector after passing through the panoramic ring-shaped optical system to form the ring-shaped image surface for Display the contours of objects around the system; the light reaches the target surface of the detector after passing through the side-field telephoto optical system, and the circular imaging area inside the annular image surface forms a circular image surface for Show the detailed features of the target object.
  • the outer diameter of the circular imaging area of the target surface of the detector is smaller than the inner diameter of the annular imaging area, the two do not interfere with each other, and the imaging quality of the two channels is not affected.
  • the panoramic ring belt block head unit includes a front transmission surface, a rear reflection surface, a front reflection surface, and a rear transmission surface.
  • the device uses a cylindrical imaging wide-field panoramic ring-belt optical system to detect the contours of objects around the optical system, and uses a side-field telephoto optical system to observe the detailed features of the target object.
  • the separated front half of the two optical paths passes through the semi-transparent
  • the half mirror is folded and enters the same subsequent lens group to reach the target surface of the detector for imaging.
  • the panoramic annular zone optical system forms an annular zone image on the image surface.
  • the telephoto system forms an image in the circular area in the middle of the image zone The regions do not interfere with each other.
  • the device uses a single sensor to detect the cylindrical area around the device, that is, the lateral field of view, and realizes two functions: panoramic detection and local telephoto zooming.
  • the objects in the lateral field of view can not only be controlled and understood in a large scale, but also can be targeted at Among them, the target object of interest is telescopically detected, thereby realizing the magnification and monitoring of local details, and making up for the wasted central circular imaging area of the panoramic ring-belt optical system, and maximizing the effective pixel utilization of the sensor.
  • Figure 1 is a schematic diagram of a dual-channel common image plane panoramic ring-belt optical imaging device
  • Figure 2 is an image view of the target surface of the detector of the present invention.
  • the first ray 10 from the object point, the second ray 11 from the object point, the annular imaging area 12, the central circular imaging area 13, the object point p, the first image point P 1 , and the second image point P 2 The first ray 10 from the object point, the second ray 11 from the object point, the annular imaging area 12, the central circular imaging area 13, the object point p, the first image point P 1 , and the second image point P 2 .
  • a half mirror 5 is added in front of the subsequent lens group 6 to telescope the light of the optical path It enters the telephoto lens group at a certain angle along the horizontal optical axis B, enters the subsequent lens group 6 through the 45° reflection and reflex of the half mirror, and reaches the central circular area of the detector target surface 7 for imaging.
  • the field of view in the panoramic ring-shaped optical path is relatively large, which partially overlaps with the field of view of the telephoto system.
  • Both optical paths image objects in the lateral field of view of the entire optical device, and the panoramic ring-shaped optical system detects the contour of the object. The function of observing the details of the object through the telephoto optical path.
  • the dual-channel common image plane panoramic annulus optical imaging device of the present invention includes a panoramic annulus optical system and a side-field telephoto optical system, using a cylindrical large-field panoramic annulus optical system Detect the contours of objects around the optical system; use the side-field telephoto optical system to observe the detailed features of the target object.
  • the panoramic ring zone optical system and the telephoto optical system share a detector, and the separated front half of the two optical paths pass through the semi-transparent The half mirror is folded and enters the same subsequent lens group to reach the target surface of the detector for imaging.
  • the panoramic annular zone optical system forms an annular zone image on the image surface.
  • the telephoto system forms an image in the circular area in the middle of the image zone The regions do not interfere with each other.
  • a panoramic ring-belt block head unit 9 On the optical axis A, a panoramic ring-belt block head unit 9, a half mirror 5, a subsequent lens group 6 and a detection surface 7 are sequentially arranged; on the optical axis B, a telephoto lens group 8 and a half Transflective mirror 5.
  • the common parts of the two channels are the half mirror 5, the subsequent lens group 6 and the detector target surface 7.
  • the optical axis A and the optical axis B are perpendicular, and the intersection of the two is the center of the half mirror 5; the angle between the half mirror 5 and the optical axis A and the optical axis B is 45°.
  • the light passes through the transmission of the front transmission surface 1 of the panoramic ring-belt block head unit 9, the reflection of the rear reflection surface 2, the reflection of the front reflection surface 3, and the transmission of the rear transmission surface 4, and then passes through the half mirror 5 transmission
  • the transmission of the subsequent lens group 6 reaches the detector target surface 7 to form an annular image surface 12; the light passes through the telephoto lens group 8, and passes through the reflection of the half mirror 5 and the subsequent lens group 6 to reach the detector target.
  • the surface forms a circular image surface 13.
  • a ray of light 10 from the object point P passes through the transmission of the front transmission surface 1 and the back reflection surface 2 of the panoramic ring-shaped block head unit 9, and then passes through the reflection of the front reflection surface 3 and the transmission of the back transmission surface to reach the semi-transmission.
  • the second light 11 emitted from the object point passes through the telephoto
  • the outer diameter of the central imaging circle 13 is smaller than the inner diameter of the annular imaging area 12 by changing the system parameters, so that the two-channel optical system can clearly image.
  • the panoramic ring belt optical system can observe the imaging of all the object points in the 360° area of the imaging device. If you are interested in a certain object point P, you can use the control motor to rotate the telephoto lens group 8 and the half mirror 5, Make it align with point P, and a light ray 10 emitted by P passes through the transmission of the front transmission surface 1 and the reflection of the back reflection surface 2 of the panoramic ring-shaped block head unit 9, and then passes through the reflection of the front reflection surface 3 and the back transmission surface.
  • the transmission reaches the half mirror 5, and the transmission of the half mirror 5 and the subsequent lens group 6 reaches the annular imaging area of the detector target surface 7 to form the first image point P 1 , and the second line emitted by the object point
  • the light 11 is transmitted through the telephoto lens group 8, reflected by the half mirror at 45°, and transmitted through the subsequent lens group 6 to reach the circular imaging area of the detector target surface 7 to form a second image point P 2 .
  • the image point is the enlarged image of the imaging point P 1 of the panoramic ring zone optical path, which realizes the global and local detection function of the target object in the large lateral field of view through a single sensor.
  • design optimization pay attention to the annular area and the circular area on the image plane not to overlap, so as to avoid confusion and interference of the two channels.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Lenses (AREA)
  • Studio Devices (AREA)

