WO2020061773A9 - 一种反馈资源分配方法、终端设备及网络设备 - Google Patents

一种反馈资源分配方法、终端设备及网络设备 Download PDF

Info

Publication number
WO2020061773A9
WO2020061773A9 PCT/CN2018/107419 CN2018107419W WO2020061773A9 WO 2020061773 A9 WO2020061773 A9 WO 2020061773A9 CN 2018107419 W CN2018107419 W CN 2018107419W WO 2020061773 A9 WO2020061773 A9 WO 2020061773A9
Authority
WO
WIPO (PCT)
Prior art keywords
feedback
granularity
multiplexing
resources
information
Prior art date
Application number
PCT/CN2018/107419
Other languages
English (en)
French (fr)
Other versions
WO2020061773A1 (zh
Inventor
林亚男
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN201880097325.2A priority Critical patent/CN112655164A/zh
Priority to EP18935338.6A priority patent/EP3840267B1/en
Priority to AU2018443812A priority patent/AU2018443812A1/en
Priority to JP2021514519A priority patent/JP2022511321A/ja
Priority to CN202111618728.7A priority patent/CN114172624B/zh
Priority to KR1020217007831A priority patent/KR20210065942A/ko
Priority to PCT/CN2018/107419 priority patent/WO2020061773A1/zh
Priority to TW108133872A priority patent/TW202019221A/zh
Publication of WO2020061773A1 publication Critical patent/WO2020061773A1/zh
Publication of WO2020061773A9 publication Critical patent/WO2020061773A9/zh
Priority to US17/196,785 priority patent/US20210195628A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1825Adaptation of specific ARQ protocol parameters according to transmission conditions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1896ARQ related signaling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows

Definitions

  • the present invention relates to the field of information processing technology, in particular to a feedback resource allocation method, terminal equipment, network equipment, chip, computer readable storage medium, computer program product, and computer program.
  • the base station uses downlink scheduling signaling, such as the physical downlink shared channel (PDSCH, Physical Downlink Shared Channel)-to-hybrid in the downlink control information (DCI, Downlink Control Information)
  • the automatic repeat request (HARQ, Hybrid Automatic Repeat reQuest, HARQ) feedback (feedback) timing (timing) indication (indicator) information field indicates the transmission of the DCI or the feedback information corresponding to the PDSCH scheduled by the DCI, such as acknowledgement (ACK)/no Acknowledgment (NACK) time slot.
  • ACK acknowledgement
  • NACK no Acknowledgment
  • embodiments of the present invention provide a feedback resource allocation method, terminal equipment, network equipment, chip, computer readable storage medium, computer program product, and computer program.
  • an embodiment of the present invention provides a feedback resource allocation method applied to a terminal device, including:
  • the feedback multiplexing granularity is used to characterize the time domain range of the multiplexing window of the feedback information;
  • the time domain range is: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback timing granularity is one of the following: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • embodiments of the present invention provide a feedback resource allocation method, which is applied to terminal equipment, and includes:
  • Receive feedback resource configuration information sent by the network side wherein the feedback resource configuration information is used to allocate feedback resources, and the allocation of feedback resources is not limited to feedback multiplexing granularity or feedback timing granularity, and is limited to pre- Set time domain threshold;
  • the feedback multiplexing granularity is used to characterize the time domain range of the multiplexing window of the feedback information;
  • the time domain range is: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback timing granularity is one of the following: complete time slot, half time slot, N symbols, N is an integer greater than or equal to 1;
  • the preset time domain threshold is greater than or equal to feedback multiplexing granularity or feedback timing granularity.
  • an embodiment of the present invention provides a feedback resource allocation method, which is applied to a network device, and includes:
  • Send feedback resource configuration information for the terminal device wherein the feedback resource configuration information is used to allocate feedback resources, and the allocation of the feedback resources is limited by feedback multiplexing granularity or feedback timing granularity;
  • the feedback multiplexing granularity is used to characterize the time domain range of the multiplexing window of the feedback information;
  • the time domain range is: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback timing granularity is one of the following: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • an embodiment of the present invention provides a feedback resource allocation method, which is applied to a network device, and includes:
  • Send feedback resource configuration information for the terminal device wherein the feedback resource configuration information is used to allocate feedback resources, and the allocation of feedback resources is not limited to feedback multiplexing granularity or feedback timing granularity, and is limited to presets Time domain threshold;
  • the feedback multiplexing granularity is used to characterize the time domain range of the multiplexing window of the feedback information;
  • the time domain range is: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback timing granularity is one of the following: complete time slot, half time slot, N symbols, N is an integer greater than or equal to 1;
  • the preset time domain threshold is greater than or equal to feedback multiplexing granularity or feedback timing granularity.
  • a terminal device including:
  • the first communication unit receives feedback resource configuration information sent by the network side; wherein the feedback resource configuration information is used to allocate feedback resources, and the allocation of the feedback resources is limited by feedback multiplexing granularity or feedback timing granularity;
  • the feedback multiplexing granularity is used to characterize the time domain range of the multiplexing window of the feedback information;
  • the time domain range is: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback timing granularity is one of the following: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • a terminal device including:
  • the second communication unit receives feedback resource configuration information sent by the network side; wherein the feedback resource configuration information is used to allocate feedback resources, and the allocation of feedback resources is not limited to feedback multiplexing granularity or feedback timing granularity, And is limited by the preset time domain threshold;
  • the feedback multiplexing granularity is used to characterize the time domain range of the multiplexing window of the feedback information;
  • the time domain range is: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback timing granularity is one of the following: complete time slot, half time slot, N symbols, N is an integer greater than or equal to 1;
  • the preset time domain threshold is greater than or equal to feedback multiplexing granularity or feedback timing granularity.
  • a network device including:
  • the third communication unit sends feedback resource configuration information to the terminal device; wherein the feedback resource configuration information is used to allocate feedback resources, and the allocation of the feedback resources is limited by feedback multiplexing granularity or feedback timing granularity;
  • the feedback multiplexing granularity is used to characterize the time domain range of the multiplexing window of the feedback information;
  • the time domain range is: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback timing granularity is one of the following: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • a network device including:
  • the fourth communication unit sends feedback resource configuration information to the terminal device; wherein the feedback resource configuration information is used to allocate feedback resources, and the allocation of feedback resources is not limited to feedback multiplexing granularity or feedback timing granularity, and Limited by the preset time domain threshold;
  • the feedback multiplexing granularity is used to characterize the time domain range of the multiplexing window of the feedback information;
  • the time domain range is: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback timing granularity is one of the following: complete time slot, half time slot, N symbols, N is an integer greater than or equal to 1;
  • the preset time domain threshold is greater than or equal to feedback multiplexing granularity or feedback timing granularity.
  • a terminal device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned first aspect or each of its implementation modes.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program stored in the memory to execute the method in the above-mentioned second aspect or each of its implementation modes.
  • a chip is provided for implementing any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the chip includes: a processor, configured to call and run a computer program from the memory, so that the device installed with the chip executes any one of the above-mentioned first aspect to the second aspect or any of the implementations thereof method.
  • a computer-readable storage medium for storing a computer program that enables a computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • a computer program product including computer program instructions that cause a computer to execute any one of the above-mentioned first to second aspects or the methods in each implementation manner thereof.
  • a computer program which, when run on a computer, causes the computer to execute any one of the above-mentioned first aspect to the second aspect or the method in each implementation manner thereof.
  • the technical solution of the embodiment of the present invention can use limited conditions when allocating downlink transmission feedback resources.
  • the limited conditions can include complete time slots, half time slots, or N symbols; in this way, This reduces the time delay of feedback information, which can meet the time delay requirement and is more suitable for services sensitive to transmission delay.
  • FIG. 1 is a schematic diagram 1 of a communication system architecture provided by an embodiment of the present application.
  • FIG. 2 is a schematic flow chart 1 of a feedback resource allocation method provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram 1 of a feedback resource reuse scenario provided by an embodiment of the present application.
  • FIG. 4 is a second schematic diagram of a feedback resource reuse scenario provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the second flow of a feedback resource allocation method provided by an embodiment of the present application.
  • FIG. 6 is a third schematic diagram of a feedback resource reuse scenario provided by an embodiment of the present invention.
  • FIG. 7 is a fourth schematic diagram of a feedback resource reuse scenario provided by an embodiment of the present invention.
  • FIG. 8 is a schematic diagram 1 of the structure of a terminal device provided by an embodiment of the present invention.
  • FIG. 9 is a second schematic diagram of the structure of a terminal device provided by an embodiment of the present invention.
  • FIG. 10 is a schematic diagram 1 of the composition structure of a network device provided by an embodiment of the present application.
  • FIG. 11 is a second schematic diagram of the composition structure of a network device provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of the structure of a communication device provided by an embodiment of the present invention.
  • FIG. 13 is a schematic block diagram of a chip provided by an embodiment of the present application.
  • FIG. 14 is a second schematic diagram of a communication system architecture provided by an embodiment of the present application.
  • GSM Global System of Mobile Communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GSM Global System of Mobile Communication
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the communication system 100 applied in the embodiment of the present application may be as shown in FIG. 1.
  • the communication system 100 may include a network device 110, and the network device 110 may be a device that communicates with a terminal device 120 (or called a communication terminal or terminal).
  • the network device 110 may provide communication coverage for a specific geographic area, and may communicate with terminal devices located in the coverage area.
  • the network device 110 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, a base station (NodeB, NB) in a WCDMA system, or an evolved base station in an LTE system (Evolutional Node B, eNB or eNodeB), or the wireless controller in the Cloud Radio Access Network (CRAN), or the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches, bridges, routers, network-side devices in 5G networks, or network devices in the future evolution of the Public Land Mobile Network (PLMN), etc.
  • BTS Base Transceiver Station
  • NodeB, NB base station
  • LTE Long Term Evolutional Node B
  • eNB evolved base station
  • CRAN Cloud Radio Access Network
  • the network equipment can be a mobile switching center, a relay station, an access point, a vehicle-mounted device, Wearable devices, hubs, switches
  • the communication system 100 also includes at least one terminal device 120 located within the coverage area of the network device 110.
  • the "terminal equipment” used here includes but is not limited to connection via wired lines, such as via public switched telephone networks (PSTN), digital subscriber lines (Digital Subscriber Line, DSL), digital cables, and direct cable connections ; And/or another data connection/network; and/or via a wireless interface, such as for cellular networks, wireless local area networks (WLAN), digital TV networks such as DVB-H networks, satellite networks, AM- FM broadcast transmitter; and/or another terminal device that is set to receive/send communication signals; and/or Internet of Things (IoT) equipment.
  • PSTN public switched telephone networks
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL Digital Subscriber Line
  • DSL
  • a terminal device set to communicate through a wireless interface may be referred to as a "wireless communication terminal", a “wireless terminal” or a “mobile terminal”.
  • mobile terminals include, but are not limited to, satellites or cellular phones; Personal Communications System (PCS) terminals that can combine cellular radio phones with data processing, fax, and data communication capabilities; can include radio phones, pagers, Internet/intranet PDA with internet access, web browser, memo pad, calendar, and/or Global Positioning System (GPS) receiver; and conventional laptop and/or palmtop receivers or others including radio phone transceivers Electronic device.
  • PCS Personal Communications System
  • GPS Global Positioning System
  • Terminal equipment can refer to access terminals, user equipment (UE), user units, user stations, mobile stations, mobile stations, remote stations, remote terminals, mobile equipment, user terminals, terminals, wireless communication equipment, user agents, or User device.
  • the access terminal can be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital processing (Personal Digital Assistant, PDA), with wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in 5G networks, or terminal devices in the future evolution of PLMN, etc.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • direct terminal connection (Device to Device, D2D) communication may be performed between the terminal devices 120.
  • the 5G system or 5G network may also be referred to as a New Radio (NR) system or NR network.
  • NR New Radio
  • Figure 1 exemplarily shows one network device and two terminal devices.
  • the communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. The embodiment does not limit this.
  • the communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in the embodiment of the present application.
  • the devices with communication functions in the network/system in the embodiments of the present application may be referred to as communication devices.
  • the communication device may include a network device 110 and a terminal device 120 with communication functions, and the network device 110 and the terminal device 120 may be the specific devices described above, which will not be repeated here.
  • the communication device may also include other devices in the communication system 100, such as other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the application.
  • the embodiment of the present invention provides a feedback resource allocation method, which is applied to a terminal device, as shown in FIG. 2, including:
  • Step 201 Receive feedback resource configuration information sent by the network side; wherein the feedback resource configuration information is used to allocate feedback resources, and the allocation of feedback resources is limited by feedback multiplexing granularity or feedback timing granularity;
  • the feedback multiplexing granularity is used to characterize the time domain range of the multiplexing window of the feedback information;
  • the time domain range is: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback timing granularity is one of the following: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback information may be feedback information for downlink transmission.
  • the downlink transmission may be downlink control information (DCI), or may be a downlink transmission scheduled by DCI; when the downlink transmission is DCI scheduling
  • the physical downlink control channel (PDCCH, Physical Downlink Control Channel) refers to or the information transmitted by the physical downlink shared channel (PDSCH, Physical Downlink Shared Channel).
  • the feedback resource may be a physical uplink control channel (PUCCH, Physical Uplink Control Channel).
  • the feedback information for downlink transmission may be ACK/non-acknowledged NACK information of Hybrid Automatic Repeat ReQuest (HARQ).
  • HARQ Hybrid Automatic Repeat ReQuest
  • the method After receiving the feedback resource configuration information sent by the network side, the method further includes: determining a feedback resource for downlink transmission based on the feedback resource configuration information.
  • the scenario provided in this embodiment is the feedback resource of the feedback information corresponding to the downlink transmission, such as PUCCH time domain resource, which is limited by HARQ timing granularity or HARQ-ACK multiplexing granularity.
  • determining the feedback resource for downlink transmission based on the feedback resource configuration information includes:
  • the feedback resource of the feedback information is within a time domain of feedback multiplexing granularity; or, based on the feedback resource configuration information, it is determined that the feedback resource of the feedback information is within the granularity of a feedback timing. Within the time domain.
  • PUCCH time domain resources are limited by HARQ timing granularity, such as half slot.
  • the PUCCH resource is limited by the HARQ timing granularity means that the time domain resource of the PUCCH is within a half slot range.
  • PUCCH time domain resources are limited by HARQ multiplexing granularity, such as half slot.
  • the PUCCH resource is limited by the HARQ multiplexing granularity means that the time domain resource of the PUCCH is within a half slot range.
  • the feedback resources for PDSCH 1, 2, and 3 can all be limited to a half slot, and the corresponding PUCCH 1, 2, and 3 are all allocated in the half slot range.
  • the method further includes:
  • the feedback resources of the at least two downlink transmissions are not multiplexed.
  • the feedback resources corresponding to different feedback multiplexing granularity or feedback information of the timing granularity have different constraints.
  • the feedback information HARQ-ACK corresponding to different feedback multiplexing granularity or feedback timing granularity is multiplexed separately.
  • feedback multiplexing granularity or feedback timing granularity feedback information for example, HARQ-ACKs with the same HARQ-ACK are multiplexed in their corresponding HARQ multiplexing window; and HARQ feedback multiplexing granularity or timing granularity feedback -HARQ-ACKs with different ACKs are not HARQ multiplexed.
  • PUCCH1 and 3 can be multiplexed, and feedback information can be transmitted on PUCCH3.
  • PUCCH1, 3, and PUCCH2 cannot be multiplexed in different feedback multiplexing granularity or feedback timing granularity.
  • the feedback multiplexing granularity or feedback timing granularity corresponding to PDSCH1-3 is half-slot, and the feedback multiplexing granularity or feedback timing granularity corresponding to PDSCH4 is the complete slot slot; PDSCH4 is not multiplexed with PDSCH1-3.
  • This embodiment also provides the following method: when there is a conflict between the feedback resources of at least two downlink transmissions corresponding to the feedback multiplexing granularity or the feedback timing granularity of different feedback information, the priority of the feedback resource of the downlink transmission scheduled later is higher than The feedback resource of the downlink transmission scheduled first, or the priority of the feedback information occupying more resources is higher than the priority of the feedback information occupying less resources.
  • the conflict between the feedback resources of at least two downlink transmissions of the different feedback multiplexing granularity or feedback timing granularity may be understood as two feedback resources covering the same multiplexing window or covering the same feedback timing granularity. Then both feedback resources can be occupied on the feedback resources scheduled afterwards;
  • the feedback information occupies resources, which can be measured by the size of the occupied transport block (TB) or the size of the occupied physical resource block (PRB).
  • the priority that the feedback information occupies more resources is set to high priority, and both feedback resources are scheduled to reuse the high priority feedback resources.
  • the conflict handling method of the terminal device may be set, which may be stipulated by an agreement and set by the network side for it, or the terminal may be resolved by itself.
  • feedback resources scheduled after adoption have a high priority.
  • the feedback resource to be scheduled later may also be set to a high priority, or a feedback resource with a larger TB SIZE or PRB number may have a higher priority.
  • the downlink transmission feedback resources can be allocated with limited conditions when allocating.
  • the limited conditions can include a complete time slot, half a time slot, or N symbols; in this way, it can make The time delay of the feedback information is reduced, so as to meet the time delay requirement, and it is more suitable for services sensitive to transmission delay.
  • the embodiment of the present invention provides a feedback resource allocation method, which is applied to a terminal device, as shown in FIG. 5, including:
  • Step 501 Receive feedback resource configuration information sent by the network side; wherein the feedback resource configuration information is used to allocate feedback resources, and the allocation of feedback resources is not limited to feedback multiplexing granularity or feedback timing granularity, and is subject to Limited to the preset time domain threshold;
  • the feedback multiplexing granularity is used to characterize the time domain range of the multiplexing window of the feedback information;
  • the time domain range is: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback timing granularity is one of the following: complete time slot, half time slot, N symbols, N is an integer greater than or equal to 1;
  • the preset time domain threshold is greater than or equal to feedback multiplexing granularity or feedback timing granularity.
  • the method After receiving the feedback resource configuration information sent by the network side, the method further includes: determining a feedback resource for downlink transmission based on the feedback resource configuration information.
  • the feedback information may be feedback information for downlink transmission.
  • the downlink transmission may be downlink control information (DCI), or may be a downlink transmission scheduled by DCI; when the downlink transmission is DCI scheduling
  • the physical downlink control channel (PDCCH, Physical Downlink Control Channel) refers to or the information transmitted by the physical downlink shared channel (PDSCH, Physical Downlink Shared Channel).
  • the feedback resource may be a physical uplink control channel (PUCCH, Physical Uplink Control Channel).
  • the feedback information for downlink transmission may be ACK/non-acknowledged NACK information of Hybrid Automatic Repeat ReQuest (HARQ).
  • HARQ Hybrid Automatic Repeat ReQuest
  • the feedback resources corresponding to the downlink transmission in this embodiment are not limited to feedback multiplexing granularity or feedback timing granularity, that is, PUCCH time domain resources can span HARQ timing granularity. Or HARQ-ACK multiplexing granularity. But it is still limited by the time slot slot or other time domain thresholds that are greater than or equal to HARQ timing granularity or HARQ-ACK multiplexing granularity.
  • the determining the feedback resource for downlink transmission based on the feedback resource configuration information includes:
  • the time domain range of the feedback resource includes M feedback multiplexing granularities or M feedback timing granularities; M is an integer greater than 1; and, the time domain range of the feedback resource Not greater than the preset time domain threshold.
  • the feedback resource can span multiple feedback multiplexing granularity or feedback timing granularity.
  • the preset time domain threshold value may be at least two feedback multiplexing granularities or at least two feedback timing granularities.
  • the feedback resource when determining the feedback resource for downlink transmission, can be allocated to more than half a time slot, such as two and a half time slots, or three and a half time slots, as long as it is not greater than the preset time domain
  • the threshold is sufficient.
  • the feedback multiplexing granularity or feedback timing granularity is half slot, but the PUCCH time domain resource range of the feedback resource for downlink transmission is limited to a preset threshold.
  • a preset time domain threshold can be one For a complete time slot, PUCCH3 in the figure is greater than half a time slot, but less than a complete time slot.
  • the method further includes: based on the starting point of the feedback resources allocated for at least two downlink transmissions and/or The end point is to determine whether to multiplex the feedback information of the at least two downlink transmissions on the same feedback resource.
  • the starting points of the feedback resources allocated for the at least two downlink transmissions are located in the same feedback multiplexing granularity or feedback timing granularity, determining that the feedback information of the at least two downlink transmissions are multiplexed in the same feedback resource;
  • the two feedback information can be multiplexed on the same feedback resource; for example, As shown in FIG. 7, the starting points of PUCCH1 and 3 are in the same multiplexing window, and the feedback information transmitted by PUCCH1 and 3 can be multiplexed in PUCCH3.
  • the two feedback information can be reused on the same feedback resource; for example, As shown in Figure 7, the end points of PUCCH 2 and 3 are in the same multiplexing window, and the feedback information transmitted by PUCCH 2 and 3 can be multiplexed in PUCCH3.
  • HARQ multiplexing refers to the PUCCH resource start point, end point, or both.
  • HARQ-ACKs whose starting point or end point falls within the same HARQ timing granularity or HARQ-ACK multiplexing granularity are multiplexed.
  • the end point of the feedback resources allocated for the at least two downlink transmissions is not at the boundary of the feedback multiplexing granularity or the feedback timing granularity, based on the origin of the feedback resources of the at least two downlink transmissions.
  • Information timing granularity determines that the feedback information of the at least two downlink transmissions are multiplexed in the same feedback resource. For example, when the end points of the feedback resources of two downlink transmissions are not located at the boundary of the multiplexing window, the starting point of the feedback resources can be used as the criterion to determine whether to perform multiplexing.
  • the HARQ-ACK multiplexing window where the start point is located shall prevail, otherwise the HARQ-ACK multiplexing window where the end point is located shall prevail.
  • This embodiment also provides the following method: the feedback resource of the downstream scheduled downlink transmission has a higher priority than the feedback resource of the previously scheduled downlink transmission, or the priority of the feedback information occupying more resources is higher than the priority of the feedback information occupying less resources.
  • the conflict between the feedback resources of at least two downlink transmissions of the different feedback multiplexing granularity or feedback timing granularity may be understood as two feedback resources covering the same multiplexing window or covering the same feedback timing granularity. Then both feedback resources can be occupied on the feedback resources scheduled afterwards;
  • the feedback information occupies resources, which can be measured by the size of the occupied transport block (TB) or the size of the occupied physical resource block (PRB).
  • the priority that the feedback information occupies more resources is set to high priority, and both feedback resources are scheduled to reuse the high priority feedback resources.
  • the conflict handling method of the terminal device may be set, which may be stipulated by an agreement and set by the network side for it, or the terminal may be resolved by itself.
  • feedback resources scheduled after adoption have a high priority.
