WO2021159281A1 - 一种时域资源的确定方法及装置、终端设备 - Google Patents

一种时域资源的确定方法及装置、终端设备 Download PDF

Info

Publication number
WO2021159281A1
WO2021159281A1 PCT/CN2020/074765 CN2020074765W WO2021159281A1 WO 2021159281 A1 WO2021159281 A1 WO 2021159281A1 CN 2020074765 W CN2020074765 W CN 2020074765W WO 2021159281 A1 WO2021159281 A1 WO 2021159281A1
Authority
WO
WIPO (PCT)
Prior art keywords
time slot
bitmap
resource pool
time slots
type
Prior art date
Application number
PCT/CN2020/074765
Other languages
English (en)
French (fr)
Inventor
赵振山
林晖闵
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2020/074765 priority Critical patent/WO2021159281A1/zh
Priority to BR112022007101A priority patent/BR112022007101A2/pt
Priority to CN202111176211.7A priority patent/CN113993215B/zh
Priority to KR1020227009378A priority patent/KR20220138044A/ko
Priority to JP2022517509A priority patent/JP2023519463A/ja
Priority to CA3152932A priority patent/CA3152932A1/en
Priority to EP20918791.3A priority patent/EP4120758A4/en
Priority to CN202080012000.7A priority patent/CN113545151A/zh
Publication of WO2021159281A1 publication Critical patent/WO2021159281A1/zh
Priority to US17/675,139 priority patent/US20220174671A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W92/00Interfaces specially adapted for wireless communication networks
    • H04W92/16Interfaces between hierarchically similar devices
    • H04W92/18Interfaces between hierarchically similar devices between terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/30Services specially adapted for particular environments, situations or purposes
    • H04W4/40Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P]
    • H04W4/46Services specially adapted for particular environments, situations or purposes for vehicles, e.g. vehicle-to-pedestrians [V2P] for vehicle-to-vehicle communication [V2V]

