WO2021159573A1 - 信息处理方法、装置、存储介质、处理器及电子装置 - Google Patents

信息处理方法、装置、存储介质、处理器及电子装置 Download PDF

Info

Publication number
WO2021159573A1
WO2021159573A1 PCT/CN2020/079061 CN2020079061W WO2021159573A1 WO 2021159573 A1 WO2021159573 A1 WO 2021159573A1 CN 2020079061 W CN2020079061 W CN 2020079061W WO 2021159573 A1 WO2021159573 A1 WO 2021159573A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission resource
configuration
information
hybrid automatic
process number
Prior art date
Application number
PCT/CN2020/079061
Other languages
English (en)
French (fr)
Inventor
赵振山
卢前溪
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to JP2022549077A priority Critical patent/JP2023513595A/ja
Priority to BR112022016055A priority patent/BR112022016055A2/pt
Priority to CN202310194593.9A priority patent/CN116456484A/zh
Priority to CN202080093789.3A priority patent/CN114982340A/zh
Priority to PCT/CN2020/090368 priority patent/WO2021159624A1/zh
Priority to EP20918476.1A priority patent/EP4093114A4/en
Priority to KR1020227030430A priority patent/KR20220140765A/ko
Publication of WO2021159573A1 publication Critical patent/WO2021159573A1/zh
Priority to US17/819,252 priority patent/US20220393802A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present invention relates to the field of communications, and in particular to an information processing method, device, storage medium, processor and electronic device.
  • the base station can allocate semi-persistent scheduling (SPS) to the terminal. ) Downlink transmission resources.
  • SPS semi-persistent scheduling
  • the base station can also allocate an uplink configuration grant (Uplink Configured Grant, referred to as UL CG) for the terminal.
  • UL CG Uplink Configured Grant
  • the related technology only provides a way for the base station to determine the HARQ process number when configuring downlink SPS transmission resources or configuring UL CG resources, but for the side line (SL) configuration grant (CG) It does not involve the determination of the HARQ process number.
  • At least some embodiments of the present invention provide an information processing method, device, storage medium, processor, and electronic device to at least solve the technical problem of the lack of a HARQ process number determination method for sideline configuration authorization in related technologies.
  • an information processing method including:
  • Receive configuration information from the network-side device where the configuration information is used to configure the side-line configuration authorized transmission resources, and the side-line configuration authorized transmission resources are transmission resources located in the resource pool; determine the corresponding side-line configuration authorized transmission resources based on the configuration information The time domain information; the first hybrid automatic repeat request process number is determined according to the time domain information corresponding to the authorized transmission resource configured by the side line.
  • determining the first hybrid automatic repeat request process number according to the time domain information corresponding to the side-line configuration authorized transmission resource includes: determining a period parameter based on the configuration information, where the period parameter is the period of the side-line configuration authorized transmission resource; The side row configures the time domain information and the period parameter corresponding to the authorized transmission resource to determine the first hybrid automatic repeat request process number.
  • the period of the side row configuration authorized transmission resource is represented by the number of time slots.
  • the time domain information corresponding to the side-line configuration authorized transmission resource is the time slot index of the side-line configuration authorized transmission resource in the resource pool.
  • the above method further includes: transmitting the first side row data on the side row configuration authorized resource, wherein the first side row data corresponds to the first hybrid automatic repeat request process number.
  • the above method further includes: receiving downlink control information from the network side device, where the downlink control information is used to schedule side transmission resources, and the downlink control information carries the first hybrid automatic Retransmission request process number; retransmit the first side row data on the side row transmission resource scheduled by the downlink control information.
  • the above method further includes: transmitting the second side row data on the side row configuration authorized transmission resource based on the mapping relationship between the first hybrid automatic repeat request process number and the second hybrid automatic repeat request process number, Among them, the second side row data corresponds to the second hybrid automatic retransmission request process number.
  • the above method further includes: receiving downlink control information from the network side device, wherein the downlink control information is used to schedule side transmission resources, and the downlink control information carries the first hybrid automatic Retransmission request process number; retransmit the second side row data on the side row transmission resource scheduled by the downlink control information.
  • another information processing method including:
  • the first configuration information is used to configure the side-line configuration authorized transmission resource, and the side-line configuration authorized transmission resource is a transmission resource located in the resource pool; based on the first configuration information, it is determined that the side-line configuration authorized transmission resource corresponds The time domain information; the first hybrid automatic repeat request process number is determined according to the time domain information corresponding to the authorized transmission resource configured by the side line.
  • determining the first hybrid automatic repeat request process number according to the time domain information corresponding to the side-line configuration authorized transmission resource includes: determining a period parameter based on the first configuration information, where the period parameter is the period of the side-line configuration authorized transmission resource ; Determine the first hybrid automatic retransmission request process number according to the time domain information and period parameters corresponding to the authorized transmission resource configured by the side line.
  • the period of the side row configuration authorized transmission resource is represented by the number of time slots.
  • the time domain information corresponding to the side-line configuration authorized transmission resource is the time slot index of the side-line configuration authorized transmission resource in the resource pool.
  • determining the time domain information corresponding to the sideline configuration authorized transmission resource based on the first configuration information includes: receiving an uplink control channel sent by the terminal on the uplink transmission resource based on the first configuration information, where the uplink transmission resource and the sideline configuration The authorized transmission resources belong to the same side-line configuration authorization period, and the uplink control channel is used for the terminal to report side-line feedback information; the time-domain information corresponding to the side-line configuration authorized transmission resource is determined according to the time-domain information of the uplink transmission resource.
  • the above method further includes: determining at least one of the following parameters: a first parameter and a second parameter; wherein the first parameter is used to determine the time interval between the uplink transmission resource and the side row feedback channel transmission resource, and The second parameter is used to determine the time interval between the side row feedback channel transmission resource and the side row configuration authorized transmission resource.
  • determining the time domain information corresponding to the side row configuration authorized transmission resource according to the time domain information of the uplink transmission resource includes: determining the side row according to at least one of the first parameter and the second parameter, and the time domain information of the uplink transmission resource Configure the time domain information corresponding to the authorized transmission resource.
  • the first configuration information is also used to configure at least one of the uplink transmission resource and the first parameter.
  • the above method further includes: sending second configuration information to the terminal, where the second configuration information is used to configure the resource pool; and determining the second parameter according to the second configuration information.
  • the above method further includes: when the uplink control channel carries non-acknowledgement information, sending downlink control information to the terminal, where the downlink control information is used to schedule sideline transmission resources, and the downlink control information is Carrying the first hybrid automatic repeat request process number, and the downlink control information is used to schedule the terminal to retransmit the side row data corresponding to the first hybrid automatic repeat request process number on the side row transmission resource.
  • the above method further includes: sending first configuration information to the terminal, where the first configuration information is also used for the terminal to determine the time domain information corresponding to the side-line configuration authorized transmission resource and according to the side-line configuration authorized transmission resource corresponding time
  • the domain information determines the process number of the first hybrid automatic retransmission request.
  • yet another information processing method including:
  • the first configuration information is used to configure uplink transmission resources; determine the time domain information corresponding to the uplink transmission resources based on the first configuration information; determine the first hybrid automatic retransmission according to the time domain information corresponding to the uplink transmission resources Request process number.
  • the above method further includes: determining the period parameter based on the first configuration information, where the first configuration information is also used to configure the side row configuration authorized transmission resource, the side row configuration authorized transmission resource is used to transmit the side row data, and the period parameter It is used to determine the period of the side row configuration authorized transmission resource; the first hybrid automatic repeat request process number is determined according to the time domain information and the period parameter corresponding to the uplink transmission resource.
  • the side row configuration authorized transmission resource and the uplink transmission resource are related, that is, the side row data transmitted on the side row configuration authorized transmission resource, and the corresponding side row feedback information is transmitted to the network on the uplink transmission resource ⁇ Side equipment.
  • the time domain information corresponding to the side-line configuration authorized transmission resource is the time slot index of the side-line configuration authorized transmission resource in the resource pool.
  • the period parameter is represented by the number of time slots, and the number of time slots is the number of time slots in the resource pool or the number of candidate time slots used in the resource pool.
  • the period parameter is represented by the number of logical time slots, or represented by the number of physical time slots.
  • the above method further includes: sending downlink control information to the terminal, where the downlink control information is used to schedule sideline transmission resources, and the downlink control information carries the first hybrid automatic repeat request process number ,
  • the downlink control information is used to schedule the terminal device to retransmit the side row data corresponding to the first hybrid automatic repeat request process number on the side row transmission resource.
  • the above method further includes: sending downlink control information to the terminal when a negative acknowledgment is detected on the uplink transmission resource.
  • the above method further includes: sending the first configuration information to the terminal device.
  • still another information processing method including:
  • the configuration information is also used to configure side-line configuration authorized transmission resources, and the side-line configuration authorized transmission resources are used to transmit side-line data.
  • the above method further includes: determining at least one of the following parameters: a first parameter and a second parameter; wherein the first parameter is used to determine the time interval between the uplink transmission resource and the side row feedback channel transmission resource, and The second parameter is used to determine the time interval between the side row feedback channel transmission resource and the side row configuration authorized transmission resource.
  • the above method further includes: determining the time domain information corresponding to the sideline configuration authorized transmission resource according to at least one of the first parameter and the second parameter, and the time domain information corresponding to the uplink transmission resource, to obtain the uplink transmission resource and the side According to the corresponding relationship between the first hybrid automatic repeat request process number and the corresponding relationship between the uplink transmission resource and the side line configuration authorized transmission resource, determine the first hybrid automatic repeat request process number The corresponding side row configures authorized transmission resources.
  • the above method further includes: transmitting the first side row data on the side row configuration authorized transmission resource, wherein the first side row data corresponds to the first hybrid automatic repeat request process number.
  • the above method further includes: receiving downlink control information sent by the network side device, wherein the downlink control information is used to schedule side transmission resources, and the downlink control information carries the first hybrid automatic retransmission Request process number; retransmit the first side row data on the side row transmission resource.
  • the above method further includes: transmitting the second side row data on the side row configuration authorized transmission resource, wherein the second side row data corresponds to the second hybrid automatic repeat request process number.
  • the above method further includes: determining a mapping relationship between the first hybrid automatic repeat request process number and the second hybrid automatic repeat request process number.
  • the above method further includes: receiving downlink control information sent by the network side device, wherein the downlink control information is used to schedule side transmission resources, and the downlink control information carries the first hybrid automatic retransmission Request process number; based on the mapping relationship between the first hybrid automatic repeat request process number and the second hybrid automatic repeat request process number, the second side row data is retransmitted on the side row transmission resource.
  • an information processing device including:
  • the first receiving module is used to receive configuration information from the network side device, where the configuration information is used to configure side-line configuration authorized transmission resources, and the side-line configuration authorized transmission resources are transmission resources located in the resource pool; the determining module uses To determine the time domain information corresponding to the side-line configuration authorized transmission resource based on the configuration information; the processing module is configured to determine the first hybrid automatic retransmission request process number according to the time-domain information corresponding to the side-line configuration authorized transmission resource.
  • the determining module is configured to determine the period parameter based on the configuration information, where the period parameter is the period of the side row configuration authorized transmission resource; and the first hybrid is determined according to the time domain information and the period parameter corresponding to the side row configuration authorized transmission resource Automatic retransmission request process ID.
  • the period of the side row configuration authorized transmission resource is represented by the number of time slots, which is used to describe the number of time slots in the resource pool.
  • the time domain information corresponding to the side-line configuration authorized transmission resource is the time slot index of the side-line configuration authorized transmission resource in the resource pool.
  • the above-mentioned apparatus further includes: a first transmission module, configured to transmit the first side row data on the side row configuration authorized resource, wherein the first side row data corresponds to the first hybrid automatic retransmission request process number.
  • the above-mentioned apparatus further includes: a second receiving module, configured to receive downlink control information from a network-side device, wherein the downlink control information is used to schedule sideline transmission resources, and the downlink control information It carries the first hybrid automatic repeat request process number; the first retransmission module is used to retransmit the first side row data on the side row transmission resource scheduled by the downlink control information.
  • a second receiving module configured to receive downlink control information from a network-side device, wherein the downlink control information is used to schedule sideline transmission resources, and the downlink control information It carries the first hybrid automatic repeat request process number; the first retransmission module is used to retransmit the first side row data on the side row transmission resource scheduled by the downlink control information.
  • the above device further includes: a second transmission module, configured to configure the authorized transmission resource on the side line based on the mapping relationship between the first hybrid automatic repeat request process number and the second hybrid automatic repeat request process number
  • the second side line data is transmitted, where the second side line data corresponds to the second hybrid automatic repeat request process number.
  • the above-mentioned apparatus further includes: a third receiving module, configured to receive downlink control information from a network side device, wherein the downlink control information is used to schedule sideline transmission resources, and the downlink control information It carries the first hybrid automatic repeat request process number; the second retransmission module is used to retransmit the second side row data on the side row transmission resource scheduled by the downlink control information.
  • a third receiving module configured to receive downlink control information from a network side device, wherein the downlink control information is used to schedule sideline transmission resources, and the downlink control information It carries the first hybrid automatic repeat request process number
  • the second retransmission module is used to retransmit the second side row data on the side row transmission resource scheduled by the downlink control information.
  • another information processing device including:
  • the processing module is used to determine the first configuration information, where the first configuration information is used to configure the side-line configuration authorized transmission resource, and the side-line configuration authorized transmission resource is a transmission resource located in the resource pool; the first determining module is configured to be based on The first configuration information determines the time domain information corresponding to the side line configuration authorized transmission resource; the second determining module is configured to determine the first hybrid automatic repeat request process number according to the time domain information corresponding to the side line configuration authorized transmission resource.
  • the second determining module is configured to determine the period parameter based on the first configuration information, where the period parameter is the period for the side row to configure the authorized transmission resource; and the time domain information and the period parameter corresponding to the authorized transmission resource according to the side row configuration Determine the process number of the first hybrid automatic retransmission request.
  • the period of the side row configuration authorized transmission resource is represented by the number of time slots.
  • the time domain information corresponding to the side-line configuration authorized transmission resource is the time slot index of the side-line configuration authorized transmission resource in the resource pool.
  • the first determining module is configured to receive the uplink control channel sent by the terminal on the uplink transmission resource based on the first configuration information, where the uplink transmission resource and the sideline configuration authorized transmission resource belong to the same sideline configuration authorization period,
  • the uplink control channel is used for the terminal to report side-line feedback information; and determine the time-domain information corresponding to the side-line configuration authorized transmission resource according to the time-domain information of the uplink transmission resource.
  • the above-mentioned apparatus further includes: a third determining module, configured to determine at least one of the following parameters: a first parameter and a second parameter; wherein the first parameter is used to determine uplink transmission resources and side-line feedback channel transmission resources The second parameter is used to determine the time interval between the side-line feedback channel transmission resource and the side-line configuration authorized transmission resource.
  • a third determining module configured to determine at least one of the following parameters: a first parameter and a second parameter; wherein the first parameter is used to determine uplink transmission resources and side-line feedback channel transmission resources The second parameter is used to determine the time interval between the side-line feedback channel transmission resource and the side-line configuration authorized transmission resource.
  • the first determining module is further configured to determine the time domain information corresponding to the sideline configuration authorized transmission resource according to at least one of the first parameter and the second parameter, and the time domain information of the uplink transmission resource.
  • the first configuration information is also used to configure at least one of the uplink transmission resource and the first parameter.
  • the above-mentioned apparatus further includes: a first sending module, configured to send second configuration information to the terminal, wherein the second configuration information is used to configure a resource pool; and a fourth determining module is configured to determine the first configuration information according to the second configuration information. Two parameters.
  • the above apparatus further includes: a second sending module, configured to send downlink control information to the terminal when the uplink control channel carries non-acknowledgement information, where the downlink control information is used to schedule sideline transmission resources, And the downlink control information carries the first hybrid automatic repeat request process number, and the downlink control information is used to schedule the terminal to retransmit the side line data corresponding to the first hybrid automatic repeat request process number on the side line transmission resource.
  • a second sending module configured to send downlink control information to the terminal when the uplink control channel carries non-acknowledgement information, where the downlink control information is used to schedule sideline transmission resources, And the downlink control information carries the first hybrid automatic repeat request process number, and the downlink control information is used to schedule the terminal to retransmit the side line data corresponding to the first hybrid automatic repeat request process number on the side line transmission resource.
  • the above-mentioned device further includes: a third sending module, configured to send first configuration information to the terminal, where the first configuration information is also used for the terminal to determine the time domain information corresponding to the side-line configuration authorized transmission resources and to determine the time-domain information corresponding to the side-line configuration authorized transmission resource and according to the side-line configuration information. Configure the time domain information corresponding to the authorized transmission resource to determine the first hybrid automatic repeat request process number.
  • another information processing device including:
  • the first determining module is configured to determine first configuration information, where the first configuration information is used to configure uplink transmission resources; the second determining module is configured to determine time domain information corresponding to the uplink transmission resources based on the first configuration information; processing module , Used to determine the first hybrid automatic repeat request process number according to the time domain information corresponding to the uplink transmission resource.
  • the above-mentioned apparatus further includes: a third determining module, configured to determine a period parameter based on the first configuration information, wherein the first configuration information is also used to configure a side-line configuration authorized transmission resource, and the side-line configuration authorized transmission resource is used for For transmitting side row data, the period parameter is used to determine the period of the side row configuration authorized transmission resource; the fourth determining module is used to determine the first hybrid automatic repeat request process number according to the time domain information and the period parameter corresponding to the uplink transmission resource.
  • the side row configuration authorized transmission resource and the uplink transmission resource are related, that is, the side row data transmitted on the side row configuration authorized transmission resource, and the corresponding side row feedback information is transmitted to the network on the uplink transmission resource ⁇ Side equipment.
  • the time domain information corresponding to the side-line configuration authorized transmission resource is the time slot index of the side-line configuration authorized transmission resource in the resource pool.
  • the period parameter is represented by the number of time slots, and the number of time slots is the number of time slots in the resource pool or the number of candidate time slots used in the resource pool.
  • the above apparatus further includes: a first sending module, configured to send downlink control information to the terminal, where the downlink control information is used to schedule sideline transmission resources, and the downlink control information carries the first The hybrid automatic repeat request process number, and the downlink control information is used to schedule the terminal device to retransmit the side line data corresponding to the first hybrid automatic repeat request process number on the side line transmission resource.
  • a first sending module configured to send downlink control information to the terminal, where the downlink control information is used to schedule sideline transmission resources, and the downlink control information carries the first The hybrid automatic repeat request process number, and the downlink control information is used to schedule the terminal device to retransmit the side line data corresponding to the first hybrid automatic repeat request process number on the side line transmission resource.
  • the above device further includes: a second sending module, configured to send downlink control information to the terminal when a negative acknowledgement is detected on the uplink transmission resource.
  • a second sending module configured to send downlink control information to the terminal when a negative acknowledgement is detected on the uplink transmission resource.
  • the foregoing apparatus further includes: a third sending module, configured to send the first configuration information to the terminal device.
  • still another information processing device including:
  • the first receiving module is configured to receive configuration information from the network side device, where the configuration information is used for uplink transmission resources; the first determining module is configured to determine the time domain information corresponding to the uplink transmission resources based on the configuration information; and the second determining module The module is used to determine the first hybrid automatic repeat request process number according to the time domain information corresponding to the uplink transmission resource.
  • the configuration information is also used to configure side-line configuration authorized transmission resources, and the side-line configuration authorized transmission resources are used to transmit side-line data.
  • the above-mentioned apparatus further includes: a third determining module, configured to determine at least one of the following parameters: a first parameter and a second parameter; wherein the first parameter is used to determine uplink transmission resources and side-line feedback channel transmission resources The second parameter is used to determine the time interval between the side-line feedback channel transmission resource and the side-line configuration authorized transmission resource.
  • a third determining module configured to determine at least one of the following parameters: a first parameter and a second parameter; wherein the first parameter is used to determine uplink transmission resources and side-line feedback channel transmission resources The second parameter is used to determine the time interval between the side-line feedback channel transmission resource and the side-line configuration authorized transmission resource.
  • the above-mentioned apparatus further includes: a fourth determining module, configured to determine the time domain information corresponding to the side-line configuration authorized transmission resource according to at least one of the first parameter and the second parameter, and the time domain information corresponding to the uplink transmission resource , Obtain the corresponding relationship between the uplink transmission resource and the side-line configuration authorized transmission resource; according to the first hybrid automatic repeat request process number, and the corresponding relationship between the uplink transmission resource and the side-line configuration authorized transmission resource, determine the corresponding relationship with the first
  • the side row corresponding to the process number of the hybrid automatic repeat request is configured to authorize transmission resources.
  • the above device further includes: a first transmission module, configured to transmit the first side row data on the side row configuration authorized transmission resource, wherein the first side row data corresponds to the first hybrid automatic repeat request process number.
  • a first transmission module configured to transmit the first side row data on the side row configuration authorized transmission resource, wherein the first side row data corresponds to the first hybrid automatic repeat request process number.
  • the above-mentioned apparatus further includes: a second receiving module, configured to receive downlink control information sent by the network side device, wherein the downlink control information is used to schedule sideline transmission resources, and the downlink control information is Carry the first hybrid automatic retransmission request process number; the first retransmission module is used to retransmit the first side row data on the side row transmission resource.
  • a second receiving module configured to receive downlink control information sent by the network side device, wherein the downlink control information is used to schedule sideline transmission resources, and the downlink control information is Carry the first hybrid automatic retransmission request process number; the first retransmission module is used to retransmit the first side row data on the side row transmission resource.
  • the above device further includes: a second transmission module, configured to transmit the second side line data on the side line configuration authorized transmission resource, wherein the second side line data corresponds to the second hybrid automatic retransmission request process number.
  • a second transmission module configured to transmit the second side line data on the side line configuration authorized transmission resource, wherein the second side line data corresponds to the second hybrid automatic retransmission request process number.
  • the above device further includes: a third determining module, configured to determine the mapping relationship between the first hybrid automatic repeat request process number and the second hybrid automatic repeat request process number.
  • the above-mentioned apparatus further includes: a third receiving module, configured to receive downlink control information sent by the network side device, wherein the downlink control information is used to schedule sideline transmission resources, and the downlink control information is Carry the first hybrid automatic repeat request process number; the second retransmission module is used to transmit resources on the side line based on the mapping relationship between the first hybrid automatic repeat request process number and the second hybrid automatic repeat request process number The second side row data is retransmitted.
  • a third receiving module configured to receive downlink control information sent by the network side device, wherein the downlink control information is used to schedule sideline transmission resources, and the downlink control information is Carry the first hybrid automatic repeat request process number
  • the second retransmission module is used to transmit resources on the side line based on the mapping relationship between the first hybrid automatic repeat request process number and the second hybrid automatic repeat request process number The second side row data is retransmitted.
  • a storage medium in which a computer program is stored, wherein the computer program is configured to execute the information processing method in any one of the foregoing when running.
  • a processor which is configured to run a program, wherein the program is set to execute the information processing method in any one of the above items when the program is running.
  • an electronic device including a memory and a processor, a computer program is stored in the memory, and the processor is configured to run the computer program to execute the information processing method in any one of the foregoing items.
  • a chip including a processor, configured to call and run a computer program from the memory, so that the device with the chip installed executes the information processing method in any one of the above.
  • a computer program product including computer program instructions, which cause a computer to execute the information processing method in any one of the foregoing.
  • a computer program is also provided.
  • the computer program enables a computer to execute the information processing method in any one of the above items.
  • the configuration information from the network side device is received, and the configuration information is used to configure the side-line configuration authorized transmission resource, and the side-line configuration authorized transmission resource is a transmission resource located in the resource pool.
  • FIG. 1 is a schematic diagram of D2D transmission technology according to related technologies
  • Figure 2 is a schematic diagram of a unicast transmission method according to related technologies
  • Figure 3 is a schematic diagram of a multicast transmission method according to related technologies
  • Figure 4 is a schematic diagram of a broadcast transmission method according to related technologies
  • Fig. 5 is a schematic diagram of a data transmission process in NR-V2X according to related technologies
  • Fig. 6 is a schematic diagram of a network side device configuring transmission resources according to related technologies
  • Fig. 7 is a flowchart of an information processing method according to one of the embodiments of the present invention.
  • FIG. 8 is a schematic diagram of determining a resource pool according to one of the optional embodiments of the present invention.
  • Fig. 9 is a flowchart of another information processing method according to one of the embodiments of the present invention.
  • FIG. 10 is a schematic diagram of the time interval between the SFN period and the DFN period according to an alternative embodiment of the present invention.
  • FIG. 11 is a flowchart of yet another information processing method according to one of the embodiments of the present invention.
  • Fig. 12 is a flowchart of still another information processing method according to one of the embodiments of the present invention.
  • FIG. 13 is a schematic diagram of a terminal device autonomously determining a HARQ process number according to one of the optional embodiments of the present invention.
  • Fig. 14 is a structural block diagram of an information processing device according to one of the embodiments of the present invention.
  • 15 is a structural block diagram of an information processing device according to one of the optional embodiments of the present invention.
  • 16 is a structural block diagram of another information processing device according to one of the embodiments of the present invention.
  • FIG. 17 is a structural block diagram of another information processing device according to one of the optional embodiments of the present invention.
  • FIG. 18 is a structural block diagram of yet another information processing device according to one of the embodiments of the present invention.
  • FIG. 19 is a structural block diagram of yet another information processing device according to one of the optional embodiments of the present invention.
  • FIG. 20 is a structural block diagram of still another information processing device according to one of the embodiments of the present invention.
  • 21 is a structural block diagram of still another information processing device according to one of the optional embodiments of the present invention.
  • Fig. 22 is a schematic structural diagram of a communication device according to one of the embodiments of the present invention.
  • FIG. 23 is a schematic diagram of a chip structure according to an embodiment of the present invention.
  • Fig. 24 is a structural block diagram of a communication system according to one of the embodiments of the present invention.
  • FIG 1 is a schematic diagram of D2D transmission technology according to related technologies.
  • Device to Device (D2D for short) communication is a transmission technology based on Sidelink (SL for short). It is different from the way of receiving or sending communication data through the base station in the traditional cellular system. Since the D2D system adopts terminal-to-terminal direct communication, it has higher spectrum efficiency and lower transmission delay.
  • the Internet of Vehicles system is based on D2D transmission technology, and two transmission modes, Mode A and Mode B, are defined in the Third Generation Partnership Project (3GPP).
  • 3GPP Third Generation Partnership Project
  • the transmission resources of the terminal are allocated by the base station.
  • the terminal transmits data on the side link according to the resources allocated by the base station.
  • the base station can either allocate resources for a single transmission to the terminal, or allocate resources for semi-static transmission to the terminal.
  • the terminal selects a resource in the resource pool for data transmission.
  • NR-Vehicle to Everything due to the need to support automatic driving, higher requirements are placed on data interaction between vehicles, such as higher throughput and lower time. Extension, higher reliability, larger coverage, more flexible resource allocation, etc.
  • NR-V2X unicast and multicast transmission methods are introduced.
  • LTE Long Term Evaluation
  • Fig. 2 is a schematic diagram of a unicast transmission method according to the related technology. As shown in Fig. 2, UE1 is a transmitting-side terminal and UE2 is a receiving-side terminal. Therefore, unicast transmission can be performed between UE1 and UE2.
  • the receiving terminal includes all terminals in a communication group or all terminals within a certain transmission distance.
  • Fig. 3 is a schematic diagram of a multicast transmission method according to the related technology. As shown in Fig. 3, UE1, UE2, UE3, and UE4 form a communication group, where UE1 is the data sender, and other terminal devices UE2 in the group Both UE3 and UE4 are receiving-side terminals.
  • the receiving terminal can be any terminal.
  • Fig. 4 is a schematic diagram of a broadcast transmission method according to the related technology. As shown in Fig. 4, if UE1 is a transmitting-side terminal, other terminals UE2, UE3, and UE4 around UE1 can be set as receiving-side terminals.
  • NR-V2X multiple transmission modes have been introduced in NR-V2X, namely mode 1 and mode 2.
  • mode 1 is that the network allocates transmission resources for the terminal (that is, the above-mentioned mode A)
  • the mode 2 is that the terminal selects transmission resources (that is, the above-mentioned Mode B).
  • a feedback channel is introduced on the side link.
  • Fig. 5 is a schematic diagram of a data transmission process in NR-V2X according to the related technology. As shown in Fig. 5, UE1 and UE2 form a unicast link. UE1 sends sideline data to UE2.
  • UE2 sends side-line feedback information, namely HARQ ACK or NACK, to UE1 according to the detection result of the received side-line data. After UE1 receives the feedback information from UE2, it decides whether to retransmit the data to UE2. In addition, UE1 can also determine whether the receiving terminal UE2 needs to send feedback information. For example, for broadcast communication, the receiving end does not need to provide feedback; however, for unicast communication, in order to improve the reliability of the system, it needs to receive Feedback at the end. Specifically, the UE1 carries indication information in the side-line control information (SCI) to indicate whether the receiving-side terminal needs to perform side-line feedback.
  • SCI side-line control information
  • mode 1 and mode 2 resource allocation methods will also be supported.
  • the terminal autonomously selects transmission resources in the resource pool for side-line transmission, that is, mode B above.
  • the network side device allocates side-line configuration authorized transmission resources to the terminal, that is, mode A above.
  • the network-side device can either allocate side-line configuration authorized transmission resources to the terminal by means of dynamic scheduling (Dynamic Scheduling), and can also allocate SL CG transmission resources to the terminal.
  • the resource allocation methods of CG mainly include two configuration authorization methods: the first type of configuration authorization (type-1 configured grant) and the second type of configuration authorization (type-2 configured grant).
  • the first type of configuration authorization refers to that the network side device configures authorized transmission resources for the terminal configuration side through radio resource control (Radio Resource Control, RRC for short) signaling.
  • RRC signaling configuration includes all transmission resources and transmission parameters including time domain resources, frequency domain resources, demodulation reference signal (DMRS), modulation and coding scheme (MCS), etc.
  • DMRS demodulation reference signal
  • MCS modulation and coding scheme
  • the second type of configuration authorization uses a two-step resource configuration method, that is, the RRC+Downlink Control Information (Downlink Control Information, referred to as DCI) method.
  • RRC signaling configures transmission resources and transmission parameters including the period of time-frequency resources, the number of HARQ processes, etc.
  • DCI activates the transmission authorized by the second type of configuration, and configures both time domain resources and frequency domain at the same time.
  • Other transmission resources and transmission parameters including resources, MCS, etc.
  • the UE After receiving the RRC signaling, the UE cannot immediately use the resources and parameters configured by the high-level parameters for side-line transmission, but needs to receive the corresponding DCI activation and configure other resources and transmission parameters before it can perform side-line transmission.
  • the network side device can deactivate the configuration transmission through DCI, and after the terminal receives the deactivated DCI, the transmission resource can no longer be used for side transmission.
  • the network side device has allocated the transmission resource authorized by the configuration for the terminal, when the terminal has side data to be transmitted, the transmission resource can be directly used for transmission without sending a scheduling request (Scheduling Request, referred to as SR) or Buffer Status Report (BSR for short) request transmission resources, thereby reducing transmission delay.
  • SR scheduling request
  • BSR Buffer Status Report
  • the network-side device allocates periodic transmission resources, and in each cycle, the network-side device can configure multiple transmission resources.
  • Fig. 6 is a schematic diagram of a network-side device configuring transmission resources according to related technologies. As shown in Fig. 6, the transmission resource authorized by the network-side device configuration is a periodically repeated transmission resource, wherein each cycle includes 4 side rows Configure authorized transmission resources.
  • the receiving-side terminal will send feedback information to the transmitting-side terminal according to the side-line data reception status.
  • the sending-side terminal reports side uplink feedback information (SL HARQ-ACK) to the network-side device.
  • the network-side device decides whether to allocate retransmission resources according to the SL HARQ-ACK reported by the transmitting-side terminal.
  • the network side device can configure the transmission resources authorized by the sideline configuration for the terminal, and allocate physical uplink control channel (Physical Uplink Control Channel, referred to as PUCCH) transmission resources.
  • PUCCH Physical Uplink Control Channel
  • the terminal can report side feedback information to the network side device on the PUCCH. If the network side device receives the NACK feedback information reported by the terminal, it will allocate retransmission resources through dynamic scheduling, and need to indicate the HARQ process number in the dynamically scheduled DCI to indicate the HARQ to which the retransmission resources allocated for the terminal belong Therefore, the network-side device needs to determine the HARQ process number corresponding to the sideline transmission.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system to which the embodiment of the present invention is applied may include a network-side device, and the network-side device may be a device that communicates with a terminal device (or called a communication terminal or a terminal).
  • the network side device can provide communication coverage for a specific geographic area, and can communicate with terminal devices located in the coverage area.