  • the feedback resource to be scheduled later may also be set to a high priority, or a feedback resource with a larger TB SIZE or PRB number may have a higher priority.
  • the downlink transmission feedback resources can be allocated with limited conditions when allocating.
  • the limited conditions can include a complete time slot, half a time slot, or N symbols; in this way, it can make The time delay of the feedback information is reduced, so as to meet the time delay requirement, and it is more suitable for services sensitive to transmission delay.
  • the embodiment of the present invention provides a feedback resource allocation method, which is applied to a network device, and includes:
  • Send feedback resource configuration information for the terminal device wherein the feedback resource configuration information is used to allocate feedback resources, and the allocation of the feedback resources is limited by feedback multiplexing granularity or feedback timing granularity;
  • the feedback multiplexing granularity is used to characterize the time domain range of the multiplexing window of the feedback information;
  • the time domain range is: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback timing granularity is one of the following: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback information may be feedback information for downlink transmission.
  • the downlink transmission may be downlink control information (DCI), or may be a downlink transmission scheduled by DCI; when the downlink transmission is DCI scheduling
  • the physical downlink control channel (PDCCH, Physical Downlink Control Channel) refers to or the information transmitted by the physical downlink shared channel (PDSCH, Physical Downlink Shared Channel).
  • the feedback resource may be a physical uplink control channel (PUCCH, Physical Uplink Control Channel).
  • the feedback information for downlink transmission may be ACK/non-acknowledged NACK information of Hybrid Automatic Repeat ReQuest (HARQ).
  • HARQ Hybrid Automatic Repeat ReQuest
  • the foregoing feedback multiplexing granularity and feedback timing granularity acquisition method may be: determining the feedback multiplexing granularity or feedback of the terminal device based on one of the downlink transmission service type, service quality parameter, and physical layer indication Timing granularity.
  • the determination of feedback multiplexing granularity or feedback timing granularity based on service type and service quality parameters can be understood as the determination of the terminal device itself; through physical layer instructions, it can be understood as the way the network side configures the terminal device .
  • the service type may be services with different delays, for example, the feedback multiplexing granularity corresponding to low-latency services may be half a time slot or N symbols; feedback multiplexing corresponding to high-latency services The granularity can be set to a complete time slot.
  • the service type can be enhanced mobile broadband (eMBB, Enhance Mobile Broadband) or uRLLC (ultra-high reliability and ultra-low latency communication).
  • eMBB is a high-latency service
  • uRLLC is a low-latency service.
  • the quality of service parameter may refer to the quality of service (QoS) parameter, which is processed based on the parameter used to describe the transmission delay in the quality of service.
  • QoS quality of service
  • the feedback multiplexing granularity corresponding to the low transmission delay may be half the time. Slots or N symbols; the granularity of feedback multiplexing corresponding to high transmission delay can be set as a complete slot.
  • the physical layer indication it may be an indication for the terminal device through high-level signaling, and specifically may be RRC signaling, in which the feedback multiplexing granularity or feedback timing granularity to be used by the terminal device is indicated in the RRC signaling.
  • the scenario provided in this embodiment is the feedback resource of the feedback information corresponding to the downlink transmission, such as PUCCH time domain resource, which is limited by HARQ timing granularity or HARQ-ACK multiplexing granularity.
  • the method specifically includes: allocating the feedback resource of the feedback information in a time domain of feedback multiplexing granularity; or, allocating the feedback resource of the feedback information in a feedback timing granularity. Within the time domain.
  • PUCCH time domain resources are limited by HARQ timing granularity, such as half slot.
  • the PUCCH resource is limited by the HARQ timing granularity means that the time domain resource of the PUCCH is within a half slot range.
  • PUCCH time domain resources are limited by HARQ multiplexing granularity, such as half slot.
  • the PUCCH resource is limited by the HARQ multiplexing granularity means that the time domain resource of the PUCCH is within a half slot range.
  • the feedback resources for PDSCH 1, 2, and 3 can all be limited to a half slot, and the corresponding PUCCH 1, 2, and 3 are all allocated in the half slot range.
  • the method further includes:
  • the terminal device When allocating feedback resources for at least two downlink transmissions based on the same feedback multiplexing granularity or feedback timing granularity, it is determined that the terminal device multiplexes the feedback resources of the at least two downlink transmissions within the same multiplexing window. use;
  • the terminal device When allocating feedback resources for at least two downlink transmissions based on different feedback multiplexing granularity or feedback timing granularity, it is determined that the terminal device does not multiplex the feedback resources of the at least two downlink transmissions.
  • the feedback resources corresponding to different feedback multiplexing granularity or feedback information of the timing granularity such as PUCCH time domain resources, have different constraints.
  • the feedback information HARQ-ACK corresponding to different feedback multiplexing granularity or feedback timing granularity is multiplexed separately.
  • feedback multiplexing granularity or feedback timing granularity feedback information for example, HARQ-ACKs with the same HARQ-ACK are multiplexed in their corresponding HARQ multiplexing window; and HARQ feedback multiplexing granularity or timing granularity feedback -HARQ-ACKs with different ACKs are not HARQ multiplexed.
  • PUCCH1 and 3 can be multiplexed, and feedback information can be transmitted on PUCCH3.
  • PUCCH1, 3, and PUCCH2 cannot be multiplexed in different feedback multiplexing granularity or feedback timing granularity.
  • the feedback multiplexing granularity or feedback timing granularity corresponding to PDSCH1-3 is half-slot, and the feedback multiplexing granularity or feedback timing granularity corresponding to PDSCH4 is the complete slot slot; PDSCH4 is not multiplexed with PDSCH1-3.
  • This embodiment also provides the following method: when there is a conflict between the feedback resources of at least two downlink transmissions corresponding to the feedback multiplexing granularity or the feedback timing granularity of different feedback information, the priority of the feedback resource of the downlink transmission scheduled later is higher than The feedback resource of the downlink transmission scheduled first, or the priority of the feedback information occupying more resources is higher than the priority of the feedback information occupying less resources.
  • the conflict between the feedback resources of at least two downlink transmissions of the different feedback multiplexing granularity or feedback timing granularity may be understood as two feedback resources covering the same multiplexing window or covering the same feedback timing granularity. Then both feedback resources can be occupied on the feedback resources scheduled afterwards;
  • the feedback information occupies resources, which can be measured by the size of the occupied transport block (TB) or the size of the occupied physical resource block (PRB).
  • the priority that the feedback information occupies more resources is set to high priority, and both feedback resources are scheduled to reuse the high priority feedback resources.
  • the conflict handling method of the terminal device can be set, which can be stipulated by an agreement and set by the network side for it, or the terminal can resolve it by itself.
  • feedback resources scheduled after adoption have a high priority.
  • the feedback resource to be scheduled later may also be set to a high priority, or a feedback resource with a larger TB SIZE or PRB number may have a higher priority.
  • the downlink transmission feedback resources can be allocated with limited conditions when allocating.
  • the limited conditions can include a complete time slot, half a time slot, or N symbols; in this way, it can make The time delay of the feedback information is reduced, so as to meet the time delay requirement, and it is more suitable for services sensitive to transmission delay.
  • the embodiment of the present invention provides a feedback resource allocation method, which is applied to a network device, and includes:
  • Send feedback resource configuration information for the terminal device wherein the feedback resource configuration information is used to allocate feedback resources, and the allocation of feedback resources is not limited to feedback multiplexing granularity or feedback timing granularity, and is limited to presets Time domain threshold;
  • the feedback multiplexing granularity is used to characterize the time domain range of the multiplexing window of the feedback information;
  • the time domain range is: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback timing granularity is one of the following: complete time slot, half time slot, N symbols, N is an integer greater than or equal to 1;
  • the preset time domain threshold is greater than or equal to feedback multiplexing granularity or feedback timing granularity.
  • the feedback information may be feedback information for downlink transmission.
  • the downlink transmission may be downlink control information (DCI), or may be a downlink transmission scheduled by DCI; when the downlink transmission is DCI scheduling
  • the physical downlink control channel (PDCCH, Physical Downlink Control Channel) refers to or the information transmitted by the physical downlink shared channel (PDSCH, Physical Downlink Shared Channel).
  • the feedback resource may be a physical uplink control channel (PUCCH, Physical Uplink Control Channel).
  • the feedback information for downlink transmission may be ACK/non-acknowledged NACK information of Hybrid Automatic Repeat ReQuest (HARQ).
  • HARQ Hybrid Automatic Repeat ReQuest
  • the feedback multiplexing granularity or feedback timing granularity may be determined based on one of the service type, service quality parameter, and physical layer indication.
  • the determination of feedback multiplexing granularity or feedback timing granularity based on service type and service quality parameters can be understood as the determination of the terminal device itself; through physical layer instructions, it can be understood as the way the network side configures the terminal device .
  • the service type may be services with different delays, for example, the feedback multiplexing granularity corresponding to low-latency services may be half a time slot or N symbols; feedback multiplexing corresponding to high-latency services The granularity can be set to a complete time slot.
  • the service type can be enhanced mobile broadband (eMBB, Enhance Mobile Broadband) or uRLLC (ultra-high reliability and ultra-low latency communication).
  • eMBB is a high-latency service
  • uRLLC is a low-latency service.
  • the quality of service parameter may refer to the quality of service (QoS) parameter, which is processed based on the parameter used to describe the transmission delay in the quality of service.
  • QoS quality of service
  • the feedback multiplexing granularity corresponding to the low transmission delay may be half the time. Slots or N symbols; the granularity of feedback multiplexing corresponding to high transmission delay can be set as a complete slot.
  • the physical layer indication it may be an indication for the terminal device through high-level signaling, and specifically may be RRC signaling, in which the feedback multiplexing granularity or feedback timing granularity to be used by the terminal device is indicated in the RRC signaling.
  • the feedback resources corresponding to the downlink transmission in this embodiment are not limited to feedback multiplexing granularity or feedback timing granularity, that is, PUCCH time domain resources can span HARQ timing granularity. Or HARQ-ACK multiplexing granularity. But it is still limited by the time slot slot or other time domain thresholds that are greater than or equal to HARQ timing granularity or HARQ-ACK multiplexing granularity.
  • the time domain range in which the feedback resource is allocated to the terminal device includes M feedback multiplexing granularities or M feedback timing granularities; M is an integer greater than 1; and the feedback resource The time domain range of is not greater than the preset time domain threshold.
  • the feedback resource can span multiple feedback multiplexing granularity or feedback timing granularity.
  • the preset time domain threshold value may be at least two feedback multiplexing granularities or at least two feedback timing granularities.
  • the feedback resources can be allocated to more than half of the time slot, such as two and a half time slots, or three and a half time slots, as long as it is not greater than the preset time domain threshold.
  • the feedback multiplexing granularity or feedback timing granularity is half slot, but the PUCCH time domain resource range of the feedback resource for downlink transmission is limited to a preset threshold.
  • a preset time domain threshold can be one For a complete time slot, PUCCH3 in the figure is greater than half a time slot, but less than a complete time slot.
  • the method further includes: determining whether to duplicate the feedback information of the at least two downlink transmissions based on the start point and/or the end point of the feedback resource allocated for the at least two downlink transmissions. Used on the same feedback resource.
  • the terminal device When the starting points of at least two downlink transmission feedback resources allocated to the terminal device are located in the same feedback multiplexing granularity or feedback timing granularity, it is determined that the terminal device multiplexes the at least two downlink transmission feedback information in the same Feedback resources;
  • the terminal device When the end points of the at least two downlink transmission feedback resources allocated to the terminal device are located in the same feedback multiplexing granularity or feedback timing granularity, it is determined that the terminal device multiplexes the at least two downlink transmission feedback information in the same Feedback resources.
  • the two feedback information can be multiplexed on the same feedback resource; for example, As shown in Figure 6, the starting points of PUCCH1 and 3 are in the same multiplexing window, and the feedback information transmitted by PUCCH1 and 3 can be multiplexed in PUCCH3.
  • the two feedback information can be reused on the same feedback resource; for example, As shown in Figure 6, the end points of PUCCH 2 and 3 are in the same multiplexing window, and the feedback information transmitted by PUCCH 2 and 3 can be multiplexed in PUCCH3.
  • HARQ multiplexing refers to the PUCCH resource start point, end point, or both.
  • HARQ-ACKs whose starting point or end point falls within the same HARQ timing granularity or HARQ-ACK multiplexing granularity are multiplexed.
  • the timing granularity of the location information determines that the terminal device multiplexes the at least two downlink transmission feedback information in the same feedback resource. For example, when the end points of the feedback resources of two downlink transmissions are not located at the boundary of the multiplexing window, the starting point of the feedback resources can be used as the criterion to determine whether to perform multiplexing.
  • the HARQ-ACK multiplexing window where the start point is located shall prevail, otherwise the HARQ-ACK multiplexing window where the end point is located shall prevail.
  • This embodiment also provides the following method: the feedback resource of the downstream scheduled downlink transmission has a higher priority than the feedback resource of the previously scheduled downlink transmission, or the priority of the feedback information occupying more resources is higher than the priority of the feedback information occupying less resources.
  • the conflict between the feedback resources of at least two downlink transmissions of the different feedback multiplexing granularity or feedback timing granularity may be understood as two feedback resources covering the same multiplexing window or covering the same feedback timing granularity. Then both feedback resources can be occupied on the feedback resources scheduled afterwards;
  • the feedback information occupies resources, which can be measured by the size of the occupied transport block (TB) or the size of the occupied physical resource block (PRB).
  • the priority that the feedback information occupies more resources is set to high priority, and both feedback resources are scheduled to reuse the high priority feedback resources.
  • the conflict handling method of the terminal device may be set, which may be stipulated by an agreement and set by the network side for it, or the terminal may be resolved by itself.
  • feedback resources scheduled after adoption have a high priority.
  • the feedback resource to be scheduled later may also be set to a high priority, or a feedback resource with a larger TB SIZE or PRB number may have a higher priority.
  • the downlink transmission feedback resources can be allocated with limited conditions when allocating.
  • the limited conditions can include a complete time slot, half a time slot, or N symbols; in this way, it can make The time delay of the feedback information is reduced, so as to meet the time delay requirement, and it is more suitable for services sensitive to transmission delay.
  • the embodiment of the present invention provides a terminal device, as shown in FIG. 8, including:
  • the first communication unit 81 receives feedback resource configuration information sent by the network side; wherein the feedback resource configuration information is used to allocate feedback resources, and the allocation of the feedback resources is limited by feedback multiplexing granularity or feedback timing granularity;
  • the feedback multiplexing granularity is used to characterize the time domain range of the multiplexing window of the feedback information;
  • the time domain range is: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback timing granularity is one of the following: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the terminal device also includes:
  • the first processing unit 82 determines a feedback resource for downlink transmission based on the feedback resource configuration information.
  • the feedback information may be feedback information for downlink transmission.
  • the downlink transmission may be downlink control information (DCI), or may be a downlink transmission scheduled by DCI; when the downlink transmission is DCI scheduling
  • the physical downlink control channel (PDCCH, Physical Downlink Control Channel) refers to or the information transmitted by the physical downlink shared channel (PDSCH, Physical Downlink Shared Channel).
  • the feedback resource may be a physical uplink control channel (PUCCH, Physical Uplink Control Channel).
  • the feedback information for downlink transmission may be ACK/non-acknowledged NACK information of Hybrid Automatic Repeat ReQuest (HARQ).
  • HARQ Hybrid Automatic Repeat ReQuest
  • the scenario provided in this embodiment is the feedback resource of the feedback information corresponding to the downlink transmission, such as PUCCH time domain resource, which is limited by HARQ timing granularity or HARQ-ACK multiplexing granularity.
  • the first processing unit 82 determines, based on the feedback resource configuration information, that the feedback resource of the feedback information is within a time domain range of feedback multiplexing granularity;
  • the feedback resource of the feedback information is within a time domain of feedback timing granularity.
  • PUCCH time domain resources are limited by HARQ timing granularity, such as half slot.
  • the PUCCH resource is limited by the HARQ timing granularity means that the time domain resource of the PUCCH is within a half slot range.
  • PUCCH time domain resources are limited by HARQ multiplexing granularity, such as half slot.
  • the PUCCH resource is limited by the HARQ multiplexing granularity means that the time domain resource of the PUCCH is within a half slot range.
  • the feedback resources for PDSCH 1, 2, and 3 can all be limited to a half slot, and the corresponding PUCCH 1, 2, and 3 are all allocated in the half slot range.
  • the first processing unit 82 when the feedback multiplexing granularity or the feedback timing granularity is based on the same feedback timing granularity is When feedback resources are allocated to at least two downlink transmissions, the feedback resources of the at least two downlink transmissions are multiplexed in the same multiplexing window; or, when the granularity of multiplexing based on different feedback or the granularity of feedback timing is at least When the feedback resources of the two downlink transmissions are allocated, the feedback resources of the at least two downlink transmissions are not multiplexed.
  • the feedback resources corresponding to different feedback multiplexing granularity or feedback information of the timing granularity such as PUCCH time domain resources, have different constraints.
  • the feedback information HARQ-ACK corresponding to different feedback multiplexing granularity or feedback timing granularity is multiplexed separately.
  • feedback multiplexing granularity or feedback timing granularity feedback information for example, HARQ-ACKs with the same HARQ-ACK are multiplexed in their corresponding HARQ multiplexing window; and HARQ feedback multiplexing granularity or timing granularity feedback -HARQ-ACKs with different ACKs are not HARQ multiplexed.
  • PUCCH1 and 3 can be multiplexed, and feedback information can be transmitted on PUCCH3.
  • PUCCH1, 3, and PUCCH2 cannot be multiplexed in different feedback multiplexing granularity or feedback timing granularity.
  • the feedback multiplexing granularity or feedback timing granularity corresponding to PDSCH1-3 is half-slot, and the feedback multiplexing granularity or feedback timing granularity corresponding to PDSCH4 is the complete slot slot; PDSCH4 is not multiplexed with PDSCH1-3.
  • the feedback resource of the downlink transmission scheduled later has a higher priority. Prior to the feedback resource of the downlink transmission scheduled earlier, or the priority of the feedback information occupying more resources is higher than the priority of the feedback information occupying less resources.
  • the conflict between the feedback resources of at least two downlink transmissions of the different feedback multiplexing granularity or feedback timing granularity may be understood as two feedback resources covering the same multiplexing window or covering the same feedback timing granularity. Then both feedback resources can be occupied on the feedback resources scheduled afterwards;
  • the feedback information occupies resources, which can be measured by the size of the occupied transport block (TB) or the size of the occupied physical resource block (PRB).
  • the priority that the feedback information occupies more resources is set to high priority, and both feedback resources are scheduled to reuse the high priority feedback resources.
  • the conflict handling method of the terminal device may be set, which may be stipulated by an agreement and set by the network side for it, or the terminal may be resolved by itself.
  • feedback resources scheduled after adoption have a high priority.
  • the feedback resource to be scheduled later may also be set to a high priority, or a feedback resource with a larger TB SIZE or PRB number may have a higher priority.
  • the downlink transmission feedback resources can be allocated with limited conditions when allocating.
  • the limited conditions can include a complete time slot, half a time slot, or N symbols; in this way, it can make The time delay of the feedback information is reduced, so as to meet the time delay requirement, and it is more suitable for services sensitive to transmission delay.
  • the embodiment of the present invention provides a terminal device, as shown in FIG. 9, including:
  • the second communication unit 91 receives feedback resource configuration information sent by the network side; wherein the feedback resource configuration information is used to allocate feedback resources, and the allocation of the feedback resources is not limited to feedback multiplexing granularity or feedback timing granularity , And limited to the preset time domain threshold;
  • the feedback multiplexing granularity is used to characterize the time domain range of the multiplexing window of the feedback information;
  • the time domain range is: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback timing granularity is one of the following: complete time slot, half time slot, N symbols, N is an integer greater than or equal to 1;
  • the preset time domain threshold is greater than or equal to feedback multiplexing granularity or feedback timing granularity.
  • the terminal device also includes:
  • the second processing unit 92 determines a feedback resource for downlink transmission based on the feedback resource configuration information.
  • the feedback information may be feedback information for downlink transmission.
  • the downlink transmission may be downlink control information (DCI), or may be a downlink transmission scheduled by DCI; when the downlink transmission is DCI scheduling
  • the physical downlink control channel (PDCCH, Physical Downlink Control Channel) refers to or the information transmitted by the physical downlink shared channel (PDSCH, Physical Downlink Shared Channel).
  • the feedback resource may be a physical uplink control channel (PUCCH, Physical Uplink Control Channel).
  • the feedback information for downlink transmission may be ACK/non-acknowledged NACK information of Hybrid Automatic Repeat ReQuest (HARQ).
  • HARQ Hybrid Automatic Repeat ReQuest
  • the feedback resources corresponding to the downlink transmission in this embodiment are not limited to feedback multiplexing granularity or feedback timing granularity, that is, PUCCH time domain resources can span HARQ timing granularity. Or HARQ-ACK multiplexing granularity. But it is still limited by the time slot slot or other time domain thresholds that are greater than or equal to HARQ timing granularity or HARQ-ACK multiplexing granularity.
  • the second processing unit 92 determines, based on the feedback resource configuration information, that the time domain range of the feedback resource includes M feedback multiplexing granularities or M feedback timing granularities; M is an integer greater than 1; and, the time domain range of the feedback resource is not greater than the preset time domain threshold.
  • the feedback resource can span multiple feedback multiplexing granularity or feedback timing granularity.
  • the preset time domain threshold value may be at least two feedback multiplexing granularities or at least two feedback timing granularities.
  • the feedback resources can be allocated to more than half of the time slot, such as two and a half time slots, or three and a half time slots, as long as it is not greater than the preset time domain threshold.
  • the feedback multiplexing granularity or feedback timing granularity is half slot, but the PUCCH time domain resource range of the feedback resource for downlink transmission is limited to a preset threshold.
  • a preset time domain threshold can be one For a complete time slot, PUCCH3 in the figure is greater than half a time slot, but less than a complete time slot.
  • the method further includes: based on the starting point of the feedback resources allocated for at least two downlink transmissions and/or The end point is to determine whether to multiplex the feedback information of the at least two downlink transmissions on the same feedback resource.
  • the second processing unit 92 includes at least one of the following:
  • the starting points of the feedback resources allocated for the at least two downlink transmissions are located in the same feedback multiplexing granularity or feedback timing granularity, determining that the feedback information of the at least two downlink transmissions are multiplexed in the same feedback resource;