Definitions

  • the embodiments of the present application relate to the field of mobile communication technologies, and in particular to a method and device for determining time domain resources, and terminal equipment.
  • the time unit of resource pool configuration is a subframe. Since the subframes defined in LTE V2X are different from those defined in New Radio (NR) V2X, the resource pool configuration method of LTE V2X cannot be applied to NRV2X. How to determine the resource pool configuration requirements in NRV2X clear.
  • LTE Long Term Evolution
  • NR New Radio
  • the embodiments of the present application provide a method and device for determining time domain resources, and terminal equipment.
  • the terminal device determines the first set of time slots in the first period
  • the terminal device selects a part of time slots from the first time slot set according to the first bitmap, and the part of time slots constitutes the time domain resources of the resource pool.
  • the determining unit is configured to determine the first time slot set in the first period; select part of the time slots from the first time slot set according to the first bitmap, and the part of time slots constitute the time domain resources of the resource pool.
  • the terminal device provided in the embodiment of the present application includes a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the above-mentioned method for determining time domain resources.
  • the chip provided in the embodiment of the present application is used to implement the above-mentioned method for determining time domain resources.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that a device installed with the chip executes the above-mentioned method for determining time domain resources.
  • the computer-readable storage medium provided by the embodiment of the present application is used to store a computer program that enables a computer to execute the above-mentioned method for determining time domain resources.
  • the computer program product provided by the embodiment of the present application includes computer program instructions that cause a computer to execute the above-mentioned method for determining time domain resources.
  • the computer program provided in the embodiment of the present application when it runs on a computer, causes the computer to execute the above-mentioned method for determining time domain resources.
  • the terminal device determines the first time slot set in the first period, and the time slots in the first time slot set are time slots that can be used for resource pool configuration.
  • the terminal device selects a part of time slots from the first time slot set according to the first bitmap, and the part of time slots constitutes the time domain resources of the resource pool.
  • FIG. 1 is a schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram 1 of configuring a resource pool provided by an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a method for determining a time domain resource provided by an embodiment of this application;
  • FIG. 4 is a second schematic diagram of configuring a resource pool provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the structural composition of an apparatus for determining a time domain resource provided by an embodiment of the application;
  • FIG. 6 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a chip of an embodiment of the present application.
  • Fig. 8 is a schematic block diagram of a communication system provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • 5G communication system or future communication system etc.
  • the communication system 100 applied in the embodiment of the present application is shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminals located in the coverage area.
  • the network device 110 may be an evolved base station (Evolutional Node B, eNB, or eNodeB) in an LTE system, or a wireless controller in a cloud radio access network (Cloud Radio Access Network, CRAN), or
  • the network equipment can be a mobile switching center, a relay station, an access point, an in-vehicle device, a wearable device, a hub, a switch, a bridge, a router, a network side device in a 5G network, or a network device in a future communication system, etc.
  • the communication system 100 also includes at least one terminal 120 located within the coverage area of the network device 110.
  • the "terminal” used here includes, but is not limited to, connection via a wired line, such as via a public switched telephone network (PSTN), digital subscriber line (Digital Subscriber Line, DSL), digital cable, and direct cable connection; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM-FM A broadcast transmitter; and/or a device of another terminal configured to receive/send communication signals; and/or an Internet of Things (IoT) device.
  • PSTN public switched telephone network
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscribe
  • a terminal set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellite or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio telephone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal can refer to access terminal, user equipment (UE), user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication equipment, user agent or user Device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminals in 5G networks, or terminals in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminals 120.
  • the 5G communication system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminals.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminals. This embodiment of the present application There is no restriction on this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal 120 with communication functions, and the network device 110 and the terminal 120 may be the specific devices described above, which will not be repeated here; communication
  • the device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the time domain resources of the resource pool are determined in a System Frame Number (SFN) period or a Direct Frame Number (DFN) period.
  • SFN System Frame Number
  • DFN Direct Frame Number
  • an SFN is determined in the following manner Which time domain resources in a period or a DFN period belong to the resource pool:
  • One SFN cycle or one DFN cycle includes 10240 subframes, which correspond to subframes 0, 1, 2, ... 10239, respectively.
  • 10240 subframes the synchronization subframes, downlink subframes, special subframes (ie, downlink subframes and special subframes in the TDD system), and reserved subframes are removed, and the remaining subframes are renumbered
  • the formed subframe set is Wherein, the number of remaining subframes can be divisible by L bitmap , and L bitmap represents the length of the bitmap used to indicate the resource pool configuration.
  • Bitmap used to indicate resource pool configuration Periodically mapped to each of the remaining subframes, where the value of the bit is 1 indicates that the subframe corresponding to the bit belongs to the resource pool, and the value of 0 indicates that the subframe corresponding to the bit does not belong to the resource pool. Resource pool.
  • one SFN cycle or one DFN cycle includes 10240 subframes (that is, 10240ms), the period of the synchronization signal (referred to as the synchronization period for short) is 160ms, and one synchronization period includes 2 synchronization subframes. Therefore, in There are 128 synchronization subframes in one SFN period.
  • bitmap needs to be repeated 1011 times in the remaining subframes to indicate whether all subframes belong to the resource pool, and in each bitmap period, there are 3 subframes belonging to the resource pool, so there are 3033 in one SFN period. Each subframe belongs to the resource pool.
  • NR-V2X automatic driving needs to be supported, so higher requirements are put forward for data interaction between vehicles, such as higher throughput, lower delay, higher reliability, and larger coverage. More flexible resource allocation, etc. Therefore, unlike LTE V2X which mainly supports periodic services, in NR V2X, both periodic and aperiodic services need to be supported, and aperiodic services may occupy a major proportion. In addition, in order to reduce the data transmission delay and enhance the flexibility of resource allocation, NR V2X supports different subcarrier spacing (SubCarrier Space, SCS) and different time slot lengths.
  • SCS SubCarrier Space
  • the subcarrier spacing can be It is 15kHz, 30kHz, 60kHz, or 120kHz, and the length of the time slot can be 7 to 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the subcarrier spacing is fixed at 15kHz, and The length of the time slot is fixed to 14 single-carrier frequency-division multiple access (Single-carrier Frequency-Division Multiple Access, SC-FDMA) symbols.
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • the terminal device can reserve resources according to a certain period.
  • the terminal device can send sidelink control information (SCI) through the current period.
  • SCI sidelink control information
  • Reserve resources for one or more cycles in the future, and the reserved resources for one or more cycles are used for transmission of different transport blocks (TB).
  • TB transport blocks
  • periodic resource reservation is prohibited.
  • the SCI sent by the terminal device can only reserve resources for the retransmission of the same TB.
  • the resource pool in NR V2X is configured by the parameter SL-ResourcePool.
  • the information element (IE) of SL-ResourcePool is shown in Table 1 below. This IE is used to determine the NR side link resource pool (SL-ResourcePool). Configuration information.
  • LTE V2X the number of symbols that can be used for side-line transmission in a subframe is less than 14, while in NR V2X, the number of symbols that can be used for V2X transmission in a time slot can be less than 14.
  • the resources of LTE V2X The pool configuration method cannot be applied to NR V2X.
  • LTE V2X in order to ensure that the number of subframes available for resource pool configuration in an SFN cycle or DFN cycle is an integer multiple of the length of the bitmap indicating the resource pool configuration, some reserved subframes cannot be used for the resource pool Configuration, thereby reducing the efficiency of resource use. For this reason, the following technical solutions of the embodiments of the present application are proposed.
  • the time domain resources of the resource pool can be determined effectively and clearly, and the utilization rate of the resources can be improved.
  • FIG. 3 is a schematic flowchart of a method for determining a time domain resource provided by an embodiment of the application. As shown in FIG. 3, the method for determining a time domain resource includes the following steps:
  • Step 301 The terminal device determines the first set of time slots in the first period.
  • the first time slot set includes multiple time slots, and the first time slot set refers to a time slot set that can be used for resource pool configuration, that is, time slots in the first time slot set It is a time slot that can be used for resource pool configuration.
  • the terminal device determines the first time slot set from the first period.
  • the first period is an SFN period.
  • the first period is a DFN period.
  • the terminal device determines that the first time slot set in the first period is:
  • the value of M is the number of subframes included in the first period, and the value of ⁇ is determined based on the subcarrier interval on the BandWidth Part (BWP).
  • BWP BandWidth Part
  • the value of M is 10240.
  • one SFN cycle includes 1024 SFNs, and one SFN includes 10 subframes. Therefore, one SFN cycle includes 10240 subframes.
  • the value of ⁇ has an associated relationship with the subcarrier spacing on the current BWP of the terminal device. Specifically, the corresponding relationship between the value of ⁇ and the subcarrier spacing is shown in Table 2 below:
  • ⁇ ⁇ f 2 ⁇ ⁇ 15[kHz] 0 15 1 30 2 60 3 120 4 240
  • ⁇ f represents the subcarrier spacing, and the unit is kHz.
  • the index of the time slot in the above solution is numbered relative to the index of the first time slot in SFN#0 or DFN#0.
  • the implementation of the first time slot set may have the following two implementations, and the two implementations are described below.
  • the first time slot set includes all time slots in the first cycle except the following time slots:
  • the first type of time slot is used to transmit a side link synchronization signal block (S-SSB);
  • S-SSB side link synchronization signal block
  • At least one of the N consecutive symbols starting from the mth symbol in the second type of time slot is not an uplink symbol, m and N are positive integers, and 0 ⁇ m ⁇ 13;
  • the third type of time slot refers to a reserved time slot.
  • first type of time slot if a time slot is a time slot used to send S-SSB, then the time slot belongs to the first type of time slot.
  • the number of time slots of the first type included in the first period is denoted as N S-SSB .
  • the second type of time slot is explained below: if at least one of a downlink symbol, a flexible symbol, and an uplink symbol is configured in a time slot, the time slot starts from N consecutive symbols starting from the mth symbol At least one symbol is not an uplink symbol (that is, N consecutive symbols are not all uplink symbols), then the time slot belongs to the second type of time slot.
  • the second type of time slot may also be referred to as an incomplete uplink time slot.
  • m and N are values configured for the current BWP or pre-configured values.
  • the number of time slots of the second type included in the first period is denoted as N df .
  • the symbol here refers to an OFDM symbol in the time domain.
  • the third type of time slots refers to reserved time slots
  • the third type of time slots ie, reserved time slots
  • All time slots other than the first type of time slots and the second type of time slots form the following second time slot set:
  • the time slots in the second time slot set are arranged according to the time slot index from small to large;
  • the N S-SSB refers to the number of the first type time slots included in the first period,
  • the N df refers to the number of time slots of the second type included in the first period;
  • the terminal device determines the value of L bitmap (that is, the length of the first bitmap) according to network configuration signaling or pre-configuration signaling.
  • the first time slot set includes all time slots in the first cycle except the following time slots:
  • the first type of time slot where the first type of time slot is used to transmit S-SSB;
  • At least one of the N consecutive symbols starting from the mth symbol in the second type of time slot is not an uplink symbol
  • m and N are positive integers, and 0 ⁇ m ⁇ 13.
  • the time slot can be configured as a time slot in the resource pool.
  • Step 302 The terminal device selects a part of time slots from the first time slot set according to the first bitmap, and the part of time slots constitutes the time domain resources of the resource pool.
  • the first bitmap is used to indicate the time domain configuration of the resource pool, and the length of the first bitmap is denoted as L bitmap. Further, optionally, the terminal device determines the value of the L bitmap according to network configuration signaling or pre-configuration signaling.
  • the implementation of selecting part of the time slots from the first time slot set (that is, determining which time slots in the first time slot set belong to the time slots of the resource pool) can be implemented in the following two ways: Ways, the two implementations are described below.
  • the terminal device Corresponding to the situation where the first time slot set is determined in the above manner 1-1, the terminal device according to the first bitmap Determine the time slot belonging to the resource pool 0 ⁇ k ⁇ M ⁇ 2 ⁇ -N S-SSB -N df -N reserved , and k satisfies
