WO2021159538A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021159538A1
WO2021159538A1 PCT/CN2020/075438 CN2020075438W WO2021159538A1 WO 2021159538 A1 WO2021159538 A1 WO 2021159538A1 CN 2020075438 W CN2020075438 W CN 2020075438W WO 2021159538 A1 WO2021159538 A1 WO 2021159538A1
Authority
WO
WIPO (PCT)
Prior art keywords
level sci
pssch
sci
level
encoded
Prior art date
Application number
PCT/CN2020/075438
Other languages
English (en)
French (fr)
Inventor
黄海宁
黎超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN202080094808.4A priority Critical patent/CN115004810A/zh
Priority to PCT/CN2020/075438 priority patent/WO2021159538A1/zh
Publication of WO2021159538A1 publication Critical patent/WO2021159538A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the embodiments of the present invention relate to the field of communication technology, and in particular to a communication method and device.
  • Uu is the uplink or downlink between the terminal device and the network device.
  • the physical uplink shared channel (PUSCH) carries uplink control information (uplink).
  • UCI control information
  • UL-SCH uplink shared channel
  • the terminal device can multiplex UCI on the PSSCH for transmission. Specifically, UCI determines the number of encoded bits through rate matching. Then it is multiplexed with UL-SCH and mapped to PUSCH. The number of resource elements (RE) used in rate matching is determined based on data.
  • the second-level sidelink control information (SCI) is used for the sidelink (SL)-shared channel (SCH).
  • the same method as NR Uu can be used to determine the number of REs used.
  • the correlation between the data and the second-level SCI is small, the number of REs in the second-level SCI determined by the data is large, which increases the code rate of the PSSCH and reduces the reliability of information transmission. .
  • the embodiment of the present invention discloses a communication method and device, which are used to improve the reliability of information transmission.
  • the first aspect discloses a communication method.
  • the number of modulation symbols after the second-level SCI encoding is determined according to the configuration parameters of the resource pool, and the second-level SCI after the encoding is determined according to the number of modulation symbols after the second-level SCI encoding.
  • the PSSCH sends the first information to the terminal device, and the first information may include the coded second-level SCI. It can be seen that when determining the number of modulation symbols encoded by the second-level SCI, it is determined according to the configuration parameters of the resource pool.
  • the configuration parameters of the resource pool have a large correlation with the second-level SCI, it can be It is ensured that the number of modulation symbols after the determined second-level SCI coding will not be too large, and the code rate of the second-level SCI and the code rate of the PSSCH can be guaranteed, thereby improving the reliability of information transmission.
  • the configuration parameters of the resource pool may include the format of the physical layer sidelink control channel (PSCCH) corresponding to the resource pool, and the cyclic redundancy check (cyclic redundancy check) of the first-level SCI. redundancy check, CRC), the number of candidate physical resource blocks (PRB) of the PSCCH supported by the resource pool, and the number of time-domain symbols of the PSCCH.
  • CRC cyclic redundancy check
  • PRB physical resource blocks
  • the first-level SCI can be determined according to the format, the CRC of the first-level SCI, the number of candidate PRBs, and the number of time-domain symbols.
  • the code rate of the second-level SCI is then determined according to the code rate of the first-level SCI to determine the number of modulation symbols encoded by the second-level SCI. It can be seen that when determining the number of modulation symbols after the second-level SCI coding, it is determined according to the code rate of the first-level SCI. Because the correlation between the first-level SCI and the second-level SCI is relatively large, therefore, It not only meets the decoding performance of the second-level SCI, but also can ensure that the number of modulation symbols after the second-level SCI encoding will not be too large, and can ensure the code rate of the second-level SCI and the code rate of the PSSCH, thus Can improve the reliability of information transmission.
  • the first-level SCI when the code rate of the first-level SCI is determined according to the format, the CRC of the first-level SCI, the number of candidate PRBs, and the number of time-domain symbols, the first-level SCI can be determined according to the format.
  • the number of SCI bits is determined according to the number of candidate PRBs and the number of time-domain symbols.
  • the number of bits after the first level of SCI encoding is determined according to the number of bits of the first level of SCI, the number of bits of the CRC of the first level of SCI, and the The number of bits after the first-level SCI encoding determines the code rate of the first-level SCI.
  • the number of bits after the first-level SCI encoding when determining the number of bits after the first-level SCI encoding according to the number of candidate PRBs and the number of time-domain symbols, it can be determined according to the number of candidate PRBs and the number of time-domain symbols
  • the number of modulation symbols after the first level of SCI encoding is determined according to the number of modulation symbols after the first level of SCI encoding and the modulation order of the first level of SCI to determine the number of bits after the first level of SCI encoding.
  • the code rate of the first-level SCI, the number of bits of the second-level SCI, and the second-level SCI can be used to determine the number of modulation symbols.
  • the number of bits of the CRC of the level SCI determines the number of modulation symbols after the second level SCI encoding.
  • the code rate of the first-level SCI, the number of bits of the second-level SCI, and The number of bits of the CRC of the second level SCI and the first parameter determine the number of modulation symbols after the second level SCI encoding.
  • the second-level SCI encoding when determining the encoded second-level SCI according to the number of modulation symbols after the second-level SCI encoding, can be determined first according to the number of modulation symbols after the second-level SCI encoding After the number of bits, the second-level SCI after encoding is determined according to the number of bits after the second-level SCI encoding.
  • the second-level SCI after coding is the second-level SCI after channel coding processing.
  • the first information can be mapped to the transmission resources of the PSSCH according to the first rule, and the encoded second-level SCI is mapped from the first one that carries the corresponding demodulation reference signal (demodulation reference signal) during time domain mapping.
  • Reference signal, DMRS demodulation reference signal
  • the first rule may be that when the scheduling bandwidth of the PSSCH is greater than the number of candidate PRBs, the first PSSCH symbol carrying the corresponding DMRS is the first DMRS symbol determined according to the PSSCH DMRS table In the case that the scheduling bandwidth of the PSSCH is equal to the number of candidate PRBs, the first PSSCH symbol carrying the corresponding DMRS is the second DMRS symbol determined according to the PSSCH DMRS table.
  • the first rule may also be that the scheduling bandwidth of the PSSCH is not equal to the number of candidate PRBs.
  • the first rule may also be that when the subchannel size of the resource pool is equal to the number of candidate PRBs, the scheduling bandwidth of the PSSCH is not less than the first threshold PRB.
  • the first rule may also be that the bandwidth of the PSSCH carrying the DMRS is not less than the third threshold PRB.
  • the scheduling bandwidth of the PSSCH is equal to the number of candidate PRBs
  • the first PSSCH symbol carrying the corresponding DMRS is defined.
  • the scheduling bandwidth of PSSCH is not equal to the number of candidate PRBs, which can avoid the problem of unclear definition of the first PSSCH symbol carrying DMRS when PSCCH and PSSCH are not frequency-division multiplexed.
  • the first information may also include the encoded first data. If the second rule is met, the first PSSCH symbol after the last symbol of the PSCCH may be mapped to the first PSSCH symbol after the encoding. One data. The performance of the PSSCH can be guaranteed, and the probability of successful decoding of the PSSCH can be improved, thereby improving the transmission reliability of the PSSCH.
  • the second rule may be that the PSCCH and the PSSCH are frequency division multiplexed (FDM), and/or the bandwidth of the PSSCH is less than the fourth threshold number of PRBs.
  • FDM frequency division multiplexed
  • the second rule may be that the subchannel size of the resource pool is smaller than the second threshold.
  • the number of modulation symbols after the second-level SCI encoding does not exceed the fifth threshold.
  • a communication method is disclosed.
  • the first information including the encoded second-level SCI is received from the terminal device through the PSSCH, and the number of second-level SCI-encoded modulation symbols is determined according to the configuration parameters of the resource pool.
  • the coded second-level SCI is decoded by the number of modulation symbols after the second-level SCI encoding to obtain the second-level SCI. It can be seen that when determining the number of modulation symbols encoded by the second-level SCI, it is determined according to the configuration parameters of the resource pool.
  • the configuration parameters of the resource pool have a large correlation with the second-level SCI, it can be It is ensured that the number of modulation symbols after the determined second-level SCI coding will not be too large, and the code rate of the second-level SCI and the code rate of the PSSCH can be guaranteed, thereby improving the reliability of information transmission.
  • the configuration parameters of the resource pool include the format of the PSCCH corresponding to the resource pool, the CRC of the first level SCI, the number of PSCCH candidate PRBs supported by the resource pool, and the number of time-domain symbols of the PSCCH.
  • the first-level can be determined according to the format, the CRC of the first-level SCI, the number of candidate PRBs, and the number of time-domain symbols.
  • the code rate of the SCI, and then the number of modulation symbols after the second level SCI encoding is determined according to the code rate of the first level SCI.
  • the first-level SCI when the code rate of the first-level SCI is determined according to the format, the CRC of the first-level SCI, the number of candidate PRBs, and the number of time-domain symbols, the first-level SCI can be determined according to the format.
  • the number of SCI bits is determined according to the number of candidate PRBs and the number of time-domain symbols.
  • the number of bits after the first level of SCI encoding is determined according to the number of bits of the first level of SCI, the number of bits of the CRC of the first level of SCI, and the The number of bits after the first-level SCI encoding determines the code rate of the first-level SCI.
  • the number of bits after the first-level SCI encoding when determining the number of bits after the first-level SCI encoding according to the number of candidate PRBs and the number of time-domain symbols, it can be determined according to the number of candidate PRBs and the number of time-domain symbols
  • the number of modulation symbols after the first level of SCI encoding is determined according to the number of modulation symbols after the first level of SCI encoding and the modulation order of the first level of SCI to determine the number of bits after the first level of SCI encoding.
  • the code rate of the first-level SCI, the number of bits of the second-level SCI, and the second-level SCI can be used to determine the number of modulation symbols.
  • the number of bits of the CRC of the level SCI determines the number of modulation symbols after the second level SCI encoding.
  • the code rate of the first-level SCI, the number of bits of the second-level SCI, and the second-level SCI can be used to determine the number of modulation symbols.
  • the number of bits of the CRC of the level SCI and the first parameter determine the number of modulation symbols after the second level of SCI encoding.
  • the number of modulation symbols after the second-level SCI encoding can be used first.
  • the number determines the number of bits after the second-level SCI encoding, and then decodes the encoded second-level SCI according to the number of bits after the second-level SCI encoding to obtain the second-level SCI.
  • the second-level SCI after coding is the second-level SCI after channel coding processing.
  • the first information can be demapped from the transmission resources of the PSSCH according to the first rule, and the encoded second-level SCI starts from the first PSSCH symbol that carries the corresponding DMRS when demapping in the time domain. Unmapped.
  • the first rule when the scheduling bandwidth of the PSSCH is greater than the number of candidate PRBs, the first PSSCH symbol that carries the corresponding DMRS is the first DMRS determined according to the PSSCH DMRS table Symbol, when the scheduling bandwidth of the PSSCH is equal to the number of candidate PRBs, the first PSSCH symbol carrying the corresponding DMRS is the second DMRS symbol determined according to the PSSCH DMRS table; it can also be that the scheduling bandwidth of the PSSCH is not equal to this The number of candidate PRBs; it can also be that when the subchannel size of the resource pool is equal to the number of candidate PRBs, the scheduling bandwidth of the PSSCH is not less than the first threshold PRB.
  • the bandwidth of the PSSCH carrying the DMRS is not less than the third threshold PRB.
  • the scheduling bandwidth of the PSSCH is equal to the number of candidate PRBs
  • the first PSSCH symbol carrying the corresponding DMRS is defined.
  • the scheduling bandwidth of PSSCH is not equal to the number of candidate PRBs, which can avoid the problem of unclear definition of the first PSSCH symbol carrying DMRS when PSCCH and PSSCH are not frequency-division multiplexed.
  • the first information may also include the encoded first data. If the second rule is met, the encoded data may be demapped from the first PSSCH symbol after the last symbol of the PSCCH. The first data. The performance of the PSSCH can be guaranteed, and the probability of successful decoding of the PSSCH can be improved, thereby improving the transmission reliability of the PSSCH.
  • the second rule may be that the PSCCH and the PSSCH are frequency division multiplexed (FDM), and/or the bandwidth of the PSSCH is less than the fourth threshold number of PRBs.
  • FDM frequency division multiplexed
  • the second rule may be that the subchannel size of the resource pool is smaller than the second threshold.
  • the number of modulation symbols after the second-level SCI encoding does not exceed the fifth threshold.
  • a communication method is disclosed.
  • the value of the second parameter is obtained according to the information of the first data, the number of modulation symbols after the second level SCI encoding is determined according to the value of the second parameter, and the modulation symbol after the second level SCI encoding is determined according to the second level SCI encoding.
  • the number of symbols determines the encoded second-level SCI, and sends the first information to the terminal device through the PSSCH.
  • the first information includes the encoded first data, the encoded second-level SCI, and the value of the second parameter. Instructions. It can be seen that when determining the number of modulation symbols after the second-level SCI encoding, it is determined according to the value of the second parameter.
  • the value of the second parameter can be appropriately used to ensure the performance of the second-level SCI while ensuring the first
  • the number of modulation symbols after the secondary SCI encoding will not be too large, which can ensure the code rate of the PSSCH, thereby improving the reliability of information transmission.
  • the number of modulation symbols encoded by the second-level SCI according to the value of the second parameter it can be based on the number of bits of the first data, the number of bits of the second-level SCI, and the PSSCH that can be used to carry The number of REs of the second-level SCI and the value of the second parameter determine the number of modulation symbols after the second-level SCI encoding.
  • the second-level SCI encoding when determining the encoded second-level SCI according to the number of modulation symbols after the second-level SCI encoding, can be determined first according to the number of modulation symbols after the second-level SCI encoding After the number of bits, the second-level SCI after encoding is determined according to the number of bits after the second-level SCI encoding.
  • the information of the first data may include the modulation order and code rate of the first data.
  • the first information can be mapped to PSSCH transmission resources according to the first rule, and the encoded second-level SCI is mapped from the first PSSCH symbol carrying the corresponding DMRS in the time domain mapping. of.
  • the first rule may be that when the scheduling bandwidth of the PSSCH is greater than the number of PSCCH candidate PRBs supported by the resource pool, the first PSSCH symbol carrying the corresponding DMRS is determined according to the PSSCH DMRS table For the first DMRS symbol, when the scheduling bandwidth of the PSSCH is equal to the number of PSCCH candidate PRBs supported by the resource pool, the first PSSCH symbol carrying the corresponding DMRS is the second DMRS symbol determined according to the PSSCH DMRS table.
  • the first rule may also be that the scheduling bandwidth of the PSSCH is not equal to the number of PSCCH candidate PRBs supported by the resource pool.
  • the first rule may also be that when the subchannel size of the resource pool is equal to the number of PSCCH candidate PRBs supported by the resource pool, the scheduling bandwidth of the PSSCH is not less than the first threshold PRB.
  • the first rule may also be that the bandwidth of the PSSCH carrying the DMRS is not less than the third threshold PRB.
  • the scheduling bandwidth of the PSSCH is equal to the number of candidate PRBs, the first PSSCH symbol carrying the corresponding DMRS is defined.
  • the scheduling bandwidth of PSSCH is not equal to the number of candidate PRBs, which can avoid the problem of unclear definition of the first PSSCH symbol carrying DMRS when PSCCH and PSSCH are not frequency-division multiplexed.
  • the first PSSCH symbol after the last symbol of the PSCCH can be mapped to the first data after encoding.
  • the performance of the PSSCH can be guaranteed, and the probability of successful decoding of the PSSCH can be improved, thereby improving the transmission reliability of the PSSCH.
  • the second rule may be that the PSCCH and the PSSCH are frequency division multiplexed (FDM), and/or the bandwidth of the PSSCH is less than the fourth threshold number of PRBs.
  • FDM frequency division multiplexed
  • the second rule may be that the subchannel size of the resource pool is smaller than the second threshold.
  • the number of modulation symbols after the second-level SCI encoding does not exceed the fifth threshold.
  • the value of the second parameter is determined according to the configuration parameter of the resource pool, the number of bits of the second SCI, and the number of bits of the CRC of the second level SCI.
  • a fourth aspect discloses a communication method that receives first information including an encoded second-level SCI and indication information for indicating the value of the second parameter from a terminal device through the PSSCH, and obtains the value of the second parameter according to the indication information , Determine the number of modulation symbols encoded by the second-level SCI according to the value of the second parameter, and decode the encoded second-level SCI according to the number of modulation symbols after the second-level SCI encoding to obtain the second-level SCI. It can be seen that when determining the number of modulation symbols after the second-level SCI encoding, it is determined according to the value of the second parameter.
  • the value of the second parameter can be appropriately used to ensure the performance of the second-level SCI while ensuring the first
  • the number of modulation symbols after the secondary SCI encoding will not be too large, which can ensure the code rate of the PSSCH, thereby improving the reliability of information transmission.
  • the number of modulation symbols encoded by the second-level SCI according to the value of the second parameter it can be based on the number of bits of the first data, the number of bits of the second-level SCI, and the PSSCH that can be used to carry The number of REs of the second-level SCI and the value of the second parameter determine the number of modulation symbols after the second-level SCI encoding.
  • the number of modulation symbols after the second-level SCI encoding can be used first.
  • the number determines the number of bits after the second-level SCI encoding, and then decodes the encoded second-level SCI according to the number of bits after the second-level SCI encoding to obtain the second-level SCI.
  • the first information can be demapped from the PSSCH according to the first rule, and the encoded second-level SCI is demapped from the first PSSCH symbol that carries the corresponding DMRS when demapping in the time domain.
  • the first rule may be that when the scheduling bandwidth of the PSSCH is greater than the number of PSCCH candidate PRBs supported by the resource pool, the first PSSCH symbol carrying the corresponding DMRS is determined according to the PSSCH DMRS table For the first DMRS symbol, when the scheduling bandwidth of the PSSCH is equal to the number of PSCCH candidate PRBs supported by the resource pool, the first PSSCH symbol carrying the corresponding DMRS is the second DMRS symbol determined according to the PSSCH DMRS table.
  • the first rule may also be that the scheduling bandwidth of the PSSCH is not equal to the number of PSCCH candidate PRBs supported by the resource pool.
  • the first rule may also be that when the subchannel size of the resource pool is equal to the number of PSCCH candidate PRBs supported by the resource pool, the scheduling bandwidth of the PSSCH is not less than the first threshold PRB.
  • the first rule may also be that the bandwidth of the PSSCH carrying the DMRS is not less than the third threshold PRB.
  • the scheduling bandwidth of the PSSCH is equal to the number of candidate PRBs, the first PSSCH symbol carrying the corresponding DMRS is defined.
  • the scheduling bandwidth of PSSCH is not equal to the number of candidate PRBs, which can avoid the problem of unclear definition of the first PSSCH symbol carrying DMRS when PSCCH and PSSCH are not frequency-division multiplexed.
  • the first information may also include the encoded first data. If the second rule is met, the encoded data may be demapped from the first PSSCH symbol after the last symbol of the PSCCH. The first data.
  • the second rule may be that the PSCCH and the PSSCH are frequency division multiplexed (FDM), and/or the bandwidth of the PSSCH is less than the fourth threshold number of PRBs.
  • FDM frequency division multiplexed
  • the second rule may be that the subchannel size of the resource pool is smaller than the second threshold.
  • the number of modulation symbols after the second-level SCI encoding does not exceed the fifth threshold.
  • the value of the second parameter is determined according to the configuration parameter of the resource pool, the number of bits of the second SCI, and the number of bits of the CRC of the second level SCI.
  • a communication device including:
  • the first determining unit is configured to determine the number of modulation symbols after the second level SCI encoding according to the configuration parameters of the resource pool;
  • the second determining unit is configured to determine the encoded second-level SCI according to the number of modulation symbols after the second-level SCI encoding
  • the sending unit is configured to send first information to the terminal device through the PSSCH, where the first information includes the encoded second-level SCI.
  • the configuration parameters of the resource pool include the format of the PSCCH corresponding to the resource pool, the CRC of the first level SCI, the number of candidate PRBs of the PSCCH supported by the resource pool, and all The number of time-domain symbols of the PSCCH;
  • the first determining unit is specifically configured to:
  • the number of modulation symbols encoded by the second-level SCI is determined according to the code rate of the first-level SCI.
  • the first determining unit determines the first-level SCI according to the format, the CRC of the first-level SCI, the number of candidate PRBs, and the number of time-domain symbols.
  • the bit rate includes:
  • the code rate of the first level SCI is determined according to the number of bits of the first level SCI, the number of bits of the CRC of the first level SCI, and the number of bits encoded by the first level SCI.
  • the first determining unit determining the number of bits after the first-level SCI encoding according to the number of candidate PRBs and the number of time-domain symbols includes:
  • the number of bits after the first-level SCI encoding is determined according to the number of modulation symbols after the first-level SCI encoding and the modulation order of the first-level SCI.
  • the first determining unit determining the number of modulation symbols encoded by the second-level SCI according to the code rate of the first-level SCI includes:
  • the code rate of the first-level SCI the number of bits of the second-level SCI, and the number of bits of the CRC of the second-level SCI, the number of modulation symbols encoded by the second-level SCI is determined.
  • the first determining unit determining the number of modulation symbols encoded by the second-level SCI according to the code rate of the first-level SCI includes:
  • the code rate of the first-level SCI the number of bits of the second-level SCI, the number of bits of the CRC of the second-level SCI, and the first parameter, the number of modulation symbols encoded by the second-level SCI is determined.
  • the second determining unit is specifically configured to:
  • the encoded second-level SCI is determined according to the number of bits after the second-level SCI encoding.
  • the device further includes:
  • the mapping unit is used to map the first information to the transmission resources of the PSSCH according to the first rule, and the encoded second-level SCI is mapped from the first PSSCH symbol carrying the corresponding DMRS in the time domain. Started to map.
  • the first rule is:
  • the first PSSCH symbol carrying the corresponding DMRS is the first DMRS symbol determined according to the PSSCH DMRS table, and the scheduling bandwidth of the PSSCH
  • the first PSSCH symbol carrying the corresponding DMRS is the second DMRS symbol determined according to the PSSCH DMRS table;
  • the scheduling bandwidth of the PSSCH is not equal to the number of candidate PRBs; or
  • the scheduling bandwidth of the PSSCH is not less than a first threshold PRB.
  • the first information further includes encoded first data
  • the mapping unit is further configured to: The first PSSCH symbol after the last symbol of the PSCCH starts to map the encoded first data.
  • a communication device including:
  • the receiving unit is configured to receive first information from the terminal device through the PSSCH, where the first information includes the encoded second-level SCI;
  • a determining unit configured to determine the number of modulation symbols after the second-level SCI encoding according to the configuration parameters of the resource pool;
  • the decoding unit is configured to decode the encoded second-level SCI according to the number of modulation symbols encoded by the second-level SCI to obtain the second-level SCI.
  • the configuration parameters of the resource pool include the format of the PSCCH corresponding to the resource pool, the CRC of the first level SCI, the number of candidate PRBs of the PSCCH supported by the resource pool, and all The number of time-domain symbols of the PSCCH;
  • the determining unit is specifically used for:
  • the number of modulation symbols encoded by the second-level SCI is determined according to the code rate of the first-level SCI.
  • the determining unit determines the code of the first-level SCI according to the format, the CRC of the first-level SCI, the number of candidate PRBs, and the number of time-domain symbols. Rates include:
  • the code rate of the first level SCI is determined according to the number of bits of the first level SCI, the number of bits of the CRC of the first level SCI, and the number of bits encoded by the first level SCI.
  • the determining unit determining the number of bits after the first-level SCI encoding according to the number of candidate PRBs and the number of time-domain symbols includes:
  • the number of bits after the first-level SCI encoding is determined according to the number of modulation symbols after the first-level SCI encoding and the modulation order of the first-level SCI.
  • the determining unit determining the number of modulation symbols encoded by the second-level SCI according to the code rate of the first-level SCI includes:
  • the number of modulation symbols encoded by the second-level SCI is determined according to the code rate of the first-level SCI, the number of bits of the second-level SCI, and the number of bits of the CRC of the second-level SCI.
  • the determining unit determining the number of modulation symbols encoded by the second-level SCI according to the code rate of the first-level SCI includes:
  • the code rate of the first-level SCI determines the number of modulation symbols encoded by the second-level SCI number.
  • the decoding unit is specifically configured to:
  • the encoded second-level SCI is decoded according to the number of bits after the second-level SCI encoding to obtain the second-level SCI.
  • the device further includes:
  • the demapping unit is configured to demap the first information from the transmission resources of the PSSCH according to the first rule, and the encoded second-level SCI is from the first one that carries the corresponding DMRS when demapping in the time domain.
  • the PSSCH symbol starts to be demapped.
  • the first rule is:
  • the first PSSCH symbol carrying the corresponding DMRS is the first DMRS symbol determined according to the PSSCH DMRS table.
  • the first PSSCH symbol carrying the corresponding DMRS is the second DMRS symbol determined according to the PSSCH DMRS table; or
  • the scheduling bandwidth of the PSSCH is not equal to the number of candidate PRBs; or
  • the scheduling bandwidth of the PSSCH is not less than a first threshold PRB.
  • the first information further includes encoded first data
  • the demapping unit is further configured to: when the subchannel size of the resource pool is less than a second threshold, The first PSSCH symbol after the last symbol of the PSCCH starts to demap the encoded first data.
  • a seventh aspect discloses a communication device, including:
  • the obtaining unit is configured to obtain the value of the second parameter according to the information of the first data
  • the first determining unit is configured to determine the number of modulation symbols after the second level SCI encoding according to the value of the second parameter;
  • the second determining unit is configured to determine the encoded second-level SCI according to the number of modulation symbols after the second-level SCI encoding
  • the sending unit is configured to send first information to the terminal device through the PSSCH, the first information including the encoded first data, the encoded second-level SCI, and an indication for indicating the value of the second parameter information.