  • the two feedback information can be multiplexed on the same feedback resource; for example, As shown in FIG. 7, the starting points of PUCCH1 and 3 are in the same multiplexing window, and the feedback information transmitted by PUCCH1 and 3 can be multiplexed in PUCCH3.
  • the two feedback information can be reused on the same feedback resource; for example, As shown in Figure 7, the end points of PUCCH 2 and 3 are in the same multiplexing window, and the feedback information transmitted by PUCCH 2 and 3 can be multiplexed in PUCCH3.
  • HARQ multiplexing refers to the PUCCH resource start point, end point, or both.
  • HARQ-ACKs whose starting point or end point falls within the same HARQ timing granularity or HARQ-ACK multiplexing granularity are multiplexed.
  • the second processing unit 92 when the end point of the feedback resources allocated for the at least two downlink transmissions is not at the boundary of the feedback multiplexing granularity or the feedback timing granularity, based on the start point of the feedback resources of the at least two downlink transmissions
  • the granularity of the information timing determines that the feedback information of the at least two downlink transmissions are multiplexed in the same feedback resource. For example, when the end points of the feedback resources of two downlink transmissions are not located at the boundary of the multiplexing window, the starting point of the feedback resources can be used as the criterion to determine whether to perform multiplexing.
  • the HARQ-ACK multiplexing window where the start point is located shall prevail, otherwise the HARQ-ACK multiplexing window where the end point is located shall prevail.
  • the feedback resource of the downlink transmission scheduled later has a higher priority than the feedback resource of the downlink transmission scheduled earlier, or the priority of the feedback information occupying more resources is higher than the priority of the feedback information occupying less resources.
  • the conflict between the feedback resources of at least two downlink transmissions of the different feedback multiplexing granularity or feedback timing granularity may be understood as two feedback resources covering the same multiplexing window or covering the same feedback timing granularity. Then both feedback resources can be occupied on the feedback resources scheduled afterwards;
  • the feedback information occupies resources, which can be measured by the size of the occupied transport block (TB) or the size of the occupied physical resource block (PRB).
  • the priority that the feedback information occupies more resources is set to high priority, and both feedback resources are scheduled to reuse the high priority feedback resources.
  • the conflict handling method of the terminal device may be set, which may be stipulated by an agreement and set by the network side for it, or the terminal may be resolved by itself.
  • feedback resources scheduled after adoption have a high priority.
  • the feedback resource to be scheduled later may also be set to a high priority, or a feedback resource with a larger TB SIZE or PRB number may have a higher priority.
  • the downlink transmission feedback resources can be allocated with limited conditions when allocating.
  • the limited conditions can include a complete time slot, half a time slot, or N symbols; in this way, it can make The time delay of the feedback information is reduced, so as to meet the time delay requirement, and it is more suitable for services sensitive to transmission delay.
  • the embodiment of the present invention provides a network device, as shown in FIG. 10, including:
  • the third communication unit 1001 sends feedback resource configuration information for the terminal device; wherein the feedback resource configuration information is used to allocate feedback resources, and the allocation of the feedback resources is limited by feedback multiplexing granularity or feedback timing granularity;
  • the feedback multiplexing granularity is used to characterize the time domain range of the multiplexing window of the feedback information;
  • the time domain range is: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback timing granularity is one of the following: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback information may be feedback information for downlink transmission.
  • the downlink transmission may be downlink control information (DCI), or may be a downlink transmission scheduled by DCI; when the downlink transmission is DCI scheduling
  • the physical downlink control channel (PDCCH, Physical Downlink Control Channel) refers to or the information transmitted by the physical downlink shared channel (PDSCH, Physical Downlink Shared Channel).
  • the feedback resource may be a physical uplink control channel (PUCCH, Physical Uplink Control Channel).
  • the feedback information for downlink transmission may be ACK/non-acknowledged NACK information of Hybrid Automatic Repeat ReQuest (HARQ).
  • HARQ Hybrid Automatic Repeat ReQuest
  • the third processing unit 91 determines the feedback multiplexing granularity of the terminal device based on one of the service type, service quality parameter, and physical layer indication of the downlink transmission. Degree or feedback timing granularity.
  • the determination of feedback multiplexing granularity or feedback timing granularity based on service type and service quality parameters can be understood as the determination of the terminal device itself; through physical layer instructions, it can be understood as the way the network side configures the terminal device .
  • the service type may be services with different delays, for example, the feedback multiplexing granularity corresponding to low-latency services may be half a time slot or N symbols; feedback multiplexing corresponding to high-latency services The granularity can be set to a complete time slot.
  • the service type can be enhanced mobile broadband (eMBB, Enhance Mobile Broadband) or uRLLC (ultra-high reliability and ultra-low latency communication).
  • eMBB is a high-latency service
  • uRLLC is a low-latency service.
  • the quality of service parameter may refer to the quality of service (QoS) parameter, which is processed based on the parameter used to describe the transmission delay in the quality of service.
  • QoS quality of service
  • the feedback multiplexing granularity corresponding to the low transmission delay may be half the time. Slots or N symbols; the granularity of feedback multiplexing corresponding to high transmission delay can be set as a complete slot.
  • the physical layer indication it may be an indication for the terminal device through high-level signaling, specifically, it may be RRC signaling.
  • the RRC signaling indicates the feedback multiplexing granularity or feedback timing granularity to be used by the terminal device.
  • the scenario provided in this embodiment is the feedback resource of the feedback information corresponding to the downlink transmission, such as PUCCH time domain resource, which is limited by HARQ timing granularity or HARQ-ACK multiplexing granularity.
  • the network device further includes:
  • the third processing unit 1002 allocates the feedback resource of the feedback information in a time domain range of the granularity of feedback multiplexing
  • PUCCH time domain resources are limited by HARQ timing granularity, such as half slot.
  • the PUCCH resource is limited by the HARQ timing granularity means that the time domain resource of the PUCCH is within a half slot range.
  • PUCCH time domain resources are limited by HARQ multiplexing granularity, such as half slot.
  • the PUCCH resource is limited by the HARQ multiplexing granularity means that the time domain resource of the PUCCH is within a half slot range.
  • the feedback resources for PDSCH 1, 2, and 3 can all be limited to a half slot, and the corresponding PUCCH 1, 2, and 3 are all allocated in the half slot range.
  • the third processing unit 91 may use the same feedback multiplexing granularity or Feedback timing granularity when allocating feedback resources for at least two downlink transmissions, determining that the terminal device multiplexes the feedback resources of the at least two downlink transmissions in the same multiplexing window;
  • the terminal device When allocating feedback resources for at least two downlink transmissions based on different feedback multiplexing granularity or feedback timing granularity, it is determined that the terminal device does not multiplex the feedback resources of the at least two downlink transmissions.
  • the feedback resources corresponding to different feedback multiplexing granularity or feedback information of the timing granularity such as PUCCH time domain resources, have different constraints.
  • the feedback information HARQ-ACK corresponding to different feedback multiplexing granularity or feedback timing granularity is multiplexed separately.
  • feedback multiplexing granularity or feedback timing granularity feedback information for example, HARQ-ACKs with the same HARQ-ACK are multiplexed in their corresponding HARQ multiplexing window; and HARQ feedback multiplexing granularity or timing granularity feedback -HARQ-ACKs with different ACKs are not HARQ multiplexed.
  • PUCCH1 and 3 can be multiplexed, and feedback information can be transmitted on PUCCH3.
  • PUCCH1, 3, and PUCCH2 cannot be multiplexed in different feedback multiplexing granularity or feedback timing granularity.
  • the feedback multiplexing granularity or feedback timing granularity corresponding to PDSCH1-3 is half-slot, and the feedback multiplexing granularity or feedback timing granularity corresponding to PDSCH4 is the complete slot slot; PDSCH4 is not multiplexed with PDSCH1-3.
  • the third processing unit 1002 in this embodiment when there is a conflict between the feedback resources of at least two downlink transmissions corresponding to the feedback multiplexing granularity or the feedback timing granularity of different feedback information, the feedback resource of the downlink transmission scheduled later takes precedence.
  • the priority is higher than the feedback resource of the downlink transmission scheduled first, or the priority of the feedback information occupying more resources is higher than the priority of feedback information occupying less resources.
  • the conflict between the feedback resources of at least two downlink transmissions of the different feedback multiplexing granularity or feedback timing granularity may be understood as two feedback resources covering the same multiplexing window or covering the same feedback timing granularity. Then both feedback resources can be occupied on the feedback resources scheduled afterwards;
  • the feedback information occupies resources, which can be measured by the size of the occupied transport block (TB) or the size of the occupied physical resource block (PRB).
  • the priority that the feedback information occupies more resources is set to high priority, and both feedback resources are scheduled to reuse the high priority feedback resources.
  • the conflict handling method of the terminal device may be set, which may be stipulated by an agreement and set by the network side for it, or the terminal may be resolved by itself.
  • feedback resources scheduled after adoption have a high priority.
  • the feedback resource to be scheduled later may also be set to a high priority, or a feedback resource with a larger TB SIZE or PRB number may have a higher priority.
  • the downlink transmission feedback resources can be allocated with limited conditions when allocating.
  • the limited conditions can include a complete time slot, half a time slot, or N symbols; in this way, it can make The time delay of the feedback information is reduced, so as to meet the time delay requirement, and it is more suitable for services sensitive to transmission delay.
  • the embodiment of the present invention provides a network device, as shown in FIG. 11, including:
  • the fourth communication unit 1101 sends feedback resource configuration information to the terminal device; wherein the feedback resource configuration information is used to allocate feedback resources, and the allocation of feedback resources is not limited to feedback multiplexing granularity or feedback timing granularity, And is limited by the preset time domain threshold;
  • the feedback multiplexing granularity is used to characterize the time domain range of the multiplexing window of the feedback information;
  • the time domain range is: complete time slot, half time slot, N symbols, and N is an integer greater than or equal to 1.
  • the feedback timing granularity is one of the following: complete time slot, half time slot, N symbols, N is an integer greater than or equal to 1;
  • the preset time domain threshold is greater than or equal to feedback multiplexing granularity or feedback timing granularity.
  • the feedback information may be feedback information for downlink transmission.
  • the downlink transmission may be downlink control information (DCI), or may be a downlink transmission scheduled by DCI; when the downlink transmission is DCI scheduling
  • the physical downlink control channel (PDCCH, Physical Downlink Control Channel) refers to or the information transmitted by the physical downlink shared channel (PDSCH, Physical Downlink Shared Channel).
  • the feedback resource may be a physical uplink control channel (PUCCH, Physical Uplink Control Channel).
  • the feedback information for the downlink transmission can be the acknowledge ACK/non-acknowledge NACK information of the hybrid automatic repeat request (HARQ, Hybrid Automatic Repeat ReQuest).
  • HARQ Hybrid Automatic Repeat ReQuest
  • the fourth processing unit determines the feedback multiplexing granularity or feedback timing granularity based on one of the service type, service quality parameter, and physical layer indication.
  • the determination of feedback multiplexing granularity or feedback timing granularity based on service type and service quality parameters can be understood as the determination of the terminal device itself; through physical layer instructions, it can be understood as the way the network side configures the terminal device .
  • the service type may be services with different delays, for example, the feedback multiplexing granularity corresponding to low-latency services may be half a time slot or N symbols; feedback multiplexing corresponding to high-latency services The granularity can be set to a complete time slot.
  • the service type can be enhanced mobile broadband (eMBB, Enhance Mobile Broadband) or uRLLC (ultra-high reliability and ultra-low latency communication).
  • eMBB is a high-latency service
  • uRLLC is a low-latency service.
  • the quality of service parameter may refer to the quality of service (QoS) parameter, which is processed based on the parameter used to describe the transmission delay in the quality of service.
  • QoS quality of service
  • the feedback multiplexing granularity corresponding to the low transmission delay may be half the time. Slots or N symbols; the granularity of feedback multiplexing corresponding to high transmission delay can be set as a complete slot.
  • the physical layer indication it may be an indication for the terminal device through high-level signaling, specifically, it may be RRC signaling.
  • the RRC signaling indicates the feedback multiplexing granularity or feedback timing granularity to be used by the terminal device.
  • the feedback resources corresponding to the downlink transmission in this embodiment are not limited to feedback multiplexing granularity or feedback timing granularity, that is, PUCCH time domain resources can span HARQ timing granularity. Or HARQ-ACK multiplexing granularity. But it is still limited by the time slot slot or other time domain thresholds that are greater than or equal to HARQ timing granularity or HARQ-ACK multiplexing granularity.
  • the network device further includes:
  • the fourth processing unit 1102 the time domain range in which the feedback resource is allocated to the terminal device includes M feedback multiplexing granularities or M feedback timing granularities; M is an integer greater than 1; and the time domain of the feedback resource The range is not greater than the preset time domain threshold.
  • the feedback resource can span multiple feedback multiplexing granularity or feedback timing granularity.
  • the preset time domain threshold value may be at least two feedback multiplexing granularities or at least two feedback timing granularities.
  • the feedback resources can be allocated to more than half of the time slot, such as two and a half time slots, or three and a half time slots, as long as it is not greater than the preset time domain threshold.
  • the feedback multiplexing granularity or feedback timing granularity is half slot, but the PUCCH time domain resource range of the feedback resource for downlink transmission is limited to a preset threshold.
  • a preset time domain threshold can be one For a complete time slot, PUCCH3 in the figure is greater than half a time slot, but less than a complete time slot.
  • the method further includes: based on the starting point of the feedback resources allocated for at least two downlink transmissions and/or The end point is to determine whether to multiplex the feedback information of the at least two downlink transmissions on the same feedback resource.
  • the fourth processing unit 1102 includes executing at least one of the following:
  • the terminal device When the starting points of at least two downlink transmission feedback resources allocated to the terminal device are located in the same feedback multiplexing granularity or feedback timing granularity, it is determined that the terminal device multiplexes the at least two downlink transmission feedback information in the same Feedback resources;
  • the terminal device When the end points of the at least two downlink transmission feedback resources allocated to the terminal device are located in the same feedback multiplexing granularity or feedback timing granularity, it is determined that the terminal device multiplexes the at least two downlink transmission feedback information in the same Feedback resources.
  • the two feedback information can be multiplexed on the same feedback resource; for example, As shown in Figure 6, the starting points of PUCCH1 and 3 are in the same multiplexing window, and the feedback information transmitted by PUCCH1 and 3 can be multiplexed in PUCCH3.
  • the two feedback information can be reused on the same feedback resource; for example, As shown in Figure 6, the end points of PUCCH 2 and 3 are in the same multiplexing window, and the feedback information transmitted by PUCCH 2 and 3 can be multiplexed in PUCCH3.
  • HARQ multiplexing refers to the PUCCH resource start point, end point, or both.
  • HARQ-ACKs whose starting point or end point falls within the same HARQ timing granularity or HARQ-ACK multiplexing granularity are multiplexed.
  • the fourth processing unit 1102 when the end points of the feedback resources of the at least two downlink transmissions allocated to the terminal device are not at the boundary of the feedback multiplexing granularity or the feedback timing granularity, based on the feedback of the at least two downlink transmissions
  • the information timing granularity of the starting point of the resource determines that the terminal device multiplexes the feedback information of the at least two downlink transmissions in the same feedback resource. For example, when the end points of the feedback resources of two downlink transmissions are not located at the boundary of the multiplexing window, the starting point of the feedback resources can be used as the criterion to determine whether to perform multiplexing.
  • the HARQ-ACK multiplexing window where the start point is located shall prevail, otherwise the HARQ-ACK multiplexing window where the end point is located shall prevail.
  • This embodiment also provides a fourth processing unit.
  • the feedback resource of the downstream scheduled downlink transmission has a higher priority than the feedback resource of the previously scheduled downlink transmission, or the priority of the feedback information occupying more resources is higher than the feedback information occupying less resources. level.
  • the conflict between the feedback resources of at least two downlink transmissions of the different feedback multiplexing granularity or feedback timing granularity may be understood as two feedback resources covering the same multiplexing window or covering the same feedback timing granularity. Then both feedback resources can be occupied on the feedback resources scheduled afterwards;
  • the feedback information occupies resources, which can be measured by the size of the occupied transport block (TB) or the size of the occupied physical resource block (PRB).
  • the priority that the feedback information occupies more resources is set to high priority, and both feedback resources are scheduled to reuse the high priority feedback resources.
  • the conflict handling method of the terminal device may be set, which may be stipulated by an agreement and set by the network side for it, or the terminal may be resolved by itself.
  • feedback resources scheduled after adoption have a high priority.
  • the feedback resource to be scheduled later may also be set to a high priority, or a feedback resource with a larger TB SIZE or PRB number may have a higher priority.
  • the downlink transmission feedback resources can be allocated with limited conditions when allocating.
  • the limited conditions can include a complete time slot, half a time slot, or N symbols; in this way, it can make The time delay of the feedback information is reduced, so as to meet the time delay requirement, and it is more suitable for services sensitive to transmission delay.
  • FIG. 12 is a schematic structural diagram of a communication device 1200 provided by an embodiment of the present application.
  • the communication device may be the aforementioned terminal device or network device in this embodiment.
  • the communication device 1200 shown in FIG. 12 includes a processor 1210, and the processor 1210 can call and run a computer program from a memory to implement the method in the embodiment of the present application.
  • the communication device 1200 may further include a memory 1220.
  • the processor 1210 can call and run a computer program from the memory 1220 to implement the method in the embodiment of the present application.
  • the memory 1220 may be a separate device independent of the processor 1210, or it may be integrated in the processor 1210.
  • the communication device 1200 may further include a transceiver 1230, and the processor 1210 may control the transceiver 1230 to communicate with other devices. Specifically, it may send information or data to other devices, or receive other devices. Information or data sent by the device.
  • the transceiver 1230 may include a transmitter and a receiver.
  • the transceiver 1230 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1200 may specifically be a network device of an embodiment of the application, and the communication device 1200 may implement the corresponding process implemented by the network device in each method of the embodiment of the application. For brevity, details are not repeated here .
  • the communication device 1200 may specifically be a terminal device or a network device in an embodiment of the application, and the communication device 1200 may implement the corresponding processes implemented by the mobile terminal/terminal device in each method of the embodiment of the application. It's concise, so I won't repeat it here.
  • FIG. 13 is a schematic structural diagram of a chip of an embodiment of the present application.
  • the chip 1300 shown in FIG. 13 includes a processor 1310, and the processor 1310 can call and run a computer program from the memory to implement the method in the embodiment of the present application.
  • the chip 1300 may further include a memory 1320.
  • the processor 1310 may call and run a computer program from the memory 1320 to implement the method in the embodiment of the present application.
  • the memory 1320 may be a separate device independent of the processor 1310, or it may be integrated in the processor 1310.
  • the chip 1300 may further include an input interface 1330.
  • the processor 1310 can control the input interface 1330 to communicate with other devices or chips, and specifically, can obtain information or data sent by other devices or chips.
  • the chip 1300 may further include an output interface 1340.
  • the processor 1310 can control the output interface 1340 to communicate with other devices or chips, and specifically, can output information or data to other devices or chips.
  • the chip can be applied to the network device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the network device in the various methods of the embodiment of the present application.
  • the chip can be applied to the terminal device in the embodiment of the present application, and the chip can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the chip can implement the corresponding process implemented by the terminal device in the various methods of the embodiment of the present application.
  • the chip mentioned in the embodiment of the present application may also be referred to as a system-level chip, a system-on-chip, a system-on-chip, or a system-on-chip, etc.
  • FIG. 14 is a schematic block diagram of a communication system 1400 according to an embodiment of the present application. As shown in FIG. 14, the communication system 1400 includes a terminal device 1410 and a network device 1420.
  • the terminal device 1410 can be used to implement the corresponding function implemented by the terminal device in the above method
  • the network device 1420 can be used to implement the corresponding function implemented by the network device in the above method. For brevity, it will not be repeated here. .
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • the steps of the foregoing method embodiments can be completed by hardware integrated logic circuits in the processor or instructions in the form of software.
  • the aforementioned processor may be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (ASIC), a ready-made programmable gate array (Field Programmable Gate Array, FPGA) or other Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC application specific integrated circuit
  • FPGA ready-made programmable gate array
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly embodied as being executed and completed by a hardware decoding processor, or executed and completed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory, or electrically erasable programmable memory, registers.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM DDR SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • Synchlink DRAM SLDRAM
  • DR RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be static random access memory (static RAM, SRAM), dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is to say, the memory in the embodiment of the present application is intended to include but not limited to these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium may be applied to the network device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program causes the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer-readable storage medium can be applied to the terminal device in the embodiment of the present application, and the computer program causes the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, for the sake of brevity , I won’t repeat it here.
  • the embodiments of the present application also provide a computer program product, including computer program instructions.
  • the computer program product may be applied to the network device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program instructions cause the computer to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • the computer program product can be applied to the mobile terminal/terminal device in the embodiment of the present application, and the computer program instructions cause the computer to execute the corresponding process implemented by the mobile terminal/terminal device in each method of the embodiment of the present application, For brevity, I won't repeat them here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device in the embodiment of the present application.
  • the computer program runs on the computer, the computer is caused to execute the corresponding process implemented by the network device in each method of the embodiment of the present application.
  • I won’t repeat it here.
  • the computer program can be applied to the mobile terminal/terminal device in the embodiment of the present application.
  • the computer program runs on the computer, the computer executes each method in the embodiment of the present application. For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components can be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory,) ROM, random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本发明公开了一种反馈资源分配方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序,其中方法包括:接收网络侧发送的反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配受限于反馈复用颗粒度或者反馈定时颗粒度;其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数。

