WO2021159517A1 - 传输参数确定方法、终端设备及网络设备 - Google Patents

传输参数确定方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2021159517A1
WO2021159517A1 PCT/CN2020/075407 CN2020075407W WO2021159517A1 WO 2021159517 A1 WO2021159517 A1 WO 2021159517A1 CN 2020075407 W CN2020075407 W CN 2020075407W WO 2021159517 A1 WO2021159517 A1 WO 2021159517A1
Authority
WO
WIPO (PCT)
Prior art keywords
dci
transmission parameter
configured grant
dci format
indication field
Prior art date
Application number
PCT/CN2020/075407
Other languages
English (en)
French (fr)
Inventor
徐婧
梁彬
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20918563.6A priority Critical patent/EP4102754A4/en
Priority to CN202080081391.8A priority patent/CN114747170A/zh
Priority to PCT/CN2020/075407 priority patent/WO2021159517A1/zh
Publication of WO2021159517A1 publication Critical patent/WO2021159517A1/zh
Priority to US17/886,459 priority patent/US20220386360A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/115Grant-free or autonomous transmission

Definitions

  • the present invention relates to the field of communications, and in particular to a method for determining transmission parameters, terminal equipment, network equipment, chips, computer-readable storage media, computer program products, and computer programs.
  • the order and the number of bits of each field in the Downlink Control Information (DCI) format are determined.
  • DCI Downlink Control Information
  • CG Configured grant
  • the bits of each field in the activation and retransmission of DCI can be determined by different parameters.
  • the number of bits in the same indicator field under multiple DCI formats corresponding to different transmission parameter configurations will be different. Therefore, it is necessary to solve the problem of different bit numbers in a certain indicator field in the DCI corresponding to different transmission parameter set configurations. .
  • embodiments of the present invention provide a method for determining transmission parameters, terminal equipment, network equipment, chips, computer-readable storage media, computer program products, and computer programs.
  • a method for determining transmission parameters including:
  • the terminal device receives the first transmission parameter
  • the first transmission parameter is used to determine the number of bits of the first indication field in the DCI; the first transmission parameter set and the second transmission parameter set correspond to the first indication field in the DCI.
  • a method for determining transmission parameters including:
  • the network device sends the first transmission parameter
  • the first transmission parameter is used to determine the number of bits of the first indication field in the DCI; the first transmission parameter and the second transmission parameter correspond to the first indication field in the DCI.
  • a terminal device including:
  • the first communication unit receives the first transmission parameter
  • the first transmission parameter is used to determine the number of bits of the first indication field in the DCI; the first transmission parameter set and the second transmission parameter set correspond to the first indication field in the DCI.
  • a network device including:
  • the second communication unit sends the first transmission parameter
  • the first transmission parameter is used to determine the number of bits of the first indication field in the DCI; the first transmission parameter and the second transmission parameter correspond to the first indication field in the DCI.
  • a terminal device including: a processor and a memory for storing a computer program that can run on the processor,
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the steps of the aforementioned method.
  • a network device including: a processor and a memory for storing a computer program that can run on the processor,
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the steps of the aforementioned method.
  • a chip including a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the aforementioned method.
  • a computer-readable storage medium is provided, and the computer-readable storage medium is used to store a computer program that enables a computer to execute the steps of the aforementioned method.
  • a computer program product including computer program instructions, which cause a computer to execute the aforementioned method.
  • a computer program which causes a computer to execute the method as described above.
  • the first transmission parameter sent by the network device for the terminal device is limited to the second transmission parameter; and the first transmission parameter set and the second transmission parameter set correspond to the first indication field in the DCI. Therefore, the transmission parameters of the indicator field corresponding to the same DCI have a constraint relationship, and this can solve the problem that the bit number of a certain indicator field in the DCI corresponding to different transmission parameters is different.
  • FIG. 1 is a schematic diagram 1 of a communication system architecture provided by an embodiment of the present invention.
  • FIG. 2 is a schematic flow chart 1 of a method for determining transmission parameters according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of the second flow of a method for determining transmission parameters according to an embodiment of the present invention
  • FIG. 4 is a third schematic flowchart of a method for determining transmission parameters according to an embodiment of the present invention.
  • FIG. 5 is a fourth flowchart of a method for determining transmission parameters according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of the structure of a terminal device provided by an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the composition structure of a network device provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of the composition structure of a communication device provided by an embodiment of the present invention.
  • FIG. 9 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram 2 of a communication system architecture provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication system or future communication system, etc.
  • the communication system 100 applied in the embodiment of the present application may be as shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a UE 120 (or referred to as a communication terminal device or a terminal device).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with UEs located in the coverage area.
  • the network equipment 110 may be a network equipment (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a network equipment (NodeB, NB) in a WCDMA system, or an evolution in an LTE system Type network equipment (Evolutional Node B, eNB or eNodeB), or a wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment may be a mobile switching center, a relay station, an access point, In-vehicle devices, wearable devices, hubs, switches, bridges, routers, network side devices in 5G networks, or network devices in future evolution networks, etc.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • NB network equipment
  • Evolutional Node B eNodeB
  • eNodeB LTE system Type network equipment
  • CRAN Cloud Radio Access Network
  • the network equipment may be a mobile switching center, a relay station, an access point, In-vehicle devices, wearable devices, hub
  • the communication system 100 further includes at least one UE 120 located within the coverage area of the network device 110.
  • the communication between the UE 120 and the network device 110 may be wired or wireless communication.
  • a UE that communicates with the network device 110 through wireless communication may be referred to as a "wireless communication terminal device", a “wireless terminal device” or a “mobile terminal device”.
  • the embodiment of the present invention provides a method for determining transmission parameters, as shown in FIG. 2, including:
  • Step 21 The terminal device receives the first transmission parameter
  • the first transmission parameter is used to determine the number of bits of the first indication field in the DCI; the first transmission parameter and the second transmission parameter correspond to the first indication field in the DCI.
  • the embodiment of the present invention also provides a method for determining transmission parameters, as shown in FIG. 3, including:
  • Step 31 The network device sends the first transmission parameter
  • the first transmission parameter is used to determine the number of bits of the first indication field in the DCI; the first transmission parameter set and the second transmission parameter set correspond to the first indication field in the DCI.
  • the solution provided in this embodiment may further include that the terminal device receives the second transmission parameter sent by the network device;
  • the terminal device may receive the second transmission parameter set sent by the network device.
  • the terminal device may receive the first transmission parameter set and the second transmission parameter set sent by the network device.
  • the first transmission parameter includes: at least one transmission parameter among the transmission parameters of Configured Grant;
  • the second transmission parameter includes: at least one transmission parameter among uplink data transmission parameters, or at least one transmission parameter agreed by a protocol.
  • both the first transmission parameter and the second transmission parameter may include one or more transmission parameters; when the first transmission parameter includes multiple transmission parameters, the first transmission parameter may be referred to as the first transmission parameter.
  • Transmission parameter set the same as the second transmission parameter, it can also be understood as the second transmission parameter set when multiple transmission parameters are included.
  • the first transmission parameter set (or the second transmission parameter set) can be understood as the configuration quantity; the first transmission parameter set configuration (or the second transmission parameter set configuration) can be understood as the configuration of the first transmission parameter set, or the second transmission parameter set configuration.
  • the uplink data transmission parameter set configuration may be a physical uplink shared channel (PUSCH, Physical Uplink Share Channel) transmission parameter set configuration.
  • PUSCH Physical Uplink Share Channel
  • the number of bits in the first indicator field determined based on the first transmission parameter set is not greater than the number of bits in the first indicator field determined based on the second transmission parameter set. It can be understood that the configuration of the first transmission parameter set is limited to the configuration of the second transmission parameter set. More specifically, it can include:
  • the number of bits in the first indicator field determined based on the first transmission parameter set is smaller than the number of bits in the first indicator field determined based on the second transmission parameter set;
  • the number of bits in the first indicator field determined based on the first transmission parameter set is equal to the number of bits in the first indicator field determined based on the second transmission parameter set.
  • the second transmission parameter is the transmission parameter of the first indication field with the smallest number of bits in all DCI formats that can be used for uplink scheduling.
  • the second transmission parameter set configuration is the transmission parameter set configuration of the first indication field with the least number of corresponding bits in all DCI formats that can be used for uplink scheduling.
  • the transmission parameters of the first indicator field with the smallest number of bits in all DCI formats that can be used for uplink scheduling are interpreted as: the bits of the first indicator field in all DCI formats that can be used for uplink scheduling
  • the transmission parameter with the least number is used as the second transmission parameter.
  • all DCI formats that can be used for uplink scheduling include at least: DCI format 0-1, DCI format 0-2;
  • all DCI formats that can be used for uplink scheduling include at least: DCI format 0-0, DCI format 0-1, and DCI format 0-2.
  • the number of bits in the first indicator field determined by the configuration of the first parameter (set) in ConfiguredGrantConfig is less than or equal to the number of bits in the first indicator field determined by the configuration of the relevant second parameter (set) in PUSCH-Config.
  • the number of bits in the first indicator field determined by the second parameter (set) is the minimum value of the number of bits in the first indicator field in all DCI formats (or all DCI formats that can be used for uplink scheduling) supported by the terminal.
  • the DMRS configuration parameters for DCI format 0-1 in PUSCH-Config (that is, the aforementioned uplink data transmission parameters), such as dmrs-UplinkForPUSCH-MappingTypeA and dmrs-UplinkForPUSCH-MappingTypeB are configured to support multi-port transmission and configure the DCI format according to it
  • the Antenna port field in 0-1 (which can be understood as the first indicator field in this example) is 3 bits.
  • the DMRS configuration parameters for DCI format 0-2 in PUSCH-Config (that is, the aforementioned uplink data transmission parameters), such as dmrs-UplinkForPUSCH-MappingTypeA-DCI format 0-2 and dmrs-UplinkForPUSCH-MappingTypeB-DCI format 0-2 are not Configuration, that is, according to its configuration, the antenna port field in DCI format 0-2 is 0 bits.
  • the antenna port field in DCI format 0-0 in PUSCH-Config (that is, the aforementioned uplink data transmission parameters) does not exist. Or, it is agreed by the agreement that the antenna port field in DCI format 0-0 does not exist.
  • the antenna port field in DCI format 0-0 does not exist, and it can be understood that this field is 0 bits.
  • the second transmission parameter set is configured as the transmission parameter set configuration of the first indication field with the least number of bits in all DCI formats that can be used for uplink scheduling, that is, the second transmission parameter set is configured as The transmission parameter set configuration corresponding to DCI format (Format) 0-0 or DCI format 0-2.
  • the number of bits in the first indication field determined based on the configuration of the first transmission parameter set is not greater than the number of bits in the first indication field determined based on the second transmission parameter set configuration set. That is, if the second transmission parameter set configuration determines that the number of bits in the first indication field is 0, then the first indication field bit of the first transmission parameter set configuration is also 0. That is, it corresponds to the situation that the number of bits in the first indicator field determined based on the first transmission parameter set is equal to the number of bits in the first indicator field determined based on the second transmission parameter set.
  • the DMRS configuration parameter (that is, the first transmission parameter) in ConfiguredGrantConfig is limited to all DCI formats, such as those of DCI format 0-0/0-1/0-2 Configuration, therefore, cg-DMRS-Configuration is not configured.
  • Step 41 The terminal device receives the first transmission parameter (set) and the second transmission parameter (set).
  • the terminal device receives ConfiguredGrantConfig (configuration grant configuration) and PUSCH-Config (physical uplink shared channel configuration).
  • ConfiguredGrantConfig configuration grant configuration
  • PUSCH-Config physical uplink shared channel configuration
  • Step 42 The terminal device receives the DCI for activating the Configured Grant.
  • this step further includes: determining the number of bits of the first indication field in the DCI for which the Configured Grant is activated; the terminal device parses the first indication field according to the first transmission parameter configuration.
  • the format of the DCI for activating the Configured Grant is one of all the DCI formats that can be used for uplink scheduling, or one of all the DCI formats for activating the Configured Grant;
  • the first indication field is one of the at least one indication field used to activate the DCI of the Configured Grant.
  • the determining the number of bits in the first indicator field in the DCI for activating the Configured Grant may be: determining the number of bits in the first indicator field according to at least one transmission parameter in the uplink data transmission parameters.
  • the determining the number of bits of the first indication field in the DCI of the activated Configured Grant may be: according to at least one transmission parameter of the uplink data transmission parameters corresponding to the format of the DCI of the activated Configured Grant, Determine the number of bits in the first indication field.
  • the first indication field is one of the multiple DCI fields included in the DCI for activating the Configured Grant; that is to say, one DCI may contain multiple indication fields, and these indication fields can be respectively understood as the first indication area.
  • Different first indication domains can correspond to different second transmission parameter set configurations and first transmission parameter set configurations (on the network device side), but for different first indication domains, the related second transmission parameter set configurations and the first transmission parameter set configuration
  • the restriction rules for the configuration of a transmission parameter set are the same as those described above in this example, so they will not be repeated one by one.
  • the terminal receives the DCI for activating Configured Grant using DCI format 0-1, and according to the DMRS configuration parameters for DCI format 0-1 in PUSCH-Config (that is, the uplink data transmission corresponding to the DCI format for activating Configured Grant)
  • At least one transmission parameter among the parameters such as dmrs-UplinkForPUSCH-MappingTypeA and dmrs-UplinkForPUSCH-MappingTypeB, determines that the Antenna port field (that is, the first indication field) is 3 bits.
  • the network device side may determine, according to the first transmission parameter configuration, that no configuration is performed in the first indication field in the sent DCI of the activated Configured Grant.
  • the first transmission parameter or the second transmission parameter is at least one of the following:
  • Demodulation reference signal DMRS port related parameters, frequency domain frequency hopping parameters, frequency domain resource parameters, uplink control information UCI multiplexed to the physical uplink shared channel PUSCH parameters, DMRS sequence initialization parameters.
  • the first transmission parameter set or the second transmission parameter set is at least one of the following:
  • Frequency domain frequency hopping parameter set (for example, frequency hopping frequencyHopping), frequency domain resource parameter set (for example, resource allocation type 1-granularity, ResourceAllocationType1-Granularity), uplink control information (UCI) is multiplexed to the physical uplink shared channel (PUSCH) Parameter set (for example, uci-onPUSCH), DMRS sequence initialization parameter set (for example, DMRSsequenceinitialization), DMRE port related parameter set.
  • PUSCH physical uplink shared channel
  • Parameter set for example, uci-onPUSCH
  • DMRS sequence initialization parameter set for example, DMRSsequenceinitialization
  • DMRE port related parameter set for example, frequency hopping frequencyHopping
  • the target transmission parameter configuration set can also include more parameters, which can be set according to the actual situation, which is not exhaustive here.
  • the second transmission parameter is the transmission parameter of the first indication field with the least number of bits in the DCI format used for Configured Grant transmission.
  • the second transmission parameter set may be configured as the transmission parameter set configuration of the first indication field with the least number of bits in the DCI format used for Configured Grant transmission.
  • the second transmission parameter is the transmission parameter of the first indication field with the least number of bits in the DCI format used for Configured Grant transmission, which can be understood as: the first indication in the DCI format used for Configured Grant transmission
  • the transmission parameter with the least number of bits corresponding to the domain is used as the second transmission parameter.
  • the DCI used for Configured Grant transmission may be the DCI used to activate the Configured Grant, or may be the DCI used to retransmit the Configured Grant.
  • the DCI used to activate Configured Grant is taken as an example for description.
  • the first indicator field bit number determined by the first parameter (set) in ConfiguredGrantConfig is less than or equal to the first indicator field bit number determined by the relevant second parameter (set) in PUSCH-Config.
  • the number of bits in the first indicator field determined by the second parameter (set) is the minimum value of the number of bits in the first indicator field in all DCI formats used to activate Configured Grant.
  • the DMRS configuration parameters for DCI format 0-1 in PUSCH-Config (that is, the aforementioned uplink data transmission parameters), such as dmrs-UplinkForPUSCH-MappingTypeA and dmrs-UplinkForPUSCH-MappingTypeB are configured to support multi-port transmission, and the DCI format is configured according to it
  • the Antenna port field in 0-1 is 4 bits.
  • the DMRS configuration parameters for DCI format 0-2 in PUSCH-Config (that is, the aforementioned uplink data transmission parameters), such as dmrs-UplinkForPUSCH-MappingTypeA-DCI format 0-2 and dmrs-UplinkForPUSCH-MappingTypeB-DCI format 0-2 are configured Multi-port transmission is supported.
  • the Antenna port field (that is, the first indication field) in the DCI format 0-2 is 3 bits.
  • the default antenna port field in the DCI format 0-0 in the PUSCH-Config (that is, the aforementioned uplink data transmission parameter) does not exist, or the protocol stipulates that the first indication field of the DCI format 0-0 does not exist.
  • the pre-configured DCI format 0-1 and DCI format 0-2 are all DCI formats used for Configured Grant transmission, then the second transmission parameter set is configured as the transmission corresponding to 3 bits in the Antenna port field (that is, the first indicator field) Parameter set configuration.