  • the N S-SSB refers to the number of time slots of the first type included in the first period
  • the N df refers to the number of time slots of the second type included in the first period
  • the N reserved refers to the number of time slots of the third type included in the first period
  • the L bitmap represents the length of the first bitmap.
  • the first bitmap is periodically mapped to each time slot in the first time slot set, wherein the value of the bit in the first bitmap is a first value It means that the time slot corresponding to the bit belongs to the resource pool, and the value of the bit in the first bitmap is a second value, which means that the time slot corresponding to the bit does not belong to the resource pool. Further, optionally, the first value is 1, and the second value is 0.
  • the number of time slots included in the first time slot set and the length of the first bitmap satisfy an integer multiple relationship. That is, it is guaranteed that the number of time slots that can be configured as a resource pool in the first period is an integer multiple of the length of the bitmap used to indicate the configuration of the resource pool.
  • the terminal device Corresponding to the situation of determining the first time slot set in the above manner 1-2, the terminal device according to the first bitmap Determine the time slot belonging to the resource pool 0 ⁇ k ⁇ M ⁇ 2 ⁇ -N S-SSB -N df , and k satisfies
  • the N S-SSB refers to the number of time slots of the first type included in the first period
  • the N df refers to the number of time slots of the second type included in the first period
  • the L bitmap represents the length of the first bitmap.
  • the first bitmap is periodically mapped to each time slot in the first time slot set, wherein the value of the bit in the first bitmap is a first value It means that the time slot corresponding to the bit belongs to the resource pool, and the value of the bit in the first bitmap is a second value, which means that the time slot corresponding to the bit does not belong to the resource pool; further, Optionally, the first value is 1, and the second value is 0.
  • the number of time slots included in the first time slot set and the length of the first bitmap may satisfy an integer multiple relationship, or may not satisfy an integer multiple relationship. Further, when the number of time slots included in the first time slot set and the length of the first bitmap do not satisfy an integer multiple relationship, the first bitmap is mapped to the first time slot set After the last time slot of the first bitmap, part of the bitmap beyond the first time slot set is truncated.
  • the first cycle there are 10240 time slots in an SFN cycle as an example, and some of the time slots are configured as the first type of time slots (that is, the time slots used to send S-SSB).
  • the second type of time slot that is, incomplete uplink time slot
  • it can be configured as the number of time slots in the resource pool The number is 10116, and the length of the bitmap used for resource pool configuration is 10, so the last bitmap with 4 bits will exceed one SFN cycle, so the 4 bits are truncated, and the truncated bitmap can determine the resource pool Time slot position.
  • the time domain resources of the resource pool are determined according to the foregoing manner 1-1 in combination with manner 1-2. If the periodic resource reservation is set to the deactivated state, the time domain resources of the resource pool are determined according to the above method 2-1 in combination with the method 2-2.
  • the terminal device determines a first configuration parameter corresponding to the resource pool, the value contained in the first configuration parameter is used to determine a resource reservation period, and the first configuration parameter includes at least one that is not zero And/or, the terminal device determines a second configuration parameter corresponding to the resource pool, the second configuration parameter is set to an active state, and the active state is used to indicate that the terminal device can schedule a
  • the SCI of a TB reserves resources for the initial transmission of another TB.
  • the terminal device determines the time domain resources of the resource pool in accordance with the foregoing manner 1-1 in combination with manner 1-2.
  • the first configuration parameter is, for example, sl-ResourceReservePeriodList.
  • the terminal device determines the first configuration parameter corresponding to the resource pool, the value contained in the first configuration parameter is used to determine the resource reservation period, and the value contained in the first configuration parameter is all zero And/or, the terminal device determines a second configuration parameter corresponding to the resource pool, the second configuration parameter is set to a deactivated state, and the deactivated state is used to indicate that the terminal device cannot pass scheduling
  • the SCI of one TB is reserved for the initial transmission of another TB.
  • the terminal device determines the time domain resources of the resource pool in accordance with the foregoing manner 2-1 in combination with manner 2-2.
  • the second configuration parameter is, for example, sl-MultiReserveResource.
  • the terminal device determines the time domain resources of the resource pool according to the above-mentioned manner 1-1 in combination with manner 1-2.
  • the terminal device determines the time domain resources of the resource pool according to the above method 2-1 in combination with the method 2-2.
  • the terminal device determines the time domain resources of the resource pool according to the above-mentioned manner 1-1 in combination with manner 1-2.
  • the terminal device determines the time domain resources of the resource pool according to the above method 2-1 in combination with the method 2-2.
  • the number of time slots configured as a resource pool is an integer multiple of the length of the bitmap indicating the configuration of the resource pool.
  • the SCI sent by scheduling one TB cannot indicate the resource reservation for different TBs, part of the reserved time slots can be used for resource pool configuration, and further, if it can be configured as a resource pool in the first cycle If the number of time slots is not an integer multiple of the length of the bitmap used for resource pool configuration, after the bitmap used for resource pool configuration is mapped to the last time slot in the first cycle, it will exceed the bit of the first cycle The bitmap is truncated.
  • the time domain resources of the resource pool can be determined effectively and clearly, and can improve Resource utilization.
  • FIG. 5 is a schematic diagram of the structural composition of an apparatus for determining a time domain resource provided by an embodiment of the application. As shown in FIG. 5, the apparatus for determining a time domain resource includes:
  • the determining unit 501 is configured to determine the first time slot set in the first period; select part of the time slots from the first time slot set according to the first bitmap, and the part of time slots constitute the time domain resources of the resource pool .
  • the determining unit 501 is configured to determine the first time slot set in the first period as:
  • the value of M is the number of subframes included in the first period, and the value of ⁇ is determined based on the subcarrier interval on the BWP.
  • the first time slot set includes all time slots in the first cycle except for the following time slots:
  • the first type of time slot where the first type of time slot is used to transmit the side uplink synchronization signal block S-SSB;
  • At least one of the N consecutive symbols starting from the mth symbol in the second type of time slot is not an uplink symbol, m and N are positive integers, and 0 ⁇ m ⁇ 13;
  • the third type of time slot refers to a reserved time slot.
  • all time slots in the first cycle except for the first type time slots and the second type time slots form the following second time slot set:
  • the N S-SSB refers to the number of time slots of the first type included in the first period
  • the N df refers to the number of time slots of the second type included in the first period
  • time slot l r in the second time slot set belongs to the third type of time slot
  • N reserved M ⁇ 2 ⁇ -N S-SSB -N df mod L bitmap
  • L bitmap represents the first bitmap length
  • the first bitmap is used to indicate the time domain configuration of the resource pool
  • the determining unit 501 is configured to perform according to the first bitmap Determine the time slot belonging to the resource pool 0 ⁇ k ⁇ M ⁇ 2 ⁇ -N S-SSB -N df -N reserved , and k satisfies
  • the N S-SSB refers to the number of time slots of the first type included in the first period
  • the N df refers to the number of time slots of the second type included in the first period
  • the N reserved refers to the number of time slots of the third type included in the first period
  • the L bitmap represents the length of the first bitmap.
  • the first bitmap is periodically mapped to each time slot in the first time slot set, wherein the value of the bit in the first bitmap is The first value indicates that the time slot corresponding to the bit belongs to the resource pool, and the value of the bit in the first bitmap is the second value indicates that the time slot corresponding to the bit does not belong to the resource pool;
  • the number of time slots included in the first time slot set and the length of the first bitmap satisfy an integer multiple relationship.
  • the determining unit 501 is further configured to determine a first configuration parameter corresponding to the resource pool, and the value contained in the first configuration parameter is used to determine a resource reservation period, and the first The configuration parameter includes at least one non-zero value; and/or, a second configuration parameter corresponding to the resource pool is determined, the second configuration parameter is set to an active state, and the active state is used to indicate the terminal device It is possible to reserve resources for the initial transmission of another TB by scheduling the SCI of one TB.
  • the first time slot set includes all time slots in the first cycle except for the following time slots:
  • the first type of time slot where the first type of time slot is used to transmit S-SSB;
  • At least one of the N consecutive symbols starting from the mth symbol in the second type of time slot is not an uplink symbol
  • m and N are positive integers, and 0 ⁇ m ⁇ 13.
  • the first bitmap is used to indicate the time domain configuration of the resource pool
  • the determining unit 501 is configured to perform according to the first bitmap Determine the time slot belonging to the resource pool 0 ⁇ k ⁇ M ⁇ 2 ⁇ -N S-SSB -N df , and k satisfies
  • the N S-SSB refers to the number of time slots of the first type included in the first period
  • the N df refers to the number of time slots of the second type included in the first period The number of.
  • the first bitmap is periodically mapped to each time slot in the first time slot set, wherein the value of the bit in the first bitmap is The first value indicates that the time slot corresponding to the bit belongs to the resource pool, and the value of the bit in the first bitmap is the second value indicates that the time slot corresponding to the bit does not belong to the resource pool;
  • the first bitmap is mapped to the end of the first time slot set After one time slot, the part of the bit map in the first bit map that exceeds the first time slot set is truncated.
  • the determining unit 501 is further configured to determine a first configuration parameter corresponding to the resource pool, and the value contained in the first configuration parameter is used to determine a resource reservation period, and the first The values included in the configuration parameters are all zero; and/or the second configuration parameter corresponding to the resource pool is determined, the second configuration parameter is set to a deactivated state, and the deactivated state is used to indicate the terminal device It is not possible to reserve resources for the initial transmission of another TB by scheduling the SCI of one TB.
  • the value of M is 10240.
  • the first period is an SFN period or a DFN period.
  • FIG. 6 is a schematic structural diagram of a communication device 600 provided by an embodiment of the present application.
  • the communication device may be a terminal device or a network device.
  • the communication device 600 shown in FIG. 6 includes a processor 610, and the processor 610 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 600 may further include a memory 620.
  • the processor 610 may call and run a computer program from the memory 620 to implement the method in the embodiment of the present application.
  • the memory 620 may be a separate device independent of the processor 610, or may be integrated in the processor 610.
  • the communication device 600 may further include a transceiver 630, and the processor 610 may control the transceiver 630 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 630 may include a transmitter and a receiver.
  • the transceiver 630 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 600 may specifically be a network device of an embodiment of the present application, and the communication device 600 may implement the corresponding process implemented by the network device in each method of the embodiment of the present application. For the sake of brevity, it will not be repeated here. .
  • the communication device 600 may specifically be a mobile terminal/terminal device of an embodiment of the application, and the communication device 600 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiments of the application. For the sake of brevity , I won’t repeat it here.
  • FIG. 7 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 700 shown in FIG. 7 includes a processor 710, and the processor 710 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 700 may further include a memory 720.
  • the processor 710 may call and run a computer program from the memory 720 to implement the method in the embodiment of the present application.
  • the memory 720 may be a separate device independent of the processor 710, or may be integrated in the processor 710.
  • the chip 700 may further include an input interface 730.
  • the processor 710 can control the input interface 730 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 700 may further include an output interface 740.
  • the processor 710 can control the output interface 740 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the chip can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • FIG. 8 is a schematic block diagram of a communication system 800 provided by an embodiment of the present application. As shown in FIG. 8, the communication system 800 includes a terminal device 810 and a network device 820.
  • the terminal device 810 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 820 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments may be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA Field Programmable Gate Array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field, such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM) and so on. That is to say, the memory in the embodiments of the present application is intended to include, but is not limited to, these and any other suitable types of memory.
  • the embodiments of the present application also provide a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application , For the sake of brevity, I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For the sake of brevity, I will not repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, it causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disks or optical disks and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