  • the network side device may be a base station (Base Transceiver Station, referred to as BTS) in a GSM system or a CDMA system, or a base station (NodeB, referred to as NB) in a WCDMA system, or a base station in a LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • the Evolutional Node B (eNB or eNodeB for short), or the wireless controller in the Cloud Radio Access Network (CRAN for short), or the network side device may be a mobile switching center, Relay stations, access points, in-vehicle devices, wearable devices, hubs, switches, bridges, routers, network side devices in 5G networks, or networks in the future evolution of the Public Land Mobile Network (PLMN) Side equipment, etc.
  • PLMN Public Land Mobile Network
  • the communication system also includes at least one terminal device located within the coverage area of the network side device.
  • the "terminal equipment” used here includes, but is not limited to, connection via wired lines, such as public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), and digital cables. , Direct cable connection; and/or another data connection/network; and/or via wireless interface, such as for cellular network, wireless local area network (WLAN), digital TV network such as DVB-H network , Satellite network, AM-FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN public switched telephone networks
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • wireless interface such as for cellular network, wireless local area network (WLAN), digital TV network such as DVB-H network , Satellite network, AM-FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, and the Internet /PDA with intranet access, Web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receiver or including radio phone Other electronic devices of the transceiver.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile equipment, user terminal, terminal, wireless communication equipment, user Agent or user device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, abbreviated as WLL) station, and a personal digital assistant (Personal Digital Assistant, abbreviated as PDA), handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • D2D communication can be performed between terminal devices.
  • the 5G system or 5G network may also be referred to as NR system or NR network.
  • the communication system may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present invention.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present invention.
  • the communication equipment may include network-side equipment and terminal equipment with communication functions.
  • the network-side equipment and terminal equipment may be the specific equipment described above, which will not be repeated here; the communication equipment may also include other equipment in the communication system, such as Other network entities such as network controllers and mobility management entities are not limited in the embodiment of the present invention.
  • an embodiment of an information processing method is provided. It should be noted that the steps shown in the flowchart of the accompanying drawings can be executed in a computer system such as a set of computer-executable instructions, and Although the logical sequence is shown in the flowchart, in some cases, the steps shown or described can be performed in a different order than here.
  • FIG. 7 is a flowchart of an information processing method according to one of the embodiments of the present invention. As shown in FIG. 7, the method includes the following steps:
  • Step S70 receiving configuration information from a network side device, where the configuration information is used to configure a side-line configuration authorized transmission resource, and the side-line configuration authorized transmission resource is a transmission resource located in a resource pool;
  • Step S71 Determine the time domain information corresponding to the side-line configuration authorized transmission resource based on the configuration information
  • Step S72 Determine the first hybrid automatic repeat request process number according to the time domain information corresponding to the authorized transmission resource configured by the side line.
  • the configuration information from the network side device can be received, the configuration information is used to configure the side-line configuration authorized transmission resource and the side-line configuration authorized transmission resource is the transmission resource located in the resource pool, which is determined by the configuration information
  • the time domain information corresponding to the side-line configuration authorized transmission resources and the time domain information corresponding to the side-line configuration authorized transmission resources determine the first hybrid automatic repeat request process number, achieving the purpose of providing the HARQ process number determination method for the side-line configuration authorization Therefore, it can effectively fill the technical gap that the HARQ process number cannot be determined in terms of side-line configuration authorization, increase the flexibility and diversity of the HARQ process number determination method, and solve the lack of related technologies on the side-line Configure the technical issue of how to determine the authorized HARQ process ID.
  • the first hybrid automatic repeat request process number can be determined according to the time domain position of the authorized transmission resource according to the side line configuration.
  • FIG. 8 is a schematic diagram of determining a resource pool according to one of the optional embodiments of the present invention.
  • a system frame number System Frame Number, abbreviated as SFN
  • direct frame number The Direct Frame Number (DFN for short) determines the resource pool during the period.
  • SFN System Frame Number
  • DFN Direct Frame Number
  • one DFN cycle includes 10240 subframes (or time slots), corresponding to subframes 0, 1, 2, ..., 10239, respectively.
  • the subframe number is The number of these remaining subframes can be divisible by L bitmap, bitmap Repeated periodically in the remaining subframes, where a bit of 1 indicates that the subframe corresponding to the bit in the remaining subframe belongs to the resource pool, otherwise it does not belong to the resource pool.
  • each time slot index in the resource pool corresponds to a time slot index in the DFN cycle. For example, time slots 0, 1, 2, 3, 4, and 5 in the resource pool correspond to time slots 0, 2, 4, 13, 14, and 15 in the DFN cycle, respectively.
  • the authorized transmission resource configured on the side of the network configuration is associated with a resource pool, and the authorized transmission resource configured on the side of the network configuration is the transmission resource located in this resource pool.
  • the time domain information corresponding to the side-line configuration authorized transmission resource is the time slot index of the side-line configuration authorized transmission resource in the resource pool.
  • the resource pool where the authorized transmission resource is configured on the side row includes 3033 subframes, so the time domain information corresponding to the authorized transmission resource configured on the side row is the time slot index in the resource pool, that is, in [0 ,3032] Slot index within the range.
  • the time domain information corresponding to the side-line configuration authorized transmission resource is a time slot index in a time slot that may be used in the resource pool.
  • the set of time slots that may be used for the resource pool is the remaining subframe, and the corresponding time slot index range is [0, 10109].
  • At least one of the following parameters can be determined from the above configuration information:
  • the side line configures the cycle of authorized transmission resources
  • the side row configures the time slot corresponding to the time domain resource of the authorized transmission resource.
  • the configuration information includes time slot offset indication information and period parameters, and the side row configuration authorized transmission resource is determined according to the time slot offset indication information and period parameters; wherein, the time slot offset indication information is used To determine the time domain information of the authorized transmission resource in the first side row in a system frame number cycle (or in a direct frame number cycle).
  • the time slot offset indication information is represented by the number of time slots, the number of time slots represents the number of physical time slots or the number of logical time slots, where the logical time slot is the time in the resource pool associated with the configured authorized transmission resource. Slots or time slots that may be used for resource pools.
  • the period parameter is used to determine the period of the side row configuration authorized transmission resource, expressed by the number of time slots, the number of time slots represents the number of physical time slots or the number of logical time slots, where the logical time slot is the configuration authorized The time slot in the resource pool associated with the transmission resource or the time slot that may be used in the resource pool.
  • step S72 determining the first hybrid automatic retransmission request process number according to the time domain information corresponding to the authorized transmission resource configured by the side line may include the following execution steps:
  • Step S720 Determine a period parameter based on the configuration information, where the period parameter is a period for the side row to configure authorized transmission resources;
  • Step S722 Determine the first hybrid automatic repeat request process number according to the time domain information and period parameters corresponding to the authorized transmission resource configured by the side line.
  • the period of the side row configuration authorized transmission resource is represented by the number of time slots, which is used to describe the number of time slots in the resource pool where the side row configuration authorized transmission resource is located.
  • the period of the side row configuration authorized transmission resource is represented by the number of time slots to describe the number of candidate time slots used in the resource pool.
  • the period of the side row configuration authorized transmission resource is represented by the number of logical time slots, or represented by the number of physical time slots.
  • the corresponding first HARQ process number is determined by the following formula:
  • HARQ Process ID [floor(CURRENT_slot/periodicity)]mod nrofHARQ-Processes+harq-procID-offset;
  • CURRENT_slot represents the time slot corresponding to the time domain resource of the authorized transmission resource configured in the side row.
  • the index of the time slot is the index of the time slot in the resource pool where the authorized transmission resource is configured in the side row; the value range of this parameter is [ 0, N-1], N represents the total number of time slots contained in the current resource pool, and the index of the time slot is the time slot index in the resource pool where the side row configuration authorization is located.
  • Periodicity represents the period of the side-line configuration authorization transmission resource, which is represented by a time slot; further, it represents the number of time slots in the resource pool where the side-line configuration authorization is located.
  • nrofHARQ-Processes represents the total number of HARQ process numbers corresponding to the side line configuration authorization.
  • harq-procID-offset is used to determine the first HARQ process ID corresponding to the side-line configuration authorization; optionally, if the network-side device is not configured with this parameter, the value of this parameter is 0.
  • mod represents the modulo operation
  • floor represents the round-down operation
  • the network side device configures the transmission resources authorized by the side line configuration in the resource pool.
  • the 3 time slots of the period authorized by the side row configuration represent 3 time slots in the resource pool.
  • the first time slot position authorized by the side row configuration is time slot 2. According to the period authorized by the side row configuration, time slots such as time slot 5, time slot 8, and time slot 11 will include the transmission resources authorized by the side row configuration.
  • CURRENT_slot represents the time slot where the authorized transmission resource is configured in the side row in the resource pool, namely, time slot 2, time slot 5, time slot 8, time slot 11, time slot 14, and time Slot 17...slot 3032, etc.
  • the network side device configures the authorized transmission resource for the terminal configuration side line, and the authorized transmission resource is in the side line according to the side line configuration.
  • the corresponding first HARQ process number can also be determined by the following formula:
  • HARQ Process ID [floor(CURRENT_slot ⁇ 10/(numberOfSlotsPerFrame ⁇ periodicity))]mod nrofHARQ-Processes+harq-procID-offset;
  • numberOfSlotsPerFrame represents the number of time slots contained in each radio frame (Frame or Radio Frame);
  • Periodicity represents the period of side-line configuration of authorized transmission resources, expressed in milliseconds (ms);
  • nrofHARQ-Processes represents the total number of HARQ process numbers corresponding to the current side line configuration authorization
  • harq-procID-offset is used to determine the first HARQ process ID corresponding to the current side line configuration authorization; in an optional embodiment, if the network side device is not configured with this parameter, the value of this parameter is 0 .
  • CURRENT_slot represents the time slot corresponding to the time domain resource for which the authorized transmission resource is configured in the side row.
  • the value range of this parameter is [0, N-1].
  • N represents the total number of time slots contained in the current resource pool.
  • the index is the time slot index in the resource pool where the authorization is configured in the side row;
  • CURRENT_slot [(DFN ⁇ numberOfSlotsPerFrame)+slot number in the frame]; where slot number in the frame represents the index of the side row configuration authorized transmission resource in a radio frame, and its value range Is [0,M-1], M represents the total number of time slots included in a radio frame; DFN represents the direct frame number (Direct Frame Number); numberOfSlotsPerFrame represents the time contained in each radio frame (Frame or Radio Frame) The number of slots is determined by the subcarrier spacing of the sideline carrier where the sideline transmission is located, or by the uplink subcarrier spacing.
  • CURRENT_slot [(SFN ⁇ numberOfSlotsPerFrame)+slot number in the frame]; where slot number in the frame represents the index of the side row configuration authorized transmission resource in a radio frame, and its value range Is [0,M-1], M represents the total number of time slots included in a radio frame; SFN represents the system frame number (System Frame Number); numberOfSlotsPerFrame represents the time slots included in each radio frame (Frame or Radio Frame) The number is determined by the subcarrier spacing of the sideline carrier where the sideline transmission is located, or by the uplink subcarrier spacing.
  • mod represents the modulo operation
  • floor represents the round-down operation
  • the foregoing method may further include the following execution steps:
  • Step S73 Transmit the first side row data on the side row configuration authorized resource, where the first side row data corresponds to the first hybrid automatic repeat request process number.
  • the HARQ process number corresponding to the sideline configuration authorized transmission resource determined by the terminal device in the foregoing manner is the first HARQ process number.
  • the terminal device can use the first HARQ process number to transmit the first side row data.
  • the first side row data may include: PSCCH and PSSCH.
  • the terminal device may also carry the first HARQ process number in Sidelink Control Information (SCI for short), that is, the side line data transmitted in the PSSCH corresponds to the first HARQ process number.
  • SCI Sidelink Control Information
  • the foregoing method may further include the following execution steps:
  • Step S74 receiving downlink control information from the network side device, where the downlink control information is used to schedule side transmission resources, and the downlink control information carries the first hybrid automatic repeat request process number;
  • Step S75 Retransmit the first side row data on the side row transmission resource scheduled by the downlink control information.
  • the network-side device can configure PUCCH transmission resources for the terminal device.
  • the terminal can report side feedback information to the network side device on the PUCCH transmission resource.
  • the network configures one PUCCH transmission resource in each period of side configuration authorization.
  • the terminal sends the first side-line data to the receiving end terminal through the side-line configuration authorization transmission resource, corresponding to the first HARQ process number, if the terminal receives the side-line feedback information sent by the receiving end terminal When it is NACK, it will report NACK to the network through the PUCCH in this cycle.
  • the network side device receives the NACK feedback information reported by the terminal, it will dynamically allocate retransmission resources for the side line transmission through DCI, and indicate the first HARQ process number in the DCI so that the terminal device can schedule the downlink control information Retransmit the first side row data on the side row transmission resource of.
  • the foregoing method may further include the following execution steps:
  • Step S76 based on the mapping relationship between the first hybrid automatic repeat request process ID and the second hybrid automatic repeat request process ID, transmit the second side row data on the side row configuration authorized transmission resource, where the second side row The data corresponds to the process number of the second hybrid automatic retransmission request.
  • the first HARQ process number is determined according to the time domain information of the side-line configuration authorized transmission resource. Further, the terminal may predetermine the mapping relationship between the first HARQ process ID and the second HARQ process ID. The terminal device may use the second HARQ process ID based on the mapping relationship to transmit the second side row data on the side row configuration authorized transmission resource.
  • the second side row data may include: PSCCH and PSSCH.
  • the terminal device may also carry the second HARQ process number in the SCI, that is, the side row data transmitted in the PSSCH corresponds to the second HARQ process number.
  • the foregoing method may further include the following execution steps:
  • Step S77 Receive downlink control information from the network side device, where the downlink control information is used to schedule side transmission resources, and the downlink control information carries the first hybrid automatic repeat request process number;
  • Step S78 Retransmit the second side row data on the side row transmission resource scheduled by the downlink control information.
  • the network side device determines through the PUCCH transmission resource that the process number corresponding to the transmission resource authorized by the side line configuration is the first HARQ process number.
  • receives the NACK it dynamically allocates retransmission resources for the side line transmission through the DCI, and indicates the first HARQ process number in the DCI.
  • the terminal device receives the DCI and obtains the first HARQ process ID from the DCI, it can determine that the retransmission resource is for the second HARQ according to the mapping relationship between the first HARQ process ID and the second HARQ process ID The retransmission schedule of the side line transmission of the process number.
  • the first HARQ process number determined by the terminal device according to the time domain information of the authorized transmission resource of the side line configuration may be different from the second HARQ process number used when the side line configuration authorized transmission resource is used to transmit data, and the terminal The device can also determine the mapping relationship between the first HARQ process ID and the second HARQ process ID, thereby enabling the terminal device to have higher flexibility or autonomy to determine the HARQ process ID for sideline transmission.
  • FIG. 9 is a flowchart of another information processing method according to one of the embodiments of the present invention. As shown in FIG. 9, this The method includes the following steps:
  • Step S90 Determine first configuration information, where the first configuration information is used to configure a side-line configuration authorized transmission resource, and the side-line configuration authorized transmission resource is a transmission resource located in a resource pool;
  • Step S91 Determine the time domain information corresponding to the side-line configuration authorized transmission resource based on the first configuration information
  • Step S92 Determine the first hybrid automatic repeat request process number according to the time domain information corresponding to the authorized transmission resource configured by the side row.
  • the first configuration information is determined and sent to the terminal.
  • the first configuration information is used to configure the side-line configuration authorized transmission resource and the side-line configuration authorized transmission resource is the transmission resource located in the resource pool.
  • the configuration information determines the time domain information corresponding to the side-line configuration authorized transmission resources, and determines the first hybrid automatic repeat request process number according to the time-domain information corresponding to the side-line configuration authorized transmission resources, so that the HARQ process number is provided for the side line configuration authorization.
  • the purpose of the method is to effectively fill the technical gap that the HARQ process number cannot be determined in the side-line configuration authorization, increase the flexibility and diversity of the HARQ process number determination method, and solve the lack of related technologies.
  • the technical problem of determining the HARQ process ID authorized by the side line configuration is a technical problem of determining the HARQ process ID authorized by the side line configuration.
  • either side-line configuration authorized transmission resources can be configured, or PUCCH transmission resources can be configured.
  • the terminal device uses the side-line configuration authorization transmission resource to transmit the side-line data in this cycle, and uses the PUCCH transmission resource to report the side-line feedback information to the network-side device. Then, the network-side device determines whether it needs to allocate retransmission resources to the terminal according to the side-line feedback information.
  • the PUCCH transmission resource can be determined according to the configuration information; secondly, by receiving the PUCCH on the PUCCH transmission resource, and determining the SL CG period corresponding to the PUCCH according to the PUCCH (that is, the side row configuration to which the PUCCH belongs) Authorized period) and the side-line configuration authorized transmission resource in the cycle, and then the first HARQ process number is determined according to the time domain information of the side-line configuration authorized transmission resource.
  • the aforementioned resource pool may be one of multiple resource pools. Specifically, as shown in FIG. 8, the resource pool is determined in one SFN or DFN cycle in the following manner. Taking a subcarrier interval of 15 kHz as an example, one DFN cycle includes 10240 subframes (or time slots), corresponding to subframes 0, 1, 2, ..., 10239, respectively.
  • the subframe number is The number of these remaining subframes can be divisible by L bitmap, bitmap Repeated periodically in the remaining subframes, where a bit of 1 indicates that the subframe corresponding to the bit in the remaining subframe belongs to the resource pool, otherwise it does not belong to the resource pool.
  • each time slot index in the resource pool corresponds to a time slot index in the DFN cycle. For example, time slots 0, 1, 2, 3, 4, and 5 in the resource pool correspond to time slots 0, 2, 4, 13, 14, and 15 in the DFN cycle, respectively.
  • the authorized transmission resource configured on the side of the network configuration is associated with a resource pool, and the authorized transmission resource configured on the side of the network configuration is the transmission resource located in this resource pool.
  • the time domain information corresponding to the side-line configuration authorized transmission resource is the time slot index of the side-line configuration authorized transmission resource in the resource pool.
  • the resource pool where the authorized transmission resource is configured on the side row includes 3033 subframes, so the time domain information corresponding to the authorized transmission resource configured on the side row is the time slot index in the resource pool, that is, in [0 ,3032] Slot index within the range.
  • the time domain information corresponding to the side-line configuration authorized transmission resource is a time slot index in a time slot that may be used in the resource pool.
  • the set of time slots that may be used for the resource pool is the remaining subframe, and the corresponding time slot index range is [0, 10109].
  • the foregoing method may further include the following execution steps:
  • Step S93 Send the first configuration information to the terminal, where the first configuration information is also used for the terminal to determine the time domain information corresponding to the sideline configuration authorized transmission resource and determine the first hybrid according to the time domain information corresponding to the sideline configuration authorized transmission resource Automatic retransmission request process ID.
  • the foregoing first hybrid automatic repeat request process number may not only be determined by the network side device according to the first configuration information, but also may be determined by the terminal device according to the first configuration information.
  • the network side device can send the first configuration information to the terminal device, so that the terminal device determines the time domain information corresponding to the sideline configuration authorized transmission resource and determines the first mix according to the time domain information corresponding to the sideline configuration authorized transmission resource Automatic retransmission request process ID.
  • At least one of the following parameters can be determined through the foregoing first configuration information:
  • the side line configures the cycle of authorized transmission resources
  • the side row configures the time slot corresponding to the time domain resource of the authorized transmission resource.
  • the configuration information includes time slot offset indication information and period parameters, and the side row configuration authorized transmission resource is determined according to the time slot offset indication information and period parameters; wherein, the time slot offset indication information is used To determine the time domain information of the authorized transmission resource in the first side row in a system frame number cycle (or in a direct frame number cycle).
  • the time slot offset indication information is represented by the number of time slots, the number of time slots represents the number of physical time slots or the number of logical time slots, where the logical time slot is the time in the resource pool associated with the configured authorized transmission resource. Slots or candidate slots for resource pools.
  • the period parameter is used to determine the period of the side row configuration authorized transmission resource, expressed by the number of time slots, the number of time slots represents the number of physical time slots or the number of logical time slots, where the logical time slot is the configuration authorized The time slot in the resource pool associated with the transmission resource or the candidate time slot used in the resource pool.
  • determining the first hybrid automatic repeat request process number according to the time domain information corresponding to the side-line configuration authorized transmission resource may include the following execution steps:
  • Step S920 Determine a period parameter based on the first configuration information, where the period parameter is a period for the side row to configure authorized transmission resources;
  • Step S922 Determine the first hybrid automatic repeat request process number according to the time domain information and period parameters corresponding to the authorized transmission resource configured by the side line.
  • the period of the side row configuration authorized transmission resource is represented by the number of time slots, which is used to describe the number of time slots in the resource pool where the side row configuration authorized transmission resource is located.
  • the period of the side row configuration authorized transmission resource is represented by the number of time slots, which is used to describe the number of candidate time slots used in the resource pool.
  • the corresponding first HARQ process number is determined by the following formula:
  • HARQ Process ID [floor(CURRENT_slot/periodicity)]mod nrofHARQ-Processes+harq-procID-offset;
  • CURRENT_slot represents the time slot corresponding to the time domain resource of the authorized transmission resource configured in the side row.
  • the index of the time slot is the index of the time slot in the resource pool where the authorized transmission resource is configured in the side row; the value range of this parameter is [ 0, N-1], N represents the total number of time slots contained in the current resource pool, and the index of the time slot is the time slot index in the resource pool where the side row configuration authorization is located.
  • Periodicity represents the period of the side-line configuration authorization transmission resource, which is represented by a time slot; further, it represents the number of time slots in the resource pool where the side-line configuration authorization is located.
  • nrofHARQ-Processes represents the total number of HARQ process numbers corresponding to the side line configuration authorization.
  • harq-procID-offset is used to determine the first HARQ process ID corresponding to the side-line configuration authorization; optionally, if the network-side device is not configured with this parameter, the value of this parameter is 0.
  • mod represents the modulo operation
  • floor represents the round-down operation
  • the network side device configures the transmission resources authorized by the side line configuration in the resource pool.
  • the 3 time slots of the period authorized by the side row configuration represent 3 time slots in the resource pool.
  • the first time slot position authorized by the side row configuration is time slot 2. According to the period authorized by the side row configuration, time slots such as time slot 5, time slot 8, and time slot 11 will include the transmission resources authorized by the side row configuration.
  • CURRENT_slot represents the time slot where the authorized transmission resource is configured in the side row in the resource pool, namely, time slot 2, time slot 5, time slot 8, time slot 11, time slot 14, and time Slot 17...slot 3032, etc.
  • the network side device configures the authorized transmission resource for the terminal configuration side line, and the authorized transmission resource is in the side line according to the side line configuration.
  • the corresponding first HARQ process number can be determined by the following formula:
  • HARQ Process ID [floor(CURRENT_slot ⁇ 10/(numberOfSlotsPerFrame ⁇ periodicity))]mod nrofHARQ-Processes+harq-procID-offset;
  • numberOfSlotsPerFrame represents the number of time slots contained in each radio frame (Frame or Radio Frame);
  • Periodicity represents the period of side-line configuration of authorized transmission resources, expressed in milliseconds (ms);
  • nrofHARQ-Processes represents the total number of HARQ process numbers corresponding to the current side line configuration authorization
  • harq-procID-offset is used to determine the first HARQ process ID corresponding to the current side line configuration authorization; in an optional embodiment, if the network side device is not configured with this parameter, the value of this parameter is 0 .
  • CURRENT_slot represents the time slot corresponding to the time domain resource for which the authorized transmission resource is configured in the side row.
  • the value range of this parameter is [0, N-1].
  • N represents the total number of time slots contained in the current resource pool.
  • the index is the time slot index in the resource pool where the authorization is configured in the side row;
  • CURRENT_slot [(DFN ⁇ numberOfSlotsPerFrame)+slot number in the frame]; where slot number in the frame represents the index of the side row configuration authorized transmission resource in a radio frame, and its value range Is [0,M-1], M represents the total number of time slots included in a radio frame; DFN represents the direct frame number (Direct Frame Number); numberOfSlotsPerFrame represents the time contained in each radio frame (Frame or Radio Frame) The number of slots is determined by the subcarrier spacing of the sideline carrier where the sideline transmission is located, or by the uplink subcarrier spacing.
  • CURRENT_slot [(SFN ⁇ numberOfSlotsPerFrame)+slot number in the frame]; where slot number in the frame represents the index of the side row configuration authorized transmission resource in a radio frame, and its value range Is [0,M-1], M represents the total number of time slots included in a radio frame; SFN represents the system frame number (System Frame Number); numberOfSlotsPerFrame represents the time slots included in each radio frame (Frame or Radio Frame) The number is determined by the subcarrier spacing of the sideline carrier where the sideline transmission is located, or by the uplink subcarrier spacing.
  • mod represents the modulo operation
  • floor represents the round-down operation
  • determining the time domain information corresponding to the side-line configuration authorized transmission resource based on the first configuration information may include the following execution steps:
  • Step S910 Receive the uplink control channel sent by the terminal on the uplink transmission resource based on the first configuration information, where the uplink transmission resource and the sideline configuration authorized transmission resource belong to the same sideline configuration authorization period, and the uplink control channel is used for the terminal reporting side Row feedback information;
  • Step S912 Determine the time domain information corresponding to the side-line configuration authorized transmission resource according to the time domain information of the uplink transmission resource.
  • the network side device will also configure the uplink transmission resources for transmitting the PUCCH, so there will be a corresponding PUCCH transmission resource in each cycle of the side configuration authorization.
  • the terminal device sends side feedback information to the network side device through the PUCCH.
  • the network side device After the network side device receives the PUCCH sent by the terminal device on the uplink transmission resource, it can determine the time domain position of the transmission resource authorized by the side row configuration in the same period as the PUCCH according to the PUCCH, and then can determine the side according to the above formula Configure the HARQ process number corresponding to the authorized transmission resource.
  • the foregoing method may further include the following execution steps:
  • Step S94 Determine at least one of the following parameters: a first parameter and a second parameter; where the first parameter is used to determine the time interval between the uplink transmission resource and the side line feedback channel transmission resource, and the second parameter is used to determine the side The time interval between the line feedback channel transmission resource and the side line configuration authorized transmission resource.
  • the time slot resource of the PUCCH is the time slot in the SFN cycle
  • the time slot in the side row configuration authorized transmission resource is the time slot in the SFN cycle (or DFN cycle).
  • the time domain information of the transmission resource authorized by the side row configuration is determined according to the SFN index (or DFN index) and the slot number in the radio frame.
  • the PUCCH transmission uses uplink transmission resources, and its time domain position is determined by the SFN and the slot number in the radio frame.
  • the start time slots of the SFN cycle and the DFN cycle that is, SFN#0 and DFN#0 are not aligned, and there is a time interval.
  • Figure 10 is a schematic diagram of the time interval between the SFN cycle and the DFN cycle according to one of the alternative embodiments of the present invention.
  • the network side device configures the authorized transmission resources and PUCCH resources, and the side configuration authorized
  • the period is 10ms, corresponding to 4 HARQ process numbers, which are 0, 1, 2, and 3 respectively.
  • the subcarrier spacing of the side carrier and the uplink carrier is 15kHz, that is, each radio frame includes 10 time slots.
  • the transmission time of the PUCCH determined according to the configuration information is time T, then time T corresponds to SFN#0 and time slot 8 of the authorized transmission resource configured by the side row, but corresponds to DFN#58 and time slot 6.
  • the network side device can learn the time interval between the transmission time of the side link and the transmission time of the uplink, because the network receives the PUCCH at time T, and the PUCCH can be determined according to the time domain position T of the PUCCH.
  • the time domain position T of the PUCCH corresponds to the time domain position on the side link.
  • the side-line configuration authorized transmission resource associated with the PUCCH is the side-line configuration authorized transmission resource that belongs to the same side-line configuration authorization period as the PUCCH.
  • the side row configures the side row data transmitted on the authorized transmission resource, and the corresponding side row feedback information is reported to the network side device through the PUCCH associated with it, that is, the PUCCH in this period.
  • the network side device needs to determine the time interval between the uplink transmission resource and the side row feedback channel transmission resource, and/or the time interval between the side row feedback channel transmission resource and the side row configuration authorized transmission resource.
  • determining the time domain information corresponding to the side-line configuration authorized transmission resource according to the time domain information of the uplink transmission resource may include the following execution steps:
  • Step S9120 Determine the time domain information corresponding to the side-line configuration authorized transmission resource according to at least one of the first parameter and the second parameter, and the time domain information of the uplink transmission resource.
  • the first configuration information is also used to configure at least one of the uplink transmission resource and the first parameter.
  • the network side device receives the PUCCH at time T, it will determine the time domain position corresponding to the PSFCH according to the PUCCH and the physical sidelink feedback channel (Physical Sidelink Feedback Channel, referred to as PSFCH) transmission resource time interval. Further, the network side device may determine the time domain position of the transmission resource authorized by the side-line configuration in the period where the PSFCH is located, and then determine the HARQ process number corresponding to the side-line transmission resource corresponding to the PUCCH.
  • PSFCH Physical Sidelink Feedback Channel
  • the network side device configures the authorized transmission resources for the terminal in the resource pool and configures the PUCCH transmission resources.
  • the resource pool includes PSFCH transmission resources, and the PSFCH period is 2 time slots, that is, in the resource pool. Each of the two time slots includes a time slot for PSFCH transmission.
  • the configured time interval between PUCCH time domain resources and PSFCH is 3 time slots. Therefore, when the network side device receives the PUCCH, it will be based on the time domain of the PUCCH time domain resources.
  • the slot position can determine the slot position of the PSFCH corresponding to the PUCCH.
  • the time slot position of the PSFCH is the time slot in which the last PSFCH is located in the side row configuration authorized transmission resource period. Therefore, the network side device can determine the time slot where the side-line configuration authorized transmission resource in the period where the PSFCH is located according to the time slot of the PSFCH, and then can determine the HARQ process number corresponding to the side-line configuration authorized transmission resource.
  • the network side device can determine the configured PUCCH based on the time interval between the side link and the uplink during the process of determining the HARQ process number according to the side link time domain position corresponding to the side link configuration authorized transmission resource.
  • the foregoing method may further include the following execution steps:
  • Step S95 Send second configuration information to the terminal, where the second configuration information is used to configure the resource pool;
  • Step S96 Determine the second parameter according to the second configuration information.
  • the network-side device may also send second configuration information for configuring the resource pool to the terminal device.
  • it may also determine the side-line feedback channel transmission resources and the side-line feedback channel transmission resources based on the second configuration information. Configure the time interval between authorized transmission resources.
  • the foregoing method may further include the following execution steps:
  • Step S97 When the uplink control channel carries non-acknowledgement information, send downlink control information to the terminal, where the downlink control information is used to schedule sideline transmission resources, and the downlink control information carries the first hybrid automatic repeater.
  • the request process number is transmitted, and the downlink control information is used to schedule the terminal to retransmit the side line data corresponding to the first hybrid automatic repeat request process number on the side line transmission resource.
  • the network-side device can configure PUCCH transmission resources for the terminal device.
  • the terminal can report side feedback information to the network side device on the PUCCH transmission resource. If the network side device receives the NACK feedback information reported by the terminal, it will dynamically allocate retransmission resources for the side line transmission through DCI, and indicate the first HARQ process number in the DCI so that the terminal device can schedule the downlink control information Retransmit the first side row data on the side row transmission resource of. Therefore, when the network side device allocates retransmission resources to the terminal device in a dynamic scheduling manner through the DCI, the first HARQ process number is carried in the DCI. Therefore, the terminal device can determine the DCI after receiving the DCI The first HARQ process ID corresponding to the scheduled retransmission resource.
  • the network side device may not configure the PUCCH transmission resource for the terminal device.
  • the terminal does not need to report side feedback information to the network side device, that is, it does not need to retransmit based on network scheduling.
  • the transmitting-side terminal receives the NACK on the PSFCH from the receiving-side terminal, the transmitting-side terminal can perform retransmission.
  • the side-line transmission of the sending-side terminal usually uses the side-line configuration authorized transmission resources allocated by the network-side device.
  • the HARQ process number corresponding to the side-line transmission is determined by the sending-side terminal itself, and has nothing to do with the time-domain location of the side-line configuration authorized transmission resources.
  • FIG. 11 is a flowchart of another information processing method according to one of the embodiments of the present invention. As shown in FIG. 11, this The method includes the following steps:
  • Step S1100 Determine first configuration information, where the first configuration information is used to configure uplink transmission resources;
  • Step S1101 Determine the time domain information corresponding to the uplink transmission resource based on the first configuration information
  • Step S1102 Determine the first hybrid automatic repeat request process number according to the time domain information corresponding to the uplink transmission resource.
  • the information processing method shown in FIG. 11 no longer determines the HARQ ID based on the time domain position of the side transmission resource, but determines the HARQ ID based on the time domain position of the uplink transmission resource.
  • the foregoing method may further include the following execution steps:
  • Step S1103 Determine the period parameter based on the first configuration information, where the first configuration information is also used to configure the side row configuration authorized transmission resource, the side row configuration authorized transmission resource is used to transmit the side row data, and the period parameter is used to determine the side row configuration.
  • the period of authorized transmission resources is also used to configure the side row configuration authorized transmission resource, the side row configuration authorized transmission resource is used to transmit the side row data, and the period parameter is used to determine the side row configuration.
  • the side row configuration authorized transmission resource is associated with the uplink transmission resource, that is, the side row data transmitted on the side row configuration authorized transmission resource, and the corresponding side row feedback information is transmitted on the uplink transmission resource To the network side equipment.
  • Step S1104 Determine the first hybrid automatic repeat request process number according to the time domain information and period parameters corresponding to the uplink transmission resources.
  • either side-line configuration authorized transmission resources can be configured, and uplink transmission resources can also be configured.
  • the terminal device uses the side-line configuration authorization transmission resource to transmit the side-line data in this cycle, and uses the PUCCH transmission resource to report the side-line feedback information to the network-side device. Then, the network-side device determines whether it needs to allocate retransmission resources to the terminal according to the side-line feedback information.
  • the time domain information corresponding to the side-line configuration authorized transmission resource is the time slot index of the side-line configuration authorized transmission resource in the resource pool.
  • the period parameter is expressed by the number of time slots, which is the number of time slots in the resource pool or the number of candidate time slots used in the resource pool.
  • the aforementioned resource pool may be one of multiple resource pools. Specifically, as shown in FIG. 8, the resource pool is determined in one SFN or DFN cycle in the following manner. Taking a subcarrier interval of 15 kHz as an example, one DFN cycle includes 10240 subframes (or time slots), corresponding to subframes 0, 1, 2, ..., 10239, respectively.
  • the subframe number is The number of these remaining subframes can be divisible by L bitmap, bitmap Repeated periodically in the remaining subframes, where a bit of 1 indicates that the subframe corresponding to the bit in the remaining subframe belongs to the resource pool, otherwise it does not belong to the resource pool.
  • each time slot index in the resource pool corresponds to a time slot index in the DFN cycle. For example, time slots 0, 1, 2, 3, 4, and 5 in the resource pool correspond to time slots 0, 2, 4, 13, 14, and 15 in the DFN cycle, respectively.
