WO2021159521A1 - 微流控检测芯片及其使用方法 - Google Patents

微流控检测芯片及其使用方法 Download PDF

Info

Publication number
WO2021159521A1
WO2021159521A1 PCT/CN2020/075413 CN2020075413W WO2021159521A1 WO 2021159521 A1 WO2021159521 A1 WO 2021159521A1 CN 2020075413 W CN2020075413 W CN 2020075413W WO 2021159521 A1 WO2021159521 A1 WO 2021159521A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
liquid storage
hole
sample
detection chip
Prior art date
Application number
PCT/CN2020/075413
Other languages
English (en)
French (fr)
Inventor
胡涛
袁春根
崔皓辰
Original Assignee
京东方科技集团股份有限公司
北京京东方健康科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方健康科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to CN202080000131.3A priority Critical patent/CN114269474B/zh
Priority to PCT/CN2020/075413 priority patent/WO2021159521A1/zh
Publication of WO2021159521A1 publication Critical patent/WO2021159521A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Definitions

  • the present disclosure relates to the field of biomedical technology, in particular to a microfluidic detection chip and a method of use thereof.
  • Microfluidics is a technology that precisely controls and manipulates micro-scale fluids. It can integrate basic operation units such as sample, reaction, separation, and detection in the inspection and analysis process into a micro-nano-scale chip, and complete it automatically Analyze the whole process. Microfluidic technology has the advantages of low sample consumption, fast detection speed, simple operation, multi-functional integration, small size and easy portability, and has great potential for applications in biology, chemistry, medicine and other fields.
  • microfluidic detection chips with microstructures require manual operations such as mixing, and operations such as mixing the sample to be tested with the pre-stored liquid cannot be performed, resulting in complicated detection steps and slow detection speed.
  • a microfluidic detection chip provided by the implementation of the present disclosure includes:
  • the liquid storage layer includes: a first liquid storage hole configured to store a pre-sealed reagent, and a second liquid storage hole configured to store a sample to be tested;
  • the roof layer is located on one side of the liquid storage layer; the roof layer includes: a through hole corresponding to the position of the first liquid storage hole, and a position corresponding to the second liquid storage hole Sample hole
  • the bottom cap layer is located on the side of the liquid storage layer away from the top cap layer; the bottom cap layer includes: a through hole corresponding to the position of the first liquid storage hole;
  • a pierceable first sealing layer is located between the liquid storage layer and the bottom cover layer; the first sealing layer includes: a first sealing structure configured to seal the first liquid storage hole;
  • the micro flow channel layer is located between the first sealing layer and the bottom cover layer;
  • the micro flow channel layer includes: a first opening corresponding to the position of the first liquid storage hole, and The second opening corresponding to the position of the second liquid storage hole, and the first micro flow channel connecting the first opening and the second opening;
  • the first micro flow channel is located in the micro flow The side of the road layer facing the bottom cover layer;
  • the first elastic sealing layer is located on the side of the micro flow channel layer away from the bottom cover layer;
  • the second elastic sealing layer is located between the liquid storage layer and the top cover layer; the second elastic sealing layer includes: a sample hole corresponding to the position of the second liquid storage hole.
  • the first sealing layer further includes: a second sealing structure configured to seal the second liquid storage hole; The through hole corresponding to the position of the liquid reservoir.
  • it further includes: a pierceable second sealing layer;
  • the second sealing layer is located between the second elastic sealing layer and the liquid storage layer;
  • the second sealing layer includes: a third sealing structure configured to seal the first liquid storage hole, and a fourth sealing structure configured to seal the second liquid storage hole.
  • the liquid storage layer further includes: a waste liquid tank, a first drainage hole penetrating the liquid storage layer, and a communication between the waste liquid tank and the first drainage hole The second micro channel between;
  • the waste liquid tank and the second micro flow channel are located on the surface of the liquid storage layer facing the top cover layer;
  • the micro flow channel layer further includes: a second drainage hole penetrating the micro flow channel layer, and the second drainage hole communicates with the first drainage hole and the first micro flow channel.
  • it further includes: an air pressure balance hole;
  • the air pressure balance hole penetrates the top cover layer and the second elastic sealing layer, and the position of the air pressure balance hole corresponds to the position of the waste liquid tank, and the air pressure balance hole is configured to communicate with the Waste liquid tank and atmosphere.
  • it further includes: an adhesive layer located between the micro flow channel layer and the first sealing layer; the adhesive layer is configured to bond the micro flow channel Layer and the reservoir layer.
  • the liquid storage layer further includes: a gas pressure adjustment hole penetrating the liquid storage layer, and a third micro-hole connecting the second liquid storage hole and the gas pressure adjustment hole.
  • the third micro flow channel is located on the surface of the liquid storage layer facing the bottom cover layer;
  • the first sealing layer further includes: a fifth sealing structure configured to seal the air pressure adjustment hole;
  • the top cover layer, the micro flow channel layer, the first elastic sealing layer, and the bottom cover layer are all provided with through holes corresponding to the positions of the air pressure regulating holes.
  • the edge of the air pressure regulating hole on the side facing the bottom cover layer is stepped;
  • the fifth sealing structure and part of the adhesive layer are embedded in the stepped edge of the air pressure adjusting hole.
  • it further includes: a substrate layer located between the first elastic sealing layer and the bottom cover layer;
  • the substrate layer is provided with an antibody coating area on the surface of the side close to the top cover layer;
  • the first elastic sealing layer includes: a plurality of communicating holes corresponding to the position of the antibody coating area;
  • the position of each communication hole corresponds to the position of the first micro flow channel.
  • the substrate layer includes: a biosensor located in the antibody-coated area, and a coating layer located on the surface of the biosensor;
  • the surface of the coating layer is coated with antibodies.
  • the substrate layer is made of plastic, glass or silicon material; or, the substrate layer is made of a printed circuit board.
  • the substrate layer and the bottom cover layer are an integral structure.
  • the sample injection hole in the second elastic sealing layer is a reversible sealing port.
  • the top cover layer and the bottom cover layer are each provided with a plurality of engaging structures on the surface facing the liquid storage layer;
  • the liquid storage layer is provided with a plurality of grooves respectively corresponding to the positions of the engaging structure in a one-to-one manner;
  • Each film layer between the engaging structure and the groove is provided with an engaging hole corresponding to the position of each engaging structure on a one-to-one basis;
  • the engaging structure is inserted into the corresponding groove through the corresponding engaging hole.
  • an embodiment of the present disclosure also provides a method for using the above-mentioned microfluidic detection chip, including:
  • the sample to be tested in the second liquid storage hole is controlled to be injected into the first microfluidic channel.
  • controlling the injection of the pre-sealed reagent in the first liquid storage hole into the first microfluidic channel includes:
  • the pre-sealed reagent in the first liquid storage hole is injected into the first micro flow channel.
  • the sample injection hole in the second elastic sealing layer is a reversible sealing port
  • the method further includes:
  • the controlling the injection of the test sample in the second liquid storage hole into the first microfluidic channel includes:
  • the sample to be tested in the second liquid storage hole is injected into the first micro flow channel.
  • FIG. 1 is a schematic diagram of a layered structure of a microfluidic detection chip provided by an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of a front view structure of a microfluidic detection chip provided by an embodiment of the disclosure
  • FIG. 3 is one of the schematic diagrams of the side view structure of the microfluidic detection chip used in the embodiment of the disclosure.
  • FIG. 4 is the second schematic diagram of the side view structure of the microfluidic detection chip used in the embodiment of the disclosure.
  • FIG. 5 is a schematic bottom view of the structure of a microfluidic detection chip used in an embodiment of the disclosure
  • FIG. 6 is a schematic diagram of the structure of the top cover layer in an embodiment of the disclosure.
  • FIG. 7 is a schematic structural diagram of a second elastic sealing layer in an embodiment of the disclosure.
  • FIG. 8 is a schematic diagram of the structure of the second sealing layer in an embodiment of the disclosure.
  • FIG. 9 is one of the structural schematic diagrams of the liquid storage layer in the embodiment of the disclosure.
  • FIG. 10 is the second schematic diagram of the structure of the liquid storage layer in the embodiment of the disclosure.
  • FIG. 11 is a schematic diagram of the structure of the first sealing layer in an embodiment of the disclosure.
  • FIG. 12 is a schematic diagram of the structure of the adhesive layer in an embodiment of the disclosure.
  • FIG. 13 is one of the structural schematic diagrams of the micro-channel layer in the embodiment of the disclosure.
  • FIG. 14 is the second schematic diagram of the structure of the micro-channel layer in the embodiment of the disclosure.
  • 15 is a schematic diagram of the structure of the first elastic sealing layer in an embodiment of the disclosure.
  • FIG. 16 is one of the schematic diagrams of the structure of the substrate layer in the embodiment of the disclosure.
  • FIG. 17 is the second schematic diagram of the structure of the substrate layer in the embodiment of the disclosure.
  • FIG. 19 is a schematic cross-sectional view of the microfluidic detection chip at the dotted line L in FIG. 2 in an embodiment of the disclosure;
  • FIG. 20 is a flowchart of a method for using the above-mentioned microfluidic detection chip provided by an embodiment of the disclosure.
  • embodiments of the present invention provide a microfluidic detection chip and a method of use thereof.
  • FIG. 1 is a schematic diagram of the hierarchical structure of a microfluidic detection chip provided by an embodiment of the disclosure
  • FIG. 2 is a schematic front view structure of a microfluidic detection chip provided by an embodiment of the disclosure
  • FIG. 3 and FIG. 4 are embodiments of the disclosure
  • Fig. 5 is a schematic bottom view of the microfluidic detection chip used in the embodiment of the disclosure
  • Figs. 6 to 18 are the microfluidic detection chip of the embodiment of the disclosure.
  • the specific structure diagram of each film layer in FIG. 19 is a schematic cross-sectional diagram of the microfluidic detection chip in the embodiment of the disclosure at the dotted line L in FIG. 2.
  • microfluidic detection chip provided by the embodiment of the present disclosure, as shown in FIG. 1, includes:
  • the liquid storage layer 4 includes: a first liquid storage hole (401, 402, 403, 404 in the figure) configured to store pre-sealed reagents, and a first liquid storage hole configured to store samples to be tested Second liquid storage hole 405;
  • the top cover layer 1 is located on one side of the liquid storage layer 4; the top cover layer 1 includes: through holes (401, 402, 403, 404) corresponding to the positions of the first liquid storage holes (401, 402, 403, 404) 101, 102, 103, 104), and the sample hole 105 corresponding to the position of the second liquid storage hole 405;
  • the bottom cap layer 10 is located on the side of the liquid storage layer 4 away from the top cap layer 1; Corresponding through holes (1001, 1002, 1003, 1004);
  • the pierceable first sealing layer 5 is located between the liquid storage layer 4 and the bottom cover layer 10; the first sealing layer 5 includes: configured to seal the first liquid storage holes (401, 402, 403) , 404) the first sealing structure 501;
  • the micro flow channel layer 7 is located between the first sealing layer 5 and the bottom cover layer 10;
  • the micro flow channel layer 7 includes: and the first liquid storage hole (401, 402, 403, 404)
  • the first opening (701, 702, 703, 704) corresponding to the position of, the second opening 705 corresponding to the position of the second liquid storage hole 405, and the first opening (701, 702, 703, 704)
  • the first micro flow channel 707 with the second opening 705; the first micro flow channel 707 is located on the side of the micro flow channel layer 7 facing the bottom cover layer 10;
  • the first elastic sealing layer 8 is located on the side of the micro flow channel layer 8 close to the bottom cover layer 10;
  • the second elastic sealing layer 2 is located between the liquid storage layer 4 and the top cover layer 1; the second elastic sealing layer 2 includes: a sample hole 205 corresponding to the position of the second liquid storage hole 405.
  • the pre-sealed reagent can be stored in the first liquid storage hole by setting the liquid storage layer.
  • the pre-sealed reagent stored in the first liquid storage hole is injected into the first opening in the micro flow channel layer, and can pass through the top cover layer and the second elastic sealing layer
  • the sample injection hole injects the sample to be tested into the second liquid storage hole, and controls the sample to be tested to be injected into the second opening in the micro flow channel layer.
  • the first micro flow channel communicates with the first opening and the second opening. Therefore, the sample to be tested can be mixed with the pre-sealed reagent without manual mixing and other operations.
  • the operation is simple and the detection speed is fast.
  • the microfluidic detection chip has a simple structure, and the material cost and manufacturing process cost are relatively low. Low, has the advantages of miniaturization, integration, automation, etc., which is convenient for large-scale production and application.
  • the microfluidic detection chip provided by the embodiments of the present disclosure can accurately control and manipulate the flow of pre-sealed reagents and samples to be tested by using microfluidic technology, and can inject samples to be tested, reactions, waste liquid treatments, etc. during the inspection and analysis process
  • the basic operating unit is integrated into the small-sized microfluidic detection chip, which has the advantages of low sample consumption, fast detection speed, simple operation, multi-functional integration, small size and easy portability. It is used in the fields of biology, chemistry, medicine, etc. It has great potential for application.
  • the above-mentioned microfluidic detection chip has a wide range of applicability, and can be equipped with optical detection equipment (such as absorbance detection, fluorescence detection, chemiluminescence detection, plasma surface resonance detection, etc.), electrochemical detection equipment (such as current detection, potential detection, etc.). Testing, impedance testing, etc.), giant magnetoresistance testing equipment, piezoelectric testing equipment and other types of testing equipment.
