WO2021157683A1 - Aluminum alloy ingot and method for manufacturing same - Google Patents
Aluminum alloy ingot and method for manufacturing same Download PDFInfo
- Publication number
- WO2021157683A1 WO2021157683A1 PCT/JP2021/004225 JP2021004225W WO2021157683A1 WO 2021157683 A1 WO2021157683 A1 WO 2021157683A1 JP 2021004225 W JP2021004225 W JP 2021004225W WO 2021157683 A1 WO2021157683 A1 WO 2021157683A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- tib
- aluminum alloy
- aggregates
- alloy ingot
- particles
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; Selection of compositions therefor
- B22D21/002—Castings of light metals
- B22D21/007—Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D7/00—Casting ingots, e.g. from ferrous metals
- B22D7/005—Casting ingots, e.g. from ferrous metals from non-ferrous metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/02—Making non-ferrous alloys by melting
- C22C1/026—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/06—Making non-ferrous alloys with the use of special agents for refining or deoxidising
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
Definitions
- the present invention relates to an aluminum alloy ingot and a method for producing the same.
- a grain refiner may be added to the molten aluminum alloy for the purpose of refining the crystal grains in the ingot.
- the crystal grain micronizing agent an Al-Ti-B-based micronizing agent in which a Ti-B (titanium-boron) -based compound such as TiB 2 is dispersed in a substrate made of aluminum is used (Patent Document 1). ).
- the solid Ti-B-based compound When the Al-Ti-B-based micronizing agent is dissolved in the molten aluminum alloy, the solid Ti-B-based compound is dispersed in the molten metal. When the molten metal is solidified in this state, the Ti-B-based compound functions as a heterogeneous nucleus, and crystal grains of the aluminum matrix can be grown starting from the Ti-B-based compound. As a result, the crystal grains of the aluminum matrix can be miniaturized.
- conventional aluminum alloy ingots whose crystal grains have been refined by an Al-Ti-B-based micronizing agent may have linear defects when subjected to wrought processing such as rolling or extrusion. There was a risk of deteriorating the surface quality of the final product.
- the present invention has been made in view of this background, and an object of the present invention is to provide an aluminum alloy ingot having fine crystal grains and capable of suppressing the occurrence of linear defects during wrought processing, and a method for producing the same. Is what you do.
- One aspect of the present invention is an aluminum matrix and TiB 2 particles are agglomerated and have TiB 2 agglomerates dispersed in the aluminum matrix.
- TiB 2 particles are agglomerated and have TiB 2 agglomerates dispersed in the aluminum matrix.
- the average circle-equivalent diameter of the TiB 2 aggregates exposed from the aluminum matrix is 3.0 ⁇ m or less and the average circularity is 0.20 or more. be.
- Another aspect of the present invention is the method for producing an aluminum alloy ingot according to the above aspect.
- the dissolution process to dissolve A method for producing an aluminum alloy ingot, which comprises a casting step of casting the molten metal after the melting step.
- Yet another aspect of the present invention is the method for producing an aluminum alloy ingot according to the above aspect.
- a casting step of casting the molten metal is provided.
- the TiB 2 agglomerates in the grain refiner have a projected area of 95th percentile or more when the projected area of 2000 or more of the TiB 2 agglomerates in a state of being exposed from the substrate is measured. 2
- the aluminum alloy ingot has TiB 2 aggregates having TiB 2 particles as primary particles in the aluminum matrix. Further, the average value of the equivalent circle diameter and the average value of the circularity of the TiB 2 aggregate are in the specific ranges, respectively. This means that the aluminum alloy ingot is made by casting a molten metal containing the specific TiB 2 agglomerates.
- the TiB 2 aggregates in which the average value of the equivalent circle diameter and the average value of the circularity are each within the specific ranges have a high ability to refine the crystal grains of the aluminum matrix. Therefore, by forming the TiB 2 aggregate in the molten metal, the crystal grains of the aluminum matrix can be sufficiently refined. Further, since the TiB 2 aggregate has a relatively small particle size, it is possible to suppress the occurrence of linear defects when the aluminum alloy ingot is stretched.
- the ingot is produced by dissolving the grain refiner in the molten aluminum alloy and then solidifying the molten metal.
- the average value of the equivalent circle diameter and the average value of the circularity are obtained by dissolving the grain refiner having the specific configuration in the molten metal in the melting step, respectively.
- a specific range of TiB 2 aggregates can be formed in the molten metal. Then, by solidifying the molten metal, the crystal grains of the finally obtained aluminum alloy ingot can be easily refined, and the occurrence of linear defects when the aluminum alloy ingot is stretched can be suppressed. Can be done.
- the quality of the ingot of the aluminum alloy can be improved by the conventional method of dissolving the crystal grain micronizing agent in the molten metal of the aluminum alloy. There is no need to add special processes or equipment for refining the crystal grains of the phase. Therefore, according to the method for producing an aluminum alloy, it is possible to obtain an aluminum alloy ingot having excellent quality while avoiding an increase in the production cost of the aluminum alloy ingot.
- FIG. 1 is an enlarged photograph of TiB 2 particles contained in the aluminum alloy ingot of Example 1.
- FIG. 2 is an enlarged photograph of TiB 2 particles contained in the aluminum alloy ingot of Comparative Example 1.
- the chemical composition of the aluminum alloy ingot is not particularly limited, and any aluminum alloy may be used.
- the above-mentioned "aluminum alloy” is a concept including pure aluminum.
- the aluminum alloy ingot may have a chemical component classified as A1000 series aluminum, or may have an A2000 series alloy, an A3000 series alloy, an A4000 series alloy, an A5000 series alloy, an A6000 series alloy, or an A7000 series alloy. Alternatively, it may have a chemical component classified as an A8000 series alloy.
- the aluminum alloy ingot contains Si (silicon): 0.01% by mass or more. 0% by mass or less, Fe (iron): 0.01% by mass or more and 2.0% by mass or less, Cu (copper): 0.01% by mass or more and 7.0% by mass or less, Mg (magnesium): 0.01% by mass Selected from the group consisting of% or more and 7.0% by mass or less, Mn (manganese): 0.01% by mass or more and 2.0% by mass or less, and Ti (titanium): 0.003% by mass or more and 0.3% by mass or less. It is preferable that it contains one or more elements, and the balance has a chemical component consisting of Al (aluminum) and unavoidable impurities.
- the aluminum alloy ingot contains an aluminum matrix and a TiB 2 agglomerate.
- the aluminum alloy ingot may contain crystallization depending on its chemical composition. Further, the aluminum alloy ingot may contain TiB 2 particles that are not agglomerated.
- the aluminum matrix contains an aluminum atom and a solid solution element according to the chemical composition of the aluminum alloy ingot. Further, the aluminum matrix is composed of a large number of crystal grains.
- the crystal grain size of the aluminum matrix varies depending on the chemical composition of the aluminum alloy ingot, but in an aluminum alloy ingot containing the specific TiB 2 agglomerate, the average crystal grain size of the aluminum matrix is usually average. Is in the range of 50 ⁇ m or more and 5000 ⁇ m or less.
- the aluminum matrix phase, an aggregate of the primary particles of TiB 2 particles, TiB 2 aggregates are dispersed.
- the particle size of the individual TiB 2 particles contained in the TiB 2 aggregate may be, for example, 0.1 ⁇ m or more and 5.0 ⁇ m or less.
- the average value of the equivalent circle diameters of the TiB 2 aggregates in the state of being exposed from the aluminum matrix is 3.0 ⁇ m or less.
- the lower limit of the average value of the equivalent circle diameters of the TiB 2 aggregates is not particularly limited, but the TiB 2 aggregates formed by the production method of the above-described embodiment
- the average value of the equivalent circle diameter is usually 1.0 ⁇ m or more.
- the average value of the circle-equivalent diameters of the TiB 2 aggregates described above is a value calculated by the following method. First, a test piece is collected from the inside of the aluminum alloy ingot. Then, the aluminum matrix on the surface of the test piece is removed by a method such as deep etching. By observing the surface of this test piece with an electron microscope or the like, an enlarged photograph of TiB 2 aggregates is obtained. The equivalent circle diameter of each TiB 2 aggregate is calculated based on the projected area of the TiB 2 aggregate in the obtained enlarged photograph.
- the average value of the circle-equivalent diameters of the TiB 2 aggregates can be obtained.
- the number of TiB 2 aggregates used in calculating the average value of the equivalent circle diameter may be, for example, three or more.
- the average value of the circularity of the TiB 2 aggregate in the state of being exposed from the aluminum matrix is 0.20 or more.
- Circularity of TiB 2 aggregates are values form of TiB 2 aggregates is indicative of whether nearly spherical, meaning that the circularity of a shape close TiB 2 aggregates the ball closer to 1 do.
- TiB 2 aggregates having various shapes are usually formed in the molten metal.
- the TiB 2 aggregate in the molten metal has a property that the larger the circularity and the closer the shape is to a sphere, the easier it is to function as a heterogeneous nucleus. Therefore, TiB by an average value of circularity of 2 aggregates to 0.20 or more, is possible to increase the proportion of TiB 2 aggregates which can function as a heterogeneous nucleus of TiB 2 aggregates formed during casting can.
- the average value of circularity of TiB 2 agglomerates is less than 0.20, the ratio tends to be low and TiB 2 aggregates which can function as a heterogeneous nucleus of TiB 2 aggregates formed during casting. Therefore, in this case, the fineness of the crystal grains of the aluminum matrix may be insufficient.
- TiB from the point of view of enhancing the effect of grain refinement by 2 aggregates, but are not limited particularly limit circularity of the mean value of TiB 2 aggregates, formed by the manufacturing method of the embodiment
- the average circularity of TiB 2 aggregates is usually 0.8 or less.
- the average value of the circularity of the TiB 2 aggregates described above is a value calculated by the following method.
- Circularity of individual TiB 2 aggregates, the area of the TiB 2 aggregates in the obtained magnified photographs S [ ⁇ m 2], using the circumferential length L [[mu] m], is expressed by the following equation. Circularity 4 ⁇ S / L 2
- the average value of the circularities of the TiB 2 aggregates can be obtained.
- the number of TiB 2 aggregates used in calculating the average value of circularity may be, for example, three or more.
- the crystal grains can be obtained. It is possible to reduce the amount of the grain refiner added in the casting process while ensuring the effect of miniaturization.
- the average value of the equivalent circle diameters of the TiB 2 aggregates formed in the molten metal is set within the specific range, whereby the coarse TiB 2 aggregates are formed. Can be reduced and the total number of TiB 2 aggregates in the molten metal can be increased. Further, by setting the average value of the circularity of TiB 2 aggregates in the above-mentioned specific range, the ratio of TiB 2 aggregates capable of functioning as heterogeneous nuclei in the molten metal can be increased.
- the TiB 2 aggregates that can function as heterogeneous nuclei The number can be increased, and the effect of refining the crystal grains of the aluminum matrix can be enhanced.
- the effect of reducing the equivalent circle diameter and the effect of reducing the equivalent circle diameter can be obtained.
- the effect of increasing the circularity can be synergistically acted.
- the amount of the crystal grain refiner added at the time of casting can be reduced as compared with the conventional case while maintaining the effect of refining the crystal grains.
- the content of TiB 2 aggregates in the aluminum alloy ingot can be 0.0001% by mass or more and 0.0010% by mass or less as boron atoms.
- a method including a melting step of dissolving a crystal grain micronizing agent in a molten aluminum alloy and a casting step of casting the molten metal after the melting step is adopted. be able to.
- the crystal grain refiner added to the molten metal has a substrate made of aluminum.
- the shape of the substrate is not particularly limited, and may have a shape such as a rod shape or a plate shape, for example.
- TiB 2 particles are contained in the substrate.
- the TiB 2 particles are dispersed in the substrate and may exist in a non-aggregated state.
- TiB 2 agglomerates may be formed in the substrate by aggregating a plurality of TiB 2 particles. More specifically, all TiB 2 particles in the substrate may exist in a non-aggregated state, or all TiB 2 particles in the substrate may exist in a TiB 2 aggregate state. good. Further, both TiB 2 particles in a non-aggregated state and TiB 2 aggregates may be present in the substrate.
- At least a part of the TiB 2 particles in the substrate dissolves in the molten metal in the dissolution step, and then aggregates in the molten metal to become TiB 2 aggregates. Further, when the grain refiner is dissolved in the molten metal in the dissolution step, the TiB 2 aggregates in the substrate move into the molten metal while maintaining the aggregated state. Therefore, the grain refiner containing TiB 2 particles by dissolving in molten aluminum, can be formed TiB 2 aggregates in the molten metal.
- the crystal grain refiner of any of the following aspects can be dissolved in the molten metal. That is, in the first aspect of the crystal grain refiner, the average value of the distances between the centers of the adjacent TiB 2 particles in an arbitrary cross section of the crystal grain refiner is 0.60 ⁇ m or more.
- the distance between the centers of the TiB 2 particles in the grain refiner within the above-mentioned specific range, the aggregation of TiB 2 particles and the growth of TiB 2 aggregates when the grain refiner is dissolved in the molten metal can be prevented. It can be suppressed. As a result, the average value of the equivalent circle diameter and the average value of the circularity of the TiB 2 aggregates formed in the molten metal can be easily set in the specific range.