Abstract

一种双通道共像面的全景环带光学成像装置,包括全景环带光学系统和侧方视场望远光学系统,利用柱面大视场全景环带光学系统检测光学系统周围的物体轮廓;利用侧方视场望远光学系统观测目标物体的细节特征,两个系统共用一个探测器,两条光路分开的前半部分通过半透半反镜(5)后折转进入相同的后继透镜组(6)到达探测器靶面(7)成像,全景环带光学系统在像面形成环带成像区域(12)成像,望远光学系统在像面环带中间的中心圆形成像区域(13)成像,两个区域(12,13)互不干涉。这种装置实现大视场范围的目标探测和关键目标的细节放大,有利于目标物体(P)探测与追踪;同时,采用共光路,提高系统对像面的成像利用率,减小整个光学系统的轴向尺寸,装置结构紧凑,可适用于较为恶劣的工作环境。

Description

一种双通道共像面的全景环带光学成像装置 技术领域
本发明涉及透镜成像装置,具体涉及一种双通道共像面的全景环带光学成像装置。
背景技术
全景环带光学系统基于圆柱平面投影法的成像方式,有着大视场成像的优点,可以对围绕系统360°的圆形柱面进行探测,已被广泛应用于空间探测、安防监控、机器视觉、智能家居、管道内窥、无人驾驶等领域。越来越多的应用场合对大视场的光学系统提出轻量化和细节探测的要求,如输电线路监测方面,避免使用多个镜头拍摄或复杂的控制系统控制镜头转动监测的方式,使用单个全景环带光学系统即可实现输电线杆周围360°范围物体的监测。
由于全景环带光学系统前反射面的缘故,使得来自前方小视场的光线无法进入光学系统成像,故而像面上形成环带的像,中间圆形像面区域无法利用,带来了图像利用率低的问题,为了合理增大像面上的图像利用率,研究者们设计了几种消盲区的方法来补足圆形像面。目前的大多数实现方法是在光学系统前反射面上做修改,通过镀二向色膜和半透半反膜使得前方小视场光线可以进入光学系统在探测器靶面圆形区域成像。然而全景环带光学系统在使用时关注的视场是侧方围绕系统360°的圆柱形区域,所以中心小视场光线进入光学系统对于实际的推广与应用效果不甚理想。
发明内容
本发明的目的是克服现有技术的不足,提供了一种全景环带光学系统与望远系统组合成像的装置,使用单一探测器,对装置侧方视场的物体进行大范围的轮廓的监测和针对目标物体的细节放大,把单纯使用全景环带光学系统成像所浪费的中心圆形像面区域合理利用起来,整个装置在轴向方向上没有较大的尺寸增加,结构较为紧凑。
本发明的目的通过如下的技术方案来实现:
一种双通道共像面的全景环带光学成像装置,包括全景环带光学系统 和侧方视场望远光学系统,利用柱面大视场的全景环带光学系统检测该系统周围的物体轮廓,利用侧方视场望远光学系统观测目标物体的细节特征。
进一步地,所述的全景环带光学系统包括沿光轴A顺次设置的全景环带块状头部单元、半透半反镜、后继透镜组和探测器靶面;
所述的侧方视场望远光学系统包括沿光轴B设置的望远透镜组,还包括全景环带光学系统的半透半反镜、后继透镜组、探测器靶面;
所述的光轴A和光轴B垂直,且两者的交点为半透半反镜的中心;所述的半透半反镜与所述的光轴A和光轴B的夹角均为45°;
所述的全景环带光学系统与侧方视场望远光学系统共用一个探测器,光线经所述的全景环带光学系统后到达所述的探测器靶面,形成环带像面,用于显示系统周围的物体轮廓;光线经所述的侧方视场望远光学系统后到达所述的探测器靶面,在环带像面的内部的圆形成像区域形成圆形像面,用于显示目标物体的细节特征。
进一步地,所述的探测器靶面的圆形成像区域的外径小于所述的环形成像区域的内径,两者互不干涉,不影响两个通道的成像质量。
进一步地,所述的全景环带块状头部单元包括前透射面、后反射面、前反射面、后透射面。
本发明的有益效果如下:
该装置利用柱面成像的大视场全景环带光学系统检测光学系统周围的物体轮廓,利用侧方视场望远光学系统观测目标物体的细节特征,两条光路的分开的前半部分通过半透半反镜后折转进入相同的后继透镜组到达探测器靶面成像,全景环带光学系统在像面形成环带区域成像,望远系统在像面环带中间的圆形区域成像,两个区域互不干涉。该装置通过单一传感器对装置周围圆柱形区域,即侧方视场,实现全景探测和局部望远放大两种功能,针对侧方视场的物体既能够进行全局大范围的掌控了解,又可以针对其中感兴趣的目标物体进行望远探测,从而实现局部细节的放大监察,并且弥补了全景环带光学系统被浪费的中心圆形成像区域,实现了传感器有效像素利用率的最大化。
附图说明
图1是双通道共像面的全景环带光学成像装置示意图;