  • the number of bits in the first indicator field determined based on the first transmission parameter set configuration is not greater than the number of bits in the first indicator field determined based on the second transmission parameter set configuration set. That is, when the second transmission parameter set configuration determines that the number of bits in the first indication field is 3, then the first transmission parameter set configuration corresponds to the first indication field bit less than or equal to 3 bits.
  • the DMRS configuration parameters (that is, the first transmission parameter set) in ConfiguredGrantConfig are limited to all DCI formats used to activate ConfiguredGrant, such as DCI format 0-1/0- Therefore, cg-DMRS-Configuration can also be configured to support multi-port transmission, and the corresponding antenna port field can be up to 3 bits, which can be less than 3 bits, such as 2 bits, or equal to 3 bits. This example uses Take 3 bits as an example.
  • the processing flow of this example can be:
  • the terminal device receives the DCI for activating Configured Grant.
  • this step further includes: determining the number of bits of the first indication field in the DCI for which the Configured Grant is activated; the terminal device parses the first indication field according to the first transmission parameter configuration.
  • the format of the DCI for activating the Configured Grant is one of all the DCI formats that can be used for uplink scheduling, or one of all the DCI formats for activating the Configured Grant;
  • the first indication field is one of the at least one indication field used to activate the DCI of the Configured Grant.
  • the determining the number of bits in the first indicator field in the DCI for activating the Configured Grant may be: determining the number of bits in the first indicator field according to at least one transmission parameter in the uplink data transmission parameters.
  • the determining the number of bits of the first indication field in the DCI of the activated Configured Grant may be: according to at least one transmission parameter of the uplink data transmission parameters corresponding to the format of the DCI of the activated Configured Grant, Determine the number of bits in the first indication field.
  • the terminal receives the DCI for activating Configured Grant using DCI format 0-1, and according to the DMRS configuration parameters for DCI format 0-1 in PUSCH-Config (that is, the uplink data transmission corresponding to the DCI format for activating Configured Grant) At least one transmission parameter among the parameters), for example, dmrs-UplinkForPUSCH-MappingTypeA and dmrs-UplinkForPUSCH-MappingTypeB determine that the Antenna port field is 4 bits.
  • the terminal device interprets only 3 bits in the antenna port field according to the DMRS configuration parameter (first transmission parameter) in the Configured Grant, such as cg-DMRS-Configuration.
  • the network device side may determine, according to the first transmission parameter configuration, to perform a 3-bit corresponding configuration in the first indication field in the sent DCI of the activated Configured Grant.
  • the first transmission parameter or the second transmission parameter is at least one of the following:
  • Demodulation reference signal DMRS port related parameters, frequency domain frequency hopping parameters, frequency domain resource parameters, uplink control information UCI multiplexed to the physical uplink shared channel PUSCH parameters, DMRS sequence initialization parameters.
  • the first transmission parameter set or the second transmission parameter set is at least one of the following:
  • Frequency domain frequency hopping parameter set (for example, frequency hopping frequencyHopping), frequency domain resource parameter set (for example, resource allocation type 1-granularity, ResourceAllocationType1-Granularity), uplink control information (UCI) is multiplexed to the physical uplink shared channel (PUSCH) Parameter set (for example, uci-onPUSCH), DMRS sequence initialization parameter set (for example, DMRSsequenceinitialization), DMRE port related parameter set.
  • PUSCH physical uplink shared channel
  • Parameter set for example, uci-onPUSCH
  • DMRS sequence initialization parameter set for example, DMRSsequenceinitialization
  • DMRE port related parameter set for example, frequency hopping frequencyHopping
  • the target transmission parameter configuration set can also include more parameters, which can be set according to the actual situation, which is not exhaustive here.
  • the second transmission parameter is the transmission parameter of the first indication field with the largest number of bits in all DCI formats that can be used for uplink scheduling; or, the second transmission parameter is the DCI used for Configured Grant transmission The transmission parameter of the first indication field corresponding to the largest number of bits in the format.
  • the first indicator field bit number determined by the first parameter (set) in ConfiguredGrantConfig is less than or equal to the first indicator field bit number determined by the relevant second parameter (set) in PUSCH-Config.
  • the number of bits in the first indicator field determined by the second parameter (set) is the maximum number of bits in the first indicator field in all DCI formats used for Configured Grant transmission.
  • the number of bits in the first indicator field determined by the second parameter (set) may be used for the maximum number of bits in the first indicator field in all DCI formats for uplink scheduling.
  • the Configured Grant transmission may be activated Configured Grant or Configured Grant retransmission scheduling.
  • the DMRS configuration parameters for DCI format 0-1 in PUSCH-Config (that is, the aforementioned uplink data transmission parameters), such as dmrs-UplinkForPUSCH-MappingTypeA and dmrs-UplinkForPUSCH-MappingTypeB are configured to support multi-port transmission, according to their configuration DCI format 0-
  • the Antenna port field in 1 is 4 bits.
  • DMRS configuration parameters for DCI format 0-2, such as dmrs-UplinkForPUSCH-MappingTypeA-DCI format 0-2 and dmrs-UplinkForPUSCH-MappingTypeB-DCI format 0-2 are configured to support multi-port transmission, according to their configuration DCI format 0-2
  • the Antenna port field in is 3 bits.
  • the default antenna port field in DCI format 0-0 does not exist.
  • the second transmission parameter set configuration is the maximum number of bits in the first indication field in all DCI formats supported by the terminal device, and the second transmission parameter set configuration may be the DMRS configuration parameters of the DCI format 0-1.
  • the DMRS configuration parameter (the first transmission parameter) in ConfiguredGrantConfig is limited to all DCI formats. Therefore, cg-DMRS-Configuration can also be configured to support multi-port transmission, and the corresponding antenna port domain is the most It is 4 bits, that is, the number of bits in the first indication field corresponding to the first transmission parameter can be less than 4 bits, for example, it can be 2 bits, or 3 bits, and of course it can be equal to 4 bits. In this example, 4 bits are used as an example .
  • the second transmission parameter set configuration may be the DMRS configuration parameter of the DCI format 0-1.
  • the DMRS configuration parameters (first transmission parameter set) in ConfiguredGrantConfig are limited to all DCI formats used to activate ConfiguredGrant, such as the configuration of DCI format 0-1/0-2, so, cg-DMRS-Configuration can also be configured to support multi-port transmission, and the corresponding antenna port field is up to 4 bits.
  • Step 51 The terminal receives ConfiguredGrantConfig and PUSCH-Config.
  • Step 52 The terminal receives the DCI of activated Configured Grant, determines the corresponding transmission parameter set configuration according to the DCI format of the DCI of activated Configured Grant, and parses the DCI of activated Configured Grant.
  • Case 1 In a case where the DCI for which the Configured Grant is activated is the third DCI format, the first indication field is parsed according to the first transmission parameter.
  • the third DCI format is DCI format 0-1.
  • the network device configures the first indication field according to the first transmission parameter when the DCI to be sent to activate the Configured Grant is in the third DCI format.
  • it may further include: in the case that the DCI for which the Configured Grant is activated is the third DCI format, determining the number of bits of the first indication field according to the second transmission parameter, and analyzing the first indication field according to the first transmission parameter An indication domain.
  • the terminal receives the DCI for activating Configured Grant and adopts DCI format 0-1, according to the DMRS configuration parameters (second transmission parameters) for DCI format 0-1 in PUSCH-Config, such as dmrs-UplinkForPUSCH-MappingTypeA and dmrs-UplinkForPUSCH- MappingTypeB determines that the Antenna port field is 4 bits.
  • DMRS configuration parameter (first transmission parameter) in Configured Grant, such as cg-DMRS-Configuration, interpret the 4 bits in the antenna port field.
  • Case 2 In the case that the DCI for which the Configured Grant is activated is the fourth DCI format, the first indication field is parsed according to the first transmission parameter;
  • the DCI for which the Configured Grant is activated is the fourth DCI format
  • the first indication field is parsed according to the second transmission parameter
  • the DCI for which the Configured Grant is activated is the fourth DCI format
  • the first indication field is parsed according to the first transmission parameter and the second transmission parameter.
  • the fourth DCI format is DCI 0-2.
  • the first indication field and/or the second transmission parameter set are configured to analyze the first indication field.
  • the terminal receives the DCI for which the Configured Grant is activated and adopts DCI format 0-2, according to the DMRS configuration parameter (second transmission parameter) for DCI format 0-2 in PUSCH-Config, such as dmrs-UplinkForPUSCH-MappingTypeA-DCIformat0- 2 and dmrs-UplinkForPUSCH-MappingTypeB-DCIformat0-2 determine that the Antenna port field is 3 bits.
  • Case 2.1 The terminal reads 3 bits in the antenna port field, and determines the information indicated by the antenna port according to the DMRS configuration parameter (first transmission parameter) in the Configured Grant, such as cg-DMRS-Configuration.
  • first indication field bits determined according to the first transmission parameter set configuration are greater than the number of first indication field bits determined according to the second transmission parameter set configuration, that is:
  • the DCI for which the Configured Grant is activated is the fourth DCI format
  • the first indication field corresponds to a partial value corresponding to the configuration of the first transmission parameter set.
  • cg-DMRS-Configuration determines that the antenna port supports 16 configurations, namely ⁇ 0,1,2,3,4,5,6,7,0-1,2-3,4-5,6-7,0 -3,4-7,0-5,0-7 ⁇ , but because the antenna port field has only 3 bits, it only corresponds to the first 8 configurations in the configuration or the single-port configuration in the configuration.
  • Case 2.2 The terminal reads the 3 bits in the antenna port field, and according to the DMRS configuration parameters (second transmission parameters) for DCI format 0-2 in PUSCH-Config, such as dmrs-UplinkForPUSCH-MappingTypeA-DCIformat0-2 and dmrs-UplinkForPUSCH-MappingTypeB-DCIformat0-2, which determines the information indicated by the antenna port (first indication field).
  • the network device may configure the information indicated by the first indication field according to the second transmission parameter set configuration.
  • Terminal (or network device), which can be:
  • DMRS configuration parameters for DCI format 0-2 in PUSCH-Config, such as dmrs-UplinkForPUSCH-MappingTypeA-DCIformat0-2 and dmrs-UplinkForPUSCH-MappingTypeB-DCIformat0-2, and the first transmission parameters, such as cg-DMRS-Configuration jointly determines the information indicated by the antenna port.
  • the FDRA field in DCI format 0-2 (can be understood as the first indication field), according to the resource allocation and/or rbg in ConfiguredgrantConfig (can be understood as the first transmission parameter), and the ResourceAllocationType1-Granularity in PUSCHConfig (can be understood as the first transmission parameter) (Understood as the second transmission parameter) jointly decided.
  • the second transmission parameter is a transmission parameter corresponding to the first indication field of the first DCI format
  • the first DCI format is one of all the DCI formats that can be used for uplink scheduling.
  • the second transmission parameter (set) is the transmission parameter corresponding to the first indication field of the specified first DCI format.
  • the first DCI format is agreed upon by a protocol or configured by the network. That is, the specified first DCI format is specified by the protocol, for example, in some cases, only the first DCI format can be used for transmission; or, it can be specified for the network device to perform a certain time (or within a certain time period) Only the first DCI format is used for transmission.
  • the first DCI format is DCI format 0-1.
  • the first DCI format may also be other formats, as long as it is a specified format determined according to protocol agreement or network device configuration, for example, it may be DCI format 0-2, etc., which will not be exhaustive.
  • the second transmission parameter can be used to determine the number of bits in the first indicator field in the DCI; then, the first indicator field can be parsed through the first transmission parameter set configuration, or the protocol stipulates that the second transmission is used
  • the parameter set configuration parses the first indication domain.
  • the DMRS configuration parameters (second transmission parameters) for DCI format 0-1 in PUSCH-Config such as dmrs-UplinkForPUSCH-MappingTypeA and dmrs-UplinkForPUSCH-MappingTypeB are configured to support multi-port transmission, according to their configuration DCI format 0-1
  • the Antenna port field (the first indicator field) in is 4 bits.
  • the 4 bits in the antenna port field can be interpreted (or configured) according to the second transmission parameter set configuration (or the first transmission parameter).
  • the second transmission parameter is a transmission parameter corresponding to the first indication field of the second DCI format
  • the second DCI format is one of all DCI formats that can be used for Configured Grant transmission.
  • the second DCI format is one of all DCI formats that can be used for Configured Grant transmission.
  • the second DCI format may also be agreed upon by a protocol or configured by the network.
  • the second DCI format is DCI format 0-1.
  • the second DCI format may also be other formats, as long as it is a designated format determined according to protocol agreement or network device configuration, for example, it may be DCI format 0-2, etc., which will not be exhaustive.
  • the network device sends the DCI of the Configured Grant retransmission; correspondingly, the terminal device receives the DCI of the Configured Grant retransmission.
  • the retransmission of the DCI of the Configured Grant is consistent with the format of the DCI of the activated Configured Grant.
  • the DCI format for activating the Configured Grant and the scheduling DCI format for retransmitting the Configured Grant need to be consistent.
  • the terminal receives the first DCI sent by the network device to activate the Configured Grant, where the first DCI is the first DCI format.
  • the terminal receives the second DCI sent by the network device and is used for scheduling Configured Grant retransmission, where the second DCI is a second DCI format.
  • the second DCI format is the same as the first DCI format.
  • the processing method for retransmitting the DCI of the Configured Grant may be the same as the foregoing example, and will not be repeated here.
  • the network device sends the DCI of the Configured Grant retransmission; correspondingly, the terminal device receives the DCI of the Configured Grant retransmission.
  • the retransmission of the DCI of the Configured Grant is independent of the format of the DCI of the activated Configured Grant.
  • the DCI format for activating the Configured Grant may be inconsistent with the scheduling DCI format for retransmitting the Configured Grant.
  • the terminal receives the first DCI to activate the Configured Grant, where the first DCI is the first DCI format
  • the terminal receives the second DCI for scheduling Configured Grant retransmission, where the second DCI is a second DCI format.
  • the second DCI format and the first DCI format are configured independently, and may be the same or different.
  • the content of the first indication field in the DCI of the retransmitted Configured Grant is parsed using the first transmission parameter set configuration in the same format as the DCI for activating the Configured Grant; or, the first indication in the DCI of the retransmitted Configured Grant
  • the content of the domain is analyzed using the first transmission parameter set configuration corresponding to the DCI of the retransmitted Configured Grant.
  • the first transmission parameter (configuration) in this example is limited to the second transmission parameter (configuration), and can be applied to all transmission parameters.
  • the first transmission parameter or the second transmission parameter is at least one of the following:
  • Demodulation reference signal DMRS port related parameters, frequency domain frequency hopping parameters, frequency domain resource parameters, uplink control information UCI multiplexed to the physical uplink shared channel PUSCH parameters, DMRS sequence initialization parameters.
  • the first transmission parameter set or the second transmission parameter set is at least one of the following:
  • Frequency domain frequency hopping parameter set (for example, frequency hopping frequencyHopping), frequency domain resource parameter set (for example, resource allocation type 1-granularity, ResourceAllocationType1-Granularity), uplink control information (UCI) is multiplexed to the physical uplink shared channel (PUSCH) Parameter set (for example, uci-onPUSCH), DMRS sequence initialization parameter set (for example, DMRSsequenceinitialization), DMRE port related parameter set.
  • PUSCH physical uplink shared channel
  • Parameter set for example, uci-onPUSCH
  • DMRS sequence initialization parameter set for example, DMRSsequenceinitialization
  • DMRE port related parameter set for example, frequency hopping frequencyHopping
  • the configuration of the first transmission parameter set sent by the network device for the terminal device is limited to the configuration of the second transmission parameter set; and the first transmission parameter set and the second transmission parameter set correspond to the first indication in the DCI area. Therefore, the configuration of the transmission parameter set corresponding to the indication field of the same DCI has a constraint relationship, which can solve the problem that the bit number of a certain indication field in the DCI corresponding to different transmission parameter set configurations is different.
  • the embodiment of the present invention provides a terminal device, as shown in FIG. 6, including:
  • the first communication unit 61 receives the first transmission parameter set configuration
  • the first transmission parameter is used to determine the number of bits of the first indication field in the DCI; the first transmission parameter set and the second transmission parameter set correspond to the first indication field in the DCI.
  • the embodiment of the present invention also provides a transmission network device, as shown in FIG. 7, including:
  • the second communication unit 71 sends the first transmission parameter set configuration
  • the first transmission parameter is used to determine the number of bits of the first indication field in the DCI; the first transmission parameter set and the second transmission parameter set correspond to the first indication field in the DCI.
  • the first transmission parameter includes: at least one transmission parameter among the transmission parameters of Configured Grant;
  • the second transmission parameter includes: at least one transmission parameter among uplink data transmission parameters, or at least one transmission parameter agreed by a protocol.
  • both the first transmission parameter and the second transmission parameter may include one or more transmission parameters; when the first transmission parameter includes multiple transmission parameters, the first transmission parameter may be referred to as the first transmission parameter.
  • Transmission parameter set the same as the second transmission parameter, it can also be understood as the second transmission parameter set when multiple transmission parameters are included.
  • the number of bits in the first indicator field determined based on the first transmission parameter set is not greater than the number of bits in the first indicator field determined based on the second transmission parameter set. It can be understood that the configuration of the first transmission parameter set is limited to the configuration of the second transmission parameter set. More specifically, it can include:
  • the number of bits in the first indicator field determined based on the first transmission parameter set is smaller than the number of bits in the first indicator field determined based on the second transmission parameter set;
  • the number of bits in the first indicator field determined based on the first transmission parameter set is equal to the number of bits in the first indicator field determined based on the second transmission parameter set.
  • the second transmission parameter is the transmission parameter of the first indication field with the smallest number of bits in all DCI formats that can be used for uplink scheduling.
  • the second transmission parameter set configuration is the transmission parameter set configuration of the first indication field with the least number of corresponding bits in all DCI formats that can be used for uplink scheduling.
  • the transmission parameters of the first indicator field with the smallest number of bits in all DCI formats that can be used for uplink scheduling are interpreted as: the bits of the first indicator field in all DCI formats that can be used for uplink scheduling
  • the transmission parameter with the least number is used as the second transmission parameter.
  • the first transmission parameter set may consist of at least one transmission parameter among the transmission parameters of Configured Grant; the second transmission parameter set may consist of at least one transmission parameter among the uplink data transmission parameters, or at least one of the transmission parameters agreed by the protocol. Transmission parameter composition.