  • the first determining unit is specifically configured to determine the number of bits of the first data, the number of bits of the second-level SCI, and the number of REs on the PSSCH that can be used to carry the second-level SCI.
  • the number and the value of the second parameter determine the number of modulation symbols after the second-level SCI encoding.
  • the second determining unit is specifically configured to:
  • the encoded second-level SCI is determined according to the number of bits after the second-level SCI encoding.
  • the information of the first data includes a modulation order and a code rate of the first data.
  • the device further includes:
  • the mapping unit is used to map the first information to the transmission resources of the PSSCH according to the first rule, and the encoded second-level SCI is mapped from the first PSSCH symbol carrying the corresponding DMRS in the time domain. Started to map.
  • the first rule is:
  • the first PSSCH symbol carrying the corresponding DMRS is the first DMRS symbol determined according to the PSSCH DMRS table.
  • the first PSSCH symbol carrying the corresponding DMRS is the second DMRS symbol determined according to the PSSCH DMRS table; or
  • the scheduling bandwidth of the PSSCH is not equal to the number of candidate PRBs; or
  • the scheduling bandwidth of the PSSCH is not less than a first threshold PRB.
  • the mapping unit is further configured to start mapping from the first PSSCH symbol after the last symbol of the PSCCH when the subchannel size of the resource pool is less than a second threshold.
  • the encoded first data is further configured to start mapping from the first PSSCH symbol after the last symbol of the PSCCH when the subchannel size of the resource pool is less than a second threshold.
  • the value of the second parameter is determined according to the configuration parameter of the resource pool, the number of bits of the second SCI, and the number of bits of the CRC of the second level SCI.
  • An eighth aspect discloses a communication device, including:
  • a receiving unit configured to receive first information from a terminal device through a PSSCH, the first information including an encoded second-level SCI and indication information for indicating the value of the second parameter;
  • An obtaining unit configured to obtain the value of the second parameter according to the indication information
  • a determining unit configured to determine the number of modulation symbols after the second level SCI encoding according to the value of the second parameter
  • the decoding unit is configured to decode the encoded second-level SCI according to the number of modulation symbols encoded by the second-level SCI to obtain the second-level SCI.
  • the determining unit is specifically configured to determine the number of bits of the first data, the number of bits of the second-level SCI, and the number of REs on the PSSCH that can be used to carry the second-level SCI.
  • the number and the value of the second parameter determine the number of modulation symbols after the second-level SCI encoding.
  • the decoding unit is specifically configured to:
  • the device further includes:
  • the demapping unit is configured to demap the first information from the PSSCH according to the first rule, and the coded second-level SCI starts from the first PSSCH symbol carrying the corresponding DMRS when demapping in the time domain Unmapped.
  • the first rule is:
  • the first PSSCH symbol carrying the corresponding DMRS is the first DMRS symbol determined according to the PSSCH DMRS table.
  • the first PSSCH symbol carrying the corresponding DMRS is the second DMRS symbol determined according to the PSSCH DMRS table; or
  • the scheduling bandwidth of the PSSCH is not equal to the number of candidate PRBs; or
  • the scheduling bandwidth of the PSSCH is not less than a first threshold PRB.
  • the first information further includes encoded first data
  • the demapping unit is further configured to: when the subchannel size of the resource pool is less than a second threshold, The first PSSCH symbol after the last symbol of the PSCCH starts to demap the encoded first data.
  • the value of the second parameter is determined according to the configuration parameter of the resource pool, the number of bits of the second SCI, and the number of bits of the CRC of the second level SCI.
  • a ninth aspect discloses a communication device, which may be a terminal device or a module (for example, a chip) in the terminal device.
  • the communication device includes a processor, a memory, an input interface, and an output interface.
  • the input interface is used to receive information from other communication devices other than the communication device, and the output interface is used to send information to those other than the communication device.
  • the other communication device outputs information, and when the processor executes the computer program stored in the memory, the processor is caused to execute the communication method disclosed in the first aspect or any implementation manner of the first aspect.
  • a tenth aspect discloses a communication device, which may be a terminal device or a module (for example, a chip) in the terminal device.
  • the communication device includes a processor, a memory, an input interface, and an output interface.
  • the input interface is used to receive information from other communication devices other than the communication device, and the output interface is used to send information to those other than the communication device.
  • the other communication device outputs information, and when the processor executes the computer program stored in the memory, the processor is caused to execute the communication method disclosed in the second aspect or any implementation manner of the second aspect.
  • An eleventh aspect discloses a communication device, which may be a terminal device or a module (for example, a chip) in the terminal device.
  • the communication device includes a processor, a memory, an input interface, and an output interface.
  • the input interface is used to receive information from other communication devices other than the communication device, and the output interface is used to send information to those other than the communication device.
  • the other communication device outputs information, and when the processor executes the computer program stored in the memory, the processor is caused to execute the communication method disclosed in the third aspect or any implementation manner of the third aspect.
  • a twelfth aspect discloses a communication device, which may be a terminal device or a module (for example, a chip) in the terminal device.
  • the communication device includes a processor, a memory, an input interface, and an output interface.
  • the input interface is used to receive information from other communication devices other than the communication device, and the output interface is used to send information to those other than the communication device.
  • the other communication device outputs information, and when the processor executes the computer program stored in the memory, the processor is caused to execute the communication method disclosed in the fourth aspect or any implementation manner of the fourth aspect.
  • a computer-readable storage medium stores a computer program or computer instruction. When the computer program or computer instruction runs, it can implement any one of the first aspect or the first aspect.
  • the communication method disclosed in the implementation manner, or the communication method disclosed in any implementation manner of the second aspect or the second aspect, or the communication method disclosed in the third aspect or any implementation manner of the third aspect, or the fourth aspect or the fourth aspect A communication method disclosed by any implementation of the aspect.
  • a fourteenth aspect provides a computer program product, the computer program product includes computer program code, when the computer program code is executed, the above-mentioned first aspect, second aspect, third aspect or fourth aspect of the communication method is implement.
  • a fifteenth aspect discloses a communication system including the communication device of the ninth aspect and the communication device of the tenth aspect.
  • a sixteenth aspect discloses a communication system including the communication device of the eleventh aspect and the communication device of the twelfth aspect.
  • Fig. 1 is a schematic diagram of a V2X disclosed in an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of communication between UEs disclosed in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an air interface resource disclosed in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a network architecture disclosed in an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of a communication method disclosed in an embodiment of the present invention.
  • Fig. 6 is a schematic flowchart of another communication method disclosed in an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a communication device disclosed in an embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • FIG. 11 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • FIG. 12 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • FIG. 13 is a schematic flowchart of another communication method disclosed in an embodiment of the present invention.
  • FIG. 14 is a schematic flowchart of another communication method disclosed in an embodiment of the present invention.
  • the embodiment of the present invention discloses a communication method and device, which are used to improve the reliability of information transmission. Detailed descriptions are given below.
  • FIG. 1 is a schematic diagram of a V2X disclosed in an embodiment of the present invention. As shown in FIG.
  • V2P vehicle to infrastructure
  • V2I vehicle to infrastructure
  • V2N vehicle to network
  • the communication between V2X is carried out through SL.
  • the embodiments of the present invention can also be applied to other SL communications other than V2X, which is not limited here.
  • FIG. 2 is a schematic diagram of communication between user equipment (UE) according to an embodiment of the present invention. As shown in Figure 2, UE1 and UE2 communicate through SL.
  • LTEV2X there is only the broadcast service, and the broadcast service does not impose any restrictions on the receiving end. That is, the sending end sends data, and any terminal device can serve as the receiving end to receive the data.
  • NR V2X has introduced unicast services and multicast services in addition to broadcast services.
  • the unicast service is limited to the communication between a pair of terminal devices, that is, one terminal device sends data while the other terminal device receives data.
  • Multicast services are communications limited to a group. One terminal device in the group sends data, and other terminal devices in the group receive the data.
  • PSSCH used to transmit data
  • PSCCH used to transmit SCI
  • PSSCH used to transmit SCI
  • PSSCH used to transmit SCI
  • NR V2X due to the introduction of unicast services and multicast services, in addition to transmitting SCI through PSCCH, it is also necessary to transmit SCI through PSSCH.
  • the SCI transmitted through the PSCCH is called the first level SCI
  • the SCI transmitted through the PSSCH is called the second level SCI.
  • the terminal device transmits information through the resources in the SL resource pool configured by the network device or the pre-configured SL resource pool.
  • the resource pool is a collection of time-frequency resources used by terminal devices to transmit information in SL.
  • the granularity of the resource pool configuration in the time domain is the time slot, and only continuous PRBs are supported in the frequency domain.
  • a (pre-)configured resource pool can be used for unicast transmission, multicast transmission and broadcast transmission.
  • the load of the first level SCI in the two levels of unicast transmission, multicast transmission and broadcast transmission of each resource pool is the same.
  • Each resource pool is configured with only one PSCCH format of the first level SCI.
  • the number of time-domain symbols of the PSCCH in each resource pool is (pre-)configured.
  • the size of the subchannel of each resource pool may be 10 PRBs, 15 PRBs, 20 PRBs, 25 PRBs, 50 PRBs, 75 PRBs, or 100 PRBs, which are (pre-)configured.
  • the scrambling process of the second-level SCI is independent of the scrambling process of the PSSCH. When the second-level SCI performs RE mapping in the PSSCH, the frequency domain is first mapped and then the time domain is mapped, and the REs of the second-level SCI and the REs of the data on the PSSCH are not interleaved.
  • the second-level SCI When the second-level SCI performs RE mapping, it can perform frequency division multiplexing (FDM) with the DMRS of the PSSCH in the same symbol.
  • FDM frequency division multiplexing
  • the modulation method used by the second-level SCI can be quadrature phase shift keying (QPSK), or other modulation methods, which are not limited here.
  • Air interface resources include time domain resources and frequency domain resources.
  • Time domain resources are divided according to symbols, and frequency domain resources are divided according to subcarriers.
  • RE is the smallest resource unit used for data transmission, and one RE corresponds to one time domain symbol and one frequency domain subcarrier.
  • the transmission time interval (TTI) is the granularity of the time domain used to carry data information or service information.
  • TTI can correspond to one slot, and a TTI including S time domain symbols can be called a slot or a full slot.
  • a TTI is also called a transmission opportunity (TO).
  • a data packet can be carried on a time-frequency resource composed of one TTI in the time domain and at least one PRB in the frequency domain.
  • a resource block (resource block, RB) is a basic unit used for resource scheduling.
  • One RB corresponds to multiple subcarriers in one TTI, that is, one RB corresponds to multiple continuous subcarriers in the frequency domain.
  • FIG. 3 is a schematic diagram of an air interface resource disclosed in an embodiment of the present invention.
  • the horizontal axis is time (time)
  • the vertical axis is frequency (Freq)
  • 1 grid represents 1 RE
  • 1 TTI is composed of n time domain symbols
  • 1 RB is composed of 1 TTI. It is composed of P sub-carriers, and n and P are positive integers.
  • the terminal device when UCI and UL-SCH are carried on the PUSCH, the terminal device can multiplex the encoded UCI with the UL-SCH in a rate matching manner and then map it to the PUSCH, or it can map the encoded UCI to the PUSCH.
  • the UL-SCH that has been mapped to the PUSCH is mapped to the PUSCH by puncturing the UL-SCH to achieve multiplexing with the UL-SCH.
  • UL-SCH is data.
  • it is necessary to determine the number of physical resources occupied by UCI that is, the number of REs occupied by UCI, that is, the number of modulation symbols occupied by UCI, that is, the number of modulation symbols after UCI encoding.
  • UCI is a hybrid automatic repeat request (HARQ)-acknowledgement (ACK)
  • ACK hybrid automatic repeat request
  • the calculation formula for the number of physical resources occupied by UCI can be expressed as formula (1):
  • O ACK is the number of HARQ-ACK bits (that is, the HARQ-ACK payload size).
  • L ACK is 11, and when O ACK is less than (or less than or equal to) 360, L ACK is the number of bits of the HARQ-ACK CRC. It is a parameter, which can be regarded as the ratio of the code rate of other information on the PUSCH (such as UL-SCH) to the code rate of UCI, which is notified by the network device and is a number greater than 0.
  • C UL-SCH -1 is the number of code blocks included in the UL-SCH on the PUSCH.
  • DCI downlink control information
  • K r is 0, and when the DCI scheduled for PUSCH transmission does not include a CBGTI field for indicating that the UE does not transmit the r-th code block, K r is the number of bits of the r-th code block in the UL-SCH on the PUSCH.
  • CBGTI code block group transmission indication
  • Is the number of physical resources that can be used to carry UCI on PUSCH Is the number of physical resources (that is, the number of REs) that can be used to carry UCI on the l th time domain symbol on the PUSCH, It is the total number of time-domain symbols on PUSCH (including the number of time-domain symbols that carry DMRS).
  • l is the time domain symbol carrying DMRS
  • Is the number of total physical resources (that is, the number of subcarriers) included in the symbol 1 of the PUSCH It is the number of physical resources occupied by the phase noise tracking reference signal (PTRS) of the PUSCH on symbol 1.
  • PTRS phase noise tracking reference signal
  • is the resource scaling factor.
  • l 0 is the first time domain symbol that does not carry DMRS after the first DMRS symbol on PUSCH. Indicates rounding up.
  • Q'SCI2 is the number of physical resources occupied by the second-level SCI.
  • O SCI2 is the number of bits of the second-level SCI (that is, the payload size of the second-level SCI).
  • L SCI2 is the number of bits of the CRC of the second level SCI. Is a parameter, indicated in the corresponding first-level SCI.
  • C SL-SCH is the number of code blocks included in the SL-SCH on the PSSCH. Is the number of physical resources (that is, the number of REs) that can be used to carry the second-level SCI on the l-th time domain symbol on the PSSCH, It is the total number of time-domain symbols on the PSSCH (not including the number of symbols carrying automatic gain control (AGC)).
  • AGC automatic gain control
  • l is the time domain symbol carrying AGC
  • l is a time domain symbol that does not carry AGC
  • It is the number of total physical resources (that is, the number of subcarriers) included in the symbol 1 of the PSSCH.
  • It is the number of physical resources occupied by the DMRS on the symbol 1 of the PSSCH (that is, the number of subcarriers).
  • It is the number of physical resources occupied by the PTRS of the PSSCH on the symbol 1.
  • RS SCI-reference signal
  • is the number of REs, which is the difference between the number of REs included in one RB and the number of REs of the last coded symbol of the second-level SCI in this RB.
  • HARQ transmission in PUSCH is not an inevitable behavior, that is, HARQ is not carried in every PUSCH transmission.
  • MCS modulation and coding scheme
  • the code rate of HARQ is lower than the code rate of data.
  • the mapping of the second-level SCI in the PSSCH is an inevitable behavior, that is, every PSSCH transmission carries the second-level SCI.
  • the number of REs of the second-level SCI is determined based on data.
  • the number of REs of the second-level SCI determined by the code rate of the data is large, which increases the code rate of the PSSCH and reduces the information transmission. Reliability.
  • the network architecture can include multiple terminal devices (three are shown in Figure 1), and one of the multiple terminal devices can only communicate with another terminal device, that is, unicast services. , One of these multiple terminal devices can also communicate with multiple terminal devices at the same time, that is, multicast services, and one of these multiple terminal devices can also communicate with all terminal devices at the same time, that is, broadcast services .
  • the terminal device 1 may only communicate with the terminal device 2, or it may communicate with the terminal device 2 and the terminal device 3 at the same time.
  • the terminal device can be a UE, an access terminal, a user unit, a user station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a wireless communication device, a user agent, a vehicle, or a user device.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital assistant (PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in the future 5G network or terminals in the future evolved PLMN network, etc.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistant
  • FIG. 5 is a schematic flowchart of a communication method disclosed in an embodiment of the present invention.
  • the function executed by the first terminal device in the embodiment of the present invention may also be executed by the module (for example, chip) in the first terminal device
  • the function executed by the second terminal device in the embodiment of the present invention may also be executed by the first terminal device.
  • the communication method may include the following steps.
  • the first terminal device determines the number of modulation symbols after the second-level SCI encoding according to the configuration parameters of the resource pool.
  • the first terminal device When the first terminal device needs to send information, it may first obtain the configuration parameters of the resource pool used by the first terminal device.
  • the configuration parameters of the resource pool may include the format of the PSCCH corresponding to the resource pool, the CRC of the first level SCI, the number of PSCCH candidate PRBs supported by the resource pool, and the number of time-domain symbols of the PSCCH. After that, the first terminal device determines the number of modulation symbols after the second-level SCI encoding according to the configuration parameters of the resource pool.
  • the first terminal device determines the number of modulation symbols after the second-level SCI coding according to the configuration parameters of the resource pool, it can first determine the code rate of the first-level SCI according to the configuration parameters of the resource pool, and then can according to the code of the first-level SCI The rate determines the number of modulation symbols after the second-level SCI encoding.
  • the first terminal device determines the code rate of the first-level SCI according to the configuration parameters of the resource pool, it can be based on the PSCCH format corresponding to the resource pool, the CRC of the first-level SCI, the number of PSCCH candidate PRBs supported by the resource pool, and the PSCCH
  • the number of time-domain symbols determines the code rate of the first-level SCI.
  • the number of bits of the first-level SCI can be determined according to the format of the PSCCH corresponding to the resource pool, and the number of PSCCH candidate PRBs supported by the resource pool and the number of time-domain symbols of the PSCCH can be determined after the first-level SCI encoding.
  • the code rate of the first level SCI is determined according to the number of bits of the first level SCI, the number of bits of the CRC of the first level SCI, and the number of bits after the first level of SCI encoding.
  • the first terminal device determines the number of bits after the first-level SCI encoding according to the number of PSCCH candidate PRBs supported by the resource pool and the number of PSCCH time-domain symbols, it can first according to the number of PSCCH candidate PRBs supported by the resource pool And the number of time-domain symbols of PSCCH to determine the number of modulation symbols after the first-level SCI encoding, and then determine the first-level SCI encoding according to the number of modulation symbols after the first-level SCI encoding and the modulation order of the first-level SCI The number of bits.
  • the formula for calculating the code rate of the first-level SCI can be as formula (3):
  • CR SCI1 represents the code rate of the first level SCI
  • O SCI1 represents the number of bits of the first level SCI
  • L SCI1 represents the number of bits of the CRC of the first level SCI
  • Q′ SCI1 represents the modulation symbol after the first level SCI encoding Number
  • Indicates the modulation order of the first SCI Indicates the number of bits after the first level of SCI encoding.
  • the calculation formula of Q′ SCI1 can be as formula (4):
  • O PRB represents the number of PSCCH candidate PRBs supported by the resource pool
  • O symbol represents the number of time-domain symbols of the PSCCH.
  • 12 is the number of subcarriers in one RB.
  • the code rate of the first-level SCI can also be various modifications of the above formula (3), and the number of modulation symbols after the first-level SCI encoding can also be various modifications of the above formula (4). limited.
  • the first terminal device determines the number of modulation symbols after the second-level SCI encoding according to the first-level SCI code rate, it can use the first-level SCI code rate, the second-level SCI bit number, and the second-level SCI CRC.
  • the number of bits determines the number of modulation symbols after the second-level SCI encoding.
  • the first terminal device may first determine the code rate of the first level SCI as the code rate of the second level SCI, that is, consider that the code rate of the second level SCI is equal to the code rate of the first level SCI.
  • the first terminal device can determine the number of modulation symbols encoded by the second-level SCI according to the bit number of the second-level SCI and the bit number of the second-level SCI according to the bit rate of the second-level SCI.
  • the formula for calculating the number of modulation symbols after the second-level SCI coding can be as formula (5):
  • Q′ SCI2 represents the number of modulation symbols after the second-level SCI encoding
  • CR SCI1 represents the code rate of the first-level SCI
  • O SCI2 represents the number of bits of the second-level SCI
  • L SCI2 represents the CRC of the second-level SCI Number of bits
  • Indicates the modulation order of the first SCI Indicates the number of bits after the second level of SCI encoding.
  • the formula for calculating the number of modulation symbols after the second-level SCI coding can also be as formula (6):
  • represents the number of REs, which is the difference between the number of REs included in an RB and the number of REs of the last coded symbol of the second-level SCI in this RB. Since the granularity of the second-level SCI mapping in the frequency domain is RB, ⁇ can ensure that Q′ SCI2 is an integer multiple of RB.
  • the first terminal device determines the number of modulation symbols encoded by the second-level SCI according to the code rate of the first-level SCI, it can also be based on the code rate of the first-level SCI, the number of bits of the second-level SCI, and the number of the second-level SCI.
  • the number of CRC bits and the first parameter determine the number of modulation symbols after the second level of SCI encoding.
  • the formula for calculating the number of modulation symbols after the second-level SCI encoding can also be as formula (7):
  • the first terminal device determines the number of modulation symbols encoded by the second-level SCI according to the code rate of the first-level SCI, it can pass To adjust the number of modulation symbols after the second-level SCI encoding. Since the DMRS configuration of the first level SCI and the second level SCI are different, the first level SCI uses the PSCCH DMRS configuration, and the second level SCI uses the PSSCH DMRS configuration. Adjusting Q'SCI2 can be used to adjust the difference in decoding performance caused by the difference in DMRS, and increase the flexibility of terminal equipment scheduling.
  • the first terminal equipment can be increased Value to appropriately reduce the bit rate of the second-level SCI. That can be adjusted according to the time domain format (pattern) configured by DMRS
  • the candidate value set of can be ⁇ 1,1.25,1.4,1.6 ⁇ .
  • the first parameter can be determined according to the method of determining the second parameter below. For detailed description, please refer to step 601, which will not be repeated here.
  • the formula for calculating the number of modulation symbols after the second-level SCI coding can also be as formula (8):
  • the formula for calculating the number of modulation symbols after the second-level SCI encoding can also be as formula (9):
  • the first terminal device determines the encoded second-level SCI according to the number of modulation symbols after the second-level SCI encoding.
  • the first terminal device may determine the second-level SCI encoded according to the number of second-level SCI-encoded modulation symbols. Specifically, the number of second-level SCI-encoded bits may be determined first according to the number of modulation symbols after the second-level SCI encoding, and then the encoded second-level SCI is determined according to the number of bits after the second-level SCI encoding. The first terminal device determines the number of bits after the second-level SCI encoding according to the number of modulation symbols after the second-level SCI encoding. For a detailed description, please refer to the first-level SCI encoding based on the number of modulation symbols after the first-level SCI encoding. The description of the number of bits will not be repeated here.
  • the first terminal device sends the first information including the encoded second-level SCI to the second terminal device through the PSSCH.
  • the second terminal device receives the first information including the encoded second-level SCI from the first terminal device through the PSSCH.
  • the first The information may also include indication information for indicating the value of the first parameter. For details, reference may be made to the related description of the value of the second parameter in the embodiment corresponding to FIG. 6, which is not repeated here.
  • the second terminal device determines the number of modulation symbols after the second-level SCI encoding according to the configuration parameters of the resource pool.
  • the second terminal device may determine the number of modulation symbols encoded by the second-level SCI according to the configuration parameters of the resource pool.
  • the configuration parameters of the resource pool may include the format of the PSCCH corresponding to the resource pool, the CRC of the first level SCI, the number of PSCCH candidate PRBs supported by the resource pool, and the number of time-domain symbols of the PSCCH.
  • the second terminal device determines the number of modulation symbols encoded by the second-level SCI according to the configuration parameters of the resource pool, it can firstly use the PSCCH format corresponding to the resource pool, the CRC of the first-level SCI, and the PSCCH candidate PRB supported by the resource pool.
  • the number of SCI and the number of time-domain symbols of the PSCCH determine the code rate of the first-level SCI, and then the number of modulation symbols after the second-level SCI encoding is determined according to the code rate of the first SCI.
  • the second terminal device determines the code rate of the first-level SCI according to the format of the PSCCH corresponding to the resource pool, the CRC of the first-level SCI, the number of PSCCH candidate PRBs supported by the resource pool, and the number of time-domain symbols of the PSCCH, it can Determine the number of first-level SCI bits according to the PSCCH format corresponding to the resource pool, and determine the number of first-level SCI-encoded bits according to the number of PSCCH candidate PRBs supported by the resource pool and the number of PSCCH time-domain symbols.
  • the number of bits of the first-level SCI, the number of bits of the first-level SCI CRC, and the number of bits after the first-level SCI code determine the code rate of the first-level SCI.
  • the number of PSCCH candidate PRBs supported by the resource pool and the number of PSCCH time domain symbols determine the number of PSCCH candidate PRBs supported by the resource pool and the time domain of PSCCH.
  • the number of symbols determines the number of modulation symbols after the first level of SCI encoding, and the number of bits after the first level of SCI encoding is determined according to the number of modulation symbols after the first level of SCI encoding and the modulation order of the first level of SCI.
  • step 501 For detailed description, please refer to the related description in step 501, which is not repeated here.
  • the second terminal device determines the number of modulation symbols encoded by the second-level SCI according to the code rate of the first-level SCI, it can be based on the code rate of the first-level SCI, the number of bits of the second-level SCI, and the CRC of the second-level SCI.
  • the number of bits determines the number of modulation symbols after the second-level SCI encoding.
  • the number of modulation symbols after the second-level SCI encoding can also be determined according to the code rate of the first-level SCI, the number of bits of the second-level SCI, the number of bits of the CRC of the second-level SCI, and the first parameter.
  • step 501 is not repeated here.
  • the second terminal device decodes the encoded second-level SCI according to the number of modulation symbols encoded by the second-level SCI to obtain the second-level SCI.
  • the second terminal device After the second terminal device determines the number of second-level SCI-encoded modulation symbols according to the configuration parameters of the resource pool, it can decode the encoded second-level SCI according to the number of second-level SCI-encoded modulation symbols to obtain the first Level 2 SCI.