  • optical detection equipment such as absorbance detection, fluorescence detection, chemiluminescence detection, plasma surface resonance detection, etc.
  • electrochemical detection equipment such as current detection, potential detection, etc.
  • Testing, impedance testing, etc. giant magnetoresistance testing equipment, piezoelectric testing equipment and other types of testing equipment.
  • the top cover layer 1 is provided with through holes 101, 102, 103, 104 corresponding to the positions of the first liquid storage holes 401, 402, 403, 404, so that the liquid injection pusher can pass through the top cover layer 1.
  • the second elastic sealing layer 2 is pressed, and the top cover layer 1 is provided with a sample injection hole 105 corresponding to the position of the second liquid storage hole 405, so that the sample to be tested can be injected into the second liquid storage hole 405 through the sample hole 105 .
  • the above-mentioned top cover layer 1 can be made of polypropylene (PP) material, and the size of the top cover layer 1 can be set to be about 65 mm in length, 35 mm in width, and 3 mm in thickness, with through holes 101, 102, 103, and 104. And the diameter of the sample hole 105 can be set to about 8 mm.
  • PP polypropylene
  • the bottom cover layer 10 is provided with through holes 1001, 1002, 1003, 1004 corresponding to the positions of the first liquid storage holes 401, 402, 403, 404, so that the unsealing needle can pass through the through holes of the bottom cover layer 10
  • the first sealing layer 5 is punctured, or the liquid injection pusher can pass through the bottom cover layer 10 to squeeze the first elastic sealing layer 8.
  • the bottom cover layer 10 can be made of polypropylene (PP) Made of materials, the size of the bottom cover layer 10 can be set to be about 65 mm in length, 35 mm in width, and 3 mm in thickness.
  • the diameter of the through holes 1001, 1002, 1003, and 1004 can be set to about 8 mm.
  • the first liquid storage layer 401 in the above-mentioned liquid storage layer 4 can be used to store pre-sealed reagents, and the first liquid storage layer 401 is sealed by the first sealing layer 5 and the second elastic sealing layer 2.
  • the four first liquid storage holes 401, 402, 403, 404 are taken as examples for illustration.
  • the number of first liquid storage holes can be determined according to the type of pre-packed reagents that need to be stored in advance.
  • the number of first liquid storage holes is not limited.
  • the first liquid storage hole, the second liquid storage hole, and the through holes in other membrane layers are circular as an example.
  • the shapes of the liquid storage hole, the second liquid storage hole and other through holes are not limited here.
  • the above-mentioned liquid storage layer 4 may be made of acrylonitrile-butadiene-styrene (Acrylonitrile Butadiene Styrene plastic, ABS) material, and the size of the above-mentioned liquid storage layer 4 may also be set to be about 65 mm in length and 35 mm in width. The thickness is about 8 mm, and the diameter of the first liquid storage holes 401, 402, 403, 404 can be set to about 8 mm.
  • ABS acrylonitrile-butadiene-styrene
  • first liquid storage hole and the second liquid storage hole in the liquid storage layer in the embodiment of the present disclosure have the function of temporarily storing liquid.
  • the first liquid storage hole is used to store the pre-sealed reagent
  • the second liquid storage hole The hole can be used to store the diluent in advance, and temporarily store the sample to be tested and the diluent, so that the sample to be tested and the diluent can be uniformly mixed.
  • Both the liquid storage hole and the second liquid storage hole have the function of temporarily storing liquid.
  • the above-mentioned first sealing layer 5 in the embodiment of the present disclosure can be made of pierceable materials such as aluminum film, and the first sealing structure 501 in the first sealing layer 5 is used to seal the first liquid storage hole so that the pre-sealing reagent can Sealed in the first liquid storage hole, a first sealing structure 501 may be used to seal each first liquid storage hole, or multiple first sealing structures 501 may be used to seal each first liquid storage hole, respectively, There is no limitation here.
  • the first sealing structure 501 In order to ensure the tightness of the first sealing structure 501, the first sealing structure 501 must be able to completely cover the first liquid storage hole, and the area of the first sealing structure 501 must be larger than the area of the corresponding first liquid storage hole, or The area of the first sealing layer 5 is set to be close to the area of the liquid storage layer 4.
  • the above-mentioned first elastic sealing layer 8 can be made of silicone material, so that the first elastic sealing layer 8 has a certain degree of toughness, can be deformed under the squeezing or pulling action of the liquid injection pusher, and will not be pushed by the liquid injection. Or the unsealing needle can pierce the first sealing layer 5, and the air pressure inside the microfluidic detection chip can be changed to realize the flow control of the pre-sealed reagent or the sample to be tested. In addition, the first sealing layer can also be used. The airtightness of an elastic sealing layer 8 seals the micro flow channel layer 7.
  • the size of the first elastic sealing layer 1 can be set to be about 64mm in length, 34mm in width, and about 0.3mm in thickness, and the size of the first elastic sealing layer 1 is set to be slightly smaller than the size of the bottom cover layer 10, so that the bottom The cover layer 10 completely covers the first elastic sealing layer 8.
  • the above-mentioned second elastic sealing layer 2 can be made of silicone material, so that the second elastic sealing layer 2 has a certain degree of toughness, can be deformed under the squeezing or pulling action of the liquid injection pusher, and will not be pushed by the liquid injection. Or the unsealing needle is pierced to change the air pressure inside the microfluidic detection chip to realize the flow control of the pre-sealed reagent or the sample to be tested.
  • the size of the second elastic sealing layer 2 can be set to be about 64 mm in length and about 64 mm in width.
  • the size of the second elastic sealing layer 2 is set to be slightly smaller than the size of the top cover layer 1 so that the top cover layer 1 can completely cover the second elastic sealing layer 2.
  • the first openings 701, 702, 703, and 704 in the above-mentioned microfluidic layer 7 are divided into positions corresponding to the positions of the first liquid storage holes 401, 402, 403, and 404, and the second openings 705 and the second liquid storage holes 405 corresponds to the position, and each first opening 701, 702, 703, 704 communicates with the second opening 705 through the first micro flow channel 707, and after piercing the first sealing layer 5, the first opening and The corresponding first liquid storage hole is connected, and the second opening is connected with the corresponding second liquid storage hole, so that the liquid in the liquid storage layer 4 can be injected into the microchannel layer.
  • the microfluidic layer 7 can be made of acrylonitrile-butadiene-styrene (Acrylonitrile Butadiene Styrene plastic, ABS) material, and the size of the microfluidic layer 7 can be set to be about 65mm long, 35mm wide, and thick.
  • the diameter of the first opening 701, 702, 703, 704, and the second opening 705 can be set to about 8 mm.
  • an unsealing needle can be used to pass through the through hole in the bottom cover layer 10 and the first opening 701 to pierce the first sealing structure 501 in the first sealing layer 5, and then use a liquid injection pusher to pass through
  • the through hole in the top cover layer 1 squeezes the first elastic sealing layer 2 so that the pre-sealed reagent stored in the first liquid storage hole is injected into the first opening in the micro flow channel, and can pass through the top cover layer 1.
  • the sample injection hole in the second elastic sealing layer 2 inject the sample to be tested into the second liquid storage hole, and control the sample to be tested to be injected into the second opening 705 in the microfluidic layer 7, due to the first opening
  • the hole and the second opening 705 are connected through the first micro-channel 707, so that the sample to be tested and the pre-sealed reagent can be mixed.
  • the order in which the pre-sealed reagent is injected into the microfluidic layer 7, and the speed of squeezing the first elastic sealing layer or the second elastic sealing layer can be controlled, and the flow rate of the pre-sealed reagent of the sample to be tested can be adjusted to complete the corresponding detection.
  • the first sealing layer 5 may further include: The second sealing structure 502 of the hole; the bottom cover layer 10 is provided with a through hole 1005 corresponding to the position of the second liquid storage hole.
  • the second liquid storage hole can be sealed, so that some diluent can be stored in the second liquid storage hole in advance, and the added sample to be tested can be diluted, During use, the sample to be tested is added to the second liquid storage hole and mixed with the diluent, and then an unsealing needle can be used to pass through the through hole 1005 and the second through hole on the bottom cover layer 10 to seal the second
  • the structure 502 is pierced, so that the mixed sample to be tested flows into the microfluidic layer 7.
  • the volume of the diluent pre-existing in the second liquid storage hole can be set according to the actual concentration of the sample to be tested, so as to achieve precise dilution of the volume ratio without increasing additional costs.
  • microfluidic detection chip provided by the embodiment of the present disclosure, as shown in FIG. 1, FIG. 8 and FIG. 9, may further include: a pierceable second sealing layer 3;
  • the second sealing layer 3 is located between the second elastic sealing layer 2 and the liquid storage layer 4;
  • the second sealing layer 3 includes: a third sealing structure 301 configured to seal the first liquid storage hole 401, 402, 403, 404, and a fourth sealing structure 302 configured to seal the second liquid storage hole 405.
  • the first liquid storage hole and the second liquid storage hole in the liquid storage layer 4 can be further sealed, so that the first liquid storage hole and Under the action of the first sealing layer and the second sealing layer, the second liquid storage hole becomes a sealed storage structure to prevent the pre-sealed reagent and diluent stored in the liquid storage layer 4 from leaking.
  • one third sealing structure 301 may be used to seal each first liquid storage hole, or multiple third sealing structures 301 may be used to seal each first liquid storage hole, which is not limited here.
  • the area of the third sealing structure 301 needs to ensure that it can completely cover the corresponding first liquid storage hole
  • the area of the fourth sealing structure 302 needs to ensure that it can completely cover the corresponding second liquid storage hole, or the second sealing layer 5
  • the area of is set to be similar to the area of the liquid storage layer 4.
  • the above-mentioned second sealing layer 3 can be made of pierceable materials such as aluminum film.
  • an unsealing needle can be used to pierce the third sealing structure 301 through the through hole in the top cover layer 1, or an unsealing can be used.
  • the needle pierces the fourth sealing structure 302 through the sample hole in the top cover layer 1.
  • the liquid storage layer 4 may further include: a waste liquid tank 407, which penetrates the first Drainage hole 408, and a second micro flow channel 409 connecting the waste liquid tank 407 and the first drainage hole 408;
  • the waste liquid tank 407 and the second micro flow channel 409 are located on the surface of the liquid storage layer 4 facing the cap layer 1;
  • the micro flow channel layer 7 may further include: a second drainage hole 708 penetrating the micro flow channel layer 7, and the second drainage hole 708 connects the first drainage hole 408 and the first micro flow channel 707.
  • the liquid storage tank 407 and the second micro flow channel 409 are groove-shaped and are located on the surface of the liquid storage tank 4 facing the cap layer 1, and the first drainage hole 408 penetrates the liquid storage tank 4.
  • the first micro flow channel 707 is located on the surface of the micro flow channel layer 7 facing the bottom cover layer 10, and the second drainage hole 708 penetrates the micro flow channel layer 7.
  • the pre-sealed reagent injected into the first opening 701, 702, 703, 704 will be mixed in the first micro-channel 707 and injected into the second opening 705 and react accordingly. It flows into the second micro flow channel 409 through the second drainage hole 708 and the first drainage hole 408, and then flows into the waste liquid tank 407.
  • the waste liquid tank 407 is shown as a rectangle.
  • the waste liquid tank 407 may also have other shapes.
  • the waste liquid tank may have an irregular shape, which is not limited here, and the waste liquid tank 407
  • the volume of the second micro channel 409 can be set to be greater than or equal to 200 uL.
  • the size of the second micro channel 409 can be set to be about 15 mm in length, 300 um in width, and 200 um in depth.
  • the diameter of the first drainage hole 408 may be set to about 1.5 mm, and the diameter of the second drainage hole 708 may be set to about 1.5 mm.
  • microfluidic detection chip provided by the embodiment of the present disclosure, as shown in FIG. 6 and FIG. 7, may further include: an air pressure balance hole R;
  • the air pressure balance hole R penetrates the top cover layer 1 and the second elastic sealing layer 2, and the position of the air pressure balance hole R corresponds to the position of the waste liquid tank 407, and the air pressure balance hole R is configured to communicate the waste liquid tank 407 with the atmosphere.
  • the waste liquid tank 407 can be connected to the atmosphere, and the air pressure inside the microfluidic detection chip can be balanced. During the process of the second elastic sealing layer, the internal pressure can be released through the air pressure balance hole R to realize the flow of liquid.
  • the microfluidic detection chip provided by the embodiment of the present disclosure, as shown in FIG. 1 and FIG. 12, may further include: an adhesive layer 6 located between the microfluidic layer 7 and the first sealing layer 5; The adhesive layer 6 is configured to bond the microfluidic layer 7 and the liquid storage layer 4.
  • the liquid storage layer 4 and the micro flow channel layer 7 can be bonded together by providing the adhesive layer 6, and the adhesive layer 6 is provided with through holes at positions corresponding to the first liquid storage hole and the second liquid storage hole. 601, 602, 603, 604, and 605 to ensure that the liquid in the liquid storage layer 4 can flow into the micro flow channel layer 7 through the adhesive layer 6.
  • the adhesive layer 6 is also provided with a through hole 608 corresponding to the first drainage hole.
  • the adhesive layer 6 may adopt a glue material, and the coating range of the glue material may be set to be about 65 mm in length, 35 mm in width, and 0.3 mm in thickness and 0.3 mm in thickness.
  • the adhesive layer 6 can also be made of materials with elastic stretch properties.
  • the size of the adhesive layer 6 can be set to be about 65mm in length, 35mm in width, and 0.3mm in thickness, and the diameters of the through holes 601, 602, 603, 604, and 605 can be It is set to about 8 mm, and the diameter of the through hole 608 can be set to about 1.5 mm.
  • the liquid storage layer 4 further includes: a gas pressure adjustment hole 406 penetrating the liquid storage layer 4, and a communication The second liquid storage hole 405 and the third micro flow channel 4010 of the air pressure regulating hole 406;
  • the third micro channel 4010 is located on the surface of the liquid storage layer 4 facing the bottom cap layer 10;