  • all DCI formats that can be used for uplink scheduling include at least: DCI format 0-1, DCI format 0-2;
  • all DCI formats that can be used for uplink scheduling include at least: DCI format 0-0, DCI format 0-1, and DCI format 0-2.
  • the first communication unit of the terminal device receives the first transmission parameter set configuration and the second transmission parameter set configuration.
  • the terminal device receives ConfiguredGrantConfig (configuration grant configuration) and PUSCH-Config (physical uplink shared channel configuration).
  • ConfiguredGrantConfig configuration grant configuration
  • PUSCH-Config physical uplink shared channel configuration
  • the first communication unit of the terminal device receives the DCI for activating the Configured Grant.
  • the terminal device also includes a first processing unit 62 that determines the number of bits in the first indication field in the DCI for which the Configured Grant is activated; the first processing unit 62 of the terminal device parses the first indication according to the first transmission parameter configuration area.
  • the format of the DCI for activating the Configured Grant is one of all the DCI formats that can be used for uplink scheduling, or one of all the DCI formats for activating the Configured Grant;
  • the first indication field is one of the at least one indication field used to activate the DCI of the Configured Grant.
  • the first processing unit 62 of the terminal device determines the number of bits in the first indication field according to at least one transmission parameter in the uplink data transmission parameters.
  • the network device may further include a second processing unit 72, which determines the number of bits in the first indication field according to at least one transmission parameter in the uplink data transmission parameters.
  • the first indication field is one of the multiple DCI fields included in the DCI for activating the Configured Grant; that is to say, one DCI may contain multiple indication fields, and these indication fields can be respectively understood as the first indication area.
  • Different first indication domains can correspond to different second transmission parameter set configurations and first transmission parameter set configurations (on the network device side), but for different first indication domains, the related second transmission parameter set configurations and the first transmission parameter set configuration
  • the restriction rules for the configuration of a transmission parameter set are the same as those described above in this example, so they will not be repeated one by one.
  • the first transmission parameter or the second transmission parameter is at least one of the following:
  • Demodulation reference signal DMRS port related parameters, frequency domain frequency hopping parameters, frequency domain resource parameters, uplink control information UCI multiplexed to the physical uplink shared channel PUSCH parameters, DMRS sequence initialization parameters.
  • the first transmission parameter set or the second transmission parameter set is at least one of the following:
  • Frequency domain frequency hopping parameter set (for example, frequency hopping frequencyHopping), frequency domain resource parameter set (for example, resource allocation type 1-granularity, ResourceAllocationType1-Granularity), uplink control information (UCI) is multiplexed to the physical uplink shared channel (PUSCH) Parameter set (for example, uci-onPUSCH), DMRS sequence initialization parameter set (for example, DMRSsequenceinitialization), DMRE port related parameter set.
  • PUSCH physical uplink shared channel
  • Parameter set for example, uci-onPUSCH
  • DMRS sequence initialization parameter set for example, DMRSsequenceinitialization
  • DMRE port related parameter set for example, frequency hopping frequencyHopping
  • the target transmission parameter configuration set can also include more parameters, which can be set according to the actual situation, which is not exhaustive here.
  • the second transmission parameter is the transmission parameter of the first indication field with the least number of bits in the DCI format used for Configured Grant transmission.
  • the second transmission parameter set may be configured as the transmission parameter set configuration of the first indication field with the least number of bits in the DCI format used for Configured Grant transmission.
  • the second transmission parameter is the transmission parameter of the first indication field with the least number of bits in the DCI format used for Configured Grant transmission, which can be understood as: the first indication in the DCI format used for Configured Grant transmission
  • the transmission parameter with the least number of bits corresponding to the domain is used as the second transmission parameter.
  • the first transmission parameter set may consist of at least one transmission parameter among the transmission parameters of Configured Grant; the second transmission parameter set may consist of at least one transmission parameter among the uplink data transmission parameters, or at least one of the transmission parameters agreed by the protocol. Transmission parameter composition.
  • the number of bits in the first indicator field determined by the second parameter (set) is the minimum value of the number of bits in the first indicator field in all DCI formats used to activate Configured Grant.
  • the first communication unit 61 of the terminal device receives the first transmission parameter set configuration and the second transmission parameter set configuration.
  • the first communication unit 61 of the terminal device receives the DCI for activating the Configured Grant.
  • the first processing unit 62 of the terminal device determines the number of bits of the first indication field in the DCI of the activated Configured Grant; the terminal device parses the first indication field according to the first transmission parameter configuration.
  • the format of the DCI for activating the Configured Grant is one of all the DCI formats that can be used for uplink scheduling, or one of all the DCI formats for activating the Configured Grant;
  • the first indication field is one of the at least one indication field used to activate the DCI of the Configured Grant.
  • the first processing unit 62 of the terminal device or the second processing unit 72 of the network device determines the number of bits in the first indication field according to at least one transmission parameter among the uplink data transmission parameters.
  • the second transmission parameter is the transmission parameter of the first indication field with the largest number of bits in all DCI formats that can be used for uplink scheduling; or, the second transmission parameter is the DCI used for Configured Grant transmission The transmission parameter of the first indication field corresponding to the largest number of bits in the format.
  • the number of bits in the first indicator field determined by the second parameter (set) is the maximum number of bits in the first indicator field in all DCI formats used for Configured Grant transmission.
  • the number of bits in the first indicator field determined by the second parameter (set) may be used for the maximum number of bits in the first indicator field in all DCI formats for uplink scheduling.
  • the Configured Grant transmission may be activated Configured Grant or Configured Grant retransmission scheduling.
  • the first communication unit 61 of the terminal device receives the DCI that activates the Configured Grant, and the first processing unit 62 of the terminal device determines the corresponding transmission parameter set configuration according to the DCI format of the DCI that activates the Configured Grant. Parsing.
  • Case 1 The first processing unit 62 of the terminal device parses the first indication field according to the first transmission parameter set configuration when the DCI for which the Configured Grant is activated is the third DCI format.
  • the third DCI format is DCI format 0-1.
  • the second processing unit of the network device configures the first indication field according to the first transmission parameter set configuration when the DCI to be sent to activate the Configured Grant is the third DCI format.
  • it may further include: in the case that the DCI for which the Configured Grant is activated is the third DCI format, determining the number of bits of the first indication field according to the second transmission parameter, and analyzing the first indication field according to the first transmission parameter An indication domain.
  • Case 2 The first processing unit 62 of the terminal device parses the first indication field according to the first transmission parameter when the DCI for which the Configured Grant is activated is the fourth DCI format;
  • the DCI for which the Configured Grant is activated is the fourth DCI format
  • the first indication field is parsed according to the second transmission parameter
  • the DCI for which the Configured Grant is activated is the fourth DCI format
  • the first indication field is parsed according to the first transmission parameter and the second transmission parameter.
  • the fourth DCI format is DCI 0-2.
  • the first processing unit 62 of the terminal device determines the number of bits in the first indication field according to the second transmission parameter in the case that the DCI for which the Configured Grant is activated is the fourth DCI format, it is less than the number determined according to the configuration of the first transmission parameter set. If the number of bits in the first indicator field is the number of bits in the first indicator field, the first indicator field corresponds to the value of the part corresponding to the first transmission parameter.
  • Case 2.2 The terminal reads 3 bits in the antenna port field, and according to the DMRS configuration parameters (second transmission parameters) for DCI format 0-2 in PUSCH-Config, such as dmrs-UplinkForPUSCH-MappingTypeA-DCIformat0-2 and dmrs-UplinkForPUSCH-MappingTypeB-DCIformat0-2, to determine the information indicated by the antenna port.
  • DMRS configuration parameters second transmission parameters for DCI format 0-2 in PUSCH-Config, such as dmrs-UplinkForPUSCH-MappingTypeA-DCIformat0-2 and dmrs-UplinkForPUSCH-MappingTypeB-DCIformat0-2, to determine the information indicated by the antenna port.
  • Case 2.3 The terminal reads the 3 bits in the antenna port field, and according to the DMRS configuration parameters (second transmission parameters) for DCI format 0-2 in PUSCH-Config, such as dmrs-UplinkForPUSCH-MappingTypeA-DCIformat0-2 and dmrs-UplinkForPUSCH-MappingTypeB-DCIformat0-2, and the first transmission parameter set configuration, such as cg-DMRS-Configuration, jointly determine the information indicated by the antenna port.
  • the DMRS configuration parameters for DCI format 0-2 in PUSCH-Config, such as dmrs-UplinkForPUSCH-MappingTypeA-DCIformat0-2 and dmrs-UplinkForPUSCH-MappingTypeB-DCIformat0-2
  • the first transmission parameter set configuration such as cg-DMRS-Configuration
  • the second transmission parameter set configuration is a transmission parameter set configuration corresponding to the first indication field of the first DCI format, and the first DCI format is one of all DCI formats that can be used for uplink scheduling.
  • the second transmission parameter set configuration is the transmission parameter set configuration corresponding to the first indication field of the specified first DCI format.
  • the first DCI format is agreed upon by a protocol or configured by the network. That is, the specified first DCI format is specified by the protocol, for example, in some cases, only the first DCI format can be used for transmission; or, it can be specified for the network device to perform a certain time (or within a certain time period) Only the first DCI format is used for transmission.
  • the first DCI format is DCI format 0-1.
  • the second transmission parameter can be used to determine the number of bits in the first indicator field in the DCI; then, the first indicator field can be parsed by the first transmission parameter, or the protocol stipulates that the second transmission parameter pair The first indication domain is parsed.
  • the second transmission parameter set is configured as a transmission parameter corresponding to the first indication field of the second DCI format, and the second DCI format is one of all DCI formats that can be used for Configured Grant transmission.
  • the second DCI format is one of all DCI formats that can be used for Configured Grant transmission. Specifically, the second DCI format may also be agreed upon by a protocol or configured by the network. The second DCI format is DCI format 0-1. I won't repeat the rest.
  • the network device sends the DCI of the Configured Grant retransmission; correspondingly, the terminal device receives the DCI of the Configured Grant retransmission.
  • the retransmission of the DCI of the Configured Grant is consistent with the format of the DCI of the activated Configured Grant.
  • the DCI format for activating the Configured Grant and the scheduling DCI format for retransmitting the Configured Grant need to be consistent.
  • the terminal receives the first DCI sent by the network device to activate the Configured Grant, where the first DCI is the first DCI format.
  • the terminal receives the second DCI sent by the network device and is used for scheduling Configured Grant retransmission, where the second DCI is a second DCI format.
  • the second DCI format is the same as the first DCI format.
  • the processing method for retransmitting the DCI of the Configured Grant may be the same as the foregoing example, and will not be repeated here.
  • the network device sends the DCI of the Configured Grant retransmission; correspondingly, the terminal device receives the DCI of the Configured Grant retransmission.
  • the retransmission of the DCI of the Configured Grant is independent of the format of the DCI of the activated Configured Grant.
  • the DCI format for activating the Configured Grant may be inconsistent with the scheduling DCI format for retransmitting the Configured Grant.
  • the terminal receives the first DCI to activate the Configured Grant, where the first DCI is the first DCI format
  • the terminal receives the second DCI for scheduling Configured Grant retransmission, where the second DCI is a second DCI format.
  • the second DCI format and the first DCI format are configured independently, and may be the same or different.
  • the content of the first indication field in the DCI of the retransmitted Configured Grant is parsed using the first transmission parameter set configuration in the same format as the DCI for activating the Configured Grant; or, the first indication in the DCI of the retransmitted Configured Grant
  • the content of the domain is analyzed using the first transmission parameter set configuration corresponding to the DCI of the retransmitted Configured Grant.
  • the configuration of the first transmission parameter set in this example is limited to the configuration of the second transmission parameter set, and can be applied to all transmission parameters.
  • the first transmission parameter or the second transmission parameter is at least one of the following:
  • Demodulation reference signal DMRS port related parameters, frequency domain frequency hopping parameters, frequency domain resource parameters, uplink control information UCI multiplexed to the physical uplink shared channel PUSCH parameters, DMRS sequence initialization parameters.
  • the first transmission parameter set or the second transmission parameter set is at least one of the following:
  • Frequency domain frequency hopping parameter set (for example, frequency hopping frequencyHopping), frequency domain resource parameter set (for example, resource allocation type 1-granularity, ResourceAllocationType1-Granularity), uplink control information (UCI) is multiplexed to the physical uplink shared channel (PUSCH) Parameter set (for example, uci-onPUSCH), DMRS sequence initialization parameter set (for example, DMRSsequenceinitialization), DMRE port related parameter set.
  • PUSCH physical uplink shared channel
  • Parameter set for example, uci-onPUSCH
  • DMRS sequence initialization parameter set for example, DMRSsequenceinitialization
  • DMRE port related parameter set for example, frequency hopping frequencyHopping
  • the configuration of the first transmission parameter set sent by the network device for the terminal device is limited to the configuration of the second transmission parameter set; and the first transmission parameter set and the second transmission parameter set correspond to the first indication in the DCI area. Therefore, the configuration of the transmission parameter set corresponding to the indication field of the same DCI has a constraint relationship, which can solve the problem that the bit number of a certain indication field in the DCI corresponding to different transmission parameter set configurations is different.
  • FIG. 8 is a schematic structural diagram of a communication device 800 provided by an embodiment of the present invention.
  • the communication device in this embodiment may be specifically one of the terminal device and the network device in the foregoing embodiment.
  • the communication device 800 shown in FIG. 8 includes a processor 810, and the processor 810 can call and run a computer program from the memory to implement the method in the embodiment of the present invention.
  • the communication device 800 may further include a memory 820.
  • the processor 810 can call and run a computer program from the memory 820 to implement the method in the embodiment of the present invention.
  • the memory 820 may be a separate device independent of the processor 810, or may be integrated in the processor 810.
  • the communication device 800 may further include a transceiver 830, and the processor 810 may control the transceiver 830 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 830 may include a transmitter and a receiver.
  • the transceiver 830 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 800 may specifically be a network device according to an embodiment of the present invention, and the communication device 800 may implement the corresponding process implemented by the network device in each method of the embodiment of the present invention. For the sake of brevity, details are not repeated here. .
  • the communication device 800 may specifically be a terminal device or a network device according to an embodiment of the present invention, and the communication device 800 may implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present invention. It's concise, so I won't repeat it here.
  • the first processing unit of the aforementioned terminal device may be implemented by the processor 810 in the communication device 800; or, the second processing unit of the network device may be implemented by the processor 810 in the communication device 800.
  • the first communication unit of the aforementioned terminal device may be implemented by the transceiver 830 in the communication device 800; or, the second communication unit of the network device may be implemented by the transceiver 830 of the communication device 800.
  • Fig. 9 is a schematic structural diagram of a chip according to an embodiment of the present invention.
  • the chip 900 shown in FIG. 9 includes a processor 910, and the processor 910 can call and run a computer program from the memory to implement the method in the embodiment of the present invention.
  • the chip 900 may further include a memory 920.
  • the processor 910 can call and run a computer program from the memory 920 to implement the method in the embodiment of the present invention.
  • the memory 920 may be a separate device independent of the processor 910, or may be integrated in the processor 910.
  • the chip 900 may further include an input interface 930.
  • the processor 910 can control the input interface 930 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 900 may further include an output interface 940.
  • the processor 910 can control the output interface 940 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to one of the terminal device, the access network node, and the core network device in the embodiment of the present invention, and the chip can implement the corresponding process implemented by the terminal device in each method of the embodiment of the present invention , For the sake of brevity, I won’t repeat it here.
  • the chip mentioned in the embodiment of the present invention may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • the processor in the embodiment of the present invention may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present invention can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present invention may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present invention may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is, the memory in the embodiment of the present invention is intended to include, but is not limited to, these and any other suitable types of memory.
  • FIG. 10 is a schematic block diagram of a communication system 1000 according to an embodiment of the present application. As shown in FIG. 10, the communication system 1000 includes a terminal device 1010 and a network device 1020.
  • the terminal device 1010 may be used to implement the corresponding functions implemented by the UE in the foregoing method
  • the network device 1020 may be used to implement the corresponding functions implemented by the network device in the foregoing method.
  • the network device may be one of an access network node and a core network device.
  • the embodiment of the present invention also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device or the terminal device in the embodiment of the present invention, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention, for the sake of brevity , I won’t repeat it here.
  • the embodiment of the present invention also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device or the terminal device in the embodiment of the present invention, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention.
  • the embodiment of the present invention also provides a computer program.
  • the computer program can be applied to the network device or the terminal device in the embodiment of the present invention.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present invention. , For the sake of brevity, I won’t repeat it here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present invention may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present invention essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明公开了一种传输参数确定方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序,所述方法包括:终端设备接收第一传输参数;其中,所述第一传输参数用于确定DCI中第一指示域的比特位数;所述第一传输参数集和第二传输参数集对应DCI中第一指示域。