  • the second terminal device decodes the encoded second-level SCI according to the number of second-level SCI-encoded modulation symbols to obtain the second-level SCI, it can first determine the second-level SCI according to the number of second-level SCI-encoded modulation symbols.
  • the number of bits encoded by the second-level SCI is then decoded according to the number of bits after the second-level SCI encoding to obtain the second-level SCI.
  • step 502 which will not be repeated here.
  • the above method may further include: the first terminal device maps the first information to the transmission resource of the PSSCH according to the first rule, and the encoded second-level SCI is mapped in the time domain The time is mapped from the first PSSCH symbol that carries the corresponding DMRS.
  • the first rule may be that when the scheduling bandwidth of the PSSCH is greater than the number of PSCCH candidate PRBs supported by the resource pool, the first PSSCH symbol carrying the corresponding DMRS is the first DMRS symbol determined according to the PSSCH DMRS table.
  • the first PSSCH symbol carrying the corresponding DMRS is the second DMRS symbol determined according to the PSSCH DMRS table.
  • the first rule may also be that the scheduling bandwidth of the PSSCH is not equal to the number of PSCCH candidate PRBs supported by the resource pool.
  • the first rule may also be that when the subchannel size of the resource pool is equal to the number of PSCCH candidate PRBs supported by the resource pool, the scheduling bandwidth of the PSSCH is not less than the first threshold PRB.
  • the first threshold may be 2, or other values, and it is not limited here.
  • the first rule may also be that the bandwidth of the PSSCH carrying the DMRS is not less than the third threshold PRB.
  • the third threshold may be 4 or other values, which is not limited here.
  • the first rule can also be that, assuming that the first PSSCH symbol that carries the corresponding DMRS is the end symbol of the PSSCH, the time domain mapping rule for the second-level SCI mapping is that the second-level SCI starts from the first PSSCH symbol that carries the corresponding DMRS After the mapping is completed, backwards and forwards are reversed, and the mapping is performed on the previous symbol of the first PSSCH symbol carrying the corresponding DMRS.
  • the first terminal device maps the first information to the transmission resources of the PSSCH according to the third rule, and the encoded second-level SCI is mapped from the first PSSCH symbol in the time domain.
  • the third rule may be that the PSSCH and PSCCH are FDM, and the bandwidth of the PSSCH is lower than a sixth threshold.
  • the sixth threshold may be 4 or other values, which is not limited here.
  • the first information may also include encoded first data.
  • the above method may also include: when the first terminal device satisfies the second rule, from the last one of the PSCCH The first PSSCH symbol after the symbol starts to map the first data. That is, the PSSCH part of the PSCCH and FDM is not used to carry the PSCCH, that is, it is not used for the resource mapping of the PSSCH. That is, when the first data performs rate matching, it does not include the PSSCHRE with the PSCCH and FDM, but only includes the PSSCHRE after the end symbol of the PSCCH.
  • the second rule may be that the PSCCH and the PSSCH are frequency division multiplexed (FDM), and/or the bandwidth of the PSSCH is less than the fourth threshold number of PRBs.
  • FDM frequency division multiplexed
  • the second rule may be that the subchannel size of the resource pool is smaller than the second threshold.
  • the second threshold may be 20 PRBs or other values, which is not limited here.
  • the number of modulation symbols after the second-level SCI encoding does not exceed the fifth threshold.
  • the mapping complies with the following rules: it is mapped to the virtual resource block configured for transmission, and it is not used to transmit the corresponding DMRS, PTRS, channel state information reference signals (CSI-) on the RE corresponding to the PRB of the virtual resource block RS) or PSSCH.
  • mapping the complex-valued symbols corresponding to the bits of the second-level SCI to the configured virtual resource block is performed according to the frequency domain first and then the time domain, and the index k can be first indexed in ascending order.
  • index 1 starts mapping from the first PSSCH symbol that carries the corresponding DMRS.
  • the mapping is performed according to the first rule.
  • the complex-valued symbols corresponding to the bits except the second-level SCI are mapped to the configured virtual resource block, that is, when the data is mapped to the configured virtual resource block, when the second rule is met , Data can be mapped from the first PSSCH symbol after the last symbol of the PSCCH.
  • the subchannel size of the resource pool is greater than or equal to (or greater than) the second threshold, the PSSCH DMRS and PSCCH are mapped to the same orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • the above method may further include: the second terminal device demaps the first information from the transmission resource of the PSSCH according to the first rule, and the decoded second-level SCI is demapped from the time domain during time domain demapping.
  • the first PSSCH symbol carrying the corresponding DMRS is demapped.
  • the first rule may be that when the scheduling bandwidth of the PSSCH is greater than the number of PSCCH candidate PRBs supported by the resource pool, the first PSSCH symbol carrying the corresponding DMRS is the first DMRS symbol determined according to the PSSCH DMRS table.
  • the first PSSCH symbol carrying the corresponding DMRS is the second DMRS symbol determined according to the PSSCH DMRS table.
  • the first rule may also be that the scheduling bandwidth of the PSSCH is not equal to the number of PSCCH candidate PRBs supported by the resource pool.
  • the first rule may also be that when the subchannel size of the resource pool is equal to the number of PSCCH candidate PRBs supported by the resource pool, the scheduling bandwidth of the PSSCH is not less than the first threshold PRB.
  • the first rule may also be that the bandwidth of the PSSCH carrying the DMRS is not less than the third threshold PRB.
  • the first rule can also be that, assuming that the first PSSCH symbol that carries the corresponding DMRS is the end symbol of the PSSCH, the time domain mapping rule for the second-level SCI mapping is that the second-level SCI starts from the first PSSC symbol that carries the corresponding DMRS After the mapping is completed, backwards and forwards are reversed, and the mapping is performed on the previous symbol of the first PSSCH symbol carrying the corresponding DMRS.
  • the first terminal device maps the first information to the transmission resources of the PSSCH according to the third rule, and the encoded second-level SCI is mapped from the first PSSCH symbol in the time domain.
  • the first terminal device When performing rate matching with the first data, it bypasses the PSSCH resource of the PSCCH and FDM.
  • the third rule may be that the PSSCH and PSCCH are FDM, and the bandwidth of the PSSCH is lower than a sixth threshold.
  • the sixth threshold may be 4 or other values, which is not limited here.
  • the first information may also include encoded first data.
  • the above method may further include: in the case that the second rule is satisfied, starting from the first PSSCH symbol after the last symbol of the PSCCH Start demapping the encoded first data.
  • the second rule may be that the PSCCH and the PSSCH are frequency division multiplexed (FDM), and/or the bandwidth of the PSSCH is less than the fourth threshold number of PRBs.
  • the second rule may also be that the sub-channel size of the resource pool is smaller than the second threshold.
  • FIG. 6 is a schematic flowchart of another communication method disclosed in an embodiment of the present invention.
  • the function executed by the first terminal device in the embodiment of the present invention may also be executed by the module (for example, chip) in the first terminal device
  • the function executed by the second terminal device in the embodiment of the present invention may also be executed by the first terminal device.
  • the communication method may include the following steps.
  • the first terminal device obtains the value of the second parameter according to the information of the first data.
  • the first terminal device When the first terminal device needs to send the first data, it can obtain the value of the second parameter according to the information of the first data.
  • the information of the first data may include the modulation order of the first data and the code rate of the first data.
  • the first data is the data to be sent.
  • Each SL resource pool is configured with at least one MCS table, that is, one or more MCS tables.
  • MCS table can be as shown in Table 1:
  • the second parameter table may be determined in advance for each MCS table in each resource pool, and the value of the second parameter may be determined according to the configuration parameter of the resource pool, the number of bits of the second SCI, and the number of bits of the CRC of the second level SCI. It can be configured to the terminal device after the network device is determined, or it can be determined by the terminal device. Among them, the second-level SCI that determines the value of the second parameter here is different from the second-level SCI described elsewhere.
  • the number of modulation symbols after the second-level SCI encoding can be determined first according to the configuration parameters of the resource pool, and then the number of modulation symbols after the second-level SCI encoding, the number of bits of the second SCI, and the number of second-level SCI
  • the number of CRC bits determines the value of the second parameter.
  • the calculation formula of data code rate can be as formula (10):
  • CR data represents the code rate of the data
  • Q mdata represents the modulation order of the data
  • Q′ SCI2 represents the number of modulation symbols after the second level of SCI encoding
  • O SCI2 represents the number of bits of the second SCI
  • L SCI2 represents the number of bits of the CRC of the second level SCI.
  • the first terminal device When the first terminal device obtains the value of the second parameter according to the information of the first data, it may first obtain the value of the index corresponding to the modulation order and code rate of the first data from Table 1, and then obtain the value of the index from Table 2. Value corresponds to the value of the second parameter.
  • the first terminal device determines the number of modulation symbols after the second-level SCI encoding according to the value of the second parameter.
  • the first terminal device may determine the number of modulation symbols after the second-level SCI encoding according to the value of the second parameter.
  • the first terminal device determines the number of modulation symbols encoded by the second-level SCI according to the value of the second parameter, it can be based on the number of bits of the first data, the number of bits of the second-level SCI, and the PSSCH that can be used to carry the second-level SCI
  • the number of REs and the value of the second parameter determine the number of modulation symbols after the second-level SCI encoding.
  • the number of modulation symbols after the second-level SCI coding can be calculated according to formula (2).
  • the calculation formula for determining the number of modulation symbols after the second-level SCI encoding can also be formula (8) or formula (9).
  • the first terminal device determines the encoded second-level SCI according to the number of modulation symbols after the second-level SCI encoding.
  • the first terminal device After the first terminal device determines the number of second-level SCI-encoded modulation symbols according to the second parameter, it can determine the second-level SCI encoded according to the number of second-level SCI-encoded modulation symbols. Specifically, the number of second-level SCI-encoded bits may be determined first according to the number of modulation symbols after the second-level SCI encoding, and then the encoded second-level SCI is determined according to the number of bits after the second-level SCI encoding.
  • the first terminal device sends the first information including the encoded first data, the encoded second-level SCI, and indication information for indicating the value of the second parameter to the terminal device through the PSSCH.
  • the first terminal device After the first terminal device determines the encoded second-level SCI according to the number of modulation symbols after the second-level SCI encoding, it can send to the terminal device via the PSSCH the first data after determining the encoding and the second level after determining the encoding SCI and the first information used to indicate the indication information of the second parameter.
  • the second terminal device receives the first information from the first terminal device via the PSSCH, including the first data determined to be encoded, the second level SCI determined to be encoded, and the indication information used to indicate the second parameter.
  • the second terminal device obtains the value of the second parameter according to the instruction information.
  • the second terminal device After the second terminal device receives the first information including the determined encoded first data, the determined encoded second-level SCI, and the value of the indication information for indicating the second parameter from the first terminal device through the PSSCH, it may Obtain the value of the second parameter according to the instruction information.
  • the value of the second parameter is determined according to the configuration parameter of the resource pool, the number of bits of the second SCI, and the number of bits of the CRC of the second level SCI.
  • the indication information may be a display indication, that is, a direct indication of the value of the second parameter, or an implicit indication.
  • the indication information may indicate the value of the index corresponding to the value of the second parameter.
  • the value of the index is 1, and the value of the second parameter is 1.13. It is also possible to divide the 32 values in the table of the second parameter into multiple candidate sets, such as 4, and each candidate set corresponds to an index value.
  • the indication information may indicate the value of the index corresponding to the candidate set of the value of the second parameter. The second terminal device may first determine the candidate set of the value of the second parameter according to the indication information, and then select a value of the second parameter from the determined candidate set.
  • the MCS table can be divided into 4 groups, namely MCS0-MCS7, MCS8-MCS15, MCS16-MCS23, and MCS24-MCS32, and select the values of 4 second parameters from each of the 4 groups to obtain the four second parameters.
  • the two-parameter candidate set may carry indication information through 2 bits, and the indication information may indicate which of the four candidate sets the candidate set is.
  • 4 values of take a value from these 4 groups, such as 1, 9, 18, 30; or take a value in the first group, and add 8, respectively, on the basis of this value. 13,24 to complete the value. For example, 1,9,17,25.
  • the second terminal device determines the number of modulation symbols after the second-level SCI encoding according to the value of the second parameter.
  • the second terminal device may determine the number of modulation symbols after the second-level SCI encoding according to the value of the second parameter.
  • the second terminal device determines the number of modulation symbols encoded by the second-level SCI according to the value of the second parameter, it can firstly determine the number of bits of the first data, the number of bits of the second-level SCI, and the PSSCH that can be used to carry the second-level
  • the number of REs of the SCI and the value of the second parameter determine the number of modulation symbols after the second level of SCI coding.
  • step 602 which will not be repeated here.
  • the second terminal device decodes the encoded second-level SCI according to the number of modulation symbols encoded by the second-level SCI to obtain the second-level SCI.
  • the second terminal device After the second terminal device determines the number of second-level SCI-encoded modulation symbols according to the value of the second parameter, it can decode the encoded second-level SCI according to the number of second-level SCI-encoded modulation symbols to obtain the first Level 2 SCI. Specifically, the number of bits after the second-level SCI encoding can be determined according to the number of modulation symbols after the second-level SCI encoding, and then the encoded second-level SCI is decoded according to the number of bits after the second-level SCI encoding. The second level SCI.
  • the above method may further include: the first terminal device maps the first information to the transmission resources of the PSSCH according to the first rule, and the encoded second-level SCI is mapped from the first in the time domain.
  • a PSSCH symbol carrying the corresponding DMRS starts to be mapped.
  • the first rule may be that when the scheduling bandwidth of the PSSCH is greater than the number of PSCCH candidate PRBs supported by the resource pool, the first PSSCH symbol carrying the corresponding DMRS is the first DMRS symbol determined according to the PSSCH DMRS table. When the scheduling bandwidth of is equal to the number of PSCCH candidate PRBs supported by the resource pool, the first PSSCH symbol carrying the corresponding DMRS is the second DMRS symbol determined according to the PSSCH DMRS table.
  • the first rule may also be that the scheduling bandwidth of the PSSCH is not equal to the number of PSCCH candidate PRBs supported by the resource pool.
  • the first rule may also be that when the subchannel size of the resource pool is equal to the number of PSCCH candidate PRBs supported by the resource pool, the scheduling bandwidth of the PSSCH is not less than the first threshold PRB.
  • the first rule may also be that the bandwidth of the PSSCH carrying the DMRS is not less than the third threshold PRB.
  • the third threshold may be 4 or other values, which is not limited here.
  • the first rule can also be that, assuming that the first PSSCH symbol that carries the corresponding DMRS is the end symbol of the PSSCH, the time domain mapping rule for the second-level SCI mapping is that the second-level SCI starts from the first PSSC symbol that carries the corresponding DMRS After the mapping is completed, backwards and forwards are reversed, and the mapping is performed on the previous symbol of the first PSSCH symbol carrying the corresponding DMRS.
  • the first terminal device maps the first information to the transmission resources of the PSSCH according to the third rule, and the encoded second-level SCI is mapped from the first PSSCH symbol in the time domain.
  • the third rule may be that the PSSCH and PSCCH are FDM, and the bandwidth of the PSSCH is lower than a sixth threshold.
  • the sixth threshold may be 4 or other values, which is not limited here.
  • the second rule may be that the PSCCH and the PSSCH are frequency division multiplexed (FDM), and/or the bandwidth of the PSSCH is less than the fourth threshold number of PRBs.
  • the fourth threshold may be 4 PRBs or other values, which is not limited here.
  • the second rule may be that the subchannel size of the resource pool is smaller than the second threshold.
  • the second threshold may be 20 PRBs or other values, which is not limited here.
  • the number of modulation symbols after the second-level SCI encoding does not exceed the fifth threshold.
  • the foregoing method may further include: in the case that the first terminal device satisfies the second rule, mapping the encoded first data from the first PSSCH symbol after the last symbol of the PSCCH.
  • the above method may further include: the second terminal device demaps the first information from the PSSCH according to the first rule, and the encoded second-level SCI is demapped from the first one in the time domain.
  • the PSSCH symbol carrying the corresponding DMRS is demapped.
  • the first rule may be that when the scheduling bandwidth of the PSSCH is greater than the number of PSCCH candidate PRBs supported by the resource pool, the first PSSCH symbol carrying the corresponding DMRS is the first DMRS symbol determined according to the PSSCH DMRS table. When the scheduling bandwidth of is equal to the number of PSCCH candidate PRBs supported by the resource pool, the first PSSCH symbol carrying the corresponding DMRS is the second DMRS symbol determined according to the PSSCH DMRS table.
  • the first rule may also be that the scheduling bandwidth of the PSSCH is not equal to the number of PSCCH candidate PRBs supported by the resource pool.
  • the first rule may also be that when the subchannel size of the resource pool is equal to the number of PSCCH candidate PRBs supported by the resource pool, the scheduling bandwidth of the PSSCH is not less than the first threshold PRB.
  • the first rule may also be that the bandwidth of the PSSCH carrying the DMRS is not less than the third threshold PRB.
  • the first rule can also be that, assuming that the first PSSCH symbol that carries the corresponding DMRS is the end symbol of the PSSCH, the time domain mapping rule for the second-level SCI mapping is that the second-level SCI starts from the first PSSC symbol that carries the corresponding DMRS After the mapping is completed, backwards and forwards are reversed, and the mapping is performed on the previous symbol of the first PSSCH symbol carrying the corresponding DMRS.
  • the first terminal device maps the first information to the transmission resources of the PSSCH according to the third rule, and the encoded second-level SCI is mapped from the first PSSCH symbol in the time domain.
  • the third rule may be that the PSSCH and PSCCH are FDM, and the bandwidth of the PSSCH is lower than a sixth threshold.
  • the sixth threshold may be 4 or other values, which is not limited here.
  • the first information may also include first data.
  • the above method may further include: when the second terminal device satisfies the second rule, starting from the first PSSCH after the last symbol of the PSCCH The symbol starts to demap the first data after encoding.
  • the second rule may be that the PSCCH and the PSSCH are frequency division multiplexed (FDM), and/or the bandwidth of the PSSCH is less than the fourth threshold number of PRBs.
  • the second rule may also be that the sub-channel size of the resource pool is smaller than the second threshold.
  • FIG. 13 is a schematic flowchart of another communication method disclosed in an embodiment of the present invention.
  • the function executed by the first terminal device in the embodiment of the present invention may also be executed by the module (for example, chip) in the first terminal device
  • the function executed by the second terminal device in the embodiment of the present invention may also be executed by the first terminal device.
  • the communication method may include the following steps.
  • the first terminal device maps the first information to transmission resources of the PSSCH according to a first rule.
  • the first information includes the coded second-level SCI, and the coded second-level SCI is mapped from the first PSSCH symbol that carries the corresponding DMRS during time domain mapping.
  • the first information also includes encoded first data.
  • the first terminal device sends the first information to the second terminal device through the PSSCH.
  • the second terminal device receives the first information from the first terminal device through the PSSCH.
  • the second terminal device demaps the first information from the PSSCH according to the first rule.
  • the coded second-level SCI is demapped from the first PSSCH symbol carrying the corresponding DMRS during time domain demapping.
  • FIG. 14 is a schematic flowchart of another communication method disclosed in an embodiment of the present invention.
  • the function executed by the first terminal device in the embodiment of the present invention may also be executed by the module (for example, chip) in the first terminal device
  • the function executed by the second terminal device in the embodiment of the present invention may also be executed by the first terminal device.
  • the communication method may include the following steps.
  • the first terminal device starts mapping the encoded first data from the first PSSCH symbol after the last symbol of the PSCCH.
  • the first terminal device sends the encoded first data to the second terminal device through the PSSCH.
  • the second terminal device receives the encoded first data from the first terminal device through the PSSCH.
  • the second terminal device starts to demap the encoded first data from the first PSSCH symbol after the last symbol of the PSCCH.
  • FIG. 7 is a schematic structural diagram of a communication device disclosed in an embodiment of the present invention. As shown in Figure 7, the communication device may include:
  • the first determining unit 701 is configured to determine the number of modulation symbols after the second level SCI encoding according to the configuration parameters of the resource pool;
  • the second determining unit 702 is configured to determine the encoded second-level SCI according to the number of modulation symbols after the second-level SCI encoding
  • the sending unit 703 is configured to send the first information to the terminal device through the PSSCH, and the first information includes the encoded second-level SCI.
  • the configuration parameters of the resource pool include the format of the PSCCH corresponding to the resource pool, the CRC of the first level SCI, the number of PSCCH candidate PRBs supported by the resource pool, and the number of time-domain symbols of the PSCCH;
  • the first determining unit 701 is specifically configured to:
  • the number of modulation symbols after the second-level SCI encoding is determined according to the code rate of the first-level SCI.
  • the first determining unit 701 determines the code rate of the first-level SCI according to the format, the CRC of the first-level SCI, the number of candidate PRBs, and the number of time-domain symbols, including:
  • the code rate of the first-level SCI is determined according to the number of bits of the first-level SCI, the number of bits of the first-level SCI CRC, and the number of bits after the first-level SCI encoding.
  • the first determining unit 701 determining the number of bits after the first-level SCI encoding according to the number of candidate PRBs and the number of time-domain symbols includes:
  • the number of bits after the first-level SCI encoding is determined according to the number of modulation symbols after the first-level SCI encoding and the modulation order of the first-level SCI.
  • the first determining unit 701 determining the number of modulation symbols encoded by the second-level SCI according to the code rate of the first-level SCI includes:
  • the number of bits of the second-level SCI, and the number of bits of the second-level SCI CRC the number of modulation symbols after the second-level SCI encoding is determined.
  • the first determining unit 701 determining the number of modulation symbols encoded by the second-level SCI according to the code rate of the first-level SCI includes:
  • the code rate of the first-level SCI the number of bits of the second-level SCI, the number of bits of the second-level SCI CRC, and the first parameter, the number of modulation symbols after the second-level SCI encoding is determined.
  • the second determining unit 702 is specifically configured to:
  • the communication device may further include:
  • the mapping unit 704 is configured to map the first information to the transmission resources of the PSSCH according to the first rule, and the encoded second-level SCI is mapped from the first PSSCH symbol carrying the corresponding DMRS during time domain mapping.
  • the first rule is:
  • the first PSSCH symbol carrying the corresponding DMRS is the first DMRS symbol determined according to the PSSCH DMRS table, and the scheduling bandwidth of the PSSCH is equal to the number of candidate PRBs
  • the first PSSCH symbol carrying the corresponding DMRS is the second DMRS symbol determined according to the PSSCH DMRS table;
  • the scheduling bandwidth of PSSCH is not equal to the number of candidate PRBs; or
  • the scheduling bandwidth of the PSSCH is not less than the first threshold PRB.
  • the first information may also include encoded first data
  • the mapping unit 704 is further configured to, when the sub-channel size of the resource pool is less than the second threshold, start from the first symbol after the last symbol of the PSCCH.
  • One PSSCH symbol starts to map the first data after encoding.
  • first determining unit 701, the second determining unit 702, the sending unit 703, and the mapping unit 704 can be directly obtained by referring to the relevant description of the first terminal device in the method embodiment shown in FIG. Add more details.
  • FIG. 8 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention. As shown in Figure 8, the communication device may include:
  • the receiving unit 801 is configured to receive the first information from the terminal device through the PSSCH, and the first information may include the encoded second-level SCI;
  • the determining unit 802 is configured to determine the number of modulation symbols after the second-level SCI encoding according to the configuration parameters of the resource pool;
  • the decoding unit 803 is configured to decode the encoded second-level SCI according to the number of modulation symbols encoded by the second-level SCI to obtain the second-level SCI.
  • the configuration parameters of the resource pool include the format of the PSCCH corresponding to the resource pool, the CRC of the first level SCI, the number of PSCCH candidate PRBs supported by the resource pool, and the number of time-domain symbols of the PSCCH;
  • the determining unit 802 is specifically used for:
  • the number of modulation symbols after the second-level SCI encoding is determined according to the code rate of the first-level SCI.
  • the determining unit 802 determines the code rate of the first-level SCI according to the format, the CRC of the first-level SCI, the number of candidate PRBs, and the number of time-domain symbols, including:
  • the code rate of the first-level SCI is determined according to the number of bits of the first-level SCI, the number of bits of the first-level SCI CRC, and the number of bits after the first-level SCI encoding.
  • the determining unit 802 determines the number of bits after the first-level SCI encoding according to the number of candidate PRBs and the number of time-domain symbols, including:
  • the number of bits after the first-level SCI encoding is determined according to the number of modulation symbols after the first-level SCI encoding and the modulation order of the first-level SCI.
  • the determining unit 802 determines the number of modulation symbols encoded by the second-level SCI according to the code rate of the first-level SCI includes:
  • the number of bits of the second-level SCI, and the number of bits of the second-level SCI CRC the number of modulation symbols after the second-level SCI encoding is determined.
  • the determining unit 802 determines the number of modulation symbols encoded by the second-level SCI according to the code rate of the first-level SCI includes:
  • the code rate of the first-level SCI the number of bits of the second-level SCI, the number of bits of the second-level SCI CRC, and the first parameter, the number of modulation symbols after the second-level SCI encoding is determined.
  • the decoding unit 803 is specifically configured to:
  • the encoded second-level SCI is decoded to obtain the second-level SCI.
  • the communication device may further include:
  • the demapping unit 804 is used to demap the first information from the transmission resources of the PSSCH according to the first rule.
  • the second-level SCI after encoding is demapped from the first PSSCH symbol carrying the corresponding DMRS when demapping in the time domain. Mapped.
  • the first rule is:
  • the first PSSCH symbol carrying the corresponding DMRS is the first DMRS symbol determined according to the PSSCH DMRS table, and the scheduling bandwidth of the PSSCH is equal to the number of candidate PRBs
  • the first PSSCH symbol carrying the corresponding DMRS is the second DMRS symbol determined according to the PSSCH DMRS table; or
  • the scheduling bandwidth of PSSCH is not equal to the number of candidate PRBs; or
  • the scheduling bandwidth of the PSSCH is not less than the first threshold PRB.