  • the authorized transmission resource configured on the side of the network configuration is associated with a resource pool, and the authorized transmission resource configured on the side of the network configuration is the transmission resource located in this resource pool.
  • the time domain information corresponding to the side-line configuration authorized transmission resource is the time slot index of the side-line configuration authorized transmission resource in the resource pool.
  • the resource pool where the authorized transmission resource is configured on the side row includes 3033 subframes, so the time domain information corresponding to the authorized transmission resource configured on the side row is the time slot index in the resource pool, that is, in [0 ,3032] Slot index within the range.
  • the time domain information corresponding to the side row configuration authorized transmission resource is the time slot index in the time slot used in the resource pool.
  • the set of time slots that may be used for the resource pool is the remaining subframe, and the corresponding time slot index range is [0, 10109].
  • the foregoing method may further include the following execution steps:
  • Step S1105 Send downlink control information to the terminal, where the downlink control information is used to schedule sideline transmission resources, and the downlink control information carries the first hybrid automatic repeat request process number.
  • the terminal sends a negative acknowledgement to the network side device on the uplink transmission resource.
  • the network side device detects a negative acknowledgment on the uplink transmission resource, it sends downlink control information to the terminal, and the downlink control information carries the first HARQ process number. After receiving the downlink control information, the terminal can obtain the first HARQ process number from the downlink control information.
  • the network-side device can configure PUCCH transmission resources for the terminal device.
  • the terminal can report side feedback information to the network side device on the PUCCH transmission resource. If the network side device receives the NACK feedback information reported by the terminal, it will dynamically allocate retransmission resources for the side line transmission through DCI, and indicate the first HARQ process number in the DCI so that the terminal device can schedule the downlink control information Retransmit the first side row data on the side row transmission resource of. Therefore, when the network side device allocates retransmission resources to the terminal device in a dynamic scheduling manner through the DCI, the first HARQ process number is carried in the DCI. Therefore, the terminal device can determine the DCI after receiving the DCI The first HARQ process ID corresponding to the scheduled retransmission resource.
  • the network side device sends first configuration information to the terminal, where the first configuration information is used to configure the side configuration authorized transmission resource and the uplink transmission resource.
  • the terminal transmits side-line data on the side-line configuration authorized transmission resource. If the terminal receives the side-line feedback information as NACK, the terminal transmits NACK to the network side device on the uplink transmission resource. Then, the network-side device determines the first HARQ process number according to the time domain position of the uplink transmission resource, and schedules the side-line transmission resource for the terminal through the DCI for the terminal to retransmit the side-line data, and carries the first HARQ process number in the DCI.
  • HARQ process ID the first HARQ process number according to the time domain position of the uplink transmission resource, and schedules the side-line transmission resource for the terminal through the DCI for the terminal to retransmit the side-line data, and carries the first HARQ process number in the DCI.
  • the terminal is responsible for receiving the DCI and can determine according to the first HARQ process number that the DCI is the retransmission scheduling of the NACK transmitted on the uplink transmission resource by the network side device. Further, the terminal may determine that the DCI is a retransmission schedule for the side row data transmitted on the side row configuration authorized transmission resource associated with the uplink transmission resource, and therefore, the terminal retransmits on the side row transmission resource scheduled by the DCI The side row data.
  • the network side device may not configure the PUCCH transmission resource for the terminal device.
  • the terminal does not need to report side feedback information to the network side device, that is, it does not need to retransmit based on network scheduling.
  • the transmitting-side terminal receives the NACK on the PSFCH from the receiving-side terminal, the transmitting-side terminal can perform retransmission.
  • the side-line transmission of the sending-side terminal usually uses the side-line configuration authorized transmission resources allocated by the network-side device.
  • the HARQ process number corresponding to the side-line transmission is determined by the sending-side terminal itself, and has nothing to do with the time domain location of the side-line configuration authorized transmission resources.
  • FIG. 12 is a flowchart of another information processing method according to one of the embodiments of the present invention. As shown in FIG. 12, this The method includes the following steps:
  • Step S1200 receiving configuration information from a network side device, where the configuration information is used for uplink transmission resources;
  • Step S1201 Determine the time domain information corresponding to the uplink transmission resource based on the configuration information
  • Step S1202 Determine the first hybrid automatic repeat request process number according to the time domain information corresponding to the uplink transmission resource.
  • the information processing method shown in FIG. 12 no longer determines the HARQ ID based on the time domain position of the sideline transmission resource, but determines the HARQ ID based on the time domain position of the uplink transmission resource.
  • the configuration information is also used to configure side-line configuration authorized transmission resources, and the side-line configuration authorized transmission resources are used to transmit side-line data.
  • the first hybrid automatic repeat request process number can be determined according to the time domain position of the uplink transmission resource.
  • the foregoing method may further include the following execution steps:
  • Step S1203 Determine at least one of the following parameters: a first parameter and a second parameter; where the first parameter is used to determine the time interval between the uplink transmission resource and the side line feedback channel transmission resource, and the second parameter is used to determine the side The time interval between the line feedback channel transmission resource and the side line configuration authorized transmission resource.
  • the time slot resources of the PUCCH are the time slots in the SFN cycle, and the time slots in the side row configuration authorized transmission resources are the time slots in the SFN cycle (or DFN cycle).
  • the time domain information of the transmission resource authorized by the side-line configuration is determined according to the SFN index (or DFN index) and the time slot number in the radio frame of the side-line configuration authorized transmission resource.
  • the PUCCH transmission uses uplink transmission resources, and its time domain position is determined by the SFN and the slot number in the radio frame.
  • the start time slots of the SFN cycle and the DFN cycle that is, SFN#0 and DFN#0 are not aligned, and there is a time interval.
  • the side-line configuration authorized transmission resource associated with the PUCCH is the side-line configuration authorized transmission resource that belongs to the same side-line configuration authorization period as the PUCCH.
  • the side row configures the side row data transmitted on the authorized transmission resource, and the corresponding side row feedback information is reported to the network side device through the PUCCH associated with it, that is, the PUCCH in this period.
  • the network side device needs to determine the time interval between the uplink transmission resource and the side row feedback channel transmission resource, and/or the time interval between the side row feedback channel transmission resource and the side row configuration authorized transmission resource.
  • the foregoing method may further include the following execution steps:
  • Step S1204 Determine the time domain information corresponding to the side-line configuration authorized transmission resource according to at least one of the first parameter and the second parameter, and the time-domain information corresponding to the uplink transmission resource, to obtain the uplink transmission resource and the side-line configuration authorized transmission resource. Correspondence between;
  • Step S1205 Determine the side-line configuration authorized transmission resource corresponding to the first hybrid automatic repeat request process number according to the first hybrid automatic repeat request process number and the correspondence between the uplink transmission resource and the side-line configuration authorized transmission resource .
  • the first hybrid automatic repeat request process number is determined according to the time domain resources of the PUCCH, and further, it will be based on the PUCCH and the physical sidelink feedback channel (Physical Sidelink Feedback Channel, abbreviated as PSFCH)
  • PSFCH Physical Sidelink Feedback Channel
  • the transmission resource time interval determines the time domain position corresponding to the PSFCH. Further, the network side device may determine the time domain position of the transmission resource authorized by the side-line configuration in the period where the PSFCH is located, and then determine the transmission resource authorized by the side-line configuration corresponding to the first HARQ process number.
  • the network side device configures the authorized transmission resources for the terminal in the resource pool and configures the PUCCH transmission resources.
  • the resource pool includes PSFCH transmission resources, and the PSFCH period is 2 timeslots, that is, in the resource pool.
  • Each of the two time slots includes a time slot for PSFCH transmission.
  • the configured time interval between the PUCCH time domain resource and PSFCH is 3 time slots. Therefore, when the network side device receives the PUCCH, it will be based on the PUCCH time domain resource.
  • the slot position can determine the first HARQ process number.
  • the network side device determines the time slot position of the PSFCH corresponding to the PUCCH according to the time interval between the PUCCH transmission resource and the PSFCH transmission resource.
  • the time slot position of the PSFCH is the time slot in which the last PSFCH is located in the side row configuration authorized transmission resource period. Therefore, the network side device can determine the time slot in which the side-line configuration authorized transmission resource in the period in which the PSFCH is located according to the time slot of the PSFCH, and then can determine that the side-line configuration authorized transmission resource corresponds to the first HARQ process number.
  • the network side device can determine the side-line configuration authorized transmission resource corresponding to the configured side-line configuration based on the time interval between the side-link and the uplink. HARQ process ID.
  • the foregoing method may further include the following execution steps:
  • Step S1206 Transmit the first side row data on the side row configuration authorized transmission resource, where the first side row data corresponds to the first hybrid automatic repeat request process number.
  • the terminal device can use the first HARQ process number to transmit the first side line data.
  • the first side row data may include: PSCCH and PSSCH.
  • the terminal device may also carry the first HARQ process number in the SCI, that is, the side row data transmitted in the PSSCH corresponds to the first HARQ process number.
  • the foregoing method may further include the following execution steps:
  • Step S1207 Receive downlink control information sent by the network side device, where the downlink control information is used to schedule side transmission resources, and the downlink control information carries the first hybrid automatic repeat request process number;
  • Step S1208 Retransmit the first side row data on the side row transmission resource.
  • the network-side device can configure PUCCH transmission resources for the terminal device.
  • the terminal can report side feedback information to the network side device on the PUCCH transmission resource.
  • the network configures one PUCCH transmission resource in each period of side configuration authorization.
  • the terminal sends the first side-line data to the receiving end terminal through the side-line configuration authorization transmission resource, corresponding to the first HARQ process number, if the terminal receives the side-line feedback information sent by the receiving end terminal When it is NACK, it will report NACK to the network through the PUCCH in this cycle.
  • the network side device If the network side device receives the NACK feedback information reported by the terminal and determines the first HARQ process number according to the time domain position of the PUCCH transmission resource, it will dynamically allocate retransmission resources for the side line transmission through DCI, and indicate this in the DCI The first HARQ process number, so that the terminal device retransmits the first side row data on the side row transmission resource scheduled by the downlink control information.
  • the foregoing method may further include the following execution steps:
  • Step S1209 Transmit the second side row data on the side row configuration authorized transmission resource, where the second side row data corresponds to the second hybrid automatic repeat request process number.
  • the first HARQ process number is determined according to the time domain information of the side-line configuration authorized transmission resource. Further, the terminal may predetermine the mapping relationship between the first HARQ process ID and the second HARQ process ID. The terminal device may use the second HARQ process ID based on the mapping relationship to transmit the second side row data on the side row configuration authorized transmission resource.
  • the second side row data may include: PSCCH and PSSCH.
  • the terminal device may also carry the second HARQ process number in the SCI, that is, the side row data transmitted in the PSSCH corresponds to the second HARQ process number.
  • the foregoing method may further include the following execution steps:
  • Step S1210 Determine the mapping relationship between the first hybrid automatic repeat request process number and the second hybrid automatic repeat request process number.
  • the foregoing method may further include the following execution steps:
  • Step S1211 receiving downlink control information sent by the network side device, where the downlink control information is used to schedule side transmission resources, and the downlink control information carries the first hybrid automatic repeat request process number;
  • Step S1212 based on the mapping relationship between the first hybrid automatic repeat request process number and the second hybrid automatic repeat request process number, retransmit the second side row data on the side row transmission resource.
  • the network side device determines the first HARQ process number through the PUCCH transmission resource, and determines the process number corresponding to the transmission resource authorized by the side line configuration to be the first HARQ process according to the correspondence between the PUCCH and the side line configuration authorized transmission resource No.
  • receives the NACK it dynamically allocates retransmission resources for the side line transmission through the DCI, and indicates the first HARQ process number in the DCI.
  • the terminal device receives the DCI and obtains the first HARQ process ID from the DCI, it can determine that the retransmission resource is for the second HARQ according to the mapping relationship between the first HARQ process ID and the second HARQ process ID The retransmission schedule of the side line transmission of the process number.
  • the first HARQ process number determined by the terminal device according to the time domain information of the authorized transmission resource of the side line configuration may be different from the second HARQ process number used when the side line configuration authorized transmission resource is used to transmit data, and the terminal The device can also determine the mapping relationship between the first HARQ process ID and the second HARQ process ID, thereby enabling the terminal device to have higher flexibility or autonomy to determine the HARQ process ID for sideline transmission.
  • FIG. 13 is a schematic diagram of a terminal device autonomously determining the HARQ process number according to one of the optional embodiments of the present invention.
  • the network side device configures the side row configuration authorized transmission resources, and each cycle includes 2 side rows Configure authorized transmission resources.
  • the total number of authorized HARQ processes on this side line is 4, which are HARQ ID 0, HARQ ID 1, HARQ ID 2, and HARQ ID 3.
  • the TX UE uses PSSCH1, PSSCH2, PSSCH3, and PSSCH4 to transmit the initial transmission of HARQ ID 0, HARQ ID1, HARQ ID2, and HARQ ID3, respectively. If the feedback information received by the TX UE is all NACK, it can continue to use PSSCH5, PSSCH6, PSSCH7, and PSSCH8 to transmit HARQ ID 0, HARQ ID1, HARQ ID2, HARQ ID3, respectively.
  • the TX UE uses PSSCH1 and PSSCH2 to respectively transmit the initial transmission and retransmission of the HARQ ID 0.
  • the TX UE uses PSSCH3 and PSSCH4 to transmit the initial transmission and retransmission of HARQ ID 1, respectively.
  • the TX UE uses PSSCH5 and PSSCH6 to transmit the initial transmission and retransmission of HARQ ID 2 respectively.
  • TX UE uses PSSCH7 and PSSCH8 to transmit the initial transmission and retransmission of HARQ ID 3 respectively;
  • the TX UE uses PSSCH1 and PSSCH2 to respectively transmit the initial transmission and retransmission of the HARQ ID 0. If the received feedback information is still NACK, continue to use PSSCH3 to transmit HARQ ID0 retransmission; if the received feedback information becomes ACK, use PSSCH4 to transmit HARQ ID1 initial transmission or PSSCH4 to transmit HARQ ID0 initial transmission, At this time, the side row data transmitted by PSSCH4 and PSSCH1 correspond to different transmission blocks.
  • the method according to the above embodiment can be implemented by means of software plus the necessary general hardware platform, of course, it can also be implemented by hardware, but in many cases the former is Better implementation.
  • the technical solution of the present invention essentially or the part that contributes to the existing technology can be embodied in the form of a software product, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, The optical disc) includes several instructions to enable a terminal device (which may be a mobile phone, a computer, a server, or a network side device, etc.) to execute the method described in each embodiment of the present invention.
  • an information processing device is also provided, which is used to implement the above-mentioned embodiments and preferred implementations, and those that have been explained will not be repeated.
  • the term "module” can implement a combination of software and/or hardware with predetermined functions.
  • the devices described in the following embodiments are preferably implemented by software, implementation by hardware or a combination of software and hardware is also possible and conceived.
  • Fig. 14 is a structural block diagram of an information processing apparatus according to one of the embodiments of the present invention.
  • the apparatus includes: a first receiving module 100 for receiving configuration information from a network-side device, where the configuration information Used to configure the side-line configuration authorized transmission resource, the side-line configuration authorized transmission resource is a transmission resource located in the resource pool; the determining module 102 is used to determine the time domain information corresponding to the side-line configuration authorized transmission resource based on the configuration information; the processing module 104 , Used to determine the first hybrid automatic repeat request process number according to the time domain information corresponding to the authorized transmission resource configured by the side line.
  • the determining module 102 is configured to determine the period parameter based on the configuration information, where the period parameter is the period for the side row to configure the authorized transmission resource; and determine the first time domain information and period parameter corresponding to the side row configuration authorized transmission resource Hybrid automatic retransmission request process number.
  • the period of the side row configuration authorized transmission resource is represented by the number of time slots.
  • the time domain information corresponding to the side-line configuration authorized transmission resource is the time slot index of the side-line configuration authorized transmission resource in the resource pool.
  • FIG. 15 is a structural block diagram of an information processing device according to one of the optional embodiments of the present invention.
  • the above-mentioned device further includes: a first transmission module 106 for configuring authorized resources on the side line
  • the first side row data is transmitted, where the first side row data corresponds to the first hybrid automatic repeat request process number.
  • the above-mentioned apparatus further includes: a second receiving module 108, configured to receive downlink control information from a network side device, where the downlink control information is used to schedule sideline transmission resources , And the downlink control information carries the first hybrid automatic repeat request process number; the first retransmission module 110 is configured to retransmit the first side row data on the side row transmission resources scheduled by the downlink control information.
  • a second receiving module 108 configured to receive downlink control information from a network side device, where the downlink control information is used to schedule sideline transmission resources , And the downlink control information carries the first hybrid automatic repeat request process number; the first retransmission module 110 is configured to retransmit the first side row data on the side row transmission resources scheduled by the downlink control information.
  • the above-mentioned apparatus further includes: a second transmission module 112, configured to, based on the mapping relationship between the first hybrid automatic repeat request process number and the second hybrid automatic repeat request process number, The side row configuration authorizes the transmission of the second side row data on the transmission resource, where the second side row data corresponds to the second hybrid automatic repeat request process number.
  • a second transmission module 112 configured to, based on the mapping relationship between the first hybrid automatic repeat request process number and the second hybrid automatic repeat request process number, The side row configuration authorizes the transmission of the second side row data on the transmission resource, where the second side row data corresponds to the second hybrid automatic repeat request process number.
  • the above-mentioned apparatus further includes: a third receiving module 114, configured to receive downlink control information from a network side device, where the downlink control information is used to schedule sideline transmission resources , And the downlink control information carries the first hybrid automatic repeat request process number; the second retransmission module 116 is configured to retransmit the second side row data on the side row transmission resources scheduled by the downlink control information.
  • a third receiving module 114 configured to receive downlink control information from a network side device, where the downlink control information is used to schedule sideline transmission resources , And the downlink control information carries the first hybrid automatic repeat request process number; the second retransmission module 116 is configured to retransmit the second side row data on the side row transmission resources scheduled by the downlink control information.
  • module can implement a combination of software and/or hardware with predetermined functions.
  • the devices described in the following embodiments are preferably implemented by software, implementation by hardware or a combination of software and hardware is also possible and conceived.
  • FIG. 16 is a structural block diagram of another information processing device according to one of the embodiments of the present invention.
  • the device includes: a processing module 200 for determining first configuration information, where the first configuration information is used Configure authorized transmission resources on the configuration side, and the side configuration authorized transmission resources are transmission resources located in the resource pool; the first determining module 202 is configured to determine the time domain information corresponding to the side configuration authorized transmission resources based on the first configuration information; The second determining module 204 is configured to determine the first hybrid automatic repeat request process number according to the time domain information corresponding to the authorized transmission resource of the side line configuration.
  • the second determining module 204 is configured to determine the period parameter based on the first configuration information, where the period parameter is the period of the side row configuration authorized transmission resource; and the time domain information and period corresponding to the authorized transmission resource according to the side row configuration The parameter determines the process number of the first hybrid automatic retransmission request.
  • the period of the side row configuration authorized transmission resource is represented by the number of time slots.
  • the time domain information corresponding to the side-line configuration authorized transmission resource is the time slot index of the side-line configuration authorized transmission resource in the resource pool.
  • the first determining module 202 is configured to receive the uplink control channel sent by the terminal on the uplink transmission resource based on the first configuration information, where the uplink transmission resource and the sideline configuration authorized transmission resource belong to the same sideline configuration authorization period ,
  • the uplink control channel is used for the terminal to report side-line feedback information; and the time-domain information corresponding to the side-line configuration authorized transmission resource is determined according to the time-domain information of the uplink transmission resource.
  • FIG. 17 is a structural block diagram of another information processing device according to one of the optional embodiments of the present invention.
  • the above-mentioned device further includes: a third determining module 206, configured to determine among the following parameters At least one of: the first parameter and the second parameter; wherein the first parameter is used to determine the time interval between the uplink transmission resource and the side row feedback channel transmission resource, and the second parameter is used to determine the side row feedback channel transmission resource and the side Configure the time interval between authorized transmission resources.
  • a third determining module 206 configured to determine among the following parameters At least one of: the first parameter and the second parameter; wherein the first parameter is used to determine the time interval between the uplink transmission resource and the side row feedback channel transmission resource, and the second parameter is used to determine the side row feedback channel transmission resource and the side Configure the time interval between authorized transmission resources.
  • the first determining module 202 is further configured to determine the time domain information corresponding to the sideline configuration authorized transmission resource according to at least one of the first parameter and the second parameter, and the time domain information of the uplink transmission resource.
  • the first configuration information is also used to configure at least one of the uplink transmission resource and the first parameter.
  • the foregoing apparatus further includes: a first sending module 208, configured to send second configuration information to the terminal, where the second configuration information is used to configure a resource pool; and a fourth determining module 210 uses The second parameter is determined according to the second configuration information.
  • the above-mentioned apparatus further includes: a second sending module 212, configured to send downlink control information to the terminal when the uplink control channel carries non-acknowledgement information, where the downlink control information is used for For scheduling side-line transmission resources, and the downlink control information carries the first hybrid automatic repeat request process number, and the downlink control information is used to schedule the terminal to retransmit the first hybrid automatic repeat request process on the side-line transmission resources
  • a second sending module 212 configured to send downlink control information to the terminal when the uplink control channel carries non-acknowledgement information, where the downlink control information is used for For scheduling side-line transmission resources, and the downlink control information carries the first hybrid automatic repeat request process number, and the downlink control information is used to schedule the terminal to retransmit the first hybrid automatic repeat request process on the side-line transmission resources
  • the side row data corresponding to the number.
  • the above-mentioned apparatus further includes: a third sending module 214, configured to send first configuration information to the terminal, where the first configuration information is also used for the terminal to determine the corresponding side-line configuration authorized transmission resource Time domain information and determine the first hybrid automatic retransmission request process number according to the time domain information corresponding to the side-line configuration authorized transmission resource.
  • a third sending module 214 configured to send first configuration information to the terminal, where the first configuration information is also used for the terminal to determine the corresponding side-line configuration authorized transmission resource Time domain information and determine the first hybrid automatic retransmission request process number according to the time domain information corresponding to the side-line configuration authorized transmission resource.
  • module can implement a combination of software and/or hardware with predetermined functions.
  • devices described in the following embodiments are preferably implemented by software, implementation by hardware or a combination of software and hardware is also possible and conceived.
  • FIG. 18 is a structural block diagram of another information processing device according to one of the embodiments of the present invention.
  • the device includes: a first determining module 300 for determining first configuration information, where the first configuration The information is used to configure the uplink transmission resource; the second determining module 302 is used to determine the time domain information corresponding to the uplink transmission resource based on the first configuration information; the processing module 304 is used to determine the first hybrid according to the time domain information corresponding to the uplink transmission resource Automatic retransmission request process ID.
  • FIG. 19 is a structural block diagram of yet another information processing apparatus according to one of the optional embodiments of the present invention.
  • the above-mentioned apparatus further includes: a third determining module 306, configured to The information determines the period parameter, where the first configuration information is also used to configure the side row configuration authorized transmission resource, the side row configuration authorized transmission resource is used to transmit the side row data, and the period parameter is used to determine the period of the side row configuration authorized transmission resource;
  • the fourth determining module 308 is configured to determine the first hybrid automatic repeat request process number according to the time domain information and period parameters corresponding to the uplink transmission resources.
  • the side row configuration authorized transmission resource and the uplink transmission resource are related, that is, the side row data transmitted on the side row configuration authorized transmission resource, and the corresponding side row feedback information is transmitted to the network on the uplink transmission resource ⁇ Side equipment.
  • the time domain information corresponding to the side-line configuration authorized transmission resource is the time slot index of the side-line configuration authorized transmission resource in the resource pool.
  • the period parameter is represented by the number of time slots, and the number of time slots is the number of time slots in the resource pool or the number of candidate time slots used in the resource pool.
  • the foregoing apparatus further includes: a first sending module 310, configured to send downlink control information to the terminal, where the downlink control information is used to schedule sideline transmission resources, and the downlink The route control information carries the first hybrid automatic repeat request process number, and the downlink control information is used to schedule the terminal device to retransmit the side line data corresponding to the first hybrid automatic repeat request process number on the side line transmission resource.
  • a first sending module 310 configured to send downlink control information to the terminal, where the downlink control information is used to schedule sideline transmission resources, and the downlink The route control information carries the first hybrid automatic repeat request process number, and the downlink control information is used to schedule the terminal device to retransmit the side line data corresponding to the first hybrid automatic repeat request process number on the side line transmission resource.
  • the foregoing apparatus further includes: a second sending module 312, configured to send downlink control information to the terminal when a negative acknowledgement is detected on the uplink transmission resource.
  • a second sending module 312 configured to send downlink control information to the terminal when a negative acknowledgement is detected on the uplink transmission resource.
  • the foregoing apparatus further includes: a third sending module 314, configured to send the first configuration information to the terminal device.
  • module can implement a combination of software and/or hardware with predetermined functions.
  • devices described in the following embodiments are preferably implemented by software, implementation by hardware or a combination of software and hardware is also possible and conceived.
  • FIG. 20 is a structural block diagram of still another information processing apparatus according to one of the embodiments of the present invention.
  • the apparatus includes: a first receiving module 400 for receiving configuration information from a network side device, where , The configuration information is used for the uplink transmission resource; the first determining module 402 is used for determining the time domain information corresponding to the uplink transmission resource based on the configuration information; the second determining module 404 is used for determining the first time domain information corresponding to the uplink transmission resource Hybrid automatic retransmission request process number.
  • the configuration information is also used to configure side-line configuration authorized transmission resources, and the side-line configuration authorized transmission resources are used to transmit side-line data.
  • FIG. 21 is a structural block diagram of still another information processing device according to one of the optional embodiments of the present invention.
  • the above-mentioned device further includes: a third determining module 406, configured to determine among the following parameters At least one of: the first parameter and the second parameter; wherein the first parameter is used to determine the time interval between the uplink transmission resource and the side row feedback channel transmission resource, and the second parameter is used to determine the side row feedback channel transmission resource and the side Configure the time interval between authorized transmission resources.
  • a third determining module 406 configured to determine among the following parameters At least one of: the first parameter and the second parameter; wherein the first parameter is used to determine the time interval between the uplink transmission resource and the side row feedback channel transmission resource, and the second parameter is used to determine the side row feedback channel transmission resource and the side Configure the time interval between authorized transmission resources.
  • the above apparatus further includes: a fourth determining module 408, configured to determine the time domain corresponding to the side-line configuration authorized transmission resource according to at least one of the first parameter and the second parameter, and the time domain information corresponding to the uplink transmission resource Information to obtain the corresponding relationship between the uplink transmission resource and the side-line configuration authorized transmission resource; according to the first hybrid automatic repeat request process number, and the corresponding relationship between the uplink transmission resource and the side-line configuration authorized transmission resource, determine the A side row corresponding to the process number of the hybrid automatic retransmission request is configured to authorize transmission resources.
  • the above device further includes: a first transmission module 410, configured to transmit the first side row data on the side row configuration authorized transmission resource, wherein the first side row data corresponds to the first hybrid automatic Retransmission request process number.
  • a first transmission module 410 configured to transmit the first side row data on the side row configuration authorized transmission resource, wherein the first side row data corresponds to the first hybrid automatic Retransmission request process number.
  • the above-mentioned apparatus further includes: a second receiving module 412, configured to receive downlink control information sent by a network side device, where the downlink control information is used to schedule sideline transmission resources, And the downlink control information carries the first hybrid automatic repeat request process number; the first retransmission module 414 is configured to retransmit the first side row data on the side row transmission resource.
  • a second receiving module 412 configured to receive downlink control information sent by a network side device, where the downlink control information is used to schedule sideline transmission resources, And the downlink control information carries the first hybrid automatic repeat request process number
  • the first retransmission module 414 is configured to retransmit the first side row data on the side row transmission resource.
  • the above-mentioned apparatus further includes: a second transmission module 416, configured to transmit the second side row data on the side row configuration authorized transmission resource, where the second side row data corresponds to the second hybrid automatic Retransmission request process number.
  • a second transmission module 416 configured to transmit the second side row data on the side row configuration authorized transmission resource, where the second side row data corresponds to the second hybrid automatic Retransmission request process number.
  • the foregoing apparatus further includes: a third determining module 418, configured to determine the mapping relationship between the first hybrid automatic repeat request process number and the second hybrid automatic repeat request process number.
  • the foregoing apparatus further includes: a third receiving module 420, configured to receive downlink control information sent by a network side device, where the downlink control information is used to schedule sideline transmission resources, And the downlink control information carries the first hybrid automatic retransmission request process number; the second retransmission module 422 is configured to be based on the difference between the first hybrid automatic repeat request process number and the second hybrid automatic repeat request process number The mapping relationship is to retransmit the second side row data on the side row transmission resource.
  • a third receiving module 420 configured to receive downlink control information sent by a network side device, where the downlink control information is used to schedule sideline transmission resources, And the downlink control information carries the first hybrid automatic retransmission request process number
  • the second retransmission module 422 is configured to be based on the difference between the first hybrid automatic repeat request process number and the second hybrid automatic repeat request process number
  • the mapping relationship is to retransmit the second side row data on the side row transmission resource.
  • each of the above modules can be implemented by software or hardware.
  • it can be implemented in the following manner, but not limited to this: the above modules are all located in the same processor; or, the above modules can be combined in any combination.
  • the forms are located in different processors.
  • Fig. 22 is a schematic structural diagram of a communication device according to one of the embodiments of the present invention. As shown in FIG. 22, the communication device includes a processor, and the processor can call and run a computer program from the memory to implement the method in the embodiment of the present invention.
  • the communication device may further include a memory.
  • the processor can call and run a computer program from the memory to implement the method in the embodiment of the present invention.
  • the memory can be a separate device independent of the processor, or can be integrated in the processor.
  • the communication device may also include a transceiver, and the processor may control the transceiver to communicate with other devices. Specifically, it may send information or data to other devices, or receive information sent by other devices. Or data.
  • the transceiver may include a transmitter and a receiver.
  • the transceiver may further include an antenna, and the number of antennas may be one or more.
  • the communication device may specifically be a network-side device in an embodiment of the present invention, and the communication device may implement the corresponding processes implemented by the network-side device in each method of the embodiment of the present invention.
  • the communication device may implement the corresponding processes implemented by the network-side device in each method of the embodiment of the present invention.
  • details are not repeated here. .
  • the communication device may specifically be a mobile terminal/terminal device according to the embodiment of the present invention, and the communication device may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present invention.
  • the communication device may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present invention.
  • This will not be repeated here.
  • FIG. 23 is a schematic structural diagram of a chip according to one of the embodiments of the present invention. As shown in FIG. 23, the chip includes a processor, and the processor can call and run a computer program from the memory to implement the method in the embodiment of the present invention.
  • the chip may also include a memory.
  • the processor can call and run a computer program from the memory to implement the method in the embodiment of the present invention.
  • the memory can be a separate device independent of the processor, or can be integrated in the processor.
  • the chip may also include an input interface.
  • the processor can control the input interface to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip may also include an output interface.
  • the processor can control the output interface to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network-side device in the embodiment of the present invention, and the chip can implement the corresponding process implemented by the network-side device in each method of the embodiment of the present invention.
  • the chip can implement the corresponding process implemented by the network-side device in each method of the embodiment of the present invention.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present invention, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present invention.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present invention.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present invention.
  • the chip mentioned in the embodiment of the present invention may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • Fig. 24 is a structural block diagram of a communication system according to one of the embodiments of the present invention. As shown in Fig. 24, the communication system includes a terminal device and a network side device.
  • the terminal device can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network side device can be used to implement the corresponding function implemented by the network side device in the above method. Go into details.
  • the processor in the embodiment of the present invention may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present invention may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiment of the present invention is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiment of the present invention also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network-side device in the embodiment of the present invention, and the computer program causes the computer to execute the corresponding process implemented by the network-side device in each method of the embodiment of the present invention.
  • the computer program causes the computer to execute the corresponding process implemented by the network-side device in each method of the embodiment of the present invention.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present invention, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present invention , For the sake of brevity, I won’t repeat it here.
  • the embodiment of the present invention also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network-side device in the embodiment of the present invention, and the computer program instructions cause the computer to execute the corresponding process implemented by the network-side device in each method of the embodiment of the present invention.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network-side device in each method of the embodiment of the present invention.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present invention, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present invention, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present invention also provides a computer program.
  • the computer program can be applied to the network-side device in the embodiment of the present invention.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network-side device in each method of the embodiment of the present invention.
  • I will not repeat them here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present invention.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present invention. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network-side device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