- the TiB 2 particles are likely to aggregate with each other when the crystal grain refiner is dissolved in the molten metal. As a result, coarse TiB 2 aggregates are likely to be formed in the molten metal, which may reduce the effect of refining the crystal grains and increase the frequency of occurrence of linear defects during wrought processing.
- the average value of the distances between the centers of the TiB 2 particles described above is a value calculated by the following method.
- the grain refiner is cut to expose the cut surface. Observe this cut surface using an electron microscope or the like, and obtain an enlarged photograph of the cut surface. In the obtained magnified photograph, the center of gravity of each TiB 2 particle present in the magnified photograph is determined. Note that the TiB 2 particles present in the enlarged photograph, and TiB 2 particles are present in a state which is not dispersed, include both the TiB 2 particles that are part of the TiB 2 aggregates.
- the TiB 2 particles to be measured for the center-to-center distance are determined from the TiB 2 particles existing in the enlarged photograph. Then, the TiB 2 particles to be measured, the distance between the centroid and the nearest TiB 2 particles TiB 2 particles to be measured is measured and the value as the distance between the centers of the TiB 2 particles to be measured. The above operation is performed for all TiB 2 particles existing in the enlarged photograph, and the arithmetic mean value of the obtained center-to-center distance is taken as the average value of the center-to-center distance of the TiB 2 particles.
- the TiB 2 aggregates in the grain refiner are measured in the projected area of 2000 or more TiB 2 aggregates in a state of being exposed from the substrate.
- the TiB 2 aggregate having a projected area of 95th percentile or more has a particle size distribution in which the average value of the equivalent circle diameter is 3.0 ⁇ m or less.
- grain refiner containing TiB 2 agglomerates large TiB 2 aggregates of equivalent circle diameter to function effectively as a heterogeneous nuclei in molten aluminum.
- the particle size distribution of the TiB 2 aggregates in the grain refiner to the above-mentioned specific embodiment, it is possible to reduce the possibility that the coarse TiB 2 aggregates are contained in the grain refiner. As a result, it is possible to suppress the mixing of coarse TiB 2 aggregates into the molten metal. As a result, the average value of the equivalent circle diameter and the average value of the circularity of the TiB 2 aggregates formed in the molten metal can be easily set in the specific range.
- the average value of the circle-equivalent diameters of the TiB 2 aggregates described above is a value calculated by the following method.
- the grain refiner is cut to expose the cut surface.
- the cutting direction of the crystal grain refiner is not particularly limited.
- the grain refiner may be cut along a plane perpendicular to the longitudinal direction through the center thereof.
- the TiB 2 aggregate is exposed from the substrate by removing the peripheral portion of the TiB 2 aggregate in the substrate.
- a method for removing the substrate for example, a method such as deep etching can be used.
- the TiB 2 aggregates exposed from the substrate are observed using an electron microscope or the like, and an enlarged photograph of the TiB 2 aggregates is obtained.
- the area of TiB 2 aggregates in this enlarged photograph is taken as the projected area of each TiB 2 aggregate.
- An image analysis device or the like can be used to calculate the projected area of the TiB 2 aggregate and the equivalent diameter of the circle.
- the above operation is performed on 2000 or more TiB 2 aggregates randomly selected from the TiB 2 aggregates present on the cut surface of the grain refiner. Based on the projected area of the TiB 2 aggregate thus obtained, the 95th percentile of the projected area is calculated.
- the percentile is a numerical value in which, when a plurality of numerical values are arranged in order from a numerical value having a small value to a numerical value having a large value, the number of numerical values counted from the numerical value having a small value becomes a desired percentage of the total number of numerical values. be. When there is no such numerical value, the largest value among the values in which the number of numerical values counted from the smallest numerical value is less than the desired percentage with respect to the total number of numerical values is defined as the percentile. More specifically, the 95th percentile of the projected area is a value in which the number of TiB 2 aggregates having a projected area of the 95th percentile or more is 5% of the total number of TiB 2 aggregates whose projected area is measured.
- the equivalent circle diameter of the TiB 2 aggregate having the projected area of the 95th percentile or more is calculated.
- the equivalent circle diameter is the diameter of a circle having an area equal to the projected area of the TiB 2 aggregate. Then, by the arithmetic mean of circle-equivalent diameter of the resulting TiB 2 aggregates, it is possible to obtain an average value of equivalent circle diameter of TiB 2 agglomerates having a projected area of more than 95 percentile.
- the content of TiB 2 particles in the grain refiner can be, for example, 0.5% by mass or more and 3.2% by mass or less.
- the average value of the distances between the centers of adjacent TiB 2 particles tends to be long.
- the effect of suppressing the aggregation of TiB 2 particles when the crystal grain refiner is dissolved in the molten metal can be more reliably achieved.
- the grain refiner is dissolved in a molten aluminum alloy having a desired chemical composition.
- the molten metal may be agitated to uniformly disperse the TiB 2 particles in the grain refiner in the molten metal.
- an aluminum alloy ingot can be produced by dissolving a crystal grain refiner in a molten metal and then casting the molten metal.
- the casting method is not particularly limited, and for example, a method such as semi-continuous casting or continuous casting can be adopted.
- the aluminum alloy ingots produced by these methods can be used for producing wrought materials such as rolled plates and extruded materials. Further, by pouring the above-mentioned molten aluminum alloy into a mold or sand mold and then cooling the molten metal, it is possible to obtain an ingot having a desired product shape or a shape close to the product shape.
- TiB 2 particles have a higher specific density than molten metal. Therefore, when the elapsed time from the time of dissolving the grain refiner in the melt is prolonged, it precipitated TiB 2 particles by the weight, the aggregation of TiB 2 particles is likely to occur at the bottom of the crucible. As a result, coarse TiB 2 aggregates may be easily formed. By setting the time from the time when the crystal grain refiner is dissolved in the molten metal to casting within 30 minutes, such a problem can be more easily avoided.
- the above-mentioned aluminum alloy ingot and the method for producing the same can be grasped as an invention of a grain refiner that specifies the dispersed state of TiB 2 particles.
- the first aspect of the grain refiner is A substrate made of aluminum and It has TiB 2 particles existing in the substrate, and has The average value of the distance between the centers of the adjacent TiB 2 particles in an arbitrary cross section is 0.60 ⁇ m or more.
- the second aspect of the grain refiner is A substrate made of aluminum and TiB 2 particles are agglomerated and have TiB 2 agglomerates existing in the substrate.
- Such a grain refiner can be produced by, for example, the following production method. That is, in the method for producing the crystal grain refiner, a molten aluminum as a substrate is prepared. By blowing TiB 2 particles into the molten metal together with an inert gas, the TiB 2 particles are dispersed in the molten metal. Then, the molten metal is coagulated. From the above, the crystal grain refiner can be obtained.
- TiB 2 particles to be blown into the molten metal it is preferable to use TiB 2 particles having a narrow particle size distribution width, and it is more preferable to use TiB 2 particles having a standard deviation of particle size of 0.5 ⁇ m or less.
- the inert gas for example, nitrogen gas, argon gas or the like can be used.
- the standard deviation of the particle size of TiB 2 particles is a value calculated based on the particle size distribution on a volume basis.
- a laser diffraction type particle size distribution measuring device can be used to obtain the particle size distribution based on the volume of TiB 2 particles.
- Examples 1 and 2 and Comparative Examples 1 and 2 are examples of aluminum alloy ingots made of pure aluminum.
- a molten metal is prepared by melting an aluminum bullion having a purity of 99.7% by mass.
- a grain refiner in which TiB 2 particles are dispersed in a substrate made of aluminum is added to the molten metal so as to have a boron atom of 10 mass ppm.
- the grain refiner used in this example contains Ti: 1.0% by mass or more and 5.5% by mass or less, B: 0.1% by mass or more and 1.5% by mass or less, and the balance.
- TiB 2 aggregates in grain refining agent when measuring the projected area in the state of exposing the 2000 or more TiB 2 aggregates, from the substrate, TiB 2 having the projected area of more than 95 percentile It has a particle size distribution in which the average value of the equivalent circle diameters of the aggregates is the value shown in Table 1.
- the molten metal After adding the grain refiner to the molten metal, the molten metal is stirred for 30 seconds using a graphite rod while the temperature of the molten metal is maintained at 718 ° C. to sufficiently dissolve the grain refiner. Further, when 9 minutes and 15 seconds have passed from the time when the crystal grain refiner was added, the molten metal is stirred again using the graphite rod for 15 seconds.
- an iron cassotte conforming to the AA-TP1 standard is immersed in the molten metal, and the cup portion of the cassotte is filled with the molten metal. Then, 10 minutes after the addition of the grain refiner, the cassotte is pulled out of the molten metal and the molten metal is pumped into the cup portion. Then, the cup portion of the cassotte is cooled using a water cooling device conforming to the AA-TP1 standard to solidify the molten metal. From the above, the aluminum alloy ingots of Examples 1 and 2 and Comparative Examples 1 and 2 can be obtained. All of these aluminum alloy ingots have a truncated cone shape.
- the calculation method of the average value of the equivalent circle diameter and the average value of the circularity of the TiB 2 aggregates in the aluminum alloy ingots of Examples 1 and 2 and Comparative Examples 1 and 2 is as follows. Table 1 shows these values in the aluminum alloy ingots of Examples 1 and 2 and Comparative Examples 1 and 2.
- FIG. 1 shows an enlarged photograph of the TiB 2 agglomerate contained in the aluminum alloy ingot of Example 1
- FIG. 2 shows an enlarged photograph of the TiB 2 agglomerate contained in the aluminum alloy ingot of Comparative Example 2.
- FIGS. 1 and 2 the TiB 2 agglomerates 2 in the aluminum matrix 1 are in the form of agglomerates in which a large number of TiB 2 particles 3 are agglomerated.
- the circumference of the TiB 2 aggregate 2 in the above-mentioned enlarged photograph, that is, the length of the contour is calculated.
- the above operation is performed on three or more randomly selected TiB 2 aggregates, and the arithmetic mean value of these circularities is taken as the average value of the circularity of the TiB 2 aggregates.
- Table 1 shows the average value of the circularity of TiB 2 aggregates in each aluminum alloy ingot.
- Example 3 is an example of an aluminum alloy ingot made of an A3000 series alloy.
- a molten metal made of an A3000 series alloy is prepared using a heating furnace, and then a grain refiner is added to the molten metal so as to have 10 mass ppm of boron atoms.
- the crystal grain refiner used in this example contains Ti: 5.0% by mass and B: 1.0% by mass, and the balance has a chemical component consisting of Al and unavoidable impurities.
- Table 1 shows the values shown in Table 1 for the distance between the centers of adjacent TiB 2 particles in any cross section of the micronizing agent, and the average value of the equivalent circle diameters of TiB 2 aggregates having a projected area of 95th percentile or more. It is the same as that of the first embodiment except that the value is shown in 1.
- the molten metal After adding the grain refiner to the molten metal, the molten metal is stirred for 30 seconds using a graphite rod. Then, the molten metal is cast by the DC casting method. From the above, the aluminum alloy ingot of Example 3 is obtained.
- the aluminum alloy ingot of Example 3 has a rectangular parallelepiped shape.
- Example 4 is an example of an aluminum alloy ingot made of A1000 series aluminum.
- a molten aluminum alloy is cast by the same method as in Example 3 except that a molten metal made of A1000 series aluminum is prepared using a heating furnace.
- the aluminum alloy ingot of Example 4 is obtained.
- the aluminum alloy ingot of Example 4 has a rectangular parallelepiped shape as in Example 3.
- the calculation method of the average value of the equivalent circle diameter and the average value of the circularity of the TiB 2 aggregates in the aluminum alloy ingots of Examples 3 and 4 is as follows.
- the average value of the equivalent circle diameter and the average value of the circularity of the TiB 2 aggregates contained in the aluminum alloy ingot of Example 1-4 are within the specific ranges, respectively. Therefore, in these aluminum alloy ingots, the crystal grains of the aluminum matrix are sufficiently finely divided, and there are few coarse TiB 2 aggregates, so that linear defects occur during processing such as rolling. It can be suppressed.
- the average value of the equivalent circle diameters of the TiB 2 aggregates contained in the aluminum alloy ingots of Comparative Examples 1 and 2 is larger than the specific range. Therefore, these aluminum alloy ingots tend to contain coarse TiB 2 agglomerates, and linear defects are likely to occur during wrought processing.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Continuous Casting (AREA)
Abstract
This aluminum alloy ingot includes an aluminum parent phase (1), and TiB2 aggregates (2) formed through aggregation of TiB2particles (3) and dispersed in the aluminum parent phase (1). The TiB2 (2) aggregates, in a state of being exposed from the aluminum parent phase (1), has an average equivalent circle diameter of not more than 3.0 µm and an average circularity of not less than 0.20.
Description
本発明は、アルミニウム合金鋳塊及びその製造方法に関する。
The present invention relates to an aluminum alloy ingot and a method for producing the same.