  • the first information may also include the encoded first data
  • the demapping unit 804 is also used to start from the last symbol of the PSCCH when the sub-channel size of the resource pool is less than the second threshold.
  • the first PSSCH symbol starts to demap the first data after encoding.
  • receiving unit 801, the first determining unit 802, the decoding unit 803, and the demapping unit 804 can be directly obtained by referring to the related description of the second terminal device in the method embodiment shown in FIG. 5, and will not be repeated here. .
  • FIG. 9 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention. As shown in Figure 9, the communication device may include:
  • the obtaining unit 901 is configured to obtain the value of the second parameter according to the information of the first data
  • the first determining unit 902 is configured to determine the number of modulation symbols after the second level SCI encoding according to the value of the second parameter;
  • the second determining unit 903 is configured to determine the encoded second-level SCI according to the number of modulation symbols after the second-level SCI encoding
  • the sending unit 904 is configured to send first information to the terminal device through the PSSCH.
  • the first information includes the encoded first data, the encoded second-level SCI, and indication information for indicating the value of the second parameter.
  • the first determining unit 902 is specifically configured to determine according to the number of bits of the first data, the number of bits of the second-level SCI, the number of REs that can be used to carry the second-level SCI on the PSSCH, and the second parameter.
  • the value after the second level SCI encoding modulates the number of symbols.
  • the second determining unit 903 is specifically configured to:
  • the information of the first data may include the modulation order and code rate of the first data.
  • the communication device may further include:
  • the mapping unit 905 is configured to map the first information to the transmission resources of the PSSCH according to the first rule, and the encoded second-level SCI is mapped from the first PSSCH symbol carrying the corresponding DMRS during time domain mapping.
  • the first rule is:
  • the first PSSCH symbol carrying the corresponding DMRS is the first DMRS symbol determined according to the PSSCH DMRS table, and the PSSCH scheduling bandwidth is equal to this In the case of the number of candidate PRBs, the first PSSCH symbol carrying the corresponding DMRS is the second DMRS symbol determined according to the PSSCH DMRS table; or
  • the scheduling bandwidth of PSSCH is not equal to the number of candidate PRBs; or
  • the scheduling bandwidth of the PSSCH is not less than the first threshold PRB.
  • mapping unit 905 is further configured to map the encoded first data from the first PSSCH symbol after the last symbol of the PSCCH when the subchannel size of the resource pool is less than the second threshold.
  • the value of the second parameter is determined according to the configuration parameter of the resource pool, the number of bits of the second SCI, and the number of bits of the CRC of the second level SCI.
  • the acquisition unit 901, the first determination unit 902, the second determination unit 903, the sending unit 904, and the mapping unit 905 you can directly refer to the relevant description of the first terminal device in the method embodiment shown in FIG. Get it, I won’t repeat it here.
  • FIG. 10 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention. As shown in Fig. 10, the communication device may include:
  • the receiving unit 1001 is configured to receive first information from a terminal device through the PSSCH, the first information includes the encoded second-level SCI and indication information used to indicate the value of the second parameter;
  • the obtaining unit 1002 is configured to obtain the value of the second parameter according to the indication information
  • the determining unit 1003 is configured to determine the number of modulation symbols after the second level SCI encoding according to the value of the second parameter;
  • the decoding unit 1004 is configured to decode the encoded second-level SCI according to the number of modulation symbols encoded by the second-level SCI to obtain the second-level SCI.
  • the determining unit 1003 is specifically configured to determine according to the number of bits of the first data, the number of bits of the second-level SCI, the number of REs that can be used to carry the second-level SCI on the PSSCH, and the value of the second parameter. The number of modulation symbols after the second level SCI encoding.
  • the decoding unit 1004 is specifically configured to:
  • the encoded second-level SCI is decoded to obtain the second-level SCI.
  • the communication device may further include:
  • the demapping unit 1005 is configured to demap the first information from the PSSCH according to the first rule, and the encoded second-level SCI is demapped from the first PSSCH symbol carrying the corresponding DMRS during time domain demapping. .
  • the first rule is:
  • the first PSSCH symbol carrying the corresponding DMRS is the first DMRS symbol determined according to the PSSCH DMRS table, and the PSSCH scheduling bandwidth is equal to this In the case of the number of candidate PRBs, the first PSSCH symbol carrying the corresponding DMRS is the second DMRS symbol determined according to the PSSCH DMRS table; or
  • the scheduling bandwidth of PSSCH is not equal to the number of candidate PRBs; or
  • the scheduling bandwidth of the PSSCH is not less than the first threshold PRB.
  • the first information may also include the encoded first data.
  • the demapping unit 1005 is further configured to, when the subchannel size of the resource pool is less than the second threshold, start from The first PSSCH symbol starts to demap the first data after encoding.
  • the value of the second parameter is determined according to the configuration parameter of the resource pool, the number of bits of the second SCI, and the number of bits of the CRC of the second level SCI.
  • receiving unit 1001, obtaining unit 1002, determining unit 1003, decoding unit 1004, and demapping unit 1005 can be directly obtained by referring to the related description of the second terminal device in the method embodiment shown in FIG. Add more details.
  • FIG. 11 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • the communication device may include a processor 1101, a memory 1102, an input interface 1103, an output interface 1104, and a bus 1105.
  • the processor 1101 may be a general-purpose central processing unit (CPU), multiple CPUs, microprocessors, application-specific integrated circuits (ASICs), or one or more programs for controlling the execution of the program of the present invention. integrated circuit.
  • the memory 1102 may be a read-only memory (ROM) or other types of static storage devices that can store static information and instructions, random access memory (RAM), or other types that can store information and instructions
  • the dynamic storage device can also be electrically erasable programmable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), CD-ROM (Compact Disc Read-Only Memory, CD-ROM) or other optical disc storage, optical disc storage (Including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or can be used to carry or store desired program codes in the form of instructions or data structures and can be used by a computer Any other media accessed, but not limited to this.
  • the memory 1102 may exist independently, and may be connected to the processor 1101 through the bus 1105.
  • the memory 1102 may also be integrated with the processor 1101. Among them, the bus 1405 is used to realize the connection between these components.
  • the communication device may be the first terminal device or a module (for example, a chip) of the first terminal device.
  • the processor 1101 is used to control the sending unit 703. Perform operations performed in the foregoing embodiment.
  • the processor 1101 is further configured to perform the operations performed in the foregoing embodiments of the first determining unit 701, the second determining unit 702, and the mapping unit 704.
  • the input interface 1103 is used to receive data from other communication devices.
  • the output interface 1104 is used to perform the operations performed by the sending unit 703 in the foregoing embodiment.
  • the foregoing first terminal device or the modules in the first terminal device may also be used to execute various methods executed by the first terminal device in the method embodiment shown in FIG. 5, and details are not described herein again.
  • the communication device may be a second terminal device or a module (for example, a chip) of the second terminal device.
  • the processor 1101 is used to control the receiving unit 801. Perform operations performed in the foregoing embodiment.
  • the processor 1101 is also configured to perform the operations performed in the foregoing embodiment of the first determining unit 802, the decoding unit 803, and the demapping unit 804.
  • the input interface 1103 is used to perform the receiving unit in the foregoing embodiment.
  • the operation performed by 801, the output interface 1104 is used to send information to other communication devices.
  • the foregoing first terminal device or the modules in the first terminal device may also be used to execute various methods executed by the second terminal device in the method embodiment shown in FIG. 5, and details are not described herein again.
  • the communication device may be the first terminal device or a module (for example, a chip) of the first terminal device.
  • the processor 1101 is used to control the sending unit 904
  • the processor 1101 is also configured to perform the operations performed in the foregoing embodiment of the obtaining unit 901, the first determining unit 902, the second determining unit 903, and the mapping unit 905, and the input interface 1103 is used to receive
  • the output interface 1104 is used to perform operations performed by the sending unit 904 in the foregoing embodiment.
  • the above-mentioned first terminal device or the modules in the first terminal device may also be used to execute various methods executed by the first terminal device in the method embodiment shown in FIG. 6, and details are not described herein again.
  • the communication device may be a second terminal device or a module (for example, a chip) of the second terminal device.
  • the processor 1101 is used to control the receiving unit 1001.
  • the processor 1101 is also configured to perform the operations performed in the foregoing embodiment of the obtaining unit 1002, the determining unit 1003, the decoding unit 1004, and the demapping unit 1005, and the input interface 1103 is used to perform the operations performed in the foregoing embodiment.
  • the operation performed by the receiving unit 1001, and the output interface 1104 is used to send information to other communication devices.
  • the foregoing first terminal device or the modules in the first terminal device may also be used to execute various methods executed by the second terminal device in the method embodiment shown in FIG. 6, and details are not described herein again.
  • FIG. 12 is a schematic structural diagram of another communication device disclosed in an embodiment of the present invention.
  • the communication device may include an input interface 1201, a logic circuit 1202, and an output interface 1203.
  • the input interface 1201 and the output interface 1203 are connected through a logic circuit 1202.
  • the input interface 1201 is used to receive information from other communication devices, and the output interface 1203 is used to output, schedule, or send information to other communication devices.
  • the logic circuit 1202 is used to perform operations other than the operations of the input interface 1201 and the output interface 1203, for example, to implement the functions implemented by the processor 1101 in the foregoing embodiment.
  • the communication device may be a first terminal device or a module in the first terminal device, or may be a second terminal device or a module in the second terminal device.
  • the input interface 1201, logic circuit 1202, and output interface 1203 you can directly refer to the first terminal device or the module in the first terminal device and the second terminal device or the module in the second terminal device in the above method embodiment. The related description of the module is directly obtained, so I won't repeat it here.
  • the embodiment of the present invention also discloses a computer-readable storage medium with an instruction stored thereon, and the method in the foregoing method embodiment is executed when the instruction is executed.
  • the embodiment of the present invention also discloses a computer program product containing instructions, which execute the method in the foregoing method embodiment when the instruction is executed.
  • the embodiment of the present invention also discloses a communication system.
  • the communication system includes a first terminal device and a second terminal device.
  • first terminal device and a second terminal device.
  • second terminal device For a detailed description, reference may be made to the communication methods shown in FIG. 5 and FIG. 6.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开一种通信方法及装置,根据资源池的配置参数确定第二级侧行链路控制信息SCI编码后的调制符号个数;根据第二级SCI编码后的调制符号个数确定编码后的第二级SCI;通过物理层侧行链路共享信道PSSCH向终端设备发送第一信息,第一信息包括编码后的第二级SCI。本发明实施例,可以提高信息传输的可靠性。

Description

一种通信方法及装置 技术领域
本发明实施例涉及通信技术领域,尤其涉及一种通信方法及装置。
背景技术