Description

传输参数确定方法、终端设备及网络设备 技术领域
本发明涉及通信领域,尤其涉及一种传输参数确定方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
背景技术
在相关技术中,下行控制信息(DCI,Downlink Control Information)format(格式)中各个域的顺序和比特位数都是确定的。对于配置授权(CG,Configured grant)传输,其激活和重传DCI中各个域的比特位可以由不同的参数确定。在不同的传输参数配置对应的多种DCI格式下的同一个指示域的比特位数会存在不同,因此,需要解决不同传输参数集配置对应的DCI中的某一个指示域比特位数不同的问题。
发明内容
为解决上述技术问题,本发明实施例提供了一种传输参数确定方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
第一方面,提供了一种传输参数确定方法,包括:
终端设备接收第一传输参数;
其中,所述第一传输参数用于确定DCI中第一指示域的比特位数;所述第一传输参数集和第二传输参数集对应DCI中第一指示域。
第二方面,提供了一种传输参数确定方法,包括:
网络设备发送第一传输参数;
其中,所述第一传输参数用于确定DCI中第一指示域的比特位数;所述第一传输参数和第二传输参数对应DCI中第一指示域。
第三方面,提供了一种终端设备,包括:
第一通信单元,接收第一传输参数;
其中,所述第一传输参数用于确定DCI中第一指示域的比特位数;所述第一传输参数集和第二传输参数集对应DCI中第一指示域。
第四方面,提供了一种网络设备,包括:
第二通信单元,发送第一传输参数;
其中,所述第一传输参数用于确定DCI中第一指示域的比特位数;所述第一传输参数和第二传输参数对应DCI中第一指示域。
第五方面,提供了一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如前所述方法的步骤。
第六方面,提供了一种网络设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如前所述方法的步骤。
第七方面,提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如前所述的方法。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如前所述方法的步骤。
第九方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如前所述的方法。
第十方面,提供了一种计算机程序,所述计算机程序使得计算机执行如前所述的方法。
通过采用上述方案,网络设备为终端设备发送的第一传输参数受限于第二传输参数;并且所述第一传输参数集和第二传输参数集对应DCI中第一指示域。从而,对应于同一个DCI的指示域的传输参数具备了约束关系,如此能够解决不同传输参数对应的DCI中的某一个指示域比特位数不同的问题。
附图说明
图1是本发明实施例提供的一种通信系统架构的示意性图一;
图2为本发明实施例提供的一种传输参数确定方法流程示意图一;
图3为本发明实施例提供的一种传输参数确定方法流程示意图二;
图4为本发明实施例提供的一种传输参数确定方法流程示意图三;
图5为本发明实施例提供的一种传输参数确定方法流程示意图四;
图6为本发明实施例提供的终端设备组成结构示意图;
图7为本发明实施例提供的网络设备组成结构示意图;
图8为本发明实施例提供的一种通信设备组成结构示意图;
图9是本申请实施例提供的一种芯片的示意性框图;
图10是本申请实施例提供的一种通信系统架构的示意性图二。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100可以如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与UE120(或称为通信终端设备、终端设备)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的UE进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的网络设备(Base Transceiver Station,BTS),也可以是WCDMA系统中的网络设备(NodeB,NB),还可以是LTE系统中的演进型网络设备(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进网络中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个UE120。UE120与网络设备110之间可以是有线通信,也而已是无线通信。与网络设备110之间通过无线通信的UE可以被称为“无线通信终端设备”、“无线终端设备”或“移动终端设备”。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
本发明实施例提供了一种传输参数确定方法,如图2所示,包括:
步骤21:终端设备接收第一传输参数;
其中,所述第一传输参数用于确定DCI中第一指示域的比特位数;所述第一传输参数和第二传输参数对应DCI中第一指示域。
本发明实施例还提供一种传输参数确定方法,如图3所示,包括:
步骤31:网络设备发送第一传输参数;
其中,所述第一传输参数用于确定DCI中第一指示域的比特位数;所述第一传输参数集和第二传输参数集对应DCI中第一指示域。
本实施例提供的方案中,还可以包括终端设备接收网络设备发送的第二传输参数;
具体的,可以为终端设备接收网络设备发送的第二传输参数集。
再进一步地,所述终端设备可以接收网络设备发送的第一传输参数集以及第二传输参数集。
其中,所述第一传输参数包括:配置授权Configured Grant的传输参数中的至少一个传输参数;
和/或,所述第二传输参数包括:上行数据传输参数中的至少一个传输参数,或者由协议约定的至少一个传输参数。
需要理解的是,第一传输参数以及第二传输参数,均可以包括有一个或多个传输参数;当第一传输参数中包含有多个传输参数的时候,第一传输参数可以称为第一传输参数集;第二传输参数同样的,也可以在包含多个传输参数的时候理解为第二传输参数集。
第一传输参数集(或第二传输参数集)可以理解为指配置量;第一传输参数集配置(或者第二传输参数集配置),可以理解为第一传输参数集的配置,或第二传输参数集的配置,也就是指配置量的取值。例如,rbg size是第一传输参数,rbgsize=3,3是第一传输参数配置。
其中,所述上行数据传输参数集配置,可以为物理上行共享信道(PUSCH,Physical Uplink Share Channel)的传输参数集配置。
基于第一传输参数集确定的所述第一指示域比特位数,不大于基于第二传输参数集确定的所述第一指示域比特位数。可以理解为所述第一传输参数集配置受限于第二传输参数集配置。再具体的,可以包括:
基于第一传输参数集确定的所述第一指示域比特位数,小于基于第二传输参数集确定的所述第一指示域比特位数;
或者,基于第一传输参数集确定的所述第一指示域比特位数,等于基于第二传输参数集确定的所述第一指示域比特位数。
基于上述描述,下面结合示例对本实施例进行详细说明:
示例1、
本示例,适用于终端支持的所有可用于上行调度的DCI格式。所述第二传输参数为所有可用于上行调度的DCI格式中对应比特位数最少的第一指示域的传输参数。
具体的,所述第二传输参数集配置为所有可用于上行调度的DCI格式中对应比特位数最少的第一指示域的传输参数集配置。
进一步来说,本示例中,所有可用于上行调度的DCI格式中对应比特位数最少的第一指示域的传输参数,解释为:所有可用于上行调度的DCI格式中第一指示域的比特位数最少的传输参数,作为第二传输参数。
另外,所有可用于上行调度的DCI格式至少包括:DCI格式0-1,DCI格式0-2;
或者,所有可用于上行调度的DCI格式至少包括:DCI格式0-0,DCI格式0-1,DCI格式0-2。
比如,ConfiguredGrantConfig中第一参数(集)配置确定的第一指示域比特数,小于等于PUSCH-Config中相关的第二参数(集)配置确定的第一指示域比特数。第二参数(集)确定的第一指示域比特数是终端支持的所有DCI格式(或可用于上行调度的全部DCI格式)中第一指示域比特数的最小值。
进一步以第一指示域为Antenna port域为例:
PUSCH-Config(也就是前述上行数据传输参数)中针对DCI格式0-1的DMRS配置参数,如dmrs-UplinkForPUSCH-MappingTypeA和dmrs-UplinkForPUSCH-MappingTypeB被配置为:支持多端口传输,根据其配置DCI格式0-1中的Antenna port域(可以理解为本示例中的第一指示域)为3比特。
PUSCH-Config(也就是前述上行数据传输参数)中针对DCI格式0-2的DMRS配置参数,如dmrs-UplinkForPUSCH-MappingTypeA-DCI格式0-2和dmrs-UplinkForPUSCH-MappingTypeB-DCI格 式0-2没有被配置,即根据其配置DCI格式0-2中的antenna port域为0比特。
PUSCH-Config(也就是前述上行数据传输参数)中DCI格式0-0中antenna port域不存在。或者,由协议约定DCI格式0-0中antenna port域不存在。
其中,DCI格式0-0中antenna port域不存在,可以理解为该域为0比特。
由于本示例约束为所述第二传输参数集配置为所有可用于上行调度的DCI格式中对应比特位数最少的第一指示域的传输参数集配置,也就是说,第二传输参数集配置为DCI格式(Format)0-0或DCI格式0-2所对应的传输参数集配置。
相应的,由于本示例约束为基于第一传输参数集配置确定的所述第一指示域比特位数不大于基于第二传输参数集配置集确定的所述第一指示域比特位数。也就是第二传输参数集配置确定第一指示域比特数为0,那么第一传输参数集配置的第一指示域比特位也是0。也就是对应了基于第一传输参数集确定的所述第一指示域比特位数,等于基于第二传输参数集确定的所述第一指示域比特位数的情况。
结合前述举例进一步来说,ConfiguredGrantConfig中DMRS配置参数(也就是第一传输参数),如cg-DMRS-Configuration,受限于所有DCI格式,例如DCI格式0-0/0-1/0-2的配置,所以,cg-DMRS-Configuration没有被配置。
以上第一传输参数集配置以及第二传输参数集配置的说明,在终端设备侧以及网络设备侧同样适用。
结合图4所示,对本示例进行说明,可以包括:
步骤41、终端设备接收第一传输参数(集)以及第二传输参数(集)。
比如,终端设备接收ConfiguredGrantConfig(配置授权的配置)和PUSCH-Config(物理上行共享信道配置)。关于第一传输参数集配置以及第二传输参数集配置的相关说明与前述相同,不再赘述。
步骤42、所述终端设备接收激活Configured Grant的DCI。
本步骤中,还包括:确定所述激活Configured Grant的DCI中第一指示域比特数;所述终端设备根据第一传输参数配置解析所述第一指示域。
激活Configured Grant的DCI的格式为所述所有可用于上行调度的DCI格式中之一,或者为全部用于激活Configured Grant的DCI格式中之一;
所述第一指示域为所述用于激活Configured Grant的DCI的至少一个指示域中之一。
其中,所述确定所述激活Configured Grant的DCI中第一指示域比特数,可以为:根据上行数据传输参数中的至少一个传输参数,确定所述第一指示域比特数。
在进一步地,所述确定所述激活Configured Grant的DCI中第一指示域比特数,可以为:根据与所述激活Configured Grant的DCI的格式所对应的上行数据传输参数中的至少一个传输参数,确定所述第一指示域比特数。
其中,第一指示域为激活Configured Grant的DCI中包含的多个DCI域中之一;也就是说一个DCI中可以包含有多个指示域,可以分别将这些指示域理解为所述第一指示域。不同的第一指示域可以对应不同的第二传输参数集配置以及第一传输参数集配置(网络设备侧),但是,针对不同的第一指示域,所相关的第二传输参数集配置以及第一传输参数集配置的约束规则与本示例前述相同,因此不再一一赘述。
比如,终端接收激活Configured Grant的DCI采用DCI格式0-1,根据PUSCH-Config中针对DCI格式0-1的DMRS配置参数(也就是与所述激活Configured Grant的DCI的格式所对应的上行数据传输参数中的至少一个传输参数),如dmrs-UplinkForPUSCH-MappingTypeA和dmrs-UplinkForPUSCH-MappingTypeB确定Antenna port域(也就是第一指示域)为3比特。
根据Configured Grant中DMRS配置参数(第一传输参数),如cg-DMRS-Configuration,没有被配置。则终端不解读antenna port域,默认Antenna port为单端口且端口号为0。相应的,网络设备侧可以根据第一传输参数配置来确定在发送的所述激活Configured Grant的DCI中的第一指示域中不做配置。
还需要指出的是,上述示例虽然以DMRS端口参数配置为例,实际处理中,所述第一传输参数或第二传输参数是以下至少一种:
解调参考信号DMRS端口相关参数,频域跳频参数,频域资源参数,上行控制信息UCI复用到物理上行共享信道PUSCH的参数,DMRS序列初始化参数。
当所述第一传输参数或第二传输参数为参数集时,所述第一传输参数集或第二传输参数集是以 下至少一种:
频域跳频参数集(比如,跳频frequencyHopping),频域资源参数集(比如,资源分配类型1-粒度,ResourceAllocationType1-Granularity),上行控制信息(UCI)复用到物理上行共享信道(PUSCH)的参数集(比如,uci-onPUSCH),DMRS序列初始化参数集(比如,DMRSsequenceinitialization),DMRE端口相关参数集。
当然,目标传输参数配置集中除了上述列出的参数之外,还可以包括更多的参数,可以根据实际情况进行设置,这里不做穷举。
示例2、
本示例适用于用于Configured Grant传输的所有DCI格式。所述第二传输参数为用于Configured Grant传输的DCI格式中对应比特位数最少的第一指示域的传输参数。
具体可以为,所述第二传输参数集配置为用于Configured Grant传输的DCI格式中对应比特位数最少的第一指示域的传输参数集配置。
本示例中,所述第二传输参数为用于Configured Grant传输的DCI格式中对应比特位数最少的第一指示域的传输参数,可以理解为:用于Configured Grant传输的DCI格式中第一指示域所对应的对应比特位数最少的传输参数作为第二传输参数。
所述用于Configured Grant传输的DCI,可以为用于激活Configured Grant的DCI,或者可以为用于重传Configured Grant的DCI。本示例中,以用于激活Configured Grant的DCI为例进行说明。
比如,其中ConfiguredGrantConfig中第一参数(集)确定的第一指示域比特数小于等于PUSCH-Config中相关的第二参数(集)确定的第一指示域比特数。
第二参数(集)确定的第一指示域比特数是用于激活Configured Grant的所有DCI格式中第一指示域比特数的最小值。
以第一指示域为Antenna port域为例:
其中,PUSCH-Config(也就是前述上行数据传输参数)中针对DCI格式0-1的DMRS配置参数,如dmrs-UplinkForPUSCH-MappingTypeA和dmrs-UplinkForPUSCH-MappingTypeB被配置支持多端口传输,根据其配置DCI格式0-1中的Antenna port域为4比特。
PUSCH-Config(也就是前述上行数据传输参数)中针对DCI格式0-2的DMRS配置参数,如dmrs-UplinkForPUSCH-MappingTypeA-DCI格式0-2和dmrs-UplinkForPUSCH-MappingTypeB-DCI格式0-2被配置支持多端口传输,根据其配置DCI格式0-2中的Antenna port域(也就是第一指示域)为3比特。
PUSCH-Config(也就是前述上行数据传输参数)中DCI格式0-0中默认antenna port域不存在,或者协议约定DCI格式0-0的第一指示域不存在。
预配置DCI格式0-1以及DCI格式0-2为用于Configured Grant传输的所有DCI格式,那么第二传输参数集配置为Antenna port域(也就是第一指示域)为3比特所对应的传输参数集配置。
相应的,基于第一传输参数集配置确定的所述第一指示域比特位数不大于基于第二传输参数集配置集确定的所述第一指示域比特位数。也就是当第二传输参数集配置确定第一指示域比特数为3,那么第一传输参数集配置对应第一指示域比特位小于等于3比特。
结合前述举例进一步来说,ConfiguredGrantConfig中DMRS配置参数(也就是第一传输参数集),如cg-DMRS-Configuration,受限于用于激活ConfiguredGrant的所有DCI格式,例如DCI格式0-1/0-2的配置,所以,cg-DMRS-Configuration也可以配置支持多端口传输,且对应的antenna port域最多为3比特,可以为小于3比特,比如2比特,也可以为等于3比特,本示例以3比特为例。
以上第一传输参数集配置以及第二传输参数集配置的说明,在终端设备侧以及网络设备侧同样适用。
本示例的处理流程可以为:
1、与示例1相同不再赘述。
2、所述终端设备接收激活Configured Grant的DCI。
本步骤中,还包括:确定所述激活Configured Grant的DCI中第一指示域比特数;所述终端设备根据第一传输参数配置解析所述第一指示域。
激活Configured Grant的DCI的格式为所述所有可用于上行调度的DCI格式中之一,或者为全部用于激活Configured Grant的DCI格式中之一;