アルミニウム合金を鋳造して鋳塊を作製する際に、鋳塊における結晶粒を微細化させる目的で、アルミニウム合金の溶湯に結晶粒微細化剤が添加されることがある。結晶粒微細化剤としては、アルミニウムからなる基体中にTiB2等のTi-B(チタン-ホウ素)系化合物が分散した、Al-Ti-B系微細化剤が用いられている(特許文献1)。
When an aluminum alloy is cast to produce an ingot, a grain refiner may be added to the molten aluminum alloy for the purpose of refining the crystal grains in the ingot. As the crystal grain micronizing agent, an Al-Ti-B-based micronizing agent in which a Ti-B (titanium-boron) -based compound such as TiB 2 is dispersed in a substrate made of aluminum is used (Patent Document 1). ).
アルミニウム合金の溶湯中にAl-Ti-B系微細化剤を溶解させると、溶湯中に固体のTi-B系化合物が分散した状態となる。この状態で溶湯を凝固させると、Ti-B系化合物が異質核として機能し、Ti-B系化合物を起点としてアルミニウム母相の結晶粒を成長させることができる。その結果、アルミニウム母相の結晶粒を微細化することができる。
When the Al-Ti-B-based micronizing agent is dissolved in the molten aluminum alloy, the solid Ti-B-based compound is dispersed in the molten metal. When the molten metal is solidified in this state, the Ti-B-based compound functions as a heterogeneous nucleus, and crystal grains of the aluminum matrix can be grown starting from the Ti-B-based compound. As a result, the crystal grains of the aluminum matrix can be miniaturized.
しかし、Al-Ti-B系微細化剤によって結晶粒が微細化された従来のアルミニウム合金鋳塊は、圧延や押出等の展伸加工を施した際に線状の欠陥が生じることがあり、最終製品の表面品質の悪化を招くおそれがあった。
However, conventional aluminum alloy ingots whose crystal grains have been refined by an Al-Ti-B-based micronizing agent may have linear defects when subjected to wrought processing such as rolling or extrusion. There was a risk of deteriorating the surface quality of the final product.
本発明は、かかる背景に鑑みてなされたものであり、微細な結晶粒を備え、展伸加工時の線状欠陥の発生を抑制することができるアルミニウム合金鋳塊及びその製造方法を提供しようとするものである。
The present invention has been made in view of this background, and an object of the present invention is to provide an aluminum alloy ingot having fine crystal grains and capable of suppressing the occurrence of linear defects during wrought processing, and a method for producing the same. Is what you do.
本発明の一態様は、アルミニウム母相と、
TiB2粒子が凝集してなり、前記アルミニウム母相中に分散しているTiB2凝集体と、を有し、
前記アルミニウム母相から露出させた状態における前記TiB2凝集体の円相当径の平均値が3.0μm以下であり、かつ、円形度の平均値が0.20以上である、アルミニウム合金鋳塊にある。 One aspect of the present invention is an aluminum matrix and
TiB 2 particles are agglomerated and have TiB 2 agglomerates dispersed in the aluminum matrix.
For aluminum alloy ingots in which the average circle-equivalent diameter of the TiB 2 aggregates exposed from the aluminum matrix is 3.0 μm or less and the average circularity is 0.20 or more. be.
TiB2粒子が凝集してなり、前記アルミニウム母相中に分散しているTiB2凝集体と、を有し、
前記アルミニウム母相から露出させた状態における前記TiB2凝集体の円相当径の平均値が3.0μm以下であり、かつ、円形度の平均値が0.20以上である、アルミニウム合金鋳塊にある。 One aspect of the present invention is an aluminum matrix and
TiB 2 particles are agglomerated and have TiB 2 agglomerates dispersed in the aluminum matrix.
For aluminum alloy ingots in which the average circle-equivalent diameter of the TiB 2 aggregates exposed from the aluminum matrix is 3.0 μm or less and the average circularity is 0.20 or more. be.
本発明の他の態様は、前記の態様のアルミニウム合金鋳塊の製造方法であって、
アルミニウム合金の溶湯中に、アルミニウムからなる基体中に前記TiB2粒子が含まれており、かつ、隣り合う前記TiB2粒子の中心間距離の平均値が0.60μm以上である結晶粒微細化剤を溶解させる溶解工程と、
前記溶解工程の後、前記溶湯を鋳造する鋳造工程と、を有する、アルミニウム合金鋳塊の製造方法にある。 Another aspect of the present invention is the method for producing an aluminum alloy ingot according to the above aspect.
A crystal grain micronizing agent in which the TiB 2 particles are contained in a substrate made of aluminum in a molten aluminum alloy, and the average value of the distance between the centers of the adjacent TiB 2 particles is 0.60 μm or more. And the dissolution process to dissolve
A method for producing an aluminum alloy ingot, which comprises a casting step of casting the molten metal after the melting step.
アルミニウム合金の溶湯中に、アルミニウムからなる基体中に前記TiB2粒子が含まれており、かつ、隣り合う前記TiB2粒子の中心間距離の平均値が0.60μm以上である結晶粒微細化剤を溶解させる溶解工程と、
前記溶解工程の後、前記溶湯を鋳造する鋳造工程と、を有する、アルミニウム合金鋳塊の製造方法にある。 Another aspect of the present invention is the method for producing an aluminum alloy ingot according to the above aspect.
A crystal grain micronizing agent in which the TiB 2 particles are contained in a substrate made of aluminum in a molten aluminum alloy, and the average value of the distance between the centers of the adjacent TiB 2 particles is 0.60 μm or more. And the dissolution process to dissolve
A method for producing an aluminum alloy ingot, which comprises a casting step of casting the molten metal after the melting step.
本発明のさらに他の態様は、前記の態様のアルミニウム合金鋳塊の製造方法であって、
アルミニウム合金の溶湯中に、アルミニウムからなる基体中にTiB2粒子が凝集してなるTiB2凝集体が含まれている結晶粒微細化剤を溶解させる溶解工程と、
前記溶解工程の後、前記溶湯を鋳造する鋳造工程と、を有し、
前記結晶粒微細化剤中のTiB2凝集体は、2000個以上の前記TiB2凝集体の、前記基体から露出させた状態における投影面積を測定した場合に、95パーセンタイル以上の投影面積を有するTiB2凝集体の円相当径の平均値が3.0μm以下となる粒度分布を有している、アルミニウム合金鋳塊の製造方法にある。 Yet another aspect of the present invention is the method for producing an aluminum alloy ingot according to the above aspect.
A melting step of dissolving a grain refiner containing TiB 2 agglomerates formed by aggregating TiB 2 particles in a substrate made of aluminum in a molten aluminum alloy.
After the melting step, a casting step of casting the molten metal is provided.
The TiB 2 agglomerates in the grain refiner have a projected area of 95th percentile or more when the projected area of 2000 or more of the TiB 2 agglomerates in a state of being exposed from the substrate is measured. 2 This is a method for producing an aluminum alloy ingot having a particle size distribution in which the average value of the equivalent circle diameters of the aggregates is 3.0 μm or less.
アルミニウム合金の溶湯中に、アルミニウムからなる基体中にTiB2粒子が凝集してなるTiB2凝集体が含まれている結晶粒微細化剤を溶解させる溶解工程と、
前記溶解工程の後、前記溶湯を鋳造する鋳造工程と、を有し、
前記結晶粒微細化剤中のTiB2凝集体は、2000個以上の前記TiB2凝集体の、前記基体から露出させた状態における投影面積を測定した場合に、95パーセンタイル以上の投影面積を有するTiB2凝集体の円相当径の平均値が3.0μm以下となる粒度分布を有している、アルミニウム合金鋳塊の製造方法にある。 Yet another aspect of the present invention is the method for producing an aluminum alloy ingot according to the above aspect.
A melting step of dissolving a grain refiner containing TiB 2 agglomerates formed by aggregating TiB 2 particles in a substrate made of aluminum in a molten aluminum alloy.
After the melting step, a casting step of casting the molten metal is provided.
The TiB 2 agglomerates in the grain refiner have a projected area of 95th percentile or more when the projected area of 2000 or more of the TiB 2 agglomerates in a state of being exposed from the substrate is measured. 2 This is a method for producing an aluminum alloy ingot having a particle size distribution in which the average value of the equivalent circle diameters of the aggregates is 3.0 μm or less.
前記アルミニウム合金鋳塊は、アルミニウム母相中に、TiB2粒子を一次粒子とするTiB2凝集体を有している。また、TiB2凝集体の円相当径の平均値及び円形度の平均値がそれぞれ前記特定の範囲である。これは、前記アルミニウム合金鋳塊が、前記特定のTiB2凝集体を含む溶湯を鋳造することによって作製されていることを意味する。
The aluminum alloy ingot has TiB 2 aggregates having TiB 2 particles as primary particles in the aluminum matrix. Further, the average value of the equivalent circle diameter and the average value of the circularity of the TiB 2 aggregate are in the specific ranges, respectively. This means that the aluminum alloy ingot is made by casting a molten metal containing the specific TiB 2 agglomerates.
円相当径の平均値及び円形度の平均値がそれぞれ前記特定の範囲内である前記TiB2凝集体は、アルミニウム母相の結晶粒を微細化する能力が高い。そのため、溶湯中に前記TiB2凝集体を形成することにより、アルミニウム母相の結晶粒を十分に微細化することができる。また、前記TiB2凝集体は、比較的粒径が小さいため、アルミニウム合金鋳塊に展伸加工を施す際の線状欠陥の発生を抑制することができる。
The TiB 2 aggregates in which the average value of the equivalent circle diameter and the average value of the circularity are each within the specific ranges have a high ability to refine the crystal grains of the aluminum matrix. Therefore, by forming the TiB 2 aggregate in the molten metal, the crystal grains of the aluminum matrix can be sufficiently refined. Further, since the TiB 2 aggregate has a relatively small particle size, it is possible to suppress the occurrence of linear defects when the aluminum alloy ingot is stretched.
それ故、前記の態様によれば、微細な結晶粒を備え、展伸加工時の線状欠陥の発生を抑制することができるアルミニウム合金鋳塊を提供することができる。
Therefore, according to the above aspect, it is possible to provide an aluminum alloy ingot having fine crystal grains and capable of suppressing the occurrence of linear defects during wrought processing.
また、前記アルミニウム合金鋳塊の製造方法においては、アルミニウム合金の溶湯中に、前記結晶粒微細化剤を溶解させた後、溶湯を凝固させて鋳塊を作製する。前記アルミニウム合金鋳塊の製造方法は、前記溶解工程において前記特定の構成を有する前記結晶粒微細化剤を溶湯中に溶解させることにより、円相当径の平均値及び円形度の平均値がそれぞれ前記特定の範囲であるTiB2凝集体を溶湯中に形成することができる。そして、かかる溶湯を凝固させることにより、最終的に得られるアルミニウム合金鋳塊の結晶粒を容易に微細化するとともに、アルミニウム合金鋳塊を展伸加工する際の線状欠陥の発生を抑制することができる。
Further, in the method for producing an aluminum alloy ingot, the ingot is produced by dissolving the grain refiner in the molten aluminum alloy and then solidifying the molten metal. In the method for producing an aluminum alloy ingot, the average value of the equivalent circle diameter and the average value of the circularity are obtained by dissolving the grain refiner having the specific configuration in the molten metal in the melting step, respectively. A specific range of TiB 2 aggregates can be formed in the molten metal. Then, by solidifying the molten metal, the crystal grains of the finally obtained aluminum alloy ingot can be easily refined, and the occurrence of linear defects when the aluminum alloy ingot is stretched can be suppressed. Can be done.
また、前記アルミニウム合金の製造方法は、アルミニウム合金の溶湯中に前記結晶粒微細化剤を溶解させるという、従来行われている方法によってアルミニウム合金鋳塊の品質を向上させることができるため、アルミニウム母相の結晶粒を微細化するための特殊な工程や設備を追加する必要がない。従って、前記アルミニウム合金の製造方法によれば、アルミニウム合金鋳塊の製造コストの上昇を回避しつつ、優れた品質を有するアルミニウム合金鋳塊を得ることができる。
Further, in the method for producing the aluminum alloy, the quality of the ingot of the aluminum alloy can be improved by the conventional method of dissolving the crystal grain micronizing agent in the molten metal of the aluminum alloy. There is no need to add special processes or equipment for refining the crystal grains of the phase. Therefore, according to the method for producing an aluminum alloy, it is possible to obtain an aluminum alloy ingot having excellent quality while avoiding an increase in the production cost of the aluminum alloy ingot.
前記アルミニウム合金鋳塊の化学成分は特に限定されることはなく、どのようなアルミニウム合金であってもよい。なお、前述した「アルミニウム合金」は、純アルミニウムを包含する概念である。例えば、前記アルミニウム合金鋳塊は、A1000系アルミニウムに分類される化学成分を有していてもよいし、A2000系合金、A3000系合金、A4000系合金、A5000系合金、A6000系合金、A7000系合金またはA8000系合金に分類される化学成分を有していてもよい。
The chemical composition of the aluminum alloy ingot is not particularly limited, and any aluminum alloy may be used. The above-mentioned "aluminum alloy" is a concept including pure aluminum. For example, the aluminum alloy ingot may have a chemical component classified as A1000 series aluminum, or may have an A2000 series alloy, an A3000 series alloy, an A4000 series alloy, an A5000 series alloy, an A6000 series alloy, or an A7000 series alloy. Alternatively, it may have a chemical component classified as an A8000 series alloy.