在新无线(new radio,NR)Uu中,Uu即终端设备与网络设备之间的上行链路或下行链路,在物理上行共享信道(physical uplink shared channel,PUSCH)上承载上行控制信息(uplink control information,UCI)和上行共享数据(uplink shared channel,UL-SCH)的情况下,终端设备可以将UCI复用在PSSCH上进行传输,具体地,UCI通过速率匹配来确定编码后的比特数,然后与UL-SCH复用后映射到PUSCH上。在进行速率匹配时使用的资源单元(resource element,RE)的个数是基于数据来确定的。在NR车联网(vehicle to everything,V2X)中,第二级侧行链路控制信息(sidelinkcontrol information,SCI)在带有侧行链路(sidelink,SL)-共享数据(shared channel,SCH)的物理层侧行链路共享信道(physical sidelinkshared channel,PSSCH)中传输时,在进行速率匹配的过程中,可以使用与NR Uu相同的方法确定使用的RE的个数。然而,由于数据与第二级SCI之间的关联度较小,因此,根据通过数据确定第二级SCI的RE的个数较大,以致增加了PSSCH的码率,降低了信息传输的可靠性。
发明内容
本发明实施例公开了一种通信方法及装置,用于提高信息传输的可靠性。
第一方面公开一种通信方法,根据资源池的配置参数确定第二级SCI编码后的调制符号个数,根据第二级SCI编码后的调制符号个数确定编码后的第二级SCI,通过PSSCH向终端设备发送第一信息,第一信息可以包括编码后的第二级SCI。可见,在确定第二级SCI编码后的调制符号个数的时候,是根据资源池的配置参数确定的,由于资源池的配置参数与第二级SCI之间的关联度较大,因此,可以保证确定的第二级SCI编码后的调制符号个数不会过大,可以保证第二级SCI的码率和保证PSSCH的码率,从而可以提高信息传输的可靠性。
作为一种可能的实现方式,资源池的配置参数可以包括资源池对应的物理层侧行链路控制信道(physical sidelink control channel,PSCCH)的格式、第一级SCI的循环冗余校验(cyclic redundancy check,CRC)、资源池支持的PSCCH的候选物理资源块(physical resource block,PRB)的个数以及PSCCH的时域符号个数。在根据资源池的配置参数确定第二级SCI编码后的调制符号个数时,可以先根据该格式、第一级SCI的CRC、该候选PRB的个数和该时域符号个数确定第一级SCI的码率,之后根据第一级SCI的码率确定第二级SCI编码后的调制符号个数。可见,在确定第二级SCI编码后的调制符号个数的时候,是根据第一级SCI的码率确定的,由于第一级SCI与第二级SCI之间的关联度较大,因此,即满足了第二级SCI的译码性能,又可以保证确定的第二级SCI编码后的调制符号个数不会过大,可以保证第二级SCI的码率和保证PSSCH的码率,从而可以提高信息传输的可靠性。
作为一种可能的实现方式,根据该格式、第一级SCI的CRC、该候选PRB的个数和该时 域符号个数确定第一级SCI的码率时,可以根据该格式确定第一级SCI的比特数,根据该候选PRB的个数和该时域符号个数确定第一级SCI编码后的比特数,根据第一级SCI的比特数、第一级SCI的CRC的比特数以及第一级SCI编码后的比特数确定第一级SCI的码率。
作为一种可能的实现方式,根据该候选PRB的个数和该时域符号个数确定第一级SCI编码后的比特数时,可以根据该候选PRB的个数和该时域符号个数确定第一级SCI编码后的调制符号个数,根据第一级SCI编码后的调制符号个数和第一级SCI的调制阶数确定第一级SCI编码后的比特数。
作为一种可能的实现方式,根据第一级SCI的码率确定第二级SCI编码后的调制符号个数时,可以根据第一级SCI的码率、第二级SCI的比特数和第二级SCI的CRC的比特数,确定第二级SCI编码后的调制符号个数。
作为一种可能的实现方式,根据所述第一级SCI的码率确定第二级SCI编码后的调制符号个数时,可以根据第一级SCI的码率、第二级SCI的比特数、第二级SCI的CRC的比特数和第一参数,确定第二级SCI编码后的调制符号个数。
作为一种可能的实现方式,根据第二级SCI编码后的调制符号个数确定编码后的第二级SCI时,可以先根据第二级SCI编码后的调制符号个数确定第二级SCI编码后的比特数,之后根据第二级SCI编码后的比特数确定编码后的第二级SCI。编码后的第二级SCI即信道编码处理后的第二级SCI。
作为一种可能的实现方式,可以将第一信息按照第一规则映射到PSSCH的传输资源上,编码后的第二级SCI在时域映射时是从第一个携带相应解调参考信号(demodulation reference signal,DMRS)的PSSCH符号开始映射的。
作为一种可能的实现方式,第一规则可以为在PSSCH的调度带宽大于该候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在PSSCH的调度带宽等于候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第二个DMRS符号。第一规则也可以为PSSCH的调度带宽不等于该候选PRB的个数。第一规则还可以为在资源池的子信道大小等于该候选PRB的个数的情况下,PSSCH的调度带宽不少于第一阈值个PRB。第一规则还可以为携带DMRS的PSSCH的带宽不小于第三阈值个PRB。在PSSCH的调度带宽等于候选PRB的个数的情况下,对第一个携带相应DMRS的PSSCH符号进行了定义。PSSCH的调度带宽不等于该候选PRB的个数,可以避免出现PSCCH和PSSCH不频分复用时第一个携带DMRS的PSSCH符号的定义不清晰的问题。
作为一种可能的实现方式,第一信息还可以包括编码后的第一数据,可以在满足第二规则的情况下,从PSCCH的最后一个符号后的第一个PSSCH符号开始映射编码后的第一数据。可以保证PSSCH的性能,提高了PSSCH被译码成功的概率,从而可以提高PSSCH的传输可靠性。
作为一种可能的实现方式,第二规则可以是PSCCH和PSSCH是频分复用(FDM)的,和/或PSSCH的带宽小于第四阈值个PRB个数。
作为一种可能的实现方式,第二规则可以是资源池的子信道大小小于第二阈值。
作为一种可能的实现方式,第二级SCI编码后的调制符号个数不超过第五阈值。
第二方面公开一种通信方法,通过PSSCH接收来自终端设备的包括编码后的第二级SCI的第一信息,根据资源池的配置参数确定第二级SCI编码后的调制符号个数,根据第二级SCI编码后的调制符号个数对编码后的第二级SCI进行解码得到第二级SCI。可见,在确定第二级SCI编码后的调制符号个数的时候,是根据资源池的配置参数确定的,由于资源池的配置参数与第二级SCI之间的关联度较大,因此,可以保证确定的第二级SCI编码后的调制符号个数不会过大,可以保证第二级SCI的码率和保证PSSCH的码率,从而可以提高信息传输的可靠性。
作为一种可能的实现方式,资源池的配置参数包括资源池对应的PSCCH的格式、第一级SCI的CRC、资源池支持的PSCCH的候选PRB的个数以及PSCCH的时域符号个数。根据资源池的配置参数确定第二级SCI编码后的调制符号个数时,可以先根据该格式、第一级SCI的CRC、该候选PRB的个数和该时域符号个数确定第一级SCI的码率,之后根据第一级SCI的码率确定第二级SCI编码后的调制符号个数。可见,在确定第二级SCI编码后的调制符号个数的时候,是根据第一级SCI的码率确定的,由于第一级SCI与第二级SCI之间的关联度较大,因此,即满足了第二级SCI的译码性能,又可以保证确定的第二级SCI编码后的调制符号个数不会过大,可以保证第二级SCI的码率和保证PSSCH的码率,从而可以提高信息传输的可靠性。
作为一种可能的实现方式,根据该格式、第一级SCI的CRC、该候选PRB的个数和该时域符号个数确定第一级SCI的码率时,可以根据该格式确定第一级SCI的比特数,根据该候选PRB的个数和该时域符号个数确定第一级SCI编码后的比特数,根据第一级SCI的比特数、第一级SCI的CRC的比特数以及第一级SCI编码后的比特数确定第一级SCI的码率。
作为一种可能的实现方式,根据该候选PRB的个数和该时域符号个数确定第一级SCI编码后的比特数时,可以根据该候选PRB的个数和该时域符号个数确定第一级SCI编码后的调制符号个数,根据第一级SCI编码后的调制符号个数和第一级SCI的调制阶数确定第一级SCI编码后的比特数。
作为一种可能的实现方式,根据第一级SCI的码率确定第二级SCI编码后的调制符号个数时,可以根据第一级SCI的码率、第二级SCI的比特数和第二级SCI的CRC的比特数,确定第二级SCI编码后的调制符号个数。
作为一种可能的实现方式,根据第一级SCI的码率确定第二级SCI编码后的调制符号个数时,可以根据第一级SCI的码率、第二级SCI的比特数、第二级SCI的CRC的比特数和第一参数,确定第二级SCI编码后的调制符号个数。
作为一种可能的实现方式,根据第二级SCI编码后的调制符号个数对编码后的第二级SCI进行解码得到第二级SCI时,可以先根据第二级SCI编码后的调制符号个数确定第二级SCI编码后的比特数,之后根据第二级SCI编码后的比特数对编码后的第二级SCI进行解码得到第二级SCI。编码后的第二级SCI即信道编码处理后的第二级SCI。
作为一种可能的实现方式,可以按照第一规则从PSSCH的传输资源上解映射第一信息,编码后的第二级SCI在时域解映射时是从第一个携带相应DMRS的PSSCH符号开始解映射的。
作为一种可能的实现方式,第一规则:可以为在PSSCH的调度带宽大于该候选PRB的 个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在PSSCH的调度带宽等于该候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第二个DMRS符号;也可以为PSSCH的调度带宽不等于该候选PRB的个数;还可以为在资源池的子信道大小等于该候选PRB的个数的情况下,PSSCH的调度带宽不少于第一阈值个PRB。还可以为携带DMRS的PSSCH的带宽不小于第三阈值个PRB。在PSSCH的调度带宽等于候选PRB的个数的情况下,对第一个携带相应DMRS的PSSCH符号进行了定义。PSSCH的调度带宽不等于该候选PRB的个数,可以避免出现PSCCH和PSSCH不频分复用时第一个携带DMRS的PSSCH符号的定义不清晰的问题。
作为一种可能的实现方式,第一信息还可以包括编码后的第一数据,可以在满足第二规则的情况下,从PSCCH的最后一个符号后的第一个PSSCH符号开始解映射编码后的第一数据。可以保证PSSCH的性能,提高了PSSCH被译码成功的概率,从而可以提高PSSCH的传输可靠性。
作为一种可能的实现方式,第二规则可以是PSCCH和PSSCH是频分复用(FDM)的,和/或PSSCH的带宽小于第四阈值个PRB个数。
作为一种可能的实现方式,第二规则可以是资源池的子信道大小小于第二阈值。
作为一种可能的实现方式,第二级SCI编码后的调制符号个数不超过第五阈值。
第三方面公开一种通信方法,根据第一数据的信息获取第二参数的值,根据第二参数的值确定第二级SCI编码后的调制符号个数,根据第二级SCI编码后的调制符号个数确定编码后的第二级SCI,通过PSSCH向终端设备发送第一信息,第一信息包括编码后的第一数据、编码后的第二级SCI以及用于指示第二参数的值的指示信息。可见,在确定第二级SCI编码后的调制符号个数的时候,是根据第二参数的值确定的,可以通过合适的第二参数的值,在保证第二级SCI的性能的同时确保第二级SCI编码后的调制符号个数不会过大,可以保证PSSCH的码率,从而可以提高信息传输的可靠性。
作为一种可能的实现方式,根据第二参数的值确定第二级SCI编码后的调制符号个数时,可以根据第一数据的比特数、第二级SCI的比特数、PSSCH上可用于承载第二级SCI的RE个数以及第二参数的值确定第二级SCI编码后的调制符号个数。
作为一种可能的实现方式,根据第二级SCI编码后的调制符号个数确定编码后的第二级SCI时,可以先根据第二级SCI编码后的调制符号个数确定第二级SCI编码后的比特数,之后根据第二级SCI编码后的比特数确定编码后的第二级SCI。
作为一种可能的实现方式,第一数据的信息可以包括第一数据的调制阶数和码率。
作为一种可能的实现方式,可以将第一信息按照第一规则映射到PSSCH的传输资源上,编码后的第二级SCI在时域映射时是从第一个携带相应DMRS的PSSCH符号开始映射的。
作为一种可能的实现方式,第一规则可以为在PSSCH的调度带宽大于资源池支持的PSCCH的候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在PSSCH的调度带宽等于资源池支持的PSCCH的候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确 定的第二个DMRS符号。第一规则也可以为PSSCH的调度带宽不等于资源池支持的PSCCH的候选PRB的个数。第一规则还可以为在资源池的子信道大小等于资源池支持的PSCCH的候选PRB的个数的情况下,PSSCH的调度带宽不少于第一阈值个PRB。第一规则还可以为携带DMRS的PSSCH的带宽不少于第三阈值个PRB。在PSSCH的调度带宽等于候选PRB的个数的情况下,对第一个携带相应DMRS的PSSCH符号进行了定义。PSSCH的调度带宽不等于该候选PRB的个数,可以避免出现PSCCH和PSSCH不频分复用时第一个携带DMRS的PSSCH符号的定义不清晰的问题。
作为一种可能的实现方式,可以在满足第二规则的情况下,从PSCCH的最后一个符号后的第一个PSSCH符号开始映射编码后的第一数据。可以保证PSSCH的性能,提高了PSSCH被译码成功的概率,从而可以提高PSSCH的传输可靠性。
作为一种可能的实现方式,第二规则可以为是PSCCH和PSSCH是频分复用(FDM)的,和/或PSSCH的带宽小于第四阈值个PRB个数。
作为一种可能的实现方式,第二规则可以是资源池的子信道大小小于第二阈值。
作为一种可能的实现方式,第二级SCI编码后的调制符号个数不超过第五阈值。
作为一种可能的实现方式,第二参数的值根据资源池的配置参数、第二SCI的比特数、第二级SCI的CRC的比特数确定。
第四方面公开一种通信方法,通过PSSCH接收来自终端设备的包括编码后的第二级SCI以及用于指示第二参数的值的指示信息的第一信息,根据指示信息获取第二参数的值,根据第二参数的值确定第二级SCI编码后的调制符号个数,根据第二级SCI编码后的调制符号个数对编码后的第二级SCI进行解码得到第二级SCI。可见,在确定第二级SCI编码后的调制符号个数的时候,是根据第二参数的值确定的,可以通过合适的第二参数的值,在保证第二级SCI的性能的同时确保第二级SCI编码后的调制符号个数不会过大,可以保证PSSCH的码率,从而可以提高信息传输的可靠性。
作为一种可能的实现方式,根据第二参数的值确定第二级SCI编码后的调制符号个数时,可以根据第一数据的比特数、第二级SCI的比特数、PSSCH上可用于承载第二级SCI的RE个数以及第二参数的值,确定第二级SCI编码后的调制符号个数。
作为一种可能的实现方式,根据第二级SCI编码后的调制符号个数对编码后的第二级SCI进行解码得到第二级SCI时,可以先根据第二级SCI编码后的调制符号个数确定第二级SCI编码后的比特数,之后根据第二级SCI编码后的比特数对编码后的第二级SCI进行解码得到第二级SCI。
作为一种可能的实现方式,可以按照第一规则从PSSCH上解映射第一信息,编码后的第二级SCI在时域解映射时是从第一个携带相应DMRS的PSSCH符号开始解映射的。
作为一种可能的实现方式,第一规则可以为在PSSCH的调度带宽大于资源池支持的PSCCH的候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在PSSCH的调度带宽等于资源池支持的PSCCH的候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第二个DMRS符号。第一规则也可以为PSSCH的调度带宽不等于资源池支持的PSCCH 的候选PRB的个数。第一规则还可以为在资源池的子信道大小等于资源池支持的PSCCH的候选PRB的个数的情况下,PSSCH的调度带宽不少于第一阈值个PRB。第一规则还可以为携带DMRS的PSSCH的带宽不少于第三阈值个PRB。在PSSCH的调度带宽等于候选PRB的个数的情况下,对第一个携带相应DMRS的PSSCH符号进行了定义。PSSCH的调度带宽不等于该候选PRB的个数,可以避免出现PSCCH和PSSCH不频分复用时第一个携带DMRS的PSSCH符号的定义不清晰的问题。
作为一种可能的实现方式,第一信息还可以包括编码后的第一数据,可以在满足第二规则的情况下,从PSCCH的最后一个符号后的第一个PSSCH符号开始解映射编码后的第一数据。
作为一种可能的实现方式,第二规则可以为是PSCCH和PSSCH是频分复用(FDM)的,和/或PSSCH的带宽小于第四阈值个PRB个数。可以保证PSSCH的性能,提高了PSSCH被译码成功的概率,从而可以提高PSSCH的传输可靠性。
作为一种可能的实现方式,第二规则可以是资源池的子信道大小小于第二阈值。
作为一种可能的实现方式,第二级SCI编码后的调制符号个数不超过第五阈值。
作为一种可能的实现方式,第二参数的值根据资源池的配置参数、第二SCI的比特数、第二级SCI的CRC的比特数确定。
第五方面公开一种通信装置,包括:
第一确定单元,用于根据资源池的配置参数确定第二级SCI编码后的调制符号个数;
第二确定单元,用于根据所述第二级SCI编码后的调制符号个数确定所述编码后的第二级SCI;
发送单元,用于通过PSSCH向终端设备发送第一信息,所述第一信息包括编码后的第二级SCI。
作为一种可能的实现方式,所述资源池的配置参数包括所述资源池对应的PSCCH的格式、第一级SCI的CRC、所述资源池支持的所述PSCCH的候选PRB的个数以及所述PSCCH的时域符号个数;
所述第一确定单元具体用于:
根据所述格式、所述第一级SCI的CRC、所述候选PRB的个数和所述时域符号个数确定所述第一级SCI的码率;
根据所述第一级SCI的码率确定第二级SCI编码后的调制符号个数。
作为一种可能的实现方式,所述第一确定单元根据所述格式、所述第一级SCI的CRC、所述候选PRB的个数和所述时域符号个数确定所述第一级SCI的码率包括:
根据所述格式确定所述第一级SCI的比特数;
根据所述候选PRB的个数和所述时域符号个数确定所述第一级SCI编码后的比特数;
根据所述第一级SCI的比特数、所述第一级SCI的CRC的比特数以及所述第一级SCI编码后的比特数确定所述第一级SCI的码率。
作为一种可能的实现方式,所述第一确定单元根据所述候选PRB的个数和所述时域符号个数确定所述第一级SCI编码后的比特数包括:
根据所述候选PRB的个数和所述时域符号个数确定所述第一级SCI编码后的调制符号个数;
根据所述第一级SCI编码后的调制符号个数和所述第一级SCI的调制阶数确定所述第一级SCI编码后的比特数。
作为一种可能的实现方式,所述第一确定单元根据所述第一级SCI的码率确定第二级SCI编码后的调制符号个数包括:
根据所述第一级SCI的码率、第二级SCI的比特数和所述第二级SCI的CRC的比特数,确定所述第二级SCI编码后的调制符号个数。
作为一种可能的实现方式,所述第一确定单元根据所述第一级SCI的码率确定第二级SCI编码后的调制符号个数包括:
根据所述第一级SCI的码率、第二级SCI的比特数、所述第二级SCI的CRC的比特数和第一参数,确定所述第二级SCI编码后的调制符号个数。
作为一种可能的实现方式,所述第二确定单元具体用于:
根据所述第二级SCI编码后的调制符号个数确定所述第二级SCI编码后的比特数;
根据所述第二级SCI编码后的比特数确定编码后的第二级SCI。
作为一种可能的实现方式,所述装置还包括:
映射单元,用于将所述第一信息按照第一规则映射到所述PSSCH的传输资源上,所述编码后的第二级SCI在时域映射时是从第一个携带相应DMRS的PSSCH符号开始映射的。
作为一种可能的实现方式,所述第一规则为:
在所述PSSCH的调度带宽大于所述候选PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在所述PSSCH的调度带宽等于所述候选PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据所述PSSCH DMRS表格确定的第二个DMRS符号;或者
所述PSSCH的调度带宽不等于所述候选PRB的个数;或者
在所述资源池的子信道大小等于所述候选PRB的个数的情况下,所述PSSCH的调度带宽不少于第一阈值个PRB。
作为一种可能的实现方式,所述第一信息还包括编码后的第一数据,所述映射单元,还用于在所述资源池的子信道大小小于第二阈值的情况下,从所述PSCCH的最后一个符号后的第一个PSSCH符号开始映射所述编码后的第一数据。
第六方面公开一种通信装置,包括:
接收单元,用于通过PSSCH接收来自终端设备的第一信息,所述第一信息包括编码后的第二级SCI;
确定单元,用于根据资源池的配置参数确定所述第二级SCI编码后的调制符号个数;
解码单元,用于根据所述第二级SCI编码后的调制符号个数对所述编码后的第二级SCI进行解码,得到所述第二级SCI。
作为一种可能的实现方式,所述资源池的配置参数包括所述资源池对应的PSCCH的格式、第一级SCI的CRC、所述资源池支持的所述PSCCH的候选PRB的个数以及所述PSCCH 的时域符号个数;
所述确定单元具体用于:
根据所述格式、所述第一级SCI的CRC、所述候选PRB的个数和所述时域符号个数确定所述第一级SCI的码率;
根据所述第一级SCI的码率确定所述第二级SCI编码后的调制符号个数。
作为一种可能的实现方式,所述确定单元根据所述格式、所述第一级SCI的CRC、所述候选PRB的个数和所述时域符号个数确定所述第一级SCI的码率包括:
根据所述格式确定所述第一级SCI的比特数;
根据所述候选PRB的个数和所述时域符号个数确定所述第一级SCI编码后的比特数;
根据所述第一级SCI的比特数、所述第一级SCI的CRC的比特数以及所述第一级SCI编码后的比特数确定所述第一级SCI的码率。
作为一种可能的实现方式,所述确定单元根据所述候选PRB的个数和所述时域符号个数确定所述第一级SCI编码后的比特数包括:
根据所述候选PRB的个数和所述时域符号个数确定所述第一级SCI编码后的调制符号个数;
根据所述第一级SCI编码后的调制符号个数和所述第一级SCI的调制阶数确定所述第一级SCI编码后的比特数。
作为一种可能的实现方式,所述确定单元根据所述第一级SCI的码率确定所述第二级SCI编码后的调制符号个数包括:
根据所述第一级SCI的码率、所述第二级SCI的比特数和所述第二级SCI的CRC的比特数,确定所述第二级SCI编码后的调制符号个数。
作为一种可能的实现方式,所述确定单元根据所述第一级SCI的码率确定所述第二级SCI编码后的调制符号个数包括:
根据所述第一级SCI的码率、所述第二级SCI的比特数、所述第二级SCI的CRC的比特数和第一参数,确定所述第二级SCI编码后的调制符号个数。
作为一种可能的实现方式,所述解码单元具体用于:
根据所述第二级SCI编码后的调制符号个数确定所述第二级SCI编码后的比特数;
根据所述第二级SCI编码后的比特数对所述编码后的第二级SCI进行解码,得到所述第二级SCI。
作为一种可能的实现方式,所述装置还包括:
解映射单元,用于按照第一规则从所述PSSCH的传输资源上解映射所述第一信息,所述编码后的第二级SCI在时域解映射时是从第一个携带相应DMRS的PSSCH符号开始解映射的。
作为一种可能的实现方式,所述第一规则为:
在所述PSSCH的调度带宽大于所述候选PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在所述PSSCH的调度带宽等于所述候选PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据所述PSSCH DMRS表格确定的第二个DMRS符号;或者
所述PSSCH的调度带宽不等于所述候选PRB的个数;或者
在所述资源池的子信道大小等于所述候选PRB的个数的情况下,所述PSSCH的调度带宽不少于第一阈值个PRB。
作为一种可能的实现方式,所述第一信息还包括编码后的第一数据,所述解映射单元,还用于在所述资源池的子信道大小小于第二阈值的情况下,从所述PSCCH的最后一个符号后的第一个PSSCH符号开始解映射所述编码后的第一数据。
第七方面公开一种通信装置,包括:
获取单元,用于根据第一数据的信息获取第二参数的值;
第一确定单元,用于根据所述第二参数的值,确定第二级SCI编码后的调制符号个数;
第二确定单元,用于根据所述第二级SCI编码后的调制符号个数确定编码后的第二级SCI;
发送单元,用于通过PSSCH向终端设备发送第一信息,所述第一信息包括编码后的第一数据、所述编码后的第二级SCI以及用于指示所述第二参数的值的指示信息。
作为一种可能的实现方式,所述第一确定单元,具体用于根据所述第一数据的比特数、第二级SCI的比特数、所述PSSCH上可用于承载第二级SCI的RE个数以及所述第二参数的值,确定所述第二级SCI编码后的调制符号个数。
作为一种可能的实现方式,所述第二确定单元具体用于:
根据所述第二级SCI编码后的调制符号个数确定所述第二级SCI编码后的比特数;
根据所述第二级SCI编码后的比特数确定编码后的第二级SCI。
作为一种可能的实现方式,所述第一数据的信息包括所述第一数据的调制阶数和码率。
作为一种可能的实现方式,所述装置还包括:
映射单元,用于将所述第一信息按照第一规则映射到所述PSSCH的传输资源上,所述编码后的第二级SCI在时域映射时是从第一个携带相应DMRS的PSSCH符号开始映射的。
作为一种可能的实现方式,所述第一规则为:
在所述PSSCH的调度带宽大于资源池支持的PSCCH的候选PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在所述PSSCH的调度带宽等于所述候选PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据所述PSSCH DMRS表格确定的第二个DMRS符号;或者
所述PSSCH的调度带宽不等于所述候选PRB的个数;或者
在所述资源池的子信道大小等于所述候选PRB的个数的情况下,所述PSSCH的调度带宽不少于第一阈值个PRB。
作为一种可能的实现方式,所述映射单元,还用于在所述资源池的子信道大小小于第二阈值的情况下,从所述PSCCH的最后一个符号后的第一个PSSCH符号开始映射所述编码后的第一数据。
作为一种可能的实现方式,所述第二参数的值根据所述资源池的配置参数、第二SCI的比特数、第二级SCI的CRC的比特数确定。
第八方面公开一种通信装置,包括:
接收单元,用于通过PSSCH接收来自终端设备的第一信息,所述第一信息包括编码后的第二级SCI以及用于指示第二参数的值的指示信息;
获取单元,用于根据所述指示信息获取所述第二参数的值;
确定单元,用于根据所述第二参数的值,确定所述第二级SCI编码后的调制符号个数;
解码单元,用于根据所述第二级SCI编码后的调制符号个数对所述编码后的第二级SCI进行解码,得到所述第二级SCI。
作为一种可能的实现方式,所述确定单元,具体用于根据所述第一数据的比特数、所述第二级SCI的比特数、所述PSSCH上可用于承载第二级SCI的RE个数以及所述第二参数的值,确定所述第二级SCI编码后的调制符号个数。
作为一种可能的实现方式,所述解码单元具体用于:
根据所述第二级SCI编码后的调制符号个数确定所述第二级SCI编码后的比特数;
根据所述第二级SCI编码后的比特数对所述解码后的第二级SCI进行逆处理,得到所述第二级SCI。
作为一种可能的实现方式,所述装置还包括:
解映射单元,用于按照第一规则从所述PSSCH上解映射所述第一信息,所述编码后的第二级SCI在时域解映射时是从第一个携带相应DMRS的PSSCH符号开始解映射的。
作为一种可能的实现方式,所述第一规则为:
在所述PSSCH的调度带宽大于资源池支持的PSCCH的候选PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在所述PSSCH的调度带宽等于所述候选PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据所述PSSCH DMRS表格确定的第二个DMRS符号;或者
所述PSSCH的调度带宽不等于所述候选PRB的个数;或者
在所述资源池的子信道大小等于所述候选PRB的个数的情况下,所述PSSCH的调度带宽不少于第一阈值个PRB。
作为一种可能的实现方式,所述第一信息还包括编码后的第一数据,所述解映射单元,还用于在所述资源池的子信道大小小于第二阈值的情况下,从所述PSCCH的最后一个符号后的第一个PSSCH符号开始解映射所述编码后的第一数据。
作为一种可能的实现方式,所述第二参数的值根据所述资源池的配置参数、第二SCI的比特数、第二级SCI的CRC的比特数确定。
第九方面公开一种通信装置,该通信装置可以是终端设备或者终端设备内的模块(例如,芯片)。该通信装置包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第一方面或第一方面的任一实现方式公开的通信方法。
第十方面公开一种通信装置,该通信装置可以是终端设备或者终端设备内的模块(例如,芯片)。该通信装置包括处理器、存储器、输入接口和输出接口,所述输入接口用于 接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第二方面或第二方面的任一实现方式公开的通信方法。
第十一方面公开一种通信装置,该通信装置可以是终端设备或者终端设备内的模块(例如,芯片)。该通信装置包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第三方面或第三方面的任一实现方式公开的通信方法。
第十二方面公开一种通信装置,该通信装置可以是终端设备或者终端设备内的模块(例如,芯片)。该通信装置包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,当所述处理器执行所述存储器存储的计算机程序时,使得所述处理器执行第四方面或第四方面的任一实现方式公开的通信方法。
第十三方面公开一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序或计算机指令,当该计算机程序或计算机指令运行时,实现如第一方面或第一方面的任一实现方式公开的通信方法,或者第二方面或第二方面的任一实现方式公开的通信方法,或者第三方面或第三方面的任一实现方式公开的通信方法,或者第四方面或第四方面的任一实现方式公开的通信方法。
第十四方面提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码被运行时,使得上述第一方面、第二方面、第三方面或第四方面的通信方法被执行。
第十五方面公开一种通信系统,该通信系统包括上述第九方面的通信装置和上述第十方面的通信装置。
第十六方面公开一种通信系统,该通信系统包括上述第十一方面的通信装置和上述第十二方面的通信装置。
附图说明
图1是本发明实施例公开的一种V2X的示意图;
图2是本发明实施例公开的一种UE之间进行通信的示意图;
图3是本发明实施例公开的一种空口资源的示意图;
图4是本发明实施例公开的一种网络架构示意图;
图5是本发明实施例公开的一种通信方法的流程示意图;
图6是本发明实施例公开的另一种通信方法的流程示意图;
图7是本发明实施例公开的一种通信装置的结构示意图;
图8是本发明实施例公开的另一种通信装置的结构示意图;
图9是本发明实施例公开的又一种通信装置的结构示意图;
图10是本发明实施例公开的又一种通信装置的结构示意图;
图11是本发明实施例公开的又一种通信装置的结构示意图;
图12是本发明实施例公开的又一种通信装置的结构示意图;
图13是本发明实施例公开的又一种通信方法的流程示意图;
图14是本发明实施例公开的又一种通信方法的流程示意图。
具体实施方式
本发明实施例公开了一种通信方法及装置,用于提高信息传输的可靠性。以下分别进行详细说明。