本申请实施例提供一种时域资源的确定方法及装置、终端设备,该方法包括:终端设备确定第一周期内的第一时隙集合;所述终端设备根据第一比特位图从所述第一时隙集合中选取部分时隙,所述部分时隙组成资源池的时域资源。

Description

一种时域资源的确定方法及装置、终端设备 技术领域
本申请实施例涉及移动通信技术领域,具体涉及一种时域资源的确定方法及装置、终端设备。
背景技术
在长期演进(Long Term Evolution,LTE)车联网(Vehicle to Everything,V2X)中,资源池配置的时间单元是子帧(subframe)。由于LTE V2X中定义的子帧与新无线(New Radio,NR)V2X中定义的子帧不同,因而LTE V2X的资源池配置方法不能应用于NR V2X中,如何确定NR V2X中的资源池配置需要明确。
发明内容
本申请实施例提供一种时域资源的确定方法及装置、终端设备。
本申请实施例提供的时域资源的确定方法,包括:
终端设备确定第一周期内的第一时隙集合;
所述终端设备根据第一比特位图从所述第一时隙集合中选取部分时隙,所述部分时隙组成资源池的时域资源。
本申请实施例提供的时域资源的时域资源的确定装置,包括:
确定单元,用于确定第一周期内的第一时隙集合;根据第一比特位图从所述第一时隙集合中选取部分时隙,所述部分时隙组成资源池的时域资源。
本申请实施例提供的终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述的时域资源的确定方法。
本申请实施例提供的芯片,用于实现上述的时域资源的确定方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行上述的时域资源的确定方法。
本申请实施例提供的计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述的时域资源的确定方法。
本申请实施例提供的计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述的时域资源的确定方法。
本申请实施例提供的计算机程序,当其在计算机上运行时,使得计算机执行上述的时域资源的确定方法。
本申请实施例的技术方案,在NR V2X中,终端设备确定第一周期内的第一时隙集合,所述第一时隙集合中的时隙是可用于资源池配置的时隙。所述终端设备根据第一比特位图从所述第一时隙集合中选取部分时隙,所述部分时隙组成资源池的时域资源。采用本申请实施例的技术方案,以时隙为时间单元进行资源池的配置,可以有效且明确的确定资源池的时域资源,提高了资源的利用率。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1是本申请实施例提供的一种通信系统架构的示意性图;
图2是本申请实施例提供的配置资源池的示意图一;
图3为本申请实施例提供的时域资源的确定方法的流程示意图;
图4是本申请实施例提供的配置资源池的示意图二;
图5为本申请实施例提供的时域资源的确定装置的结构组成示意图;
图6是本申请实施例提供的一种通信设备示意性结构图;
图7是本申请实施例的芯片的示意性结构图;
图8是本申请实施例提供的一种通信系统的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、系统、5G通信系统或未来的通信系统等。
示例性的,本申请实施例应用的通信系统100如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端进行通信。可选地,该网络设备110可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来通信系统中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端120。作为在此使用的“终端”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会 话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端或者未来演进的PLMN中的终端等。
可选地,终端120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G通信系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端120,网络设备110和终端120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为便于理解本申请实施例的技术方案,以下对本申请实施例相关的技术方案进行说明。
●LTE-V2X的资源池配置方法
在LTE-V2X中,在一个系统帧计数(System Frame Number,SFN)周期或一个直接帧计数(Direct Frame Number,DFN)周期内确定资源池的时域资源,具体地,通过以下方式确定一个SFN周期或一个DFN周期内的哪些时域资源属于资源池:
一个SFN周期或一个DFN周期包括10240个子帧,分别对应子帧0、1、2……10239。在10240个子帧中,去掉同步子帧、下行子帧、特殊子帧(即TDD系统中的下行子帧和特殊子帧)、以及预留子帧(reserved subframe),剩余的子帧重新编号后形成的子帧集合为
Figure PCTCN2020074765-appb-000001
其中,剩余的子帧的个数能够被L bitmap整除,L bitmap表示用于指示资源池配置的比特位图的长度。用于指示资源池配置的比特位图
Figure PCTCN2020074765-appb-000002
周期性的映射至剩余的各个子帧上,其中,比特位的取值为1表示该比特位对应的子帧属于资源池,比特位的取值为0表示该比特位对应的子帧不属于资源池。
如图2所示,一个SFN周期或一个DFN周期包括10240个子帧(即10240ms),同步信号的周期(简称为同步周期)是160ms,在一个同步周期内包括2个同步子帧,因此,在一个SFN周期内共有128个同步子帧。用于指示资源池配置的比特位图的长度是10比特(即L bitmap=10),因此需要2个预留子帧(reserved subframe),剩余子帧的个数是(10240-128-2=10110),可以被比特位图的长度10整除,将剩余的子帧重新编号为0,1,2,……,10109,比特位图前3位为1,其余7位为0,即
Figure PCTCN2020074765-appb-000003
Figure PCTCN2020074765-appb-000004
可见,在剩余子帧中,每10个子帧中的前3个子帧属于资源池,其余的子帧不属于资源池。由于在剩余子帧中需要比特位图重复1011次,以指示所有的子帧是否属于资源池,而在每个比特位图的周期内有3个子帧属于资源池,因此在一 个SFN周期共有3033个子帧属于资源池。
●NR-V2X
在NR-V2X中,需要支持自动驾驶,因此对车辆之间数据交互提出了更高的要求,如更高的吞吐量、更低的时延、更高的可靠性、更大的覆盖范围、更灵活的资源分配等。因此,与LTE V2X主要支持周期性业务不同,在NR V2X中,需要同时支持周期性业务和非周期性业务,而且非周期性业务可能占据主要比重。此外,为了降低数据传输时延,并增强资源分配的灵活性,NR V2X支持不同的子载波间隔(SubCarrier Space,SCS)和不同的时隙长度,具体的,在NR V2X中,子载波间隔可以是15kHz,30kHz,60kHz,或120kHz,而时隙长度可以是7~14个正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号,而在LTE V2X中,子载波间隔固定为15kHz,而时隙长度固定为14个单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)符号。
另外,在NR-V2X的一个资源池中,终端设备可以按照某一周期预留资源,在这种情况下,终端设备可以通过当前周期发送的侧行链路控制信息(Sidelink Control Information,SCI)预留以后一个或多个周期的资源,预留的一个或多个周期的资源用于不同的传输块(Transport Block,TB)的发送。而在有的资源池中,周期性的预留资源是被禁止的,在这种情况下,终端设备发送的SCI仅能够为相同TB的重传预留资源。
NR V2X中的资源池通过参数SL-ResourcePool配置,SL-ResourcePool的信息元素(Information Element,IE)参照以下表1所示,该IE用于确定NR侧行链路资源池(SL-ResourcePool)的配置信息。
Figure PCTCN2020074765-appb-000005
Figure PCTCN2020074765-appb-000006
Figure PCTCN2020074765-appb-000007
表1
在LTE V2X中,一个子帧内可用于侧行传输的符号数小于14,而在NR V2X中,一个时隙内可用于V2X传输的符号数可以小于14,从这方面看,LTE V2X的资源池配置方法不能应用于NR V2X中。另一方面,在LTE V2X中,为了保证一个SFN周期或DFN周期内可用于资源池配置的子帧数为指示资源池配置的比特位图长度的整数倍,一部分保留子帧不能用于资源池配置,从而降低了资源使用效率。为此,提出了本申请实施例的以下技术方案,本申请实施例的技术方案中,当一个SFN周期或DFN周期内存在不完整的侧行通信时隙,或存在基于非周期性预留的侧行资源时,可以有效且明确的确定资源池的时域资源,并能够提高资源的利用率。
图3为本申请实施例提供的时域资源的确定方法的流程示意图,如图3所示,所述时域资源的确定方法包括以下步骤:
步骤301:终端设备确定第一周期内的第一时隙集合。