一种信息处理方法、装置、存储介质、处理器及电子装置。该方法包括:接收来自于网络侧设备的配置信息,其中,配置信息用于配置侧行配置授权传输资源,侧行配置授权传输资源是位于资源池中的传输资源(S70);基于配置信息确定侧行配置授权传输资源对应的时域信息(S71);根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号(S72)。解决了相关技术中缺少关于侧行配置授权的HARQ进程号确定方式的技术问题。

Description

信息处理方法、装置、存储介质、处理器及电子装置
交叉援引
本发明基于申请号为PCT/CN2020/075431、申请日为2020-02-14的PCT国际申请提出,并要求该PCT国际申请的优先权,该PCT国际申请的全部内容在此引入本发明作为参考。
技术领域
本发明涉及通信领域,具体而言,涉及一种信息处理方法、装置、存储介质、处理器及电子装置。
背景技术
目前,相关技术中在新无线(New Radio,简称为NR)Uu系统确定混合自动重传请求(Hybrid Automatic Repeat reQuest,简称为HARQ)进程号的过程中,基站可以为终端分配半静态调度(SPS)的下行传输资源。基站在配置下行SPS传输资源时,对于每一套SPS的传输资源,可以配置多个HARQ进程号。此外,在NR系统中,基站还可以为终端分配上行配置授权(Uplink Configured Grant,简称为UL CG)。基站在配置UL CG资源时,对于每一套UL CG资源可以配置多个HARQ进程号。
由此可见,相关技术中仅提供了基站在配置下行SPS传输资源或者配置UL CG资源时,关于HARQ进程号的确定方式,但是针对侧行(SL)配置授权(Configured Grant,简称为CG)却并没有涉及关于HARQ进程号的确定方式。
针对上述的问题,目前尚未提出有效的解决方案。
发明内容
本发明至少部分实施例提供了一种信息处理方法、装置、存储介质、处理器及电子装置,以至少解决相关技术中缺少关于侧行配置授权的HARQ进程号确定方式的技术问题。
根据本发明其中一实施例,提供了一种信息处理方法,包括:
接收来自于网络侧设备的配置信息,其中,配置信息用于配置侧行配置授权传输资源,侧行配置授权传输资源是位于资源池中的传输资源;基于配置信息确定侧行配置授权传输资源对应的时域信息;根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号。
可选地,根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号包括:基于配置信息确定周期参数,其中,周期参数为侧行配置授权传输资源的周期;根据侧行配置授权传输资源对应的时域信息和周期参数确定第一混合自动重传请求进程号。
可选地,侧行配置授权传输资源的周期采用时隙个数表示。
可选地,侧行配置授权传输资源对应的时域信息是侧行配置授权传输资源在资源池中的时隙索引。
可选地,上述方法还包括:在侧行配置授权资源上传输第一侧行数据,其中,第一侧行数据对应第一混合自动重传请求进程号。
可选地,上述方法还包括:接收来自于网络侧设备的下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带有第一混合自动重传请求进程号;在下行链路控制信息调度的侧行传输资源上重传第一侧行数据。
可选地,上述方法还包括:基于第一混合自动重传请求进程号与第二混合自动重传请求进程号之间的映射关系,在侧行配置授权传输资源上传输第二侧行数据,其中,第二侧行数据对应第二混合自动重传请求进程号。
可选地,上述方法还包括:接收来自于网络侧设备的下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带有第一混合自动重传请求进程号;在下行链路控制信 息调度的侧行传输资源上重传第二侧行数据。
根据本发明其中一实施例,还提供了另一种信息处理方法,包括:
确定第一配置信息,其中,第一配置信息用于配置侧行配置授权传输资源,侧行配置授权传输资源是位于资源池中的传输资源;基于第一配置信息确定侧行配置授权传输资源对应的时域信息;根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号。
可选地,根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号包括:基于第一配置信息确定周期参数,其中,周期参数为侧行配置授权传输资源的周期;根据侧行配置授权传输资源对应的时域信息和周期参数确定第一混合自动重传请求进程号。
可选地,侧行配置授权传输资源的周期采用时隙个数表示。
可选地,侧行配置授权传输资源对应的时域信息是侧行配置授权传输资源在资源池中的时隙索引。
可选地,基于第一配置信息确定侧行配置授权传输资源对应的时域信息包括:基于第一配置信息在上行传输资源上接收终端发送的上行控制信道,其中,上行传输资源和侧行配置授权传输资源属于相同的侧行配置授权周期,上行控制信道用于终端上报侧行反馈信息;根据上行传输资源的时域信息确定侧行配置授权传输资源对应的时域信息。
可选地,上述方法还包括:确定以下参数中的至少一个:第一参数和第二参数;其中,第一参数用于确定上行传输资源和侧行反馈信道传输资源之间的时间间隔,第二参数用于确定侧行反馈信道传输资源和侧行配置授权传输资源之间的时间间隔。
可选地,根据上行传输资源的时域信息确定侧行配置授权传输资源对应的时域信息包括:根据第一参数和第二参数中至少一个参数,以及上行传输资源的时域信息确定侧行配置授权传输资源对应的时域信息。
可选地,第一配置信息还用于配置上行传输资源与第一参数中至少之一。
可选地,上述方法还包括:向终端发送第二配置信息,其中,第二配置信息用于配置资源池;根据第二配置信息确定第二参数。
可选地,上述方法还包括:当上行控制信道承载非确认信息时,向终端发送下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带第一混合自动重传请求进程号,下行链路控制信息用于调度终端在侧行传输资源上重传第一混合自动重传请求进程号对应的侧行数据。
可选地,上述方法还包括:向终端发送第一配置信息,其中,第一配置信息还用于终端确定侧行配置授权传输资源对应的时域信息并根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号。
根据本发明其中一实施例,还提供了又一种信息处理方法,包括:
确定第一配置信息,其中,第一配置信息用于配置上行传输资源;基于第一配置信息确定上行传输资源对应的时域信息;根据上行传输资源对应的时域信息确定第一混合自动重传请求进程号。
可选地,上述方法还包括:基于第一配置信息确定周期参数,其中,第一配置信息还用于配置侧行配置授权传输资源,侧行配置授权传输资源用于传输侧行数据,周期参数用于确定侧行配置授权传输资源的周期;根据上行传输资源对应的时域信息和周期参数确定第一混合自动重传请求进程号。其中,该侧行配置授权传输资源和该上行传输资源是关联的,即,在侧行配置授权传输资源上传输的侧行数据,其对应的侧行反馈信息在该上行传输资源上传输给网络侧设备。
可选地,侧行配置授权传输资源对应的时域信息是侧行配置授权传输资源在资源池中的时隙索引。
可选地,周期参数采用时隙个数表示,时隙个数是资源池中的时隙个数,或用于资源池的候选时隙的个数。
可选地,周期参数采用逻辑时隙个数表示,或采用物理时隙个数表示。
可选地,上述方法还包括:向终端发送下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带第一混合自动重传请求进程号,下行链路控制信息用于调度终端设备在侧行传输资源上重传第一混合自动重传请求进程号对应的侧行数据。
可选地,上述方法还包括:在上行传输资源上检测到否定确认时,向终端发送下行链路控制信息。
可选地,上述方法还包括:向终端设备发送第一配置信息。
根据本发明其中一实施例,还提供了再一种信息处理方法,包括:
接收来自于网络侧设备的配置信息,其中,配置信息用于上行传输资源;基于配置信息确定上行传输资源对应的时域信息;根据上行传输资源对应的时域信息确定第一混合自动重传请求进程号。
可选地,配置信息还用于配置侧行配置授权传输资源,侧行配置授权传输资源用于传输侧行数据。
可选地,上述方法还包括:确定以下参数中的至少一个:第一参数和第二参数;其中,第一参数用于确定上行传输资源和侧行反馈信道传输资源之间的时间间隔,第二参数用于确定侧行反馈信道传输资源和侧行配置授权传输资源之间的时间间隔。
可选地,上述方法还包括:根据第一参数和第二参数中至少一个参数,以及上行传输资源对应的时域信息确定侧行配置授权传输资源对应的时域信息,得到上行传输资源和侧行配置授权传输资源之间的对应关系;根据第一混合自动重传请求进程号,以及上行传输资源和侧行配置授权传输资源之间的对应关系,确定与第一混合自动重传请求进程号对应的侧行配置授权传输资源。
可选地,上述方法还包括:在侧行配置授权传输资源上传输第一侧行数据,其中,第一侧行数据对应第一混合自动重传请求进程号。
可选地,上述方法还包括:接收网络侧设备发送的下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带第一混合自动重传请求进程号;在侧行传输资源上重传第一侧行数据。
可选地,上述方法还包括:在侧行配置授权传输资源上传输第二侧行数据,其中,第二侧行数据对应第二混合自动重传请求进程号。
可选地,上述方法还包括:确定第一混合自动重传请求进程号和第二混合自动重传请求进程号之间的映射关系。
可选地,上述方法还包括:接收网络侧设备发送的下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带第一混合自动重传请求进程号;基于第一混合自动重传请求进程号与第二混合自动重传请求进程号之间的映射关系,在侧行传输资源上重传第二侧行数据。
根据本发明其中一实施例,还提供了一种信息处理装置,包括:
第一接收模块,用于接收来自于网络侧设备的配置信息,其中,配置信息用于配置侧行配置授权传输资源,侧行配置授权传输资源是位于资源池中的传输资源;确定模块,用于基于配置信息确定侧行配置授权传输资源对应的时域信息;处理模块,用于根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号。
可选地,确定模块,用于基于配置信息确定周期参数,其中,周期参数为侧行配置授权传输资源的周期;以及根据侧行配置授权传输资源对应的时域信息和周期参数确定第一混合自动重传请求进程号。
可选地,侧行配置授权传输资源的周期采用时隙个数表示,用于描述资源池中时隙的个数。
可选地,侧行配置授权传输资源对应的时域信息是侧行配置授权传输资源在资源池中的时隙索引。
可选地,上述装置还包括:第一传输模块,用于在侧行配置授权资源上传输第一侧行数据,其中,第一侧行数据对应第一混合自动重传请求进程号。
可选地,上述装置还包括:第二接收模块,用于接收来自于网络侧设备的下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带有第一混合自动重传请求进程号;第一重传模块,用于在下行链路控制信息调度的侧行传输资源上重传第一侧行数据。
可选地,上述装置还包括:第二传输模块,用于基于第一混合自动重传请求进程号与第二混合自动重传请求进程号之间的映射关系,在侧行配置授权传输资源上传输第二侧行数据,其中,第二侧行数据对应第二混合自动重传请求进程号。
可选地,上述装置还包括:第三接收模块,用于接收来自于网络侧设备的下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带有第一混合自动重传请求进程 号;第二重传模块,用于在下行链路控制信息调度的侧行传输资源上重传第二侧行数据。
根据本发明其中一实施例,还提供了另一种信息处理装置,包括:
处理模块,用于确定第一配置信息,其中,第一配置信息用于配置侧行配置授权传输资源,侧行配置授权传输资源是位于资源池中的传输资源;第一确定模块,用于基于第一配置信息确定侧行配置授权传输资源对应的时域信息;第二确定模块,用于根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号。
可选地,第二确定模块,用于基于第一配置信息确定周期参数,其中,周期参数为侧行配置授权传输资源的周期;以及根据侧行配置授权传输资源对应的时域信息和周期参数确定第一混合自动重传请求进程号。
可选地,侧行配置授权传输资源的周期采用时隙个数表示。
可选地,侧行配置授权传输资源对应的时域信息是侧行配置授权传输资源在资源池中的时隙索引。
可选地,第一确定模块,用于基于第一配置信息在上行传输资源上接收终端发送的上行控制信道,其中,上行传输资源和侧行配置授权传输资源属于相同的侧行配置授权周期,上行控制信道用于终端上报侧行反馈信息;以及根据上行传输资源的时域信息确定侧行配置授权传输资源对应的时域信息。
可选地,上述装置还包括:第三确定模块,用于确定以下参数中的至少一个:第一参数和第二参数;其中,第一参数用于确定上行传输资源和侧行反馈信道传输资源之间的时间间隔,第二参数用于确定侧行反馈信道传输资源和侧行配置授权传输资源之间的时间间隔。
可选地,第一确定模块,还用于根据第一参数和第二参数中至少一个参数,以及上行传输资源的时域信息确定侧行配置授权传输资源对应的时域信息。
可选地,第一配置信息还用于配置上行传输资源与第一参数中至少之一。
可选地,上述装置还包括:第一发送模块,用于向终端发送第二配置信息,其中,第二配置信息用于配置资源池;第四确定模块,用于根据第二配置信息确定第二参数。
可选地,上述装置还包括:第二发送模块,用于当上行控制信道承载非确认信息时,向终端发送下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带第一混合自动重传请求进程号,下行链路控制信息用于调度终端在侧行传输资源上重传第一混合自动重传请求进程号对应的侧行数据。
可选地,上述装置还包括:第三发送模块,用于向终端发送第一配置信息,其中,第一配置信息还用于终端确定侧行配置授权传输资源对应的时域信息并根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号。
根据本发明其中一实施例,还提供了另一种信息处理装置,包括:
第一确定模块,用于确定第一配置信息,其中,第一配置信息用于配置上行传输资源;第二确定模块,用于基于第一配置信息确定上行传输资源对应的时域信息;处理模块,用于根据上行传输资源对应的时域信息确定第一混合自动重传请求进程号。
可选地,上述装置还包括:第三确定模块,用于基于第一配置信息确定周期参数,其中,第一配置信息还用于配置侧行配置授权传输资源,侧行配置授权传输资源用于传输侧行数据,周期参数用于确定侧行配置授权传输资源的周期;第四确定模块,用于根据上行传输资源对应的时域信息和周期参数确定第一混合自动重传请求进程号。其中,该侧行配置授权传输资源和该上行传输资源是关联的,即,在侧行配置授权传输资源上传输的侧行数据,其对应的侧行反馈信息在该上行传输资源上传输给网络侧设备。
可选地,侧行配置授权传输资源对应的时域信息是侧行配置授权传输资源在资源池中的时隙索引。
可选地,周期参数采用时隙个数表示,时隙个数是资源池中的时隙个数或用于资源池的候选时隙的个数。
可选地,上述装置还包括:第一发送模块,用于向终端发送下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带第一混合自动重传请求进程号,下行链路控制信息用于调度终端设备在侧行传输资源上重传第一混合自动重传请求进程号对应的侧行数据。
可选地,上述装置还包括:第二发送模块,用于在上行传输资源上检测到否定确认时,向终端发送下 行链路控制信息。
可选地,上述装置还包括:第三发送模块,用于向终端设备发送第一配置信息。
根据本发明其中一实施例,还提供了再一种信息处理装置,包括:
第一接收模块,用于接收来自于网络侧设备的配置信息,其中,配置信息用于上行传输资源;第一确定模块,用于基于配置信息确定上行传输资源对应的时域信息;第二确定模块,用于根据上行传输资源对应的时域信息确定第一混合自动重传请求进程号。
可选地,配置信息还用于配置侧行配置授权传输资源,侧行配置授权传输资源用于传输侧行数据。
可选地,上述装置还包括:第三确定模块,用于确定以下参数中的至少一个:第一参数和第二参数;其中,第一参数用于确定上行传输资源和侧行反馈信道传输资源之间的时间间隔,第二参数用于确定侧行反馈信道传输资源和侧行配置授权传输资源之间的时间间隔。
可选地,上述装置还包括:第四确定模块,用于根据第一参数和第二参数中至少一个参数,以及上行传输资源对应的时域信息确定侧行配置授权传输资源对应的时域信息,得到上行传输资源和侧行配置授权传输资源之间的对应关系;根据第一混合自动重传请求进程号,以及上行传输资源和侧行配置授权传输资源之间的对应关系,确定与第一混合自动重传请求进程号对应的侧行配置授权传输资源。
可选地,上述装置还包括:第一传输模块,用于在侧行配置授权传输资源上传输第一侧行数据,其中,第一侧行数据对应第一混合自动重传请求进程号。
可选地,上述装置还包括:第二接收模块,用于接收网络侧设备发送的下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带第一混合自动重传请求进程号;第一重传模块,用于在侧行传输资源上重传第一侧行数据。
可选地,上述装置还包括:第二传输模块,用于在侧行配置授权传输资源上传输第二侧行数据,其中,第二侧行数据对应第二混合自动重传请求进程号。
可选地,上述装置还包括:第三确定模块,用于确定第一混合自动重传请求进程号和第二混合自动重传请求进程号之间的映射关系。
可选地,上述装置还包括:第三接收模块,用于接收网络侧设备发送的下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带第一混合自动重传请求进程号;第二重传模块,用于基于第一混合自动重传请求进程号与第二混合自动重传请求进程号之间的映射关系,在侧行传输资源上重传第二侧行数据。
根据本发明其中一实施例,还提供了一种存储介质,存储介质中存储有计算机程序,其中,计算机程序被设置为运行时执行上述任一项中的信息处理方法。
根据本发明其中一实施例,还提供了一种处理器,处理器用于运行程序,其中,程序被设置为运行时执行上述任一项中的信息处理方法。
根据本发明其中一实施例,还提供了一种电子装置,包括存储器和处理器,存储器中存储有计算机程序,处理器被设置为运行计算机程序以执行上述任一项中的信息处理方法。
根据本发明其中一实施例,还提供了一种芯片,包括:处理器,设置为从存储器中调用并运行计算机程序,使得安装有芯片的设备执行上述任一项中的信息处理方法。
根据本发明其中一实施例,还提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述任一项中的信息处理方法。
根据本发明其中一实施例,还提供了一种计算机程序,计算机程序使得计算机执行上述任一项中的信息处理方法。
在本发明至少部分实施例中,采用接收来自于网络侧设备的配置信息,该配置信息用于配置侧行配置授权传输资源并且侧行配置授权传输资源是位于资源池中的传输资源的方式,通过配置信息确定侧行配置授权传输资源对应的时域信息以及根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号,达到了针对侧行配置授权提供HARQ进程号确定方式的目的,从而实现了有效地填补了在侧行配置授权方面无法确定HARQ进程号的技术空白,增加了HARQ进程号确定方式的灵活性与多样性的技术效果,进而解决了相关技术中缺少关于侧行配置授权的HARQ进程号确定方式的技术问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本发明的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据相关技术的D2D传输技术的示意图;
图2是根据相关技术的单播传输方式的示意图;
图3是根据相关技术的组播传输方式的示意图;
图4是根据相关技术的广播传输方式的示意图;
图5是根据相关技术的NR-V2X中数据传输过程的示意图;
图6是根据相关技术的网络侧设备配置传输资源的示意图;
图7是根据本发明其中一实施例的信息处理方法的流程图;
图8是根据本发明其中一可选实施例的确定资源池的示意图;
图9是根据本发明其中一实施例的另一种信息处理方法的流程图;
图10是根据本发明其中一可选实施例的SFN周期和DFN周期存在时间间隔的示意图;
图11是根据本发明其中一实施例的又一种信息处理方法的流程图;
图12是根据本发明其中一实施例的再一种信息处理方法的流程图;
图13是根据本发明其中一可选实施例的终端设备自主确定HARQ进程号的示意图;
图14是根据本发明其中一实施例的信息处理装置的结构框图;
图15是根据本发明其中一可选实施例的信息处理装置的结构框图;
图16是根据本发明其中一实施例的另一种信息处理装置的结构框图;
图17是根据本发明其中一可选实施例的另一种信息处理装置的结构框图;
图18是根据本发明其中一实施例的又一种信息处理装置的结构框图;
图19是根据本发明其中一可选实施例的又一种信息处理装置的结构框图;
图20是根据本发明其中一实施例的再一种信息处理装置的结构框图;
图21是根据本发明其中一可选实施例的再一种信息处理装置的结构框图;
图22是根据本发明其中一实施例的一种通信设备的结构示意图;
图23是根据本发明其中一实施例的芯片结构示意图;
图24是根据本发明其中一实施例的一种通信系统的结构框图。
具体实施方式
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本发明的实施例能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
图1是根据相关技术的D2D传输技术的示意图,如图1所示,设备到设备(Device to Device,简称为 D2D)通信是一种基于侧行链路(Sidelink,简称为SL)传输技术,其不同于传统的蜂窝系统中通过基站接收或者发送通信数据的方式。由于D2D系统采用终端到终端直接通信的方式,因此具有更高的频谱效率以及更低的传输时延。车联网系统基于D2D传输技术,在第三代合作伙伴计划(3GPP)中定义了模式A与模式B两种传输模式。
在模式A中,终端的传输资源是由基站来分配的。终端根据基站分配的资源在侧行链路上进行数据的发送。基站既可以为终端分配单次传输的资源,也可以为终端分配半静态传输的资源。在模式B中,终端在资源池中选取一个资源进行数据的传输。
在NR-车辆到其他设备(Vehicle to Everything,简称为V2X)中,由于需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,例如:更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。在NR-V2X中,引入了单播和组播的传输方式。另外,在长期演进(Long Term Evaluation,简称为LTE)-V2X中,还支持广播传输方式。
对于单播传输方式而言,发送侧终端与接收侧终端之间进行单播传输。图2是根据相关技术的单播传输方式的示意图,如图2所示,UE1为发送侧终端,UE2为接收侧终端,因此,在UE1与UE2之间可以进行单播传输。
对于组播传输方式而言,接收侧终端包括一个通信组内的所有终端或者在一定传输距离内的所有终端。图3是根据相关技术的组播传输方式的示意图,如图3所示,UE1、UE2、UE3和UE4构成一个通信组,其中,UE1是数据发送端,而该组内的其他终端设备UE2、UE3和UE4均为接收侧终端。
对于广播传输方式而言,接收侧终端可以是任意一个终端。图4是根据相关技术的广播传输方式的示意图,如图4所示,如果UE1是发送侧终端,则UE1周围的其他终端UE2、UE3和UE4都可以被设置为接收侧终端。
此外,在NR-V2X中还引入了多种传输模式,即模式1和模式2,其中,模式1是网络为终端分配传输资源(即上述模式A),模式2是终端选取传输资源(即上述模式B)。为了提高数据传输的可靠性,在侧行链路上引入了反馈信道。图5是根据相关技术的NR-V2X中数据传输过程的示意图,如图5所示,UE1和UE2构成一个单播链路。UE1向UE2发送侧行数据。UE2根据接收到的侧行数据的检测结果,向UE1发送侧行反馈信息,即HARQ ACK或NACK。UE1在接收到来自于UE2的反馈信息之后,决定是否向UE2重传该数据。另外,UE1还可以决定是否需要接收侧终端UE2发送反馈信息,例如,对于广播通信而言,不需要接收端进行反馈;但是,对于单播通信而言,为了提高系统的可靠性,则需要接收端进行反馈。具体地,UE1在侧行控制信息(SCI)中携带指示信息,以指示接收侧终端是否需要进行侧行反馈。
在NR-V2X中,还会支持模式1和模式2的资源分配方式。在模式2中,终端在资源池自主选取传输资源进行侧行传输,即上述模式B。在模式1中,网络侧设备为终端分配侧行配置授权传输资源,即上述模式A。具体地,网络侧设备既可以通过动态调度(Dynamic Scheduling)的方式为终端分配侧行配置授权传输资源,也可以为终端分配SL CG传输资源。对于CG的资源分配方式,主要包括两种配置授权方式:第一类配置授权(type-1 configured grant)和第二类配置授权(type-2 configured grant)。
第一类配置授权是指网络侧设备通过无线资源控制(Radio Resource Control,简称为RRC)信令为终端配置侧行配置授权传输资源。该RRC信令配置包括时域资源、频域资源、解调用参考信号(DMRS)、调制编码方案(MCS)等在内的全部传输资源和传输参数。然后,终端使用所配置的传输参数在配置的时频资源上进行侧行传输。
第二类配置授权则采用两步的资源配置方式,即RRC+下行链路控制信息(Downlink Control Information,简称为DCI)的方式。首先,由RRC信令配置包括时频资源的周期、HARQ进程数等在内的传输资源和传输参数,然后再由DCI激活第二类配置授权的传输,并同时配置包括时域资源、频域资源、MCS等在内的其他传输资源和传输参数。UE在接收到RRC信令之后,无法立即使用该高层参数配置的资源和参数进行侧行传输,而是需要在接收到相应的DCI激活并配置其他资源和传输参数之后,才能够进行侧行传输。此外,网络侧设备可以通过DCI去激活该配置传输,在终端接收到去激活的DCI之后,无法再使用该传输资源进行侧行传输。
如果网络侧设备为终端分配过配置授权的传输资源,那么当终端存在待传输的侧行数据时,可以直接使用该传输资源进行传输,而无需向网络侧设备发送调度请求(Scheduling Request,简称为SR)或缓冲区状态报告(Buffer Status Report,简称为BSR)请求传输资源,从而降低传输时延。在侧行配置授权中,网络侧设备分配周期性的传输资源,并且在每个周期中,网络侧设备可以配置多个传输资源。图6是根据相关技术的网络侧设备配置传输资源的示意图,如图6所示,网络侧设备配置授权的传输资源是周期性重 复的传输资源,其中,在每个周期内包括4个侧行配置授权传输资源。
在模式1的资源分配方式中,如果侧行反馈处于激活状态,则接收侧终端将会根据侧行数据接收状况向发送侧终端发送反馈信息。发送侧终端向网络侧设备上报侧行链路的反馈信息(SL HARQ-ACK)。然后,网络侧设备再根据发送侧终端上报的SL HARQ-ACK决定是否需要分配重传资源。
在侧行配置授权传输中,网络侧设备可以为终端配置侧行配置授权的传输资源,并且分配物理上行链路控制信道(Physical Uplink Control Channel,简称为PUCCH)传输资源。终端可以在该PUCCH上向网络侧设备上报侧行反馈信息。如果网络侧设备接收到终端上报的NACK反馈信息,则会通过动态调度分配重传资源,并在动态调度的DCI中需要指示HARQ进程号,以指示为该终端分配的重传资源所归属的HARQ进程,因此,网络侧设备需要确定侧行传输对应的HARQ进程号。
本发明实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,简称为GSM)系统、码分多址(Code Division Multiple Access,简称为CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为WCDMA)系统、通用分组无线业务(General Packet Radio Service,简称为GPRS)、长期演进(Long Term Evolution,简称为LTE)系统、LTE频分双工(Frequency Division Duplex,简称为FDD)系统、LTE时分双工(Time Division Duplex,简称为TDD)、通用移动通信系统(Universal Mobile Telecommunication System,简称为UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为WiMAX)通信系统或5G系统等。
示例性的,本发明实施例应用的通信系统可以包括网络侧设备,网络侧设备可以是与终端设备(或称为通信终端、终端)通信的设备。网络侧设备可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络侧设备可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,简称为BTS),也可以是WCDMA系统中的基站(NodeB,简称为NB),还可以是LTE系统中的演进型基站(Evolutional Node B,简称为eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,简称为CRAN)中的无线控制器,或者该网络侧设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,简称为PLMN)中的网络侧设备等。
该通信系统还包括位于网络侧设备覆盖范围内的至少一个终端设备。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,简称为PSTN)、数字用户线路(Digital Subscriber Line,简称为DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,简称为WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,简称为IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,简称为PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,简称为GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,简称为UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,简称为SIP)电话、无线本地环路(Wireless Local Loop,简称为WLL)站、个人数字处理(Personal Digital Assistant,简称为PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备之间可以进行D2D通信。
可选地,5G系统或5G网络还可以称为NR系统或NR网络。
可选地,该通信系统还可以包括网络控制器、移动管理实体等其他网络实体,本发明实施例对此不作限定。
应理解,本发明实施例中网络/系统中具有通信功能的设备可称为通信设备。通信设备可包括具有通信功能的网络侧设备和终端设备,网络侧设备和终端设备可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本发明实施例中 对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
根据本发明其中一实施例,提供了一种信息处理方法的实施例,需要说明的是,在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行,并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