图2是本发明探测器靶面的像面图;
图中:光轴A、光轴B、全景环带块状头部单元前透射面1、全景环带块状头部单元后反射面2、全景环带块状头部单元前反射面3、全景环带块状头部单元后透射面4、半透半反镜5、后继透镜组6、探测器靶面7、望远透镜组8、全景环带块状头部单元9、物点发出的第一条光线10、物点发出的第二条光线11、环带成像区域12、中心圆形成像区域13、物点p、第一像点P 1、第二像点P 2
具体实施方式
下面根据附图和优选实施例详细描述本发明,本发明的目的和效果将变得更加明白。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提出的双通道共像面的全景环带光学成像装置,在全景环带光路光轴A垂直地面放置时,在后继透镜组6前加入了半透半反镜5,望远光路的光线沿水平光轴B以一定角度入射进入望远透镜组,经过半透半反镜45°的反射折转进入后继透镜组6,到达探测器靶面7的中心圆形区域成像。全景环带光路中的视场较大,与望远系统的视场部分重叠,两条光路都是对整个光学装置的侧方视场的物体成像,实现了全景环带光学系统探测物体轮廓,望远光路观察物体细节的功能。
如图1、2所示,本发明的双通道共像面的全景环带光学成像装置包括全景环带光学系统和侧方视场望远光学系统,利用柱面大视场全景环带光学系统检测光学系统周围的物体轮廓;利用侧方视场望远光学系统观测目标物体的细节特征,全景环带光学系统与望远光学系统共用一个探测器,两条光路的分开的前半部分通过半透半反镜后折转进入相同的后继透镜组到达探测器靶面成像,全景环带光学系统在像面形成环带区域成像,望远系统在像面环带中间的圆形区域成像,两个区域互不干涉。
在光轴A上顺次设有全景环带块状头部单元9、半透半反镜5、后继透镜组6和探测面7;在光轴B上顺次设有望远透镜组8和半透半反镜5。两路通道公共部分为半透半反镜5、后继透镜组6和探测器靶面7。光轴A和光轴B垂直,且两者的交点为半透半反镜5的中心;半透半反镜5 与光轴A和光轴B的夹角均为45°。
光线通过全景环带块状头部单元9的前透射面1的透射、后反射面2的反射、前反射面3的反射、后透射面4的透射后,经过半透半反镜5的透射和后继透镜组6的透射到达探测器靶面7形成环带像面12;光线经过望远透镜组8的透射,经过半透半反镜5的反射和后继透镜组6的透射到达探测器靶面形成圆形像面13。物点P发出的一条光线10经过全景环带块状头部单元9的前透射面1的透射、后反射面2的反射,再经过前反射面3的反射和后透射面的透射到达半透半反镜5,经过半透半反镜5和后继透镜组6的透射到达探测器靶面7的环带成像区域形成第一像点P 1,物点发出的第二条光线11经过望远透镜组8的透射,半透半反镜45°的反射折转,经过后继透镜组6的透射到达探测器靶面7的圆形成像区域形成第二像点P 2。在整个光学系统的设计优化过程中,通过改变系统参数使得中心成像圆13的外径小于环带成像区域12的内径,使得两个通道光学系统可以清晰成像。
全景环带光学系统可以观察围绕成像装置360°区域视场内的所有物点成像,若对某个物点P感兴趣,可以利用控制电机旋转望远透镜组8和半透半反镜5,使得其对准P点,P发出的一条光线10经过全景环带块状头部单元9的前透射面1的透射、后反射面2的反射,再经过前反射面3的反射和后透射面的透射到达半透半反镜5,经过半透半反镜5和后继透镜组6的透射到达探测器靶面7的环带成像区域形成第一像点P 1,物点发出的第二条光线11经过望远透镜组8的透射,半透半反镜45°的反射折转,经过后继透镜组6的透射到达探测器靶面7的圆形成像区域形成第二像点P 2,此像点是全景环带光路所成像点P 1放大的像,实现了通过单一传感器,针对侧方大视场中目标物体的全局与局部探测功能。
在整个装置设计过程中,可以先设计并优化全景环带光路部分,根据应用场景和实际探测情况,确定两个光路的视场角大小,设计优化完成全景环带光路部分之后,将后继透镜组部分的镜片厚度、曲率半径和空气间隔等参数固定,利用这部分参数再加入镜片优化设计望远部分透镜以满足实际需要。在设计优化过程中,注意像面上环形区域与圆形区域不可重叠,以免使得两个通道成像混淆干涉。
本领域普通技术人员可以理解,以上所述仅为发明的优选实例而已,并不用于限制发明,尽管参照前述实例对发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在发明的精神和原则之内,所做的修改、等同替换等均应包含在发明的保护范围之内。