Description

一种反馈资源分配方法、终端设备及网络设备 技术领域
本发明涉及信息处理技术领域,尤其涉及一种反馈资源分配方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
背景技术
在新无线(NR,New Radio)Rel-15中,基站通过下行调度信令,比如下行控制信息(DCI,Downlink Control Information)中的物理下行共享信道(PDSCH,Physical Downlink Shared Channel)-to-混合自动重传请求(HARQ,Hybrid Automatic Repeat reQuest,HARQ)反馈(feedback)定时(timing)指示(indicator)信息域指示传输该DCI或该DCI调度的PDSCH对应的反馈信息,比如确认(ACK)/不确认(NACK)的时隙。然而对于URLLC业务,由于对传输时延敏感,因此采用Rel-15基于slot级的HARQ timing指示可能不能满足时延需求。
发明内容
为解决上述技术问题,本发明实施例提供了一种反馈资源分配方法、终端设备、网络设备、芯片、计算机可读存储介质、计算机程序产品以及计算机程序。
第一方面,本发明实施例提供了一种反馈资源分配方法,应用于终端设备,包括:
接收网络侧发送的反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配受限于反馈复用颗粒度或者反馈定时颗粒度;
其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数。
第二方面,本发明实施例提供了一种反馈资源分配方法,应用于终端设备,包括:
接收网络侧发送的反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配不受限于反馈复用颗粒度或者反馈定时颗粒度、且受限于预设时域门限值;
其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数;
所述预设时域门限值大于等于反馈复用颗粒度或者反馈定时颗粒度。
第三方面,本发明实施例提供了一种反馈资源分配方法,应用于网络设备,包括:
为终端设备发送反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配受限于反馈复用颗粒度或者反馈定时颗粒度;
其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数。
第四方面,本发明实施例提供了一种反馈资源分配方法,应用于网络设备,包括:
为终端设备发送反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配不受限于反馈复用颗粒度或者反馈定时颗粒度、且受限于预设时域门限值;
其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数;
所述预设时域门限值大于等于反馈复用颗粒度或者反馈定时颗粒度。
第五方面,提供了一种终端设备,包括:
第一通信单元,接收网络侧发送的反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配受限于反馈复用颗粒度或者反馈定时颗粒度;
其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数。
第六方面,提供了一种终端设备,包括:
第二通信单元,接收网络侧发送的反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配不受限于反馈复用颗粒度或者反馈定时颗粒度、且受限于预设时域门限值;
其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数;
所述预设时域门限值大于等于反馈复用颗粒度或者反馈定时颗粒度。
第七方面,提供了一种网络设备,包括:
第三通信单元,为终端设备发送反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配受限于反馈复用颗粒度或者反馈定时颗粒度;
其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数。
第八方面,提供了一种网络设备,包括:
第四通信单元,为终端设备发送反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配不受限于反馈复用颗粒度或者反馈定时颗粒度、且受限于预设时域门限值;
其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数;
所述预设时域门限值大于等于反馈复用颗粒度或者反馈定时颗粒度。
第九方面,提供了一种终端设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面或其各实现方式中的方法。
第十方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第二方面或其各实现方式中的方法。
第十一方面,提供了一种芯片,用于实现上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
具体地,该芯片包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有该芯片的设备执行如上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十二方面,提供了一种计算机可读存储介质,用于存储计算机程序,该计算机程序使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十三方面,提供了一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
第十四方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面中的任一方面或其各实现方式中的方法。
本发明实施例的技术方案,就能够对下行传输反馈资源进行分配的时候采用限定条件进行分配,限定的条件中可以包含有完整时隙、半个时隙、或N个符号;如此,就能够使得反馈信息的时延降低,从而能满足时延需求,更加适用于对传输时延敏感业务。
附图说明
图1是本申请实施例提供的一种通信系统架构的示意性图一;
图2是本申请实施例提供的一种反馈资源分配方法流程示意图一;
图3是本申请实施例提供的一种反馈资源复用场景示意图一;
图4是本申请实施例提供的一种反馈资源复用场景示意图二;
图5是本申请实施例提供的一种反馈资源分配方法流程示意图二;
图6为本发明实施例提供的一种反馈资源复用场景示意图三;
图7为本发明实施例提供的一种反馈资源复用场景示意图四;
图8为本发明实施例提供的一种终端设备组成结构示意图一;
图9为本发明实施例提供的一种终端设备组成结构示意图二;
图10是本申请实施例提供的一种网络设备组成结构示意图一;
图11是本申请实施例提供的一种网络设备组成结构示意图二;
图12为本发明实施例提供的一种通信设备组成结构示意图;
图13是本申请实施例提供的一种芯片的示意性框图;
图14是本申请实施例提供的一种通信系统架构的示意性图二。
具体实施方式
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统或5G系统等。
示例性的,本申请实施例应用的通信系统100可以如图1所示。该通信系统100可以包括网络设备110,网络设备110可以是与终端设备120(或称为通信终端、终端)通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备进行通信。可选地,该网络设备110可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为移动交换中心、中继站、接入点、车载设备、可穿戴设备、集线器、交换机、网桥、路由器、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。作为在此使用的“终端设备”包括但不限于经由有线线路连接,如经由公共交换电话网络(Public Switched Telephone Networks,PSTN)、数字用户线路(Digital Subscriber Line,DSL)、数字电缆、直接电缆连接;和/或另一数据连接/网络;和/或经由无线接口,如,针对蜂窝网络、无线局域网(Wireless Local Area Network,WLAN)、诸如DVB-H网络的数字电视网络、卫星网络、AM-FM广播发送器;和/或另一终端设备的被设置成接收/发送通信信号的装置;和/或物联网(Internet of Things,IoT)设备。被设置成通过无线接口通信的终端设备可以被称为“无线通信终端”、“无线终端”或“移动终端”。移动终端的示例包括但不限于卫星或蜂窝电话;可以组合蜂窝无线电电话与数据处理、传真以及数据通信能力的个人通信系统(Personal Communications System,PCS)终端;可以包括无线电电话、寻呼机、因特网/内联网接入、Web浏览器、记事簿、日历以及/或全球定位系统(Global Positioning System,GPS)接收器的PDA;以及常规膝上型和/或掌上型接收器或包括无线电电话收发器的其它电子装置。终端设备可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D)通信。
可选地,5G系统或5G网络还可以称为新无线(New Radio,NR)系统或NR网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例中网络/系统中具有通信功能的设备可称为通信设备。以图1示出的通信系统100为例,通信设备可包括具有通信功能的网络设备110和终端设备120,网络设备110和终端设备120可以为上文所述的具体设备,此处不再赘述;通信设备还可包括通信系统100中的其他设备,例如网络控制器、移动管理实体等其他网络实体,本申请实施例中对此不做限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一 种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
为了能够更加详尽地了解本发明实施例的特点与技术内容,下面结合附图对本发明实施例的实现进行详细阐述,所附附图仅供参考说明之用,并非用来限定本发明实施例。
实施例一、
本发明实施例提供了一种反馈资源分配方法,应用于终端设备,如图2所示,包括:
步骤201:接收网络侧发送的反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配受限于反馈复用颗粒度或者反馈定时颗粒度;
其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数。
这里,反馈资源上承载了反馈信息,所述反馈信息可以为针对下行传输的反馈信息,下行传输可以为下行控制信息(DCI),或者可以为DCI所调度的下行传输;当下行传输为DCI调度的下行传输时,可以为物理下行控制信道(PDCCH,Physical Downlink Control Channel)指的是或者物理下行共享信道(PDSCH,Physical Downlink Shared Channel)所传输的信息。相应的,反馈资源可以为物理上行控制信道(PUCCH,Physical Uplink Control Channel)。针对下行传输的反馈信息可以为混合自动重传请求(HARQ,Hybrid Automatic Repeat ReQuest)的确认ACK/不确认NACK信息。
所述接收网络侧发送的反馈资源配置信息之后,所述方法还包括:基于所述反馈资源配置信息,确定针对下行传输的反馈资源。
本实施例提供的场景为下行传输对应的反馈信息的反馈资源,比如PUCCH时域资源,受限于HARQ timing颗粒度或HARQ-ACK复用颗粒度。
也就是说,本实施例中,基于所述反馈资源配置信息,确定针对下行传输的反馈资源,包括:
基于所述反馈资源配置信息,确定反馈信息的反馈资源在一个反馈复用颗粒度的时域范围内;或者,基于所述反馈资源配置信息,确定反馈信息的反馈资源在一个反馈定时颗粒度的时域范围内。
比如,图3所示,PUCCH时域资源受限于HARQ timing颗粒度,例如half slot。所述PUCCH资源受限于HARQ timing颗粒度指PUCCH的时域资源在一个half slot范围内。或者,PUCCH时域资源受限于HARQ复用颗粒度,例如half slot。所述PUCCH资源受限于HARQ复用颗粒度指PUCCH的时域资源在一个half slot范围内。具体的,结合图3来进行说明,针对PDSCH1、2、3的反馈资源均可以限定在半个时隙(Half slot)内,则对应的PUCCH1、2、3均分配在半个时隙的范围内。
进一步地,所述基于所述反馈资源配置信息,确定针对下行传输的反馈资源时,所述方法还包括:
当基于所述反馈资源配置信息,确定至少两个下行传输分配反馈资源为相同的反馈复用颗粒度或者反馈定时颗粒度时,将所述至少两个下行传输的反馈资源在相同的复用窗口内进行复用;
当基于所述反馈资源配置信息,确定至少两个下行传输分配反馈资源为不同的反馈复用颗粒度或者反馈定时颗粒度时,不对所述至少两个下行传输的反馈资源进行复用。
也就是说,还可以进一步来确定是否将反馈资源进行复用。即对应不同反馈复用颗粒度或者反馈定时颗粒度的反馈信息的反馈资源,比如PUCCH时域资源,约束也相应的不同。对应不同反馈复用颗粒度或者反馈定时颗粒度的反馈信息HARQ-ACK分别进行复用。
比如,反馈复用颗粒度或者反馈定时颗粒度的反馈信息,比如HARQ-ACK相同的HARQ-ACK在其对应的HARQ复用窗内复用;而反馈复用颗粒度或者反馈定时颗粒度的HARQ-ACK不同的HARQ-ACK不进行HARQ复用。比如,图3中,可以将PUCCH1、3进行复用,在PUCCH3上传输反馈信息。而PUCCH1、3以及PUCCH2在不同的反馈复用颗粒度或反馈定时颗粒度内,则不可以进行复用。
如图4所示,PDSCH1-3对应的反馈复用颗粒度或者反馈定时颗粒度为半个时隙half-slot,PDSCH4对应的反馈复用颗粒度或者反馈定时颗粒度为完整时隙slot;则PDSCH4不与PDSCH1-3进行复用。
进一步地,当PDSCH1-3落在相同HARQ-ACK复用窗内的PUCCH进行复用,即PUCCH2/3复用在PUCCH2相关的资源上,落在不同HARQ-ACK复用窗的PUCCH不进行复用,即PUCCH1和PUCCH3独立传输。
本实施例还提供以下方法:当对应不同的反馈信息的反馈复用颗粒度或者反馈定时颗粒度的至少两个下行传输的反馈资源存在冲突时,后调度的下行传输的反馈资源优先级高于先调度的下行传输的反馈资源,或者,反馈信息占用资源多的优先级高于反馈信息占用资源少的优先级。
其中,所述不同的反馈复用颗粒度或者反馈定时颗粒度的至少两个下行传输的反馈资源存在冲突可以理解为两个反馈资源覆盖同一个复用窗口、或者覆盖同一个反馈定时颗粒度,则可以将两个反馈资源均占用后调度的反馈资源上;
或者,反馈信息占用资源,可以采用占用的传输块(TB)大小、或者占用的物理资源块(PRB)的大小来衡量。将反馈信息占用资源较多的优先级设置为高优先级,将两个反馈资源均调度为复用高优先级的反馈资源。
或者,还可以采用其他方式,比如,设置终端设备的冲突处理方式,可以通过协议来规定,由网络侧为其进行设置,或者,可以终端自行解决。例如,采用后调度的反馈资源优先级高。所述协议约定规则,也可以将后调度的反馈资源设置为优先级高,或者TB SIZE或PRB number较大的反馈资源对应的优先级高。
可见,通过采用上述方案,就能够对下行传输反馈资源进行分配的时候采用限定条件进行分配,限定的条件中可以包含有完整时隙、半个时隙、或N个符号;如此,就能够使得反馈信息的时延降低,从而能满足时延需求,更加适用于对传输时延敏感业务。
实施例二、
本发明实施例提供了一种反馈资源分配方法,应用于终端设备,如图5所示,包括:
步骤501:接收网络侧发送的反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配不受限于反馈复用颗粒度或者反馈定时颗粒度、且受限于预设时域门限值;
其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数;
所述预设时域门限值大于等于反馈复用颗粒度或者反馈定时颗粒度。
所述接收网络侧发送的反馈资源配置信息之后,所述方法还包括:基于所述反馈资源配置信息,确定针对下行传输的反馈资源。
这里,反馈资源上承载了反馈信息,所述反馈信息可以为针对下行传输的反馈信息,下行传输可以为下行控制信息(DCI),或者可以为DCI所调度的下行传输;当下行传输为DCI调度的下行传输时,可以为物理下行控制信道(PDCCH,Physical Downlink Control Channel)指的是或者物理下行共享信道(PDSCH,Physical Downlink Shared Channel)所传输的信息。相应的,反馈资源可以为物理上行控制信道(PUCCH,Physical Uplink Control Channel)。针对下行传输的反馈信息可以为混合自动重传请求(HARQ,Hybrid Automatic Repeat ReQuest)的确认ACK/不确认NACK信息。
本实施例不同在于,本实施例的下行传输所对应的反馈资源,比如PUCCH时域资源,不受限于反馈复用颗粒度或反馈定时颗粒度,即PUCCH时域资源可以跨HARQ timing颗粒度或HARQ-ACK复用颗粒度。但仍受限于时隙slot或者受限于其他大于等于HARQ timing颗粒度或HARQ-ACK复用颗粒度的时域门限值。
也就是说,本实施例中,所述基于所述反馈资源配置信息,确定针对下行传输的反馈资源,包括:
基于所述反馈资源配置信息,确定所述反馈资源的时域范围包含M个反馈复用颗粒度或者M个反馈定时颗粒度;M为大于1的整数;并且,所述反馈资源的时域范围不大于所述预设时域门限值。
其中,反馈资源可以横跨多个反馈复用颗粒度或反馈定时颗粒度。
所述预设时域门限值可以为至少两个反馈复用颗粒度或至少两个反馈定时颗粒度。
基于所述反馈资源配置信息,确定下行传输的反馈资源的时候,反馈资源可以分配到大于半个时隙,比如两个半时隙,或者三个半时隙中,只要不大于预设时域门限值即可。
例如,如图6,反馈复用颗粒度或反馈定时颗粒度为half slot,但下行传输的反馈资源PUCCH时域资源范围限于预设门限值,比如一个预设时域门限值可以为一个完整时隙,则图中PUCCH3大于半个时隙,但是小于一个完整时隙。
所述分配所述反馈资源的时域范围包含M个反馈复用颗粒度或者M个反馈定时颗粒度时,所述方法还包括:基于为至少两个下行传输分配的反馈资源的起点和/或终点,确定是否将所述至少两 个下行传输的反馈信息复用在同一个反馈资源上。
具体包括以下至少之一:
当为至少两个下行传输分配的反馈资源的起点位于相同的反馈复用颗粒度或者反馈定时颗粒度中时,确定所述至少两个下行传输的反馈信息复用在相同的反馈资源;
当为至少两个下行传输分配的反馈资源的终点位于相同的反馈复用颗粒度或者反馈定时颗粒度中时,确定所述至少两个下行传输的反馈信息复用在相同的反馈资源。
比如,有两个反馈资源的起点在一个复用窗口中,而这两个反馈资源的终点在不同的复用窗口,则可以将这两个反馈信息复用在相同的反馈资源上;比如,图7所示,PUCCH1、3的起点在同一个复用窗口中,可以将PUCCH1、3传输的反馈信息均复用在PUCCH3中。
或者,有两个反馈资源的终点在一个复用窗口中,而这两个反馈资源的起点在不同的复用窗口,则可以将这两个反馈信息复用在相同的反馈资源上;比如,图7所示,PUCCH 2、3的终点在同一个复用窗口中,可以将PUCCH2、3传输的反馈信息均复用在PUCCH3中。
或者,可以将反馈资源的起点以及终点均在同一个复用窗口的时候,两个反馈资源进行复用。也就是说,HARQ复用参考PUCCH资源起点,终点或者两者来定。如起点或终点落在同一个HARQ timing颗粒度或HARQ-ACK复用颗粒度内的HARQ-ACK进行复用。
进一步地,还可以为:当为至少两个下行传输分配的反馈资源的终点不在反馈复用颗粒度或者反馈定时颗粒度的边界时,基于所述至少两个下行传输的反馈资源的起点所在的信息定时颗粒度,确定所述至少两个下行传输的反馈信息复用在相同的反馈资源。比如,两个下行传输的反馈资源的终点不位于复用窗口的边界的时候,可以以反馈资源的起点为准进行是否进行复用的判断。比如,终点不在HARQ timing颗粒度或HARQ-ACK复用颗粒度边界的,则以起点所在的HARQ-ACK复用窗为准,否则以终点所在的HARQ-ACK复用窗为准。
本实施例还提供以下方法:后调度的下行传输的反馈资源优先级高于先调度的下行传输的反馈资源,或者,反馈信息占用资源多的优先级高于反馈信息占用资源少的优先级。
其中,所述不同的反馈复用颗粒度或者反馈定时颗粒度的至少两个下行传输的反馈资源存在冲突可以理解为两个反馈资源覆盖同一个复用窗口、或者覆盖同一个反馈定时颗粒度,则可以将两个反馈资源均占用后调度的反馈资源上;
或者,反馈信息占用资源,可以采用占用的传输块(TB)大小、或者占用的物理资源块(PRB)的大小来衡量。将反馈信息占用资源较多的优先级设置为高优先级,将两个反馈资源均调度为复用高优先级的反馈资源。
或者,还可以采用其他方式,比如,设置终端设备的冲突处理方式,可以通过协议来规定,由网络侧为其进行设置,或者,可以终端自行解决。例如,采用后调度的反馈资源优先级高。所述协议约定规则,也可以将后调度的反馈资源设置为优先级高,或者TB SIZE或PRB number较大的反馈资源对应的优先级高。
可见,通过采用上述方案,就能够对下行传输反馈资源进行分配的时候采用限定条件进行分配,限定的条件中可以包含有完整时隙、半个时隙、或N个符号;如此,就能够使得反馈信息的时延降低,从而能满足时延需求,更加适用于对传输时延敏感业务。
实施例三、
本发明实施例提供了一种反馈资源分配方法,应用于网络设备,包括:
为终端设备发送反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配受限于反馈复用颗粒度或者反馈定时颗粒度;
其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数。
这里,反馈资源上承载了反馈信息,所述反馈信息可以为针对下行传输的反馈信息,下行传输可以为下行控制信息(DCI),或者可以为DCI所调度的下行传输;当下行传输为DCI调度的下行传输时,可以为物理下行控制信道(PDCCH,Physical Downlink Control Channel)指的是或者物理下行共享信道(PDSCH,Physical Downlink Shared Channel)所传输的信息。相应的,反馈资源可以为物理上行控制信道(PUCCH,Physical Uplink Control Channel)。针对下行传输的反馈信息可以为混合自动重传请求(HARQ,Hybrid Automatic Repeat ReQuest)的确认ACK/不确认NACK信息。
关于上述反馈复用颗粒度以及反馈定时颗粒度的获取方式,可以为:基于下行传输的业务类型、服务质量参数、物理层指示中之一,确定终端设备的所述反馈复用颗粒度或者反馈定时颗粒度。
具体来说,基于业务类型、服务质量参数来确定反馈复用颗粒度或反馈定时颗粒度,可以理解为终端设备自身来确定;通过物理层指示,可以理解为网络侧为终端设备进行配置的方式。
进一步地,所述业务类型,可以为不同时延的业务,比如,低时延业务对应的反馈复用颗粒度可以为半个时隙或N个符号;针对高时延业务对应的反馈复用颗粒度则可以设置为完整时隙。其中,业务类型可以为增强移动宽带(eMBB,Enhance Mobile Broadband)或者uRLLC(超高可靠超低时延通信)。eMBB为高时延业务,uRLLC为低时延业务。
所述服务质量参数,可以参考服务质量(QoS)参数,基于服务质量中用于描述传输的时延的参数来处理,比如,低传输的时延对应的反馈复用颗粒度可以为半个时隙或N个符号;针对高传输的时延对应的反馈复用颗粒度则可以设置为完整时隙。
关于物理层指示,可以为通过高层信令为终端设备指示,具体的可以为RRC信令,在RRC信令中指示终端设备所要采用的反馈复用颗粒度或反馈定时颗粒度。
本实施例提供的场景为下行传输对应的反馈信息的反馈资源,比如PUCCH时域资源,受限于HARQ timing颗粒度或HARQ-ACK复用颗粒度。
也就是说,本实施例中,所述方法具体为:将反馈信息的反馈资源分配在一个反馈复用颗粒度的时域范围内;或者,将反馈信息的反馈资源分配在一个反馈定时颗粒度的时域范围内。
比如,图3所示,PUCCH时域资源受限于HARQ timing颗粒度,例如half slot。所述PUCCH资源受限于HARQ timing颗粒度指PUCCH的时域资源在一个half slot范围内。或者,PUCCH时域资源受限于HARQ复用颗粒度,例如half slot。所述PUCCH资源受限于HARQ复用颗粒度指PUCCH的时域资源在一个half slot范围内。具体的,结合图3来进行说明,针对PDSCH1、2、3的反馈资源均可以限定在半个时隙(Half slot)内,则对应的PUCCH1、2、3均分配在半个时隙的范围内。
进一步地,所述为终端设备发送反馈资源配置信息之后,所述方法还包括:
当基于相同的反馈复用颗粒度或者反馈定时颗粒度为至少两个下行传输分配反馈资源时,确定所述终端设备将所述至少两个下行传输的反馈资源在相同的复用窗口内进行复用;
当基于不同的反馈复用颗粒度或者反馈定时颗粒度为至少两个下行传输分配反馈资源时,确定所述终端设备不对所述至少两个下行传输的反馈资源进行复用。
也就是说,当针对反馈资源进行分配的时候,还可以进一步来确定是否将反馈资源进行复用。即对应不同反馈复用颗粒度或者反馈定时颗粒度的反馈信息的反馈资源,比如PUCCH时域资源,约束也相应的不同。对应不同反馈复用颗粒度或者反馈定时颗粒度的反馈信息HARQ-ACK分别进行复用。
比如,反馈复用颗粒度或者反馈定时颗粒度的反馈信息,比如HARQ-ACK相同的HARQ-ACK在其对应的HARQ复用窗内复用;而反馈复用颗粒度或者反馈定时颗粒度的HARQ-ACK不同的HARQ-ACK不进行HARQ复用。比如,图3中,可以将PUCCH1、3进行复用,在PUCCH3上传输反馈信息。而PUCCH1、3以及PUCCH2在不同的反馈复用颗粒度或反馈定时颗粒度内,则不可以进行复用。
如图4所示,PDSCH1-3对应的反馈复用颗粒度或者反馈定时颗粒度为半个时隙half-slot,PDSCH4对应的反馈复用颗粒度或者反馈定时颗粒度为完整时隙slot;则PDSCH4不与PDSCH1-3进行复用。
进一步地,当PDSCH1-3落在相同HARQ-ACK复用窗内的PUCCH进行复用,即PUCCH2/3复用在PUCCH2相关的资源上,落在不同HARQ-ACK复用窗的PUCCH不进行复用,即PUCCH1和PUCCH3独立传输。
本实施例还提供以下方法:当对应不同的反馈信息的反馈复用颗粒度或者反馈定时颗粒度的至少两个下行传输的反馈资源存在冲突时,后调度的下行传输的反馈资源优先级高于先调度的下行传输的反馈资源,或者,反馈信息占用资源多的优先级高于反馈信息占用资源少的优先级。
其中,所述不同的反馈复用颗粒度或者反馈定时颗粒度的至少两个下行传输的反馈资源存在冲突可以理解为两个反馈资源覆盖同一个复用窗口、或者覆盖同一个反馈定时颗粒度,则可以将两个反馈资源均占用后调度的反馈资源上;
或者,反馈信息占用资源,可以采用占用的传输块(TB)大小、或者占用的物理资源块(PRB)的大小来衡量。将反馈信息占用资源较多的优先级设置为高优先级,将两个反馈资源均调度为复用高优先级的反馈资源。
或者,还可以采用其他方式,比如,设置终端设备的冲突处理方式,可以通过协议来规定,由 网络侧为其进行设置,或者,可以终端自行解决。例如,采用后调度的反馈资源优先级高。所述协议约定规则,也可以将后调度的反馈资源设置为优先级高,或者TB SIZE或PRB number较大的反馈资源对应的优先级高。
可见,通过采用上述方案,就能够对下行传输反馈资源进行分配的时候采用限定条件进行分配,限定的条件中可以包含有完整时隙、半个时隙、或N个符号;如此,就能够使得反馈信息的时延降低,从而能满足时延需求,更加适用于对传输时延敏感业务。
实施例四、
本发明实施例提供了一种反馈资源分配方法,应用于网络设备,包括:
为终端设备发送反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配不受限于反馈复用颗粒度或者反馈定时颗粒度、且受限于预设时域门限值;
其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数;
所述预设时域门限值大于等于反馈复用颗粒度或者反馈定时颗粒度。
这里,反馈资源上承载了反馈信息,所述反馈信息可以为针对下行传输的反馈信息,下行传输可以为下行控制信息(DCI),或者可以为DCI所调度的下行传输;当下行传输为DCI调度的下行传输时,可以为物理下行控制信道(PDCCH,Physical Downlink Control Channel)指的是或者物理下行共享信道(PDSCH,Physical Downlink Shared Channel)所传输的信息。相应的,反馈资源可以为物理上行控制信道(PUCCH,Physical Uplink Control Channel)。针对下行传输的反馈信息可以为混合自动重传请求(HARQ,Hybrid Automatic Repeat ReQuest)的确认ACK/不确认NACK信息。
关于上述反馈复用颗粒度以及反馈定时颗粒度的获取方式,可以为:基于业务类型、服务质量参数、物理层指示中之一,确定所述反馈复用颗粒度或者反馈定时颗粒度。
具体来说,基于业务类型、服务质量参数来确定反馈复用颗粒度或反馈定时颗粒度,可以理解为终端设备自身来确定;通过物理层指示,可以理解为网络侧为终端设备进行配置的方式。
进一步地,所述业务类型,可以为不同时延的业务,比如,低时延业务对应的反馈复用颗粒度可以为半个时隙或N个符号;针对高时延业务对应的反馈复用颗粒度则可以设置为完整时隙。其中,业务类型可以为增强移动宽带(eMBB,Enhance Mobile Broadband)或者uRLLC(超高可靠超低时延通信)。eMBB为高时延业务,uRLLC为低时延业务。
所述服务质量参数,可以参考服务质量(QoS)参数,基于服务质量中用于描述传输的时延的参数来处理,比如,低传输的时延对应的反馈复用颗粒度可以为半个时隙或N个符号;针对高传输的时延对应的反馈复用颗粒度则可以设置为完整时隙。
关于物理层指示,可以为通过高层信令为终端设备指示,具体的可以为RRC信令,在RRC信令中指示终端设备所要采用的反馈复用颗粒度或反馈定时颗粒度。
本实施例不同在于,本实施例的下行传输所对应的反馈资源,比如PUCCH时域资源,不受限于反馈复用颗粒度或反馈定时颗粒度,即PUCCH时域资源可以跨HARQ timing颗粒度或HARQ-ACK复用颗粒度。但仍受限于时隙slot或者受限于其他大于等于HARQ timing颗粒度或HARQ-ACK复用颗粒度的时域门限值。
也就是说,本实施例中,为终端设备分配所述反馈资源的时域范围包含M个反馈复用颗粒度或者M个反馈定时颗粒度;M为大于1的整数;并且,所述反馈资源的时域范围不大于所述预设时域门限值。
其中,反馈资源可以横跨多个反馈复用颗粒度或反馈定时颗粒度。
所述预设时域门限值可以为至少两个反馈复用颗粒度或至少两个反馈定时颗粒度。
分配下行传输的反馈资源的时候,可以将反馈资源分配到大于半个时隙,比如两个半时隙,或者三个半时隙中,只要不大于预设时域门限值即可。
例如,如图5,反馈复用颗粒度或反馈定时颗粒度为half slot,但下行传输的反馈资源PUCCH时域资源范围限于预设门限值,比如一个预设时域门限值可以为一个完整时隙,则图中PUCCH3大于半个时隙,但是小于一个完整时隙。
所述为终端设备发送反馈资源配置信息时,所述方法还包括:基于为至少两个下行传输分配的反馈资源的起点和/或终点,确定是否将所述至少两个下行传输的反馈信息复用在同一个反馈资源上。
具体包括以下至少之一:
当为终端设备分配的至少两个下行传输的反馈资源的起点位于相同的反馈复用颗粒度或者反馈定时颗粒度中时,确定终端设备将所述至少两个下行传输的反馈信息复用在相同的反馈资源;