本申请实施例中,所述第一时隙集合包括多个时隙,所述第一时隙集合是指可用于资源池配置的时隙集合,即所述第一时隙集合中的时隙是可用于资源池配置的时隙。
本申请实施例中,所述终端设备从第一周期内确定所述第一时隙集合。在一可选方式中,所述第一周期为一个SFN周期。在另一可选方式中,所述第一周期为一个DFN周期。
在本申请一可选方式中,所述终端设备确定第一周期内的第一时隙集合为:
Figure PCTCN2020074765-appb-000008
其中,
Figure PCTCN2020074765-appb-000009
所述M的取值为所述第一周期内包含的子帧个数,所述μ的取值基于部分带宽(BandWidth Part,BWP)上的子载波间隔确定。
上述方案中,可选地,所述M的取值为10240。以SFN周期为例,一个SFN周期包括1024个SFN,一个SFN包括10个子帧,因此,一个SFN周期包括10240个子帧。
上述方案中,可选地,μ的取值和终端设备的当前BWP上的子载波间隔具有关联关系,具体地,μ的取值和子载波间隔之间的对应关系如下表2所示:
μ Δf=2 μ·15[kHz]
0 15
1 30
2 60
3 120
4 240
表2
其中,Δf表示子载波间隔,单位为kHz。
进一步,上述方案中的时隙的索引是相对于SFN#0或DFN#0内的第一个时隙的索引进行编号的。
本申请实施例中,所述第一时隙集合的实现方式可以有以下两种实现方式,以下对这两种实现方式进行描述。
方式1-1:所述第一时隙集合中包含所述第一周期中除以下时隙以外的所有时隙:
第一类时隙,所述第一类时隙用于发送侧行链路同步信号块(Sidelink Synchronization Signal Block,S-SSB);
第二类时隙,所述第二类时隙中的从第m个符号开始的N个连续符号中至少有 一个符号不是上行符号,m和N为正整数,且0≤m<13;
第三类时隙,所述第三类时隙是指保留时隙。
进一步,以下对上述第一类时隙进行解释说明:如果一个时隙是用于发送S-SSB的时隙,那么,该时隙属于第一类时隙。所述第一周期内包含的第一类时隙的个数记为N S-SSB
进一步,以下对上述第二类时隙进行解释说明:如果一个时隙中配置了下行符号、灵活符号和上行符号中的至少一种,该时隙从第m个符号开始的N个连续符号中至少有一个符号不是上行符号(即N个连续符号不全是上行符号),那么,该时隙属于第二类时隙。可选地,第二类时隙也可以称为不完整上行时隙。其中,m和N为针对当前BWP配置的值或预配置的值。所述第一周期内包含的第二类时隙的个数记为N df
需要说明的是,这里的符号是指时域上的OFDM符号。
进一步,以下对上述第三类时隙进行解释说明:第三类时隙是指保留时隙,第三类时隙(即保留时隙)可以按照以下方式确定:所述第一周期中除所述第一类时隙和所述第二类时隙以外的所有时隙形成以下第二时隙集合:
Figure PCTCN2020074765-appb-000010
其中,所述第二时隙集合中的时隙按照时隙索引从小到大进行排列;所述N S-SSB是指所述第一周期内包含的所述第一类时隙的个数,所述N df是指所述第一周期内包含的所述第二类时隙的个数;
Figure PCTCN2020074765-appb-000011
则所述第二时隙集合中的时隙l r属于所述第三类时隙;其中,0≤r<M×2 μ-N S-SSB-N df,N reserved=M×2 μ-N S-SSB-N dfmod L bitmap,所述L bitmap表示所述第一比特位图的长度。
进一步,可选地,所述终端设备根据网络配置信令或者预配置信令确定L bitmap(即所述第一比特位图的长度)的取值。
方式1-2:所述第一时隙集合中包含所述第一周期中除以下时隙以外的所有时隙:
第一类时隙,所述第一类时隙用于发送S-SSB;
第二类时隙,所述第二类时隙中的从第m个符号开始的N个连续符号中至少有一个符号不是上行符号,m和N为正整数,且0≤m<13。
这里,所述第一类时隙和所述第二类时隙的解释说明可以参照前述描述理解。
本申请实施例中,如果一个时隙中从第m个符号开始的N个连续符号均为上行符号或侧行符号,则该时隙可以被配置为资源池中的时隙。
步骤302:所述终端设备根据第一比特位图从所述第一时隙集合中选取部分时隙,所述部分时隙组成资源池的时域资源。
本申请实施例中,所述第一比特位图用于指示所述资源池的时域配置,所述第一比特位图的长度记为L bitmap。进一步,可选地,所述终端设备根据网络配置信令或者预配置信令确定L bitmap的取值。
本申请实施例中,从所述第一时隙集合中选取部分时隙(即确定所述第一时隙集合中的哪些时隙属于资源池的时隙)的实现方式可以有以下两种实现方式,以下对这两种实现方式进行描述。
方式2-1:
对应于上述方式1-1确定所述第一时隙集合的情况,所述终端设备根据第一比特位图
Figure PCTCN2020074765-appb-000012
确定属于资源池的时隙
Figure PCTCN2020074765-appb-000013
0≤k<M×2 μ-N S-SSB-N df-N reserved,且k满足
Figure PCTCN2020074765-appb-000014
其中,所述N S-SSB是指所述第一周期内包含的所述第一类时隙的个数,所述N df是 指所述第一周期内包含的所述第二类时隙的个数,所述N reserved是指所述第一周期内包含的所述第三类时隙的个数,所述L bitmap表示所述第一比特位图的长度。
具体实现时,所述第一比特位图周期性的映射至所述第一时隙集合中的各个时隙上,其中,所述第一比特位图中的比特位的取值为第一值表示该比特位对应的时隙属于所述资源池,所述第一比特位图中的比特位的取值为第二值表示该比特位对应的时隙不属于所述资源池。进一步,可选地,所述第一值为1,所述第二值为0。
对于这种方式来说,所述第一时隙集合包含的时隙个数和所述第一比特位图的长度满足整数倍关系。即所述第一周期内保证可配置为资源池的时隙个数为用于指示资源池配置的比特位图长度的整数倍。
通过这种方式,可以保证不用第一周期内的资源池的时域资源位置相对保持不变,有利于支持周期性的数据传输。
方式2-2:
对应于上述方式1-2确定所述第一时隙集合的情况,所述终端设备根据第一比特位图
Figure PCTCN2020074765-appb-000015
确定属于资源池的时隙
Figure PCTCN2020074765-appb-000016
0≤k<M×2 μ-N S-SSB-N df,且k满足
Figure PCTCN2020074765-appb-000017
其中,所述N S-SSB是指所述第一周期内包含的所述第一类时隙的个数,所述N df是指所述第一周期内包含的所述第二类时隙的个数,所述L bitmap表示所述第一比特位图的长度。
具体实现时,所述第一比特位图周期性的映射至所述第一时隙集合中的各个时隙上,其中,所述第一比特位图中的比特位的取值为第一值表示该比特位对应的时隙属于所述资源池,所述第一比特位图中的比特位的取值为第二值表示该比特位对应的时隙不属于所述资源池;进一步,可选地,所述第一值为1,所述第二值为0。
对于这种方式来说,所述第一时隙集合包含的时隙个数和所述第一比特位图的长度有可能满足整数倍关系,也有可能不满足整数倍关系。进一步,所述第一时隙集合包含的时隙个数和所述第一比特位图的长度不满足整数倍关系的情况下,所述第一比特位图映射到所述第一时隙集合的最后一个时隙后,所述第一比特位图中超出所述第一时隙集合的部分比特位图被截断。
参照图4,以所述第一周期为一个SFN周期为例,一个SFN周期内有10240个时隙,其中有部分时隙配置成为第一类时隙(即用于发送S-SSB的时隙)和/或第二类时隙(即不完整上行时隙),从10240个时隙中排除上述第一类时隙和/或第二类时隙后,可配置为资源池的时隙个数为10116,而用于资源池配置的比特位图的长度为10,所以最后比特位图有4位将超出一个SFN周期,因此将该4位截断,通过截断的比特位图可以确定资源池的时隙位置。
通过这种方式,在资源池的配置中,可以避免排除额外的保留时隙,从而能够提高资源的利用率。
在本申请一可选方式中,对于一个将要确定的资源池,如果周期性资源预留设置为激活状态,则按照上述方式1-1结合方式1-2确定资源池的时域资源。如果周期性资源预留设置为去激活状态,则按照上述方式2-1结合方式2-2确定资源池的时域资源。
举个例子:所述终端设备确定所述资源池对应的第一配置参数,所述第一配置参数中包含的值用于确定资源预留周期,所述第一配置参数包含至少一个不为零的值;和/或,所述终端设备确定所述资源池对应的第二配置参数,所述第二配置参数被设置为激活状态,所述激活状态用于指示所述终端设备能够通过调度一个TB的SCI预留用于另外一个TB初始传输的资源。对于这样的配置参数,终端设备按照上述方式1-1结合方式1-2确定资源池的时域资源。这里,所述第一配置参数例如是 sl-ResourceReservePeriodList。
举个例子:所述终端设备确定所述资源池对应的第一配置参数,所述第一配置参数中包含的值用于确定资源预留周期,所述第一配置参数包含的值均为零;和/或,所述终端设备确定所述资源池对应的第二配置参数,所述第二配置参数被设置为去激活状态,所述去激活状态用于指示所述终端设备不能够通过调度一个TB的SCI预留用于另外一个TB初始传输的资源。对于这样的配置参数,终端设备按照上述方式2-1结合方式2-2确定资源池的时域资源。这里,所述第二配置参数例如是sl-MultiReserveResource。
举个例子:如果终端设备将要确定的资源池对应的配置参数sl-ResourceReservePeriodList中包含不为零的值,表示在该资源池内,终端设备可以按照sl-ResourceReservePeriodList中指示的某一个周期预留资源,在这种情况下,终端设备按照上述方式1-1结合方式1-2确定该资源池的时域资源。反之,终端设备按照上述方式2-1结合方式2-2确定该资源池的时域资源。