所述第一指示域为所述用于激活Configured Grant的DCI的至少一个指示域中之一。
其中,所述确定所述激活Configured Grant的DCI中第一指示域比特数,可以为:根据上行数据传输参数中的至少一个传输参数,确定所述第一指示域比特数。
在进一步地,所述确定所述激活Configured Grant的DCI中第一指示域比特数,可以为:根据与所述激活Configured Grant的DCI的格式所对应的上行数据传输参数中的至少一个传输参数,确定所述第一指示域比特数。
比如,终端接收激活Configured Grant的DCI采用DCI格式0-1,根据PUSCH-Config中针对DCI格式0-1的DMRS配置参数(也就是与所述激活Configured Grant的DCI的格式所对应的上行数据传输参数中的至少一个传输参数),如dmrs-UplinkForPUSCH-MappingTypeA和dmrs-UplinkForPUSCH-MappingTypeB确定Antenna port域为4比特。
然后,终端设备根据Configured Grant中DMRS配置参数(第一传输参数),如cg-DMRS-Configuration,终端仅解读antenna port域中的3个比特位。
相应的,网络设备侧可以根据第一传输参数配置来确定在发送的所述激活Configured Grant的DCI中的第一指示域进行3比特位相应的配置。
还需要指出的是,上述示例虽然以DMRS端口参数配置为例,实际处理中,所述第一传输参数或第二传输参数是以下至少一种:
解调参考信号DMRS端口相关参数,频域跳频参数,频域资源参数,上行控制信息UCI复用到物理上行共享信道PUSCH的参数,DMRS序列初始化参数。
当所述第一传输参数或第二传输参数为参数集时,所述第一传输参数集或第二传输参数集是以下至少一种:
频域跳频参数集(比如,跳频frequencyHopping),频域资源参数集(比如,资源分配类型1-粒度,ResourceAllocationType1-Granularity),上行控制信息(UCI)复用到物理上行共享信道(PUSCH)的参数集(比如,uci-onPUSCH),DMRS序列初始化参数集(比如,DMRSsequenceinitialization),DMRE端口相关参数集。
当然,目标传输参数配置集中除了上述列出的参数之外,还可以包括更多的参数,可以根据实际情况进行设置,这里不做穷举。
示例3、
本示例中,所述第二传输参数为所有可用于上行调度的DCI格式中对应比特位数最多的第一指示域的传输参数;或者,所述第二传输参数为用于Configured Grant传输的DCI格式中对应比特位数最多的第一指示域的传输参数。
也就是说,其中ConfiguredGrantConfig中第一参数(集)确定的第一指示域比特数小于等于PUSCH-Config中相关的第二参数(集)确定的第一指示域比特数。
第二参数(集)确定的第一指示域比特数,是用于Configured Grant传输的所有DCI格式中相关第一指示域比特数的最大值。或者,第二参数(集)确定的第一指示域比特数,可用于上行调度的全部DCI格式中第一指示域比特数的最大值。
所述Configured Grant传输可以为激活Configured Grant或Configured Grant重传调度。
以第一指示域为Antenna port域为例:
PUSCH-Config(也就是前述上行数据传输参数)中针对DCI格式0-1的DMRS配置参数,如dmrs-UplinkForPUSCH-MappingTypeA和dmrs-UplinkForPUSCH-MappingTypeB被配置支持多端口传输,根据其配置DCI格式0-1中的Antenna port域为4比特。针对DCI格式0-2的DMRS配置参数,如dmrs-UplinkForPUSCH-MappingTypeA-DCI格式0-2和dmrs-UplinkForPUSCH-MappingTypeB-DCI格式0-2被配置支持多端口传输,根据其配置DCI格式0-2中的Antenna port域为3比特。DCI格式0-0中默认antenna port域不存在。
本示例,第二传输参数集配置为终端设备支持的所有DCI格式中相关第一指示域比特数的最大值,第二传输参数集配置可以为DCI格式0-1的DMRS配置参数。
ConfiguredGrantConfig中DMRS配置参数(第一传输参数),如cg-DMRS-Configuration,受限于用于所有DCI格式,所以,cg-DMRS-Configuration也可以配置支持多端口传输,且对应的antenna port域最多为4比特,也就是,第一传输参数对应的第一指示域的比特位数可以小于4比特,比如可以为2比特,或者3比特,当然也可以等于4比特,本示例以4比特为例。
又比如,第二传输参数集配置为用于激活Configured Grant的所有DCI格式中相关第一指示域比特数的最大值,那么第二传输参数集配置可以为DCI格式0-1的DMRS配置参数。
相应的,ConfiguredGrantConfig中DMRS配置参数(第一传输参数集),如cg-DMRS-Configuration,受限于用于激活ConfiguredGrant的所有DCI格式,例如DCI格式0-1/0-2的配置,所以,cg-DMRS-Configuration也可以配置支持多端口传输,且对应的antenna port域最多为4比特。
结合图5进行说明:
步骤51:终端接收ConfiguredGrantConfig和PUSCH-Config。
步骤52:终端接收激活Configured Grant的DCI,根据所述激活Configured Grant的DCI的DCI格式确定相应的传输参数集配置对所述激活Configured Grant的DCI进行解析。
分多种情况对本步骤的处理进行详细说明:
情况1:在所述激活Configured Grant的DCI为第三DCI格式的情况下,根据所述第一传输参数解析所述第一指示域。
所述第三DCI格式为,DCI格式0-1。
相应的,网络设备在所要发送的激活Configured Grant的DCI为第三DCI格式的情况下,根据第一传输参数对第一指示域进行配置。
其中,还可以包括:在所述激活Configured Grant的DCI为第三DCI格式的情况下,根据第二传输参数确定第一指示域的比特位数,以及根据所述第一传输参数解析所述第一指示域。
比如,如果终端接收激活Configured Grant的DCI采用DCI格式0-1,根据PUSCH-Config中针对DCI格式0-1的DMRS配置参数(第二传输参数),如dmrs-UplinkForPUSCH-MappingTypeA和dmrs-UplinkForPUSCH-MappingTypeB确定Antenna port域为4比特。
根据Configured Grant中DMRS配置参数(第一传输参数),如cg-DMRS-Configuration,解读antenna port域中的4个比特位。
情况2:在所述激活Configured Grant的DCI为第四DCI格式的情况下,根据所述第一传输参数解析所述第一指示域;
或者,
在所述激活Configured Grant的DCI为第四DCI格式的情况下,根据所述第二传输参解析所述第一指示域;或者,
在所述激活Configured Grant的DCI为第四DCI格式的情况下,根据所述第一传输参数和所述第二传输参数解析所述第一指示域。
所述第四DCI格式为DCI 0-2。
还可以包括:在所述激活Configured Grant的DCI为第三DCI格式的情况下,根据第二传输参数集配置确定第一指示域的比特位数,以及根据所述第一传输参数集配置解析所述第一指示域和/或所述第二传输参数集配置解析所述第一指示域。
举例来说,如果终端接收激活Configured Grant的DCI采用DCI格式0-2,根据PUSCH-Config中针对DCI格式0-2的DMRS配置参数(第二传输参数),如dmrs-UplinkForPUSCH-MappingTypeA-DCIformat0-2和dmrs-UplinkForPUSCH-MappingTypeB-DCIformat0-2确定Antenna port域为3比特。
再进一步地:
情况2.1:终端读取antenna port域中的3个比特位,并根据Configured Grant中DMRS配置参数(第一传输参数),如cg-DMRS-Configuration,确定antenna port指示的信息。
可能存在根据第一传输参数集配置确定的第一指示域比特位大于第二传输参数集配置确定的第一指示域比特位的数量的情况,也就是:
在所述激活Configured Grant的DCI为第四DCI格式的情况下,若根据第二传输参数集配置确定第一指示域比特数,小于根据所述第一传输参数集配置确定的第一指示域比特数,则所述第一指示域对应所述第一传输参数集配置对应的部分取值。
例如,cg-DMRS-Configuration确定antenna port支持16中配置,即{0,1,2,3,4,5,6,7,0-1,2-3,4-5,6-7,0-3,4-7,0-5,0-7},但由于antenna port域只有3比特位,所以只对应配置中前8中配置,或者对应配置中的单端口配置。
情况2.2:终端读取antenna port域中的3个比特位,并根据PUSCH-Config中针对DCI格式0-2的DMRS配置参数(第二传输参数),如dmrs-UplinkForPUSCH-MappingTypeA-DCIformat0-2和dmrs-UplinkForPUSCH-MappingTypeB-DCIformat0-2,确定antenna port(第一指示域)指示的信息。相应的,网络设备可以根据第二传输参数集配置对第一指示域所指示的信息进行配置。
情况2.3:终端(或网络设备),可以为:
根据PUSCH-Config中针对DCI格式0-2的DMRS配置参数(第二传输参数),如dmrs-UplinkForPUSCH-MappingTypeA-DCIformat0-2和dmrs-UplinkForPUSCH-MappingTypeB-DCIformat0-2,以及第一传输参数,比如cg-DMRS-Configuration共同确定antenna port指示的信息。
再比如,DCI format 0-2中的FDRA域(可以理解为第一指示域),根据ConfiguredgrantConfig中resource allocation和/或rbg(可以理解为第一传输参数),以及和PUSCHConfig中ResourceAllocationType1-Granularity(可以理解为第二传输参数)共同决定。
情况3,所述第二传输参数为第一DCI格式的第一指示域对应的传输参数,第一DCI格式为所述所有可用于上行调度的DCI格式中一种。
本情况适用于指定DCI格式的场景,也就是说,第二传输参数(集)为指定的第一DCI格式的第一指示域所对应的传输参数。
所述第一DCI格式由协议约定,或网络配置。也就是指定的第一DCI格式为协议规定的,比如在某些情况下仅能采用该第一DCI格式进行传输;又或者,可以为网络设备规定在进行某一次(或某个时间段内)仅采用第一DCI格式进行传输。
所述第一DCI格式为DCI格式0-1。当然,第一DCI格式还可以为其他格式,只要是根据协议约定或网络设备配置确定的一种指定的格式即可,比如,可以为DCI格式0-2等等,不再穷举。
这种情况中,可以采用第二传输参数确定DCI中的第一指示域的比特位数;然后,可以通过第一传输参数集配置对第一指示域进行解析,或者,协议规定采用第二传输参数集配置对第一指示域进行解析。
比如,PUSCH-Config中针对DCI格式0-1的DMRS配置参数(第二传输参数),如dmrs-UplinkForPUSCH-MappingTypeA和dmrs-UplinkForPUSCH-MappingTypeB被配置支持多端口传输,根据其配置DCI格式0-1中的Antenna port域(第一指示域)为4比特。
然后,可以根据第二传输参数集配置(或第一传输参数)来解读(或配置)antenna port域中的4个比特位。
情况4,所述第二传输参数为第二DCI格式的第一指示域对应的传输参数,第二DCI格式为所述所有可用于Configured Grant传输的DCI格式中一种。
与情况3不同仅在于第二DCI格式为所有可用于Configured Grant传输的DCI格式中一种。具体的,也可以为所述第二DCI格式由协议约定,或网络配置。所述第二DCI格式为DCI格式0-1。当然,第二DCI格式还可以为其他格式,只要是根据协议约定或网络设备配置确定的一种指定的格式即可,比如,可以为DCI格式0-2等等,不再穷举。
与情况3的相同部分这里不再赘述。
示例4、
前述多个示例主要针对激活Configured Grant的DCI的处理,本示例针对重传Configured Grant的DCI的相关处理进行说明。
所述网络设备发送重传Configured Grant的DCI;相应的,终端设备接收重传Configured Grant的DCI。
其中,所述重传Configured Grant的DCI,与所述激活Configured Grant的DCI的格式一致。
激活Configured Grant的DCI格式与重传Configured Grant的调度DCI格式需要保持一致。
比如,终端接收网络设备发送的第一DCI用于激活Configured Grant,其中,第一DCI为第一DCI格式。
终端接收网络设备发送的第二DCI,用于调度Configured Grant重传,其中,第二DCI为第二DCI格式。其中,第二DCI格式与第一DCI格式相同。
技术好处:Configured Grant初传和重传能够保持一致的传输配置,降低终端复杂度。
相应的,针对重传Configured Grant的DCI的处理方式,可以与前述示例相同,这里不再赘述。
示例5、
所述网络设备发送重传Configured Grant的DCI;相应的,终端设备接收重传Configured Grant的DCI。
其中,所述重传Configured Grant的DCI,与所述激活Configured Grant的DCI的格式独立。
激活Configured Grant的DCI格式与重传Configured Grant的调度DCI格式可以不一致。
终端接收第一DCI激活Configured Grant,其中,第一DCI为第一DCI格式
终端接收第二DCI,用于调度Configured Grant重传,其中,第二DCI为第二DCI格式.其中,第二DCI格式与第一DCI格式独立配置,可以相同也可以不同。
所述重传Configured Grant的DCI中第一指示域的内容,采用与激活Configured Grant的DCI的格式相同的第一传输参数集配置进行解析;或者,所述重传Configured Grant的DCI中第一指示域的内容,采用与重传Configured Grant的DCI所对应的第一传输参数集配置进行解析。
具体的解析方式本示例中不再赘述。
最后需要指出的是,本示例中所述第一传输参数(的配置)受限于第二传输参数(的配置),可以适用于可以为全部的传输参数。
又或者,可以适用于部分参数,比如,所述第一传输参数或第二传输参数是以下至少一种:
解调参考信号DMRS端口相关参数,频域跳频参数,频域资源参数,上行控制信息UCI复用到物理上行共享信道PUSCH的参数,DMRS序列初始化参数。
当第一传输参数或第二传输参数为参数集时,所述第一传输参数集或第二传输参数集是以下至少一种:
频域跳频参数集(比如,跳频frequencyHopping),频域资源参数集(比如,资源分配类型1-粒度,ResourceAllocationType1-Granularity),上行控制信息(UCI)复用到物理上行共享信道(PUSCH)的参数集(比如,uci-onPUSCH),DMRS序列初始化参数集(比如,DMRSsequenceinitialization),DMRE端口相关参数集。
可见,通过采用上述方案,网络设备为终端设备发送的第一传输参数集配置受限于第二传输参数集配置;并且所述第一传输参数集和第二传输参数集对应DCI中第一指示域。从而,对应于同一个DCI的指示域的传输参数集配置具备了约束关系,如此能够解决不同传输参数集配置对应的DCI中的某一个指示域比特位数不同的问题。
本发明实施例提供了一种终端设备,如图6所示,包括:
第一通信单元61,接收第一传输参数集配置;
其中,所述第一传输参数用于确定DCI中第一指示域的比特位数;所述第一传输参数集和第二传输参数集对应DCI中第一指示域。
本发明实施例还提供一种传网络设备,如图7所示,包括:
第二通信单元71,发送第一传输参数集配置;
其中,所述第一传输参数用于确定DCI中第一指示域的比特位数;所述第一传输参数集和第二传输参数集对应DCI中第一指示域。
其中,所述第一传输参数包括:配置授权Configured Grant的传输参数中的至少一个传输参数;
和/或,所述第二传输参数包括:上行数据传输参数中的至少一个传输参数,或者由协议约定的至少一个传输参数。
需要理解的是,第一传输参数以及第二传输参数,均可以包括有一个或多个传输参数;当第一传输参数中包含有多个传输参数的时候,第一传输参数可以称为第一传输参数集;第二传输参数同样的,也可以在包含多个传输参数的时候理解为第二传输参数集。
基于第一传输参数集确定的所述第一指示域比特位数,不大于基于第二传输参数集确定的所述第一指示域比特位数。可以理解为所述第一传输参数集配置受限于第二传输参数集配置。再具体的,可以包括:
基于第一传输参数集确定的所述第一指示域比特位数,小于基于第二传输参数集确定的所述第一指示域比特位数;
或者,基于第一传输参数集确定的所述第一指示域比特位数,等于基于第二传输参数集确定的所述第一指示域比特位数。
基于上述描述,下面结合示例对本实施例进行详细说明:
示例1、
本示例,适用于终端支持的所有可用于上行调度的DCI格式。所述第二传输参数为所有可用于上行调度的DCI格式中对应比特位数最少的第一指示域的传输参数。
具体为,所述第二传输参数集配置为所有可用于上行调度的DCI格式中对应比特位数最少的第一指示域的传输参数集配置。
进一步来说,本示例中,所有可用于上行调度的DCI格式中对应比特位数最少的第一指示域的传输参数,解释为:所有可用于上行调度的DCI格式中第一指示域的比特位数最少的传输参数,作为第二传输参数。