  • the first sealing layer 5 may further include: a fifth sealing structure 503 configured to seal the air pressure adjustment hole 406;
  • the top cover layer 1, the micro flow channel layer 7, the first elastic sealing layer 8 and the bottom cover layer 10 are all provided with a passage corresponding to the position of the air pressure regulating hole 406
  • the holes 106, 706, 806, and 1006, specifically, the size of the through holes 106, 706, 806, and 1006 can be set to about 8 mm.
  • the air tightness of the air pressure regulating hole 406 can be ensured before the sample to be tested in the second liquid storage hole 405 is controlled to be injected into the micro flow channel layer 7.
  • the unsealing needle can be passed through the bottom cover layer 10, the first elastic sealing layer 8 and the micro flow channel layer 7 to pierce the fifth
  • the sealing layer 2 is squeezed or pulled to change the air pressure in the air pressure regulating hole 406 so as to mix two or more liquids in the second liquid storage hole 405 evenly.
  • the air pressure inside the air pressure adjusting hole 406 can be changed by squeezing the elastic sealing layer 2 or the adhesive layer 6, and passing through the third micro flow channel 4010 Connecting the air pressure adjustment hole 406 and the second liquid storage hole 405 can make the second liquid hole 405 communicate with the air pressure of the air pressure adjustment hole 406, so as to realize the function of adjusting the air pressure in the second liquid storage hole 405 through the air pressure adjustment hole 406 , To control the liquid flow in the second liquid storage hole 405.
  • the edge of the air pressure adjustment hole 406 on the side facing the bottom cover layer 10 is stepped;
  • the fifth sealing structure 503 and part of the adhesive layer 6 are embedded in the stepped edge of the air pressure regulating hole 406.
  • the air pressure adjustment hole 406 By setting the edge of the air pressure adjustment hole 406 facing the bottom cover layer 10 in a step shape, and the fifth sealing structure 503 and part of the adhesive layer 6 are embedded in the stepped edge of the air pressure balance hole 406, the air pressure adjustment can be further sealed. Hole 406, before the sample to be tested in the second liquid storage hole 405 is injected into the microfluidic layer 7, the air-tightness of the air pressure adjustment hole 406 is ensured to prevent the pre-sealed diluent in the second liquid storage hole 305 from entering the air pressure Within the adjustment hole 406.
  • the stepped edge of the air pressure adjusting hole 406 may be set to be flush with the inner surface of the third micro flow channel 4010. Specifically, the diameter of the side of the air pressure adjusting hole 406 facing the bottom cover layer 10 may be set to about 11 mm, and the depth of the stepped edge may be set to about 200 um.
  • the above-mentioned microfluidic detection chip provided by the embodiments of the present disclosure, as shown in FIG. 1 and FIG. 16, may further include: a substrate layer 9 located between the first elastic sealing layer 8 and the bottom cover layer 10 ;
  • the substrate layer 9 is provided with an antibody coating area on the surface of the side close to the top cover layer 1;
  • the first elastic sealing layer 8 includes: a plurality of communicating holes 807 corresponding to the position of the antibody coating area;
  • each communication hole 807 corresponds to the position of the first micro flow channel 708.
  • the pre-sealed reagent and the sample to be tested flow into the first micro flow channel 708 and are mixed, they can flow to the antibody-coated area of the substrate layer 9 through the communication holes 807 in the first elastic sealing layer 8, so that the antibody reaction occurs, and,
  • the antibody coating area of the substrate layer 9 can be coated with antibodies for detecting multiple indicators, so as to realize the combined detection of multiple indicators of a single sample to be tested.
  • the area of the antibody-coated region in the substrate layer 9 may be less than or equal to the area of all the communicating holes 807.
  • the size of the substrate layer 9 can be set to be about 65 mm in length, 35 mm in width, and 2.5 mm in thickness.
  • the substrate layer 9 is provided with through holes 901, 902, 903, and 904 corresponding to the positions of the first liquid storage holes, the through holes 905 corresponding to the positions of the second liquid storage holes, and the positions corresponding to the air pressure adjustment holes.
  • the through hole 906, and the diameter of the through holes 901, 902, 903, 904, 905, 906 can be set to about 8 mm.
  • the substrate layer 9 may include: a biosensor 906 located in the antibody coating area, and a coating layer 907 located on the surface of the biosensor 906;
  • the surface of the coating layer 907 is coated with antibodies.
  • the biosensor 906 and the coating layer 907 are shown separately. In practical applications, the coating layer 907 is coated on the surface of the biosensor 906.
  • the pre-sealed reagent and the sample to be tested flow into the first micro flow channel 708 and mix, they can flow to the antibody-coated area of the substrate layer 9 through the communication holes 807 in the first elastic sealing layer 8, and coat the surface of the coating layer 907.
  • the antibody reacts with the antibody, and collects the detection signal through the biosensor 906, and transmits the detection signal to the corresponding detection instrument.
  • the distribution of the signal collection area can be dots, lines, dot arrays, linear arrays, or round, square, diamond, and other regular and irregular shapes.
  • the shape, here does not limit the specific setting of the signal collection area.
  • a coating layer 907 can be coated on the biosensor 906, or a multi-layer coating layer 907 can be coated, which is not limited here.
  • the above-mentioned substrate layer may be made of plastic, glass or silicon material; or, the substrate layer may be made of a printed circuit board.
  • the above-mentioned substrate layer can be made of a plastic material that can absorb the antibody, such as polystyrene (PS) or polymethyl methacrylate (PMMA) with high light transmittance. Rate of material.
  • the substrate layer is made of a printed circuit board, the biosensor can be directly integrated into the circuit of the printed circuit board.
  • the substrate layer and the bottom cover layer may also be an integrated structure.
  • the antibody coating area of the substrate layer may be directly disposed on the bottom cover layer.
  • the substrate layer is integrated into the bottom cover layer, thereby reducing one film layer and reducing the overall thickness of the microfluidic detection chip, which is beneficial to the miniaturization of the microfluidic detection chip.
  • the sample injection hole 205 in the second elastic sealing layer 2 is a reversible sealing port.
  • the sample hole 105 of the top cover 1 can expose the sample hole 205.
  • the lid of the sample hole 205 can be opened through the sample hole 105, and the sample hole 105 can be opened through the sample hole 105.
  • 205 inject the sample to be tested into the second liquid storage hole.
  • the lid of the flip-top sealing port can be closed, so that the sample hole 205 is still airtight, and the second elastic seal can be subsequently squeezed
  • the sample to be tested in the second liquid storage hole is mixed with the diluent.
  • the top cover layer 1 and the bottom cover layer 10 face the liquid storage
  • the surface on one side of the layer 4 is provided with a plurality of engaging structures T;
  • the liquid storage layer 4 is provided with a plurality of grooves U respectively corresponding to the positions of the engaging structure T one by one;
  • Each film layer between the engaging structure T and the groove U is provided with an engaging hole V corresponding to the position of each engaging structure T.
  • the second elastic sealing layer 2 in FIG. 7 is provided with an engaging hole V Multiple engaging holes V;
  • the engaging structure T is inserted into the corresponding groove U through the corresponding engaging hole V.
  • the engaging structure T in the top cover layer 1 can pass through the second elastic sealing layer.
  • the engaging hole V in the layer 2 is embedded in each groove U at the corresponding position of the liquid storage layer 4, the engaging structure T is tightly bonded to the corresponding groove U, so that the second elastic sealing layer can be tightly bonded.
  • 2 is fixed between the top cover layer 1 and the liquid storage layer 4.
  • the top cover layer 1 can apply a uniform pressure to the second elastic sealing layer 2 so that the second elastic sealing layer 2 is fixed above the liquid storage layer 4 without being injected
  • the squeeze/pull action of the hydraulic push head causes the position to move.
  • the bottom cover layer 10, the substrate layer 9, the first elastic sealing layer 8, the micro flow channel layer 7, the adhesive layer 6 and the liquid storage layer 4 can be extruded to make the engaging structure T in the bottom cover layer 10
  • the tight bonding of the groove U can fix the first elastic sealing layer 8 between the bottom cover layer 10 and the liquid storage layer 4.
  • the bottom cover layer 10 can apply a uniform pressure to the first elastic sealing layer 8, so that the first elastic sealing layer 8 is fixed under the liquid storage layer 4, and will not be caused by injection.
  • the squeeze/pull action of the hydraulic push head causes the position to move.
  • the height of the above-mentioned clamping structure T should not be too high, so as to avoid a gap between the top cap layer 1 and the liquid storage layer 4, or the bottom cap layer 10 and the liquid storage layer There is a gap between 4, and the height of the above-mentioned engagement structure T should not be too low to avoid that the engagement structure T cannot be inserted into the corresponding groove U.
  • the height of the engagement structure T can be set to make The engaging structure T is just inserted into the bottom of the groove U, or after the engaging structure T is inserted into the groove U, there is a small space in the groove U.
  • Figures 3 and 4 are side views of the microfluidic detection chip in two different directions in the embodiment of the disclosure. It can be clearly seen from Figures 3 and 4 that the entire microfluidic detection chip has better compactness.
  • the size of the groove U in the liquid storage layer 4 may be set to be about 2 mm in length, about 1 mm in width, and about 2 mm in depth.
  • the first liquid storage hole, the second Each through hole corresponding to the liquid storage hole and the air pressure adjusting hole needs to be able to pass the unsealing needle or the liquid injection pusher without obstruction.
  • the present disclosure also provides a method for using the above-mentioned microfluidic detection chip. Since the principle of the use method to solve the problem is similar to the above-mentioned microfluidic detection chip, the implementation of this method can be referred to the above-mentioned microfluidic detection chip. The embodiments of the detection chip will not be repeated here.
  • An embodiment of the present disclosure also provides a method for using the aforementioned microfluidic detection chip, as shown in FIG. 20, which may include:
  • the sample to be tested can be added to the second reservoir through the sample hole, and the pre-sealed reagent and the second reservoir in the first reservoir can be separately controlled.
  • the sample to be tested in the second liquid reservoir is injected into the first microfluidic channel for mixing, which realizes the mixing of the sample to be tested and the pre-sealed reagent without manual mixing and other operations, and the operation is simple and the detection speed is fast.
  • the sample injection hole 205 in the second elastic sealing layer 2 may be a reversible sealing port, and the above step S100 may include: opening the reversible sealing port, and using a pipette to suck a certain amount of to-be-tested For the sample, the fourth sealing structure 302 is pierced, and the sample to be tested is injected into the second liquid storage hole 405.
  • step S200 may include:
  • the pre-sealed reagent in the first liquid storage hole is injected into the first micro flow channel.
  • inject the pre-sealed reagent in one of the first liquid storage holes into the first micro-channel as an example, for example, inject the pre-sealed reagent in the first liquid storage hole 401 in FIG. 9 into the first micro-channel.
  • the unsealing needle is reset, and then the liquid injection pusher is used to pass through the through hole corresponding to the first liquid storage hole in the top cover layer, and through the extrusion
  • the second elastic sealing layer changes the internal pressure so that the pre-sealing reagent is injected into the first micro flow channel through the first opening.
  • the injection speed can be controlled to not exceed 5 mm/s.
  • the sample hole 205 in the above-mentioned second elastic sealing layer 2 is a reversible sealing port
  • step S100 After the above step S100 and before the above step S300, it may further include:
  • an unsealing needle is used to penetrate the bottom cover layer, the substrate layer, the first elastic sealing layer and the micro flow channel layer to pierce the fifth sealing structure, and then the unsealing needle is reset, and the liquid injection pusher is used.
  • the above-mentioned step S300 may include:
  • the sample to be tested in the second liquid storage hole is injected into the first micro flow channel.
  • an unsealing needle is used to pass through the through hole corresponding to the second liquid storage hole in the bottom cover layer, the substrate layer, the micro flow channel layer, and the adhesive layer to pierce the second sealing structure 502, and then the unsealing needle is reset, using
  • the liquid injection pusher passes through the through hole of the top cover layer corresponding to the air pressure adjustment hole to squeeze the second elastic sealing layer, and inject the sample to be tested in the second liquid storage hole into the micro flow by changing the air pressure in the air pressure adjustment hole Road layer.
  • the pre-sealed reagents in the other first liquid storage holes can be injected into the micro flow channel layer in the above-mentioned step S200, and the injection order of the pre-sealed reagents in the first liquid storage hole can be determined according to actual needs.
  • the pre-sealed reagent can be stored in the first liquid storage hole by setting the liquid storage layer.
  • the first sealing structure can be pierced and passed By squeezing the first elastic sealing layer and the second elastic sealing layer, the pre-sealed reagent stored in the first liquid storage hole is injected into the first opening in the micro flow channel layer, which can pass through the top cover layer and the second elastic sealing layer.
  • the sample injection hole in the elastic sealing layer injects the sample to be tested into the second liquid storage hole, and controls the sample to be tested to be injected into the second opening in the micro flow channel layer, and the first micro flow channel is connected to the first opening And the second opening, which can realize the mixing of the sample to be tested and the pre-sealed reagent, without manual mixing and other operations, simple operation and fast detection speed, and the structure of the microfluidic detection chip is simple, and the material cost is low.
  • the production process cost is low, has the advantages of miniaturization, integration, automation, etc., which is convenient for large-scale production and application.
  • the dilution, mixing, and quantification of a single sample to be tested can be realized by pre-storing the diluent in the second liquid storage hole and squeezing the second elastic sealing layer.
  • Setting up antibodies that detect multiple indicators can realize multi-indicator combined detection of a single sample to be tested.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Clinical Laboratory Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