举个例子:如果终端设备将要确定的资源池对应的配置参数sl-MultiReserveResource设置成为“激活(enabled)”,表示在该资源池内,终端设备可以通过调度一个TB的SCI预留用于另外一个TB初始传输的资源,在这种情况下,终端设备按照上述方式1-1结合方式1-2确定该资源池的时域资源。反之,终端设备按照上述方式2-1结合方式2-2确定该资源池的时域资源。
通过上述方案,当资源池内支持周期性的资源预留时,可以保证不用第一周期内的资源池的时域资源位置相对保持不变,有利于支持周期性的数据传输。而对于不支持周期性资源预留的资源池,在资源池的配置中,可以避免排除额外的保留时隙,从而能够提高资源的利用率。
需要说明的是,对于方式1-1来说,如果调度一个TB发送的SCI指示用于不同TB的资源预留,则部分保留时隙不能用于资源池配置,以保证在第一周期内可以配置为资源池的时隙个数为指示资源池配置的比特位图长度的整数倍。对于方式1-2来说,如果调度一个TB发送的SCI不能指示用于不同TB的资源预留,则部分保留时隙能用于资源池配置,进一步,如果第一周期内可配置为资源池的时隙个数不是用于资源池配置的比特位图长度的整数倍,则用于资源池配置的比特位图映射到第一周期内的最后一个时隙后,将超出第一周期的比特位图截断。
通过本申请实施例的技术方案,当NR V2X中存在不完整上行时隙,或存在基于非周期性预留的侧行发送时,可以有效且明确的确定资源池的时域资源,并能够提高资源的利用率。
图5为本申请实施例提供的时域资源的确定装置的结构组成示意图,如图5所示,所述时域资源的确定装置包括:
确定单元501,用于确定第一周期内的第一时隙集合;根据第一比特位图从所述第一时隙集合中选取部分时隙,所述部分时隙组成资源池的时域资源。
在一可选方式中,所述确定单元501,用于确定第一周期内的第一时隙集合为:
Figure PCTCN2020074765-appb-000018
其中,
Figure PCTCN2020074765-appb-000019
所述M的取值为所述第一周期内包含的子帧个数,所述μ的取值基于BWP上的子载波间隔确定。
在一可选方式中,所述第一时隙集合中包含所述第一周期中除以下时隙以外的所有时隙:
第一类时隙,所述第一类时隙用于发送侧行链路同步信号块S-SSB;
第二类时隙,所述第二类时隙中的从第m个符号开始的N个连续符号中至少有一个符号不是上行符号,m和N为正整数,且0≤m<13;
第三类时隙,所述第三类时隙是指保留时隙。
在一可选方式中,所述第一周期中除所述第一类时隙和所述第二类时隙以外的所有时隙形成以下第二时隙集合:
Figure PCTCN2020074765-appb-000020
其中,所述N S-SSB是指所述第一周期内包含的所述第一类时隙的个数,所述N df是指所述第一周期内包含的所述第二类时隙的个数;
Figure PCTCN2020074765-appb-000021
则所述第二时隙集合中的时隙l r属于所述第三类时隙;
其中,0≤r<M×2 μ-N S-SSB-N df,N reserved=M×2 μ-N S-SSB-N dfmod L bitmap,所述L bitmap表示所述第一比特位图的长度。
在一可选方式中,所述第一比特位图用于指示所述资源池的时域配置;
所述确定单元501,用于根据第一比特位图
Figure PCTCN2020074765-appb-000022
确定属于资源池的时隙
Figure PCTCN2020074765-appb-000023
0≤k<M×2 μ-N S-SSB-N df-N reserved,且k满足
Figure PCTCN2020074765-appb-000024
其中,所述N S-SSB是指所述第一周期内包含的所述第一类时隙的个数,所述N df是指所述第一周期内包含的所述第二类时隙的个数,所述N reserved是指所述第一周期内包含的所述第三类时隙的个数,所述L bitmap表示所述第一比特位图的长度。
在一可选方式中,所述第一比特位图周期性的映射至所述第一时隙集合中的各个时隙上,其中,所述第一比特位图中的比特位的取值为第一值表示该比特位对应的时隙属于所述资源池,所述第一比特位图中的比特位的取值为第二值表示该比特位对应的时隙不属于所述资源池;
所述第一时隙集合包含的时隙个数和所述第一比特位图的长度满足整数倍关系。
在一可选方式中,所述确定单元501,还用于确定所述资源池对应的第一配置参数,所述第一配置参数中包含的值用于确定资源预留周期,所述第一配置参数包含至少一个不为零的值;和/或,确定所述资源池对应的第二配置参数,所述第二配置参数被设置为激活状态,所述激活状态用于指示所述终端设备能够通过调度一个TB的SCI预留用于另外一个TB初始传输的资源。
在一可选方式中,所述第一时隙集合中包含所述第一周期中除以下时隙以外的所有时隙:
第一类时隙,所述第一类时隙用于发送S-SSB;
第二类时隙,所述第二类时隙中的从第m个符号开始的N个连续符号中至少有一个符号不是上行符号,m和N为正整数,且0≤m<13。
在一可选方式中,所述第一比特位图用于指示所述资源池的时域配置;
所述确定单元501,用于根据第一比特位图
Figure PCTCN2020074765-appb-000025
确定属于资源池的时隙
Figure PCTCN2020074765-appb-000026
0≤k<M×2 μ-N S-SSB-N df,且k满足
Figure PCTCN2020074765-appb-000027
其中,所述N S-SSB是指所述第一周期内包含的所述第一类时隙的个数,所述N df是指所述第一周期内包含的所述第二类时隙的个数。
在一可选方式中,所述第一比特位图周期性的映射至所述第一时隙集合中的各个时隙上,其中,所述第一比特位图中的比特位的取值为第一值表示该比特位对应的时隙属于所述资源池,所述第一比特位图中的比特位的取值为第二值表示该比特位对应的时隙不属于所述资源池;
所述第一时隙集合包含的时隙个数和所述第一比特位图的长度不满足整数倍关系的情况下,所述第一比特位图映射到所述第一时隙集合的最后一个时隙后,所述第 一比特位图中超出所述第一时隙集合的部分比特位图被截断。
在一可选方式中,所述确定单元501,还用于确定所述资源池对应的第一配置参数,所述第一配置参数中包含的值用于确定资源预留周期,所述第一配置参数包含的值均为零;和/或,确定所述资源池对应的第二配置参数,所述第二配置参数被设置为去激活状态,所述去激活状态用于指示所述终端设备不能够通过调度一个TB的SCI预留用于另外一个TB初始传输的资源。
在一可选方式中,所述M的取值为10240。
在一可选方式中,所述第一周期为一个SFN周期或者一个DFN周期。
本领域技术人员应当理解,本申请实施例的上述时域资源的确定装置的相关描述可以参照本申请实施例的时域资源的确定方法的相关描述进行理解。
图6是本申请实施例提供的一种通信设备600示意性结构图。该通信设备可以是终端设备,也可以是网络设备,图6所示的通信设备600包括处理器610,处理器610可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图6所示,通信设备600还可以包括存储器620。其中,处理器610可以从存储器620中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器620可以是独立于处理器610的一个单独的器件,也可以集成在处理器610中。
可选地,如图6所示,通信设备600还可以包括收发器630,处理器610可以控制该收发器630与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器630可以包括发射机和接收机。收发器630还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备600具体可为本申请实施例的网络设备,并且该通信设备600可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备600具体可为本申请实施例的移动终端/终端设备,并且该通信设备600可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图7是本申请实施例的芯片的示意性结构图。图7所示的芯片700包括处理器710,处理器710可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图7所示,芯片700还可以包括存储器720。其中,处理器710可以从存储器720中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器720可以是独立于处理器710的一个单独的器件,也可以集成在处理器710中。
可选地,该芯片700还可以包括输入接口730。其中,处理器710可以控制该输入接口730与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片700还可以包括输出接口740。其中,处理器710可以控制该输出接口740与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的移动终端/终端设备,并且该芯片可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图8是本申请实施例提供的一种通信系统800的示意性框图。如图8所示,该通信系统800包括终端设备810和网络设备820。
其中,该终端设备810可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备820可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (31)