其中,第一传输参数集可以由配置授权Configured Grant的传输参数中的至少一个传输参数组成;第二传输参数集可以由上行数据传输参数中的至少一个传输参数组成,或者由协议约定的至少一个传输参数组成。
另外,所有可用于上行调度的DCI格式至少包括:DCI格式0-1,DCI格式0-2;
或者,所有可用于上行调度的DCI格式至少包括:DCI格式0-0,DCI格式0-1,DCI格式0-2。
终端设备的第一通信单元,接收第一传输参数集配置以及第二传输参数集配置。
比如,终端设备接收ConfiguredGrantConfig(配置授权的配置)和PUSCH-Config(物理上行共享信道配置)。关于第一传输参数集配置以及第二传输参数集配置的相关说明与前述相同,不再赘述。
终端设备的第一通信单元,接收激活Configured Grant的DCI。
终端设备还包括的第一处理单元62,确定所述激活Configured Grant的DCI中第一指示域比特数;所述终端设备的第一处理单元62,根据第一传输参数配置解析所述第一指示域。
激活Configured Grant的DCI的格式为所述所有可用于上行调度的DCI格式中之一,或者为全部用于激活Configured Grant的DCI格式中之一;
所述第一指示域为所述用于激活Configured Grant的DCI的至少一个指示域中之一。
其中,所述终端设备的第一处理单元62,根据上行数据传输参数中的至少一个传输参数,确定所述第一指示域比特数。另外,网络设备还可以包括第二处理单元72,根据上行数据传输参数中的至少一个传输参数,确定所述第一指示域比特数。
其中,第一指示域为激活Configured Grant的DCI中包含的多个DCI域中之一;也就是说一个DCI中可以包含有多个指示域,可以分别将这些指示域理解为所述第一指示域。不同的第一指示域可以对应不同的第二传输参数集配置以及第一传输参数集配置(网络设备侧),但是,针对不同的第一指示域,所相关的第二传输参数集配置以及第一传输参数集配置的约束规则与本示例前述相同,因此不再一一赘述。
还需要指出的是,上述示例虽然以DMRS端口参数配置为例,实际处理中,所述第一传输参数或第二传输参数是以下至少一种:
解调参考信号DMRS端口相关参数,频域跳频参数,频域资源参数,上行控制信息UCI复用到物理上行共享信道PUSCH的参数,DMRS序列初始化参数。
当所述第一传输参数或第二传输参数为参数集时,所述第一传输参数集或第二传输参数集是以下至少一种:
频域跳频参数集(比如,跳频frequencyHopping),频域资源参数集(比如,资源分配类型1-粒度,ResourceAllocationType1-Granularity),上行控制信息(UCI)复用到物理上行共享信道(PUSCH)的参数集(比如,uci-onPUSCH),DMRS序列初始化参数集(比如,DMRSsequenceinitialization),DMRE端口相关参数集。
当然,目标传输参数配置集中除了上述列出的参数之外,还可以包括更多的参数,可以根据实际情况进行设置,这里不做穷举。
示例2、
本示例适用于用于Configured Grant传输的所有DCI格式。所述第二传输参数为用于Configured Grant传输的DCI格式中对应比特位数最少的第一指示域的传输参数。
具体可以为,所述第二传输参数集配置为用于Configured Grant传输的DCI格式中对应比特位数最少的第一指示域的传输参数集配置。
本示例中,所述第二传输参数为用于Configured Grant传输的DCI格式中对应比特位数最少的第一指示域的传输参数,可以理解为:用于Configured Grant传输的DCI格式中第一指示域所对应的对应比特位数最少的传输参数作为第二传输参数。
其中,第一传输参数集可以由配置授权Configured Grant的传输参数中的至少一个传输参数组成;第二传输参数集可以由上行数据传输参数中的至少一个传输参数组成,或者由协议约定的至少一个传输参数组成。
第二参数(集)确定的第一指示域比特数是用于激活Configured Grant的所有DCI格式中第一指示域比特数的最小值。
终端设备的第一通信单元61,接收第一传输参数集配置以及第二传输参数集配置。
所述终端设备的第一通信单元61,接收激活Configured Grant的DCI。
终端设备的第一处理单元62,确定所述激活Configured Grant的DCI中第一指示域比特数;所述终端设备根据第一传输参数配置解析所述第一指示域。
激活Configured Grant的DCI的格式为所述所有可用于上行调度的DCI格式中之一,或者为全部用于激活Configured Grant的DCI格式中之一;
所述第一指示域为所述用于激活Configured Grant的DCI的至少一个指示域中之一。
其中,终端设备的第一处理单元62,或者网络设备的第二处理单元72,根据上行数据传输参数中的至少一个传输参数,确定所述第一指示域比特数。
示例3、
本示例中,所述第二传输参数为所有可用于上行调度的DCI格式中对应比特位数最多的第一指示域的传输参数;或者,所述第二传输参数为用于Configured Grant传输的DCI格式中对应比特位数最多的第一指示域的传输参数。
第二参数(集)确定的第一指示域比特数,是用于Configured Grant传输的所有DCI格式中相关第一指示域比特数的最大值。或者,第二参数(集)确定的第一指示域比特数,可用于上行调度的全部DCI格式中第一指示域比特数的最大值。
所述Configured Grant传输可以为激活Configured Grant或Configured Grant重传调度。
终端设备的第一通信单元61接收激活Configured Grant的DCI,终端设备的第一处理单元62根据所述激活Configured Grant的DCI的DCI格式确定相应的传输参数集配置对所述激活Configured Grant的DCI进行解析。
分多种情况对本步骤的处理进行详细说明:
情况1:终端设备的第一处理单元62在所述激活Configured Grant的DCI为第三DCI格式的情况下,根据所述第一传输参数集配置解析所述第一指示域。
所述第三DCI格式为,DCI格式0-1。
相应的,网络设备的第二处理单元在所要发送的激活Configured Grant的DCI为第三DCI格式的情况下,根据第一传输参数集配置对第一指示域进行配置。
其中,还可以包括:在所述激活Configured Grant的DCI为第三DCI格式的情况下,根据第二传输参数确定第一指示域的比特位数,以及根据所述第一传输参数解析所述第一指示域。
情况2:终端设备的第一处理单元62在所述激活Configured Grant的DCI为第四DCI格式的情况下,根据所述第一传输参数解析所述第一指示域;
或者,
在所述激活Configured Grant的DCI为第四DCI格式的情况下,根据所述第二传输参数解析所述第一指示域;或者,
在所述激活Configured Grant的DCI为第四DCI格式的情况下,根据所述第一传输参数和所述第二传输参数解析所述第一指示域。
所述第四DCI格式为DCI 0-2。
再进一步地:
情况2.1:
终端设备的第一处理单元62在所述激活Configured Grant的DCI为第四DCI格式的情况下,若根据第二传输参数确定第一指示域比特数,小于根据所述第一传输参数集配置确定的第一指示域比特数,则所述第一指示域对应所述第一传输参数对应的部分取值。
情况2.2:终端读取antenna port域中的3个比特位,并根据PUSCH-Config中针对DCI格式0-2的DMRS配置参数(第二传输参数),如dmrs-UplinkForPUSCH-MappingTypeA-DCIformat0-2和dmrs-UplinkForPUSCH-MappingTypeB-DCIformat0-2,确定antenna port指示的信息。
情况2.3:终端读取antenna port域中的3个比特位,并根据PUSCH-Config中针对DCI格式0-2的DMRS配置参数(第二传输参数),如dmrs-UplinkForPUSCH-MappingTypeA-DCIformat0-2和dmrs-UplinkForPUSCH-MappingTypeB-DCIformat0-2,以及第一传输参数集配置,比如cg-DMRS-Configuration,共同确定antenna port指示的信息。
情况3,所述第二传输参数集配置为第一DCI格式的第一指示域对应的传输参数集配置,第一DCI格式为所述所有可用于上行调度的DCI格式中一种。
本情况适用于指定DCI格式的场景,也就是说,第二传输参数集配置为指定的第一DCI格式的第一指示域所对应的传输参数集配置。
所述第一DCI格式由协议约定,或网络配置。也就是指定的第一DCI格式为协议规定的,比如在某些情况下仅能采用该第一DCI格式进行传输;又或者,可以为网络设备规定在进行某一次(或某个时间段内)仅采用第一DCI格式进行传输。
所述第一DCI格式为DCI格式0-1。
这种情况中,可以采用第二传输参数确定DCI中的第一指示域的比特位数;然后,可以通过第一传输参数对第一指示域进行解析,或者,协议规定采用第二传输参数对第一指示域进行解析。
情况4,所述第二传输参数集配置为第二DCI格式的第一指示域对应的传输参数,第二DCI格式为所述所有可用于Configured Grant传输的DCI格式中一种。
与情况3不同仅在于第二DCI格式为所有可用于Configured Grant传输的DCI格式中一种。具体的,也可以为所述第二DCI格式由协议约定,或网络配置。所述第二DCI格式为DCI格式0-1。其他不再赘述。
示例4、
前述多个示例主要针对激活Configured Grant的DCI的处理,本示例针对重传Configured Grant的DCI的相关处理进行说明。
所述网络设备发送重传Configured Grant的DCI;相应的,终端设备接收重传Configured Grant的DCI。
其中,所述重传Configured Grant的DCI,与所述激活Configured Grant的DCI的格式一致。
激活Configured Grant的DCI格式与重传Configured Grant的调度DCI格式需要保持一致。
比如,终端接收网络设备发送的第一DCI用于激活Configured Grant,其中,第一DCI为第一DCI格式。
终端接收网络设备发送的第二DCI,用于调度Configured Grant重传,其中,第二DCI为第二DCI格式。其中,第二DCI格式与第一DCI格式相同。
技术好处:Configured Grant初传和重传能够保持一致的传输配置,降低终端复杂度。
相应的,针对重传Configured Grant的DCI的处理方式,可以与前述示例相同,这里不再赘述。
示例5、
所述网络设备发送重传Configured Grant的DCI;相应的,终端设备接收重传Configured Grant的DCI。
其中,所述重传Configured Grant的DCI,与所述激活Configured Grant的DCI的格式独立。
激活Configured Grant的DCI格式与重传Configured Grant的调度DCI格式可以不一致。
终端接收第一DCI激活Configured Grant,其中,第一DCI为第一DCI格式
终端接收第二DCI,用于调度Configured Grant重传,其中,第二DCI为第二DCI格式.其中,第二DCI格式与第一DCI格式独立配置,可以相同也可以不同。
所述重传Configured Grant的DCI中第一指示域的内容,采用与激活Configured Grant的DCI的格式相同的第一传输参数集配置进行解析;或者,所述重传Configured Grant的DCI中第一指示域的内容,采用与重传Configured Grant的DCI所对应的第一传输参数集配置进行解析。
具体的解析方式本示例中不再赘述。
最后需要指出的是,本示例中所述第一传输参数集配置受限于第二传输参数集配置,可以适用于可以为全部的传输参数。
又或者,所述第一传输参数或第二传输参数是以下至少一种:
解调参考信号DMRS端口相关参数,频域跳频参数,频域资源参数,上行控制信息UCI复用到物理上行共享信道PUSCH的参数,DMRS序列初始化参数。
当所述第一传输参数或第二传输参数为参数集时,所述第一传输参数集或第二传输参数集是以下至少一种:
频域跳频参数集(比如,跳频frequencyHopping),频域资源参数集(比如,资源分配类型1-粒度,ResourceAllocationType1-Granularity),上行控制信息(UCI)复用到物理上行共享信道(PUSCH)的参数集(比如,uci-onPUSCH),DMRS序列初始化参数集(比如,DMRSsequenceinitialization),DMRE端口相关参数集。
可见,通过采用上述方案,网络设备为终端设备发送的第一传输参数集配置受限于第二传输参 数集配置;并且所述第一传输参数集和第二传输参数集对应DCI中第一指示域。从而,对应于同一个DCI的指示域的传输参数集配置具备了约束关系,如此能够解决不同传输参数集配置对应的DCI中的某一个指示域比特位数不同的问题。
图8是本发明实施例提供的一种通信设备800示意性结构图,本实施例中的通信设备可以具体为前述实施例中的终端设备、网络设备中之一。图8所示的通信设备800包括处理器810,处理器810可以从存储器中调用并运行计算机程序,以实现本发明实施例中的方法。
可选地,图8所示,通信设备800还可以包括存储器820。其中,处理器810可以从存储器820中调用并运行计算机程序,以实现本发明实施例中的方法。
其中,存储器820可以是独立于处理器810的一个单独的器件,也可以集成在处理器810中。
可选地,如图8所示,通信设备800还可以包括收发器830,处理器810可以控制该收发器830与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器830可以包括发射机和接收机。收发器830还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备800具体可为本发明实施例的网络设备,并且该通信设备800可以实现本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备800具体可为本发明实施例的终端设备、或者网络设备,并且该通信设备800可以实现本发明实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
例如,前述终端设备的第一处理单元可以由所述通信设备800中的处理器810实现;或者,所述网络设备的第二处理单元可以由所述通信设备800中的处理器810实现。
前述终端设备的第一通信单元可以由所述通信设备800中的收发器830实现;或者,网络设备的第二通信单元可以由通信设备800的收发器830实现。
图9是本发明实施例的芯片的示意性结构图。图9所示的芯片900包括处理器910,处理器910可以从存储器中调用并运行计算机程序,以实现本发明实施例中的方法。
可选地,如图9所示,芯片900还可以包括存储器920。其中,处理器910可以从存储器920中调用并运行计算机程序,以实现本发明实施例中的方法。
其中,存储器920可以是独立于处理器910的一个单独的器件,也可以集成在处理器910中。
可选地,该芯片900还可以包括输入接口930。其中,处理器910可以控制该输入接口930与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片900还可以包括输出接口940。其中,处理器910可以控制该输出接口940与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本发明实施例中的终端设备、接入网节点、核心网设备中之一,并且该芯片可以实现本发明实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本发明实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本发明实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM, EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本发明实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本发明实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
图10是本申请实施例提供的一种通信系统1000的示意性框图。如图10所示,该通信系统1000包括终端设备1010和网络设备1020。
其中,该终端设备1010可以用于实现上述方法中由UE实现的相应的功能,以及该网络设备1020可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。所述网络设备可以为接入网节点、核心网设备中之一。
本发明实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本发明实施例中的网络设备或终端设备,并且该计算机程序使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本发明实施例中的网络设备或终端设备,并且该计算机程序指令使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本发明实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本发明实施例中的网络设备或终端设备,当该计算机程序在计算机上运行时,使得计算机执行本发明实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本发明所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计 算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应所述以权利要求的保护范围为准。