本公开实施例提供了一种微流控检测芯片及其使用方法,该微流控检测芯片,包括:储液层包括第一储液孔和第二储液孔;顶盖层,包括:与第一储液孔相对应的通孔,及与第二储液孔相对应的加样孔;底盖层包括与第一储液孔相对应的通孔;第一密封层,位于储液层与底盖层之间,包括:被配置为密封第一储液孔的第一密封结构;微流道层,位于第一密封层与底盖层之间,包括:与第一储液孔相对应的第一开孔,与第二储液孔相对应的第二开孔,及连通第一开孔与第二开孔的第一微流道;第一微流道位于微流道层面向底盖层的一侧;第一弹性密封层,位于微流道层背离底盖层的一侧;第二弹性密封层,位于储液层与顶盖层之间,包括与第二储液孔相对应的加样孔。

Description

微流控检测芯片及其使用方法 技术领域
本公开涉及生物医学技术领域,尤指一种微流控检测芯片及其使用方法。
背景技术
微流控技术(Microfluidics)是一种精确控制和操控微尺度流体的技术,可以把检验分析过程中的样品、反应、分离、检测等基本操作单元集成到一块微纳米尺度的芯片上,自动完成分析全过程。微流控技术具有样品消耗少、检测速度快、操作简便、多功能集成、体积小和便于携带等优点,在生物、化学、医学等领域有着应用巨大潜力。
然而,目前市面上具有微结构的微流控检测芯片,需要手工进行混匀等操作,不能对待检样品与预存液体进行混匀等操作,致使检测步骤复杂,且检测速度慢。
发明内容
本公开实施提供的一种微流控检测芯片,其中,包括:
储液层,包括:被配置为储存预封试剂的第一储液孔,以及被配置为储存待检样品的第二储液孔;
顶盖层,位于所述储液层的一侧;所述顶盖层,包括:与所述第一储液孔位置相对应的通孔,以及与所述第二储液孔位置相对应的加样孔;
底盖层,位于所述储液层背离所述顶盖层的一侧;所述底盖层,包括:与所述第一储液孔位置相对应的通孔;
可刺破的第一密封层,位于所述储液层与所述底盖层之间;所述第一密封层,包括:被配置为密封所述第一储液孔的第一密封结构;
微流道层,位于所述第一密封层与所述底盖层之间;所述微流道层,包括:与所述第一储液孔的位置相对应的第一开孔,与所述第二储液孔的位置 相对应的第二开孔,以及连通所述第一开孔与所述第二开孔的第一微流道;所述第一微流道位于所述微流道层面向所述底盖层的一侧;
第一弹性密封层,位于所述微流道层背离所述底盖层的一侧;
第二弹性密封层,位于所述储液层与所述顶盖层之间;所述第二弹性密封层,包括:与所述第二储液孔位置相对应的加样孔。
可选地,在本公开实施例中,所述第一密封层,还包括:被配置为密封所述第二储液孔的第二密封结构;所述底盖层设有与所述第二储液孔位置相对应的通孔。
可选地,在本公开实施例中,还包括:可刺破的第二密封层;
所述第二密封层位于所述第二弹性密封层与所述储液层之间;
所述第二密封层,包括:被配置为密封所述第一储液孔的第三密封结构,以及被配置为密封所述第二储液孔的第四密封结构。
可选地,在本公开实施例中,所述储液层,还包括:废液槽,贯穿所述储液层的第一引流孔,以及连通所述废液槽与所述第一引流孔之间的第二微流道;
所述废液槽与所述第二微流道位于所述储液层面向所述顶盖层一侧的表面;
所述微流道层,还包括:贯穿所述微流道层的第二引流孔,所述第二引流孔连通所述第一引流孔与所述第一微流道。
可选地,在本公开实施例中,还包括:气压平衡孔;
所述气压平衡孔贯穿所述顶盖层和所述第二弹性密封层,且所述气压平衡孔的位置与所述废液槽的位置相对应,所述气压平衡孔被配置为连通所述废液槽与大气。
可选地,在本公开实施例中,还包括:位于所述微流道层与所述第一密封层之间的粘合层;所述粘合层被配置为粘合所述微流道层及所述储液层。
可选地,在本公开实施例中,所述储液层,还包括:贯穿所述储液层的气压调节孔,以及连通所述第二储液孔与所述气压调节孔的第三微流道;
所述第三微流道位于所述储液层面向所述底盖层一侧的表面;
所述第一密封层,还包括:被配置为密封所述气压调节孔的第五密封结构;
所述顶盖层、所述微流道层所述第一弹性密封层及所述底盖层中,均设有与所述气压调节孔位置相对应的通孔。
可选地,在本公开实施例中,所述气压调节孔在面向所述底盖层一侧的边缘为阶梯状;
所述第五密封结构与部分所述粘合层嵌入所述气压调节孔的所述阶梯状的边缘内。
可选地,在本公开实施例中,还包括:位于所述第一弹性密封层与所述底盖层之间的基板层;
所述基板层在靠近所述顶盖层的一侧的表面设有抗体包被区;
所述第一弹性密封层,包括:与所述抗体包被区的位置对应的多个连通孔;
各所述连通孔的位置与第一微流道的位置相对应。
可选地,在本公开实施例中,所述基板层,包括:位于所述抗体包被区内的生物传感器,位于所述生物传感器表面的镀膜层;
所述镀膜层的表面包被有抗体。
可选地,在本公开实施例中,所述基板层采用塑料、玻璃或硅材料制作;或,所述基板层采用印刷电路板制作。
可选地,在本公开实施例中,所述基板层与所述底盖层为一体结构。
可选地,在本公开实施例中,所述第二弹性密封层中的所述加样孔为可翻盖密封口。
可选地,在本公开实施例中,所述顶盖层和所述底盖层在面向所述储液层一侧的表面均设有多个卡合结构;
所述储液层设有多个分别与所述卡合结构的位置一一对应的凹槽;
在所述卡合结构与所述凹槽之间的各膜层中,均设有与各所述卡合结构 的位置一一对应的卡合孔;
所述卡合结构通过对应的所述卡合孔插入对应的所述凹槽内。
相应地,本公开实施例还提供了一种上述微流控检测芯片的使用方法,包括:
通过加样孔将待检样品加入到第二储液孔中;
控制第一储液孔中的预封试剂注入到第一微流道内;
控制所述第二储液孔中的待检样品注入到所述第一微流道内。
可选地,在本公开实施例中,所述控制第一储液孔中的预封试剂注入到第一微流道内,包括:
通过挤压对应于所述第一储液孔位置处的所述第二弹性密封层,以使所述第一储液孔中的预封试剂注入到所述第一微流道内。
可选地,在本公开实施例中,第二弹性密封层中的所述加样孔为可翻盖密封口;
所述通过加样孔将待检样品加入到第二储液孔中之后,所述控制所述第二储液孔中的待检样品注入到所述第一微流道内之前,还包括:
闭合所述可翻盖密封口;
刺破第五密封结构;
重复多次挤压对应于所述第二储液孔位置处的所述第二弹性密封层,以使待检样品与所述第二储液孔中预存的稀释液混匀。
可选地,在本公开实施例中,所述控制所述第二储液孔中的待检样品注入到所述第一微流道内,包括:
通过挤压对应于气压调节孔位置处的所述第二弹性密封层,以使所述第二储液孔中的待检样品注入到所述第一微流道内。
附图说明
图1为本公开实施例提供的微流控检测芯片的分层结构示意图;
图2为本公开实施例提供的微流控检测芯片的正视结构示意图;
图3为本公开实施例体用的微流控检测芯片的侧视结构示意图之一;
图4为本公开实施例体用的微流控检测芯片的侧视结构示意图之二;
图5为本公开实施例体用的微流控检测芯片的底视结构示意图;
图6为本公开实施例中顶盖层的结构示意图;
图7为本公开实施例中第二弹性密封层的结构示意图;
图8为本公开实施例中第二密封层的结构示意图;
图9为本公开实施例中储液层的结构示意图之一;
图10为本公开实施例中储液层的结构示意图之二;
图11为本公开实施例中第一密封层的结构示意图;
图12为本公开实施例中粘合层的结构示意图;
图13为本公开实施例中微流道层的结构示意图之一;
图14为本公开实施例中微流道层的结构示意图之二;
图15为本公开实施例中第一弹性密封层的结构示意图;
图16为本公开实施例中基板层的结构示意图之一;
图17为本公开实施例中基板层的结构示意图之二;
图18为本公开实施例中底盖层的结构示意图;
图19为本公开实施例中微流控检测芯片在图2中虚线L处的截面示意图;
图20为本公开实施例提供的上述微流控检测芯片的使用方法流程图。
具体实施方式
针对微流控检测芯片需要手工进行混匀等操作致使检测步骤复杂且速度慢的问题,本发明实施例提供了一种微流控检测芯片及其使用方法。
图1为本公开实施例提供的微流控检测芯片的分层结构示意图,图2为本公开实施例提供的微流控检测芯片的正视结构示意图,图3和图4为本公开实施例体用的微流控检测芯片的侧视结构示意图,图5为本公开实施例体用的微流控检测芯片的底视结构示意图,图6至图18为本公开实施例中微流控检测芯片中各膜层的具体结构示意图,图19为本公开实施例中微流控检测 芯片在图2中虚线L处的截面示意图。
下面结合附图,对本发明实施例提供的微流控检测芯片及其使用方法的具体实施方式进行详细地说明。附图中各膜层的厚度和形状不反映真实比例,目的只是示意说明本发明内容。
本公开实施例提供的上述微流控检测芯片,如图1所示,包括:
结合图9和图10,储液层4,包括:被配置为储存预封试剂的第一储液孔(如图中的401、402、403、404),以及被配置为储存待检样品的第二储液孔405;
结合图2和图6,顶盖层1,位于储液层4的一侧;顶盖层1,包括:与第一储液孔(401、402、403、404)位置相对应的通孔(101、102、103、104),以及与第二储液孔405位置相对应的加样孔105;
结合图5和图18,底盖层10,位于储液层4背离顶盖层1的一侧;底盖层10,包括:与第一储液孔(401、402、403、404)位置相对应的通孔(1001、1002、1003、1004);
结合图11,可刺破的第一密封层5,位于储液层4与底盖层10之间;第一密封层5,包括:被配置为密封第一储液孔(401、402、403、404)的第一密封结构501;
结合图13和图14,微流道层7,位于第一密封层5与底盖层10之间;微流道层7,包括:与第一储液孔(401、402、403、404)的位置相对应的第一开孔(701、702、703、704),与第二储液孔405的位置相对应的第二开孔705,以及连通第一开孔(701、702、703、704)与第二开孔705的第一微流道707;第一微流道707位于微流道层7面向底盖层10的一侧;
结合图15,第一弹性密封层8,位于微流道层8靠近底盖层10的一侧;
结合图7,第二弹性密封层2,位于储液层4与顶盖层1之间;第二弹性密封层2,包括:与第二储液孔405位置相对应的加样孔205。
本公开实施例提供的微流控检测芯片,通过设置储液层可以在第一储液孔内储存预封试剂,在使用过程中,可以通过刺破第一密封结构,并通过挤 压第一弹性密封层和第二弹性密封层的方式,将第一储液孔内储存的预封试剂注入到微流道层中的第一开孔内,可以通过顶盖层和第二弹性密封层中的加样孔将待检样品注入到第二储液孔内,并控制待检样品注入到微流道层中的第二开孔内,第一微流道连通第一开孔和第二开孔,从而可以实现待检样品与预封试剂的混匀,无需手工进行混匀等操作,操作简单且检测速度快,并且,该微流控检测芯片的结构简单,材料成本和制作工艺成本较低,具有小型化、集成化、自动化等优点,便于大规模生产和应用。
本公开实施例提供的微流控检测芯片,利用微流控技术能够精确控制和操控预封试剂和待检样品的流动,可以把检验分析过程中的注入待检样品、反应、废液处理等基本操作单元集成到尺寸较小的微流控检测芯片中,具有待检样品消耗少、检测速度快、操作简便、多功能集成、体积小和便于携带等优点,在生物、化学、医学等领域有着应用巨大潜力。具体地,上述微流控检测芯片的适用性较广泛,能够配适光学检测仪器(例如吸光度检测、荧光检测、化学发光检测、等离子表面共振检测等)、电化学检测仪器(例如电流检测、电位检测、阻抗检测等)、巨磁阻检测仪器、压电检测仪器等各型检测仪器。