  1. 一种时域资源的确定方法,所述方法包括:
    终端设备确定第一周期内的第一时隙集合;
    所述终端设备根据第一比特位图从所述第一时隙集合中选取部分时隙,所述部分时隙组成资源池的时域资源。
  2. 根据权利要求1所述的方法,其中,所述终端设备确定第一周期内的第一时隙集合,包括:
    所述终端设备确定第一周期内的第一时隙集合为:
    Figure PCTCN2020074765-appb-100001
    其中,
    Figure PCTCN2020074765-appb-100002
    所述M的取值为所述第一周期内包含的子帧个数,所述μ的取值基于部分带宽BWP上的子载波间隔确定。
  3. 根据权利要求2所述的方法,其中,所述第一时隙集合中包含所述第一周期中除以下时隙以外的所有时隙:
    第一类时隙,所述第一类时隙用于发送侧行链路同步信号块S-SSB;
    第二类时隙,所述第二类时隙中的从第m个符号开始的N个连续符号中至少有一个符号不是上行符号,m和N为正整数,且0≤m<13;
    第三类时隙,所述第三类时隙是指保留时隙。
  4. 根据权利要求3所述的方法,其中,所述第一周期中除所述第一类时隙和所述第二类时隙以外的所有时隙形成以下第二时隙集合:
    Figure PCTCN2020074765-appb-100003
    其中,所述N S-SSB是指所述第一周期内包含的所述第一类时隙的个数,所述N df是指所述第一周期内包含的所述第二类时隙的个数;
    Figure PCTCN2020074765-appb-100004
    则所述第二时隙集合中的时隙l r属于所述第三类时隙;
    其中,0≤r<M×2 μ-N S-SSB-N df,N reserved=M×2 μ-N S-SSB-N dfmid L bitmap,所述L bitmap表示所述第一比特位图的长度。
  5. 根据权利要求3或4所述的方法,其中,所述第一比特位图用于指示所述资源池的时域配置;
    所述终端设备根据第一比特位图从所述第一时隙集合中选取部分时隙,包括:
    所述终端设备根据第一比特位图
    Figure PCTCN2020074765-appb-100005
    确定属于资源池的时隙
    Figure PCTCN2020074765-appb-100006
    0≤k<M×2 μ-N S-SSB-N df-N reserved,且k满足
    Figure PCTCN2020074765-appb-100007
    其中,所述N S-SSB是指所述第一周期内包含的所述第一类时隙的个数,所述N df是指所述第一周期内包含的所述第二类时隙的个数,所述N reserved是指所述第一周期内包含的所述第三类时隙的个数,所述L bitmap表示所述第一比特位图的长度。
  6. 根据权利要求3至5中任一项所述的方法,其中,所述第一比特位图周期性的映射至所述第一时隙集合中的各个时隙上,其中,所述第一比特位图中的比特位的取值为第一值表示该比特位对应的时隙属于所述资源池,所述第一比特位图中的比特位的取值为第二值表示该比特位对应的时隙不属于所述资源池;
    所述第一时隙集合包含的时隙个数和所述第一比特位图的长度满足整数倍关系。
  7. 根据权利要求3至6中任一项所述的方法,其中,所述方法还包括:
    所述终端设备确定所述资源池对应的第一配置参数,所述第一配置参数中包含的 值用于确定资源预留周期,所述第一配置参数包含至少一个不为零的值;和/或,
    所述终端设备确定所述资源池对应的第二配置参数,所述第二配置参数被设置为激活状态,所述激活状态用于指示所述终端设备能够通过调度一个传输块TB的侧行链路控制信息SCI预留用于另外一个TB初始传输的资源。
  8. 根据权利要求2所述的方法,其中,所述第一时隙集合中包含所述第一周期中除以下时隙以外的所有时隙:
    第一类时隙,所述第一类时隙用于发送S-SSB;
    第二类时隙,所述第二类时隙中的从第m个符号开始的N个连续符号中至少有一个符号不是上行符号,m和N为正整数,且0≤m<13。
  9. 根据权利要求8所述的方法,其中,所述第一比特位图用于指示所述资源池的时域配置;
    所述终端设备根据第一比特位图从所述第一时隙集合中选取部分时隙,包括:
    所述终端设备根据第一比特位图
    Figure PCTCN2020074765-appb-100008
    确定属于资源池的时隙
    Figure PCTCN2020074765-appb-100009
    0≤k<M×2 μ-N S-SSB-N df,且k满足
    Figure PCTCN2020074765-appb-100010
    其中,所述N S-SSB是指所述第一周期内包含的所述第一类时隙的个数,所述N df是指所述第一周期内包含的所述第二类时隙的个数。
  10. 根据权利要求8或9所述的方法,其中,所述第一比特位图周期性的映射至所述第一时隙集合中的各个时隙上,其中,所述第一比特位图中的比特位的取值为第一值表示该比特位对应的时隙属于所述资源池,所述第一比特位图中的比特位的取值为第二值表示该比特位对应的时隙不属于所述资源池;
    所述第一时隙集合包含的时隙个数和所述第一比特位图的长度不满足整数倍关系的情况下,所述第一比特位图映射到所述第一时隙集合的最后一个时隙后,所述第一比特位图中超出所述第一时隙集合的部分比特位图被截断。
  11. 根据权利要求8至10中任一项所述的方法,其中,所述方法还包括:
    所述终端设备确定所述资源池对应的第一配置参数,所述第一配置参数中包含的值用于确定资源预留周期,所述第一配置参数包含的值均为零;和/或,
    所述终端设备确定所述资源池对应的第二配置参数,所述第二配置参数被设置为去激活状态,所述去激活状态用于指示所述终端设备不能够通过调度一个TB的SCI预留用于另外一个TB初始传输的资源。
  12. 根据权利要求2至11中任一项所述的方法,其中,所述M的取值为10240。
  13. 根据权利要求1至12中任一项所述的方法,其中,所述第一周期为一个系统帧计数SFN周期或者一个直接帧计数DFN周期。
  14. 一种时域资源的确定装置,所述装置包括:
    确定单元,用于确定第一周期内的第一时隙集合;根据第一比特位图从所述第一时隙集合中选取部分时隙,所述部分时隙组成资源池的时域资源。
  15. 根据权利要求14所述的装置,其中,所述确定单元,用于确定第一周期内的第一时隙集合为:
    Figure PCTCN2020074765-appb-100011
    其中,
    Figure PCTCN2020074765-appb-100012
    所述M的取值为所述第一周期内包含的子帧个数,所述μ的取值基于BWP上的子载波间隔确定。
  16. 根据权利要求15所述的装置,其中,所述第一时隙集合中包含所述第一周期中除以下时隙以外的所有时隙:
    第一类时隙,所述第一类时隙用于发送侧行链路同步信号块S-SSB;
    第二类时隙,所述第二类时隙中的从第m个符号开始的N个连续符号中至少有 一个符号不是上行符号,m和N为正整数,且0≤m<13;
    第三类时隙,所述第三类时隙是指保留时隙。
  17. 根据权利要求16所述的装置,其中,所述第一周期中除所述第一类时隙和所述第二类时隙以外的所有时隙形成以下第二时隙集合:
    Figure PCTCN2020074765-appb-100013
    其中,所述N S-SSB是指所述第一周期内包含的所述第一类时隙的个数,所述N df是指所述第一周期内包含的所述第二类时隙的个数;
    Figure PCTCN2020074765-appb-100014
    则所述第二时隙集合中的时隙l r属于所述第三类时隙;
    其中,0≤r<M×2 μ-N S-SSB-N df,N reserved=M×2 μ-N S-SSB-N dfmod L bitmap,所述L bitmap表示所述第一比特位图的长度。
  18. 根据权利要求16或17所述的装置,其中,所述第一比特位图用于指示所述资源池的时域配置;
    所述确定单元,用于根据第一比特位图
    Figure PCTCN2020074765-appb-100015
    确定属于资源池的时隙
    Figure PCTCN2020074765-appb-100016
    0≤k<M×2 μ-N S-SSB-N df-N reserved,且k满足
    Figure PCTCN2020074765-appb-100017
    其中,所述N S-SSB是指所述第一周期内包含的所述第一类时隙的个数,所述N df是指所述第一周期内包含的所述第二类时隙的个数,所述N reserved是指所述第一周期内包含的所述第三类时隙的个数,所述L bitmap表示所述第一比特位图的长度。
  19. 根据权利要求16至18中任一项所述的装置,其中,所述第一比特位图周期性的映射至所述第一时隙集合中的各个时隙上,其中,所述第一比特位图中的比特位的取值为第一值表示该比特位对应的时隙属于所述资源池,所述第一比特位图中的比特位的取值为第二值表示该比特位对应的时隙不属于所述资源池;
    所述第一时隙集合包含的时隙个数和所述第一比特位图的长度满足整数倍关系。
  20. 根据权利要求16至19中任一项所述的装置,其中,所述确定单元,还用于确定所述资源池对应的第一配置参数,所述第一配置参数中包含的值用于确定资源预留周期,所述第一配置参数包含至少一个不为零的值;和/或,确定所述资源池对应的第二配置参数,所述第二配置参数被设置为激活状态,所述激活状态用于指示所述终端设备能够通过调度一个TB的SCI预留用于另外一个TB初始传输的资源。
  21. 根据权利要求15所述的装置,其中,所述第一时隙集合中包含所述第一周期中除以下时隙以外的所有时隙:
    第一类时隙,所述第一类时隙用于发送S-SSB;
    第二类时隙,所述第二类时隙中的从第m个符号开始的N个连续符号中至少有一个符号不是上行符号,m和N为正整数,且0≤m<13。
  22. 根据权利要求21所述的装置,其中,所述第一比特位图用于指示所述资源池的时域配置;
    所述确定单元,用于根据第一比特位图
    Figure PCTCN2020074765-appb-100018
    确定属于资源池的时隙
    Figure PCTCN2020074765-appb-100019
    0≤k<M×2 μ-N S-SSB-N df,且k满足
    Figure PCTCN2020074765-appb-100020
    其中,所述N S-SSB是指所述第一周期内包含的所述第一类时隙的个数,所述N df是指所述第一周期内包含的所述第二类时隙的个数。
  23. 根据权利要求21或22所述的装置,其中,所述第一比特位图周期性的映射至所述第一时隙集合中的各个时隙上,其中,所述第一比特位图中的比特位的取值为第一值表示该比特位对应的时隙属于所述资源池,所述第一比特位图中的比特位的取 值为第二值表示该比特位对应的时隙不属于所述资源池;
    所述第一时隙集合包含的时隙个数和所述第一比特位图的长度不满足整数倍关系的情况下,所述第一比特位图映射到所述第一时隙集合的最后一个时隙后,所述第一比特位图中超出所述第一时隙集合的部分比特位图被截断。
  24. 根据权利要求21至23中任一项所述的装置,其中,所述确定单元,还用于确定所述资源池对应的第一配置参数,所述第一配置参数中包含的值用于确定资源预留周期,所述第一配置参数包含的值均为零;和/或,确定所述资源池对应的第二配置参数,所述第二配置参数被设置为去激活状态,所述去激活状态用于指示所述终端设备不能够通过调度一个TB的SCI预留用于另外一个TB初始传输的资源。
  25. 根据权利要求15至24中任一项所述的装置,其中,所述M的取值为10240。
  26. 根据权利要求14至25中任一项所述的装置,其中,所述第一周期为一个SFN周期或者一个DFN周期。
  27. 一种终端设备,包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至13中任一项所述的方法。
  28. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至13中任一项所述的方法。
  29. 一种计算机可读存储介质,用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法。
  30. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至13中任一项所述的方法。
  31. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1至13中任一项所述的方法。
PCT/CN2020/074765 2020-02-11 2020-02-11 一种时域资源的确定方法及装置、终端设备 WO2021159281A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
PCT/CN2020/074765 WO2021159281A1 (zh) 2020-02-11 2020-02-11 一种时域资源的确定方法及装置、终端设备
BR112022007101A BR112022007101A2 (pt) 2020-02-11 2020-02-11 Método e aparelho para determinar um recurso de domínio de tempo
CN202111176211.7A CN113993215B (zh) 2020-02-11 2020-02-11 一种时域资源的确定方法及装置、终端设备
KR1020227009378A KR20220138044A (ko) 2020-02-11 2020-02-11 타임 도메인 자원의 결정 방법, 장치, 및 단말 기기
JP2022517509A JP2023519463A (ja) 2020-02-11 2020-02-11 時間領域リソースの決定方法及び装置、端末機器
CA3152932A CA3152932A1 (en) 2020-02-11 2020-02-11 Time domain resource determination method and apparatus, and terminal device
EP20918791.3A EP4120758A4 (en) 2020-02-11 2020-02-11 METHOD AND APPARATUS FOR DETERMINING TIME DOMAIN RESOURCES AND TERMINAL DEVICE
CN202080012000.7A CN113545151A (zh) 2020-02-11 2020-02-11 一种时域资源的确定方法及装置、终端设备
US17/675,139 US20220174671A1 (en) 2020-02-11 2022-02-18 Method and apparatus for determining time domain resource, and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/074765 WO2021159281A1 (zh) 2020-02-11 2020-02-11 一种时域资源的确定方法及装置、终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/675,139 Continuation US20220174671A1 (en) 2020-02-11 2022-02-18 Method and apparatus for determining time domain resource, and terminal device