Claims (73)

  1. 一种传输参数确定方法,包括:
    终端设备接收第一传输参数;
    其中,所述第一传输参数用于确定DCI中第一指示域的比特位数;所述第一传输参数和第二传输参数对应DCI中第一指示域。
  2. 根据权利要求1所述的方法,其中,所述基于第一传输参数确定的所述第一指示域比特位数,不大于基于第二传输参数确定的所述第一指示域比特位数。
  3. 根据权利要求1或2所述的方法,其中,第一传输参数包括:配置授权Configured Grant的传输参数中的至少一个传输参数;
    和/或,
    第二传输参数集包括:上行数据传输参数中的至少一个传输参数,或者由协议约定的至少一个传输参数。
  4. 根据权利要求1-3任一项所述的方法,其中,
    所述第二传输参数为所有可用于上行调度的DCI格式中对应比特位数最少的第一指示域的传输参数;或者,
    所述第二传输参数为用于Configured Grant传输的DCI格式中对应比特位数最少的第一指示域的传输参数;或者,
    所述第二传输参数为所有可用于上行调度的DCI格式中对应比特位数最多的第一指示域的传输参数;或者,
    所述第二传输参数为用于Configured Grant传输的DCI格式中对应比特位数最多的第一指示域的传输参数;或者,
    所述第二传输参数为第一DCI格式的第一指示域对应的传输参数,第一DCI格式为所述所有可用于上行调度的DCI格式中一种;或者
    所述第二传输参数为第二DCI格式的第一指示域对应的传输参数,第二DCI格式为所述所有可用于Configured Grant传输的DCI格式中一种。
  5. 根据权利要求4所述的方法,其中,所述第一DCI格式、或第二DCI格式由协议约定,或网络配置。
  6. 根据权利要求4或5所述的方法,其中,所述第一DCI格式、或第二DCI格式为DCI格式0-1。
  7. 根据权利要求4所述的方法,其中,所有可用于上行调度的DCI格式至少包括:DCI格式0-1,DCI格式0-2;
    或者,所有可用于上行调度的DCI格式至少包括:DCI格式0-0,DCI格式0-1,DCI格式0-2。
  8. 根据权利要求3-7任一项所述的方法,其中,所述方法还包括:
    所述终端设备接收激活Configured Grant的DCI。
  9. 根据权利要求8所述的方法,其中,
    激活Configured Grant的DCI的格式为所述所有可用于上行调度的DCI格式中之一,或者为全部用于激活Configured Grant的DCI格式中之一;
    所述第一指示域为所述用于激活Configured Grant的DCI的至少一个指示域中之一。
  10. 根据权利要求9所述的方法,其中,所述方法还包括:
    在所述激活Configured Grant的DCI为第三DCI格式的情况下,根据所述第一传输参数解析所述第一指示域。
  11. 根据权利要求9所述的方法,其中,所述方法还包括:
    在所述激活Configured Grant的DCI为第四DCI格式的情况下,根据所述第一传输参数解析所述第一指示域;
    或者,
    在所述激活Configured Grant的DCI为第四DCI格式的情况下,根据所述第二传输参数解析所述第一指示域;或者,
    在所述激活Configured Grant的DCI为第四DCI格式的情况下,根据所述第一传输参数和所述第二传输参数解析所述第一指示域。
  12. 根据权利要求11所述的方法,其中,在所述激活Configured Grant的DCI为第四DCI格式的情况下,根据所述第一传输参数集配置解析所述第一指示域,还包括:
    在所述激活Configured Grant的DCI为第四DCI格式的情况下,若根据第二传输参数确定第一指示域比特数,小于根据所述第一传输参数确定的第一指示域比特数,则所述第一指示域对应所述第一传输参数对应的部分取值。
  13. 根据权利要求10或11所述的方法,其中,所述第三DCI格式为DCI格式0-1,和/或所述第四DCI格式为DCI 0-2。
  14. 根据权利要求8所述的方法,其中,所述方法还包括:
    所述终端设备接收重传Configured Grant的DCI;
    其中,所述重传Configured Grant的DCI,与所述激活Configured Grant的DCI的格式一致。
  15. 根据权利要求8所述的方法,其中,所述方法还包括:
    所述终端设备接收重传Configured Grant的DCI;
    其中,所述重传Configured Grant的DCI,与所述激活Configured Grant的DCI的格式独立。
  16. 根据权利要求15所述的方法,其中,所述重传Configured Grant的DCI中第一指示域的内容,采用与激活Configured Grant的DCI的格式相同的第一传输参数进行解析;
    或者,所述重传Configured Grant的DCI中第一指示域的内容,采用与重传Configured Grant的DCI所对应的第一传输参数进行解析。
  17. 根据权利要求1-16任一项所述的方法,其中,所述第一传输参数或第二传输参数是以下至少一种:
    解调参考信号DMRS端口相关参数,频域跳频参数,频域资源参数,上行控制信息UCI复用到物理上行共享信道PUSCH的参数,DMRS序列初始化参数。
  18. 一种传输参数确定方法,包括:
    网络设备发送第一传输参数;
    其中,所述第一传输参数用于确定DCI中第一指示域的比特位数;所述第一传输参数和第二传输参数对应DCI中第一指示域。
  19. 根据权利要求18所述的方法,其中,所述基于第一传输参数确定的所述第一指示域比特位数,不大于基于第二传输参数确定的所述第一指示域比特位数。
  20. 根据权利要求18所述的方法,其中,
    所述第一传输参数包括:配置授权Configured Grant的传输参数中的一个传输参数;
    和/或,
    所述第二传输参数包括:上行数据传输参数中的一个传输参数,或者协议约定的一个传输参数。
  21. 根据权利要求18-20任一项所述的方法,其中,
    所述第二传输参数为所有可用于上行调度的DCI格式中对应比特位数最少的第一指示域的传输参数;或者
    所述第二传输参数为用于Configured Grant传输的DCI格式中对应比特位数最少的第一指示域的传输参数;或者
    所述第二传输参数为所有可用于上行调度的DCI格式中对应比特位数最多的第一指示域的传输参数;或者
    所述第二传输参数为用于Configured Grant传输的DCI格式中对应比特位数最多的第一指示域的传输参数;或者
    所述第二传输参数为第一DCI格式,第一DCI格式为所述所有可用于上行调度的DCI格式中一种;或者
    所述第二传输参数为第二DCI格式,第二DCI格式为所述所有可用于Configured Grant传输的DCI格式中一种。
  22. 根据权利要求21所述的方法,其中,所述第一DCI格式、或第二DCI格式,由协议约定,或网络配置。
  23. 根据权利要求21或22所述的方法,其中,所述第一DCI格式、或第二DCI格式为DCI格式0-1。
  24. 根据权利要求21所述的方法,其中,所有可用于上行调度的DCI格式至少包括:DCI格式0-1,DCI格式0-2;
    或者,所有可用于上行调度的DCI格式至少包括:DCI格式0-0,DCI格式0-1,DCI格式0-2。
  25. 根据权利要求18-24任一项所述的方法,其中,所述方法还包括:
    所述网络设备发送激活Configured Grant的DCI。
  26. 根据权利要求25所述的方法,其中,所述方法还包括:
    在所述激活Configured Grant的DCI为第三DCI格式的情况下,根据所述第一传输参数对所述第一指示域进行配置。
  27. 根据权利要求25所述的方法,其中,所述方法还包括:
    在所述激活Configured Grant的DCI为第四DCI格式的情况下,根据所述第一传输参数对所述第一指示域进行配置;
    或者,
    在所述激活Configured Grant的DCI为第四DCI格式的情况下,根据所述第二传输参数对所述第一指示域进行配置;或者,
    在所述激活Configured Grant的DCI为第四DCI格式的情况下,根据所述第一传输参数和所述第二传输参数对所述第一指示域进行配置。
  28. 根据权利要求27所述的方法,其中,在所述激活Configured Grant的DCI为第二DCI格式的情况下,根据所述第一传输参数对所述第一指示域进行配置,还包括:
    在所述激活Configured Grant的DCI为第四DCI格式的情况下,若根据第二传输参数确定第一指示域比特数,大于根据所述第一传输参数确定的第一指示域比特数,则所述第一指示域中包含第二传输参数所对应的部分取值。
  29. 根据权利要求26或27所述的方法,其中,所述第三DCI格式为DCI格式0-1,和/或所述第四DCI格式为DCI 0-2。
  30. 根据权利要求25所述的方法,其中,所述方法还包括:
    所述网络设备发送重传Configured Grant的DCI;
    其中,所述重传Configured Grant的DCI,与所述激活Configured Grant的DCI的格式一致。
  31. 根据权利要求25所述的方法,其中,所述方法还包括:
    所述网络设备发送重传Configured Grant的DCI;
    其中,所述重传Configured Grant的DCI,与所述激活Configured Grant的DCI的格式不一致。
  32. 根据权利要求31所述的方法,其中,所述重传Configured Grant的DCI中第一指示域的内容,采用与激活Configured Grant的DCI的格式相同的第一传输参数进行的配置;
    或者,所述重传Configured Grant的DCI中第一指示域的内容,采用与重传Configured Grant的DCI所对应的第一传输参数进行的配置。
  33. 根据权利要求18-32任一项所述的方法,其中,所述第一传输参或第二传输参数是以下至少一种:
    解调参考信号DMRS端口相关参数,频域跳频参数,频域资源参数,上行控制信息UCI复用到物理上行共享信道PUSCH的参数,DMRS序列初始化参数。
  34. 一种终端设备,包括:
    第一通信单元,接收第一传输参数;
    其中,所述第一传输参数用于确定DCI中第一指示域的比特位数;所述第一传输参数集和第二传输参数集对应DCI中第一指示域。
  35. 根据权利要求34所述的终端设备,其中,所述基于第一传输参数确定的所述第 一指示域比特位数,不大于基于第二传输参数集确定的所述第一指示域比特位数。
  36. 根据权利要求34或35所述的终端设备,其中,第一传输参数包括:配置授权Configured Grant的传输参数中的至少一个传输参数;
    和/或,
    第二传输参数包括:上行数据传输参数中的至少一个传输参数,或者由协议约定的至少一个传输参数。
  37. 根据权利要求34-36任一项所述的终端设备,其中,
    所述第二传输参数为所有可用于上行调度的DCI格式中对应比特位数最少的第一指示域的传输参数;或者,
    所述第二传输参数为用于Configured Grant传输的DCI格式中对应比特位数最少的第一指示域的传输参数;或者,
    所述第二传输参数为所有可用于上行调度的DCI格式中对应比特位数最多的第一指示域的传输参数;或者,
    所述第二传输参数为用于Configured Grant传输的DCI格式中对应比特位数最多的第一指示域的传输参数;或者,
    所述第二传输参数为第一DCI格式的第一指示域对应的传输参数,第一DCI格式为所述所有可用于上行调度的DCI格式中一种;或者
    所述第二传输参数为第二DCI格式的第一指示域对应的传输参数,第二DCI格式为所述所有可用于Configured Grant传输的DCI格式中一种。
  38. 根据权利要求37所述的终端设备,其中,所述第一DCI格式、或第二DCI格式由协议约定,或网络配置。
  39. 根据权利要求37或38所述的终端设备,其中,所述第一DCI格式、或第二DCI格式为DCI格式0-1。
  40. 根据权利要求37所述的终端设备,其中,所有可用于上行调度的DCI格式至少包括:DCI格式0-1,DCI格式0-2;
    或者,所有可用于上行调度的DCI格式至少包括:DCI格式0-0,DCI格式0-1,DCI格式0-2。
  41. 根据权利要求36-40任一项所述的终端设备,其中,所述第一通信单元,接收激活Configured Grant的DCI。
  42. 根据权利要求41所述的终端设备,其中,
    激活Configured Grant的DCI的格式为所述所有可用于上行调度的DCI格式中之一,或者为全部用于激活Configured Grant的DCI格式中之一;
    所述第一指示域为所述用于激活Configured Grant的DCI的至少一个指示域中之一。
  43. 根据权利要求42所述的终端设备,其中,所述终端设备还包括:
    第一处理单元,在所述激活Configured Grant的DCI为第三DCI格式的情况下,根据所述第一传输参数解析所述第一指示域。
  44. 根据权利要求42所述的终端设备,其中,所述终端设备还包括:
    第一处理单元,在所述激活Configured Grant的DCI为第四DCI格式的情况下,根据所述第一传输参数解析所述第一指示域;
    或者,
    在所述激活Configured Grant的DCI为第四DCI格式的情况下,根据所述第二传输参数解析所述第一指示域;或者,
    在所述激活Configured Grant的DCI为第四DCI格式的情况下,根据所述第一传输参数和所述第二传输参数解析所述第一指示域。
  45. 根据权利要求44所述的终端设备,其中,第一处理单元,在所述激活Configured Grant的DCI为第四DCI格式的情况下,若根据第二传输参数确定第一指示域比特数,小于根据所述第一传输参数确定的第一指示域比特数,则所述第一指示域对应所述第一传输参数对应的部分取值。
  46. 根据权利要求41或42所述的终端设备,其中,所述第三DCI格式为DCI格式0-1,和/或,所述第四DCI格式为DCI 0-2。
  47. 根据权利要求41所述的终端设备,其中,所述第一通信单元,接收重传Configured Grant的DCI;
    其中,所述重传Configured Grant的DCI,与所述激活Configured Grant的DCI的格式一致。
  48. 根据权利要求41所述的终端设备,其中,所述第一通信单元,接收重传Configured Grant的DCI;
    其中,所述重传Configured Grant的DCI,与所述激活Configured Grant的DCI的格式独立。
  49. 根据权利要求48所述的终端设备,其中,所述重传Configured Grant的DCI中第一指示域的内容,采用与激活Configured Grant的DCI的格式相同的第一传输参数进行解析;
    或者,所述重传Configured Grant的DCI中第一指示域的内容,采用与重传Configured Grant的DCI所对应的第一传输参数进行解析。
  50. 根据权利要求34-49任一项所述的终端设备,其中,所述第一传输参数或第二传输参数是以下至少一种:
    解调参考信号DMRS端口相关参数,频域跳频参数,频域资源参数,上行控制信息UCI复用到物理上行共享信道PUSCH的参数,DMRS序列初始化参数。
  51. 一种网络设备,包括:
    第二通信单元,发送第一传输参数;
    其中,所述第一传输参数用于确定DCI中第一指示域的比特位数;所述第一传输参数和第二传输参数对应DCI中第一指示域。
  52. 根据权利要求51所述的网络设备,其中,所述基于第一传输参数确定的所述第一指示域比特位数,不大于基于第二传输参数确定的所述第一指示域比特位数。
  53. 根据权利要求51所述的网络设备,其中,
    所述第一传输参数包括:配置授权Configured Grant的传输参数中的一个传输参数;
    和/或,
    所述第二传输参数包括:上行数据传输参数中的一个传输参数,或者协议约定的一个传输参数。
  54. 根据权利要求51-53任一项所述的网络设备,其中,
    所述第二传输参数为所有可用于上行调度的DCI格式中对应比特位数最少的第一指示域的传输参数;或者
    所述第二传输参数为用于Configured Grant传输的DCI格式中对应比特位数最少的第一指示域的传输参数;或者
    所述第二传输参数为所有可用于上行调度的DCI格式中对应比特位数最多的第一指示域的传输参数;或者
    所述第二传输参数为用于Configured Grant传输的DCI格式中对应比特位数最多的第一指示域的传输参数;或者
    所述第二传输参数为第一DCI格式,第一DCI格式为所述所有可用于上行调度的DCI格式中一种;或者
    所述第二传输参数为第二DCI格式,第二DCI格式为所述所有可用于Configured Grant传输的DCI格式中一种。
  55. 根据权利要求54所述的网络设备,其中,所述第一DCI格式、或第二DCI格式,由协议约定,或网络配置。
  56. 根据权利要求54或55所述的网络设备,其中,所述第一DCI格式、或第二DCI格式为DCI格式0-1。
  57. 根据权利要求54所述的网络设备,其中,所有可用于上行调度的DCI格式至少包括:DCI格式0-1,DCI格式0-2;
    或者,所有可用于上行调度的DCI格式至少包括:DCI格式0-0,DCI格式0-1,DCI格式0-2。
  58. 根据权利要求51-57任一项所述的网络设备,其中,所述第二通信单元,发送 激活Configured Grant的DCI。
  59. 根据权利要求58所述的网络设备,其中,所述网络设备还包括:
    第二处理单元,在所述激活Configured Grant的DCI为第三DCI格式的情况下,根据所述第一传输参数对所述第一指示域进行配置。
  60. 根据权利要求58所述的网络设备,其中,所述网络设备还包括:
    第二处理单元,在所述激活Configured Grant的DCI为第四DCI格式的情况下,根据所述第一传输参数对所述第一指示域进行配置;
    或者,
    在所述激活Configured Grant的DCI为第四DCI格式的情况下,根据所述第二传输参数对所述第一指示域进行配置;或者,
    在所述激活Configured Grant的DCI为第四DCI格式的情况下,根据所述第一传输参数和所述第二传输参数对所述第一指示域进行配置。
  61. 根据权利要求60所述的网络设备,其中,第二处理单元,在所述激活Configured Grant的DCI为第四DCI格式的情况下,若根据第二传输参数确定第一指示域比特数,大于根据所述第一传输参数确定的第一指示域比特数,则所述第一指示域中包含第二传输参数所对应的部分取值。
  62. 根据权利要求60或61所述的网络设备,其中,所述第三DCI格式为DCI格式0-1,和/或所述第四DCI格式为DCI 0-2。
  63. 根据权利要求58所述的网络设备,其中,所述第二通信单元,发送重传Configured Grant的DCI;
    其中,所述重传Configured Grant的DCI,与所述激活Configured Grant的DCI的格式一致。
  64. 根据权利要求58所述的网络设备,其中,所述第二通信单元,发送重传Configured Grant的DCI;
    其中,所述重传Configured Grant的DCI,与所述激活Configured Grant的DCI的格式不一致。
  65. 根据权利要求64所述的网络设备,其中,所述重传Configured Grant的DCI中第一指示域的内容,采用与激活Configured Grant的DCI的格式相同的第一传输参数进行的配置;
    或者,所述重传Configured Grant的DCI中第一指示域的内容,采用与重传Configured Grant的DCI所对应的第一传输参数进行的配置。
  66. 根据权利要求51-65任一项所述的网络设备,其中,所述第一传输参数或第二传输参数是以下至少一种:
    解调参考信号DMRS端口相关参数,频域跳频参数,频域资源参数,上行控制信息UCI复用到物理上行共享信道PUSCH的参数,DMRS序列初始化参数。
  67. 一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1-17任一项所述方法的步骤。
  68. 一种网络设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求18-33任一项所述方法的步骤。
  69. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-17中任一项所述的方法。
  70. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求18-33中任一项所述的方法。
  71. 一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1-33任一项所述方法的步骤。
  72. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执 行如权利要求1-33中任一项所述的方法。
  73. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1-33中任一项所述的方法。
PCT/CN2020/075407 2020-02-14 2020-02-14 传输参数确定方法、终端设备及网络设备 WO2021159517A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20918563.6A EP4102754A4 (en) 2020-02-14 2020-02-14 METHOD FOR DETERMINING TRANSMISSION PARAMETERS, TERMINAL DEVICE, AND NETWORK DEVICE
CN202080081391.8A CN114747170A (zh) 2020-02-14 2020-02-14 传输参数确定方法、终端设备及网络设备
PCT/CN2020/075407 WO2021159517A1 (zh) 2020-02-14 2020-02-14 传输参数确定方法、终端设备及网络设备
US17/886,459 US20220386360A1 (en) 2020-02-14 2022-08-12 Transmission parameter determination method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/075407 WO2021159517A1 (zh) 2020-02-14 2020-02-14 传输参数确定方法、终端设备及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/886,459 Continuation US20220386360A1 (en) 2020-02-14 2022-08-12 Transmission parameter determination method, terminal device, and network device