上述顶盖层1设有分别与第一储液孔401、402、403、404的位置相对应的通孔101、102、103、104,以使注液推头能够穿过顶盖层1挤压第二弹性密封层2,并且,顶盖层1设有与第二储液孔405位置相对应的加样孔105,从而可以通过加样孔105向第二储液孔405注入待检样品。具体地,上述顶盖层1可以采用聚丙烯(polypropylene,PP)材料制作,顶盖层1的尺寸可以设置为长约65mm,宽约35mm,厚约3mm,通孔101、102、103、104及加样孔105的直径可以设置为8mm左右。
上述底盖层10设有分别与第一储液孔401、402、403、404的位置相对应的通孔1001、1002、1003、1004,可以使启封针可以穿过底盖层10的通孔将第一密封层5刺破,或者,可以使注液推头能够穿过底盖层10挤压第一弹性密封层8,具体地,上述底盖层10可以采用聚丙烯(polypropylene,PP) 材料制作,底盖层10的尺寸可以设置为长约65mm,宽约35mm,厚约3mm。通孔1001、1002、1003、1004的直径可以设置为8mm左右。
上述储液层4中的第一储液层401可以用来储存预封试剂,并通过第一密封层5和第二弹性密封层2对第一储液层401进行密封,在本公开实施例中以四个第一储液孔401、402、403、404为例进行示意,在具体实施时,可以根据需要预先储存的预封试剂的种类,来确定第一储液孔的数量,此处不对第一储液孔的数量进行限定。并且,在本公开实施例中以第一储液孔、第二储液孔以及其他膜层中的通孔为圆形为例进行示意,在具体实施时,可以根据实际情况,来设置第一储液孔、第二储液孔以及其他通孔的形状,此处不做限定。
具体地,上述储液层4可以采用丙烯腈-丁二烯-苯乙烯塑料(Acrylonitrile Butadiene Styrene plastic,ABS)材料,且上述储液层4的尺寸也可以设置为长约65mm,宽约35mm,厚约8mm,上述第一储液孔401、402、403、404的直径可以设置为约8mm。
应该说明的是,本公开实施例中储液层中的第一储液孔和第二储液孔均有暂时储存液体的功能,第一储液孔用来储存预封试剂,第二储液孔可以用来预先储存稀释液,并能暂时储存待检样品与稀释液,以使待检样品与稀释液能够均匀混合,详细内容将在后文结合附图进行说明,此处只是说明第一储液孔和第二储液孔均具有暂时储存液体的功能。
本公开实施例中的上述第一密封层5可以采用铝膜等可刺破的材料,并且第一密封层5中的第一密封结构501用来密封第一储液孔,使预封试剂能够密封在第一储液孔内,可以采用一个第一密封结构501将各第一储液孔均密封住,也可以采用多个第一密封结构501,分别对各第一储液孔进行密封,此处不做限定。为了保证第一密封结构501的密封性,第一密封结构501要保证能够完全覆盖第一储液孔,并且,第一密封结构501的面积需大于对应的第一储液孔的面积,或者可以将第一密封层5的面积设置为与储液层4的面积相近。
上述第一弹性密封层8可以采用硅胶材料,使第一弹性密封层8具有一定的韧性,可以在注液推头的挤压或提拉作用下发生形变,并且,不会被注液推头或启封针刺破,可以使启封针能够刺破第一密封层5,并且可以改变微流控检测芯片内部的气压,实现对预封试剂或待检样品的流动控制,此外,也可以利用第一弹性密封层8的密封性,对微流道层7进行密封。具体地,第一弹性密封层1的尺寸可以设置为长约64mm,宽约34mm,厚约0.3mm,第一弹性密封层1的尺寸设置为稍小于底盖层10的尺寸,从而可以使底盖层10完全覆盖第一弹性密封层8。
上述第二弹性密封层2可以采用硅胶材料,使第二弹性密封层2具有一定的韧性,可以在注液推头的挤压或提拉作用下发生形变,并且,不会被注液推头或启封针刺破,以改变微流控检测芯片内部的气压,实现对预封试剂或待检样品的流动控制,具体地,第二弹性密封层2的尺寸可以设置为长约64mm,宽约34mm,厚约0.3mm,第二弹性密封层2的尺寸设置为稍小于顶盖层1的尺寸,从而可以使顶盖层1完全覆盖第二弹性密封层2。
上述微流道层7中的第一开孔701、702、703、704分为与第一储液孔401、402、403、404的位置相对应,第二开孔705与第二储液孔405的位置相对应,且各第一开孔701、702、703、704通过第一微流道707与第二开孔705连通,并且在刺破第一密封层5后,第一开孔与对应的第一储液孔连通,第二开孔与对应的第二储液孔连通,从而使储液层4中的液体可以注入到微流道层中。
上述微流道层7可以采用丙烯腈-丁二烯-苯乙烯塑料(Acrylonitrile Butadiene Styrene plastic,ABS)材料,并且,上述微流道层7的尺寸可以设置为长约65mm,宽约35mm,厚约2.5mm,第一开孔701、702、703、704,以及第二开孔705的直径可以设置为约8mm。
在使用过程中,可以采用启封针穿过底盖层10中的通孔及第一开孔701,将第一密封层5中的第一密封结构501刺破,然后采用注液推头穿过顶盖层1中的通孔挤压第一弹性密封层2,以使第一储液孔内储存的预封试剂注入到微流道中的第一开孔内,并且,可以通过顶盖层1和第二弹性密封层2中的加 样孔将待检样品注入到第二储液孔内,并控制待检样品注入到微流道层7中的第二开孔705内,由于第一开孔与第二开孔705通过第一微流道707连通,从而可以实现待检样品与预封试剂的混合,在实际应用过程中,可以根据实际需要,控制各第一储液孔中储存的预封试剂注入微流道层7的顺序,并且,可以控制挤压第一弹性密封层或第二弹性密封层的速度,调整待检样品预封试剂的流速,以完成相应的检测。
在具体实施时,本公开实施例提供的上述微流控检测芯片中,如图1、图11和图18所示,上述第一密封层5,还可以包括:被配置为密封第二储液孔的第二密封结构502;底盖层10设有与第二储液孔位置相对应的通孔1005。
通过在第一密封层5中设置第二密封结构502,可以对第二储液孔进行密封,从而可以在第二储液孔中预先存储一些稀释液,可以对加入的待检样品进行稀释,在使用过程中,将待检样品加入到第二储液孔中,并与稀释液混匀后,可以采用启封针穿过底盖层10上的通孔1005和第二通孔将第二密封结构502刺破,以使混匀后的待检样品流入到微流道层7中。
在具体实施时,可以根据实际需要的待检样品的浓度,来设置预先存在第二储液孔中的稀释液的体积,从而可以满足实现体积比例的精确稀释,并且,不会增加额外成本。
进一步地,本公开实施例提供的上述微流控检测芯片中,如图1、图8和图9所示,还可以包括:可刺破的第二密封层3;
第二密封层3位于第二弹性密封层2与储液层4之间;
第二密封层3,包括:被配置为密封第一储液孔401、402、403、404的第三密封结构301,以及被配置为密封第二储液孔405的第四密封结构302。
通过在储液层4靠近顶盖层1的一侧设置第二密封层3,可以对储液层4中的第一储液孔和第二储液孔进一步密封,使第一储液孔和第二储液孔在第一密封层和第二密封层的作用下,成为密闭的存储结构,防止储液层4中储存的预封试剂及稀释液漏出。具体地,可以采用一个第三密封结构301将各第一储液孔均密封住,也可以采用多个第三密封结构301,分别对各第一储液 孔进行密封,此处不做限定。并且,第三密封结构301的面积需要保证能够完全覆盖对应的第一储液孔,第四密封结构302的面积需要保证能够完全覆盖对应的第二储液孔,或者可以将第二密封层5的面积设置为与储液层4的面积相近。
具体地,上述第二密封层3可以采用铝膜等可刺破的材料,在使用过程中,可以采用启封针通过顶盖层1中的通孔刺破第三密封结构301,也可以采用启封针通过顶盖层1中的加样孔刺破第四密封结构302。
在实际应用中,本公开实施例提供的上述微流控检测芯片中,如图9和图10所示,储液层4,还可以包括:废液槽407,贯穿储液层4的第一引流孔408,以及连通废液槽407与第一引流孔408之间的第二微流道409;
废液槽407与第二微流道409位于储液层4面向顶盖层1一侧的表面;
同时参照图13和图14,微流道层7,还可以包括:贯穿微流道层7的第二引流孔708,第二引流孔708连通第一引流孔408与第一微流道707。
对比图9和图10可知,储液槽407和第二微流道409为槽状,且位于储液槽4面向顶盖层1的表面,第一引流孔408贯穿储液槽4,对比图13和图14可知,第一微流道707位于微流道层7面向底盖层10一侧的表面,第二引流孔708贯穿微流道层7。注入到第一开孔701、702、703、704中的预封试剂,会在第一微流道707内与注入到第二开孔705内的混合并发生相应的反应,反应后的废液通过第二引流孔708和第一引流孔408流入到第二微流道409,然后流入到废液槽407中。
具体地,图中以废液槽407为矩形进行示意,在具体实施时,废液槽407也可以为其他形状,例如废液槽可以为不规则形状,此处不做限定,废液槽407的容积可以设置为大于等于200uL上述第二微流道409的尺寸可以设置为长约15mm,宽约300um,深约200um。上述第一引流孔408的直径可以设置为约1.5mm,上述第二引流孔708的直径可以设置为约1.5mm。
并且,本公开实施例提供的上述微流控检测芯片中,如图6和图7所示,还可以包括:气压平衡孔R;
气压平衡孔R贯穿顶盖层1和第二弹性密封层2,且气压平衡孔R的位置与废液槽407的位置相对应,气压平衡孔R被配置为连通废液槽407与大气。
通过在顶盖层1和第二弹性密封层2中设置气压平衡孔R,可以使废液槽407与大气连通,实现微流控检测芯片内部的气压平衡,在挤压第一弹性密封层和第二弹性密封层的过程中,可以通过气压平衡孔R释放内部压力,实现液体的流动。
具体地,本公开实施例提供的上述微流控检测芯片中,如图1和图12所示,还可以包括:位于微流道层7与第一密封层5之间的粘合层6;粘合层6被配置为粘合微流道7层及储液层4。
通过设置粘合层6可以将储液层4和微流道层7粘合到一起,并且粘合层6在对应于第一储液孔和第二储液孔的位置处分别设有通孔601、602、603、604、605,以保证储液层4中的液体可以通过粘合层6流入到微流道层7中。为了使废液能够从微流道层7流入到储液层4中的废液槽中,粘合层6中还设有对应于第一引流孔的通孔608。
具体地,粘合层6可以采用胶水材料,胶水材料的涂布范围可设置为长约65mm,宽约35mm,厚约0.3mm厚度约0.3mm。粘合层6也可以采用具备弹性伸缩性质的材料,粘合层6的尺寸可以设置为长约65mm,宽约35mm,厚约0.3mm,通孔601、602、603、604、605的直径可以设置为约8mm,通孔608的直径可以设置为约1.5mm。
在具体实施时,本公开实施例提供的上述微流控检测芯片中,如图9和图10所示,储液层4,还包括:贯穿储液层4的气压调节孔406,以及连通第二储液孔405与气压调节孔406的第三微流道4010;
第三微流道4010位于储液层4面向底盖层10一侧的表面;
第一密封层5,还可以包括:被配置为密封气压调节孔406的第五密封结构503;
同时参照图6、图13、图15及图18,顶盖层1、微流道层7第一弹性密 封层8及底盖层10中,均设有与气压调节孔406位置相对应的通孔106、706、806及1006,具体地,通孔106、706、806及1006的尺寸可以设置为约8mm。
通过设置第五密封结构503,可以在控制第二储液孔405中的待检样品注入到微流道层7之前,保证气压调节孔406的密封性。在第二储液孔405注入待检样品,并且待检样品与稀释液混合稀释后,可以将启封针穿过底盖层10、第一弹性密封层8及微流道层7刺破第五密封结构5,其中第二弹性密封层2和粘合层6在气压调节孔406的位置处不设置通孔且不会被刺破,后续可以在注液推头的作用下,对第二弹性密封层2进行挤压或提拉,来改变气压调节孔406中的气压,以使第二储液孔405中两种或两种以上的液体混匀。