本发明实施例适用于SL通信,为了更好地理解本发明实施例公开的一种通信方法及装置,下面先对本发明实施例的应用场景进行描述。下面以车辆与任何事物之间进行通信的V2X为例进行说明的。随着通信需求的增加,第五代通信概念-万物互联已逐渐走入人们的视野。在第三代合作伙伴计划(3rd generation partnership project,3GPP)提出的长期演进(long term evolution,LTE)技术的网络下,V2X技术被提出。请参阅图1,图1是本发明实施例公开的一种V2X的示意图,如图1所示,V2X包括车辆与车辆(vehicle to vehicle,V2V)之间的通信、车辆与行人(vehicle to pedestrian,V2P)之间的通信、车辆与基础设施(vehicle to infrastructure,V2I)之间的通信以及车辆与网络(vehicle to network,V2N)之间的通信。V2X之间的通信是通过SL进行的。本发明实施例除了应用于V2X外,还可以应用于除V2X之外的其它SL通信,在此不作限定。例如,请参阅图2,图2是本发明实施例公开的一种用户设备(user equipment,UE)之间进行通信的示意图。如图2所示,UE1与UE2之间通过SL进行通信。
在LTEV2X中只有广播业务,广播业务对接收端没有任何限制,即发送端发送数据,任意一个终端设备都可以作为接收端接收该数据。为了保证广播业务的可靠性,进行数据重复传输,NR V2X中除了广播业务之外又引入了单播业务和组播业务。单播业务是限制在一对终端设备之间的通信,即一个终端设备发送数据则另一个终端设备接收数据。组播业务是限制在一个组内的通信,组内一个终端设备发送数据,组内的其他终端设备接收该数据。
在LTE V2X中,有用于传输数据的PSSCH以及用于传输SCI的PSCCH。在NR V2X中,由于引入了单播业务和组播业务,除了通过PSCCH传输SCI之外,还需要通过PSSCH传输SCI。通过PSCCH传输的SCI称为第一级SCI,通过PSSCH传输的SCI称为第二级SCI。
在NR V2X中,终端设备通过网络设备配置的SL资源池或者预配置的SL资源池中的资源传输信息。资源池是SL中终端设备传输信息使用的时频资源的集合。资源池的配置在时域上的粒度为时隙,在频域上只支持连续的PRB。对于一个给定的终端设备,一个(预)配置的资源池可以被用于单播传输、组播传输和广播传输。每个资源池的单播传输、组播传输和广播传输的两级SCI中第一级SCI的负荷大小相同。每个资源池只被配置一个第一级SCI的PSCCH的格式。每个资源池的PSCCH的时域符号个数是(预)配置的。每个资源池的子信道的大小(size)可能为10个PRB、15个PRB、20个PRB、25个PRB、50个PRB、75个PRB或100个PRB,是(预)配置的。第二级SCI的加扰过程独立于PSSCH的加扰过程。第二级SCI在PSSCH中进行RE映射时,先映射频域再映射时域,且第二级SCI的RE与PSSCH上数 据的RE不相互交织。第二级SCI进行RE映射时,可以在同一个符号内与PSSCH的DMRS进行频分复用(frequency division multiplex,FDM)。第二级SCI使用的调制方式可以为正交相移键控(quadrature phase shift keying,QPSK),也可以为其他调制方式,在此不加限定。
为了对NR V2X中资源池中的资源进行理解,下面先对空口资源进行介绍。空口资源包括时域资源和频域资源,时域资源按照符号(symbol)进行划分,频域资源按照子载波(subcarrier)进行划分。RE是用于数据传输的最小资源单位,1个RE对应1个时域符号和1个频域子载波。传输时间间隔(transmission time interval,TTI)是用于承载数据信息或业务信息的时域颗粒度。1个TTI可以对应一个时隙,包括S个时域符号的TTI可以称为时隙(slot)或完整时隙(full slot)。一个TTI也称为一个传输机会(transmission occasion,TO),例如,一个数据包可以承载在由时域上的一个TTI以及频域上的至少一个PRB组成的时频资源上。资源块(resource block,RB)是用于资源调度的基本单位,1个RB对应1个TTI中的多个子载波,即1个RB对应于多个频域上连续的子载波。请参阅图3,图3是本发明实施例公开的一种空口资源的示意图。如图3所示,横轴为时间(time),纵轴为频率(Freq),1个格子代表1个RE,1个TTI由n个时域符号组成,1个RB由1个TTI中的P个子载波组成,n和P为正整数。时域符号可以为正交频分复用(orthogonal frequency division multiplexing,OFDM)符号,也可以为单载波频分多址接入(single carrier frequency division multiplexing access,SC-FDMA)符号。例如,P=12。
在NR Uu中,在PUSCH上承载UCI和UL-SCH的情况下,终端设备可以将编码后的UCI以速率匹配的方式与UL-SCH复用后映射到PUSCH上,也可以将编码后的UCI通过打孔(puncture)已经映射到PUSCH上的UL-SCH的方式映射到PUSCH上,从而实现与UL-SCH的复用。UL-SCH即数据。而在进行速率匹配之前需要确定UCI所占的物理资源的数量,即UCI所占的RE个数,也即UCI所占的调制符号个数,也即UCI编码后的调制符号个数。在UCI为混合自动重传请求(hybrid automatic repeat request,HARQ)-确认应答(acknowledgement,ACK)的情况下,UCI所占的物理资源的数量的计算公式可以表示如公式(1):
Figure PCTCN2020075438-appb-000001
其中,Q′ ACK为UCI所占的物理资源的数量。O ACK为HARQ-ACK的比特数(即HARQ-ACK的载荷大小)。在O ACK大于或等于(或者大于)360的情况下,L ACK为11,在O ACK小于(或者小于或等于)360的情况下,L ACK为HARQ-ACK的CRC的比特数。
Figure PCTCN2020075438-appb-000002
为参数,可以看作PUSCH上其它信息(如UL-SCH)的码率与UCI的码率的比值,由网络设备通知,为大于0的数。
Figure PCTCN2020075438-appb-000003
为PUSCH上的UL-SCH对应的传输块大小(transport block size,TBS),即数据的比特数。C UL-SCH-1为PUSCH上的UL-SCH包括的码块个数。在调度PUSCH传输的下行控制信息(downlink control information,DCI)包括一个用于指示终端设备不传输第r个码块的码块组传输指示(code block group transmission indication,CBGTI)字段的情况下,K r为0,在调度PUSCH传输的DCI不包括一个用于指示UE不传输第r个码块的CBGTI字 段的情况下,K r为PUSCH上的UL-SCH中第r个码块的比特数。
Figure PCTCN2020075438-appb-000004
为PUSCH上可以用于承载UCI的物理资源数量,
Figure PCTCN2020075438-appb-000005
为PUSCH上的第l个时域符号上可以用于承载UCI的物理资源的数量(即RE的个数),
Figure PCTCN2020075438-appb-000006
为PUSCH上总的时域符号个数(包括承载DMRS的时域符号个数)。在l为承载DMRS的时域符号的情况下,
Figure PCTCN2020075438-appb-000007
在l为不承载DMRS的时域符号的情况下,
Figure PCTCN2020075438-appb-000008
为PUSCH在符号l上包括的总物理资源的数量(即子载波的数量),
Figure PCTCN2020075438-appb-000009
为PUSCH在符号l上的相位噪声参考信号(phase noise tracking reference signal,PTRS)所占的物理资源的数量。α为资源缩放因子。l 0为PUSCH上第一个DMRS符号之后第一个不承载DMRS的时域符号。
Figure PCTCN2020075438-appb-000010
表示向上取整。
相应地,在NR V2X中,第二级SCI在带有SL-SCH的PSSCH中传输时,第二级SCI所占的物理资源的数量的计算公式可以表示如公式(2):
Figure PCTCN2020075438-appb-000011
其中,Q′ SCI2为第二级SCI所占的物理资源的数量。O SCI2为第二级SCI的比特数(即第二级SCI的载荷大小)。L SCI2是第二级SCI的CRC的比特数。
Figure PCTCN2020075438-appb-000012
为参数,在相应的第一级SCI中指示。C SL-SCH为PSSCH上的SL-SCH包括的码块个数。
Figure PCTCN2020075438-appb-000013
为PSSCH上的第l个时域符号上可以用于承载第二级SCI的物理资源的数量(即RE的个数),
Figure PCTCN2020075438-appb-000014
为PSSCH上总的时域符号个数(不包括承载自动增益控制(automatic gain control,AGC)的符号个数)。在l为承载AGC的时域符号的情况下,
Figure PCTCN2020075438-appb-000015
在l为不承载AGC的时域符号的情况下,
Figure PCTCN2020075438-appb-000016
为PSSCH在符号l上包括的总物理资源的数量(即子载波的数量)。
Figure PCTCN2020075438-appb-000017
为PSSCH在符号l上的DMRS所占的物理资源的数量(即子载波的数量)。
Figure PCTCN2020075438-appb-000018
为PSSCH在符号l上的PTRS所占的物理资源的数量。
Figure PCTCN2020075438-appb-000019
为PSSCH在符号l上的SCI-参考信号(reference signal,RS)所占的物理资源的数量(即子载波的数量)。γ为RE的个数,是一个RB包括的RE的个数与第二级SCI在这个RB的最后编码符号的RE个数的差值。
在NR Uu中,HARQ在PUSCH中传输不是必然的行为,即不是每一次传输PUSCH中都携带HARQ。并且HARQ在PUSCH中进行RE映射时,编码后的调制符号个数的计算公式,是基于调制与编码方式(modulation and coding scheme,MCS)指示的数据来进行调整的。HARQ的码率要比数据的码率低。在NR V2X中,第二级SCI在PSSCH中映射是必然行为,即每一次PSSCH传输都携带第二级SCI。目前,基于数据来确定第二级SCI的RE的个数。然而,由于数据与第二级SCI之间的关联度较小,导致根据通过数据的码率确定的第二级SCI的RE的个数较大,增加了PSSCH的码率,以致降低了信息传输的可靠性。
为了更好地理解本发明实施例公开的一种通信方法及装置,下面先对本发明实施例使 用的网络架构进行描述。请参阅图4,图4是本发明实施例公开的一种网络架构示意图。如图4所示,该网络架构可以包括多个终端设备(图1中示意出了3个),这多个终端设备中的一个终端设备可以只与另一个终端设备进行通信,即单播业务,这多个终端设备中的一个终端设备也可以同时与多个终端设备进行通信,即组播业务,这多个终端设备中的一个终端设备也可以同时与所有终端设备进行通信,即广播业务。例如,终端设备1可以只与终端设备2进行通信,也可以同时与终端设备2和终端设备3进行通信。
终端设备可以为UE、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理、车辆或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端或者未来演进的PLMN网络中的终端等。
基于图4所示的网络架构,请参阅图5,图5是本发明实施例公开的一种通信方法的流程示意图。其中,本发明实施例中由第一终端设备执行的功能也可以由第一终端设备中的模块(例如,芯片)来执行,本发明实施例中由第二终端设备执行的功能也可以由第二终端设备中的模块(例如,芯片)来执行。如图5所示,该通信方法可以包括如下步骤。
501、第一终端设备根据资源池的配置参数确定第二级SCI编码后的调制符号个数。
第一终端设备需要发送信息时,可以先获取第一终端设备使用的资源池的配置参数。资源池的配置参数可以包括资源池对应的PSCCH的格式、第一级SCI的CRC、资源池支持的PSCCH的候选PRB的个数以及PSCCH的时域符号个数。之后第一终端设备根据资源池的配置参数确定第二级SCI编码后的调制符号个数。
第一终端设备根据资源池的配置参数确定第二级SCI编码后的调制符号个数时,可以先根据资源池的配置参数确定第一级SCI的码率,之后可以根据第一级SCI的码率确定第二级SCI编码后的调制符号个数。
第一终端设备根据资源池的配置参数确定第一级SCI的码率时,可以根据资源池对应的PSCCH的格式、第一级SCI的CRC、资源池支持的PSCCH的候选PRB的个数和PSCCH的时域符号个数确定第一级SCI的码率。具体地,可以先根据该资源池对应的PSCCH的格式确定第一级SCI的比特数,根据资源池支持的PSCCH的候选PRB的个数和PSCCH的时域符号个数确定第一级SCI编码后的比特数,之后根据第一级SCI的比特数、第一级SCI的CRC的比特数以及第一级SCI编码后的比特数确定第一级SCI的码率。第一终端设备根据资源池支持的PSCCH的候选PRB的个数和PSCCH的时域符号个数确定第一级SCI编码后的比特数时,可以先根据资源池支持的PSCCH的候选PRB的个数和PSCCH的时域符号个数确定第一级SCI编码后的调制符号个数,之后根据第一级SCI编码后的调制符号个数和第一级SCI的调制阶数确定第一级SCI编码后的比特数。
例如,第一级SCI的码率的计算公式可以如公式(3):
Figure PCTCN2020075438-appb-000020
其中,CR SCI1表示第一级SCI的码率,O SCI1表示第一级SCI的比特数,L SCI1表示第一级SCI的CRC的比特数,Q′ SCI1表示第一级SCI编码后的调制符号个数,
Figure PCTCN2020075438-appb-000021
表示第一级SCI的调制阶数,
Figure PCTCN2020075438-appb-000022
表示第一级SCI编码后的比特数。Q′ SCI1的计算公式可以如公式(4):
Q′ SCI1=12*O PRB*O symbol  (4)
其中,O PRB表示资源池支持的PSCCH的候选PRB的个数,O symbol表示PSCCH的时域符号个数。12为一个RB内的子载波个数。
其中,第一级SCI的码率也可以是上述公式(3)的各种变形,第一级SCI编码后的调制符号个数也可以是上述公式(4)的各种变形,在此不加限定。
第一终端设备根据第一级SCI的码率确定第二级SCI编码后的调制符号个数时,可以根据第一级SCI的码率、第二级SCI的比特数和第二级SCI的CRC的比特数,确定第二级SCI编码后的调制符号个数。具体地,第一终端设备可以先将第一级SCI的码率确定为第二级SCI的码率,即认为第二级SCI的码率等于第一级SCI的码率。之后第一终端设备可以根据第二级SCI的码率第二级SCI的比特数和第二级SCI的CRC的比特数,确定第二级SCI编码后的调制符号个数。第二级SCI编码后的调制符号个数的计算公式可以如公式(5):
Figure PCTCN2020075438-appb-000023
其中,Q′ SCI2表示第二级SCI编码后的调制符号个数,CR SCI1表示第一级SCI的码率,O SCI2表示第二级SCI的比特数,L SCI2表示第二级SCI的CRC的比特数,
Figure PCTCN2020075438-appb-000024
表示第一级SCI的调制阶数,
Figure PCTCN2020075438-appb-000025
表示第二级SCI编码后的比特数。第二级SCI编码后的调制符号个数的计算公式也可以如公式(6):
Figure PCTCN2020075438-appb-000026
其中,γ表示RE的个数,是一个RB包括的RE的个数与第二级SCI在这个RB的最后编码符号的RE个数的差值。由于第二级SCI在频域上映射的粒度是RB,因此,γ可以保证Q′ SCI2是RB的整数倍。
第一终端设备根据第一级SCI的码率确定第二级SCI编码后的调制符号个数时,也可以根据第一级SCI的码率、第二级SCI的比特数、第二级SCI的CRC的比特数和第一参数,确定第二级SCI编码后的调制符号个数。第二级SCI编码后的调制符号个数的计算公式还可以如公式(7):
Figure PCTCN2020075438-appb-000027
其中,
Figure PCTCN2020075438-appb-000028
表示第一参数。第一终端设备根据第一级SCI的码率确定第二级SCI编码后的调制符号个数时,可以通过
Figure PCTCN2020075438-appb-000029
来调整第二级SCI编码后的调制符号个数的大小。由于第一级SCI和第二级SCI的DMRS的配置是不同的,第一级SCI使用的是PSCCH DMRS配置,第二级SCI使用的是PSSCH DMRS配置,使用
Figure PCTCN2020075438-appb-000030
调整Q′ SCI2可以用于调整DMRS差异带来的译码性能差异,增加终端设备调度的灵活度。假设DMRS的配置导致第一级SCI的DMRS性能优于第二级SCI的DMRS性能,则第一终端设备可以增加
Figure PCTCN2020075438-appb-000031
值来适当降低第二级SCI的 码率。即可以根据DMRS配置的时域格式(pattern)来调整
Figure PCTCN2020075438-appb-000032
的值,例如
Figure PCTCN2020075438-appb-000033
的候选值集合可以为{1,1.25,1.4,1.6}。其中,第一参数可以根据下面确定第二参数的方式进行确定,详细描述可以参考步骤601,在此不加赘述。
第二级SCI编码后的调制符号个数的计算公式还可以如公式(8):
Figure PCTCN2020075438-appb-000034
第二级SCI编码后的调制符号个数的计算公式还可以如公式(9):
Figure PCTCN2020075438-appb-000035
502、第一终端设备根据第二级SCI编码后的调制符号个数确定编码后的第二级SCI。
第一终端设备根据资源池的配置参数确定出第二级SCI编码后的调制符号个数之后,可以根据第二级SCI编码后的调制符号个数确定编码后的第二级SCI。具体地,可以先根据第二级SCI编码后的调制符号个数确定第二级SCI编码后的比特数,之后根据第二级SCI编码后的比特数确定编码后的第二级SCI。第一终端设备根据第二级SCI编码后的调制符号个数确定第二级SCI编码后的比特数的详细描述可以参考根据第一级SCI编码后的调制符号个数确定第一级SCI编码后的比特数的描述,在此不加赘述。
503、第一终端设备通过PSSCH向第二终端设备发送包括编码后的第二级SCI的第一信息。
相应地,第二终端设备通过PSSCH接收来自第一终端设备的包括编码后的第二级SCI的第一信息。
在根据第一级SCI的码率、第二级SCI的比特数、第二级SCI的CRC的比特数和第一参数,确定第二级SCI编码后的调制符号个数的情况下,第一信息还可以包括用于指示第一参数的值的指示信息,详细内容可以参考图6对应的实施例中的第二参数的值的相关描述,在此不加赘述。
504、第二终端设备根据资源池的配置参数确定第二级SCI编码后的调制符号个数。
第二终端设备通过PSSCH接收到来自第一终端设备的包括编码后的第二级SCI的第一信息之后,可以根据资源池的配置参数确定第二级SCI编码后的调制符号个数。资源池的配置参数可以包括资源池对应的PSCCH的格式、第一级SCI的CRC、资源池支持的PSCCH的候选PRB的个数以及PSCCH的时域符号个数。第二终端设备根据资源池的配置参数确定第二级SCI编码后的调制符号个数时,可以先根据资源池对应的PSCCH的格式、第一级SCI的CRC、资源池支持的PSCCH的候选PRB的个数以及PSCCH的时域符号个数确定第一级SCI的码率,之后根据第一级SCI的码率确定第二级SCI编码后的调制符号个数。
第二终端设备根据资源池对应的PSCCH的格式、第一级SCI的CRC、资源池支持的PSCCH的候选PRB的个数以及PSCCH的时域符号个数确定第一级SCI的码率时,可以根据资源池对应的PSCCH的格式确定第一级SCI的比特数,根据资源池支持的PSCCH的候选PRB的个数和PSCCH的时域符号个数确定第一级SCI编码后的比特数,根据第一级SCI的比 特数、第一级SCI的CRC的比特数以及第一级SCI编码后的比特数确定第一级SCI的码率。根据资源池支持的PSCCH的候选PRB的个数和PSCCH的时域符号个数确定第一级SCI编码后的比特数时,可以根据资源池支持的PSCCH的候选PRB的个数和PSCCH的时域符号个数确定第一级SCI编码后的调制符号个数,根据第一级SCI编码后的调制符号个数和第一级SCI的调制阶数确定第一级SCI编码后的比特数。详细描述可以参考步骤501中的相关描述,在此不加赘述。
第二终端设备根据第一级SCI的码率确定第二级SCI编码后的调制符号个数时,可以根据第一级SCI的码率、第二级SCI的比特数和第二级SCI的CRC的比特数,确定第二级SCI编码后的调制符号个数。也可以根据第一级SCI的码率、第二级SCI的比特数、第二级SCI的CRC的比特数和第一参数,确定第二级SCI编码后的调制符号个数。详细描述可以参考步骤501中的相关描述,在此不加赘述。
505、第二终端设备根据第二级SCI编码后的调制符号个数对编码后的第二级SCI进行解码得到第二级SCI。
第二终端设备根据资源池的配置参数确定出第二级SCI编码后的调制符号个数之后,可以根据第二级SCI编码后的调制符号个数对编码后的第二级SCI进行解码得到第二级SCI。第二终端设备根据第二级SCI编码后的调制符号个数对编码后的第二级SCI进行解码得到第二级SCI时,可以先根据第二级SCI编码后的调制符号个数确定第二级SCI编码后的比特数,之后根据第二级SCI编码后的比特数对编码后的第二级SCI进行解码得到第二级SCI。详细描述可以参考步骤502,在此不加赘述。
可选地,在步骤502之后以及步骤503之前,上述方法还可以包括:第一终端设备将第一信息按照第一规则映射到PSSCH的传输资源上,编码后的第二级SCI在时域映射时是从第一个携带相应DMRS的PSSCH符号开始映射的。第一规则可以为在PSSCH的调度带宽大于资源池支持的PSCCH的候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在PSSCH的调度带宽等于资源池支持的PSCCH的候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第二个DMRS符号。第一规则也可以为PSSCH的调度带宽不等于资源池支持的PSCCH的候选PRB的个数。第一规则还可以为在资源池的子信道大小等于资源池支持的PSCCH的候选PRB的个数的情况下,PSSCH的调度带宽不少于第一阈值个PRB。第一阈值可以为2,也可以为其它值,在此不加限定。第一规则还可以为携带DMRS的PSSCH的带宽不小于第三阈值个PRB,第三阈值可以为4,也可以为其他值,在此不加限定。
第一规则还可以为,假设第一个携带相应DMRS的PSSCH符号为PSSCH的结束符号,则第二级SCI映射的时域映射规则为,第二级SCI从第一个携带相应DMRS的PSSCH符号映射结束后,反向地从后向前,在第一个携带相应DMRS的PSSCH符号的前一个符号上进行映射。
可选地,第一终端设备将第一信息按照第三规则映射到PSSCH的传输资源上,编码后的第二级SCI在时域上从第一个PSSCH符号开始映射。第三规则可以为,PSSCH和PSCCH是FDM的,并且PSSCH的带宽低于一个第六阈值。第六阈值可以为4,也可以为其他值,在此不加限定。
可选地,第一信息还可以包括编码后的第一数据,在步骤502之后以及步骤503之前,上述方法还可以包括:第一终端设备在满足第二规则的情况下,从PSCCH的最后一个符号后的第一个PSSCH符号开始映射第一数据。即和PSCCH FDM的PSSCH的部分不用于承载PSCCH,也就是说,不用于PSSCH的资源映射。即第一数据进行速率匹配的时候不包括和PSCCH FDM的PSSCHRE,只包括从PSCCH结束符号后的PSSCHRE。
第二规则可以是PSCCH和PSSCH是频分复用(FDM)的,和/或PSSCH的带宽小于第四阈值个PRB个数。
作为一种可能的实现方式,第二规则可以是资源池的子信道大小小于第二阈值。第二阈值可以为20个PRB,也可以为其它值,在此不加限定。
第二级SCI编码后的调制符号个数不超过第五阈值。
要发送一个信息之前,先需要对这个信息增加CRC校验码,之后对这个信息进行信道编码和速率匹配,之后对信道编码和速率匹配后的这个信息进行加扰,之后对加扰后的这个信息进行调制,即把加扰后的比特块进行调制得到复值调制符号块,之后将调制后的这个信息进行层映射,之后将层映射的这个信息进行预编码,即天线端口映射,之后将用于传输PSSCH的每个天线端口对应的复值调制符号块映射到虚拟资源块,之后把虚拟资源块映射到PRB。在用于传输PSSCH的每个天线端口对应的复值调制符号块映射到虚拟资源块过程中,对每个用于PSSCH传输的天线端口,复数值符号块
Figure PCTCN2020075438-appb-000036
应该乘以振幅缩放因子
Figure PCTCN2020075438-appb-000037
来符合规定的传输功率,之后映射到被配置用于传输虚拟资源块的RE(k,l) p,u上,k=0是被配置用来传输的虚拟资源块的最低编号的第一个子载波。映射符合以下规则:映射在被配置用来传输的虚拟资源块,在虚拟资源块相应的PRB的RE上不用于传输相应的DMRS、PTRS、信道状态信息参考信号(channel state information reference signals,CSI-RS)或PSSCH。将第二级SCI的比特相应的复值符号(complex-valued symbols)映射到被配置的虚拟资源块上时,是按照先频域后时域进行映射的,可以先索引k按照升序的顺序进行映射,之后索引l从第一个携带相应DMRS的PSSCH符号上开始映射。在映射的过程中是按照第一规则进行映射的。将除第二级SCI的比特相应的复值符号(complex-valued symbols)映射到被配置的虚拟资源块上时,即将数据映射被配置的虚拟资源块上时,在满足第二规则的情况下,可以从PSCCH的最后一个符号后的第一个PSSCH符号开始映射数据。在资源池的子信道大小大于或等于(或者大于)第二阈值的情况下,将PSSCH DMRS与PSCCH映射到同一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号上。
可选地,在步骤505之前,上述方法还可以包括:第二终端设备按照第一规则从PSSCH的传输资源上解映射第一信息,解码后的第二级SCI在时域解映射时是从第一个携带相应DMRS的PSSCH符号开始解映射的。第一规则可以为在PSSCH的调度带宽大于资源池支持的PSCCH的候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在PSSCH的调度带宽等于资源池支持的PSCCH的候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第二个DMRS符号。第一规则也可以为PSSCH的调度带宽不等于资源池支持的PSCCH 的候选PRB的个数。第一规则还可以为在资源池的子信道大小等于资源池支持的PSCCH的候选PRB的个数的情况下,PSSCH的调度带宽不少于第一阈值个PRB。第一规则还可以为携带DMRS的PSSCH的带宽不小于第三阈值个PRB。
第一规则还可以为,假设第一个携带相应DMRS的PSSCH符号为PSSCH的结束符号,则第二级SCI映射的时域映射规则为,第二级SCI从第一个携带相应DMRS的PSSC符号映射结束后,反向地从后向前,在第一个携带相应DMRS的PSSCH符号的前一个符号上进行映射。
可选地,第一终端设备将第一信息按照第三规则映射到PSSCH的传输资源上,编码后的第二级SCI在时域上从第一个PSSCH符号开始映射。和/或第一数据进行速率匹配的时候绕开和PSCCH FDM的PSSCH的资源。第三规则可以为,PSSCH和PSCCH是FDM的,并且PSSCH的带宽低于一个第六阈值。第六阈值可以为4,也可以为其他值,在此不加限定。
可选地,第一信息还可以包括编码后的第一数据,在步骤505之前,上述方法还可以包括:在满足第二规则的情况下,从PSCCH的最后一个符号后的第一个PSSCH符号开始解映射编码后的第一数据。第二规则可以是PSCCH和PSSCH是频分复用(FDM)的,和/或PSSCH的带宽小于第四阈值个PRB个数。第二规则也可以是资源池的子信道大小小于第二阈值。
详细描述可以参考上面的描述。
基于图4所示的网络架构,请参阅图6,图6是本发明实施例公开的另一种通信方法的流程示意图。其中,本发明实施例中由第一终端设备执行的功能也可以由第一终端设备中的模块(例如,芯片)来执行,本发明实施例中由第二终端设备执行的功能也可以由第二终端设备中的模块(例如,芯片)来执行。如图6所示,该通信方法可以包括如下步骤。
601、第一终端设备根据第一数据的信息获取第二参数的值。
第一终端设备需要发送第一数据时,可以根据第一数据的信息获取第二参数的值。第一数据的信息可以包括第一数据的调制阶数和第一数据的码率。第一数据为待发送的数据。
每个SL的资源池配置至少一个MCS表格,即一个或一个以上MCS表格。例如,MCS表格可以如表1所示:
Figure PCTCN2020075438-appb-000038
Figure PCTCN2020075438-appb-000039
表1MCS表格
可以预先为每个资源池中每个MCS表格确定第二参数表格,第二参数的值可以根据资源池的配置参数、第二SCI的比特数、第二级SCI的CRC的比特数确定。可以是网络设备确定之后配置给终端设备的,也可以是终端设备确定的。其中,此处确定第二参数的值的第二级SCI与其它地方描述的第二级SCI不同。具体地,可以先根据资源池的配置参数确定第二级SCI编码后的调制符号个数,之后根据第二级SCI编码后的调制符号个数、第二SCI的比特数、第二级SCI的CRC的比特数确定第二参数的值。根据码率的定义,数据的码率的计算公式可以如公式(10):
Figure PCTCN2020075438-appb-000040
其中,CR data表示数据的码率,Q mdata表示数据的调制阶数。将公式(10)代入公式(2)得到公式(11):
Figure PCTCN2020075438-appb-000041
其中,Q′ SCI2表示第二级SCI编码后的调制符号个数,O SCI2表示第二SCI的比特数,L SCI2表示第二级SCI的CRC的比特数,
Figure PCTCN2020075438-appb-000042
表示第二参数。可见,公式(9)中除了
Figure PCTCN2020075438-appb-000043
其它都是 已知参数。例如,可以根据表1中的第二列和第三列可以得到第二参数的表格,第二参数的表格可以如表2:
Figure PCTCN2020075438-appb-000044
表2第二参数的表格
第一终端设备根据第一数据的信息获取第二参数的值时,可以先从表1中获取第一数据 的调制阶数和码率对应的索引的值,之后从表2中获取该索引的值对应的第二参数的值。
602、第一终端设备根据第二参数的值确定第二级SCI编码后的调制符号个数。
第一终端设备根据第一数据的信息获取到第二参数的值之后,可以根据第二参数的值确定第二级SCI编码后的调制符号个数。第一终端设备根据第二参数的值确定第二级SCI编码后的调制符号个数时,可以根据第一数据的比特数、第二级SCI的比特数、PSSCH上可用于承载第二级SCI的RE个数以及第二参数的值确定第二级SCI编码后的调制符号个数。可以根据公式(2)计算第二级SCI编码后的调制符号个数。确定第二级SCI编码后的调制符号个数的计算公式也可以为公式(8)或公式(9)。
603、第一终端设备根据第二级SCI编码后的调制符号个数确定编码后的第二级SCI。
第一终端设备根据第二参数确定出第二级SCI编码后的调制符号个数之后,可以根据第二级SCI编码后的调制符号个数确定编码后的第二级SCI。具体地,可以先根据第二级SCI编码后的调制符号个数确定第二级SCI编码后的比特数,之后根据第二级SCI编码后的比特数确定编码后的第二级SCI。
604、第一终端设备通过PSSCH向终端设备发送包括编码后的第一数据、编码后的第二级SCI以及用于指示第二参数的值的指示信息的第一信息。