鋳造時におけるTiB2粒子の凝集を抑制し、TiB2凝集体の円相当径の平均値を小さくする観点からは、前記アルミニウム合金鋳塊は、Si(ケイ素):0.01質量%以上14.0質量%以下、Fe(鉄):0.01質量%以上2.0質量%以下、Cu(銅):0.01質量%以上7.0質量%以下、Mg(マグネシウム):0.01質量%以上7.0質量%以下、Mn(マンガン):0.01質量%以上2.0質量%以下及びTi(チタン):0.003質量%以上0.3質量%以下からなる群より選択される1種または2種以上の元素を含み、残部がAl(アルミニウム)及び不可避的不純物からなる化学成分を有していることが好ましい。
From the viewpoint of suppressing the aggregation of TiB 2 particles during casting and reducing the average value of the equivalent circle diameters of the TiB 2 aggregates, the aluminum alloy ingot contains Si (silicon): 0.01% by mass or more. 0% by mass or less, Fe (iron): 0.01% by mass or more and 2.0% by mass or less, Cu (copper): 0.01% by mass or more and 7.0% by mass or less, Mg (magnesium): 0.01% by mass Selected from the group consisting of% or more and 7.0% by mass or less, Mn (manganese): 0.01% by mass or more and 2.0% by mass or less, and Ti (titanium): 0.003% by mass or more and 0.3% by mass or less. It is preferable that it contains one or more elements, and the balance has a chemical component consisting of Al (aluminum) and unavoidable impurities.
アルミニウム合金鋳塊には、アルミニウム母相と、TiB2凝集体とが含まれている。アルミニウム合金鋳塊には、その化学成分に応じて、晶出物が含まれていてもよい。また、アルミニウム合金鋳塊には、凝集していないTiB2粒子が含まれていてもよい。
The aluminum alloy ingot contains an aluminum matrix and a TiB 2 agglomerate. The aluminum alloy ingot may contain crystallization depending on its chemical composition. Further, the aluminum alloy ingot may contain TiB 2 particles that are not agglomerated.
アルミニウム母相には、アルミニウム原子と、前記アルミニウム合金鋳塊の化学成分に応じた固溶元素とが含まれている。また、アルミニウム母相は、多数の結晶粒から構成されている。アルミニウム母相の結晶粒径は、前記アルミニウム合金鋳塊の化学成分に応じて変化するが、前記特定のTiB2凝集体を含むアルミニウム合金鋳塊においては、通常、アルミニウム母相の平均結晶粒径は、50μm以上5000μm以下の範囲内となる。
The aluminum matrix contains an aluminum atom and a solid solution element according to the chemical composition of the aluminum alloy ingot. Further, the aluminum matrix is composed of a large number of crystal grains. The crystal grain size of the aluminum matrix varies depending on the chemical composition of the aluminum alloy ingot, but in an aluminum alloy ingot containing the specific TiB 2 agglomerate, the average crystal grain size of the aluminum matrix is usually average. Is in the range of 50 μm or more and 5000 μm or less.
アルミニウム母相中には、TiB2粒子を一次粒子とする凝集体である、TiB2凝集体が分散している。TiB2凝集体に含まれる個々のTiB2粒子の粒径は、例えば、0.1μm以上5.0μm以下であってもよい。
The aluminum matrix phase, an aggregate of the primary particles of TiB 2 particles, TiB 2 aggregates are dispersed. The particle size of the individual TiB 2 particles contained in the TiB 2 aggregate may be, for example, 0.1 μm or more and 5.0 μm or less.
前記アルミニウム母相から露出させた状態における前記TiB2凝集体の円相当径の平均値は3.0μm以下である。TiB2凝集体の円相当径の平均値を3.0μm以下とすることにより、前記アルミニウム合金鋳塊に圧延や押出等の展伸加工を施した際の線状欠陥の発生を抑制することができる。
The average value of the equivalent circle diameters of the TiB 2 aggregates in the state of being exposed from the aluminum matrix is 3.0 μm or less. By setting the average value of the equivalent circle diameter of the TiB 2 agglomerates to 3.0 μm or less, it is possible to suppress the occurrence of linear defects when the aluminum alloy ingot is subjected to stretching processing such as rolling or extrusion. can.
TiB2凝集体の円相当径の平均値が3.0μmよりも大きい場合、アルミニウム合金鋳塊中に粗大なTiB2凝集体が存在している可能性が高くなる。それ故、この場合には、アルミニウム合金鋳塊に展伸加工を施した際に、粗大なTiB2凝集体に由来する線状欠陥が発生しやすくなるおそれがある。
When the average value of the equivalent circle diameters of TiB 2 aggregates is larger than 3.0 μm, it is highly possible that coarse TiB 2 aggregates are present in the aluminum alloy ingot. Therefore, in this case, when the aluminum alloy ingot is stretched, linear defects due to the coarse TiB 2 agglomerates may easily occur.
線状欠陥の発生を抑制する観点からは、TiB2凝集体の円相当径の平均値の下限は特に限定されることはないが、前記の態様の製造方法により形成されるTiB2凝集体の円相当径の平均値は、通常、1.0μm以上となる。
From the viewpoint of suppressing the occurrence of linear defects, the lower limit of the average value of the equivalent circle diameters of the TiB 2 aggregates is not particularly limited, but the TiB 2 aggregates formed by the production method of the above-described embodiment The average value of the equivalent circle diameter is usually 1.0 μm or more.
前述したTiB2凝集体の円相当径の平均値は、以下の方法により算出される値である。まず、アルミニウム合金鋳塊の内部から試験片を採取する。次いで、ディープエッチングなどの方法により試験片表面のアルミニウム母相を除去する。この試験片の表面を電子顕微鏡等で観察することにより、TiB2凝集体の拡大写真を取得する。得られた拡大写真におけるTiB2凝集体の投影面積に基づいて個々のTiB2凝集体の円相当径を算出する。以上の操作を無作為に選択した複数のTiB2凝集体について行い、これらの円相当径を算術平均することにより、TiB2凝集体の円相当径の平均値を得ることができる。円相当径の平均値を算出する際に用いるTiB2凝集体の数は、例えば、3個以上であればよい。
The average value of the circle-equivalent diameters of the TiB 2 aggregates described above is a value calculated by the following method. First, a test piece is collected from the inside of the aluminum alloy ingot. Then, the aluminum matrix on the surface of the test piece is removed by a method such as deep etching. By observing the surface of this test piece with an electron microscope or the like, an enlarged photograph of TiB 2 aggregates is obtained. The equivalent circle diameter of each TiB 2 aggregate is calculated based on the projected area of the TiB 2 aggregate in the obtained enlarged photograph. By performing the above operation on a plurality of randomly selected TiB 2 aggregates and arithmetically averaging these circle-equivalent diameters, the average value of the circle-equivalent diameters of the TiB 2 aggregates can be obtained. The number of TiB 2 aggregates used in calculating the average value of the equivalent circle diameter may be, for example, three or more.
また、前記アルミニウム母相から露出させた状態における前記TiB2凝集体の円形度の平均値は0.20以上である。TiB2凝集体の円形度は、TiB2凝集体の形状が球に近いかどうかの指標となる値であり、円形度が1に近いほどTiB2凝集体が球に近い形状であることを意味する。
Further, the average value of the circularity of the TiB 2 aggregate in the state of being exposed from the aluminum matrix is 0.20 or more. Circularity of TiB 2 aggregates are values form of TiB 2 aggregates is indicative of whether nearly spherical, meaning that the circularity of a shape close TiB 2 aggregates the ball closer to 1 do.
前記アルミニウム合金鋳塊の鋳造過程においては、通常、溶湯中に種々の形状を有するTiB2凝集体が形成される。そして、溶湯中のTiB2凝集体は、円形度が大きく、球に近い形状を有するほど、異質核として機能しやすい性質を有している。従って、TiB2凝集体の円形度の平均値を0.20以上とすることにより、鋳造時に形成されるTiB2凝集体のうち異質核として機能し得るTiB2凝集体の割合を高くすることができる。
In the casting process of the aluminum alloy ingot, TiB 2 aggregates having various shapes are usually formed in the molten metal. The TiB 2 aggregate in the molten metal has a property that the larger the circularity and the closer the shape is to a sphere, the easier it is to function as a heterogeneous nucleus. Therefore, TiB by an average value of circularity of 2 aggregates to 0.20 or more, is possible to increase the proportion of TiB 2 aggregates which can function as a heterogeneous nucleus of TiB 2 aggregates formed during casting can.
TiB2凝集体の円形度の平均値が0.20未満の場合、鋳造時に形成されるTiB2凝集体のうち異質核として機能し得るTiB2凝集体の割合が低くなりやすい。そのため、この場合には、アルミニウム母相の結晶粒の微細化が不十分となるおそれがある。
If the average value of circularity of TiB 2 agglomerates is less than 0.20, the ratio tends to be low and TiB 2 aggregates which can function as a heterogeneous nucleus of TiB 2 aggregates formed during casting. Therefore, in this case, the fineness of the crystal grains of the aluminum matrix may be insufficient.
TiB2凝集体による結晶粒の微細化の効果を高める観点からは、TiB2凝集体の円形度の平均値の上限は特に限定されることはないが、前記の態様の製造方法により形成されるTiB2凝集体の円形度の平均値は、通常、0.8以下となる。
TiB from the point of view of enhancing the effect of grain refinement by 2 aggregates, but are not limited particularly limit circularity of the mean value of TiB 2 aggregates, formed by the manufacturing method of the embodiment The average circularity of TiB 2 aggregates is usually 0.8 or less.
前述したTiB2凝集体の円形度の平均値は、具体的には、以下の方法により算出される値である。まず、円相当径の算出方法と同様にしてTiB2凝集体の拡大写真を取得する。個々のTiB2凝集体の円形度は、得られた拡大写真におけるTiB2凝集体の面積S[μm2]と、周長L[μm]とを用い、以下の式で表される。
円形度=4πS/L2 Specifically, the average value of the circularity of the TiB 2 aggregates described above is a value calculated by the following method. First, an enlarged photograph of the TiB 2 agglomerate is acquired in the same manner as in the calculation method of the equivalent circle diameter. Circularity of individual TiB 2 aggregates, the area of the TiB 2 aggregates in the obtained magnified photographs S [μm 2], using the circumferential length L [[mu] m], is expressed by the following equation.
Circularity = 4πS / L 2
円形度=4πS/L2 Specifically, the average value of the circularity of the TiB 2 aggregates described above is a value calculated by the following method. First, an enlarged photograph of the TiB 2 agglomerate is acquired in the same manner as in the calculation method of the equivalent circle diameter. Circularity of individual TiB 2 aggregates, the area of the TiB 2 aggregates in the obtained magnified photographs S [μm 2], using the circumferential length L [[mu] m], is expressed by the following equation.
Circularity = 4πS / L 2
以上の操作を無作為に選択した複数のTiB2凝集体について行い、これらの円形度を算術平均することにより、TiB2凝集体の円形度の平均値を得ることができる。円形度の平均値を算出する際に用いるTiB2凝集体の数は、例えば、3個以上であればよい。
By performing the above operation on a plurality of randomly selected TiB 2 aggregates and arithmetically averaging these circularities, the average value of the circularities of the TiB 2 aggregates can be obtained. The number of TiB 2 aggregates used in calculating the average value of circularity may be, for example, three or more.
また、前記アルミニウム合金鋳塊に含まれるTiB2凝集体の円相当径の平均値及び円形度の平均値をそれぞれ前記特定の範囲とすることにより、前述したそれぞれの作用効果に加え、結晶粒を微細化する効果を確保しつつ鋳造過程において添加する結晶粒微細化剤の量を低減することができる。
Further, by setting the average value of the equivalent circle diameter and the average value of the circularity of the TiB 2 agglomerates contained in the aluminum alloy ingot within the above-mentioned specific ranges, in addition to the above-mentioned respective effects, the crystal grains can be obtained. It is possible to reduce the amount of the grain refiner added in the casting process while ensuring the effect of miniaturization.
すなわち、前述したように、前記アルミニウム合金鋳塊の鋳造過程において、溶湯中に形成されるTiB2凝集体の円相当径の平均値を前記特定の範囲とすることにより、粗大なTiB2凝集体を低減し、溶湯中のTiB2凝集体の総数を多くすることができる。また、TiB2凝集体の円形度の平均値を前記特定の範囲とすることにより、溶湯中における、異質核として機能し得るTiB2凝集体の割合を高くすることができる。
That is, as described above, in the casting process of the aluminum alloy ingot, the average value of the equivalent circle diameters of the TiB 2 aggregates formed in the molten metal is set within the specific range, whereby the coarse TiB 2 aggregates are formed. Can be reduced and the total number of TiB 2 aggregates in the molten metal can be increased. Further, by setting the average value of the circularity of TiB 2 aggregates in the above-mentioned specific range, the ratio of TiB 2 aggregates capable of functioning as heterogeneous nuclei in the molten metal can be increased.