在刺破第五密封结构503和第二密封结构502之后,可以通过挤压弹性密封层2或粘合层6的方式,改变气压调节孔406内部的气压,并且,通过第三微流道4010连通气压调节孔406与第二储液孔405,可以使第二储液孔405与气压调节孔406的气压连通,从而实现通过气压调节孔406来调节第二储液孔405中的气压的作用,以控制第二储液孔405中的液体流动。
具体地,本公开实施例提供的上述微流控检测芯片中,如图19所示,气压调节孔406在面向底盖层10一侧的边缘为阶梯状;
第五密封结构503与部分粘合层6嵌入气压调节孔406的阶梯状的边缘内。
通过将气压调节孔406面向底盖层10一侧的边缘设置为阶梯状,并且第五密封结构503和部分粘合层6嵌入到气压平衡孔406的阶梯状的边缘内,可以进一步密封气压调节孔406,在控制第二储液孔405中的待检样品注入到微流道层7之前,确保气压调节孔406的密封性,避免第二储液孔305中预封的稀释液进入到气压调节孔406内。并且,可以将气压调节孔406的阶梯状边缘可以设置为与第三微流道4010的内表面平齐。具体地,气压调节孔406面向底盖层10一侧的直径可以设置为约11mm,台阶状边缘的深度可设置为约200um。
在实际应用中,本公开实施例提供的上述微流控检测芯片中,如图1和 图16所示,还可以包括:位于第一弹性密封层8与底盖层10之间的基板层9;
基板层9在靠近顶盖层1的一侧的表面设有抗体包被区;
同时参照图15,第一弹性密封层8,包括:与抗体包被区的位置对应的多个连通孔807;
同时参照图14,各连通孔807的位置与第一微流道708的位置相对应。
预封试剂和待检样品流入到第一微流道708混合后,可以通过第一弹性密封层8中的各连通孔807流到基板层9的抗体包被区,以发生抗体反应,并且,可以在基板层9的抗体包被区包被检测多个指标的抗体,实现单一待检样品的多指标联合检测。具体地,上述基板层9中的抗体包被区的面积可以小于或等于所有的连通孔807的面积。
具体地,基板层9的尺寸可以设置为长约65mm,宽约35mm,厚约2.5mm。基板层9中设有与各第一储液孔位置相对应的通孔901、902、903、904,与第二储液孔位置相对应的通孔905,及与气压调节孔位置相对应的通孔906,且通孔901、902、903、904、905、906的直径可以设置为约8mm。
此外,本公开实施例提供的上述微流控检测芯片中,如图17所示,基板层9,可以包括:位于抗体包被区内的生物传感器906,位于生物传感器906表面的镀膜层907;
镀膜层907的表面包被有抗体。
应该说明的是,图17中为了示意生物传感器906与镀膜层907的相对位置关系,将生物传感器906和镀膜层907分开示意,在实际应用中,镀膜层907涂覆在生物传感器906的表面。
预封试剂和待检样品流入到第一微流道708混合后,可以通过第一弹性密封层8中的各连通孔807流到基板层9的抗体包被区,与镀膜层907表面包被的抗体发生抗体反应,并通过生物传感器906收集检测信号,并将检测信号传送给相应的检测仪器。
生物传感器906上设有信号收集区,来收集检测信号,信号收集区的分布可以是点、线、点列阵、线列阵,也可以是圆形、方形、菱形等各种规则 及不规则形状,此处不对信号收集区的具体设置方式进行限定。
在生物传感器906之上可以涂覆一层镀膜层907,也可以涂覆多层镀膜层907,此处不做限定。
具体地,本公开实施例提供的上述微流控检测芯片中,上述基板层可以采用塑料、玻璃或硅材料制作;或,基板层采用印刷电路板制作。
为了更好的包被抗体,上述基板层可以采用可吸附抗体的塑料材质,例如可以采用聚苯乙烯(Polystyrene,PS)或聚甲基丙烯酸甲酯(polymethyl methacrylate,简称PMMA)等具有高透光率的材料。并且若基板层采用印刷电路板制作,可以将生物传感器直接集成到印刷电路板的电路中。
在实际应用中,本公开实施例提供的上述微流控检测芯片中,上述基板层与底盖层还可以为一体结构,具体地,可以将基板层的抗体包被区直接设置在底盖层的相应位置处,以将基板层集成到底盖层中,从而减少一个膜层,减小微流控检测芯片的总体厚度,有利于微流控检测芯片的小型化。
在实际应用中,本公开实施例提供的上述微流控检测芯片中,如图7所示,第二弹性密封层2中的加样孔205为可翻盖密封口。
结合图2所示,顶盖层1的加样孔105处可以使加样孔205露出,在加样过程中,可以通过加样孔105将加样孔205的盖子打开,通过加样孔105和205将待检样品注入到第二储液孔中,注入完成后可以将可翻盖密封口的盖子合上,使该加样孔205处仍然具有密封性,后续可以通过挤压第二弹性密封层2的可翻盖密封口的位置处,使第二储液孔中的待检样品与稀释液混匀。
在具体实施时,本公开实施例提供的上述微流控检测芯片中,如图1、图6、图9、图10和图18所示,顶盖层1和底盖层10在面向储液层4一侧的表面均设有多个卡合结构T;
储液层4设有多个分别与卡合结构T的位置一一对应的凹槽U;
在卡合结构T与凹槽U之间的各膜层中,均设有与各卡合结构T的位置一一对应的卡合孔V,例如图7中第二弹性密封层2中设有多个卡合孔V;
卡合结构T通过对应的卡合孔V插入对应的凹槽U内。
具体地,可以通过对顶盖层1、第二弹性密封层2及第二密封层3及储液层4进行挤压,使上述顶盖层1中的卡合结构T穿过第二弹性密封层2中的卡合孔V后,嵌入到储液层4对应位置处的各凹槽U中,实现卡合结构T与对应的凹槽U的紧密键合,从而可以将第二弹性密封层2固定在顶盖层1与储液层4之间。在对第二弹性密封层2进行挤压时,顶盖层1能够对第二弹性密封层2施加均匀的压力,使第二弹性密封层2固定在储液层4的上方,不会由于注液推头的挤压/提拉作用而发生位置移动。
可以通过对底盖层10、基板层9、第一弹性密封层8、微流道层7、粘合层6及储液层4进行挤压,使上述底盖层10中的卡合结构T穿过基板层9、第一弹性密封层8、微流道层7、粘合层6后,嵌入到储液层4对应位置处的各凹槽U中,实现卡合结构T与对应的凹槽U的紧密键合,从而可以将第一弹性密封层8固定在底盖层10与储液层4之间。在对第一弹性密封层8进行挤压时,底盖层10能够对第一弹性密封层8施加均匀的压力,使第一弹性密封层8固定在储液层4的下方,不会由于注液推头的挤压/提拉作用而发生位置移动。
为了保证整个微流控检测芯片的紧密性和密封性,上述卡合结构T的高度不能太高,以免顶盖层1与储液层4之间存在缝隙,或者底盖层10与储液层4之间存在缝隙,并且上述卡合结构T的高度也不能太低,避免卡合结构T无法插入到对应的凹槽U内,在具体实施时,可以通过设置卡合结构T的高度,使卡合结构T刚好插入到凹槽U的底部,或者卡合结构T插入到凹槽U后,凹槽U内存在较小的空间。
图3和图4为本公开实施例中微流控检测芯片的两个不同方向的侧视图,如图3和图4可以明显看出,整个微流控检测芯片的紧密性较好。
具体地,储液层4中的凹槽U的尺寸可以设置为长约2mm,宽约1mm,深约2mm。
在本公开实施例中,在顶盖层1、粘合层6、微流道层7、第一弹性密封 层8、基板层9及底盖层10中,与第一储液孔、第二储液孔及气压调节孔对应的各通孔,需满足能够使启封针或注液推头能够通过且不会有阻碍。
基于同一发明构思,本公开还提供了一种上述微流控检测芯片的使用方法,由于该使用方法解决问题的原理与上述微流控检测芯片相似,该使用方法的实施可以参见上述微流控检测芯片的实施例,重复之处不再赘述。
本公开实施例还提供的一种上述微流控检测芯片的使用方法,如图20所示,可以包括:
S100、通过加样孔将待检样品加入到第二储液孔中;
S200、控制第一储液孔中的预封试剂注入到第一微流道内;
S300、控制第二储液孔中的待检样品注入到第一微流道内。
本公开实施例提供的上述微流控检测芯片的使用方法,通过加样孔可以将待检样品加入到第二储液孔中,并且可以分别控制第一储液孔中的预封试剂和第二储液孔中的待检样品注入到第一微流道内进行混合,实现了待检样品与预封试剂的混匀,无需手工进行混匀等操作,操作简单且检测速度快。
结合图1和图7所示,第二弹性密封层2中的加样孔205可以为可翻盖密封口,上述步骤S100可以包括:打开可翻盖密封口,采用移液器吸取一定量的待检样品,刺破第四密封结构302,将待检样品注入到第二储液孔405中。
具体地,上述步骤S200,可以包括:
通过挤压对应于第一储液孔位置处的第二弹性密封层,以使第一储液孔中的预封试剂注入到第一微流道内。
具体地,以将其中一个第一储液孔中的预封试剂注入到第一微流道内为例,例如以图9中第一储液孔401中的预封试剂注入到第一微流道为例,采用启封针刺破第一密封结构和第三密封结构后,启封针复位,然后采用注液推头穿过顶盖层的中对应于第一储液孔的通孔,通过挤压第二弹性密封层改变内部压力,使预封试剂经第一开孔注入到第一微流道内,具体地,可以控制注入速度不超过5mm/s。
在具体实施时,本公开实施例提供的上述使用方法中,结合图7,上述第 二弹性密封层2中的加样孔205为可翻盖密封口;
上述步骤S100之后,上述步骤S300之前,还可以包括:
闭合可翻盖密封口;
刺破第五密封结构;
重复多次挤压对应于第二储液孔位置处的第二弹性密封层,以使待检样品与第二储液孔中预存的稀释液混匀。
具体地,闭合可翻盖密封口后,采用启封针穿过底盖层、基板层、第一弹性密封层及微流道层将第五密封结构刺破,然后启封针复位,采用注液推头穿过顶盖层的加样孔挤压或提拉第二弹性密封层,通过控制注液推头上行下行移动多次,使待检样品与稀释液混匀,例如可以控制注液推头下行5mm,然后上行3mm,重复40次,且往复速度不低于1次/s,即实现了两种及两种以上的液体均匀分布,实现了混匀操作。
在具体实施时,本公开实施例提供的上述使用方法中,上述步骤S300,可以包括:
通过挤压对应于气压调节孔位置处的第二弹性密封层,以使第二储液孔中的待检样品注入到第一微流道内。
具体地,采用启封针穿过底盖层、基板层、微流道层及粘合层中对应于第二储液孔的通孔,以刺破第二密封结构502,然后启封针复位,采用注液推头穿过顶盖层对应于气压调节孔的通孔,以挤压第二弹性密封层,通过改变气压调节孔中的气压将第二储液孔中的待检样品注入到微流道层中。
然后,可以采用上述步骤S200的方式将其他第一储液孔中的预封试剂注入到微流道层中,可以根据实际需要确定第一储液孔中预封试剂的注入顺序。
本公开实施例中的微流控检测芯片及其使用方法,通过设置储液层可以在第一储液孔内储存预封试剂,在使用过程中,可以通过刺破第一密封结构,并通过挤压第一弹性密封层和第二弹性密封层的方式,将第一储液孔内储存的预封试剂注入到微流道层中的第一开孔内,可以通过顶盖层和第二弹性密封层中的加样孔将待检样品注入到第二储液孔内,并控制待检样品注入到微 流道层中的第二开孔内,第一微流道连通第一开孔和第二开孔,从而可以实现待检样品与预封试剂的混匀,无需手工进行混匀等操作,操作简单且检测速度快,并且,该微流控检测芯片的结构简单,材料成本和制作工艺成本较低,具有小型化、集成化、自动化等优点,便于大规模生产和应用。并且,通过在第二储液孔中预先存储稀释液,并通过挤压第二弹性密封层可以实现对单一待检样品的稀释、混匀、定量等操作,通过在基板层的抗体包被区设置检测多个指标的抗体,可以实现单一待检样品的多指标联合检测。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开实施例进行各种改动和变型而不脱离本公开实施例的精神和范围。这样,倘若本公开实施例的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (18)