Claims (4)

  1. 一种双通道共像面的全景环带光学成像装置,其特征在于,包括全景环带光学系统和侧方视场望远光学系统,利用柱面大视场的全景环带光学系统检测该系统周围的物体轮廓,利用侧方视场望远光学系统观测目标物体的细节特征。
  2. 根据权利要求1所述的双通道共像面的全景环带光学成像装置,其特征在于,所述的全景环带光学系统包括沿光轴A顺次设置的全景环带块状头部单元(9)、半透半反镜(5)、后继透镜组(6)和探测器靶面(7);
    所述的侧方视场望远光学系统包括沿光轴B设置的望远透镜组(8),还包括全景环带光学系统的半透半反镜(5)、后继透镜组(6)、探测器靶面(7);
    所述的光轴A和光轴B垂直,且所述光轴A和光轴B的焦点均为半透半反镜(5)的中心;所述的半透半反镜(5)与所述的光轴A和光轴B的夹角均为45°;
    所述的全景环带光学系统与侧方视场望远光学系统共用一个探测器,光线经所述的全景环带光学系统后到达所述的探测器靶面(7),形成环带像面,用于显示系统周围的物体轮廓;光线经所述的侧方视场望远光学系统后到达所述的探测器靶面(7),在环带像面的内部的圆形成像区域形成圆形像面,用于显示目标物体的细节特征。
  3. 根据权利要求2所述的双通道共像面的全景环带光学成像装置,其特征在于,所述的探测器靶面(7)的圆形成像区域的外径小于所述的环形成像区域的内径,两者互不干涉,不影响两个通道的成像质量。
  4. 根据权利要求2所述的双通道共像面的全景环带光学成像装置,其特征在于,所述的全景环带块状头部单元(9)包括前透射面(1)、后反射面(2)、前反射面(3)、后透射面(4)。
PCT/CN2020/117970 2020-02-13 2020-09-27 一种双通道共像面的全景环带光学成像装置 WO2021159715A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010090319.3 2020-02-13
CN202010090319.3A CN111190274A (zh) 2020-02-13 2020-02-13 一种双通道共像面的全景环带光学成像装置

Publications (1)

Publication Number Publication Date
WO2021159715A1 true WO2021159715A1 (zh) 2021-08-19

Family

ID=70708263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/117970 WO2021159715A1 (zh) 2020-02-13 2020-09-27 一种双通道共像面的全景环带光学成像装置

Country Status (2)

Country Link
CN (1) CN111190274A (zh)
WO (1) WO2021159715A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111190274A (zh) * 2020-02-13 2020-05-22 浙江大学 一种双通道共像面的全景环带光学成像装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257630A (ja) * 2010-06-10 2011-12-22 Olympus Corp アタッチメント光学系
CN102401988A (zh) * 2011-11-29 2012-04-04 浙江大学 利用非球面反射镜实现折返式全景望远组合成像装置及其方法
CN102508354A (zh) * 2011-10-27 2012-06-20 浙江大学 利用全景环带透镜实现全景望远组合成像装置及其方法
CN102928962A (zh) * 2012-12-01 2013-02-13 上海臻恒光电系统有限公司 一种双凹两反射式全景环带视场成像镜头