従って、前記アルミニウム合金鋳塊の鋳造過程において、TiB2凝集体の円相当径の平均値及び円形度の平均値を前記特定の範囲とすることにより、異質核として機能し得るTiB2凝集体の数を多くし、ひいてはアルミニウム母相の結晶粒を微細化する効果を高めることができる。
Therefore, in the casting process of the aluminum alloy ingot, by setting the average value of the equivalent circle diameter and the average value of the circularity of the TiB 2 aggregates in the specific range, the TiB 2 aggregates that can function as heterogeneous nuclei The number can be increased, and the effect of refining the crystal grains of the aluminum matrix can be enhanced.
以上のように、前記アルミニウム合金鋳塊に含まれるTiB2凝集体の円相当径の平均値及び円形度の平均値をそれぞれ前記特定の範囲とすることにより、円相当径の低減による効果と、円形度の上昇による効果とを相乗的に作用させることができる。その結果、前記アルミニウム合金鋳塊を作製する際に、結晶粒を微細化する効果を維持しつつ、従来よりも鋳造時に添加する結晶粒微細化剤の量を低減することができる。
As described above, by setting the average value of the equivalent circle diameter and the average value of the circularity of the TiB 2 aggregates contained in the aluminum alloy ingot within the specific ranges, the effect of reducing the equivalent circle diameter and the effect of reducing the equivalent circle diameter can be obtained. The effect of increasing the circularity can be synergistically acted. As a result, when producing the aluminum alloy ingot, the amount of the crystal grain refiner added at the time of casting can be reduced as compared with the conventional case while maintaining the effect of refining the crystal grains.
例えば、前記アルミニウム合金鋳塊中のTiB2凝集体の含有量は、ホウ素原子として0.0001質量%以上0.0010質量%以下とすることができる。
For example, the content of TiB 2 aggregates in the aluminum alloy ingot can be 0.0001% by mass or more and 0.0010% by mass or less as boron atoms.
前記アルミニウム合金鋳塊を製造するにあたっては、アルミニウム合金の溶湯中に結晶粒微細化剤を溶解させる溶解工程と、溶解工程の後、前記溶湯を鋳造する鋳造工程と、を備えた方法を採用することができる。
In producing the aluminum alloy ingot, a method including a melting step of dissolving a crystal grain micronizing agent in a molten aluminum alloy and a casting step of casting the molten metal after the melting step is adopted. be able to.
前記製造方法において、溶湯中に添加する結晶粒微細化剤は、アルミニウムからなる基体を有している。基体の形状は特に限定されることはなく、例えば、棒状や板状などの形状を有していてもよい。
In the above-mentioned production method, the crystal grain refiner added to the molten metal has a substrate made of aluminum. The shape of the substrate is not particularly limited, and may have a shape such as a rod shape or a plate shape, for example.
また、基体中には、TiB2粒子が含まれている。TiB2粒子は、基体中に分散しており、凝集していない状態で存在していてもよい。また、複数のTiB2粒子が凝集することにより、基体中にTiB2凝集体が形成されていてもよい。より具体的には、基体中の全てのTiB2粒子が凝集していない状態で存在していてもよいし、基体中の全てのTiB2粒子がTiB2凝集体の状態で存在していてもよい。さらに、基体中に、凝集していない状態のTiB2粒子と、TiB2凝集体との両方が存在していてもよい。
In addition, TiB 2 particles are contained in the substrate. The TiB 2 particles are dispersed in the substrate and may exist in a non-aggregated state. Further, TiB 2 agglomerates may be formed in the substrate by aggregating a plurality of TiB 2 particles. More specifically, all TiB 2 particles in the substrate may exist in a non-aggregated state, or all TiB 2 particles in the substrate may exist in a TiB 2 aggregate state. good. Further, both TiB 2 particles in a non-aggregated state and TiB 2 aggregates may be present in the substrate.
基体中のTiB2粒子の少なくとも一部は、溶解工程において結晶粒微細化剤が溶湯中に溶解した後に、溶湯中において凝集し、TiB2凝集体となる。また、基体中のTiB2凝集体は、溶解工程において結晶粒微細化剤が溶湯中に溶解した際に、凝集状態を保ったまま溶湯中に移行する。それ故、TiB2粒子を含む結晶粒微細化剤をアルミニウム溶湯中に溶解させることにより、溶湯中にTiB2凝集体を形成することができる。
At least a part of the TiB 2 particles in the substrate dissolves in the molten metal in the dissolution step, and then aggregates in the molten metal to become TiB 2 aggregates. Further, when the grain refiner is dissolved in the molten metal in the dissolution step, the TiB 2 aggregates in the substrate move into the molten metal while maintaining the aggregated state. Therefore, the grain refiner containing TiB 2 particles by dissolving in molten aluminum, can be formed TiB 2 aggregates in the molten metal.
前記溶解工程においては、例えば、以下のいずれかの態様の結晶粒微細化剤を溶湯中に溶解させることができる。すなわち、結晶粒微細化剤の第一の態様においては、前記結晶粒微細化剤の任意の断面における、隣り合う前記TiB2粒子の中心間距離の平均値は0.60μm以上である。結晶粒微細化剤中のTiB2粒子の中心間距離を前記特定の範囲とすることにより、溶湯中に結晶粒微細化剤を溶解した際のTiB2粒子の凝集やTiB2凝集体の成長を抑制することができる。その結果、溶湯中に形成されるTiB2凝集体の円相当径の平均値及び円形度の平均値を容易に前記特定の範囲とすることができる。
In the dissolution step, for example, the crystal grain refiner of any of the following aspects can be dissolved in the molten metal. That is, in the first aspect of the crystal grain refiner, the average value of the distances between the centers of the adjacent TiB 2 particles in an arbitrary cross section of the crystal grain refiner is 0.60 μm or more. By setting the distance between the centers of the TiB 2 particles in the grain refiner within the above-mentioned specific range, the aggregation of TiB 2 particles and the growth of TiB 2 aggregates when the grain refiner is dissolved in the molten metal can be prevented. It can be suppressed. As a result, the average value of the equivalent circle diameter and the average value of the circularity of the TiB 2 aggregates formed in the molten metal can be easily set in the specific range.
隣り合うTiB2粒子の中心間距離の平均値が0.60μmよりも短い場合、溶湯中に結晶粒微細化剤を溶解した際に、TiB2粒子同士が凝集しやすくなる。その結果、溶湯中に粗大なTiB2凝集体が形成されやすくなり、結晶粒を微細化する効果の低下や、展伸加工時における線状欠陥の発生頻度の上昇を招くおそれがある。
When the average value of the distance between the centers of adjacent TiB 2 particles is shorter than 0.60 μm, the TiB 2 particles are likely to aggregate with each other when the crystal grain refiner is dissolved in the molten metal. As a result, coarse TiB 2 aggregates are likely to be formed in the molten metal, which may reduce the effect of refining the crystal grains and increase the frequency of occurrence of linear defects during wrought processing.
なお、前述したTiB2粒子の中心間距離の平均値は、以下の方法により算出される値である。まず、結晶粒微細化剤を切断し、切断面を露出させる。電子顕微鏡などを用いてこの切断面を観察し、切断面の拡大写真を取得する。得られた拡大写真において、拡大写真中に存在する各TiB2粒子の重心を決定する。なお、拡大写真中に存在するTiB2粒子には、分散していない状態で存在しているTiB2粒子と、TiB2凝集体の一部となっているTiB2粒子との両方が含まれる。
The average value of the distances between the centers of the TiB 2 particles described above is a value calculated by the following method. First, the grain refiner is cut to expose the cut surface. Observe this cut surface using an electron microscope or the like, and obtain an enlarged photograph of the cut surface. In the obtained magnified photograph, the center of gravity of each TiB 2 particle present in the magnified photograph is determined. Note that the TiB 2 particles present in the enlarged photograph, and TiB 2 particles are present in a state which is not dispersed, include both the TiB 2 particles that are part of the TiB 2 aggregates.
次に、拡大写真中に存在するTiB2粒子の中から、中心間距離の計測対象となるTiB2粒子を決定する。そして、計測対象のTiB2粒子と、計測対象のTiB2粒子に最も近いTiB2粒子との重心間の距離を計測し、この値を計測対象のTiB2粒子の中心間距離とする。以上の操作を、拡大写真中に存在するすべてのTiB2粒子について行い、得られた中心間距離の算術平均値をTiB2粒子の中心間距離の平均値とする。
Next, the TiB 2 particles to be measured for the center-to-center distance are determined from the TiB 2 particles existing in the enlarged photograph. Then, the TiB 2 particles to be measured, the distance between the centroid and the nearest TiB 2 particles TiB 2 particles to be measured is measured and the value as the distance between the centers of the TiB 2 particles to be measured. The above operation is performed for all TiB 2 particles existing in the enlarged photograph, and the arithmetic mean value of the obtained center-to-center distance is taken as the average value of the center-to-center distance of the TiB 2 particles.
結晶粒微細化剤の第二の態様においては、結晶粒微細化剤中のTiB2凝集体は、2000個以上のTiB2凝集体の、基体から露出させた状態における投影面積を測定した場合に、95パーセンタイル以上の投影面積を有するTiB2凝集体の円相当径の平均値が3.0μm以下となる粒度分布を有している。TiB2凝集体を含む結晶粒微細化剤においては、円相当径の大きいTiB2凝集体がアルミニウム溶湯中の異質核として有効に機能する。
In the second aspect of the grain refiner, the TiB 2 aggregates in the grain refiner are measured in the projected area of 2000 or more TiB 2 aggregates in a state of being exposed from the substrate. , The TiB 2 aggregate having a projected area of 95th percentile or more has a particle size distribution in which the average value of the equivalent circle diameter is 3.0 μm or less. In grain refiner containing TiB 2 agglomerates large TiB 2 aggregates of equivalent circle diameter to function effectively as a heterogeneous nuclei in molten aluminum.
しかし、結晶粒微細化剤中のTiB2凝集体の円相当径が過度に大きくなると、結晶粒微細化剤をアルミニウム溶湯中に溶解させた際に、アルミニウム溶湯中に粗大なTiB2凝集体が混入しやすい。その結果、鋳造後のアルミニウム合金鋳塊に展伸加工を施した際に、粗大なTiB2凝集体に由来する線状欠陥が発生しやすくなるおそれがある。
However, if the equivalent circle diameter of the TiB 2 aggregates in the grain refiner becomes excessively large, when the grain refiner is dissolved in the molten aluminum, coarse TiB 2 aggregates are formed in the molten aluminum. Easy to mix. As a result, when the cast aluminum alloy ingot is stretched, linear defects due to coarse TiB 2 aggregates may easily occur.
そこで、結晶粒微細化剤中のTiB2凝集体の粒径分布を前記特定の態様とすることにより、結晶粒微細化剤中に粗大なTiB2凝集体が含まれる可能性を低くすることができ、ひいては粗大なTiB2凝集体の溶湯への混入を抑制することができる。その結果、溶湯中に形成されるTiB2凝集体の円相当径の平均値及び円形度の平均値を容易に前記特定の範囲とすることができる。
Therefore, by setting the particle size distribution of the TiB 2 aggregates in the grain refiner to the above-mentioned specific embodiment, it is possible to reduce the possibility that the coarse TiB 2 aggregates are contained in the grain refiner. As a result, it is possible to suppress the mixing of coarse TiB 2 aggregates into the molten metal. As a result, the average value of the equivalent circle diameter and the average value of the circularity of the TiB 2 aggregates formed in the molten metal can be easily set in the specific range.
95パーセンタイル以上の投影面積を有するTiB2凝集体の円相当径の平均値が3.0μmよりも大きい場合、結晶粒微細化剤中に粗大なTiB2凝集体が含まれる可能性が高くなる。そのため、溶湯中に結晶粒微細化剤を溶解した際に、粗大なTiB2凝集体が溶湯中に混入しやすくなり、結晶粒を微細化する効果の低下や、展伸加工時における線状欠陥の発生頻度の上昇を招くおそれがある。
When the average value of the equivalent circle diameters of TiB 2 aggregates having a projected area of the 95th percentile or more is larger than 3.0 μm, there is a high possibility that coarse TiB 2 aggregates are contained in the grain refiner. Therefore, when the crystal grain micronizing agent is dissolved in the molten metal, coarse TiB 2 aggregates are likely to be mixed in the molten metal, which reduces the effect of refining the crystal grains and causes linear defects during wrought processing. May increase the frequency of occurrence of.
なお、前述したTiB2凝集体の円相当径の平均値は、以下の方法により算出される値である。まず、結晶粒微細化剤を切断し、切断面を露出させる。結晶粒微細化剤の切断方向は特に限定されることはない。例えば、結晶粒微細化剤が棒状である場合には、結晶粒微細化剤を、その中心を通り、長手方向に垂直な面で切断すればよい。
The average value of the circle-equivalent diameters of the TiB 2 aggregates described above is a value calculated by the following method. First, the grain refiner is cut to expose the cut surface. The cutting direction of the crystal grain refiner is not particularly limited. For example, when the grain refiner is rod-shaped, the grain refiner may be cut along a plane perpendicular to the longitudinal direction through the center thereof.
次に、結晶粒微細化剤の切断面を研磨した後、基体におけるTiB2凝集体の周辺部分を除去することによりTiB2凝集体を基体から露出させる。基体の除去方法としては、例えば、ディープエッチングなどの方法を用いることができる。
Next, after polishing the cut surface of the crystal grain refiner, the TiB 2 aggregate is exposed from the substrate by removing the peripheral portion of the TiB 2 aggregate in the substrate. As a method for removing the substrate, for example, a method such as deep etching can be used.