  1. 一种微流控检测芯片,其中,包括:
    储液层,包括:被配置为储存预封试剂的第一储液孔,以及被配置为储存待检样品的第二储液孔;
    顶盖层,位于所述储液层的一侧;所述顶盖层,包括:与所述第一储液孔位置相对应的通孔,以及与所述第二储液孔位置相对应的加样孔;
    底盖层,位于所述储液层背离所述顶盖层的一侧;所述底盖层,包括:与所述第一储液孔位置相对应的通孔;
    可刺破的第一密封层,位于所述储液层与所述底盖层之间;所述第一密封层,包括:被配置为密封所述第一储液孔的第一密封结构;
    微流道层,位于所述第一密封层与所述底盖层之间;所述微流道层,包括:与所述第一储液孔的位置相对应的第一开孔,与所述第二储液孔的位置相对应的第二开孔,以及连通所述第一开孔与所述第二开孔的第一微流道;所述第一微流道位于所述微流道层面向所述底盖层的一侧;
    第一弹性密封层,位于所述微流道层靠近所述底盖层的一侧;
    第二弹性密封层,位于所述储液层与所述顶盖层之间;所述第二弹性密封层,包括:与所述第二储液孔位置相对应的加样孔。
  2. 如权利要求1所述的微流控检测芯片,其中,所述第一密封层,还包括:被配置为密封所述第二储液孔的第二密封结构;所述底盖层设有与所述第二储液孔位置相对应的通孔。
  3. 如权利要求1所述的微流控检测芯片,其中,还包括:可刺破的第二密封层;
    所述第二密封层位于所述第二弹性密封层与所述储液层之间;
    所述第二密封层,包括:被配置为密封所述第一储液孔的第三密封结构,以及被配置为密封所述第二储液孔的第四密封结构。
  4. 如权利要求1所述的微流控检测芯片,其中,所述储液层,还包括: 废液槽,贯穿所述储液层的第一引流孔,以及连通所述废液槽与所述第一引流孔之间的第二微流道;
    所述废液槽与所述第二微流道位于所述储液层面向所述顶盖层一侧的表面;
    所述微流道层,还包括:贯穿所述微流道层的第二引流孔,所述第二引流孔连通所述第一引流孔与所述第一微流道。
  5. 如权利要求4所述的微流控检测芯片,其中,还包括:气压平衡孔;
    所述气压平衡孔贯穿所述顶盖层和所述第二弹性密封层,且所述气压平衡孔的位置与所述废液槽的位置相对应,所述气压平衡孔被配置为连通所述废液槽与大气。
  6. 如权利要求1所述的微流控检测芯片,其中,还包括:位于所述微流道层与所述第一密封层之间的粘合层;所述粘合层被配置为粘合所述微流道层及所述储液层。
  7. 如权利要求6所述的微流控检测芯片,其中,所述储液层,还包括:贯穿所述储液层的气压调节孔,以及连通所述第二储液孔与所述气压调节孔的第三微流道;
    所述第三微流道位于所述储液层面向所述底盖层一侧的表面;
    所述第一密封层,还包括:被配置为密封所述气压调节孔的第五密封结构;
    所述顶盖层、所述微流道层所述第一弹性密封层及所述底盖层中,均设有与所述气压调节孔位置相对应的通孔。
  8. 如权利要求7所述的微流控检测芯片,其中,所述气压调节孔在面向所述底盖层一侧的边缘为阶梯状;
    所述第五密封结构与部分所述粘合层嵌入所述气压调节孔的所述阶梯状的边缘内。
  9. 如权利要求1所述的微流控检测芯片,其中,还包括:位于所述第一弹性密封层与所述底盖层之间的基板层;
    所述基板层在靠近所述顶盖层的一侧的表面设有抗体包被区;
    所述第一弹性密封层,包括:与所述抗体包被区的位置对应的多个连通孔;
    各所述连通孔的位置与第一微流道的位置相对应。
  10. 如权利要求9所述的微流控检测芯片,其中,所述基板层,包括:位于所述抗体包被区内的生物传感器,位于所述生物传感器表面的镀膜层;
    所述镀膜层的表面包被有抗体。
  11. 如权利要求9所述的微流控检测芯片,其中,所述基板层采用塑料、玻璃或硅材料制作;或,所述基板层采用印刷电路板制作。
  12. 如权利要求9所述的微流控检测芯片,其中,所述基板层与所述底盖层为一体结构。
  13. 如权利要求1~12任一项所述的微流控检测芯片,其中,所述第二弹性密封层中的所述加样孔为可翻盖密封口。
  14. 如权利要求1~12任一项所述的微流控检测芯片,其中,所述顶盖层和所述底盖层在面向所述储液层一侧的表面均设有多个卡合结构;
    所述储液层设有多个分别与所述卡合结构的位置一一对应的凹槽;
    在所述卡合结构与所述凹槽之间的各膜层中,均设有与各所述卡合结构的位置一一对应的卡合孔;
    所述卡合结构通过对应的所述卡合孔插入对应的所述凹槽内。
  15. 一种如权利要求1~14任一项所述的微流控检测芯片的使用方法,其中,包括:
    通过加样孔将待检样品加入到第二储液孔中;
    控制第一储液孔中的预封试剂注入到第一微流道内;
    控制所述第二储液孔中的待检样品注入到所述第一微流道内。
  16. 如权利要求15所述的使用方法,其中,所述控制第一储液孔中的预封试剂注入到第一微流道内,包括:
    通过挤压对应于所述第一储液孔位置处的所述第二弹性密封层,以使所 述第一储液孔中的预封试剂注入到所述第一微流道内。
  17. 如权利要求15所述的使用方法,其中,第二弹性密封层中的所述加样孔为可翻盖密封口;
    所述通过加样孔将待检样品加入到第二储液孔中之后,所述控制所述第二储液孔中的待检样品注入到所述第一微流道内之前,还包括:
    闭合所述可翻盖密封口;
    刺破第五密封结构;
    重复多次挤压对应于所述第二储液孔位置处的所述第二弹性密封层,以使待检样品与所述第二储液孔中预存的稀释液混匀。
  18. 如权利要求17所述的使用方法,其中,所述控制所述第二储液孔中的待检样品注入到所述第一微流道内,包括:
    通过挤压对应于气压调节孔位置处的所述第二弹性密封层,以使所述第二储液孔中的待检样品注入到所述第一微流道内。
PCT/CN2020/075413 2020-02-14 2020-02-14 微流控检测芯片及其使用方法 WO2021159521A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080000131.3A CN114269474B (zh) 2020-02-14 2020-02-14 微流控检测芯片及其使用方法
PCT/CN2020/075413 WO2021159521A1 (zh) 2020-02-14 2020-02-14 微流控检测芯片及其使用方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075413 WO2021159521A1 (zh) 2020-02-14 2020-02-14 微流控检测芯片及其使用方法