在本实施例中提供了一种运行于上述终端设备的信息处理方法,图7是根据本发明其中一实施例的信息处理方法的流程图,如图7所示,该方法包括如下步骤:
步骤S70,接收来自于网络侧设备的配置信息,其中,配置信息用于配置侧行配置授权传输资源,侧行配置授权传输资源是位于资源池中的传输资源;
步骤S71,基于配置信息确定侧行配置授权传输资源对应的时域信息;
步骤S72,根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号。
通过上述步骤,可以采用接收来自于网络侧设备的配置信息,该配置信息用于配置侧行配置授权传输资源并且侧行配置授权传输资源是位于资源池中的传输资源的方式,通过配置信息确定侧行配置授权传输资源对应的时域信息以及根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号,达到了针对侧行配置授权提供HARQ进程号确定方式的目的,从而实现了有效地填补了在侧行配置授权方面无法确定HARQ进程号的技术空白,增加了HARQ进程号确定方式的灵活性与多样性的技术效果,进而解决了相关技术中缺少关于侧行配置授权的HARQ进程号确定方式的技术问题。
在上述配置信息中,既可以配置侧行配置授权传输资源,也可以配置PUCCH传输资源,其中,PUCCH传输资源是侧行配置授权传输资源对应的PUCCH资源,即在侧行配置授权传输资源上传输的侧行数据所关联的侧行反馈信息通过PUCCH传输资源上报给网络侧设备。对于终端设备而言,根据侧行配置授权传输资源的时域位置便可确定第一混合自动重传请求进程号。
上述资源池可以是多个资源池中的其中一个资源池。具体地,图8是根据本发明其中一可选实施例的确定资源池的示意图,如图8所示,通过如下方式在一个系统帧号(System Frame Number,简称为SFN)或直接帧号(Direct Frame Number,简称为DFN)周期内确定资源池。以子载波间隔是15kHz为例,一个DFN周期包括10240个子帧(或时隙),分别对应子帧0,1,2,…,10239。去掉不可用于侧行传输的子帧,例如:同步子帧、下行子帧、特殊子帧(即TDD系统中的下行子帧和特殊子帧)以及预留子帧(reserved subframe)等,剩余的子帧编号为
Figure PCTCN2020079061-appb-000001
这些剩余的子帧个数能够被L bitmap整除,比特位图
Figure PCTCN2020079061-appb-000002
在剩余的子帧中周期重复,其中,比特为1表示该比特在该剩余子帧中对应的子帧属于该资源池,否则不属于该资源池。
一个DFN周期包括10240个子帧,同步信号的周期是160ms。假设在一个同步周期内包括2个同步子帧,因此,在一个DFN周期内共有128个同步子帧,用于指示资源池时域资源的比特位图的长度是10比特。为此,需要2个预留子帧(reserved subframe),剩余子帧个数是(10240-128-2=10110),可以被比特位图的长度10整除,从而将剩余的子帧重新编号为0,1,2,…,10109,比特位图前3位为1,其余7位为0。即在剩余子帧中,每10个子帧中的前3个子帧属于该资源池,其余的子帧不属于该资源池。由于在剩余子帧中需要比特位图重复1011次,以指示所有的子帧是否属于资源池,而在每个比特位图周期内包括3个子帧,因此在一个DFN周期共有3033个子帧属于该资源池。在该资源池中的每个时隙索引,分别对应着DFN周期中的一个时隙索引。例如,在资源池中的时隙0,1,2,3,4,5分别对应着DFN周期中的时隙0,2,4,13,14,15。网络配置侧行配置授权传输资源,会关联到一个资源池,网络配置的侧行配置授权传输资源是位于该一个资源池中的传输资源。
在本实施例中,侧行配置授权传输资源对应的时域信息为侧行配置授权传输资源在资源池中的时隙索引。例如,针对上面的实施例,侧行配置授权传输资源所在的资源池包括3033个子帧,因此侧行配置授权传输资源对应的时域信息为在该资源池中的时隙索引,即在[0,3032]范围内的时隙索引。
可选地,侧行配置授权传输资源对应的时域信息为可能用于资源池的时隙中的时隙索引。例如,针对上面的实施例,可能用于资源池的时隙集合是所述剩余子帧,其对应的时隙索引范围为[0,10109]。
可选地,通过上述配置信息中可以确定以下参数中至少一个:
(1)侧行配置授权传输资源的周期;
(2)当前配置授权对应的HARQ进程号总数;
(3)HARQ进程号偏移,用于确定当前配置授权对应的第一个HARQ进程号;
(4)侧行配置授权传输资源的时域资源对应的时隙。
在一个实施方式中,该配置信息包括时隙偏移指示信息和周期参数,根据该时隙偏移指示信息和周期参数确定侧行配置授权传输资源;其中,所述时隙偏移指示信息用于确定在一个系统帧号周期中(或直接帧号周期中)的第一个侧行配置授权传输资源的时域信息。该时隙偏移指示信息用时隙个数表示,该时隙个数表示物理时隙个数或逻辑时隙个数,其中,逻辑时隙是所述配置授权传输资源所关联的资源池内的时隙或可能用于资源池的时隙。所述周期参数用于确定侧行配置授权传输资源的周期,用时隙个数表示,该时隙个数表示物理时隙个数或逻辑时隙个数,其中,逻辑时隙是所述配置授权传输资源所关联的资源池内的时隙或可能用于资源池的时隙。
可选地,步骤S72,根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号可以包括以下执行步骤:
步骤S720,基于配置信息确定周期参数,其中,周期参数为侧行配置授权传输资源的周期;
步骤S722,根据侧行配置授权传输资源对应的时域信息和周期参数确定第一混合自动重传请求进程号。
可选地,侧行配置授权传输资源的周期采用时隙个数表示,用于描述侧行配置授权传输资源所在的资源池中时隙的个数。或者,可选地,侧行配置授权传输资源的周期采用时隙个数表示,以描述用于资源池的候选时隙的个数。
可选地,侧行配置授权传输资源的周期采用逻辑时隙个数表示,或采用物理时隙个数表示。
如果上述参数periodicity采用时隙个数表示,则根据侧行配置授权传输资源在该侧行配置授权所在的资源池中的时域位置,通过如下公式确定对应的第一HARQ进程号:
HARQ Process ID=[floor(CURRENT_slot/periodicity)]mod nrofHARQ-Processes+harq-procID-offset;
其中,该公式中各个参数的含义如下:
(1)CURRENT_slot表示在侧行配置授权传输资源的时域资源对应的时隙,该时隙的索引是在侧行配置授权所在的资源池中的时隙索引;该参数的取值范围为[0,N-1],N表示当前资源池中所包含的时隙总数,该时隙的索引是在侧行配置授权所在的资源池中的时隙索引。
(2)periodicity表示侧行配置授权传输资源的周期,用时隙表示;进一步地,表示该侧行配置授权所在的资源池中的时隙个数。
(3)nrofHARQ-Processes表示该侧行配置授权对应的HARQ进程号总数。
(4)harq-procID-offset用于确定该侧行配置授权对应的第一个HARQ进程号;可选地,如果网络侧设备没有配置该参数,则该参数的取值为0。
上式中,mod表示取模运算,floor表示向下取整运算。
仍然如图8所示,网络侧设备在资源池中配置侧行配置授权的传输资源。侧行配置授权的周期的3个时隙表示在该资源池中的3个时隙。侧行配置授权的第一个时隙位置为时隙2,根据侧行配置授权的周期,时隙5、时隙8、时隙11等时隙将会包括侧行配置授权的传输资源。
在上述计算HARQ进程号的公式中,CURRENT_slot表示在资源池中的侧行配置授权的传输资源所在的时隙,即时隙2、时隙5、时隙8、时隙11、时隙14、时隙17……时隙3032等。Periodicity表示侧行配置授权的传输资源的周期,其可以采用该配置授权所在的资源池的时隙个数表示,即周期为3个时隙。如果配置参数nrofHARQ-Processes=4,harq-procID-offset=0,则该侧行配置授权对应的HARQ进程号分别为0、1、2、3。在本实施例中,上述侧行配置授权在时隙2、时隙5、时隙8、时隙11、时隙14、时隙17等 时域位置的传输资源所对应的HARQ进程号分别为0、1、2、3、0、1等。
在根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号的过程中,网络侧设备为终端配置侧行配置授权传输资源,根据侧行配置授权传输资源在侧行链路上的时域位置,还可以通过如下公式确定对应的第一HARQ进程号:
HARQ Process ID=[floor(CURRENT_slot×10/(numberOfSlotsPerFrame×periodicity))]mod nrofHARQ-Processes+harq-procID-offset;
其中,该公式中各个参数的含义如下:
(1)numberOfSlotsPerFrame表示每个无线帧(Frame或Radio Frame)所包含的时隙个数;
(2)periodicity表示侧行配置授权传输资源的周期,采用毫秒(ms)表示;
(3)nrofHARQ-Processes表示当前侧行配置授权对应的HARQ进程号总数;
(4)harq-procID-offset用于确定当前侧行配置授权对应的第一个HARQ进程号;在一个可选实施例中,如果网络侧设备没有配置该参数,则该参数的取值为0。
CURRENT_slot表示在侧行配置授权传输资源的时域资源对应的时隙,该参数的取值范围为[0,N-1],N表示当前资源池中所包含的时隙总数,该时隙的索引是在侧行配置授权所在的资源池中的时隙索引;
在一个可选实施例中,CURRENT_slot=[(DFN×numberOfSlotsPerFrame)+slot number in the frame];其中,slot number in the frame表示侧行配置授权传输资源在一个无线帧中的索引,其取值范围为[0,M-1],M表示一个无线帧中包括的总时隙数;DFN表示直连帧号(Direct Frame Number);numberOfSlotsPerFrame表示每个无线帧(Frame或Radio Frame)所包含的时隙个数,其由侧行传输所在的侧行载波的子载波间隔确定,或者由上行子载波间隔确定。
在一个可选实施例中,CURRENT_slot=[(SFN×numberOfSlotsPerFrame)+slot number in the frame];其中,slot number in the frame表示侧行配置授权传输资源在一个无线帧中的索引,其取值范围为[0,M-1],M表示一个无线帧中包括的总时隙数;SFN表示系统帧号(System Frame Number);numberOfSlotsPerFrame表示每个无线帧(Frame或Radio Frame)所包含的时隙个数,其由侧行传输所在的侧行载波的子载波间隔确定,或者由上行子载波间隔确定。
上式中,mod表示取模运算,floor表示向下取整运算。
可选地,上述方法还可以包括以下执行步骤:
步骤S73,在所述侧行配置授权资源上传输第一侧行数据,其中,第一侧行数据对应第一混合自动重传请求进程号。
终端设备通过上述方式确定的该侧行配置授权传输资源对应的HARQ进程号为第一HARQ进程号。终端设备可以使用该第一HARQ进程号传输第一侧行数据。该第一侧行数据可以包括:PSCCH和PSSCH。另外,终端设备还可以在侧行链路控制信息(Sidelink Control Information,简称为SCI)中携带第一HARQ进程号,即PSSCH中传输的侧行数据对应该第一HARQ进程号。
可选地,上述方法还可以包括以下执行步骤:
步骤S74,接收来自于网络侧设备的下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带有第一混合自动重传请求进程号;
步骤S75,在下行链路控制信息调度的侧行传输资源上重传第一侧行数据。
在侧行配置授权传输中,网络侧设备可以为终端设备配置PUCCH传输资源。终端可以在该PUCCH传输资源上向网络侧设备上报侧行反馈信息。
可选地,网络在每个侧行配置授权的周期中配置一个PUCCH传输资源。在一个侧行配置授权周期中,终端通过侧行配置授权传输资源向接收端终端发送该第一侧行数据,对应第一HARQ进程号,如果该终端接收到接收端终端发送的侧行反馈信息为NACK时,会通过该周期中的PUCCH向网络上报NACK。如果网络侧设备接收到终端上报的NACK反馈信息,则会通过DCI为该侧行传输动态分配重传资源,并且在DCI中指示该第一HARQ进程号,以便终端设备在下行链路控制信息调度的侧行传输资源上重传第一侧行数据。
可选地,上述方法还可以包括以下执行步骤:
步骤S76,基于第一混合自动重传请求进程号与第二混合自动重传请求进程号之间的映射关系,在侧行配置授权传输资源上传输第二侧行数据,其中,第二侧行数据对应第二混合自动重传请求进程号。
当终端使用侧行配置授权传输资源传输侧行数据时,根据该侧行配置授权传输资源的时域信息确定第一HARQ进程号。进一步的,该终端可以预先确定第一HARQ进程号和第二HARQ进程号之间的映射关系。终端设备可以基于该映射关系使用该第二HARQ进程号在该侧行配置授权传输资源上传输第二侧行数据。该第二侧行数据可以包括:PSCCH和PSSCH。另外,终端设备还可以在SCI中携带第二HARQ进程号,即PSSCH中传输的侧行数据对应该第二HARQ进程号。
可选地,上述方法还可以包括以下执行步骤:
步骤S77,接收来自于网络侧设备的下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带有第一混合自动重传请求进程号;
步骤S78,在下行链路控制信息调度的侧行传输资源上重传第二侧行数据。
网络侧设备通过PUCCH传输资源确定侧行配置授权的传输资源对应的进程号为该第一HARQ进程号。当网络侧设备接收到NACK时,通过DCI为该侧行传输动态分配重传资源,并且在DCI中指示该第一HARQ进程号。终端设备在接收到DCI并从DCI中获取到该第一HARQ进程号之后,可以根据该第一HARQ进程号和第二HARQ进程号之间的映射关系,确定该重传资源是针对第二HARQ进程号的侧行传输的重传调度。
由此可见,终端设备根据侧行配置授权传输资源的时域信息确定的第一HARQ进程号,其与使用该侧行配置授权传输资源传输数据时使用的第二HARQ进程号可以不同,并且终端设备还能够确定该第一HARQ进程号和第二HARQ进程号之间的映射关系,进而使得终端设备具有更高的灵活度或者自主权决定侧行传输的HARQ进程号。
在本实施例中还提供了另一种运行于上述网络侧设备的信息处理方法,图9是根据本发明其中一实施例的另一种信息处理方法的流程图,如图9所示,该方法包括如下步骤:
步骤S90,确定第一配置信息,其中,第一配置信息用于配置侧行配置授权传输资源,侧行配置授权传输资源是位于资源池中的传输资源;
步骤S91,基于第一配置信息确定侧行配置授权传输资源对应的时域信息;
步骤S92,根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号。
通过上述步骤,采用确定并向终端发送第一配置信息,该第一配置信息用于配置侧行配置授权传输资源并且侧行配置授权传输资源是位于资源池中的传输资源的方式,通过第一配置信息确定侧行配置授权传输资源对应的时域信息以及根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号,达到了针对侧行配置授权提供HARQ进程号确定方式的目的,从而实现了有效地填补了在侧行配置授权方面无法确定HARQ进程号的技术空白,增加了HARQ进程号确定方式的灵活性与多样性的技术效果,进而解决了相关技术中缺少关于侧行配置授权的HARQ进程号确定方式的技术问题。
在上述第一配置信息中,既可以配置侧行配置授权传输资源,也可以配置PUCCH传输资源。网络侧设备为终端设备配置的侧行配置授权的传输资源是周期性的,在每个周期中最多包括N_max(N_max=2或3)个侧行配置授权传输资源,在每个周期中配置一个PUCCH传输资源。终端设备在该周期中利用侧行配置授权传输资源传输侧行数据,并且利用PUCCH传输资源向网络侧设备上报侧行反馈信息。然后,网络侧设备再根据侧行反馈信息确定是否需要为终端分配重传资源。
对于网络侧设备而言,首先根据该配置信息可以确定PUCCH传输资源;其次,通过在PUCCH传输资源上接收PUCCH,并且根据该PUCCH确定该PUCCH对应的SL CG周期(即该PUCCH所属的侧行配置授权的周期)以及该周期中的侧行配置授权传输资源,然后再根据该侧行配置授权传输资源的时域信息确定第一HARQ进程号。
上述资源池可以是多个资源池中的其中一个资源池。具体地,仍然如图8所示,通过如下方式在一个SFN或DFN周期内确定资源池。以子载波间隔是15kHz为例,一个DFN周期包括10240个子帧(或时隙),分别对应子帧0,1,2,…,10239。去掉不可用于侧行传输的子帧,例如:同步子帧、下行子帧、特殊子帧(即 TDD系统中的下行子帧和特殊子帧)以及预留子帧(reserved subframe)等,剩余的子帧编号为
Figure PCTCN2020079061-appb-000003
这些剩余的子帧个数能够被L bitmap整除,比特位图
Figure PCTCN2020079061-appb-000004
在剩余的子帧中周期重复,其中,比特为1表示该比特在该剩余子帧中对应的子帧属于该资源池,否则不属于该资源池。
一个DFN周期包括10240个子帧,同步信号的周期是160ms。假设在一个同步周期内包括2个同步子帧,因此,在一个DFN周期内共有128个同步子帧,用于指示资源池时域资源的比特位图的长度是10比特。为此,需要2个预留子帧(reserved subframe),剩余子帧个数是(10240-128-2=10110),可以被比特位图的长度10整除,从而将剩余的子帧重新编号为0,1,2,…,10109,比特位图前3位为1,其余7位为0。即在剩余子帧中,每10个子帧中的前3个子帧属于该资源池,其余的子帧不属于该资源池。由于在剩余子帧中需要比特位图重复1011次,以指示所有的子帧是否属于资源池,而在每个比特位图周期内包括3个子帧,因此在一个DFN周期共有3033个子帧属于该资源池。在该资源池中的每个时隙索引,分别对应着DFN周期中的一个时隙索引。例如,在资源池中的时隙0,1,2,3,4,5分别对应着DFN周期中的时隙0,2,4,13,14,15。网络配置侧行配置授权传输资源,会关联到一个资源池,网络配置的侧行配置授权传输资源是位于该一个资源池中的传输资源。
在本实施例中,侧行配置授权传输资源对应的时域信息为侧行配置授权传输资源在资源池中的时隙索引。例如,针对上面的实施例,侧行配置授权传输资源所在的资源池包括3033个子帧,因此侧行配置授权传输资源对应的时域信息为在该资源池中的时隙索引,即在[0,3032]范围内的时隙索引。
可选地,侧行配置授权传输资源对应的时域信息为可能用于资源池的时隙中的时隙索引。例如,针对上面的实施例,可能用于资源池的时隙集合是所述剩余子帧,其对应的时隙索引范围为[0,10109]。
可选地,上述方法还可以包括以下执行步骤:
步骤S93,向终端发送第一配置信息,其中,第一配置信息还用于终端确定侧行配置授权传输资源对应的时域信息并根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号。
上述第一混合自动重传请求进程号不仅可以由网络侧设备根据第一配置信息来确定,还可以由终端设备根据第一配置信息来确定。由此,网络侧设备可以将第一配置信息发送至终端设备,以使终端设备确定侧行配置授权传输资源对应的时域信息并根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号。
可选地,通过上述第一配置信息中可以确定以下参数中至少一个:
(1)侧行配置授权传输资源的周期;
(2)当前配置授权对应的HARQ进程号总数;
(3)HARQ进程号偏移,用于确定当前配置授权对应的第一个HARQ进程号;
(4)侧行配置授权传输资源的时域资源对应的时隙。
在一实施方式中,该配置信息包括时隙偏移指示信息和周期参数,根据该时隙偏移指示信息和周期参数确定侧行配置授权传输资源;其中,所述时隙偏移指示信息用于确定在一个系统帧号周期中(或直接帧号周期中)的第一个侧行配置授权传输资源的时域信息。该时隙偏移指示信息用时隙个数表示,该时隙个数表示物理时隙个数或逻辑时隙个数,其中,逻辑时隙是所述配置授权传输资源所关联的资源池内的时隙或用于资源池的候选时隙。所述周期参数用于确定侧行配置授权传输资源的周期,用时隙个数表示,该时隙个数表示物理时隙个数或逻辑时隙个数,其中,逻辑时隙是所述配置授权传输资源所关联的资源池内的时隙或用于资源池的候选时隙。
可选地,在步骤S92中,根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号可以包括以下执行步骤:
步骤S920,基于第一配置信息确定周期参数,其中,周期参数为侧行配置授权传输资源的周期;
步骤S922,根据侧行配置授权传输资源对应的时域信息和周期参数确定第一混合自动重传请求进程号。
可选地,侧行配置授权传输资源的周期采用时隙个数表示,用于描述侧行配置授权传输资源所在的资源池中时隙的个数。或者,可选地,侧行配置授权传输资源的周期采用时隙个数表示,用于描述用于资源池的候选时隙的个数。
如果上述参数periodicity采用时隙个数表示,则根据侧行配置授权传输资源在该侧行配置授权所在的资源池中的时域位置,通过如下公式确定对应的第一HARQ进程号:
HARQ Process ID=[floor(CURRENT_slot/periodicity)]mod nrofHARQ-Processes+harq-procID-offset;
其中,该公式中各个参数的含义如下:
(1)CURRENT_slot表示在侧行配置授权传输资源的时域资源对应的时隙,该时隙的索引是在侧行配置授权所在的资源池中的时隙索引;该参数的取值范围为[0,N-1],N表示当前资源池中所包含的时隙总数,该时隙的索引是在侧行配置授权所在的资源池中的时隙索引。
(2)periodicity表示侧行配置授权传输资源的周期,用时隙表示;进一步地,表示该侧行配置授权所在的资源池中的时隙个数。
(3)nrofHARQ-Processes表示该侧行配置授权对应的HARQ进程号总数。
(4)harq-procID-offset用于确定该侧行配置授权对应的第一个HARQ进程号;可选地,如果网络侧设备没有配置该参数,则该参数的取值为0。
上式中,mod表示取模运算,floor表示向下取整运算。
仍然如图8所示,网络侧设备在资源池中配置侧行配置授权的传输资源。侧行配置授权的周期的3个时隙表示在该资源池中的3个时隙。侧行配置授权的第一个时隙位置为时隙2,根据侧行配置授权的周期,时隙5、时隙8、时隙11等时隙将会包括侧行配置授权的传输资源。
在上述计算HARQ进程号的公式中,CURRENT_slot表示在资源池中的侧行配置授权的传输资源所在的时隙,即时隙2、时隙5、时隙8、时隙11、时隙14、时隙17……时隙3032等。Periodicity表示侧行配置授权的传输资源的周期,其可以采用该配置授权所在的资源池的时隙个数表示,即周期为3个时隙。如果配置参数nrofHARQ-Processes=4,harq-procID-offset=0,则该侧行配置授权对应的HARQ进程号分别为0、1、2、3。在本实施例中,上述侧行配置授权在时隙2、时隙5、时隙8、时隙11、时隙14、时隙17等时域位置的传输资源所对应的HARQ进程号分别为0、1、2、3、0、1等。
在根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号的过程中,网络侧设备为终端配置侧行配置授权传输资源,根据侧行配置授权传输资源在侧行链路上的时域位置,可以通过如下公式确定对应的第一HARQ进程号:
HARQ Process ID=[floor(CURRENT_slot×10/(numberOfSlotsPerFrame×periodicity))]mod nrofHARQ-Processes+harq-procID-offset;
其中,该公式中各个参数的含义如下:
(1)numberOfSlotsPerFrame表示每个无线帧(Frame或Radio Frame)所包含的时隙个数;
(2)periodicity表示侧行配置授权传输资源的周期,采用毫秒(ms)表示;
(3)nrofHARQ-Processes表示当前侧行配置授权对应的HARQ进程号总数;
(4)harq-procID-offset用于确定当前侧行配置授权对应的第一个HARQ进程号;在一个可选实施例中,如果网络侧设备没有配置该参数,则该参数的取值为0。
CURRENT_slot表示在侧行配置授权传输资源的时域资源对应的时隙,该参数的取值范围为[0,N-1],N表示当前资源池中所包含的时隙总数,该时隙的索引是在侧行配置授权所在的资源池中的时隙索引;
在一个可选实施例中,CURRENT_slot=[(DFN×numberOfSlotsPerFrame)+slot number in the frame];其中,slot number in the frame表示侧行配置授权传输资源在一个无线帧中的索引,其取值范围为[0,M-1],M表示一个无线帧中包括的总时隙数;DFN表示直连帧号(Direct Frame Number);numberOfSlotsPerFrame表示每个无线帧(Frame或Radio Frame)所包含的时隙个数,其由侧行传输所在的侧行载波的子载波间隔确定,或者由上行子载波间隔确定。
在一个可选实施例中,CURRENT_slot=[(SFN×numberOfSlotsPerFrame)+slot number in the frame];其中,slot number in the frame表示侧行配置授权传输资源在一个无线帧中的索引,其取值范围为[0,M-1],M表示一个无线帧中包括的总时隙数;SFN表示系统帧号(System Frame Number);numberOfSlotsPerFrame表示每个无线帧(Frame或Radio Frame)所包含的时隙个数,其由侧行传输所在的侧行载波的子载波间隔确定,或者由上行子载波间隔确定。
上式中,mod表示取模运算,floor表示向下取整运算。
可选地,在步骤S91中,基于第一配置信息确定侧行配置授权传输资源对应的时域信息可以包括以下执行步骤:
步骤S910,基于第一配置信息在上行传输资源上接收终端发送的上行控制信道,其中,上行传输资源和侧行配置授权传输资源属于相同的侧行配置授权周期,上行控制信道用于终端上报侧行反馈信息;
步骤S912,根据上行传输资源的时域信息确定侧行配置授权传输资源对应的时域信息。
网络侧设备在配置侧行配置授权的过程中,还会配置用于传输PUCCH的上行传输资源,由此在每个侧行配置授权的周期中都会存在一个对应的PUCCH传输资源。终端设备通过PUCCH向网络侧设备发送侧行反馈信息。网络侧设备在上行传输资源上接收到终端设备发送的PUCCH之后,根据该PUCCH可以确定与该PUCCH属于同一周期内的侧行配置授权的传输资源的时域位置,进而根据上述公式可以确定该侧行配置授权传输资源对应的HARQ进程号。
可选地,上述方法还可以包括以下执行步骤:
步骤S94,确定以下参数中的至少一个:第一参数和第二参数;其中,第一参数用于确定上行传输资源和侧行反馈信道传输资源之间的时间间隔,第二参数用于确定侧行反馈信道传输资源和侧行配置授权传输资源之间的时间间隔。
PUCCH的时隙资源是在SFN周期中的时隙,侧行配置授权传输资源的时隙是在SFN周期(或DFN周期中)的时隙。侧行配置授权的传输资源的时域信息根据SFN索引(或DFN索引)以及在无线帧中的时隙编号确定。而PUCCH的传输使用上行传输资源,其时域位置由SFN以及在无线帧中的时隙编号确定。可选地,SFN周期和DFN周期的起始时隙,即SFN#0和DFN#0是不对齐的,存在时间间隔。
图10是根据本发明其中一可选实施例的SFN周期和DFN周期存在时间间隔的示意图,如图10所示,网络侧设备配置侧行配置授权的传输资源以及PUCCH资源,侧行配置授权的周期是10ms,对应4个HARQ进程号,其分别为0、1、2、3。侧行载波和上行载波的子载波间隔都是15kHz,即每个无线帧包括10个时隙。根据配置信息确定的PUCCH的传输时刻为时刻T,则时刻T对应侧行配置授权传输资源的SFN#0,时隙8,但是对应DFN#58,时隙6。
可选地,网络侧设备可以获知侧行链路的传输时间和上行链路的传输时间之间的时间间隔,因为,网络在时刻T接收到PUCCH,根据该PUCCH的时域位置T可以确定该PUCCH的时域位置T对应的侧行链路上的时域位置。
需要说明的是,PUCCH所关联的侧行配置授权传输资源即是与PUCCH属于同一侧行配置授权周期中的侧行配置授权传输资源。在该周期中的侧行配置授权传输资源上传输的侧行数据,其对应的侧行反馈信息通过与其关联的PUCCH,即本周期中的PUCCH上报给网络侧设备的。
因此,网络侧设备需要确定上行传输资源和侧行反馈信道传输资源之间的时间间隔,和/或,侧行反馈信道传输资源和侧行配置授权传输资源之间的时间间隔。
可选地,在步骤S912中,根据上行传输资源的时域信息确定侧行配置授权传输资源对应的时域信息可以包括以下执行步骤:
步骤S9120,根据第一参数和第二参数中至少一个参数,以及上行传输资源的时域信息确定侧行配置授权传输资源对应的时域信息。
在一个可选实施例中,第一配置信息还用于配置上行传输资源与第一参数中至少之一。
如果网络侧设备在时刻T接收到PUCCH,则会根据PUCCH和物理侧行反馈信道(Physical Sidelink Feedback Channel,简称为PSFCH)传输资源时间间隔确定PSFCH对应的时域位置。进一步地,网络侧设备可以确定该PSFCH所在周期中的侧行配置授权的传输资源的时域位置,进而确定该PUCCH对应的侧行传输资源所对应的HARQ进程号。
例如,网络侧设备在资源池中为终端配置侧行配置授权的传输资源,并且配置了PUCCH传输资源,该资源池中包括PSFCH传输资源,并且PSFCH的周期为2个时隙,即在资源池中每2个时隙包括一个用于传输PSFCH的时隙,配置的PUCCH时域资源和PSFCH的时间间隔是3个时隙,因此,网络侧设备在接收到PUCCH时,根据PUCCH时域资源的时隙位置即可确定PUCCH对应的PSFCH的时隙位置。在一个可选示例中,该PSFCH的时隙位置是在侧行配置授权传输资源周期中的最后一个PSFCH所在的时隙。 由此网络侧设备根据该PSFCH的时隙即可确定该PSFCH所在的周期中的侧行配置授权传输资源所在的时隙,进而可以确定该侧行配置授权传输资源对应的HARQ进程号。
由此,网络侧设备在根据侧行配置授权传输资源对应的侧行链路时域位置确定HARQ进程号的过程中,可以基于侧行链路和上行链路之间的时间间隔确定配置的PUCCH传输资源所对应的侧行传输的HARQ进程号。
可选地,上述方法还可以包括以下执行步骤:
步骤S95,向终端发送第二配置信息,其中,第二配置信息用于配置资源池;
步骤S96,根据第二配置信息确定第二参数。
网络侧设备除了向终端设备发送上述第一配置信息之外,还可以向终端设备发送用于配置资源池的第二配置信息,另外还可以基于第二配置信息确定侧行反馈信道传输资源和侧行配置授权传输资源之间的时间间隔。
可选地,上述方法还可以包括以下执行步骤:
步骤S97,当上行控制信道承载非确认信息时,向终端发送下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带第一混合自动重传请求进程号,下行链路控制信息用于调度终端在侧行传输资源上重传第一混合自动重传请求进程号对应的侧行数据。
在侧行配置授权传输中,网络侧设备可以为终端设备配置PUCCH传输资源。终端可以在该PUCCH传输资源上向网络侧设备上报侧行反馈信息。如果网络侧设备接收到终端上报的NACK反馈信息,则会通过DCI为该侧行传输动态分配重传资源,并且在DCI中指示该第一HARQ进程号,以便终端设备在下行链路控制信息调度的侧行传输资源上重传第一侧行数据。由此网络侧设备在通过DCI以动态调度的方式为终端设备分配重传资源时,在该DCI中携带该第一HARQ进程号,因此,终端设备在接收到该DCI之后,便可确定该DCI调度的重传资源所对应的第一HARQ进程号。