当为终端设备分配的至少两个下行传输的反馈资源的终点位于相同的反馈复用颗粒度或者反馈定时颗粒度中时,确定终端设备将所述至少两个下行传输的反馈信息复用在相同的反馈资源。
比如,有两个反馈资源的起点在一个复用窗口中,而这两个反馈资源的终点在不同的复用窗口,则可以将这两个反馈信息复用在相同的反馈资源上;比如,图6所示,PUCCH1、3的起点在同一个复用窗口中,可以将PUCCH1、3传输的反馈信息均复用在PUCCH3中。
或者,有两个反馈资源的终点在一个复用窗口中,而这两个反馈资源的起点在不同的复用窗口,则可以将这两个反馈信息复用在相同的反馈资源上;比如,图6所示,PUCCH 2、3的终点在同一个复用窗口中,可以将PUCCH2、3传输的反馈信息均复用在PUCCH3中。
或者,可以将反馈资源的起点以及终点均在同一个复用窗口的时候,两个反馈资源进行复用。也就是说,HARQ复用参考PUCCH资源起点,终点或者两者来定。如起点或终点落在同一个HARQ timing颗粒度或HARQ-ACK复用颗粒度内的HARQ-ACK进行复用。
进一步地,还可以为:当终端设备为至少两个下行传输分配的反馈资源的终点不在反馈复用颗粒度或者反馈定时颗粒度的边界时,基于所述至少两个下行传输的反馈资源的起点所在的信息定时颗粒度,确定终端设备将所述至少两个下行传输的反馈信息复用在相同的反馈资源。比如,两个下行传输的反馈资源的终点不位于复用窗口的边界的时候,可以以反馈资源的起点为准进行是否进行复用的判断。比如,终点不在HARQ timing颗粒度或HARQ-ACK复用颗粒度边界的,则以起点所在的HARQ-ACK复用窗为准,否则以终点所在的HARQ-ACK复用窗为准。
本实施例还提供以下方法:后调度的下行传输的反馈资源优先级高于先调度的下行传输的反馈资源,或者,反馈信息占用资源多的优先级高于反馈信息占用资源少的优先级。
其中,所述不同的反馈复用颗粒度或者反馈定时颗粒度的至少两个下行传输的反馈资源存在冲突可以理解为两个反馈资源覆盖同一个复用窗口、或者覆盖同一个反馈定时颗粒度,则可以将两个反馈资源均占用后调度的反馈资源上;
或者,反馈信息占用资源,可以采用占用的传输块(TB)大小、或者占用的物理资源块(PRB)的大小来衡量。将反馈信息占用资源较多的优先级设置为高优先级,将两个反馈资源均调度为复用高优先级的反馈资源。
或者,还可以采用其他方式,比如,设置终端设备的冲突处理方式,可以通过协议来规定,由网络侧为其进行设置,或者,可以终端自行解决。例如,采用后调度的反馈资源优先级高。所述协议约定规则,也可以将后调度的反馈资源设置为优先级高,或者TB SIZE或PRB number较大的反馈资源对应的优先级高。
可见,通过采用上述方案,就能够对下行传输反馈资源进行分配的时候采用限定条件进行分配,限定的条件中可以包含有完整时隙、半个时隙、或N个符号;如此,就能够使得反馈信息的时延降低,从而能满足时延需求,更加适用于对传输时延敏感业务。
实施例五、
本发明实施例提供了一种终端设备,如图8所示,包括:
第一通信单元81,接收网络侧发送的反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配受限于反馈复用颗粒度或者反馈定时颗粒度;
其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数。
所述终端设备还包括:
第一处理单元82,基于所述反馈资源配置信息,确定针对下行传输的反馈资源。
这里,反馈资源上承载了反馈信息,所述反馈信息可以为针对下行传输的反馈信息,下行传输可以为下行控制信息(DCI),或者可以为DCI所调度的下行传输;当下行传输为DCI调度的下行传输时,可以为物理下行控制信道(PDCCH,Physical Downlink Control Channel)指的是或者物理下行共享信道(PDSCH,Physical Downlink Shared Channel)所传输的信息。相应的,反馈资源可以为物理上行控制信道(PUCCH,Physical Uplink Control Channel)。针对下行传输的反馈信息可以为混合自动重传请求(HARQ,Hybrid Automatic Repeat ReQuest)的确认ACK/不确认NACK信息。
本实施例提供的场景为下行传输对应的反馈信息的反馈资源,比如PUCCH时域资源,受限于HARQ timing颗粒度或HARQ-ACK复用颗粒度。
也就是说,本实施例中,所述第一处理单元82,基于所述反馈资源配置信息,确定反馈信息的反馈资源在一个反馈复用颗粒度的时域范围内;
或者,
基于所述反馈资源配置信息,确定反馈信息的反馈资源在一个反馈定时颗粒度的时域范围内。
比如,图3所示,PUCCH时域资源受限于HARQ timing颗粒度,例如half slot。所述PUCCH资源受限于HARQ timing颗粒度指PUCCH的时域资源在一个half slot范围内。或者,PUCCH时域资源受限于HARQ复用颗粒度,例如half slot。所述PUCCH资源受限于HARQ复用颗粒度指PUCCH的时域资源在一个half slot范围内。具体的,结合图3来进行说明,针对PDSCH1、2、3的反馈资源均可以限定在半个时隙(Half slot)内,则对应的PUCCH1、2、3均分配在半个时隙的范围内。
进一步地,所述基于反馈复用颗粒度或者反馈定时颗粒度的限制进行所述反馈资源的分配时,所述第一处理单元82,当基于相同的反馈复用颗粒度或者反馈定时颗粒度为至少两个下行传输分配反馈资源时,将所述至少两个下行传输的反馈资源在相同的复用窗口内进行复用;或者,当基于不同的反馈复用颗粒度或者反馈定时颗粒度为至少两个下行传输分配反馈资源时,不对所述至少两个下行传输的反馈资源进行复用。
也就是说,当针对反馈资源进行分配的时候,还可以进一步来确定是否将反馈资源进行复用。即对应不同反馈复用颗粒度或者反馈定时颗粒度的反馈信息的反馈资源,比如PUCCH时域资源,约束也相应的不同。对应不同反馈复用颗粒度或者反馈定时颗粒度的反馈信息HARQ-ACK分别进行复用。
比如,反馈复用颗粒度或者反馈定时颗粒度的反馈信息,比如HARQ-ACK相同的HARQ-ACK在其对应的HARQ复用窗内复用;而反馈复用颗粒度或者反馈定时颗粒度的HARQ-ACK不同的HARQ-ACK不进行HARQ复用。比如,图3中,可以将PUCCH1、3进行复用,在PUCCH3上传输反馈信息。而PUCCH1、3以及PUCCH2在不同的反馈复用颗粒度或反馈定时颗粒度内,则不可以进行复用。
如图4所示,PDSCH1-3对应的反馈复用颗粒度或者反馈定时颗粒度为半个时隙half-slot,PDSCH4对应的反馈复用颗粒度或者反馈定时颗粒度为完整时隙slot;则PDSCH4不与PDSCH1-3进行复用。
进一步地,当PDSCH1-3落在相同HARQ-ACK复用窗内的PUCCH进行复用,即PUCCH2/3复用在PUCCH2相关的资源上,落在不同HARQ-ACK复用窗的PUCCH不进行复用,即PUCCH1和PUCCH3独立传输。
本实施例第一处理单元82,当对应不同的反馈信息的反馈复用颗粒度或者反馈定时颗粒度的至少两个下行传输的反馈资源存在冲突时,后调度的下行传输的反馈资源优先级高于先调度的下行传输的反馈资源,或者,反馈信息占用资源多的优先级高于反馈信息占用资源少的优先级。
其中,所述不同的反馈复用颗粒度或者反馈定时颗粒度的至少两个下行传输的反馈资源存在冲突可以理解为两个反馈资源覆盖同一个复用窗口、或者覆盖同一个反馈定时颗粒度,则可以将两个反馈资源均占用后调度的反馈资源上;
或者,反馈信息占用资源,可以采用占用的传输块(TB)大小、或者占用的物理资源块(PRB)的大小来衡量。将反馈信息占用资源较多的优先级设置为高优先级,将两个反馈资源均调度为复用高优先级的反馈资源。
或者,还可以采用其他方式,比如,设置终端设备的冲突处理方式,可以通过协议来规定,由网络侧为其进行设置,或者,可以终端自行解决。例如,采用后调度的反馈资源优先级高。所述协议约定规则,也可以将后调度的反馈资源设置为优先级高,或者TB SIZE或PRB number较大的反馈资源对应的优先级高。
可见,通过采用上述方案,就能够对下行传输反馈资源进行分配的时候采用限定条件进行分配,限定的条件中可以包含有完整时隙、半个时隙、或N个符号;如此,就能够使得反馈信息的时延降低,从而能满足时延需求,更加适用于对传输时延敏感业务。
实施例六、
本发明实施例提供了一种终端设备,如图9所示,包括:
第二通信单元91,接收网络侧发送的反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配不受限于反馈复用颗粒度或者反馈定时颗粒度、且受限于预设时域门限值;
其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数;
所述预设时域门限值大于等于反馈复用颗粒度或者反馈定时颗粒度。
所述终端设备还包括:
第二处理单元92,基于所述反馈资源配置信息,确定针对下行传输的反馈资源。
这里,反馈资源上承载了反馈信息,所述反馈信息可以为针对下行传输的反馈信息,下行传输可以为下行控制信息(DCI),或者可以为DCI所调度的下行传输;当下行传输为DCI调度的下行传输时,可以为物理下行控制信道(PDCCH,Physical Downlink Control Channel)指的是或者物理下行共享信道(PDSCH,Physical Downlink Shared Channel)所传输的信息。相应的,反馈资源可以为物理上行控制信道(PUCCH,Physical Uplink Control Channel)。针对下行传输的反馈信息可以为混合自动重传请求(HARQ,Hybrid Automatic Repeat ReQuest)的确认ACK/不确认NACK信息。
本实施例不同在于,本实施例的下行传输所对应的反馈资源,比如PUCCH时域资源,不受限于反馈复用颗粒度或反馈定时颗粒度,即PUCCH时域资源可以跨HARQ timing颗粒度或HARQ-ACK复用颗粒度。但仍受限于时隙slot或者受限于其他大于等于HARQ timing颗粒度或HARQ-ACK复用颗粒度的时域门限值。
也就是说,本实施例中,所述第二处理单元92,基于所述反馈资源配置信息,确定所述反馈资源的时域范围包含M个反馈复用颗粒度或者M个反馈定时颗粒度;M为大于1的整数;并且,所述反馈资源的时域范围不大于所述预设时域门限值。
其中,反馈资源可以横跨多个反馈复用颗粒度或反馈定时颗粒度。
所述预设时域门限值可以为至少两个反馈复用颗粒度或至少两个反馈定时颗粒度。
分配下行传输的反馈资源的时候,可以将反馈资源分配到大于半个时隙,比如两个半时隙,或者三个半时隙中,只要不大于预设时域门限值即可。
例如,如图6,反馈复用颗粒度或反馈定时颗粒度为half slot,但下行传输的反馈资源PUCCH时域资源范围限于预设门限值,比如一个预设时域门限值可以为一个完整时隙,则图中PUCCH3大于半个时隙,但是小于一个完整时隙。
所述分配所述反馈资源的时域范围包含M个反馈复用颗粒度或者M个反馈定时颗粒度时,所述方法还包括:基于为至少两个下行传输分配的反馈资源的起点和/或终点,确定是否将所述至少两个下行传输的反馈信息复用在同一个反馈资源上。
第二处理单元92,包括以下至少之一:
当为至少两个下行传输分配的反馈资源的起点位于相同的反馈复用颗粒度或者反馈定时颗粒度中时,确定所述至少两个下行传输的反馈信息复用在相同的反馈资源;
当为至少两个下行传输分配的反馈资源的终点位于相同的反馈复用颗粒度或者反馈定时颗粒度中时,确定所述至少两个下行传输的反馈信息复用在相同的反馈资源。
比如,有两个反馈资源的起点在一个复用窗口中,而这两个反馈资源的终点在不同的复用窗口,则可以将这两个反馈信息复用在相同的反馈资源上;比如,图7所示,PUCCH1、3的起点在同一个复用窗口中,可以将PUCCH1、3传输的反馈信息均复用在PUCCH3中。
或者,有两个反馈资源的终点在一个复用窗口中,而这两个反馈资源的起点在不同的复用窗口,则可以将这两个反馈信息复用在相同的反馈资源上;比如,图7所示,PUCCH 2、3的终点在同一个复用窗口中,可以将PUCCH2、3传输的反馈信息均复用在PUCCH3中。
或者,可以将反馈资源的起点以及终点均在同一个复用窗口的时候,两个反馈资源进行复用。也就是说,HARQ复用参考PUCCH资源起点,终点或者两者来定。如起点或终点落在同一个HARQ timing颗粒度或HARQ-ACK复用颗粒度内的HARQ-ACK进行复用。
进一步地,第二处理单元92,当为至少两个下行传输分配的反馈资源的终点不在反馈复用颗粒度或者反馈定时颗粒度的边界时,基于所述至少两个下行传输的反馈资源的起点所在的信息定时颗粒度,确定所述至少两个下行传输的反馈信息复用在相同的反馈资源。比如,两个下行传输的反馈资源的终点不位于复用窗口的边界的时候,可以以反馈资源的起点为准进行是否进行复用的判断。比如,终点不在HARQ timing颗粒度或HARQ-ACK复用颗粒度边界的,则以起点所在的HARQ-ACK复用窗为准,否则以终点所在的HARQ-ACK复用窗为准。
本实施例中,后调度的下行传输的反馈资源优先级高于先调度的下行传输的反馈资源,或者,反馈信息占用资源多的优先级高于反馈信息占用资源少的优先级。
其中,所述不同的反馈复用颗粒度或者反馈定时颗粒度的至少两个下行传输的反馈资源存在冲突可以理解为两个反馈资源覆盖同一个复用窗口、或者覆盖同一个反馈定时颗粒度,则可以将两个反馈资源均占用后调度的反馈资源上;
或者,反馈信息占用资源,可以采用占用的传输块(TB)大小、或者占用的物理资源块(PRB)的大小来衡量。将反馈信息占用资源较多的优先级设置为高优先级,将两个反馈资源均调度为复用高优先级的反馈资源。
或者,还可以采用其他方式,比如,设置终端设备的冲突处理方式,可以通过协议来规定,由网络侧为其进行设置,或者,可以终端自行解决。例如,采用后调度的反馈资源优先级高。所述协议约定规则,也可以将后调度的反馈资源设置为优先级高,或者TB SIZE或PRB number较大的反馈资源对应的优先级高。
可见,通过采用上述方案,就能够对下行传输反馈资源进行分配的时候采用限定条件进行分配,限定的条件中可以包含有完整时隙、半个时隙、或N个符号;如此,就能够使得反馈信息的时延降低,从而能满足时延需求,更加适用于对传输时延敏感业务。
实施例七、
本发明实施例提供了一种网络设备,如图10所示,包括:
第三通信单元1001,为终端设备发送反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配受限于反馈复用颗粒度或者反馈定时颗粒度;
其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数。
这里,反馈资源上承载了反馈信息,所述反馈信息可以为针对下行传输的反馈信息,下行传输可以为下行控制信息(DCI),或者可以为DCI所调度的下行传输;当下行传输为DCI调度的下行传输时,可以为物理下行控制信道(PDCCH,Physical Downlink Control Channel)指的是或者物理下行共享信道(PDSCH,Physical Downlink Shared Channel)所传输的信息。相应的,反馈资源可以为物理上行控制信道(PUCCH,Physical Uplink Control Channel)。针对下行传输的反馈信息可以为混合自动重传请求(HARQ,Hybrid Automatic Repeat ReQuest)的确认ACK/不确认NACK信息。
关于上述反馈复用颗粒度以及反馈定时颗粒度的获取方式,第三处理单元91,基于下行传输的业务类型、服务质量参数、物理层指示中之一,确定终端设备的所述反馈复用颗粒度或者反馈定时颗粒度。
具体来说,基于业务类型、服务质量参数来确定反馈复用颗粒度或反馈定时颗粒度,可以理解为终端设备自身来确定;通过物理层指示,可以理解为网络侧为终端设备进行配置的方式。
进一步地,所述业务类型,可以为不同时延的业务,比如,低时延业务对应的反馈复用颗粒度可以为半个时隙或N个符号;针对高时延业务对应的反馈复用颗粒度则可以设置为完整时隙。其中,业务类型可以为增强移动宽带(eMBB,Enhance Mobile Broadband)或者uRLLC(超高可靠超低时延通信)。eMBB为高时延业务,uRLLC为低时延业务。
所述服务质量参数,可以参考服务质量(QoS)参数,基于服务质量中用于描述传输的时延的参数来处理,比如,低传输的时延对应的反馈复用颗粒度可以为半个时隙或N个符号;针对高传输的时延对应的反馈复用颗粒度则可以设置为完整时隙。
关于物理层指示,可以为通过高层信令为终端设备指示,具体的可以为RRC信令,在RRC信令中指示终端设备所要采用的反馈复用颗粒度或反馈定时颗粒度。
本实施例提供的场景为下行传输对应的反馈信息的反馈资源,比如PUCCH时域资源,受限于HARQ timing颗粒度或HARQ-ACK复用颗粒度。
也就是说,本实施例中,所述网络设备还包括:
所述第三处理单元1002,将反馈信息的反馈资源分配在一个反馈复用颗粒度的时域范围内;
或者,确定将反馈信息的反馈资源分配在一个反馈定时颗粒度的时域范围内。
比如,图3所示,PUCCH时域资源受限于HARQ timing颗粒度,例如half slot。所述PUCCH资源受限于HARQ timing颗粒度指PUCCH的时域资源在一个half slot范围内。或者,PUCCH时域资源受限于HARQ复用颗粒度,例如half slot。所述PUCCH资源受限于HARQ复用颗粒度指PUCCH的时域资源在一个half slot范围内。具体的,结合图3来进行说明,针对PDSCH1、2、3的反馈资源均可以限定在半个时隙(Half slot)内,则对应的PUCCH1、2、3均分配在半个时隙的范围内。
进一步地,所述基于反馈复用颗粒度或者反馈定时颗粒度的限制确定所述终端设备针对所述反馈资源的分配时,所述第三处理单元91,当基于相同的反馈复用颗粒度或者反馈定时颗粒度为至少两个下行传输分配反馈资源时,确定所述终端设备将所述至少两个下行传输的反馈资源在相同的复用窗口内进行复用;
当基于不同的反馈复用颗粒度或者反馈定时颗粒度为至少两个下行传输分配反馈资源时,确定所述终端设备不对所述至少两个下行传输的反馈资源进行复用。
也就是说,当针对反馈资源进行分配的时候,还可以进一步来确定是否将反馈资源进行复用。即对应不同反馈复用颗粒度或者反馈定时颗粒度的反馈信息的反馈资源,比如PUCCH时域资源,约束也相应的不同。对应不同反馈复用颗粒度或者反馈定时颗粒度的反馈信息HARQ-ACK分别进行复用。
比如,反馈复用颗粒度或者反馈定时颗粒度的反馈信息,比如HARQ-ACK相同的HARQ-ACK在其对应的HARQ复用窗内复用;而反馈复用颗粒度或者反馈定时颗粒度的HARQ-ACK不同的HARQ-ACK不进行HARQ复用。比如,图3中,可以将PUCCH1、3进行复用,在PUCCH3上传输反馈信息。而PUCCH1、3以及PUCCH2在不同的反馈复用颗粒度或反馈定时颗粒度内,则不可以进行复用。
如图4所示,PDSCH1-3对应的反馈复用颗粒度或者反馈定时颗粒度为半个时隙half-slot,PDSCH4对应的反馈复用颗粒度或者反馈定时颗粒度为完整时隙slot;则PDSCH4不与PDSCH1-3进行复用。
进一步地,当PDSCH1-3落在相同HARQ-ACK复用窗内的PUCCH进行复用,即PUCCH2/3复用在PUCCH2相关的资源上,落在不同HARQ-ACK复用窗的PUCCH不进行复用,即PUCCH1和PUCCH3独立传输。
本实施例所述第三处理单元1002,当对应不同的反馈信息的反馈复用颗粒度或者反馈定时颗粒度的至少两个下行传输的反馈资源存在冲突时,后调度的下行传输的反馈资源优先级高于先调度的下行传输的反馈资源,或者,反馈信息占用资源多的优先级高于反馈信息占用资源少的优先级。
其中,所述不同的反馈复用颗粒度或者反馈定时颗粒度的至少两个下行传输的反馈资源存在冲突可以理解为两个反馈资源覆盖同一个复用窗口、或者覆盖同一个反馈定时颗粒度,则可以将两个反馈资源均占用后调度的反馈资源上;
或者,反馈信息占用资源,可以采用占用的传输块(TB)大小、或者占用的物理资源块(PRB)的大小来衡量。将反馈信息占用资源较多的优先级设置为高优先级,将两个反馈资源均调度为复用高优先级的反馈资源。
或者,还可以采用其他方式,比如,设置终端设备的冲突处理方式,可以通过协议来规定,由网络侧为其进行设置,或者,可以终端自行解决。例如,采用后调度的反馈资源优先级高。所述协议约定规则,也可以将后调度的反馈资源设置为优先级高,或者TB SIZE或PRB number较大的反馈资源对应的优先级高。
可见,通过采用上述方案,就能够对下行传输反馈资源进行分配的时候采用限定条件进行分配,限定的条件中可以包含有完整时隙、半个时隙、或N个符号;如此,就能够使得反馈信息的时延降低,从而能满足时延需求,更加适用于对传输时延敏感业务。
实施例八、
本发明实施例提供了一种网络设备,如图11所示,包括:
第四通信单元1101,为终端设备发送反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配不受限于反馈复用颗粒度或者反馈定时颗粒度、且受限于预设时域门限值;
其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数;
所述预设时域门限值大于等于反馈复用颗粒度或者反馈定时颗粒度。
这里,反馈资源上承载了反馈信息,所述反馈信息可以为针对下行传输的反馈信息,下行传输可以为下行控制信息(DCI),或者可以为DCI所调度的下行传输;当下行传输为DCI调度的下行传输时,可以为物理下行控制信道(PDCCH,Physical Downlink Control Channel)指的是或者物理下行共享信道(PDSCH,Physical Downlink Shared Channel)所传输的信息。相应的,反馈资源可以为物理上行控制信道(PUCCH,Physical Uplink Control Channel)。针对下行传输的反馈信息可以为混 合自动重传请求(HARQ,Hybrid Automatic Repeat ReQuest)的确认ACK/不确认NACK信息。
关于上述反馈复用颗粒度以及反馈定时颗粒度的获取方式,第四处理单元,基于业务类型、服务质量参数、物理层指示中之一,确定所述反馈复用颗粒度或者反馈定时颗粒度。
具体来说,基于业务类型、服务质量参数来确定反馈复用颗粒度或反馈定时颗粒度,可以理解为终端设备自身来确定;通过物理层指示,可以理解为网络侧为终端设备进行配置的方式。
进一步地,所述业务类型,可以为不同时延的业务,比如,低时延业务对应的反馈复用颗粒度可以为半个时隙或N个符号;针对高时延业务对应的反馈复用颗粒度则可以设置为完整时隙。其中,业务类型可以为增强移动宽带(eMBB,Enhance Mobile Broadband)或者uRLLC(超高可靠超低时延通信)。eMBB为高时延业务,uRLLC为低时延业务。
所述服务质量参数,可以参考服务质量(QoS)参数,基于服务质量中用于描述传输的时延的参数来处理,比如,低传输的时延对应的反馈复用颗粒度可以为半个时隙或N个符号;针对高传输的时延对应的反馈复用颗粒度则可以设置为完整时隙。
关于物理层指示,可以为通过高层信令为终端设备指示,具体的可以为RRC信令,在RRC信令中指示终端设备所要采用的反馈复用颗粒度或反馈定时颗粒度。
本实施例不同在于,本实施例的下行传输所对应的反馈资源,比如PUCCH时域资源,不受限于反馈复用颗粒度或反馈定时颗粒度,即PUCCH时域资源可以跨HARQ timing颗粒度或HARQ-ACK复用颗粒度。但仍受限于时隙slot或者受限于其他大于等于HARQ timing颗粒度或HARQ-ACK复用颗粒度的时域门限值。
也就是说,所述网络设备还包括:
第四处理单元1102,为终端设备分配所述反馈资源的时域范围包含M个反馈复用颗粒度或者M个反馈定时颗粒度;M为大于1的整数;并且,所述反馈资源的时域范围不大于所述预设时域门限值。
其中,反馈资源可以横跨多个反馈复用颗粒度或反馈定时颗粒度。
所述预设时域门限值可以为至少两个反馈复用颗粒度或至少两个反馈定时颗粒度。
分配下行传输的反馈资源的时候,可以将反馈资源分配到大于半个时隙,比如两个半时隙,或者三个半时隙中,只要不大于预设时域门限值即可。
例如,如图5,反馈复用颗粒度或反馈定时颗粒度为half slot,但下行传输的反馈资源PUCCH时域资源范围限于预设门限值,比如一个预设时域门限值可以为一个完整时隙,则图中PUCCH3大于半个时隙,但是小于一个完整时隙。
所述分配所述反馈资源的时域范围包含M个反馈复用颗粒度或者M个反馈定时颗粒度时,所述方法还包括:基于为至少两个下行传输分配的反馈资源的起点和/或终点,确定是否将所述至少两个下行传输的反馈信息复用在同一个反馈资源上。
第四处理单元1102,包括执行以下至少之一:
当为终端设备分配的至少两个下行传输的反馈资源的起点位于相同的反馈复用颗粒度或者反馈定时颗粒度中时,确定终端设备将所述至少两个下行传输的反馈信息复用在相同的反馈资源;
当为终端设备分配的至少两个下行传输的反馈资源的终点位于相同的反馈复用颗粒度或者反馈定时颗粒度中时,确定终端设备将所述至少两个下行传输的反馈信息复用在相同的反馈资源。
比如,有两个反馈资源的起点在一个复用窗口中,而这两个反馈资源的终点在不同的复用窗口,则可以将这两个反馈信息复用在相同的反馈资源上;比如,图6所示,PUCCH1、3的起点在同一个复用窗口中,可以将PUCCH1、3传输的反馈信息均复用在PUCCH3中。
或者,有两个反馈资源的终点在一个复用窗口中,而这两个反馈资源的起点在不同的复用窗口,则可以将这两个反馈信息复用在相同的反馈资源上;比如,图6所示,PUCCH 2、3的终点在同一个复用窗口中,可以将PUCCH2、3传输的反馈信息均复用在PUCCH3中。
或者,可以将反馈资源的起点以及终点均在同一个复用窗口的时候,两个反馈资源进行复用。也就是说,HARQ复用参考PUCCH资源起点,终点或者两者来定。如起点或终点落在同一个HARQ timing颗粒度或HARQ-ACK复用颗粒度内的HARQ-ACK进行复用。
进一步地,第四处理单元1102,当为终端设备分配的至少两个下行传输的反馈资源的终点不在反馈复用颗粒度或者反馈定时颗粒度的边界时,基于所述至少两个下行传输的反馈资源的起点所在的信息定时颗粒度,确定终端设备将所述至少两个下行传输的反馈信息复用在相同的反馈资源。比如,两个下行传输的反馈资源的终点不位于复用窗口的边界的时候,可以以反馈资源的起点为准进行是否进行复用的判断。比如,终点不在HARQ timing颗粒度或HARQ-ACK复用颗粒度边界的, 则以起点所在的HARQ-ACK复用窗为准,否则以终点所在的HARQ-ACK复用窗为准。
本实施例还提供第四处理单元,后调度的下行传输的反馈资源优先级高于先调度的下行传输的反馈资源,或者,反馈信息占用资源多的优先级高于反馈信息占用资源少的优先级。
其中,所述不同的反馈复用颗粒度或者反馈定时颗粒度的至少两个下行传输的反馈资源存在冲突可以理解为两个反馈资源覆盖同一个复用窗口、或者覆盖同一个反馈定时颗粒度,则可以将两个反馈资源均占用后调度的反馈资源上;
或者,反馈信息占用资源,可以采用占用的传输块(TB)大小、或者占用的物理资源块(PRB)的大小来衡量。将反馈信息占用资源较多的优先级设置为高优先级,将两个反馈资源均调度为复用高优先级的反馈资源。
或者,还可以采用其他方式,比如,设置终端设备的冲突处理方式,可以通过协议来规定,由网络侧为其进行设置,或者,可以终端自行解决。例如,采用后调度的反馈资源优先级高。所述协议约定规则,也可以将后调度的反馈资源设置为优先级高,或者TB SIZE或PRB number较大的反馈资源对应的优先级高。
可见,通过采用上述方案,就能够对下行传输反馈资源进行分配的时候采用限定条件进行分配,限定的条件中可以包含有完整时隙、半个时隙、或N个符号;如此,就能够使得反馈信息的时延降低,从而能满足时延需求,更加适用于对传输时延敏感业务。
图12是本申请实施例提供的一种通信设备1200示意性结构图,通信设备可以为本实施例前述的终端设备或者网络设备。图12所示的通信设备1200包括处理器1210,处理器1210可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图12所示,通信设备1200还可以包括存储器1220。其中,处理器1210可以从存储器1220中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1220可以是独立于处理器1210的一个单独的器件,也可以集成在处理器1210中。
可选地,如图12所示,通信设备1200还可以包括收发器1230,处理器1210可以控制该收发器1230与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1230可以包括发射机和接收机。收发器1230还可以进一步包括天线,天线的数量可以为一个或多个。
可选地,该通信设备1200具体可为本申请实施例的网络设备,并且该通信设备1200可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该通信设备1200具体可为本申请实施例的终端设备、或者网络设备,并且该通信设备1200可以实现本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
图13是本申请实施例的芯片的示意性结构图。图13所示的芯片1300包括处理器1310,处理器1310可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
可选地,如图13所示,芯片1300还可以包括存储器1320。其中,处理器1310可以从存储器1320中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1320可以是独立于处理器1310的一个单独的器件,也可以集成在处理器1310中。
可选地,该芯片1300还可以包括输入接口1330。其中,处理器1310可以控制该输入接口1330与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
可选地,该芯片1300还可以包括输出接口1340。其中,处理器1310可以控制该输出接口1340与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。
可选地,该芯片可应用于本申请实施例中的网络设备,并且该芯片可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该芯片可应用于本申请实施例中的终端设备,并且该芯片可以实现本申请实施例的各个方法中由终端设备实现的相应流程,为了简洁,在此不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
图14是本申请实施例提供的一种通信系统1400的示意性框图。如图14所示,该通信系统1400包括终端设备1410和网络设备1420。
其中,该终端设备1410可以用于实现上述方法中由终端设备实现的相应的功能,以及该网络设备1420可以用于实现上述方法中由网络设备实现的相应的功能为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
可选的,该计算机可读存储介质可应用于本申请实施例中的网络设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机可读存储介质可应用于本申请实施例中的终端设备,并且该计算机程序使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
可选的,该计算机程序产品可应用于本申请实施例中的网络设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序产品可应用于本申请实施例中的移动终端/终端设备,并且该计算机程序指令使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
可选的,该计算机程序可应用于本申请实施例中的网络设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。
可选地,该计算机程序可应用于本申请实施例中的移动终端/终端设备,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由移动终端/终端设备实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来 执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (49)