次いで、電子顕微鏡などを用いて基体から露出させたTiB2凝集体を観察し、TiB2凝集体の拡大写真を取得する。この拡大写真におけるTiB2凝集体の面積を各TiB2凝集体の投影面積とする。なお、TiB2凝集体の投影面積の算出及び円相当径の算出には、画像解析装置などを使用することができる。
Next, the TiB 2 aggregates exposed from the substrate are observed using an electron microscope or the like, and an enlarged photograph of the TiB 2 aggregates is obtained. The area of TiB 2 aggregates in this enlarged photograph is taken as the projected area of each TiB 2 aggregate. An image analysis device or the like can be used to calculate the projected area of the TiB 2 aggregate and the equivalent diameter of the circle.
以上の操作を、結晶粒微細化剤の切断面に存在するTiB2凝集体から無作為に選択した2000個以上のTiB2凝集体について行う。このようにして得られたTiB2凝集体の投影面積に基づいて、投影面積の95パーセンタイルを算出する。なお、パーセンタイルとは、複数の数値を値の小さい数値から値の大きい数値の順に並べた場合に、値の小さい数値から数えた数値の個数が数値の総数に対して所望の百分率となる数値である。このような数値がない場合には、値の小さい数値から数えた数値の個数が数値の総数に対して所望の百分率未満となる値のうち最も大きい値をパーセンタイルとする。より具体的には、投影面積の95パーセンタイルとは、95パーセンタイル以上の投影面積を有するTiB2凝集体の個数が、投影面積を測定したTiB2凝集体の総数の5%となる値である。
The above operation is performed on 2000 or more TiB 2 aggregates randomly selected from the TiB 2 aggregates present on the cut surface of the grain refiner. Based on the projected area of the TiB 2 aggregate thus obtained, the 95th percentile of the projected area is calculated. The percentile is a numerical value in which, when a plurality of numerical values are arranged in order from a numerical value having a small value to a numerical value having a large value, the number of numerical values counted from the numerical value having a small value becomes a desired percentage of the total number of numerical values. be. When there is no such numerical value, the largest value among the values in which the number of numerical values counted from the smallest numerical value is less than the desired percentage with respect to the total number of numerical values is defined as the percentile. More specifically, the 95th percentile of the projected area is a value in which the number of TiB 2 aggregates having a projected area of the 95th percentile or more is 5% of the total number of TiB 2 aggregates whose projected area is measured.
以上のようにして投影面積の95パーセンタイルを決定した後、95パーセンタイル以上の投影面積を有するTiB2凝集体の円相当径を算出する。なお、円相当径は、TiB2凝集体の投影面積と等しい面積を有する円の直径である。そして、得られたTiB2凝集体の円相当径を算術平均することにより、95パーセンタイル以上の投影面積を有するTiB2凝集体の円相当径の平均値を得ることができる。
After determining the 95th percentile of the projected area as described above, the equivalent circle diameter of the TiB 2 aggregate having the projected area of the 95th percentile or more is calculated. The equivalent circle diameter is the diameter of a circle having an area equal to the projected area of the TiB 2 aggregate. Then, by the arithmetic mean of circle-equivalent diameter of the resulting TiB 2 aggregates, it is possible to obtain an average value of equivalent circle diameter of TiB 2 agglomerates having a projected area of more than 95 percentile.
結晶粒微細化剤中のTiB2粒子の含有量は、例えば、0.5質量%以上3.2質量%以下とすることができる。この場合には、隣り合うTiB2粒子の中心間距離の平均値が長くなりやすくなる。その結果、溶湯中に結晶粒微細化剤を溶解した際のTiB2粒子の凝集を抑制する効果をより確実に奏することができる。
The content of TiB 2 particles in the grain refiner can be, for example, 0.5% by mass or more and 3.2% by mass or less. In this case, the average value of the distances between the centers of adjacent TiB 2 particles tends to be long. As a result, the effect of suppressing the aggregation of TiB 2 particles when the crystal grain refiner is dissolved in the molten metal can be more reliably achieved.
前記製造方法においては、所望の化学成分を有するアルミニウム合金の溶湯中に、前記結晶粒微細化剤を溶解させる。この際、必要に応じて溶湯を攪拌し、結晶粒微細化剤中のTiB2粒子を溶湯中に均一に分散させてもよい。
In the production method, the grain refiner is dissolved in a molten aluminum alloy having a desired chemical composition. At this time, if necessary, the molten metal may be agitated to uniformly disperse the TiB 2 particles in the grain refiner in the molten metal.
前記製造方法においては、溶湯中に結晶粒微細化剤を溶解させた後、溶湯を鋳造することによりアルミニウム合金鋳塊を作製することができる。鋳造方法は特に限定されることはなく、例えば、半連続鋳造や連続鋳造等の方法を採用することができる。これらの方法により作製したアルミニウム合金鋳塊は、圧延板や押出材などの展伸材の作製に用いることができる。また、前述したアルミニウム合金の溶湯を、金型や砂型に注湯した後冷却することにより、所望の製品形状または製品形状に近い形状を備えた鋳塊を得ることもできる。
In the above-mentioned production method, an aluminum alloy ingot can be produced by dissolving a crystal grain refiner in a molten metal and then casting the molten metal. The casting method is not particularly limited, and for example, a method such as semi-continuous casting or continuous casting can be adopted. The aluminum alloy ingots produced by these methods can be used for producing wrought materials such as rolled plates and extruded materials. Further, by pouring the above-mentioned molten aluminum alloy into a mold or sand mold and then cooling the molten metal, it is possible to obtain an ingot having a desired product shape or a shape close to the product shape.
前記製造方法においては、溶湯中に結晶粒微細化剤を溶解させた後、30分以内に溶湯を鋳造することが好ましい。TiB2粒子は、溶湯に比べて比重が大きい。そのため、溶湯中に結晶粒微細化剤を溶解させた時点からの経過時間が長くなると、TiB2粒子が自重によって沈降し、るつぼの下部においてTiB2粒子の凝集が起こりやすくなる。その結果、粗大なTiB2凝集体が形成されやすくなるおそれがある。溶湯中に結晶粒微細化剤を溶解させた時点から鋳造するまでの時間を30分以内とすることにより、かかる問題をより容易に回避することができる。
In the above-mentioned production method, it is preferable to cast the molten metal within 30 minutes after dissolving the crystal grain refiner in the molten metal. TiB 2 particles have a higher specific density than molten metal. Therefore, when the elapsed time from the time of dissolving the grain refiner in the melt is prolonged, it precipitated TiB 2 particles by the weight, the aggregation of TiB 2 particles is likely to occur at the bottom of the crucible. As a result, coarse TiB 2 aggregates may be easily formed. By setting the time from the time when the crystal grain refiner is dissolved in the molten metal to casting within 30 minutes, such a problem can be more easily avoided.
なお、前述したアルミニウム合金鋳塊及びその製造方法は、別の観点から見れば、TiB2粒子の分散状態を特定した結晶粒微細化剤の発明として把握することも可能である。
すなわち、結晶粒微細化剤の第一の態様は、
アルミニウムからなる基体と、
前記基体中に存在するTiB2粒子と、を有しており、
任意の断面における隣り合う前記TiB2粒子の中心間距離の平均値が0.60μm以上である。 From another point of view, the above-mentioned aluminum alloy ingot and the method for producing the same can be grasped as an invention of a grain refiner that specifies the dispersed state of TiB 2 particles.
That is, the first aspect of the grain refiner is
A substrate made of aluminum and
It has TiB 2 particles existing in the substrate, and has
The average value of the distance between the centers of the adjacent TiB 2 particles in an arbitrary cross section is 0.60 μm or more.
すなわち、結晶粒微細化剤の第一の態様は、
アルミニウムからなる基体と、
前記基体中に存在するTiB2粒子と、を有しており、
任意の断面における隣り合う前記TiB2粒子の中心間距離の平均値が0.60μm以上である。 From another point of view, the above-mentioned aluminum alloy ingot and the method for producing the same can be grasped as an invention of a grain refiner that specifies the dispersed state of TiB 2 particles.
That is, the first aspect of the grain refiner is
A substrate made of aluminum and
It has TiB 2 particles existing in the substrate, and has
The average value of the distance between the centers of the adjacent TiB 2 particles in an arbitrary cross section is 0.60 μm or more.
また、結晶粒微細化剤の第二の態様は、
アルミニウムからなる基体と、
TiB2粒子が凝集してなり、前記基体中に存在するTiB2凝集体と、を有しており、
前記TiB2凝集体は、2000個以上の前記TiB2凝集体の、前記基体から露出させた状態における投影面積を測定した場合に、95パーセンタイル以上の投影面積を有するTiB2凝集体の円相当径の平均値が3.0μm以下となる粒度分布を有している。 The second aspect of the grain refiner is
A substrate made of aluminum and
TiB 2 particles are agglomerated and have TiB 2 agglomerates existing in the substrate.
The TiB 2 agglomerates of 2000 or more of the TiB 2 aggregates, when measuring the projected area in the state of being exposed from the substrate, the circle equivalent diameter of TiB 2 agglomerates having a projected area of more than 95 percentile Has a particle size distribution in which the average value of is 3.0 μm or less.
アルミニウムからなる基体と、
TiB2粒子が凝集してなり、前記基体中に存在するTiB2凝集体と、を有しており、
前記TiB2凝集体は、2000個以上の前記TiB2凝集体の、前記基体から露出させた状態における投影面積を測定した場合に、95パーセンタイル以上の投影面積を有するTiB2凝集体の円相当径の平均値が3.0μm以下となる粒度分布を有している。 The second aspect of the grain refiner is
A substrate made of aluminum and
TiB 2 particles are agglomerated and have TiB 2 agglomerates existing in the substrate.
The TiB 2 agglomerates of 2000 or more of the TiB 2 aggregates, when measuring the projected area in the state of being exposed from the substrate, the circle equivalent diameter of TiB 2 agglomerates having a projected area of more than 95 percentile Has a particle size distribution in which the average value of is 3.0 μm or less.
かかる結晶粒微細化剤は、例えば、以下の製造方法により作製可能と推定される。
すなわち、前記結晶粒微細化剤の製造方法においては、基体となるアルミニウムの溶湯を準備し、
前記溶湯中にTiB2粒子を不活性ガスとともに吹き込むことにより、前記溶湯中に前記TiB2粒子を分散させ、
その後、前記溶湯を凝固させる。以上により、前記結晶粒微細化剤を得ることができる。 It is presumed that such a grain refiner can be produced by, for example, the following production method.
That is, in the method for producing the crystal grain refiner, a molten aluminum as a substrate is prepared.
By blowing TiB 2 particles into the molten metal together with an inert gas, the TiB 2 particles are dispersed in the molten metal.
Then, the molten metal is coagulated. From the above, the crystal grain refiner can be obtained.
すなわち、前記結晶粒微細化剤の製造方法においては、基体となるアルミニウムの溶湯を準備し、
前記溶湯中にTiB2粒子を不活性ガスとともに吹き込むことにより、前記溶湯中に前記TiB2粒子を分散させ、
その後、前記溶湯を凝固させる。以上により、前記結晶粒微細化剤を得ることができる。 It is presumed that such a grain refiner can be produced by, for example, the following production method.
That is, in the method for producing the crystal grain refiner, a molten aluminum as a substrate is prepared.
By blowing TiB 2 particles into the molten metal together with an inert gas, the TiB 2 particles are dispersed in the molten metal.
Then, the molten metal is coagulated. From the above, the crystal grain refiner can be obtained.
溶湯中に吹き込むTiB2粒子としては、粒度分布の幅が狭いTiB2粒子を使用することが好ましく、粒径の標準偏差が0.5μm以下であるTiB2粒子を使用することがより好ましい。また、不活性ガスとしては、例えば窒素ガスやアルゴンガスなどを使用することができる。なお、TiB2粒子の粒径の標準偏差は、体積基準における粒径分布に基づいて算出される値である。TiB2粒子の体積基準における粒径分布の取得には、具体的には、レーザー回折式粒度分布測定装置を用いることができる。
As the TiB 2 particles to be blown into the molten metal, it is preferable to use TiB 2 particles having a narrow particle size distribution width, and it is more preferable to use TiB 2 particles having a standard deviation of particle size of 0.5 μm or less. Further, as the inert gas, for example, nitrogen gas, argon gas or the like can be used. The standard deviation of the particle size of TiB 2 particles is a value calculated based on the particle size distribution on a volume basis. Specifically, a laser diffraction type particle size distribution measuring device can be used to obtain the particle size distribution based on the volume of TiB 2 particles.
前記アルミニウム合金鋳塊及びその製造方法の実施例を以下に説明する。なお、本発明に係るアルミニウム合金鋳塊及びその製造方法の具体的な態様は、実施例の態様に限定されるものではなく、本発明の趣旨を損なわない範囲において適宜構成を変更することができる。
Examples of the aluminum alloy ingot and its manufacturing method will be described below. The specific aspects of the aluminum alloy ingot and the method for producing the same according to the present invention are not limited to the embodiments of the examples, and the configuration can be appropriately changed as long as the gist of the present invention is not impaired. ..