当然,在侧行配置授权传输中,网络侧设备也可以不为终端设备配置PUCCH传输资源。此时,终端无需向网络侧设备上报侧行反馈信息,即不需要基于网络调度进行重传。如果发送侧终端接收到来自于接收侧终端的PSFCH上的NACK,则发送侧终端可以进行重传。但是,发送侧终端的侧行传输通常使用网络侧设备分配的侧行配置授权传输资源。此时,侧行传输对应的HARQ进程号由发送侧终端自行确定,而与侧行配置授权传输资源的时域位置无关。
在本实施例中还提供了又一种运行于上述网络侧设备的信息处理方法,图11是根据本发明其中一实施例的又一种信息处理方法的流程图,如图11所示,该方法包括如下步骤:
步骤S1100,确定第一配置信息,其中,第一配置信息用于配置上行传输资源;
步骤S1101,基于第一配置信息确定上行传输资源对应的时域信息;
步骤S1102,根据上行传输资源对应的时域信息确定第一混合自动重传请求进程号。
与图9所示的信息处理方法不同,图11所示的信息处理方法不再基于侧行传输资源的时域位置来确定HARQ ID,而是基于上行传输资源的时域位置来确定HARQ ID。
可选地,上述方法还可以包括以下执行步骤:
步骤S1103,基于第一配置信息确定周期参数,其中,第一配置信息还用于配置侧行配置授权传输资源,侧行配置授权传输资源用于传输侧行数据,周期参数用于确定侧行配置授权传输资源的周期;
其中,该侧行配置授权传输资源和该上行传输资源是关联的,即,在所述侧行配置授权传输资源上传输的侧行数据,其对应的侧行反馈信息在该上行传输资源上传输给网络侧设备。
步骤S1104,根据上行传输资源对应的时域信息和周期参数确定第一混合自动重传请求进程号。
在上述第一配置信息中,既可以配置侧行配置授权传输资源,也可以配置上行传输资源。网络侧设备为终端设备配置的侧行配置授权的传输资源是周期性的,在每个周期中最多包括N_max(N_max=2或3)个侧行配置授权传输资源,在每个周期中配置一个PUCCH传输资源。终端设备在该周期中利用侧行配置授权传输资源传输侧行数据,并且利用PUCCH传输资源向网络侧设备上报侧行反馈信息。然后,网络侧设备再根据侧行反馈信息确定是否需要为终端分配重传资源。
可选地,侧行配置授权传输资源对应的时域信息是侧行配置授权传输资源在资源池中的时隙索引。周期参数采用时隙个数表示,时隙个数是资源池中的时隙个数或用于资源池的候选时隙的个数。
上述资源池可以是多个资源池中的其中一个资源池。具体地,仍然如图8所示,通过如下方式在一个SFN或DFN周期内确定资源池。以子载波间隔是15kHz为例,一个DFN周期包括10240个子帧(或时隙),分别对应子帧0,1,2,…,10239。去掉不可用于侧行传输的子帧,例如:同步子帧、下行子帧、特殊子帧(即TDD系统中的下行子帧和特殊子帧)以及预留子帧(reserved subframe)等,剩余的子帧编号为
Figure PCTCN2020079061-appb-000005
这些剩余的子帧个数能够被L bitmap整除,比特位图
Figure PCTCN2020079061-appb-000006
在剩余的子帧中周期重复,其中,比特为1表示该比特在该剩余子帧中对应的子帧属于该资源池,否则不属于该资源池。
一个DFN周期包括10240个子帧,同步信号的周期是160ms。假设在一个同步周期内包括2个同步子帧,因此,在一个DFN周期内共有128个同步子帧,用于指示资源池时域资源的比特位图的长度是10比特。为此,需要2个预留子帧(reserved subframe),剩余子帧个数是(10240-128-2=10110),可以被比特位图的长度10整除,从而将剩余的子帧重新编号为0,1,2,…,10109,比特位图前3位为1,其余7位为0。即在剩余子帧中,每10个子帧中的前3个子帧属于该资源池,其余的子帧不属于该资源池。由于在剩余子帧中需要比特位图重复1011次,以指示所有的子帧是否属于资源池,而在每个比特位图周期内包括3个子帧,因此在一个DFN周期共有3033个子帧属于该资源池。在该资源池中的每个时隙索引,分别对应着DFN周期中的一个时隙索引。例如,在资源池中的时隙0,1,2,3,4,5分别对应着DFN周期中的时隙0,2,4,13,14,15。网络配置侧行配置授权传输资源,会关联到一个资源池,网络配置的侧行配置授权传输资源是位于该一个资源池中的传输资源。
在本实施例中,侧行配置授权传输资源对应的时域信息为侧行配置授权传输资源在资源池中的时隙索引。例如,针对上面的实施例,侧行配置授权传输资源所在的资源池包括3033个子帧,因此侧行配置授权传输资源对应的时域信息为在该资源池中的时隙索引,即在[0,3032]范围内的时隙索引。
可选地,侧行配置授权传输资源对应的时域信息为用于资源池的时隙中的时隙索引。例如,针对上面的实施例,可能用于资源池的时隙集合是所述剩余子帧,其对应的时隙索引范围为[0,10109]。
可选地,上述方法还可以包括以下执行步骤:
步骤S1105,向终端发送下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带第一混合自动重传请求进程号。
在一个可选实施例中,终端在上行传输资源上向网络侧设备发送否定确认。而网络侧设备在上行传输资源上检测到否定确认时,会向终端发送下行链路控制信息,该下行链路控制信息中携带第一HARQ进程号。终端在接收到该下行链路控制信息之后,可以从该下行链路控制信息中获取到第一HARQ进程号。
在侧行配置授权传输中,网络侧设备可以为终端设备配置PUCCH传输资源。终端可以在该PUCCH传输资源上向网络侧设备上报侧行反馈信息。如果网络侧设备接收到终端上报的NACK反馈信息,则会通过DCI为该侧行传输动态分配重传资源,并且在DCI中指示该第一HARQ进程号,以便终端设备在下行链路控制信息调度的侧行传输资源上重传第一侧行数据。由此网络侧设备在通过DCI以动态调度的方式为终端设备分配重传资源时,在该DCI中携带该第一HARQ进程号,因此,终端设备在接收到该DCI之后,便可确定该DCI调度的重传资源所对应的第一HARQ进程号。
例如,网络侧设备向终端发送第一配置信息,该第一配置信息用于配置侧行配置授权传输资源和上行传输资源。终端在该侧行配置授权传输资源上传输侧行数据。如果终端接收到侧行反馈信息是NACK,则终端在上行传输资源上向网络侧设备传输NACK。然后,网络侧设备根据该上行传输资源的时域位置确定第一HARQ进程号,以及通过DCI为该终端调度侧行传输资源,用于该终端重传侧行数据,并且在DCI中携带第一HARQ进程号。终端负责接收该DCI并根据该第一HARQ进程号可以确定该DCI是网络侧设备针对该上行传输资源上传输的NACK的重传调度。进一步的,终端可以确定该DCI是针对与该上行传输资源关联的该侧行配置授权传输资源上传输的侧行数据的重传调度,因此,终端在该DCI调度的侧行传输资源上重传该侧行数据。
当然,在侧行配置授权传输中,网络侧设备也可以不为终端设备配置PUCCH传输资源。此时,终端无需向网络侧设备上报侧行反馈信息,即不需要基于网络调度进行重传。如果发送侧终端接收到来自于接收侧终端的PSFCH上的NACK,则发送侧终端可以进行重传。但是,发送侧终端的侧行传输通常使用网络侧设备分配的侧行配置授权传输资源。此时,侧行传输对应的HARQ进程号由发送侧终端自行确定,而 与侧行配置授权传输资源的时域位置无关。
在本实施例中还提供了再一种运行于上述网络侧设备的信息处理方法,图12是根据本发明其中一实施例的再一种信息处理方法的流程图,如图12所示,该方法包括如下步骤:
步骤S1200,接收来自于网络侧设备的配置信息,其中,配置信息用于上行传输资源;
步骤S1201,基于配置信息确定上行传输资源对应的时域信息;
步骤S1202,根据上行传输资源对应的时域信息确定第一混合自动重传请求进程号。
与图7所示的信息处理方法不同,图12所示的信息处理方法不再基于侧行传输资源的时域位置来确定HARQ ID,而是基于上行传输资源的时域位置来确定HARQ ID。
可选地,配置信息还用于配置侧行配置授权传输资源,侧行配置授权传输资源用于传输侧行数据。
在上述配置信息中,既可以配置侧行配置授权传输资源,也可以配置PUCCH传输资源,其中,PUCCH传输资源是侧行配置授权传输资源对应的PUCCH资源,即在侧行配置授权传输资源上传输的侧行数据所关联的侧行反馈信息通过PUCCH传输资源上报给网络侧设备。对于终端设备而言,根据上行传输资源的时域位置便可确定第一混合自动重传请求进程号。
可选地,上述方法还可以包括以下执行步骤:
步骤S1203,确定以下参数中的至少一个:第一参数和第二参数;其中,第一参数用于确定上行传输资源和侧行反馈信道传输资源之间的时间间隔,第二参数用于确定侧行反馈信道传输资源和侧行配置授权传输资源之间的时间间隔。
PUCCH的时隙资源是在SFN周期中的时隙,侧行配置授权传输资源的时隙是在SFN周期(或DFN周期)中的时隙。侧行配置授权的传输资源的时域信息根据SFN索引(或DFN索引)以及在侧行配置授权传输资源在无线帧中的时隙编号确定。而PUCCH的传输使用上行传输资源,其时域位置由SFN以及在无线帧中的时隙编号确定。可选地,SFN周期和DFN周期的起始时隙,即SFN#0和DFN#0是不对齐的,存在时间间隔。
需要说明的是,PUCCH所关联的侧行配置授权传输资源即是与PUCCH属于同一侧行配置授权周期中的侧行配置授权传输资源。在该周期中的侧行配置授权传输资源上传输的侧行数据,其对应的侧行反馈信息通过与其关联的PUCCH,即本周期中的PUCCH上报给网络侧设备的。
因此,网络侧设备需要确定上行传输资源和侧行反馈信道传输资源之间的时间间隔,和/或,侧行反馈信道传输资源和侧行配置授权传输资源之间的时间间隔。
可选地,上述方法还可以包括以下执行步骤:
步骤S1204,根据第一参数和第二参数中至少一个参数,以及上行传输资源对应的时域信息确定侧行配置授权传输资源对应的时域信息,得到上行传输资源和侧行配置授权传输资源之间的对应关系;
步骤S1205,根据第一混合自动重传请求进程号,以及上行传输资源和侧行配置授权传输资源之间的对应关系,确定与第一混合自动重传请求进程号对应的侧行配置授权传输资源。
如果网络侧设备在时刻T接收到PUCCH,根据所述PUCCH的时域资源确定第一混合自动重传请求进程号,进一步地,会根据PUCCH和物理侧行反馈信道(Physical Sidelink Feedback Channel,简称为PSFCH)传输资源时间间隔确定PSFCH对应的时域位置。进一步地,网络侧设备可以确定该PSFCH所在周期中的侧行配置授权的传输资源的时域位置,进而确定与第一HARQ进程号对应的侧行配置授权的传输资源。
例如,网络侧设备在资源池中为终端配置侧行配置授权的传输资源,并且配置了PUCCH传输资源,该资源池中包括PSFCH传输资源,并且PSFCH的周期为2个时隙,即在资源池中每2个时隙包括一个用于传输PSFCH的时隙,配置的PUCCH时域资源和PSFCH的时间间隔是3个时隙,因此,网络侧设备在接收到PUCCH时,根据PUCCH时域资源的时隙位置即可确定第一HARQ进程号。并且,网络侧设备根据PUCCH传输资源和PSFCH传输资源之间的时间间隔确定该PUCCH对应的PSFCH的时隙位置。在一个可选示例中,该PSFCH的时隙位置是在侧行配置授权传输资源周期中的最后一个PSFCH所在的时隙。由此网络侧设备根据该PSFCH的时隙即可确定该PSFCH所在的周期中的侧行配置授权传输资源所在的时隙,进而可以确定该侧行配置授权传输资源对应该第一HARQ进程号。
由此,网络侧设备在根据PUCCH传输资源的时域位置确定HARQ进程号的过程中,可以基于侧行链路和上行链路之间的时间间隔确定配置的侧行配置授权传输资源所对应的HARQ进程号。
可选地,上述方法还可以包括以下执行步骤:
步骤S1206,在侧行配置授权传输资源上传输第一侧行数据,其中,第一侧行数据对应第一混合自动重传请求进程号。
终端设备可以使用第一HARQ进程号传输第一侧行数据。该第一侧行数据可以包括:PSCCH和PSSCH。另外,终端设备还可以在SCI中携带第一HARQ进程号,即PSSCH中传输的侧行数据对应该第一HARQ进程号。
可选地,上述方法还可以包括以下执行步骤:
步骤S1207,接收网络侧设备发送的下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带第一混合自动重传请求进程号;
步骤S1208,在侧行传输资源上重传第一侧行数据。
在侧行配置授权传输中,网络侧设备可以为终端设备配置PUCCH传输资源。终端可以在该PUCCH传输资源上向网络侧设备上报侧行反馈信息。
可选地,网络在每个侧行配置授权的周期中配置一个PUCCH传输资源。在一个侧行配置授权周期中,终端通过侧行配置授权传输资源向接收端终端发送该第一侧行数据,对应第一HARQ进程号,如果该终端接收到接收端终端发送的侧行反馈信息为NACK时,会通过该周期中的PUCCH向网络上报NACK。如果网络侧设备接收到终端上报的NACK反馈信息,根据该PUCCH传输资源的时域位置确定第一HARQ进程号,则会通过DCI为该侧行传输动态分配重传资源,并且在DCI中指示该第一HARQ进程号,以便终端设备在下行链路控制信息调度的侧行传输资源上重传第一侧行数据。
可选地,上述方法还可以包括以下执行步骤:
步骤S1209,在侧行配置授权传输资源上传输第二侧行数据,其中,第二侧行数据对应第二混合自动重传请求进程号。
当终端使用侧行配置授权传输资源传输侧行数据时,根据该侧行配置授权传输资源的时域信息确定第一HARQ进程号。进一步的,该终端可以预先确定第一HARQ进程号和第二HARQ进程号之间的映射关系。终端设备可以基于该映射关系使用该第二HARQ进程号在该侧行配置授权传输资源上传输第二侧行数据。该第二侧行数据可以包括:PSCCH和PSSCH。另外,终端设备还可以在SCI中携带第二HARQ进程号,即PSSCH中传输的侧行数据对应该第二HARQ进程号。
可选地,上述方法还可以包括以下执行步骤:
步骤S1210,确定第一混合自动重传请求进程号和第二混合自动重传请求进程号之间的映射关系。
可选地,上述方法还可以包括以下执行步骤:
步骤S1211,接收网络侧设备发送的下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带第一混合自动重传请求进程号;
步骤S1212,基于第一混合自动重传请求进程号与第二混合自动重传请求进程号之间的映射关系,在侧行传输资源上重传第二侧行数据。
网络侧设备通过PUCCH传输资源确定第一HARQ进程号,并且根据该PUCCH与侧行配置授权传输资源之间的对应关系,确定该侧行配置授权的传输资源对应的进程号为该第一HARQ进程号。当网络侧设备接收到NACK时,通过DCI为该侧行传输动态分配重传资源,并且在DCI中指示该第一HARQ进程号。终端设备在接收到DCI并从DCI中获取到该第一HARQ进程号之后,可以根据该第一HARQ进程号和第二HARQ进程号之间的映射关系,确定该重传资源是针对第二HARQ进程号的侧行传输的重传调度。
由此可见,终端设备根据侧行配置授权传输资源的时域信息确定的第一HARQ进程号,其与使用该侧行配置授权传输资源传输数据时使用的第二HARQ进程号可以不同,并且终端设备还能够确定该第一HARQ进程号和第二HARQ进程号之间的映射关系,进而使得终端设备具有更高的灵活度或者自主权决定侧行传输的HARQ进程号。
图13是根据本发明其中一可选实施例的终端设备自主确定HARQ进程号的示意图,如图13所示,网络侧设备配置侧行配置授权传输资源,在每个周期中包括2个侧行配置授权传输资源,该侧行配置授权总的HARQ进程数为4,其分别为HARQ ID 0、HARQ ID1、HARQ ID2和HARQ ID3。可选地,TX UE使用PSSCH1、PSSCH2、PSSCH3、PSSCH4分别传输HARQ ID 0、HARQ ID1、HARQ ID2、HARQ ID3的初传。如果TX UE接收到的反馈信息均为NACK,则可以继续使用PSSCH5、PSSCH6、PSSCH7、PSSCH8分别传输HARQ ID 0、HARQ ID1、HARQ ID2、HARQ ID3的重传。
可选地,TX UE使用PSSCH1、PSSCH2分别传输HARQ ID 0的初传和重传。TX UE使用PSSCH3、PSSCH4分别传输HARQ ID 1的初传和重传。TX UE使用PSSCH5、PSSCH6分别传输HARQ ID 2的初传和重传。TX UE使用PSSCH7、PSSCH8分别传输HARQ ID 3的初传和重传;
可选地,TX UE使用PSSCH1、PSSCH2分别传输HARQ ID 0的初传和重传。如果接收到的反馈信息仍为NACK,则继续使用PSSCH3传输HARQ ID0的重传;如果接收到的反馈信息变为ACK,则使用PSSCH4传输HARQ ID1的初传或者使用PSSCH4传输HARQ ID0的初传,此时PSSCH4和PSSCH1传输的侧行数据对应不同的传输块。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络侧设备等)执行本发明各个实施例所述的方法。
在本实施例中还提供了一种信息处理装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图14是根据本发明其中一实施例的信息处理装置的结构框图,如图14所示,该装置包括:第一接收模块100,用于接收来自于网络侧设备的配置信息,其中,配置信息用于配置侧行配置授权传输资源,侧行配置授权传输资源是位于资源池中的传输资源;确定模块102,用于基于配置信息确定侧行配置授权传输资源对应的时域信息;处理模块104,用于根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号。
可选地,确定模块102,用于基于配置信息确定周期参数,其中,周期参数为侧行配置授权传输资源的周期;以及根据侧行配置授权传输资源对应的时域信息和周期参数确定第一混合自动重传请求进程号。
可选地,侧行配置授权传输资源的周期采用时隙个数表示。
可选地,侧行配置授权传输资源对应的时域信息是侧行配置授权传输资源在资源池中的时隙索引。
可选地,图15是根据本发明其中一可选实施例的信息处理装置的结构框图,如图15所示,上述装置还包括:第一传输模块106,用于在侧行配置授权资源上传输第一侧行数据,其中,第一侧行数据对应第一混合自动重传请求进程号。
可选地,如图15所示,上述装置还包括:第二接收模块108,用于接收来自于网络侧设备的下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带有第一混合自动重传请求进程号;第一重传模块110,用于在下行链路控制信息调度的侧行传输资源上重传第一侧行数据。
可选地,如图15所示,上述装置还包括:第二传输模块112,用于基于第一混合自动重传请求进程号与第二混合自动重传请求进程号之间的映射关系,在侧行配置授权传输资源上传输第二侧行数据,其中,第二侧行数据对应第二混合自动重传请求进程号。
可选地,如图15所示,上述装置还包括:第三接收模块114,用于接收来自于网络侧设备的下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带有第一混合自动重传请求进程号;第二重传模块116,用于在下行链路控制信息调度的侧行传输资源上重传第二侧行数据。
在本实施例中还提供了另一种信息处理装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下 实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图16是根据本发明其中一实施例的另一种信息处理装置的结构框图,如图16所示,该装置包括:处理模块200,用于确定第一配置信息,其中,第一配置信息用于配置侧行配置授权传输资源,侧行配置授权传输资源是位于资源池中的传输资源;第一确定模块202,用于基于第一配置信息确定侧行配置授权传输资源对应的时域信息;第二确定模块204,用于根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号。
可选地,第二确定模块204,用于基于第一配置信息确定周期参数,其中,周期参数为侧行配置授权传输资源的周期;以及根据侧行配置授权传输资源对应的时域信息和周期参数确定第一混合自动重传请求进程号。
可选地,侧行配置授权传输资源的周期采用时隙个数表示。
可选地,侧行配置授权传输资源对应的时域信息是侧行配置授权传输资源在资源池中的时隙索引。
可选地,第一确定模块202,用于基于第一配置信息在上行传输资源上接收终端发送的上行控制信道,其中,上行传输资源和侧行配置授权传输资源属于相同的侧行配置授权周期,上行控制信道用于终端上报侧行反馈信息;以及根据上行传输资源的时域信息确定侧行配置授权传输资源对应的时域信息。
可选地,图17是根据本发明其中一可选实施例的另一种信息处理装置的结构框图,如图17所示,上述装置还包括:第三确定模块206,用于确定以下参数中的至少一个:第一参数和第二参数;其中,第一参数用于确定上行传输资源和侧行反馈信道传输资源之间的时间间隔,第二参数用于确定侧行反馈信道传输资源和侧行配置授权传输资源之间的时间间隔。
可选地,第一确定模块202,还用于根据第一参数和第二参数中至少一个参数,以及上行传输资源的时域信息确定侧行配置授权传输资源对应的时域信息。
可选地,第一配置信息还用于配置上行传输资源与第一参数中至少之一。
可选地,如图17所示,上述装置还包括:第一发送模块208,用于向终端发送第二配置信息,其中,第二配置信息用于配置资源池;第四确定模块210,用于根据第二配置信息确定第二参数。
可选地,如图17所示,上述装置还包括:第二发送模块212,用于当上行控制信道承载非确认信息时,向终端发送下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带第一混合自动重传请求进程号,下行链路控制信息用于调度终端在侧行传输资源上重传第一混合自动重传请求进程号对应的侧行数据。
可选地,如图17所示,上述装置还包括:第三发送模块214,用于向终端发送第一配置信息,其中,第一配置信息还用于终端确定侧行配置授权传输资源对应的时域信息并根据侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号。
在本实施例中还提供了又一种信息处理装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图18是根据本发明其中一实施例的又一种信息处理装置的结构框图,如图18所示,该装置包括:第一确定模块300,用于确定第一配置信息,其中,第一配置信息用于配置上行传输资源;第二确定模块302,用于基于第一配置信息确定上行传输资源对应的时域信息;处理模块304,用于根据上行传输资源对应的时域信息确定第一混合自动重传请求进程号。
可选地,图19是根据本发明其中一可选实施例的又一种信息处理装置的结构框图,如图19所示,上述装置还包括:第三确定模块306,用于基于第一配置信息确定周期参数,其中,第一配置信息还用于配置侧行配置授权传输资源,侧行配置授权传输资源用于传输侧行数据,周期参数用于确定侧行配置授权传输资源的周期;第四确定模块308,用于根据上行传输资源对应的时域信息和周期参数确定第一混合自动重传请求进程号。其中,该侧行配置授权传输资源和该上行传输资源是关联的,即,在侧行配置授权传输资源上传输的侧行数据,其对应的侧行反馈信息在该上行传输资源上传输给网络侧设备。
可选地,侧行配置授权传输资源对应的时域信息是侧行配置授权传输资源在资源池中的时隙索引。
可选地,周期参数采用时隙个数表示,时隙个数是资源池中的时隙个数或用于资源池的候选时隙的个数。
可选地,如图19所示,上述装置还包括:第一发送模块310,用于向终端发送下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带第一混合自动重传请求进程号,下行链路控制信息用于调度终端设备在侧行传输资源上重传第一混合自动重传请求进程号对应的侧行数据。
可选地,如图19所示,上述装置还包括:第二发送模块312,用于在上行传输资源上检测到否定确认时,向终端发送下行链路控制信息。
可选地,如图19所示,上述装置还包括:第三发送模块314,用于向终端设备发送第一配置信息。
在本实施例中还提供了再一种信息处理装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图20是根据本发明其中一实施例的再一种信息处理装置的结构框图,如图20所示,该装置包括:第一接收模块400,用于接收来自于网络侧设备的配置信息,其中,配置信息用于上行传输资源;第一确定模块402,用于基于配置信息确定上行传输资源对应的时域信息;第二确定模块404,用于根据上行传输资源对应的时域信息确定第一混合自动重传请求进程号。
可选地,配置信息还用于配置侧行配置授权传输资源,侧行配置授权传输资源用于传输侧行数据。
可选地,图21是根据本发明其中一可选实施例的再一种信息处理装置的结构框图,如图21所示,上述装置还包括:第三确定模块406,用于确定以下参数中的至少一个:第一参数和第二参数;其中,第一参数用于确定上行传输资源和侧行反馈信道传输资源之间的时间间隔,第二参数用于确定侧行反馈信道传输资源和侧行配置授权传输资源之间的时间间隔。
可选地,上述装置还包括:第四确定模块408,用于根据第一参数和第二参数中至少一个参数,以及上行传输资源对应的时域信息确定侧行配置授权传输资源对应的时域信息,得到上行传输资源和侧行配置授权传输资源之间的对应关系;根据第一混合自动重传请求进程号,以及上行传输资源和侧行配置授权传输资源之间的对应关系,确定与第一混合自动重传请求进程号对应的侧行配置授权传输资源。
可选地,如图21所示,上述装置还包括:第一传输模块410,用于在侧行配置授权传输资源上传输第一侧行数据,其中,第一侧行数据对应第一混合自动重传请求进程号。
可选地,如图21所示,上述装置还包括:第二接收模块412,用于接收网络侧设备发送的下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带第一混合自动重传请求进程号;第一重传模块414,用于在侧行传输资源上重传第一侧行数据。
可选地,如图21所示,上述装置还包括:第二传输模块416,用于在侧行配置授权传输资源上传输第二侧行数据,其中,第二侧行数据对应第二混合自动重传请求进程号。
可选地,如图21所示,上述装置还包括:第三确定模块418,用于确定第一混合自动重传请求进程号和第二混合自动重传请求进程号之间的映射关系。
可选地,如图21所示,上述装置还包括:第三接收模块420,用于接收网络侧设备发送的下行链路控制信息,其中,下行链路控制信息用于调度侧行传输资源,并且下行链路控制信息中携带第一混合自动重传请求进程号;第二重传模块422,用于基于第一混合自动重传请求进程号与第二混合自动重传请求进程号之间的映射关系,在侧行传输资源上重传第二侧行数据。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
图22是根据本发明其中一实施例的一种通信设备的结构示意图。如图22所示,通信设备包括处理器,处理器可以从存储器中调用并运行计算机程序,以实现本发明实施例中的方法。
可选地,如图22所示,通信设备还可以包括存储器。其中,处理器可以从存储器中调用并运行计算机程序,以实现本发明实施例中的方法。
其中,存储器可以是独立于处理器的一个单独的器件,也可以集成在处理器中。
可选地,如图22所示,通信设备还可以包括收发器,处理器可以控制该收发器与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器可以包括发射机和接收机。收发器还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备具体可为本发明实施例的网络侧设备,并且该通信设备可以实现本发明实施例的各个方法中由网络侧设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备具体可为本发明实施例的移动终端/终端设备,并且该通信设备可以实现本发明实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图23是根据本发明其中一实施例的芯片结构示意图,如图23所示,芯片包括处理器,处理器可以从存储器中调用并运行计算机程序,以实现本发明实施例中的方法。
可选地,如图23所示,芯片还可以包括存储器。其中,处理器可以从存储器中调用并运行计算机程序,以实现本发明实施例中的方法。
其中,存储器可以是独立于处理器的一个单独的器件,也可以集成在处理器中。
可选地,该芯片还可以包括输入接口。其中,处理器可以控制该输入接口与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片还可以包括输出接口。其中,处理器可以控制该输出接口与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本发明实施例中的网络侧设备,并且该芯片可以实现本发明实施例的各个方法中由网络侧设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本发明实施例中的移动终端/终端设备,并且该芯片可以实现本发明实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本发明实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图24是根据本发明其中一实施例的一种通信系统的结构框图,如图24所示,该通信系统包括终端设备和网络侧设备。
其中,该终端设备可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络侧设备可以用于实现上述方法中由网络侧设备实现的相应的功能,为了简洁,在此不再赘述。
应理解,本发明实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本发明实施例中的存储器还可以是静态随机 存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本发明实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本发明实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本发明实施例中的网络侧设备,并且该计算机程序使得计算机执行本发明实施例的各个方法中由网络侧设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本发明实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本发明实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本发明实施例中的网络侧设备,并且该计算机程序指令使得计算机执行本发明实施例的各个方法中由网络侧设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本发明实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本发明实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本发明实施例中的网络侧设备,当该计算机程序在计算机上运行时,使得计算机执行本发明实施例的各个方法中由网络侧设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本发明实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本发明实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络侧设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (80)