第一终端设备根据第二级SCI编码后的调制符号个数确定出编码后的第二级SCI之后,可以通过PSSCH向终端设备发送包括确定编码后的第一数据、确定编码后的第二级SCI以及用于指示第二参数的指示信息的第一信息。相应地,第二终端设备通过PSSCH接收来自第一终端设备的包括确定编码后的第一数据、确定编码后的第二级SCI以及用于指示第二参数的指示信息的第一信息。
605、第二终端设备根据指示信息获取第二参数的值。
第二终端设备通过PSSCH接收到来自第一终端设备的包括确定编码后的第一数据、确定编码后的第二级SCI以及用于指示第二参数的指示信息的值的第一信息之后,可以根据指示信息获取第二参数的值。第二参数的值根据资源池的配置参数、第二SCI的比特数、第二级SCI的CRC的比特数确定。详细描述可以参考步骤601中的相关描述,在此不加赘述。指示信息可以是显示指示,即直接指示第二参数的值,也可以是隐式指示。在指示信息是隐式指示的情况下,指示信息可以指示第二参数的值对应的索引的值。例如,索引的值为1,第二参数的值为1.13。也可以将第二参数的表格中的32个值划分为多个候选集,如4个,每一个候选集对应一个索引值。对应的,指示信息可以指示第二参数的值的候选集对应的索引的值。第二终端设备可以根据指示信息先确定第二参数的值的候选集,之后从确定的候选集中选取一个值为第二参数的值。例如,可以将MCS表格划分为4个组,即MCS0-MCS7、MCS8-MCS15、MCS16-MCS23和MCS24-MCS32,从4个组中的每个组选取4个第二参数的值得到四个第二参数的候选集,可以通过2比特承载指示信息,指示信息可以指示候选集为这四个候选集中的哪一个。也可以是固定的一组值0-31,将这32个值分成4组,即{0,1,2,3,4,5,6,7},{8,9,10,11,12,13,14,15},{16,17,18,19,20,21,22,23},{24,25,26,27,28,29,30,31},网络侧配置第二参数的4个取值的时候,分别从这4个组中取一个值,比如1,9,18,30;或者在第一个组内取一个值,在该值的基础上分别加上8,13,24来完成取值。比如1,9,17,25。
606、第二终端设备根据第二参数的值确定第二级SCI编码后的调制符号个数。
第二终端设备根据指示信息获取到第二参数的值之后,可以根据第二参数的值确定第二级SCI编码后的调制符号个数。第二终端设备根据第二参数的值确定第二级SCI编码后的调制符号个数时,可以先根据第一数据的比特数、第二级SCI的比特数、PSSCH上可用于承载第二级SCI的RE个数以及第二参数的值,确定第二级SCI编码后的调制符号个数。其中,详细描述可以参考步骤602,在次不加赘述。
607、第二终端设备根据第二级SCI编码后的调制符号个数对编码后的第二级SCI进行解码得到第二级SCI。
第二终端设备根据第二参数的值确定出第二级SCI编码后的调制符号个数之后,可以根据第二级SCI编码后的调制符号个数对编码后的第二级SCI进行解码得到第二级SCI。具体地,可以先根据第二级SCI编码后的调制符号个数确定第二级SCI编码后的比特数,之后根据第二级SCI编码后的比特数对编码后的第二级SCI进行解码得到第二级SCI。
可选地,在步骤604之前,上述方法还可以包括:第一终端设备将第一信息按照第一规则映射到PSSCH的传输资源上,编码后的第二级SCI在时域映射时是从第一个携带相应DMRS的PSSCH符号开始映射的。第一规则可以为在PSSCH的调度带宽大于资源池支持的PSCCH的候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在PSSCH的调度带宽等于资源池支持的PSCCH的候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第二个DMRS符号。第一规则也可以为PSSCH的调度带宽不等于资源池支持的PSCCH的候选PRB的个数。第一规则还可以为在资源池的子信道大小等于资源池支持的PSCCH的候选PRB的个数的情况下,PSSCH的调度带宽不少于第一阈值个PRB。第一规则还可以为携带DMRS的PSSCH的带宽不小于第三阈值个PRB,第三阈值可以为4,也可以为其他值,在此不加限定。
第一规则还可以为,假设第一个携带相应DMRS的PSSCH符号为PSSCH的结束符号,则第二级SCI映射的时域映射规则为,第二级SCI从第一个携带相应DMRS的PSSC符号映射结束后,反向地从后向前,在第一个携带相应DMRS的PSSCH符号的前一个符号上进行映射。
可选地,第一终端设备将第一信息按照第三规则映射到PSSCH的传输资源上,编码后的第二级SCI在时域上从第一个PSSCH符号开始映射。第三规则可以为,PSSCH和PSCCH是FDM的,并且PSSCH的带宽低于一个第六阈值。第六阈值可以为4,也可以为其他值,在此不加限定。
第二规则可以是PSCCH和PSSCH是频分复用(FDM)的,和/或PSSCH的带宽小于第四阈值个PRB个数。第四阈值可以为4个PRB,也可以为其它值,在此不加限定。
作为一种可能的实现方式,第二规则可以是资源池的子信道大小小于第二阈值。第二阈值可以为20个PRB,也可以为其它值,在此不加限定。
第二级SCI编码后的调制符号个数不超过第五阈值。
可选地,在步骤604之前,上述方法还可以包括:第一终端设备在满足第二规则的情况下,从PSCCH的最后一个符号后的第一个PSSCH符号开始映射编码后的第一数据。
可选地,在步骤605之前,上述方法还可以包括:第二终端设备按照第一规则从PSSCH上解映射第一信息,编码后的第二级SCI在时域解映射时是从第一个携带相应DMRS的PSSCH符号开始解映射的。第一规则可以为在PSSCH的调度带宽大于资源池支持的PSCCH的候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在PSSCH的调度带宽等于资源池支持的PSCCH的候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第二个DMRS符号。第一规则也可以为PSSCH的调度带宽不等于资源池支持的PSCCH的候选PRB的个数。第一规则还可以为在资源池的子信道大小等于资源池支持的PSCCH的候选PRB的个数的情况下,PSSCH的调度带宽不少于第一阈值个PRB。第一规则还可以为携带DMRS的PSSCH的带宽不小于第三阈值个PRB。
第一规则还可以为,假设第一个携带相应DMRS的PSSCH符号为PSSCH的结束符号,则第二级SCI映射的时域映射规则为,第二级SCI从第一个携带相应DMRS的PSSC符号映射结束后,反向地从后向前,在第一个携带相应DMRS的PSSCH符号的前一个符号上进行映射。
可选地,第一终端设备将第一信息按照第三规则映射到PSSCH的传输资源上,编码后的第二级SCI在时域上从第一个PSSCH符号开始映射。第三规则可以为,PSSCH和PSCCH是FDM的,并且PSSCH的带宽低于一个第六阈值。第六阈值可以为4,也可以为其他值,在此不加限定。
可选地,第一信息还可以包括第一数据,在步骤605之前,上述方法还可以包括:第二终端设备在满足第二规则的情况下,从PSCCH的最后一个符号后的第一个PSSCH符号开始解映射编码后的第一数据。第二规则可以是PSCCH和PSSCH是频分复用(FDM)的,和/或PSSCH的带宽小于第四阈值个PRB个数。第二规则也可以是资源池的子信道大小小于第二阈值。
详细描述可以参考上面相关的描述,在此不加赘述。
基于图4所示的网络架构,请参阅图13,图13是本发明实施例公开的又一种通信方法的流程示意图。其中,本发明实施例中由第一终端设备执行的功能也可以由第一终端设备中的模块(例如,芯片)来执行,本发明实施例中由第二终端设备执行的功能也可以由第二终端设备中的模块(例如,芯片)来执行。如图13所示,该通信方法可以包括如下步骤。
1301、第一终端设备将第一信息按照第一规则映射到PSSCH的传输资源上。
第一信息包括编码后的第二级SCI,编码后的第二级SCI在时域映射时是从第一个携带相应DMRS的PSSCH符号开始映射的。第一规则的详细描述可以参考上面相关的描述,在此不加赘述。第一信息还包括编码后的第一数据。
1302、第一终端设备通过PSSCH向第二终端设备发送第一信息。
相应地,第二终端设备通过PSSCH接收来自第一终端设备的第一信息。
1303、第二终端设备按照第一规则从PSSCH上解映射第一信息。
编码后的第二级SCI在时域解映射时是从第一个携带相应DMRS的PSSCH符号开始解映射的。
步骤1301-步骤1303的详细描述,可以参考上面相关的描述,在此不加赘述。
基于图4所示的网络架构,请参阅图14,图14是本发明实施例公开的又一种通信方法的流程示意图。其中,本发明实施例中由第一终端设备执行的功能也可以由第一终端设备中的模块(例如,芯片)来执行,本发明实施例中由第二终端设备执行的功能也可以由第二终端设备中的模块(例如,芯片)来执行。如图14所示,该通信方法可以包括如下步骤。
1401、在满足第二规则的情况下,第一终端设备从PSCCH的最后一个符号后的第一个PSSCH符号开始映射编码后的第一数据。
1402、第一终端设备通过PSSCH向第二终端设备发送编码后的第一数据。
相应地,第二终端设备通过PSSCH接收来自第一终端设备的编码后的第一数据。
1403、在满足第二规则的情况下,第二终端设备从PSCCH的最后一个符号后的第一个PSSCH符号开始解映射编码后的第一数据。
步骤1401-步骤1403的详细描述,可以参考上面相关的描述,在此不加赘述。
上面几个实施例之间的内容可以相互参考,每个实施例的内容不局限于本实施例,也可以适用于其它实施例中的相应内容。
基于图4所示的网络架构,请参阅图7,图7是本发明实施例公开的一种通信装置的结构示意图。如图7所示,该通信装置可以包括:
第一确定单元701,用于根据资源池的配置参数确定第二级SCI编码后的调制符号个数;
第二确定单元702,用于根据第二级SCI编码后的调制符号个数确定编码后的第二级SCI;
发送单元703,用于通过PSSCH向终端设备发送第一信息,第一信息包括编码后的第二级SCI。
在一个实施例中,资源池的配置参数包括资源池对应的PSCCH的格式、第一级SCI的CRC、资源池支持的PSCCH的候选PRB的个数以及PSCCH的时域符号个数;
第一确定单元701具体用于:
根据该格式、第一级SCI的CRC、该候选PRB的个数和时域符号个数确定第一级SCI的码率;
根据第一级SCI的码率确定第二级SCI编码后的调制符号个数。
在一个实施例中,第一确定单元701根据该格式、第一级SCI的CRC、该候选PRB的个数和时域符号个数确定第一级SCI的码率包括:
根据该格式确定第一级SCI的比特数;
根据该候选PRB的个数和该时域符号个数确定第一级SCI编码后的比特数;
根据第一级SCI的比特数、第一级SCI的CRC的比特数以及第一级SCI编码后的比特数确定第一级SCI的码率。
在一个实施例中,第一确定单元701根据该候选PRB的个数和该时域符号个数确定第一级SCI编码后的比特数包括:
根据该候选PRB的个数和该时域符号个数确定第一级SCI编码后的调制符号个数;
根据第一级SCI编码后的调制符号个数和第一级SCI的调制阶数确定第一级SCI编码后 的比特数。
在一个实施例中,第一确定单元701根据第一级SCI的码率确定第二级SCI编码后的调制符号个数包括:
根据第一级SCI的码率、第二级SCI的比特数和第二级SCI的CRC的比特数,确定第二级SCI编码后的调制符号个数。
在一个实施例中,第一确定单元701根据第一级SCI的码率确定第二级SCI编码后的调制符号个数包括:
根据第一级SCI的码率、第二级SCI的比特数、第二级SCI的CRC的比特数和第一参数,确定第二级SCI编码后的调制符号个数。
在一个实施例中,第二确定单元702具体用于:
根据第二级SCI编码后的调制符号个数确定第二级SCI编码后的比特数;
根据第二级SCI编码后的比特数确定编码后的第二级SCI。
在一个实施例中,该通信装置还可以包括:
映射单元704,用于将第一信息按照第一规则映射到PSSCH的传输资源上,编码后的第二级SCI在时域映射时是从第一个携带相应DMRS的PSSCH符号开始映射的。
在一个实施例中,第一规则为:
在PSSCH的调度带宽大于该候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在PSSCH的调度带宽等于候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第二个DMRS符号;或者
PSSCH的调度带宽不等于该候选PRB的个数;或者
在资源池的子信道大小等于该候选PRB的个数的情况下,PSSCH的调度带宽不少于第一阈值个PRB。
在一个实施例中,第一信息还可以包括编码后的第一数据,映射单元704,还用于在资源池的子信道大小小于第二阈值的情况下,从PSCCH的最后一个符号后的第一个PSSCH符号开始映射编码后的第一数据。
有关上述第一确定单元701、第二确定单元702、发送单元703和映射单元704更详细的描述可以直接参考上述图5所示的方法实施例中第一终端设备的相关描述直接得到,这里不加赘述。
基于图4所示的网络架构,请参阅图8,图8是本发明实施例公开的另一种通信装置的结构示意图。如图8所示,该通信装置可以包括:
接收单元801,用于通过PSSCH接收来自终端设备的第一信息,第一信息可以包括编码后的第二级SCI;
确定单元802,用于根据资源池的配置参数确定第二级SCI编码后的调制符号个数;
解码单元803,用于根据第二级SCI编码后的调制符号个数对编码后的第二级SCI进行解码,得到第二级SCI。
在一个实施例中,资源池的配置参数包括资源池对应的PSCCH的格式、第一级SCI的 CRC、资源池支持的PSCCH的候选PRB的个数以及PSCCH的时域符号个数;
确定单元802具体用于:
根据该格式、第一级SCI的CRC、该候选PRB的个数和该时域符号个数确定第一级SCI的码率;
根据第一级SCI的码率确定第二级SCI编码后的调制符号个数。
在一个实施例中,确定单元802根据该格式、第一级SCI的CRC、该候选PRB的个数和该时域符号个数确定第一级SCI的码率包括:
根据该格式确定第一级SCI的比特数;
根据该候选PRB的个数和该时域符号个数确定第一级SCI编码后的比特数;
根据第一级SCI的比特数、第一级SCI的CRC的比特数以及第一级SCI编码后的比特数确定第一级SCI的码率。
在一个实施例中,确定单元802根据该候选PRB的个数和该时域符号个数确定第一级SCI编码后的比特数包括:
根据该候选PRB的个数和该时域符号个数确定第一级SCI编码后的调制符号个数;
根据第一级SCI编码后的调制符号个数和第一级SCI的调制阶数确定第一级SCI编码后的比特数。
在一个实施例中,确定单元802根据第一级SCI的码率确定第二级SCI编码后的调制符号个数包括:
根据第一级SCI的码率、第二级SCI的比特数和第二级SCI的CRC的比特数,确定第二级SCI编码后的调制符号个数。
在一个实施例中,确定单元802根据第一级SCI的码率确定第二级SCI编码后的调制符号个数包括:
根据第一级SCI的码率、第二级SCI的比特数、第二级SCI的CRC的比特数和第一参数,确定第二级SCI编码后的调制符号个数。
在一个实施例中,解码单元803具体用于:
根据第二级SCI编码后的调制符号个数确定第二级SCI编码后的比特数;
根据第二级SCI编码后的比特数对编码后的第二级SCI进行解码,得到第二级SCI。
作为一种可能的实现方式,该通信装置还可以包括:
解映射单804元,用于按照第一规则从PSSCH的传输资源上解映射第一信息,编码后的第二级SCI在时域解映射时是从第一个携带相应DMRS的PSSCH符号开始解映射的。
在一个实施例中,第一规则为:
在PSSCH的调度带宽大于该候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在PSSCH的调度带宽等于该候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第二个DMRS符号;或者
PSSCH的调度带宽不等于该候选PRB的个数;或者
在资源池的子信道大小等于该候选PRB的个数的情况下,PSSCH的调度带宽不少于第一阈值个PRB。
在一个实施例中,第一信息还可以包括编码后的第一数据,解映射单元804,还用于在资源池的子信道大小小于第二阈值的情况下,从PSCCH的最后一个符号后的第一个PSSCH符号开始解映射编码后的第一数据。
有关上述接收单元801、第一确定单元802、解码单元803和解映射单元804更详细的描述可以直接参考上述图5所示的方法实施例中第二终端设备的相关描述直接得到,这里不加赘述。
基于图4所示的网络架构,请参阅图9,图9是本发明实施例公开的又一种通信装置的结构示意图。如图9所示,该通信装置可以包括:
获取单元901,用于根据第一数据的信息获取第二参数的值;
第一确定单元902,用于根据第二参数的值,确定第二级SCI编码后的调制符号个数;
第二确定单元903,用于根据第二级SCI编码后的调制符号个数确定编码后的第二级SCI;
发送单元904,用于通过PSSCH向终端设备发送第一信息,第一信息包括编码后的第一数据、编码后的第二级SCI以及用于指示第二参数的值的指示信息。
在一个实施例中,第一确定单元902,具体用于根据第一数据的比特数、第二级SCI的比特数、PSSCH上可用于承载第二级SCI的RE个数以及第二参数,确定第二级SCI编码后的值调制符号个数。
在一个实施例中,第二确定单元903具体用于:
根据第二级SCI编码后的调制符号个数确定第二级SCI编码后的比特数;
根据第二级SCI编码后的比特数确定编码后的第二级SCI。
在一个实施例中,第一数据的信息可以包括第一数据的调制阶数和码率。
在一个实施例中,该通信装置还可以包括:
映射单元905,用于将第一信息按照第一规则映射到PSSCH的传输资源上,编码后的第二级SCI在时域映射时是从第一个携带相应DMRS的PSSCH符号开始映射的。
在一个实施例中,第一规则为:
在PSSCH的调度带宽大于资源池支持的PSCCH的候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在PSSCH的调度带宽等于该候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第二个DMRS符号;或者
PSSCH的调度带宽不等于所述候选PRB的个数;或者
在资源池的子信道大小等于该候选PRB的个数的情况下,PSSCH的调度带宽不少于第一阈值个PRB。
在一个实施例中,映射单元905,还用于在资源池的子信道大小小于第二阈值的情况下,从PSCCH的最后一个符号后的第一个PSSCH符号开始映射编码后的第一数据。
在一个实施例中,第二参数的值根据资源池的配置参数、第二SCI的比特数、第二级SCI的CRC的比特数确定。
有关上述获取单元901、第一确定单元902、第二确定单元903、发送单元904和映射单元905更详细的描述可以直接参考上述图6所示的方法实施例中第一终端设备的相关描述直 接得到,这里不加赘述。
基于图4所示的网络架构,请参阅图10,图10是本发明实施例公开的又一种通信装置的结构示意图。如图10示,该通信装置可以包括:
接收单元1001,用于通过PSSCH接收来自终端设备的第一信息,第一信息包括编码后的第二级SCI以及用于指示第二参数的值的指示信息;
获取单元1002,用于根据指示信息获取第二参数的值;
确定单元1003,用于根据第二参数的值,确定第二级SCI编码后的调制符号个数;
解码单元1004,用于根据第二级SCI编码后的调制符号个数对编码后的第二级SCI进行解码,得到第二级SCI。
在一个实施例中,确定单元1003,具体用于根据第一数据的比特数、第二级SCI的比特数、PSSCH上可用于承载第二级SCI的RE个数以及第二参数的值,确定第二级SCI编码后的调制符号个数。
在一个实施例中,解码单元1004具体用于:
根据第二级SCI编码后的调制符号个数确定第二级SCI编码后的比特数;
根据第二级SCI编码后的比特数对编码后的第二级SCI进行解码,得到第二级SCI。
在一个实施例中,该通信装置还可以包括:
解映射单元1005,用于按照第一规则从PSSCH上解映射所述第一信息,编码后的第二级SCI在时域解映射时是从第一个携带相应DMRS的PSSCH符号开始解映射的。
在一个实施例中,第一规则为:
在PSSCH的调度带宽大于资源池支持的PSCCH的候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在PSSCH的调度带宽等于该候选PRB的个数的情况下,第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第二个DMRS符号;或者
PSSCH的调度带宽不等于该候选PRB的个数;或者
在资源池的子信道大小等于该候选PRB的个数的情况下,PSSCH的调度带宽不少于第一阈值个PRB。
在一个实施例中,第一信息还可以包括编码后的第一数据,解映射单元1005,还用于在资源池的子信道大小小于第二阈值的情况下,从PSCCH的最后一个符号后的第一个PSSCH符号开始解映射编码后的第一数据。
在一个实施例中,第二参数的值根据资源池的配置参数、第二SCI的比特数、第二级SCI的CRC的比特数确定。
有关上述接收单元1001、获取单元1002、确定单元1003、解码单元1004和解映射单元1005更详细的描述可以直接参考上述图6所示的方法实施例中第二终端设备的相关描述直接得到,这里不加赘述。
基于图1所描述的网络架构,请参阅图11,图11是本发明实施例公开的又一种通信装置的结构示意图。如图11所示,该通信装置可以包括处理器1101、存储器1102、输入接口1103、 输出接口1104和总线1105。处理器1101可以是一个通用中央处理器(CPU),多个CPU,微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本发明方案程序执行的集成电路。存储器1102可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器1102可以是独立存在,可以通过总线1105与处理器1101相连接。存储器1102也可以与处理器1101集成在一起。其中,总线1405用于实现这些组件之间的连接。
在一个实施例中,该通信装置可以为第一终端设备或者第一终端设备的模块(例如,芯片),存储器1102中存储的计算机程序指令被执行时,该处理器1101用于控制发送单元703执行上述实施例中执行的操作,该处理器1101还用于执行第一确定单元701、第二确定单元702和映射单元704上述实施例中执行的操作,输入接口1103用于接收来自其他通信装置的信息,输出接口1104用于执行上述实施例中发送单元703执行的操作。上述第一终端设备或者第一终端设备内的模块还可以用于执行前述图5所示的方法实施例中第一终端设备执行的各种方法,不再赘述。
在一个实施例中,该通信装置可以为第二终端设备或者第二终端设备的模块(例如,芯片),存储器1102中存储的计算机程序指令被执行时,该处理器1101用于控制接收单元801执行上述实施例中执行的操作,该处理器1101还用于执行第一确定单元802、解码单元803和解映射单元804上述实施例中执行的操作,输入接口1103用于执行上述实施例中接收单元801执行的操作,输出接口1104用于向其他通信装置发送信息。上述第一终端设备或者第一终端设备内的模块还可以用于执行前述图5所示的方法实施例中第二终端设备执行的各种方法,不再赘述。
在一个实施例中,该通信装置可以为第一终端设备或者第一终端设备的模块(例如,芯片),存储器1102中存储的计算机程序指令被执行时,该处理器1101用于控制发送单元904执行上述实施例中执行的操作,该处理器1101还用于执行获取单元901、第一确定单元902、第二确定单元903和映射单元905上述实施例中执行的操作,输入接口1103用于接收来自其他通信装置的信息,输出接口1104用于执行上述实施例中发送单元904执行的操作。上述第一终端设备或者第一终端设备内的模块还可以用于执行前述图6所示的方法实施例中第一终端设备执行的各种方法,不再赘述。
在一个实施例中,该通信装置可以为第二终端设备或者第二终端设备的模块(例如,芯片),存储器1102中存储的计算机程序指令被执行时,该处理器1101用于控制接收单元1001执行上述实施例中执行的操作,该处理器1101还用于执行获取单元1002、确定单元1003、解码单元1004和解映射单元1005上述实施例中执行的操作,输入接口1103用于执行上述实施例中接收单元1001执行的操作,输出接口1104用于向其他通信装置发送信息。上述第一 终端设备或者第一终端设备内的模块还可以用于执行前述图6所示的方法实施例中第二终端设备执行的各种方法,不再赘述。
基于图1所示的网络架构,请参阅图12,图12是本发明实施例公开的又一种通信装置的结构示意图。如图12所示,该通信装置可以包括输入接口1201、逻辑电路1202和输出接口1203。输入接口1201与输出接口1203通过逻辑电路1202相连接。其中,输入接口1201用于接收来自其它通信装置的信息,输出接口1203用于向其它通信装置输出、调度或者发送信息。逻辑电路1202用于执行除输入接口1201与输出接口1203的操作之外的操作,例如实现上述实施例中处理器1101实现的功能。其中,该通信装置可以为第一终端设备或者第一终端设备内的模块,也可以为第二终端设备或者第二终端设备内的模块。其中,有关输入接口1201、逻辑电路1202和输出接口1203更详细的描述可以直接参考上述方法实施例中第一终端设备或者第一终端设备内的模块以及第二终端设备或者第二终端设备内的模块的相关描述直接得到,这里不加赘述。
本发明实施例还公开一种计算机可读存储介质,其上存储有指令,该指令被执行时执行上述方法实施例中的方法。
本发明实施例还公开一种包含指令的计算机程序产品,该指令被执行时执行上述方法实施例中的方法。
本发明实施例还公开一种通信系统,该通信系统包括第一终端设备和第二终端设备,具体描述可以参考图5和图6所示的通信方法。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (73)

  1. 一种通信方法,其特征在于,包括:
    根据资源池的配置参数确定第二级侧行链路控制信息SCI编码后的调制符号个数;
    根据所述第二级SCI编码后的调制符号个数确定编码后的第二级SCI;
    通过物理层侧行链路共享信道PSSCH向终端设备发送第一信息,所述第一信息包括所述编码后的第二级SCI。
  2. 根据权利要求1所述的方法,其特征在于,所述资源池的配置参数包括所述资源池对应的物理层侧行链路控制信道PSCCH的格式、第一级SCI的循环冗余校验CRC、所述资源池支持的所述PSCCH的候选物理资源块PRB的个数以及所述PSCCH的时域符号个数;
    所述根据资源池的配置参数确定第二级SCI编码后的调制符号个数包括:
    根据所述格式、所述第一级SCI的CRC、所述候选PRB的个数和所述时域符号个数确定所述第一级SCI的码率;
    根据所述第一级SCI的码率确定第二级SCI编码后的调制符号个数。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述格式、所述第一级SCI的CRC、所述候选PRB的个数和所述时域符号个数确定所述第一级SCI的码率包括:
    根据所述格式确定所述第一级SCI的比特数;
    根据所述候选PRB的个数和所述时域符号个数确定所述第一级SCI编码后的比特数;
    根据所述第一级SCI的比特数、所述第一级SCI的CRC的比特数以及所述第一级SCI编码后的比特数确定所述第一级SCI的码率。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述候选PRB的个数和所述时域符号个数确定所述第一级SCI编码后的比特数包括:
    根据所述候选PRB的个数和所述时域符号个数确定所述第一级SCI编码后的调制符号个数;
    根据所述第一级SCI编码后的调制符号个数和所述第一级SCI的调制阶数确定所述第一级SCI编码后的比特数。
  5. 根据权利要求2-4任一项所述的方法,其特征在于,所述根据所述第一级SCI的码率确定第二级SCI编码后的调制符号个数包括:
    根据所述第一级SCI的码率、第二级SCI的比特数和所述第二级SCI的CRC的比特数,确定所述第二级SCI编码后的调制符号个数。
  6. 根据权利要求2-4任一项所述的方法,其特征在于,所述根据所述第一级SCI的码率确定第二级SCI编码后的调制符号个数包括:
    根据所述第一级SCI的码率、第二级SCI的比特数、所述第二级SCI的CRC的比特数和第一参数,确定所述第二级SCI编码后的调制符号个数。
  7. 根据权利要求1-6任一项所述的方法,其特征在于,所述根据所述第二级SCI编码后的调制符号个数确定编码后的第二级SCI包括:
    根据所述第二级SCI编码后的调制符号个数确定所述第二级SCI编码后的比特数;
    根据所述第二级SCI编码后的比特数确定编码后的第二级SCI。
  8. 根据权利要求2-7任一项所述的方法,其特征在于,所述方法还包括:
    将所述第一信息按照第一规则映射到所述PSSCH的传输资源上,所述编码后的第二级SCI在时域映射时是从第一个携带相应解调参考信号DMRS的PSSCH符号开始映射的。
  9. 根据权利要求8所述的方法,其特征在于,所述第一规则为:
    在所述PSSCH的调度带宽大于所述候选PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在所述PSSCH的调度带宽等于所述候选PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据所述PSSCH DMRS表格确定的第二个DMRS符号;或者
    所述PSSCH的调度带宽不等于所述候选PRB的个数;或者
    在所述资源池的子信道大小等于所述候选PRB的个数的情况下,所述PSSCH的调度带宽不少于第一阈值个PRB。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一信息还包括编码后的第一数据,所述方法还包括:
    在所述资源池的子信道大小小于第二阈值的情况下,从所述PSCCH的最后一个符号后的第一个PSSCH符号开始映射所述编码后的第一数据。
  11. 一种通信方法,其特征在于,包括:
    通过物理层侧行链路共享信道PSSCH接收来自终端设备的第一信息,所述第一信息包括编码后的第二级侧行链路控制信息SCI;
    根据资源池的配置参数确定所述第二级SCI编码后的调制符号个数;
    根据所述第二级SCI编码后的调制符号个数对所述编码后的第二级SCI进行解码,得到所述第二级SCI。
  12. 根据权利要求11所述的方法,其特征在于,所述资源池的配置参数包括所述资源池对应的物理层侧行链路控制信道PSCCH的格式、第一级SCI的循环冗余校验CRC、所述资源池支持的所述PSCCH的候选物理资源块PRB的个数以及所述PSCCH的时域符号个数;
    所述根据资源池的配置参数确定所述第二级SCI编码后的调制符号个数包括:
    根据所述格式、所述第一级SCI的CRC、所述候选PRB的个数和所述时域符号个数确定所述第一级SCI的码率;
    根据所述第一级SCI的码率确定所述第二级SCI编码后的调制符号个数。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述格式、所述第一级SCI的CRC、所述候选PRB的个数和所述时域符号个数确定所述第一级SCI的码率包括:
    根据所述格式确定所述第一级SCI的比特数;
    根据所述候选PRB的个数和所述时域符号个数确定所述第一级SCI编码后的比特数;
    根据所述第一级SCI的比特数、所述第一级SCI的CRC的比特数以及所述第一级SCI编码后的比特数确定所述第一级SCI的码率。
  14. 根据权利要求13所述的方法,其特征在于,所述根据所述候选PRB的个数和所述时域符号个数确定所述第一级SCI编码后的比特数包括:
    根据所述候选PRB的个数和所述时域符号个数确定所述第一级SCI编码后的调制符号个数;
    根据所述第一级SCI编码后的调制符号个数和所述第一级SCI的调制阶数确定所述第一级SCI编码后的比特数。
  15. 根据权利要求12-14任一项所述的方法,其特征在于,所述根据所述第一级SCI的码率确定所述第二级SCI编码后的调制符号个数包括:
    根据所述第一级SCI的码率、所述第二级SCI的比特数和所述第二级SCI的CRC的比特数,确定所述第二级SCI编码后的调制符号个数。