Publications (1)

Publication Number Publication Date
WO2021159517A1 true WO2021159517A1 (zh) 2021-08-19

Family

ID=77292737

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/075407 WO2021159517A1 (zh) 2020-02-14 2020-02-14 传输参数确定方法、终端设备及网络设备

Country Status (4)

Country Link
US (1) US20220386360A1 (zh)
EP (1) EP4102754A4 (zh)
CN (1) CN114747170A (zh)
WO (1) WO2021159517A1 (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110536399A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 功率控制方法、装置和系统
US20190373588A1 (en) * 2018-05-11 2019-12-05 Lg Electronics Inc. Method for performing uplink transmission in a wireless communication system and apparatus therefor

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11457434B2 (en) * 2018-06-22 2022-09-27 Sharp Laboratories Of America, Inc. User equipments, base stations and methods for time-domain resource allocation
US20200022144A1 (en) * 2018-07-09 2020-01-16 Samsung Electronics Co., Ltd. Overhead reduction and reliability enhancements for dl control signaling

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190373588A1 (en) * 2018-05-11 2019-12-05 Lg Electronics Inc. Method for performing uplink transmission in a wireless communication system and apparatus therefor
CN110536399A (zh) * 2019-09-03 2019-12-03 中兴通讯股份有限公司 功率控制方法、装置和系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Maintenance for DL/UL data scheduling and HARQ procedure, R1-1811375", 3GPP TSG RAN WG1 MEETING #94BIS, CHENGDU, CHINA, OCTOBER 8TH-12TH, 2018, 29 September 2018 (2018-09-29), XP051518779 *
See also references of EP4102754A4 *

Also Published As

Publication number Publication date
US20220386360A1 (en) 2022-12-01
CN114747170A (zh) 2022-07-12
EP4102754A4 (en) 2023-03-22
EP4102754A1 (en) 2022-12-14

Similar Documents

Publication Publication Date Title
JP7018513B6 (ja) Harq-ackフィードバック時間の特定方法と指示方法、端末機器及びネットワーク機器
US11296855B2 (en) Communication method, terminal device, and network device
WO2019127199A1 (zh) 用于上行数据传输的方法和终端设备
WO2019028771A1 (zh) 传输数据的方法和终端设备
US11115963B2 (en) Method and device for multiplexing uplink grant resources
WO2021016774A1 (zh) 无线通信方法和设备
WO2021147823A1 (zh) 上行传输的方法、移动终端和网络设备
WO2020220360A1 (zh) 一种半静态传输的反馈方法、网络设备、终端设备
AU2018409037A1 (en) Uplink data scheduling method and device
WO2020248178A9 (zh) 一种信息处理方法、网络设备、终端设备
WO2019051717A1 (zh) 信号处理的方法和装置
WO2021013088A1 (zh) 传输方式确定、信息配置方法和设备
WO2021013102A1 (zh) 参数确定、信息配置方法和设备
WO2021026836A1 (zh) 通信方法以及通信装置
US20230134784A1 (en) Control information transmission method and apparatus, and terminal device
WO2020220362A1 (zh) 一种信息处理方法、用户设备、终端设备
WO2021159517A1 (zh) 传输参数确定方法、终端设备及网络设备
US20220124790A1 (en) Method for data transmission, method for data reception, and device
WO2022156432A1 (zh) 一种调度请求的传输方法及装置
WO2018201459A1 (zh) 逻辑信道资源分配的方法和终端设备
WO2020223979A1 (zh) 一种确定冗余版本的方法、终端设备及网络设备
CN111447026B (zh) 处理数据的方法和处理数据的装置
WO2021159509A1 (zh) 信息接收方法、信息发送方法、终端设备及网络设备
WO2021092955A1 (zh) 一种下行控制信令接收方法、网络设备、终端设备
US11382120B2 (en) Information transmission method and device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020918563

Country of ref document: EP

Effective date: 20220909