  1. 一种信息处理方法,包括:
    接收来自于网络侧设备的配置信息,其中,所述配置信息用于配置侧行配置授权传输资源,所述侧行配置授权传输资源是位于资源池中的传输资源;
    基于所述配置信息确定所述侧行配置授权传输资源对应的时域信息;
    根据所述侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号。
  2. 根据权利要求1所述的方法,其中,根据所述侧行配置授权传输资源对应的时域信息确定所述第一混合自动重传请求进程号包括:
    基于所述配置信息确定周期参数,其中,所述周期参数为所述侧行配置授权传输资源的周期;
    根据所述侧行配置授权传输资源对应的时域信息和所述周期参数确定所述第一混合自动重传请求进程号。
  3. 根据权利要求2所述的方法,其中,所述侧行配置授权传输资源的周期采用时隙个数表示。
  4. 根据权利要求3所述的方法,其中,所述时隙个数表示所述资源池中的时隙个数。
  5. 根据权利要求1所述的方法,其中,所述侧行配置授权传输资源对应的时域信息是所述侧行配置授权传输资源在所述资源池中的时隙索引。
  6. 根据权利要求1所述的方法,其中,所述方法还包括:
    在所述侧行配置授权资源上传输第一侧行数据,其中,所述第一侧行数据对应所述第一混合自动重传请求进程号。
  7. 根据权利要求6所述的方法,其中,所述方法还包括:
    接收来自于所述网络侧设备的下行链路控制信息,其中,所述下行链路控制信息用于调度侧行传输资源,并且所述下行链路控制信息中携带有所述第一混合自动重传请求进程号;
    在所述下行链路控制信息调度的所述侧行传输资源上重传所述第一侧行数据。
  8. 根据权利要求1所述的方法,其中,所述方法还包括:
    基于所述第一混合自动重传请求进程号与第二混合自动重传请求进程号之间的映射关系,在所述侧行配置授权传输资源上传输第二侧行数据,其中,所述第二侧行数据对应所述第二混合自动重传请求进程号。
  9. 根据权利要求8所述的方法,其中,所述方法还包括:
    接收来自于所述网络侧设备的下行链路控制信息,其中,所述下行链路控制信息用于调度侧行传输资源,并且所述下行链路控制信息中携带有所述第一混合自动重传请求进程号;
    在所述下行链路控制信息调度的所述侧行传输资源上重传所述第二侧行数据。
  10. 一种信息处理方法,包括:
    确定第一配置信息,其中,所述第一配置信息用于配置侧行配置授权传输资源,所述侧行配置授权传输资源是位于资源池中的传输资源;
    基于所述第一配置信息确定所述侧行配置授权传输资源对应的时域信息;
    根据所述侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号。
  11. 根据权利要求10所述的方法,其中,根据所述侧行配置授权传输资源对应的时域信息确定所述第一混合自动重传请求进程号包括:
    基于所述第一配置信息确定周期参数,其中,所述周期参数为所述侧行配置授权传输资源的周期;
    根据所述侧行配置授权传输资源对应的时域信息和所述周期参数确定所述第一混合自动重传请求进程号。
  12. 根据权利要求11所述的方法,其中,所述侧行配置授权传输资源的周期采用时隙个数表示。
  13. 根据权利要求12所述的方法,其中,所述时隙个数表示所述资源池中的时隙个数。
  14. 根据权利要求10所述的方法,其中,所述侧行配置授权传输资源对应的时域信息是所述侧行配置授权传输资源在所述资源池中的时隙索引。
  15. 根据权利要求10所述的方法,其中,基于所述第一配置信息确定所述侧行配置授权传输资源对应的时域信息包括:
    基于所述第一配置信息在上行传输资源上接收终端发送的上行控制信道,其中,所述上行传输资源和所述侧行配置授权传输资源属于相同的侧行配置授权周期,所述上行控制信道用于所述终端上报侧行反馈信息;
    根据所述上行传输资源的时域信息确定所述侧行配置授权传输资源对应的时域信息。
  16. 根据权利要求15所述的方法,其中,所述方法还包括:
    确定以下参数中的至少一个:第一参数和第二参数;
    其中,所述第一参数用于确定所述上行传输资源和侧行反馈信道传输资源之间的时间间隔,所述第二参数用于确定所述侧行反馈信道传输资源和所述侧行配置授权传输资源之间的时间间隔。
  17. 根据权利要求16所述的方法,其中,根据所述上行传输资源的时域信息确定所述侧行配置授权传输资源对应的时域信息包括:
    根据所述第一参数和所述第二参数中至少一个参数,以及所述上行传输资源的时域信息确定所述侧行配置授权传输资源对应的时域信息。
  18. 根据权利要求16所述的方法,其中,所述第一配置信息还用于配置所述上行传输资源与所述第一参数中至少之一。
  19. 根据权利要求16所述的方法,其中,所述方法还包括:
    向所述终端发送第二配置信息,其中,所述第二配置信息用于配置所述资源池;
    根据所述第二配置信息确定所述第二参数。
  20. 根据权利要求15所述的方法,其中,所述方法还包括:
    当所述上行控制信道承载非确认信息时,向所述终端发送下行链路控制信息,其中,所述下行链路控制信息用于调度侧行传输资源,并且所述下行链路控制信息中携带所述第一混合自动重传请求进程号,所述下行链路控制信息用于调度所述终端在所述侧行传输资源上重传所述第一混合自动重传请求进程号对应的侧行数据。
  21. 根据权利要求10所述的方法,其中,所述方法还包括:
    向终端发送所述第一配置信息,其中,所述第一配置信息还用于所述终端确定所述侧行配置授权传输资源对应的时域信息并根据所述侧行配置授权传输资源对应的时域信息确定所述第一混合自动重传请求进程号。
  22. 一种信息处理方法,包括:
    确定第一配置信息,其中,所述第一配置信息用于配置上行传输资源;
    基于所述第一配置信息确定所述上行传输资源对应的时域信息;
    根据所述上行传输资源对应的时域信息确定第一混合自动重传请求进程号。
  23. 根据权利要求22所述的方法,其中,所述方法还包括:
    基于所述第一配置信息确定周期参数,其中,所述第一配置信息还用于配置侧行配置授权传输资源,所述侧行配置授权传输资源用于传输侧行数据,所述周期参数用于确定所述侧行配置授权传输资源的周期;
    根据所述上行传输资源对应的时域信息和所述周期参数确定所述第一混合自动重传请求进程号。
  24. 根据权利要求23所述的方法,其中,所述侧行配置授权传输资源对应的时域信息是所述侧行配置授权传输资源在所述资源池中的时隙索引。
  25. 根据权利要求23至24任一项所述的方法,其中,所述周期参数采用时隙个数表示,所述时隙个数是所述资源池中的时隙个数或用于资源池的候选时隙的个数。
  26. 根据权利要求22至25任一项所述的方法,其中,所述方法还包括:
    向终端发送下行链路控制信息,其中,所述下行链路控制信息用于调度侧行传输资源,并且所述下行链路控制信息中携带所述第一混合自动重传请求进程号,所述下行链路控制信息用于调度所述终端在所述侧行传输资源上重传所述第一混合自动重传请求进程号对应的侧行数据。
  27. 根据权利要求26所述的方法,其中,所述方法还包括:
    在所述上行传输资源上检测到否定确认时,向所述终端发送所述下行链路控制信息。
  28. 根据权利要求26或27所述的方法,其中,所述方法还包括:
    向所述终端发送所述第一配置信息。
  29. 一种信息处理方法,包括:
    接收来自于网络侧设备的配置信息,其中,所述配置信息用于上行传输资源;
    基于所述配置信息确定所述上行传输资源对应的时域信息;
    根据所述上行传输资源对应的时域信息确定第一混合自动重传请求进程号。
  30. 根据权利要求29所述的方法,其中,所述配置信息还用于配置侧行配置授权传输资源,所述侧行配置授权传输资源用于传输侧行数据。
  31. 根据权利要求30所述的方法,其中,所述方法还包括:
    确定以下参数中的至少一个:第一参数和第二参数;
    其中,所述第一参数用于确定所述上行传输资源和侧行反馈信道传输资源之间的时间间隔,所述第二参数用于确定所述侧行反馈信道传输资源和所述侧行配置授权传输资源之间的时间间隔。
  32. 根据权利要求31所述的方法,其中,所述方法还包括:
    根据所述第一参数和所述第二参数中至少一个参数,以及所述上行传输资源对应的时域信息确定所述侧行配置授权传输资源对应的时域信息,得到所述上行传输资源和所述侧行配置授权传输资源之间的对应关系;
    根据所述第一混合自动重传请求进程号,以及所述上行传输资源和所述侧行配置授权传输资源之间的对应关系,确定与所述第一混合自动重传请求进程号对应的所述侧行配置授权传输资源。
  33. 根据权利要求32所述的方法,其中,所述方法还包括:
    在所述侧行配置授权传输资源上传输第一侧行数据,其中,所述第一侧行数据对应所述第一混合自动重传请求进程号。
  34. 根据权利要求33所述的方法,其中,所述方法还包括:
    接收网络侧设备发送的下行链路控制信息,其中,所述下行链路控制信息用于调度侧行传输资源,并且所述下行链路控制信息中携带所述第一混合自动重传请求进程号;
    在所述侧行传输资源上重传所述第一侧行数据。
  35. 根据权利要求32至34任一项所述的方法,其中,所述方法还包括:
    在所述侧行配置授权传输资源上传输第二侧行数据,其中,所述第二侧行数据对应第二混合自动重传请求进程号。
  36. 根据权利要求35所述的方法,其中,所述方法还包括:
    确定所述第一混合自动重传请求进程号和所述第二混合自动重传请求进程号之间的映射关系。
  37. 根据权利要求35或36所述的方法,其中,所述方法还包括:
    接收网络侧设备发送的下行链路控制信息,其中,所述下行链路控制信息用于调度侧行传输资源,并且所述下行链路控制信息中携带所述第一混合自动重传请求进程号;
    基于所述第一混合自动重传请求进程号与第二混合自动重传请求进程号之间的映射关系,在所述侧行传输资源上重传所述第二侧行数据。
  38. 一种信息处理装置,包括:
    第一接收模块,用于接收来自于网络侧设备的配置信息,其中,所述配置信息用于配置侧行配置授权传输资源,所述侧行配置授权传输资源是位于资源池中的传输资源;
    确定模块,用于基于所述配置信息确定所述侧行配置授权传输资源对应的时域信息;
    处理模块,用于根据所述侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号。
  39. 根据权利要求38所述的装置,其中,所述确定模块,用于基于所述配置信息确定周期参数,其中,所述周期参数为所述侧行配置授权传输资源的周期;以及根据所述侧行配置授权传输资源对应的时域信息和所述周期参数确定所述第一混合自动重传请求进程号。
  40. 根据权利要求39所述的装置,其中,所述侧行配置授权传输资源的周期采用时隙个数表示。
  41. 根据权利要求40所述的装置,其中,所述时隙个数表示所述资源池中的时隙个数。
  42. 根据权利要求38所述的装置,其中,所述侧行配置授权传输资源对应的时域信息是所述侧行配置授权传输资源在所述资源池中的时隙索引。
  43. 根据权利要求38所述的装置,其中,所述装置还包括:
    第一传输模块,用于在所述侧行配置授权资源上传输第一侧行数据,其中,所述第一侧行数据对应所述第一混合自动重传请求进程号。
  44. 根据权利要求43所述的装置,其中,所述装置还包括:
    第二接收模块,用于接收来自于所述网络侧设备的下行链路控制信息,其中,所述下行链路控制信息用于调度侧行传输资源,并且所述下行链路控制信息中携带有所述第一混合自动重传请求进程号;
    第一重传模块,用于在所述下行链路控制信息调度的所述侧行传输资源上重传所述第一侧行数据。
  45. 根据权利要求38所述的装置,其中,所述装置还包括:
    第二传输模块,用于基于所述第一混合自动重传请求进程号与第二混合自动重传请求进程号之间的映射关系,在所述侧行配置授权传输资源上传输第二侧行数据,其中,所述第二侧行数据对应所述第二混合自动重传请求进程号。
  46. 根据权利要求45所述的装置,其中,所述装置还包括:
    第三接收模块,用于接收来自于所述网络侧设备的下行链路控制信息,其中,所述下行链路控制信息用于调度侧行传输资源,并且所述下行链路控制信息中携带有所述第一混合自动重传请求进程号;
    第二重传模块,用于在所述下行链路控制信息调度的所述侧行传输资源上重传所述第二侧行数据。
  47. 一种信息处理装置,包括:
    处理模块,用于确定第一配置信息,其中,所述第一配置信息用于配置侧行配置授权传输资源,所述侧行配置授权传输资源是位于资源池中的传输资源;
    第一确定模块,用于基于所述第一配置信息确定所述侧行配置授权传输资源对应的时域信息;
    第二确定模块,用于根据所述侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号。
  48. 根据权利要求47所述的装置,其中,所述第二确定模块,用于基于所述第一配置信息确定周期参数,其中,所述周期参数为所述侧行配置授权传输资源的周期;以及根据所述侧行配置授权传输资源对应的时域信息和所述周期参数确定所述第一混合自动重传请求进程号。
  49. 根据权利要求48所述的装置,其中,所述侧行配置授权传输资源的周期采用时隙个数表示。
  50. 根据权利要求49所述的装置,其中,所述时隙个数表示所述资源池中的时隙个数。
  51. 根据权利要求47所述的装置,其中,所述侧行配置授权传输资源对应的时域信息是所述侧行配置授权传输资源在所述资源池中的时隙索引。
  52. 根据权利要求47所述的装置,其中,所述第一确定模块,用于基于所述第一配置信息在上行传输资源上接收终端发送的上行控制信道,其中,所述上行传输资源和所述侧行配置授权传输资源属于相同的侧行配置授权周期,所述上行控制信道用于所述终端上报侧行反馈信息;以及根据所述上行传输资源的时域信息确定所述侧行配置授权传输资源对应的时域信息。
  53. 根据权利要求52所述的装置,其中,所述装置还包括:
    第三确定模块,用于确定以下参数中的至少一个:第一参数和第二参数;
    其中,所述第一参数用于确定所述上行传输资源和侧行反馈信道传输资源之间的时间间隔,所述第二参数用于确定所述侧行反馈信道传输资源和所述侧行配置授权传输资源之间的时间间隔。
  54. 根据权利要求53所述的装置,其中,所述第一确定模块,还用于根据所述第一参数和所述第二参数中至少一个参数,以及所述上行传输资源的时域信息确定所述侧行配置授权传输资源对应的时域信息。
  55. 根据权利要求53所述的装置,其中,所述第一配置信息还用于配置所述上行传输资源与所述第一参数中至少之一。
  56. 根据权利要求53所述的装置,其中,所述装置还包括:
    第一发送模块,用于向所述终端发送第二配置信息,其中,所述第二配置信息用于配置所述资源池;
    第四确定模块,用于根据所述第二配置信息确定所述第二参数。
  57. 根据权利要求52所述的装置,其中,所述装置还包括:
    第二发送模块,用于当所述上行控制信道承载非确认信息时,向所述终端发送下行链路控制信息,其中,所述下行链路控制信息用于调度侧行传输资源,并且所述下行链路控制信息中携带所述第一混合自动重传请求进程号,所述下行链路控制信息用于调度所述终端在所述侧行传输资源上重传所述第一混合自动重传请求进程号对应的侧行数据。
  58. 根据权利要求47所述的装置,其中,所述装置还包括:
    第三发送模块,用于向终端发送所述第一配置信息,其中,所述第一配置信息还用于所述终端确定所述侧行配置授权传输资源对应的时域信息并根据所述侧行配置授权传输资源对应的时域信息确定第一混合自动重传请求进程号。
  59. 一种信息处理装置,包括:
    第一确定模块,用于确定第一配置信息,其中,所述第一配置信息用于配置上行传输资源;
    第二确定模块,用于基于所述第一配置信息确定所述上行传输资源对应的时域信息;
    处理模块,用于根据所述上行传输资源对应的时域信息确定第一混合自动重传请求进程号。
  60. 根据权利要求59所述的装置,其中,所述装置还包括:
    第三确定模块,用于基于所述第一配置信息确定周期参数,其中,所述第一配置信息还用于配置侧行配置授权传输资源,所述侧行配置授权传输资源用于传输侧行数据,所述周期参数用于确定所述侧行配置授权传输资源的周期;
    第四确定模块,用于根据所述上行传输资源对应的时域信息和所述周期参数确定所述第一混合自动重传请求进程号。
  61. 根据权利要求60所述的装置,其中,所述侧行配置授权传输资源对应的时域信息是所述侧行配置授权传输资源在所述资源池中的时隙索引。
  62. 根据权利要求60至61任一项所述的装置,其中,所述周期参数采用时隙个数表示,所述时隙个数是所述资源池中的时隙个数或用于资源池的候选时隙的个数。
  63. 根据权利要求59至62任一项所述的装置,其中,所述装置还包括:
    第一发送模块,用于向终端发送下行链路控制信息,其中,所述下行链路控制信息用于调度侧行传输资源,并且所述下行链路控制信息中携带所述第一混合自动重传请求进程号,所述下行链路控制信息用于调度终端设备在所述侧行传输资源上重传所述第一混合自动重传请求进程号对应的侧行数据。
  64. 根据权利要求63所述的装置,其中,所述装置还包括:
    第二发送模块,用于在所述上行传输资源上检测到否定确认时,向所述终端发送所述下行链路控制信息。
  65. 根据权利要求63或64所述的装置,其中,所述装置还包括:
    第三发送模块,用于向所述终端设备发送所述第一配置信息。
  66. 一种信息处理装置,包括:
    第一接收模块,用于接收来自于网络侧设备的配置信息,其中,所述配置信息用于上行传输资源;
    第一确定模块,用于基于所述配置信息确定所述上行传输资源对应的时域信息;
    第二确定模块,用于根据所述上行传输资源对应的时域信息确定第一混合自动重传请求进程号。
  67. 根据权利要求66所述的装置,其中,所述配置信息还用于配置侧行配置授权传输资源,所述侧行配置授权传输资源用于传输侧行数据。
  68. 根据权利要求67所述的装置,其中,所述装置还包括:
    第三确定模块,用于确定以下参数中的至少一个:第一参数和第二参数;
    其中,所述第一参数用于确定所述上行传输资源和侧行反馈信道传输资源之间的时间间隔,所述第二参数用于确定所述侧行反馈信道传输资源和所述侧行配置授权传输资源之间的时间间隔。
  69. 根据权利要求68所述的装置,其中,所述装置还包括:
    第四确定模块,用于根据所述第一参数和所述第二参数中至少一个参数,以及所述上行传输资源对应的时域信息确定所述侧行配置授权传输资源对应的时域信息,得到所述上行传输资源和所述侧行配置授权传输资源之间的对应关系;根据所述第一混合自动重传请求进程号,以及所述上行传输资源和所述侧行配置授权传输资源之间的对应关系,确定与所述第一混合自动重传请求进程号对应的所述侧行配置授权传输资源。
  70. 根据权利要求69所述的装置,其中,所述装置还包括:
    第一传输模块,用于在所述侧行配置授权传输资源上传输第一侧行数据,其中,所述第一侧行数据对应所述第一混合自动重传请求进程号。
  71. 根据权利要求70所述的装置,其中,所述装置还包括:
    第二接收模块,用于接收网络侧设备发送的下行链路控制信息,其中,所述下行链路控制信息用于调度侧行传输资源,并且所述下行链路控制信息中携带所述第一混合自动重传请求进程号;
    第一重传模块,用于在所述侧行传输资源上重传所述第一侧行数据。
  72. 根据权利要求69至71任一项所述的装置,其中,所述装置还包括:
    第二传输模块,用于在所述侧行配置授权传输资源上传输第二侧行数据,其中,所述第二侧行数据对应第二混合自动重传请求进程号。
  73. 根据权利要求72所述的装置,其中,所述装置还包括:
    第三确定模块,用于确定所述第一混合自动重传请求进程号和所述第二混合自动重传请求进程号之间的映射关系。
  74. 根据权利要求72或73所述的装置,其中,所述装置还包括:
    第三接收模块,用于接收网络侧设备发送的下行链路控制信息,其中,所述下行链路控制信息用于调度侧行传输资源,并且所述下行链路控制信息中携带所述第一混合自动重传请求进程号;
    第二重传模块,用于基于所述第一混合自动重传请求进程号与第二混合自动重传请求进程号之间的映射关系,在所述侧行传输资源上重传所述第二侧行数据。
  75. 一种存储介质,所述存储介质中存储有计算机程序,其中,所述计算机程序被设置为运行时执行所述权利要求1至9任一项中所述的信息处理方法或权利要求10至21任一项中所述的信息处理 方法或权利要求22至30任一项中所述的信息处理方法或权利要求31至37任一项中所述的信息处理方法。
  76. 一种处理器,所述处理器用于运行程序,其中,所述程序被设置为运行时执行所述权利要求1至9任一项中所述的信息处理方法或权利要求10至21任一项中所述的信息处理方法或权利要求22至30任一项中所述的信息处理方法或权利要求31至37任一项中所述的信息处理方法。
  77. 一种电子装置,包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器被设置为运行所述计算机程序以执行所述权利要求1至9任一项中所述的信息处理方法或权利要求10至21任一项中所述的信息处理方法或权利要求22至30任一项中所述的信息处理方法或权利要求31至37任一项中所述的信息处理方法。
  78. 一种芯片,其特征在于,包括:处理器,设置为从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行所述权利要求1至9任一项中所述的信息处理方法或权利要求10至21任一项中所述的信息处理方法或权利要求22至30任一项中所述的信息处理方法或权利要求31至37任一项中所述的信息处理方法。
  79. 一种计算机程序产品,其特征在于,包括计算机程序指令,该计算机程序指令使得计算机执行所述权利要求1至9任一项中所述的信息处理方法或权利要求10至21任一项中所述的信息处理方法或权利要求22至30任一项中所述的信息处理方法或权利要求31至37任一项中所述的信息处理方法。
  80. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行所述权利要求1至9任一项中所述的信息处理方法或权利要求10至21任一项中所述的信息处理方法或权利要求22至30任一项中所述的信息处理方法或权利要求31至37任一项中所述的信息处理方法。
PCT/CN2020/079061 2020-02-14 2020-03-12 信息处理方法、装置、存储介质、处理器及电子装置 WO2021159573A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2022549077A JP2023513595A (ja) 2020-02-14 2020-05-14 情報処理方法、装置、記憶媒体、プロセッサ、及び電子デバイス
BR112022016055A BR112022016055A2 (pt) 2020-02-14 2020-05-14 Método de processamento de informações e aparelho de processamento de informações
CN202310194593.9A CN116456484A (zh) 2020-02-14 2020-05-14 信息处理方法、装置、存储介质、处理器及电子装置
CN202080093789.3A CN114982340A (zh) 2020-02-14 2020-05-14 信息处理方法、装置、存储介质、处理器及电子装置
PCT/CN2020/090368 WO2021159624A1 (zh) 2020-02-14 2020-05-14 信息处理方法、装置、存储介质、处理器及电子装置
EP20918476.1A EP4093114A4 (en) 2020-02-14 2020-05-14 INFORMATION PROCESSING METHOD AND APPARATUS, STORAGE MEDIA, PROCESSOR AND ELECTRONIC DEVICE
KR1020227030430A KR20220140765A (ko) 2020-02-14 2020-05-14 정보 처리 방법, 장치, 저장 매체, 프로세서 및 전자 장치
US17/819,252 US20220393802A1 (en) 2020-02-14 2022-08-11 Information processing method and apparatus, storage medium, processor and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/075431 WO2021159533A1 (zh) 2020-02-14 2020-02-14 信息处理方法、装置、存储介质、处理器及电子装置
CNPCT/CN2020/075431 2020-02-14