  16. 根据权利要求12-14任一项所述的方法,其特征在于,所述根据所述第一级SCI的码率确定所述第二级SCI编码后的调制符号个数包括:
    根据所述第一级SCI的码率、所述第二级SCI的比特数、所述第二级SCI的CRC的比特数和第一参数,确定所述第二级SCI编码后的调制符号个数。
  17. 根据权利要求11-16任一项所述的方法,其特征在于,所述根据所述第二级SCI编码后的调制符号个数对所述编码后的第二级SCI进行解码,得到所述第二级SCI包括:
    根据所述第二级SCI编码后的调制符号个数确定所述第二级SCI编码后的比特数;
    根据所述第二级SCI编码后的比特数对所述编码后的第二级SCI进行解码,得到所述第二级SCI。
  18. 根据权利要求12-17任一项所述的方法,其特征在于,所述方法还包括:
    按照第一规则从所述PSSCH的传输资源上解映射所述第一信息,所述编码后的第二级SCI在时域解映射时是从第一个携带相应解调参考信号DMRS的PSSCH符号开始解映射的。
  19. 根据权利要求18所述的方法,其特征在于,所述第一规则为:
    在所述PSSCH的调度带宽大于所述候选PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在所述PSSCH的调度带宽等于所述候选PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是 根据所述PSSCH DMRS表格确定的第二个DMRS符号;或者
    所述PSSCH的调度带宽不等于所述候选PRB的个数;或者
    在所述资源池的子信道大小等于所述候选PRB的个数的情况下,所述PSSCH的调度带宽不少于第一阈值个PRB。
  20. 根据权利要求18或19所述的方法,其特征在于,所述第一信息还包括编码后的第一数据,所述方法还包括:
    在所述资源池的子信道大小小于第二阈值的情况下,从所述PSCCH的最后一个符号后的第一个PSSCH符号开始解映射所述编码后的第一数据。
  21. 一种通信方法,其特征在于,包括:
    根据第一数据的信息获取第二参数的值;
    根据所述第二参数的值,确定第二级侧行链路控制信息SCI编码后的调制符号个数;
    根据所述第二级SCI编码后的调制符号个数确定编码后的第二级SCI;
    通过物理层侧行链路共享信道PSSCH向终端设备发送第一信息,所述第一信息包括编码后的第一数据、所述编码后的第二级SCI以及用于指示所述第二参数的值的指示信息。
  22. 根据权利要求21所述的方法,其特征在于,所述根据所述第二参数的值,确定第二级SCI编码后的调制符号个数包括:
    根据所述第一数据的比特数、第二级SCI的比特数、所述PSSCH上可用于承载第二级SCI的资源单元RE个数以及所述第二参数的值,确定所述第二级SCI编码后的调制符号个数。
  23. 根据权利要求21或22所述的方法,其特征在于,所述根据所述第二级SCI编码后的调制符号个数确定编码后的第二级SCI包括:
    根据所述第二级SCI编码后的调制符号个数确定所述第二级SCI编码后的比特数;
    根据所述第二级SCI编码后的比特数确定编码后的第二级SCI。
  24. 根据权利要求21-23任一项所述的方法,其特征在于,所述第一数据的信息包括所述第一数据的调制阶数和码率。
  25. 根据权利要求21-24任一项所述的方法,其特征在于,所述方法还包括:
    将所述第一信息按照第一规则映射到所述PSSCH的传输资源上,所述编码后的第二级SCI在时域映射时是从第一个携带相应解调参考信号DMRS的PSSCH符号开始映射的。
  26. 根据权利要求25所述的方法,其特征在于,所述第一规则为:
    在所述PSSCH的调度带宽大于资源池支持的物理层侧行链路控制信道PSCCH的候选物理资源块PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在所述PSSCH的调度带宽等于所述候选PRB的个数的 情况下,所述第一个携带相应DMRS的PSSCH符号是根据所述PSSCH DMRS表格确定的第二个DMRS符号;或者
    所述PSSCH的调度带宽不等于所述候选PRB的个数;或者
    在所述资源池的子信道大小等于所述候选PRB的个数的情况下,所述PSSCH的调度带宽不少于第一阈值个PRB。
  27. 根据权利要求25或26所述的方法,其特征在于,所述方法还包括:
    在所述资源池的子信道大小小于第二阈值的情况下,从所述PSCCH的最后一个符号后的第一个PSSCH符号开始映射所述编码后的第一数据。
  28. 根据权利要求26-27任一项所述的方法,其特征在于,所述第二参数的值根据所述资源池的配置参数、第二SCI的比特数、第二级SCI的CRC的比特数确定。
  29. 一种通信方法,其特征在于,包括:
    通过物理层侧行链路共享信道PSSCH接收来自终端设备的第一信息,所述第一信息包括编码后的第二级侧行链路控制信息SCI以及用于指示第二参数的值的指示信息;
    根据所述指示信息获取所述第二参数的值;
    根据所述第二参数的值,确定所述第二级SCI编码后的调制符号个数;
    根据所述第二级SCI编码后的调制符号个数对所述编码后的第二级SCI进行解码,得到所述第二级SCI。
  30. 根据权利要求29所述的方法,其特征在于,所述根据所述第二参数的值,确定所述第二级SCI编码后的调制符号个数包括:
    根据所述第一数据的比特数、所述第二级SCI的比特数、所述PSSCH上可用于承载第二级SCI的资源单元RE个数以及所述第二参数的值,确定所述第二级SCI编码后的调制符号个数。
  31. 根据权利要求29或30所述的方法,其特征在于,所述根据所述第二级SCI编码后的调制符号个数对所述编码后的第二级SCI进行解码,得到所述第二级SCI包括:
    根据所述第二级SCI编码后的调制符号个数确定所述第二级SCI编码后的比特数;
    根据所述第二级SCI编码后的比特数对所述编码后的第二级SCI进行解码,得到所述第二级SCI。
  32. 根据权利要求29-31任一项所述的方法,其特征在于,所述方法还包括:
    按照第一规则从所述PSSCH上解映射所述第一信息,所述编码后的第二级SCI在时域解映射时是从第一个携带相应解调参考信号DMRS的PSSCH符号开始解映射的。
  33. 根据权利要求32所述的方法,其特征在于,所述第一规则为:
    在所述PSSCH的调度带宽大于资源池支持的物理层侧行链路控制信道PSCCH的候选物理资源块PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在所述PSSCH的调度带宽等于所述候选PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据所述PSSCH DMRS表格确定的第二个DMRS符号;或者
    所述PSSCH的调度带宽不等于所述候选PRB的个数;或者
    在所述资源池的子信道大小等于所述候选PRB的个数的情况下,所述PSSCH的调度带宽不少于第一阈值个PRB。
  34. 根据权利要求32或33所述的方法,其特征在于,所述第一信息还包括编码后的第一数据,所述方法还包括:
    在所述资源池的子信道大小小于第二阈值的情况下,从所述PSCCH的最后一个符号后的第一个PSSCH符号开始解映射所述编码后的第一数据。
  35. 根据权利要求33或34所述的方法,其特征在于,所述第二参数的值根据所述资源池的配置参数、第二SCI的比特数、第二级SCI的CRC的比特数确定。
  36. 一种通信装置,其特征在于,包括:
    第一确定单元,用于根据资源池的配置参数确定第二级侧行链路控制信息SCI编码后的调制符号个数;
    第二确定单元,用于根据所述第二级SCI编码后的调制符号个数确定编码后的第二级SCI;
    发送单元,用于通过物理层侧行链路共享信道PSSCH向终端设备发送第一信息,所述第一信息包括所述编码后的第二级SCI。
  37. 根据权利要求36所述的装置,其特征在于,所述资源池的配置参数包括所述资源池对应的物理层侧行链路控制信道PSCCH的格式、第一级SCI的循环冗余校验CRC、所述资源池支持的所述PSCCH的候选物理资源块PRB的个数以及所述PSCCH的时域符号个数;
    所述第一确定单元具体用于:
    根据所述格式、所述第一级SCI的CRC、所述候选PRB的个数和所述时域符号个数确定所述第一级SCI的码率;
    根据所述第一级SCI的码率确定第二级SCI编码后的调制符号个数。
  38. 根据权利要求37所述的装置,其特征在于,所述第一确定单元根据所述格式、所述第一级SCI的CRC、所述候选PRB的个数和所述时域符号个数确定所述第一级SCI的码率包括:
    根据所述格式确定所述第一级SCI的比特数;
    根据所述候选PRB的个数和所述时域符号个数确定所述第一级SCI编码后的比特数;
    根据所述第一级SCI的比特数、所述第一级SCI的CRC的比特数以及所述第一级SCI编码后的比特数确定所述第一级SCI的码率。
  39. 根据权利要求38所述的装置,其特征在于,所述第一确定单元根据所述候选PRB的个数和所述时域符号个数确定所述第一级SCI编码后的比特数包括:
    根据所述候选PRB的个数和所述时域符号个数确定所述第一级SCI编码后的调制符号个数;
    根据所述第一级SCI编码后的调制符号个数和所述第一级SCI的调制阶数确定所述第一级SCI编码后的比特数。
  40. 根据权利要求37-39任一项所述的装置,其特征在于,所述第一确定单元根据所述第一级SCI的码率确定第二级SCI编码后的调制符号个数包括:
    根据所述第一级SCI的码率、第二级SCI的比特数和所述第二级SCI的CRC的比特数,确定所述第二级SCI编码后的调制符号个数。
  41. 根据权利要求37-39任一项所述的装置,其特征在于,所述第一确定单元根据所述第一级SCI的码率确定第二级SCI编码后的调制符号个数包括:
    根据所述第一级SCI的码率、第二级SCI的比特数、所述第二级SCI的CRC的比特数和第一参数,确定所述第二级SCI编码后的调制符号个数。
  42. 根据权利要求36-41任一项所述的装置,其特征在于,所述第二确定单元具体用于:
    根据所述第二级SCI编码后的调制符号个数确定所述第二级SCI编码后的比特数;
    根据所述第二级SCI编码后的比特数确定编码后的第二级SCI。
  43. 根据权利要求37-42任一项所述的装置,其特征在于,所述装置还包括:
    映射单元,用于将所述第一信息按照第一规则映射到所述PSSCH的传输资源上,所述编码后的第二级SCI在时域映射时是从第一个携带相应解调参考信号DMRS的PSSCH符号开始映射的。
  44. 根据权利要求43所述的装置,其特征在于,所述第一规则为:
    在所述PSSCH的调度带宽大于所述候选PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在所述PSSCH的调度带宽等于所述候选PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据所述PSSCH DMRS表格确定的第二个DMRS符号;或者
    所述PSSCH的调度带宽不等于所述候选PRB的个数;或者
    在所述资源池的子信道大小等于所述候选PRB的个数的情况下,所述PSSCH的调度带宽不少于第一阈值个PRB。
  45. 根据权利要求43或44所述的装置,其特征在于,所述第一信息还包括编码后的第一数据,所述映射单元,还用于在所述资源池的子信道大小小于第二阈值的情况下,从所述PSCCH的最后一个符号后的第一个PSSCH符号开始映射所述编码后的第一数据。
  46. 一种通信装置,其特征在于,包括:
    接收单元,用于通过物理层侧行链路共享信道PSSCH接收来自终端设备的第一信息,所述第一信息包括编码后的第二级侧行链路控制信息SCI;
    确定单元,用于根据资源池的配置参数确定所述第二级SCI编码后的调制符号个数;
    解码单元,用于根据所述第二级SCI编码后的调制符号个数对所述编码后的第二级SCI进行解码,得到所述第二级SCI。
  47. 根据权利要求46所述的装置,其特征在于,所述资源池的配置参数包括所述资源池对应的物理层侧行链路控制信道PSCCH的格式、第一级SCI的循环冗余校验CRC、所述资源池支持的所述PSCCH的候选物理资源块PRB的个数以及所述PSCCH的时域符号个数;
    所述确定单元具体用于:
    根据所述格式、所述第一级SCI的CRC、所述候选PRB的个数和所述时域符号个数确定所述第一级SCI的码率;
    根据所述第一级SCI的码率确定所述第二级SCI编码后的调制符号个数。
  48. 根据权利要求47所述的装置,其特征在于,所述确定单元根据所述格式、所述第一级SCI的CRC、所述候选PRB的个数和所述时域符号个数确定所述第一级SCI的码率包括:
    根据所述格式确定所述第一级SCI的比特数;
    根据所述候选PRB的个数和所述时域符号个数确定所述第一级SCI编码后的比特数;
    根据所述第一级SCI的比特数、所述第一级SCI的CRC的比特数以及所述第一级SCI编码后的比特数确定所述第一级SCI的码率。
  49. 根据权利要求48所述的装置,其特征在于,所述确定单元根据所述候选PRB的个数和所述时域符号个数确定所述第一级SCI编码后的比特数包括:
    根据所述候选PRB的个数和所述时域符号个数确定所述第一级SCI编码后的调制符号个数;
    根据所述第一级SCI编码后的调制符号个数和所述第一级SCI的调制阶数确定所述第一级SCI编码后的比特数。
  50. 根据权利要求47-49任一项所述的装置,其特征在于,所述确定单元根据所述第一级SCI的码率确定所述第二级SCI编码后的调制符号个数包括:
    根据所述第一级SCI的码率、所述第二级SCI的比特数和所述第二级SCI的CRC的比特数,确定所述第二级SCI编码后的调制符号个数。
  51. 根据权利要求47-49任一项所述的装置,其特征在于,所述确定单元根据所述第一级SCI的码率确定所述第二级SCI编码后的调制符号个数包括:
    根据所述第一级SCI的码率、所述第二级SCI的比特数、所述第二级SCI的CRC的比特数和第一参数,确定所述第二级SCI编码后的调制符号个数。
  52. 根据权利要求46-51任一项所述的装置,其特征在于,所述解码单元具体用于:
    根据所述第二级SCI编码后的调制符号个数确定所述第二级SCI编码后的比特数;
    根据所述第二级SCI编码后的比特数对所述解码后的第二级SCI进行解码,得到所述第二级SCI。
  53. 根据权利要求47-52任一项所述的装置,其特征在于,所述装置还包括:
    解映射单元,用于按照第一规则从所述PSSCH的传输资源上解映射所述第一信息,所述编码后的第二级SCI在时域解映射时是从第一个携带相应解调参考信号DMRS的PSSCH符号开始解映射的。
  54. 根据权利要求53所述的装置,其特征在于,所述第一规则为:
    在所述PSSCH的调度带宽大于所述候选PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在所述PSSCH的调度带宽等于所述候选PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据所述PSSCH DMRS表格确定的第二个DMRS符号;或者
    所述PSSCH的调度带宽不等于所述候选PRB的个数;或者
    在所述资源池的子信道大小等于所述候选PRB的个数的情况下,所述PSSCH的调度带宽不少于第一阈值个PRB。
  55. 根据权利要求53或54所述的装置,其特征在于,所述第一信息还包括编码后的第一数据,所述解映射单元,还用于在所述资源池的子信道大小小于第二阈值的情况下,从所述PSCCH的最后一个符号后的第一个PSSCH符号开始解映射所述编码后的第一数据。
  56. 一种通信装置,其特征在于,包括:
    获取单元,用于根据第一数据的信息获取第二参数的值;
    第一确定单元,用于根据所述第二参数的值,确定第二级侧行链路控制信息SCI编码后的调制符号个数;
    第二确定单元,用于根据所述第二级SCI编码后的调制符号个数确定编码后的第二级SCI;
    发送单元,用于通过物理层侧行链路共享信道PSSCH向终端设备发送第一信息,所述第一信息包括编码后的第一数据、所述编码后的第二级SCI以及用于指示所述第二参数的值的指示信息。
  57. 根据权利要求56所述的装置,其特征在于,所述第一确定单元,具体用于根据所述第一数据的比特数、第二级SCI的比特数、所述PSSCH上可用于承载第二级SCI的资源单元RE个数以及所述第二参数的值,确定所述第二级SCI编码后的调制符号个数。
  58. 根据权利要求56或57所述的装置,其特征在于,所述第二确定单元具体用于:
    根据所述第二级SCI编码后的调制符号个数确定所述第二级SCI编码后的比特数;
    根据所述第二级SCI编码后的比特数确定编码后的第二级SCI。
  59. 根据权利要求56-58任一项所述的装置,其特征在于,所述第一数据的信息包括所述第一数据的调制阶数和码率。
  60. 根据权利要求56-59任一项所述的装置,其特征在于,所述装置还包括:
    映射单元,用于将所述第一信息按照第一规则映射到所述PSSCH的传输资源上,所述编码后的第二级SCI在时域映射时是从第一个携带相应解调参考信号DMRS的PSSCH符号开始映射的。
  61. 根据权利要求60所述的装置,其特征在于,所述第一规则为:
    在所述PSSCH的调度带宽大于资源池支持的物理层侧行链路控制信道PSCCH的候选物理资源块PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在所述PSSCH的调度带宽等于所述候选PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据所述PSSCH DMRS表格确定的第二个DMRS符号;或者
    所述PSSCH的调度带宽不等于所述候选PRB的个数;或者
    在所述资源池的子信道大小等于所述候选PRB的个数的情况下,所述PSSCH的调度带宽不少于第一阈值个PRB。
  62. 根据权利要求60或61所述的装置,其特征在于,所述映射单元,还用于在所述资源池的子信道大小小于第二阈值的情况下,从所述PSCCH的最后一个符号后的第一个PSSCH符号开始映射所述编码后的第一数据。
  63. 根据权利要求56-62任一项所述的装置,其特征在于,所述第二参数的值根据所述资源池的配置参数、第二SCI的比特数、第二级SCI的CRC的比特数确定。
  64. 一种通信装置,其特征在于,包括:
    接收单元,用于通过物理层侧行链路共享信道PSSCH接收来自终端设备的第一信息,所述第一信息包括编码后的第二级侧行链路控制信息SCI以及用于指示第二参数的值的指示信息;
    获取单元,用于根据所述指示信息获取所述第二参数的值;
    确定单元,用于根据所述第二参数的值,确定所述第二级SCI编码后的调制符号个数;
    解码单元,用于根据所述第二级SCI编码后的调制符号个数对所述编码后的第二级SCI进行解码,得到所述第二级SCI。
  65. 根据权利要求64所述的装置,其特征在于,所述确定单元,具体用于根据所述第一数据的比特数、所述第二级SCI的比特数、所述PSSCH上可用于承载第二级SCI的资源单元RE个数以及所述第二参数的值,确定所述第二级SCI编码后的调制符号个数。
  66. 根据权利要求64或65所述的装置,其特征在于,所述解码单元具体用于:
    根据所述第二级SCI编码后的调制符号个数确定所述第二级SCI编码后的比特数;
    根据所述第二级SCI编码后的比特数对所述编码后的第二级SCI进行解码,得到所述第二级SCI。
  67. 根据权利要求64-65任一项所述的装置,其特征在于,所述装置还包括:
    解映射单元,用于按照第一规则从所述PSSCH上解映射所述第一信息,所述编码后的第二级SCI在时域解映射时是从第一个携带相应解调参考信号DMRS的PSSCH符号开始解映射的。
  68. 根据权利要求67所述的装置,其特征在于,所述第一规则为:
    在所述PSSCH的调度带宽大于资源池支持的物理层侧行链路控制信道PSCCH的候选物理资源块PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据PSSCH DMRS表格确定的第一个DMRS符号,在所述PSSCH的调度带宽等于所述候选PRB的个数的情况下,所述第一个携带相应DMRS的PSSCH符号是根据所述PSSCH DMRS表格确定的第二个DMRS符号;或者
    所述PSSCH的调度带宽不等于所述候选PRB的个数;或者
    在所述资源池的子信道大小等于所述候选PRB的个数的情况下,所述PSSCH的调度带宽不少于第一阈值个PRB。
  69. 根据权利要求67或68所述的装置,其特征在于,所述第一信息还包括编码后的第一数据,所述解映射单元,还用于在所述资源池的子信道大小小于第二阈值的情况下,从所述PSCCH的最后一个符号后的第一个PSSCH符号开始解映射所述编码后的第一数据。
  70. 根据权利要求68-69所述的装置,其特征在于,所述第二参数的值根据所述资源池的配置参数、第二SCI的比特数、第二级SCI的CRC的比特数确定。
  71. 一种通信装置,其特征在于,包括处理器、存储器、输入接口和输出接口,所述输入接口用于接收来自所述通信装置之外的其它通信装置的信息,所述输出接口用于向所述通信装置之外的其它通信装置输出信息,所述处理器调用所述存储器中存储的计算机程 序实现如权利要求1-35任一项所述的方法。
  72. 一种通信系统,其特征在于,包括:
    如权利要求36-45任一项所述的通信装置以及如权利要求46-55任一项所述的通信装置;或者
    如权利要求56-63任一项所述的通信装置以及如权利要求64-70任一项所述的通信装置。
  73. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序或计算机指令,当所述计算机程序或计算机指令被运行时,实现如权利要求1-35任一项所述的方法。
PCT/CN2020/075438 2020-02-14 2020-02-14 一种通信方法及装置 WO2021159538A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080094808.4A CN115004810A (zh) 2020-02-14 2020-02-14 一种通信方法及装置
PCT/CN2020/075438 WO2021159538A1 (zh) 2020-02-14 2020-02-14 一种通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075438 WO2021159538A1 (zh) 2020-02-14 2020-02-14 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2021159538A1 true WO2021159538A1 (zh) 2021-08-19

Family

ID=77292900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075438 WO2021159538A1 (zh) 2020-02-14 2020-02-14 一种通信方法及装置

Country Status (2)

Country Link
CN (1) CN115004810A (zh)
WO (1) WO2021159538A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210298002A1 (en) * 2018-11-08 2021-09-23 Beijing Xiaomi Mobile Software Co., Ltd. Control information sending method, receiving method and apparatus, and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110505703A (zh) * 2019-09-30 2019-11-26 展讯通信(上海)有限公司 发送及接收第二级sci的方法及装置、存储介质、发送ue及接收ue
US20190373625A1 (en) * 2018-02-16 2019-12-05 Intel Corporation Sidelink control information for vehicle-to-vehicle communications
WO2020033704A1 (en) * 2018-08-08 2020-02-13 Idac Holdings, Inc. Enhanced sidelink control transmission

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190373625A1 (en) * 2018-02-16 2019-12-05 Intel Corporation Sidelink control information for vehicle-to-vehicle communications
WO2020033704A1 (en) * 2018-08-08 2020-02-13 Idac Holdings, Inc. Enhanced sidelink control transmission
CN110505703A (zh) * 2019-09-30 2019-11-26 展讯通信(上海)有限公司 发送及接收第二级sci的方法及装置、存储介质、发送ue及接收ue

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project; Technical Specification Group Radio Access Network; NR; Physical layer procedures for data (Release 16)", 3GPP STANDARD; TECHNICAL SPECIFICATION; 3GPP TS 38.214, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. V16.0.0, 14 January 2020 (2020-01-14), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, pages 1 - 147, XP051860777 *
PANASONIC: "Discussion on physical layer structure for sidelink in NR V2X", 3GPP DRAFT; R1-1912752, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051820188 *
SEQUANS COMMUNICATIONS: "On NR sidelink physical layer structure", 3GPP DRAFT; R1-1911306, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Chongqing, China; 20191014 - 20191020, 7 October 2019 (2019-10-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051790072 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210298002A1 (en) * 2018-11-08 2021-09-23 Beijing Xiaomi Mobile Software Co., Ltd. Control information sending method, receiving method and apparatus, and storage medium
US11991698B2 (en) * 2018-11-08 2024-05-21 Koninklijke Philips N.V. Control information sending method, receiving method and apparatus, and storage medium

Also Published As

Publication number Publication date
CN115004810A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
US11695514B2 (en) Data and control multiplexing in PUSCH in wireless networks
US20210204257A1 (en) Method, device and system for determining coding modulation parameter
US11082150B2 (en) Wireless communication method and apparatus for mapping a phase tracking reference signal based on a target modulation and coding scheme index
US9065604B2 (en) Mobile communication system, base station apparatus, and mobile station apparatus
CN106850127B (zh) 用于发送控制信息的方法及其设备
CN111567006B (zh) 终端装置、基站装置以及通信方法
WO2019203246A1 (ja) 端末装置、基地局装置、および、通信方法
US20120320844A1 (en) Method and Apparatus for Determining Resource Index Information
WO2019194310A1 (ja) 端末装置、基地局装置、および、通信方法
CN111345002A (zh) 终端装置、基站装置以及通信方法
WO2020031666A1 (ja) 端末装置、基地局装置、および、通信方法
TWI734805B (zh) 傳輸數據的方法和設備
US8730898B2 (en) Method and apparatus for transmitting an uplink control signal in a wireless communication system
CN112771973A (zh) 终端及通信方法
WO2021159538A1 (zh) 一种通信方法及装置
TWI693854B (zh) 上行鏈路控制資訊處理方法及使用者設備
WO2020013030A1 (ja) 端末装置、基地局装置、および、通信方法
WO2022199607A1 (zh) 数据传输方法及装置
EP3905819B1 (en) Method for determining transport block size, and device
CN111711993B (zh) 一种传输信息的方法和装置
US11051318B2 (en) Terminal apparatus, base station apparatus, and communication method
CN117178511A (zh) 无线通信方法、终端设备和网络设备
CN117016023A (zh) 信息处理方法、装置、设备及存储介质
WO2019131878A1 (ja) 端末装置、基地局装置、および、通信方法
CN111711993A (zh) 一种传输信息的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20919150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20919150

Country of ref document: EP

Kind code of ref document: A1