Publications (1)

Publication Number Publication Date
WO2021159521A1 true WO2021159521A1 (zh) 2021-08-19

Family

ID=77292962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075413 WO2021159521A1 (zh) 2020-02-14 2020-02-14 微流控检测芯片及其使用方法

Country Status (2)

Country Link
CN (1) CN114269474B (zh)
WO (1) WO2021159521A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114177957A (zh) * 2021-11-30 2022-03-15 上海澎赞生物科技有限公司 一种使用玻璃基底作为储液结构的微流控芯片
CN116559389A (zh) * 2023-07-06 2023-08-08 北京中医药大学 中药性味检测装置及检测方法
WO2024092504A1 (zh) * 2022-11-01 2024-05-10 信任生医股份有限公司 微流道卡匣

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115845938A (zh) * 2022-11-22 2023-03-28 上海天马微电子有限公司 微流控装置及应用方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050221281A1 (en) * 2003-01-08 2005-10-06 Ho Winston Z Self-contained microfluidic biochip and apparatus
CN106568980A (zh) * 2015-10-10 2017-04-19 上海旭瀚科技有限公司 试剂预封装微流控芯片、使用方法及实验仪和工作方法
CN107930710A (zh) * 2017-11-27 2018-04-20 深圳华炎微测医疗科技有限公司 化学发光检测微流控芯片和化学发光检测微流控芯片体系以及它们的应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0129816D0 (en) * 2001-12-13 2002-01-30 The Technology Partnership Plc Testing device for chemical or biochemical analysis
CN104374903B (zh) * 2014-11-08 2016-07-06 东莞博识生物科技有限公司 一种体外诊断测试卡
CN108160125A (zh) * 2017-11-27 2018-06-15 深圳华炎微测医疗科技有限公司 生化检测微流控芯片和生化检测微流控芯片体系以及它们的应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050221281A1 (en) * 2003-01-08 2005-10-06 Ho Winston Z Self-contained microfluidic biochip and apparatus
CN106568980A (zh) * 2015-10-10 2017-04-19 上海旭瀚科技有限公司 试剂预封装微流控芯片、使用方法及实验仪和工作方法
CN107930710A (zh) * 2017-11-27 2018-04-20 深圳华炎微测医疗科技有限公司 化学发光检测微流控芯片和化学发光检测微流控芯片体系以及它们的应用

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114177957A (zh) * 2021-11-30 2022-03-15 上海澎赞生物科技有限公司 一种使用玻璃基底作为储液结构的微流控芯片
CN114177957B (zh) * 2021-11-30 2023-11-21 上海澎赞生物科技有限公司 一种使用玻璃基底作为储液结构的微流控芯片
WO2024092504A1 (zh) * 2022-11-01 2024-05-10 信任生医股份有限公司 微流道卡匣
CN116559389A (zh) * 2023-07-06 2023-08-08 北京中医药大学 中药性味检测装置及检测方法
CN116559389B (zh) * 2023-07-06 2023-10-20 北京中医药大学 中药性味检测装置及检测方法

Also Published As

Publication number Publication date
CN114269474B (zh) 2024-01-05
CN114269474A (zh) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2021159521A1 (zh) 微流控检测芯片及其使用方法
CN111644213B (zh) 一种流体操控装置及流体控制方法
US20210164587A1 (en) Multifunctional microvalve capable of controlling flow of fluid, microfluidic chip and method
CN210613738U (zh) 检测芯片和检测系统
WO2021237397A1 (zh) 一种流体操控装置及流体控制方法
MX2012005951A (es) Mezclado y entrega de fluidos en sistemas microfluídicos.
CN107737615B (zh) 一种用于生化检测的微流控设备
CN106470937A (zh) 微流控芯片及其制备方法以及利用其的分析装置
WO2023087821A1 (zh) 试剂预埋与注样装置、及其注样方法和用途
CN113275046B (zh) 检测芯片及其使用方法、检测装置
US20220314224A1 (en) Reagent packaging devices and uses thereof
CN210752733U (zh) 一种微流控检测集成芯片
CN114308163B (zh) 微流控芯片检测卡盒
WO2021073582A1 (zh) 用于分析物检测的微流控芯片
WO2021073381A1 (zh) 微流控基板及其流体驱动方法、微流控装置
CN106289933B (zh) 一种盖体及储存并混合固液体的装置
TWI383146B (zh) Can be accurate micro sampling and sample of microfluidic chip
WO2021244238A1 (zh) 检测芯片和检测系统
CN112023990A (zh) 一种微流控检测芯片及制造方法
JP5177533B2 (ja) マイクロチップ
WO2021164529A1 (zh) 检测芯片及其操作方法、检测系统
CN113115587B (zh) 检测芯片
EP3544790B1 (en) Ultrasonic welding of a microfluidic device
CN115436227A (zh) 适用于测量微升级液体样品粘度的微流控芯片及方法
JP5177514B2 (ja) マイクロチップ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20918775

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20918775

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 06/10/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20918775

Country of ref document: EP

Kind code of ref document: A1