  1. 一种反馈资源分配方法,应用于终端设备,包括:
    接收网络侧发送的反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配受限于反馈复用颗粒度或者反馈定时颗粒度;
    其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数。
  2. 根据权利要求1所述的方法,其中,所述接收网络侧发送的反馈资源配置信息之后,所述方法还包括:
    基于所述反馈资源配置信息,确定针对下行传输的反馈资源。
  3. 根据权利要求2所述的方法,其中,所述基于所述反馈资源配置信息,确定针对下行传输的反馈资源,包括:
    基于所述反馈资源配置信息,确定反馈信息的反馈资源在一个反馈复用颗粒度的时域范围内;
    或者,
    基于所述反馈资源配置信息,确定反馈信息的反馈资源在一个反馈定时颗粒度的时域范围内。
  4. 根据权利要求2所述的方法,其中,所述基于所述反馈资源配置信息,确定针对下行传输的反馈资源时,所述方法还包括:
    当基于所述反馈资源配置信息,确定至少两个下行传输分配反馈资源为相同的反馈复用颗粒度或者反馈定时颗粒度时,将所述至少两个下行传输的反馈资源在相同的复用窗口内进行复用;
    当基于所述反馈资源配置信息,确定至少两个下行传输分配反馈资源为不同的反馈复用颗粒度或者反馈定时颗粒度时,不对所述至少两个下行传输的反馈资源进行复用。
  5. 根据权利要求2-4任一项所述的方法,其中,所述至少两个下行传输分配反馈资源为不同的反馈复用颗粒度或者反馈定时颗粒度时,所述方法还包括:
    当对应不同的反馈信息的反馈复用颗粒度或者反馈定时颗粒度的至少两个下行传输的反馈资源存在冲突时,后调度的下行传输的反馈资源优先级高于先调度的下行传输的反馈资源,或者,反馈信息占用资源多的优先级高于反馈信息占用资源少的优先级。
  6. 根据权利要求1-5任一项所述的方法,其中,所述方法还包括:
    基于业务类型、服务质量参数、物理层指示中之一,确定所述反馈复用颗粒度或者反馈定时颗粒度。
  7. 一种反馈资源分配方法,应用于终端设备,包括:
    接收网络侧发送的反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配不受限于反馈复用颗粒度或者反馈定时颗粒度、且受限于预设时域门限值;
    其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数;
    所述预设时域门限值大于等于反馈复用颗粒度或者反馈定时颗粒度。
  8. 根据权利要求7所述的方法,其中,所述接收网络侧发送的反馈资源配置信息之后,所述方法还包括:
    基于所述反馈资源配置信息,确定针对下行传输的反馈资源。
  9. 根据权利要求8所述的方法,其中,所述基于所述反馈资源配置信息,确定针对下行传输的反馈资源,包括:
    基于所述反馈资源配置信息,确定所述反馈资源的时域范围包含M个反馈复用颗粒度或者M个反馈定时颗粒度;M为大于1的整数;并且,所述反馈资源的时域范围不大于所述预设时域门限值。
  10. 根据权利要求9所述的方法,其中,所述确定分配所述反馈资源的时域范围包含M个反馈复用颗粒度或者M个反馈定时颗粒度时,所述方法还包括:
    基于为至少两个下行传输分配的反馈资源的起点和/或终点,确定是否将所述至少两个下行传输的反馈信息复用在同一个反馈资源上。
  11. 根据权利要求10所述的方法,其中,所述基于为至少两个下行传输分配的反馈资源的起点和/或终点,确定是否将所述至少两个下行传输的反馈信息复用在同一个反馈资源上,包括以下至少之一:
    当为至少两个下行传输分配的反馈资源的起点位于相同的反馈复用颗粒度或者反馈定时颗粒度中时,确定所述至少两个下行传输的反馈信息复用在相同的反馈资源;
    当为至少两个下行传输分配的反馈资源的终点位于相同的反馈复用颗粒度或者反馈定时颗粒度中时,确定所述至少两个下行传输的反馈信息复用在相同的反馈资源。
  12. 根据权利要求10所述的方法,其中,所述基于为至少两个下行传输分配的反馈资源的起点和/或终点,确定是否将所述至少两个下行传输的反馈信息复用在同一个反馈资源上,包括:
    当为至少两个下行传输分配的反馈资源的终点不在反馈复用颗粒度或者反馈定时颗粒度的边界时,基于所述至少两个下行传输的反馈资源的起点所在的信息定时颗粒度,确定所述至少两个下行传输的反馈信息复用在相同的反馈资源。
  13. 一种反馈资源分配方法,应用于网络设备,包括:
    为终端设备发送反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配受限于反馈复用颗粒度或者反馈定时颗粒度;
    其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数。
  14. 根据权利要求13所述的方法,其中,所述为终端设备发送反馈资源配置信息,还包括:
    将反馈信息的反馈资源分配在一个反馈复用颗粒度的时域范围内;
    或者,
    将反馈信息的反馈资源分配在一个反馈定时颗粒度的时域范围内。
  15. 根据权利要求14所述的方法,其中,所述为终端设备发送反馈资源配置信息之后,所述方法还包括:
    当基于相同的反馈复用颗粒度或者反馈定时颗粒度为至少两个下行传输分配反馈资源时,确定所述终端设备将所述至少两个下行传输的反馈资源在相同的复用窗口内进行复用;
    当基于不同的反馈复用颗粒度或者反馈定时颗粒度为至少两个下行传输分配反馈资源时,确定所述终端设备不对所述至少两个下行传输的反馈资源进行复用。
  16. 根据权利要求13-15任一项所述的方法,其中,所述方法还包括:
    基于下行传输的业务类型、服务质量参数、物理层指示中之一,确定终端设备的所述反馈复用颗粒度或者反馈定时颗粒度。
  17. 一种反馈资源分配方法,应用于网络设备,包括:
    为终端设备发送反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配不受限于反馈复用颗粒度或者反馈定时颗粒度、且受限于预设时域门限值;
    其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数;
    所述预设时域门限值大于等于反馈复用颗粒度或者反馈定时颗粒度。
  18. 根据权利要求17所述的方法,其中,所述为终端设备发送反馈资源配置信息还包括:
    为终端设备分配所述反馈资源的时域范围包含M个反馈复用颗粒度或者M个反馈定时颗粒度;M为大于1的整数;
    并且,所述反馈资源的时域范围不大于所述预设时域门限值。
  19. 根据权利要求18所述的方法,其中,所述为终端设备发送反馈资源配置信息时,所述方法还包括:
    基于为至少两个下行传输分配的反馈资源的起点和/或终点,确定终端设备是否将所述至少两个下行传输的反馈信息复用在同一个反馈资源上。
  20. 根据权利要求19所述的方法,其中,所述基于为至少两个下行传输分配的反馈资源的起点和/或终点,确定终端设备是否将所述至少两个下行传输的反馈信息复用在同一个反馈资源上,包括以下至少之一:
    当为终端设备分配的至少两个下行传输的反馈资源的起点位于相同的反馈复用颗粒度或者反馈定时颗粒度中时,确定终端设备将所述至少两个下行传输的反馈信息复用在相同的反馈资源;
    当为终端设备分配的至少两个下行传输的反馈资源的终点位于相同的反馈复用颗粒度或者反馈定时颗粒度中时,确定终端设备将所述至少两个下行传输的反馈信息复用在相同的反馈资源。
  21. 根据权利要求19所述的方法,其中,所述基于为至少两个下行传输分配的反馈资源的起点和/或终点,确定终端设备是否将所述至少两个下行传输的反馈信息复用在同一个反馈资源上,包括:
    当为终端设备分配的至少两个下行传输的反馈资源的终点不在反馈复用颗粒度或者反馈定时颗粒度的边界时,基于所述至少两个下行传输的反馈资源的起点所在的信息定时颗粒度,确定终端设备将所述至少两个下行传输的反馈信息复用在相同的反馈资源。
  22. 一种终端设备,包括:
    第一通信单元,接收网络侧发送的反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配受限于反馈复用颗粒度或者反馈定时颗粒度;
    其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数。
  23. 根据权利要求22所述的终端设备,其中,所述终端设备还包括:
    第一处理单元,基于所述反馈资源配置信息,确定针对下行传输的反馈资源。
  24. 根据权利要求23所述的终端设备,其中,所述第一处理单元,基于所述反馈资源配置信息,确定反馈信息的反馈资源在一个反馈复用颗粒度的时域范围内;
    或者,
    基于所述反馈资源配置信息,确定反馈信息的反馈资源在一个反馈定时颗粒度的时域范围内。
  25. 根据权利要求23所述的终端设备,其中,所述第一处理单元,当基于所述反馈资源配置信息,确定至少两个下行传输分配反馈资源为相同的反馈复用颗粒度或者反馈定时颗粒度时,将所述至少两个下行传输的反馈资源在相同的复用窗口内进行复用;当基于所述反馈资源配置信息,确定至少两个下行传输分配反馈资源为不同的反馈复用颗粒度或者反馈定时颗粒度时,不对所述至少两个下行传输的反馈资源进行复用。
  26. 根据权利要求23-25任一项所述的终端设备,其中,所述第一处理单元,当对应不同的反馈信息的反馈复用颗粒度或者反馈定时颗粒度的至少两个下行传输的反馈资源存在冲突时,后调度的下行传输的反馈资源优先级高于先调度的下行传输的反馈资源,或者,反馈信息占用资源多的优先级高于反馈信息占用资源少的优先级。
  27. 根据权利要求22-26任一项所述的终端设备,其中,所述第一处理单元,基于业务类型、服务质量参数、物理层指示中之一,确定所述反馈复用颗粒度或者反馈定时颗粒度。
  28. 一种终端设备,包括:
    第二通信单元,接收网络侧发送的反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配不受限于反馈复用颗粒度或者反馈定时颗粒度、且受限于预设时域门限值;
    其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数;
    所述预设时域门限值大于等于反馈复用颗粒度或者反馈定时颗粒度。
  29. 根据权利要求28所述的终端设备,其中,所述终端设备还包括:
    第二处理单元,基于所述反馈资源配置信息,确定针对下行传输的反馈资源。
  30. 根据权利要求29所述的终端设备,其中,
    所述第二处理单元,基于所述反馈资源配置信息,确定所述反馈资源的时域范围包含M个反馈复用颗粒度或者M个反馈定时颗粒度;M为大于1的整数;
    并且,所述反馈资源的时域范围不大于所述预设时域门限值。
  31. 根据权利要求29所述的终端设备,其中,所述第二处理单元,基于为至少两个下行传输分配的反馈资源的起点和/或终点,确定是否将所述至少两个下行传输的反馈信息复用在同一个反馈资源上。
  32. 根据权利要求31所述的终端设备,其中,所述第二处理单元,执行以下至少之一:
    当为至少两个下行传输分配的反馈资源的起点位于相同的反馈复用颗粒度或者反馈定时颗粒度中时,确定所述至少两个下行传输的反馈信息复用在相同的反馈资源;
    当为至少两个下行传输分配的反馈资源的终点位于相同的反馈复用颗粒度或者反馈定时颗粒度 中时,确定所述至少两个下行传输的反馈信息复用在相同的反馈资源。
  33. 根据权利要求31所述的终端设备,其中,所述第二处理单元,当为至少两个下行传输分配的反馈资源的终点不在反馈复用颗粒度或者反馈定时颗粒度的边界时,基于所述至少两个下行传输的反馈资源的起点所在的信息定时颗粒度,确定所述至少两个下行传输的反馈信息复用在相同的反馈资源。
  34. 一种网络设备,包括:
    第三通信单元,为终端设备发送反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配受限于反馈复用颗粒度或者反馈定时颗粒度;
    其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数。
  35. 根据权利要求34所述的网络设备,其中,所述网络设备还包括:
    所述第三处理单元,将反馈信息的反馈资源分配在一个反馈复用颗粒度的时域范围内;
    或者,
    将反馈信息的反馈资源分配在一个反馈定时颗粒度的时域范围内。
  36. 根据权利要求35所述的网络设备,其中,所述第三处理单元,当基于相同的反馈复用颗粒度或者反馈定时颗粒度为至少两个下行传输分配反馈资源时,确定所述终端设备将所述至少两个下行传输的反馈资源在相同的复用窗口内进行复用;
    当基于不同的反馈复用颗粒度或者反馈定时颗粒度为至少两个下行传输分配反馈资源时,确定所述终端设备不对所述至少两个下行传输的反馈资源进行复用。
  37. 根据权利要求34-36任一项所述的网络设备,其中,所述第三处理单元,基于下行传输的业务类型、服务质量参数、物理层指示中之一,指示终端设备的所述反馈复用颗粒度或者反馈定时颗粒度。
  38. 一种网络设备,包括:
    第四通信单元,为终端设备发送反馈资源配置信息;其中,所述反馈资源配置信息用于分配反馈资源,所述反馈资源的分配不受限于反馈复用颗粒度或者反馈定时颗粒度、且受限于预设时域门限值;
    其中,所述反馈复用颗粒度用于表征反馈信息的复用窗口的时域范围;所述时域范围为:完整时隙、半个时隙、N个符号,N为大于等于1的整数;所述反馈定时颗粒度为以下之一:完整时隙、半个时隙、N个符号,N为大于等于1的整数;
    所述预设时域门限值大于等于反馈复用颗粒度或者反馈定时颗粒度。
  39. 根据权利要求38所述的网络设备,其中,所述网络设备还包括:
    第四处理单元,为终端设备分配所述反馈资源的时域范围包含M个反馈复用颗粒度或者M个反馈定时颗粒度;M为大于1的整数;
    并且,所述反馈资源的时域范围不大于所述预设时域门限值。
  40. 根据权利要求39所述的网络设备,其中,所述第四处理单元,基于为至少两个下行传输分配的反馈资源的起点和/或终点,确定终端设备是否将所述至少两个下行传输的反馈信息复用在同一个反馈资源上。
  41. 根据权利要求40所述的网络设备,其中,所述第四处理单元,执行以下至少之一:
    当为终端设备分配的至少两个下行传输的反馈资源的起点位于相同的反馈复用颗粒度或者反馈定时颗粒度中时,确定终端设备将所述至少两个下行传输的反馈信息复用在相同的反馈资源;
    当为终端设备分配的至少两个下行传输的反馈资源的终点位于相同的反馈复用颗粒度或者反馈定时颗粒度中时,确定终端设备将所述至少两个下行传输的反馈信息复用在相同的反馈资源。
  42. 根据权利要求40所述的网络设备,其中,所述第四处理单元,当为终端设备分配的至少两个下行传输的反馈资源的终点不在反馈复用颗粒度或者反馈定时颗粒度的边界时,基于所述至少两个下行传输的反馈资源的起点所在的信息定时颗粒度,确定终端设备将所述至少两个下行传输的反馈信息复用在相同的反馈资源。
  43. 一种终端设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1-12任一项所述方法的步骤。
  44. 一种网络设备,包括:处理器和用于存储能够在处理器上运行的计算机程序的存储器,
    其中,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求13-21任一项所述方法的步骤。
  45. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1-12中任一项所述的方法。
  46. 一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求13-21中任一项所述的方法。
  47. 一种计算机可读存储介质,所述计算机可读存储介质用于存储计算机程序,所述计算机程序使得计算机执行如权利要求1-21任一项所述方法的步骤。
  48. 一种计算机程序产品,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1-21中任一项所述的方法。
  49. 一种计算机程序,所述计算机程序使得计算机执行如权利要求1-21中任一项所述的方法。
PCT/CN2018/107419 2018-09-25 2018-09-25 一种反馈资源分配方法、终端设备及网络设备 WO2020061773A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
CN201880097325.2A CN112655164A (zh) 2018-09-25 2018-09-25 一种反馈资源分配方法、终端设备及网络设备
EP18935338.6A EP3840267B1 (en) 2018-09-25 2018-09-25 Feedback resource allocation method, terminal device, and network device
AU2018443812A AU2018443812A1 (en) 2018-09-25 2018-09-25 Feedback resource allocation method, terminal device, and network device
JP2021514519A JP2022511321A (ja) 2018-09-25 2018-09-25 フィードバックリソース割り当て方法、端末装置及びネットワーク装置
CN202111618728.7A CN114172624B (zh) 2018-09-25 2018-09-25 一种反馈资源分配方法、终端设备及网络设备
KR1020217007831A KR20210065942A (ko) 2018-09-25 2018-09-25 피드백 자원 할당 방법, 단말 장치 및 네트워크 장치
PCT/CN2018/107419 WO2020061773A1 (zh) 2018-09-25 2018-09-25 一种反馈资源分配方法、终端设备及网络设备
TW108133872A TW202019221A (zh) 2018-09-25 2019-09-19 一種回饋資源配置方法、終端設備及網路設備
US17/196,785 US20210195628A1 (en) 2018-09-25 2021-03-09 Feedback resource allocation method, terminal device, and network device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/107419 WO2020061773A1 (zh) 2018-09-25 2018-09-25 一种反馈资源分配方法、终端设备及网络设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/196,785 Continuation US20210195628A1 (en) 2018-09-25 2021-03-09 Feedback resource allocation method, terminal device, and network device