Publications (1)

Publication Number Publication Date
WO2021159281A1 true WO2021159281A1 (zh) 2021-08-19

Family

ID=77291352

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/074765 WO2021159281A1 (zh) 2020-02-11 2020-02-11 一种时域资源的确定方法及装置、终端设备

Country Status (8)

Country Link
US (1) US20220174671A1 (zh)
EP (1) EP4120758A4 (zh)
JP (1) JP2023519463A (zh)
KR (1) KR20220138044A (zh)
CN (2) CN113545151A (zh)
BR (1) BR112022007101A2 (zh)
CA (1) CA3152932A1 (zh)
WO (1) WO2021159281A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023201514A1 (en) * 2022-04-19 2023-10-26 Qualcomm Incorporated Techniques for communicating sidelink synchronization signals in existing wireless communication deployments

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024338A (zh) * 2016-11-03 2018-05-11 中兴通讯股份有限公司 子帧配置方法及装置
CN110740434A (zh) * 2018-07-20 2020-01-31 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2020025064A1 (en) * 2018-08-03 2020-02-06 FG Innovation Company Limited Sidelink radio resource allocation

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20180036476A (ko) * 2016-09-30 2018-04-09 주식회사 아이티엘 V2x를 위한 자원 풀 결정 방법 및 장치
CN108076525B (zh) * 2018-01-19 2022-03-18 宇龙计算机通信科技(深圳)有限公司 上行时域资源调度方法和网络设备
CN110351032B (zh) * 2018-04-02 2022-04-26 华为技术有限公司 资源配置方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024338A (zh) * 2016-11-03 2018-05-11 中兴通讯股份有限公司 子帧配置方法及装置
CN110740434A (zh) * 2018-07-20 2020-01-31 上海朗帛通信技术有限公司 一种被用于无线通信的节点中的方法和装置
WO2020025064A1 (en) * 2018-08-03 2020-02-06 FG Innovation Company Limited Sidelink radio resource allocation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "Discussion on mode 1 resource allocation for NR V2X", 3GPP DRAFT; R1-1912078, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051819950 *
ITL: "Physical layer structure for NR V2X", 3GPP DRAFT; R1-1912370, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051820011 *
See also references of EP4120758A4 *

Also Published As

Publication number Publication date
BR112022007101A2 (pt) 2022-08-23
JP2023519463A (ja) 2023-05-11
EP4120758A1 (en) 2023-01-18
CN113545151A (zh) 2021-10-22
CN113993215B (zh) 2023-08-04
EP4120758A4 (en) 2023-07-05
KR20220138044A (ko) 2022-10-12
CA3152932A1 (en) 2021-08-19
CN113993215A (zh) 2022-01-28
US20220174671A1 (en) 2022-06-02

Similar Documents

Publication Publication Date Title
TWI829760B (zh) 用於側行鏈路的通信方法和設備
WO2020191636A1 (zh) 通信方法、终端设备和网络设备
WO2020029256A1 (zh) 一种数据传输方法、终端设备及网络设备
WO2020056696A1 (zh) 一种资源分配方法及装置、终端
WO2021155594A1 (zh) 一种选取资源的方法及装置、终端设备
WO2020198983A1 (zh) 一种用于非授权频谱的无线通信方法及装置、通信设备
TW202015450A (zh) 通訊方法、終端設備和網路設備
WO2020163986A1 (zh) 一种资源指示方法、终端设备及网络设备
WO2020252708A1 (zh) 无线通信方法、终端设备和网络设备
WO2019238118A1 (zh) 一种资源配置方法及设备、计算机可读存储介质
WO2020061776A9 (zh) 一种反馈资源的复用方法、终端设备及网络设备
TW202034714A (zh) 一種回饋資訊長度的確定方法及裝置、通訊設備
WO2021203270A1 (zh) 一种时域资源的确定方法及装置、终端设备
WO2021159281A1 (zh) 一种时域资源的确定方法及装置、终端设备
WO2021000239A1 (zh) 无线通信方法、网络设备和终端设备
WO2021035557A1 (zh) 一种资源配置方法及装置、终端设备、网络设备
WO2020087854A1 (zh) 无线通信方法和设备
TW202008817A (zh) 一種訊號傳輸方法及適用該方法的裝置、終端設備及網路設備
WO2020061773A9 (zh) 一种反馈资源分配方法、终端设备及网络设备
WO2021203230A1 (zh) 上行控制信息传输方法及装置、终端设备
WO2021146950A1 (zh) 一种确定重传资源的方法及装置、终端设备
WO2021026708A1 (zh) 用于侧行链路的能力上报的方法、终端设备和网络设备
WO2021097687A1 (zh) 一种时域资源确定方法及装置、终端设备
WO2021030996A1 (zh) 一种信道处理方法、终端设备及存储介质
WO2021031128A1 (zh) 传输数据的方法、终端设备和网络设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20918791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022517509

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3152932

Country of ref document: CA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022007101

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022007101

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220413

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020918791

Country of ref document: EP

Effective date: 20220912