Publications (1)

Publication Number Publication Date
WO2021159573A1 true WO2021159573A1 (zh) 2021-08-19

Family

ID=77291966

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/075431 WO2021159533A1 (zh) 2020-02-14 2020-02-14 信息处理方法、装置、存储介质、处理器及电子装置
PCT/CN2020/079061 WO2021159573A1 (zh) 2020-02-14 2020-03-12 信息处理方法、装置、存储介质、处理器及电子装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075431 WO2021159533A1 (zh) 2020-02-14 2020-02-14 信息处理方法、装置、存储介质、处理器及电子装置

Country Status (1)

Country Link
WO (2) WO2021159533A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105991247A (zh) * 2015-02-16 2016-10-05 中兴通讯股份有限公司 一种设备到设备发送、接收、调度方法和相应装置
CN107277856A (zh) * 2017-05-05 2017-10-20 电信科学技术研究院 一种配置、触发缓冲区状态上报的方法及装置
CN109392099A (zh) * 2017-08-03 2019-02-26 维沃移动通信有限公司 Urllc中上行免授权传输的方法、用户侧设备和网络侧设备
CN109691210A (zh) * 2017-10-30 2019-04-26 Oppo广东移动通信有限公司 用于资源分配的方法、网络设备和终端设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108923894B (zh) * 2017-03-23 2023-04-18 中兴通讯股份有限公司 一种信息传输的方法、用户设备、基站、存储介质和系统
CN109150419B (zh) * 2017-06-16 2021-09-07 华为技术有限公司 一种通信方法及其装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105991247A (zh) * 2015-02-16 2016-10-05 中兴通讯股份有限公司 一种设备到设备发送、接收、调度方法和相应装置
CN107277856A (zh) * 2017-05-05 2017-10-20 电信科学技术研究院 一种配置、触发缓冲区状态上报的方法及装置
CN109392099A (zh) * 2017-08-03 2019-02-26 维沃移动通信有限公司 Urllc中上行免授权传输的方法、用户侧设备和网络侧设备
CN109691210A (zh) * 2017-10-30 2019-04-26 Oppo广东移动通信有限公司 用于资源分配的方法、网络设备和终端设备

Also Published As

Publication number Publication date
WO2021159533A1 (zh) 2021-08-19

Similar Documents

Publication Publication Date Title
WO2021008056A1 (zh) 用于传输侧行数据的方法、终端设备和网络设备
CN113316906A (zh) 传输信息的方法、终端设备和网络设备
WO2021142846A1 (zh) 通信方法、设备及存储介质
US20220393802A1 (en) Information processing method and apparatus, storage medium, processor and electronic device
WO2020191636A1 (zh) 通信方法、终端设备和网络设备
WO2021012167A1 (zh) 一种资源处理方法、设备及存储介质
WO2020252708A1 (zh) 无线通信方法、终端设备和网络设备
WO2021062866A1 (zh) 无线通信方法和终端设备
WO2020143062A1 (zh) 无线通信方法和终端
WO2021147076A1 (zh) Harq-ack码本的反馈方法、装置、设备及存储介质
CN114846829A (zh) 信息发送方法、信息接收方法、装置、设备及存储介质
WO2020103028A1 (zh) 一种传输数据的方法和终端设备
JPWO2021008056A5 (zh)
WO2021159573A1 (zh) 信息处理方法、装置、存储介质、处理器及电子装置
WO2021068301A1 (zh) 清空缓存的方法及缓存的处理方法、装置、终端设备
WO2020029558A1 (zh) 反馈信息的方法、终端、芯片和存储介质
WO2020215218A1 (zh) 用于传输侧行数据的方法和终端设备
RU2805170C1 (ru) Способ и устройство для обработки информации, носитель данных, процессор и электронное устройство
WO2021155497A1 (zh) 侧行传输资源配置方法与系统、设备及存储介质
WO2023010579A1 (zh) 一种harq-ack码本的反馈方法及装置、通信设备
WO2021155523A1 (zh) 一种解调参考信号配置方法、接收方法及设备
WO2020155183A1 (zh) 无线通信方法、网络设备和终端设备
WO2021092949A1 (zh) 无线通信的方法和终端设备
CN117377099A (zh) 无线通信方法和终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919248

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919248

Country of ref document: EP

Kind code of ref document: A1