(実施例1、2及び比較例1、2)
実施例1、2及び比較例1、2は、純アルミニウムからなるアルミニウム合金鋳塊の例である。これらの例においては、まず、純度99.7質量%のアルミニウム地金を溶解して溶湯を準備する。溶湯の温度を718℃にしたのち、溶湯中に、アルミニウムからなる基体中にTiB2粒子が分散している結晶粒微細化剤を、ホウ素原子として10質量ppmとなるように添加する。 (Examples 1 and 2 and Comparative Examples 1 and 2)
Examples 1 and 2 and Comparative Examples 1 and 2 are examples of aluminum alloy ingots made of pure aluminum. In these examples, first, a molten metal is prepared by melting an aluminum bullion having a purity of 99.7% by mass. After the temperature of the molten metal is adjusted to 718 ° C., a grain refiner in which TiB 2 particles are dispersed in a substrate made of aluminum is added to the molten metal so as to have a boron atom of 10 mass ppm.
実施例1、2及び比較例1、2は、純アルミニウムからなるアルミニウム合金鋳塊の例である。これらの例においては、まず、純度99.7質量%のアルミニウム地金を溶解して溶湯を準備する。溶湯の温度を718℃にしたのち、溶湯中に、アルミニウムからなる基体中にTiB2粒子が分散している結晶粒微細化剤を、ホウ素原子として10質量ppmとなるように添加する。 (Examples 1 and 2 and Comparative Examples 1 and 2)
Examples 1 and 2 and Comparative Examples 1 and 2 are examples of aluminum alloy ingots made of pure aluminum. In these examples, first, a molten metal is prepared by melting an aluminum bullion having a purity of 99.7% by mass. After the temperature of the molten metal is adjusted to 718 ° C., a grain refiner in which TiB 2 particles are dispersed in a substrate made of aluminum is added to the molten metal so as to have a boron atom of 10 mass ppm.
本例で用いる結晶粒微細化剤は、具体的には、Ti:1.0質量%以上5.5質量%以下、B:0.1質量%以上1.5質量%以下を含有し、残部がAl及び不可避的不純物からなる化学成分を有するとともに、アルミニウムからなる基体と、基体中に存在しているTiB2粒子とを有している。TiB2粒子の一部は凝集していない状態で存在しており、残部はTiB2凝集体を構成している。
Specifically, the grain refiner used in this example contains Ti: 1.0% by mass or more and 5.5% by mass or less, B: 0.1% by mass or more and 1.5% by mass or less, and the balance. Has a chemical component consisting of Al and unavoidable impurities, and also has a substrate made of aluminum and TiB 2 particles present in the substrate. Some of the TiB 2 particles exist in a non-aggregated state, and the rest constitute TiB 2 aggregates.
本例の結晶粒微細化剤の任意の断面における、隣り合うTiB2粒子の中心間距離は表1に示す値である。また、結晶粒微細化剤中のTiB2凝集体は、2000個以上のTiB2凝集体の、基体から露出させた状態における投影面積を測定した場合に、95パーセンタイル以上の投影面積を有するTiB2凝集体の円相当径の平均値が表1に示す値となる粒度分布を有している。
The distance between the centers of adjacent TiB 2 particles in an arbitrary cross section of the grain refiner of this example is the value shown in Table 1. Further, TiB 2 aggregates in grain refining agent, when measuring the projected area in the state of exposing the 2000 or more TiB 2 aggregates, from the substrate, TiB 2 having the projected area of more than 95 percentile It has a particle size distribution in which the average value of the equivalent circle diameters of the aggregates is the value shown in Table 1.
溶湯中に結晶粒微細化剤を添加した後、溶湯の温度を718℃に保持した状態で黒鉛棒を用いて溶湯を30秒間攪拌し、結晶粒微細化剤を十分に溶解させる。また、結晶粒微細化剤を添加した時点から9分15秒経過した時点で、再び黒鉛棒を用いて溶湯を15秒間攪拌する。
After adding the grain refiner to the molten metal, the molten metal is stirred for 30 seconds using a graphite rod while the temperature of the molten metal is maintained at 718 ° C. to sufficiently dissolve the grain refiner. Further, when 9 minutes and 15 seconds have passed from the time when the crystal grain refiner was added, the molten metal is stirred again using the graphite rod for 15 seconds.
2回目の攪拌が完了した後、AA-TP1規格に準じた鉄製の柄杓を溶湯中に浸漬し、柄杓のカップ部分を溶湯で満たす。そして、結晶粒微細化剤を添加した時点から10分経過した時点で柄杓を溶湯から引き上げ、カップ部分に溶湯を汲み取る。その後、AA-TP1規格に準じた水冷装置を用いて柄杓のカップ部分を冷却し、溶湯を凝固させる。以上により、実施例1、2及び比較例1、2のアルミニウム合金鋳塊が得られる。これらのアルミニウム合金鋳塊は、いずれも円錐台状を呈している。
After the second stirring is completed, an iron cassotte conforming to the AA-TP1 standard is immersed in the molten metal, and the cup portion of the cassotte is filled with the molten metal. Then, 10 minutes after the addition of the grain refiner, the cassotte is pulled out of the molten metal and the molten metal is pumped into the cup portion. Then, the cup portion of the cassotte is cooled using a water cooling device conforming to the AA-TP1 standard to solidify the molten metal. From the above, the aluminum alloy ingots of Examples 1 and 2 and Comparative Examples 1 and 2 can be obtained. All of these aluminum alloy ingots have a truncated cone shape.
実施例1、2及び比較例1、2のアルミニウム合金鋳塊における、TiB2凝集体の円相当径の平均値及び円形度の平均値の算出方法は、以下のとおりである。表1に、実施例1、2及び比較例1、2のアルミニウム合金鋳塊におけるこれらの値を示す。
The calculation method of the average value of the equivalent circle diameter and the average value of the circularity of the TiB 2 aggregates in the aluminum alloy ingots of Examples 1 and 2 and Comparative Examples 1 and 2 is as follows. Table 1 shows these values in the aluminum alloy ingots of Examples 1 and 2 and Comparative Examples 1 and 2.
・TiB2凝集体の円相当径の平均値及び円形度の平均値
アルミニウム合金鋳塊における円形の端面のうち、直径の小さい面(つまり、柄杓の底面に接していた面)からの高さが38mmとなる断面でアルミニウム合金鋳塊を切断し、切断面を露出させる。この切断面を研磨した後、ディープエッチングを施すことにより、アルミニウム母相を除去してTiB2凝集体全体を露出させる。 -Average value of equivalent circle diameter and average value of circularity of TiB 2 agglomerates The height from the surface with the smaller diameter (that is, the surface in contact with the bottom surface of the cassotte) of the circular end faces of the aluminum alloy ingot An aluminum alloy ingot is cut with a cross section of 38 mm to expose the cut surface. After polishing this cut surface, deep etching is performed to remove the aluminum matrix and expose the entire TiB 2 aggregate.
アルミニウム合金鋳塊における円形の端面のうち、直径の小さい面(つまり、柄杓の底面に接していた面)からの高さが38mmとなる断面でアルミニウム合金鋳塊を切断し、切断面を露出させる。この切断面を研磨した後、ディープエッチングを施すことにより、アルミニウム母相を除去してTiB2凝集体全体を露出させる。 -Average value of equivalent circle diameter and average value of circularity of TiB 2 agglomerates The height from the surface with the smaller diameter (that is, the surface in contact with the bottom surface of the cassotte) of the circular end faces of the aluminum alloy ingot An aluminum alloy ingot is cut with a cross section of 38 mm to expose the cut surface. After polishing this cut surface, deep etching is performed to remove the aluminum matrix and expose the entire TiB 2 aggregate.
次いで、電子顕微鏡を用いてTiB2凝集体の拡大写真を取得する。一例として、図1に実施例1のアルミニウム合金鋳塊に含まれるTiB2凝集体の拡大写真を示し、図2に比較例2のアルミニウム合金鋳塊に含まれるTiB2凝集体の拡大写真を示す。図1及び図2に示すように、アルミニウム母相1中のTiB2凝集体2は、多数のTiB2粒子3が凝集した塊状を呈している。
Then, an electron microscope is used to obtain a magnified photograph of the TiB 2 aggregate. As an example, FIG. 1 shows an enlarged photograph of the TiB 2 agglomerate contained in the aluminum alloy ingot of Example 1, and FIG. 2 shows an enlarged photograph of the TiB 2 agglomerate contained in the aluminum alloy ingot of Comparative Example 2. .. As shown in FIGS. 1 and 2, the TiB 2 agglomerates 2 in the aluminum matrix 1 are in the form of agglomerates in which a large number of TiB 2 particles 3 are agglomerated.
画像解析ソフトを用い、拡大写真におけるTiB2凝集体2の面積を算出し、次いでTiB2凝集体2の面積に基づいて個々のTiB2凝集体の円相当径を算出する。以上の操作を無作為に選択した8個のTiB2凝集体について行い、これらの円相当径を算術平均した値をTiB2凝集体の円相当径の平均値とする。表1に、各アルミニウム合金鋳塊におけるTiB2凝集体の円相当径の平均値を示す。
Using image analysis software to calculate the area of the TiB 2 aggregates 2 in enlarged photograph, then calculates the equivalent circle diameter of each of TiB 2 aggregate based on the area of the TiB 2 aggregates 2. The above operation is performed on eight randomly selected TiB 2 aggregates, and the arithmetic mean value of these circle-equivalent diameters is taken as the average value of the circle-equivalent diameters of the TiB 2 aggregates. Table 1 shows the average value of the equivalent circle diameters of TiB 2 aggregates in each aluminum alloy ingot.
また、画像解析ソフトを用い、前述した拡大写真におけるTiB2凝集体2の周長、つまり、輪郭の長さを算出する。そして、TiB2凝集体2の面積と周長とから個々のTiB2凝集体の円形度を算出する。以上の操作を無作為に選択した3個以上のTiB2凝集体について行い、これらの円形度を算術平均した値をTiB2凝集体の円形度の平均値とする。表1に、各アルミニウム合金鋳塊におけるTiB2凝集体の円形度の平均値を示す。
Further, using image analysis software, the circumference of the TiB 2 aggregate 2 in the above-mentioned enlarged photograph, that is, the length of the contour is calculated. Then, to calculate the circularity of each TiB 2 agglomerates from the perimeter to the area of the TiB 2 aggregates 2. The above operation is performed on three or more randomly selected TiB 2 aggregates, and the arithmetic mean value of these circularities is taken as the average value of the circularity of the TiB 2 aggregates. Table 1 shows the average value of the circularity of TiB 2 aggregates in each aluminum alloy ingot.
(実施例3)
実施例3は、A3000系合金からなるアルミニウム合金鋳塊の例である。実施例3においては、まず、加熱炉を用いてA3000系合金からなる溶湯を準備した後、溶湯中に、ホウ素原子として10質量ppmとなるように結晶粒微細化剤を添加する。本例において用いる結晶粒微細化剤は、Ti:5.0質量%、B:1.0質量%を含有し、残部がAl及び不可避的不純物からなる化学成分を有している点、結晶粒微細化剤の任意の断面における、隣り合うTiB2粒子の中心間距離が表1に示す値である点、及び95パーセンタイル以上の投影面積を有するTiB2凝集体の円相当径の平均値が表1に示す値となる点以外は、実施例1と同様である。 (Example 3)
Example 3 is an example of an aluminum alloy ingot made of an A3000 series alloy. In Example 3, first, a molten metal made of an A3000 series alloy is prepared using a heating furnace, and then a grain refiner is added to the molten metal so as to have 10 mass ppm of boron atoms. The crystal grain refiner used in this example contains Ti: 5.0% by mass and B: 1.0% by mass, and the balance has a chemical component consisting of Al and unavoidable impurities. Table 1 shows the values shown in Table 1 for the distance between the centers of adjacent TiB 2 particles in any cross section of the micronizing agent, and the average value of the equivalent circle diameters of TiB 2 aggregates having a projected area of 95th percentile or more. It is the same as that of the first embodiment except that the value is shown in 1.
実施例3は、A3000系合金からなるアルミニウム合金鋳塊の例である。実施例3においては、まず、加熱炉を用いてA3000系合金からなる溶湯を準備した後、溶湯中に、ホウ素原子として10質量ppmとなるように結晶粒微細化剤を添加する。本例において用いる結晶粒微細化剤は、Ti:5.0質量%、B:1.0質量%を含有し、残部がAl及び不可避的不純物からなる化学成分を有している点、結晶粒微細化剤の任意の断面における、隣り合うTiB2粒子の中心間距離が表1に示す値である点、及び95パーセンタイル以上の投影面積を有するTiB2凝集体の円相当径の平均値が表1に示す値となる点以外は、実施例1と同様である。 (Example 3)
Example 3 is an example of an aluminum alloy ingot made of an A3000 series alloy. In Example 3, first, a molten metal made of an A3000 series alloy is prepared using a heating furnace, and then a grain refiner is added to the molten metal so as to have 10 mass ppm of boron atoms. The crystal grain refiner used in this example contains Ti: 5.0% by mass and B: 1.0% by mass, and the balance has a chemical component consisting of Al and unavoidable impurities. Table 1 shows the values shown in Table 1 for the distance between the centers of adjacent TiB 2 particles in any cross section of the micronizing agent, and the average value of the equivalent circle diameters of TiB 2 aggregates having a projected area of 95th percentile or more. It is the same as that of the first embodiment except that the value is shown in 1.