Publications (2)

Publication Number Publication Date
WO2020061773A1 WO2020061773A1 (zh) 2020-04-02
WO2020061773A9 true WO2020061773A9 (zh) 2020-11-19

Family

ID=69952638

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/107419 WO2020061773A1 (zh) 2018-09-25 2018-09-25 一种反馈资源分配方法、终端设备及网络设备

Country Status (8)

Country Link
US (1) US20210195628A1 (zh)
EP (1) EP3840267B1 (zh)
JP (1) JP2022511321A (zh)
KR (1) KR20210065942A (zh)
CN (2) CN112655164A (zh)
AU (1) AU2018443812A1 (zh)
TW (1) TW202019221A (zh)
WO (1) WO2020061773A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022508479A (ja) * 2018-09-25 2022-01-19 オッポ広東移動通信有限公司 フィードバックリソースの多重化方法、端末装置及びネットワーク装置
JP7313380B2 (ja) * 2019-01-10 2023-07-24 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101667898B (zh) * 2008-09-05 2013-07-03 中兴通讯股份有限公司 上行harq反馈信道资源的划分和实现方法
CN101686113B (zh) * 2008-09-22 2014-04-09 中兴通讯股份有限公司 反馈信道的实现方法、划分方法和复用方法
CN102082641B (zh) * 2010-02-11 2016-01-20 电信科学技术研究院 一种传输多比特ack/nack信息的方法及装置
US8885752B2 (en) * 2012-07-27 2014-11-11 Intel Corporation Method and apparatus for feedback in 3D MIMO wireless systems
US10020969B2 (en) * 2014-03-14 2018-07-10 Samsung Electronics Co., Ltd. Methods and apparatus for discovery and measurement in cellular networks
KR102408035B1 (ko) * 2016-08-12 2022-06-14 삼성전자 주식회사 무선 통신 시스템에서 복수의 전송시간구간 운용 방법 및 장치
JP7187462B2 (ja) * 2017-08-09 2022-12-12 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム
US11277883B2 (en) * 2018-05-11 2022-03-15 Intel Corporation Scheduling enhancements and hybrid automatic repeat request (HARQ) timing procedure for new radio (NR) unlicensed

Also Published As

Publication number Publication date
EP3840267B1 (en) 2023-11-22
US20210195628A1 (en) 2021-06-24
TW202019221A (zh) 2020-05-16
JP2022511321A (ja) 2022-01-31
WO2020061773A1 (zh) 2020-04-02
KR20210065942A (ko) 2021-06-04
EP3840267A1 (en) 2021-06-23
CN112655164A (zh) 2021-04-13
CN114172624A (zh) 2022-03-11
AU2018443812A1 (en) 2021-04-08
CN114172624B (zh) 2023-08-22
EP3840267A4 (en) 2021-08-25

Similar Documents

Publication Publication Date Title
CN112655262B (zh) 资源分配的方法、终端设备和网络设备
WO2020143050A1 (zh) 跨载波调度的dci的确定方法、终端设备及网络设备
WO2020191636A1 (zh) 通信方法、终端设备和网络设备
WO2020198983A1 (zh) 一种用于非授权频谱的无线通信方法及装置、通信设备
US11825479B2 (en) Method for determining uplink control information and communications device
WO2020191559A1 (zh) 传输数据信道的方法和终端设备
WO2020113433A1 (zh) 一种处理调度请求的方法及装置、终端
US20210195628A1 (en) Feedback resource allocation method, terminal device, and network device
WO2020252708A1 (zh) 无线通信方法、终端设备和网络设备
CN112740587B (zh) 无线通信方法、终端设备和网络设备
WO2020073623A1 (zh) 一种资源配置方法及装置、通信设备
WO2020061776A9 (zh) 一种反馈资源的复用方法、终端设备及网络设备
WO2021035557A1 (zh) 一种资源配置方法及装置、终端设备、网络设备
WO2020103028A1 (zh) 一种传输数据的方法和终端设备
WO2020087468A1 (zh) 无线通信方法和设备
WO2021073021A1 (zh) 传输数据的方法、终端设备和网络设备
WO2020056554A1 (zh) 一种反馈时序的确定方法、终端设备及网络设备
WO2021142636A1 (zh) 上行传输的方法和终端设备
WO2021179133A1 (zh) 信道的处理方法、装置、存储介质、处理器及电子装置
WO2021072961A1 (zh) 一种优先级配置方法及装置、终端设备
WO2021088264A1 (zh) 一种配置信息确定方法及装置、终端
WO2020056719A9 (zh) 一种信息传输时间的确定方法、终端设备及网络设备
WO2021088004A1 (zh) 一种信道处理方法及装置、终端设备
WO2021092955A1 (zh) 一种下行控制信令接收方法、网络设备、终端设备
WO2020107147A1 (zh) 一种信息生成及指示方法、装置、终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935338

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021514519

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018935338

Country of ref document: EP

Effective date: 20210315

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018443812

Country of ref document: AU

Date of ref document: 20180925

Kind code of ref document: A