CN203981954U (zh) * 2014-07-18 2014-12-03 浙江大学 一种利用光学薄膜实现折反射式无盲区全景环带成像系统
CN205691872U (zh) * 2016-05-07 2016-11-16 杭州映墨科技有限公司 一种全景环带立体成像系统
CN109462718A (zh) * 2017-09-06 2019-03-12 旺玖科技股份有限公司 至少三个镜头的全景影像获取设备及其全景影像获取模块
CN109709661A (zh) * 2019-01-23 2019-05-03 浙江大学 一种基于全景环带投影物镜的柱面结构光投影装置
CN110824669A (zh) * 2019-11-25 2020-02-21 杭州环峻科技有限公司 一种8k高分辨全景环带光学镜头
CN111190274A (zh) * 2020-02-13 2020-05-22 浙江大学 一种双通道共像面的全景环带光学成像装置
WO2020129278A1 (ja) * 2018-12-17 2020-06-25 立山科学工業株式会社 移動体周辺監視装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL162512A (en) * 2004-06-14 2010-02-17 Rafael Advanced Defense Sys Panoramic field of view acquiring and displaying system
CN103257432A (zh) * 2013-05-14 2013-08-21 复旦大学 一种光电观瞄系统
CN104181675B (zh) * 2014-07-18 2017-01-11 浙江大学 利用光学薄膜实现折反射式无盲区全景环带成像系统
CN106168704A (zh) * 2015-05-26 2016-11-30 上海臻恒光电系统有限公司 一种无中央盲区的全景成像镜头
CN106773034A (zh) * 2017-01-16 2017-05-31 浙江大学 主动式偏振目标增强的共光路全景环带光学成像装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257630A (ja) * 2010-06-10 2011-12-22 Olympus Corp アタッチメント光学系
CN102508354A (zh) * 2011-10-27 2012-06-20 浙江大学 利用全景环带透镜实现全景望远组合成像装置及其方法
CN102401988A (zh) * 2011-11-29 2012-04-04 浙江大学 利用非球面反射镜实现折返式全景望远组合成像装置及其方法
CN102928962A (zh) * 2012-12-01 2013-02-13 上海臻恒光电系统有限公司 一种双凹两反射式全景环带视场成像镜头
CN203981954U (zh) * 2014-07-18 2014-12-03 浙江大学 一种利用光学薄膜实现折反射式无盲区全景环带成像系统
CN205691872U (zh) * 2016-05-07 2016-11-16 杭州映墨科技有限公司 一种全景环带立体成像系统
CN109462718A (zh) * 2017-09-06 2019-03-12 旺玖科技股份有限公司 至少三个镜头的全景影像获取设备及其全景影像获取模块
WO2020129278A1 (ja) * 2018-12-17 2020-06-25 立山科学工業株式会社 移動体周辺監視装置
CN109709661A (zh) * 2019-01-23 2019-05-03 浙江大学 一种基于全景环带投影物镜的柱面结构光投影装置
CN110824669A (zh) * 2019-11-25 2020-02-21 杭州环峻科技有限公司 一种8k高分辨全景环带光学镜头
CN111190274A (zh) * 2020-02-13 2020-05-22 浙江大学 一种双通道共像面的全景环带光学成像装置

Also Published As

Publication number Publication date
CN111190274A (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
CN100478732C (zh) 广角成像光学系统以及使用该广角成像光学系统的广角成像装置、监视成像装置、车载成像装置以及投影装置
CN103293681B (zh) 一种超大口径、超长焦距的双通道光学装置
US20110298966A1 (en) Camera having multiple focal lengths
CN110749986B (zh) 一种红外连续变焦面阵扫描光学系统及像移补偿方法
CN102508354B (zh) 利用全景环带透镜实现全景望远组合成像装置及其方法
WO2021159715A1 (zh) 一种双通道共像面的全景环带光学成像装置
CN110824669B (zh) 一种8k高分辨全景环带光学镜头
US20140362232A1 (en) Objective lens with hyper-hemispheric field of view
US20140340472A1 (en) Panoramic bifocal objective lens
CN102401988B (zh) 利用非球面反射镜实现折返式全景望远组合成像装置及其方法
Luo et al. Non-blind area PAL system design based on dichroic filter
CN103649814B (zh) 显微观察用光学装置
CN103018890A (zh) 一种20°视场无中心遮拦的共轴四反射镜光学系统
CN205826952U (zh) 一种大变倍比折返式中波红外连续变焦镜头
CN110673313B (zh) 一种变焦鱼眼镜头系统及设计方法
CN102645729B (zh) 一种红外光学系统
US20240171720A1 (en) Non-blind-area multi-view panoramic stereo imaging device
CN107121760A (zh) 一种宽波段制冷红外折反射全景镜头
CN104570338B (zh) 一种基于制冷型红外系统的外视场拼接装置
CN209496197U (zh) 一种反射式望远镜
CN202615023U (zh) 一种红外光学系统
JP2003163819A (ja) 広角撮像装置、及びこれを用いた監視用撮像装置と車載用撮像装置
US10422977B2 (en) Reconnaissance objective lens used for unmanned aircraft
WO2016103446A1 (ja) 光学系及びカプセル内視鏡
CN218298623U (zh) 一种扩视场型红外双视场光学系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919220

Country of ref document: EP

Kind code of ref document: A1