溶湯中に結晶粒微細化剤を添加した後、黒鉛棒を用いて溶湯を30秒間攪拌する。その後、DC鋳造法によって溶湯を鋳造する。以上により、実施例3のアルミニウム合金鋳塊が得られる。実施例3のアルミニウム合金鋳塊は直方体状を呈している。
After adding the grain refiner to the molten metal, the molten metal is stirred for 30 seconds using a graphite rod. Then, the molten metal is cast by the DC casting method. From the above, the aluminum alloy ingot of Example 3 is obtained. The aluminum alloy ingot of Example 3 has a rectangular parallelepiped shape.
(実施例4)
実施例4は、A1000系アルミニウムからなるアルミニウム合金鋳塊の例である。実施例4においては、加熱炉を用いてA1000系アルミニウムからなる溶湯を準備した以外は、実施例3と同様の方法によりアルミニウム合金の溶湯を鋳造する。これにより、実施例4のアルミニウム合金鋳塊が得られる。実施例4のアルミニウム合金鋳塊は、実施例3と同様に直方体状を呈している。 (Example 4)
Example 4 is an example of an aluminum alloy ingot made of A1000 series aluminum. In Example 4, a molten aluminum alloy is cast by the same method as in Example 3 except that a molten metal made of A1000 series aluminum is prepared using a heating furnace. As a result, the aluminum alloy ingot of Example 4 is obtained. The aluminum alloy ingot of Example 4 has a rectangular parallelepiped shape as in Example 3.
実施例4は、A1000系アルミニウムからなるアルミニウム合金鋳塊の例である。実施例4においては、加熱炉を用いてA1000系アルミニウムからなる溶湯を準備した以外は、実施例3と同様の方法によりアルミニウム合金の溶湯を鋳造する。これにより、実施例4のアルミニウム合金鋳塊が得られる。実施例4のアルミニウム合金鋳塊は、実施例3と同様に直方体状を呈している。 (Example 4)
Example 4 is an example of an aluminum alloy ingot made of A1000 series aluminum. In Example 4, a molten aluminum alloy is cast by the same method as in Example 3 except that a molten metal made of A1000 series aluminum is prepared using a heating furnace. As a result, the aluminum alloy ingot of Example 4 is obtained. The aluminum alloy ingot of Example 4 has a rectangular parallelepiped shape as in Example 3.
実施例3及び実施例4のアルミニウム合金鋳塊における、TiB2凝集体の円相当径の平均値及び円形度の平均値の算出方法は、以下のとおりである。
The calculation method of the average value of the equivalent circle diameter and the average value of the circularity of the TiB 2 aggregates in the aluminum alloy ingots of Examples 3 and 4 is as follows.
・TiB2凝集体の円相当径の平均値及び円形度の平均値
アルミニウム合金鋳塊を切断し、幅方向及び厚み方向の中央部分から試験片を採取する。この試験片の表面を研磨した後、ディープエッチングを施すことにより、アルミニウム母相を除去してTiB2凝集体全体を露出させる。これ以降は、実施例1等と同様の方法によりTiB2凝集体の円相当径の平均値及び円形度の平均値を算出すればよい。表1に、実施例3、4のアルミニウム合金鋳塊におけるこれらの値を示す。 -Average value of equivalent circle diameter and average value of circularity of TiB 2 agglomerates Cut an aluminum alloy ingot and collect test pieces from the central part in the width and thickness directions. After polishing the surface of this test piece, deep etching is performed to remove the aluminum matrix and expose the entire TiB 2 aggregate. After that, the average value of the equivalent circle diameter and the average value of the circularity of the TiB 2 aggregate may be calculated by the same method as in Example 1. Table 1 shows these values in the aluminum alloy ingots of Examples 3 and 4.
アルミニウム合金鋳塊を切断し、幅方向及び厚み方向の中央部分から試験片を採取する。この試験片の表面を研磨した後、ディープエッチングを施すことにより、アルミニウム母相を除去してTiB2凝集体全体を露出させる。これ以降は、実施例1等と同様の方法によりTiB2凝集体の円相当径の平均値及び円形度の平均値を算出すればよい。表1に、実施例3、4のアルミニウム合金鋳塊におけるこれらの値を示す。 -Average value of equivalent circle diameter and average value of circularity of TiB 2 agglomerates Cut an aluminum alloy ingot and collect test pieces from the central part in the width and thickness directions. After polishing the surface of this test piece, deep etching is performed to remove the aluminum matrix and expose the entire TiB 2 aggregate. After that, the average value of the equivalent circle diameter and the average value of the circularity of the TiB 2 aggregate may be calculated by the same method as in Example 1. Table 1 shows these values in the aluminum alloy ingots of Examples 3 and 4.
表1に示したように、実施例1-4のアルミニウム合金鋳塊に含まれるTiB2凝集体の円相当径の平均値及び円形度の平均値は、それぞれ前記特定の範囲内にある。それ故、これらのアルミニウム合金鋳塊は、アルミニウム母相の結晶粒が十分に微細化されているとともに、粗大なTiB2凝集体が少なく、圧延等の加工を行う際の線状欠陥の発生を抑制することができる。
As shown in Table 1, the average value of the equivalent circle diameter and the average value of the circularity of the TiB 2 aggregates contained in the aluminum alloy ingot of Example 1-4 are within the specific ranges, respectively. Therefore, in these aluminum alloy ingots, the crystal grains of the aluminum matrix are sufficiently finely divided, and there are few coarse TiB 2 aggregates, so that linear defects occur during processing such as rolling. It can be suppressed.
比較例1、2のアルミニウム合金鋳塊に含まれるTiB2凝集体の円相当径の平均値は、前記特定の範囲よりも大きい。そのため、これらのアルミニウム合金鋳塊には粗大なTiB2凝集体が含まれやすく、展伸加工時に線状欠陥が発生しやすい。
The average value of the equivalent circle diameters of the TiB 2 aggregates contained in the aluminum alloy ingots of Comparative Examples 1 and 2 is larger than the specific range. Therefore, these aluminum alloy ingots tend to contain coarse TiB 2 agglomerates, and linear defects are likely to occur during wrought processing.
Claims (5)
- アルミニウム母相と、
TiB2粒子が凝集してなり、前記アルミニウム母相中に分散しているTiB2凝集体と、を有し、
前記アルミニウム母相から露出させた状態における前記TiB2凝集体の円相当径の平均値が3.0μm以下であり、かつ、円形度の平均値が0.20以上である、アルミニウム合金鋳塊。 With the aluminum matrix,
TiB 2 particles are agglomerated and have TiB 2 agglomerates dispersed in the aluminum matrix.
An aluminum alloy ingot having an average value of the equivalent circle diameter of the TiB 2 aggregate of 3.0 μm or less and an average value of circularity of 0.20 or more when exposed from the aluminum matrix. - 前記TiB2凝集体の含有量は、ホウ素原子として0.0001質量%以上0.0010質量%以下である、請求項1に記載のアルミニウム合金鋳塊。 The aluminum alloy ingot according to claim 1, wherein the content of the TiB 2 aggregate is 0.0001% by mass or more and 0.0010% by mass or less as a boron atom.
- 請求項1または2に記載のアルミニウム合金鋳塊の製造方法であって、
アルミニウム合金の溶湯中に、アルミニウムからなる基体中にTiB2粒子が含まれており、かつ、任意の断面における隣り合う前記TiB2粒子の中心間距離の平均値が0.60μm以上である結晶粒微細化剤を溶解させる溶解工程と、
前記溶解工程の後、前記溶湯を鋳造する鋳造工程と、を有する、アルミニウム合金鋳塊の製造方法。 The method for producing an aluminum alloy ingot according to claim 1 or 2.
Crystal grains in which TiB 2 particles are contained in a substrate made of aluminum in a molten aluminum alloy, and the average value of the center-to-center distances of adjacent TiB 2 particles in an arbitrary cross section is 0.60 μm or more. The dissolution step to dissolve the micronizing agent and
A method for producing an aluminum alloy ingot, comprising a casting step of casting the molten metal after the melting step. - 請求項1または2に記載のアルミニウム合金鋳塊の製造方法であって、
アルミニウム合金の溶湯中に、アルミニウムからなる基体中にTiB2粒子が凝集してなるTiB2凝集体が含まれている結晶粒微細化剤を溶解させる溶解工程と、
前記溶解工程の後、前記溶湯を鋳造する鋳造工程と、を有し、
前記結晶粒微細化剤中のTiB2凝集体は、2000個以上のTiB2凝集体の、前記基体から露出させた状態における投影面積を測定した場合に、95パーセンタイル以上の投影面積を有するTiB2凝集体の円相当径の平均値が3.0μm以下となる粒度分布を有している、アルミニウム合金鋳塊の製造方法。 The method for producing an aluminum alloy ingot according to claim 1 or 2.
A melting step of dissolving a grain refiner containing TiB 2 agglomerates formed by aggregating TiB 2 particles in a substrate made of aluminum in a molten aluminum alloy.
After the melting step, a casting step of casting the molten metal is provided.
TiB 2 aggregates in the grain refining agent, when measuring the projected area of 2000 or more TiB 2 aggregates, in a state of being exposed from the base body, TiB 2 having the projected area of more than 95 percentile A method for producing an aluminum alloy ingot having a particle size distribution in which the average value of the equivalent circle diameters of the agglomerates is 3.0 μm or less. - 前記溶湯中に前記結晶粒微細化剤を溶解させた後、30分以内に前記溶湯を鋳造する、請求項3または4に記載のアルミニウム合金鋳塊の製造方法。 The method for producing an aluminum alloy ingot according to claim 3 or 4, wherein the molten metal is cast within 30 minutes after the crystal grain refiner is dissolved in the molten metal.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180006960.7A CN114761152B (en) | 2020-02-06 | 2021-02-05 | Aluminum alloy ingot and method for producing same |
EP21750895.1A EP4098382B9 (en) | 2020-02-06 | 2021-02-05 | Aluminum alloy ingot and method for manufacturing same |
US17/759,929 US20230075358A1 (en) | 2020-02-06 | 2021-02-05 | Aluminum-alloy ingot and manufacturing method thereof |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-018896 | 2020-02-06 | ||
JP2020018896 | 2020-02-06 | ||
JP2020-109517 | 2020-06-25 | ||
JP2020109517A JP7541855B2 (en) | 2020-02-06 | 2020-06-25 | Aluminum alloy ingot and its manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021157683A1 true WO2021157683A1 (en) | 2021-08-12 |
Family
ID=77200024
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/004225 WO2021157683A1 (en) | 2020-02-06 | 2021-02-05 | Aluminum alloy ingot and method for manufacturing same |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230075358A1 (en) |
EP (1) | EP4098382B9 (en) |
CN (1) | CN114761152B (en) |
WO (1) | WO2021157683A1 (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62133037A (en) * | 1985-12-04 | 1987-06-16 | Ngk Insulators Ltd | Alloy for grain refining and its manufacture |
JPH02149682A (en) * | 1988-11-30 | 1990-06-08 | Showa Alum Corp | Production of aluminum alloy material having superior wear resistance |
JPH04138842A (en) * | 1990-09-28 | 1992-05-13 | Kobe Steel Ltd | Alloy for microcrystalization and production thereof |
JPH05195108A (en) * | 1991-07-05 | 1993-08-03 | Shell Internatl Res Maatschappij Bv | Production of agent for preparing micro- crystals |
JPH0920939A (en) * | 1995-06-30 | 1997-01-21 | Kobe Steel Ltd | Method for adding refining agent to molten al and molten al alloy |
JPH10317083A (en) * | 1997-05-13 | 1998-12-02 | Kobe Steel Ltd | Grain refiner for aluminum alloy |
JPH11502570A (en) * | 1995-03-31 | 1999-03-02 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング | Aluminum, alloy metal, matrix composite reinforced with fine particle ceramic |
JP2001191654A (en) | 2000-01-07 | 2001-07-17 | Sky Alum Co Ltd | Method for manufacturing rolled plate of molten aluminum alloy for ps plate support, and rolled plate of molten aluminum alloy for ps plate support |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
LU67355A1 (en) * | 1973-04-04 | 1974-11-21 | ||
CA1289748C (en) * | 1985-03-01 | 1991-10-01 | Abinash Banerji | Producing titanium carbide |
NL8600394A (en) * | 1985-03-25 | 1986-10-16 | Cabot Corp | MOTHER-ALLOY FOR GRANULATING SILICON CONTAINING ALUMINUM ALLOYS. |
NO174165C (en) * | 1992-01-08 | 1994-03-23 | Elkem Aluminium | Method of refining aluminum and grain refining alloy for carrying out the process |
JPH10204555A (en) * | 1997-01-17 | 1998-08-04 | Toyota Motor Corp | Production of grain refiner for casting aluminum alloy |
NL1009258C2 (en) * | 1998-05-26 | 1999-11-29 | Univ Delft Technology | Process for the preparation of an Al-Ti-B grain refiner for aluminum-containing products, and a method for casting aluminum products. |
TR200504376A2 (en) * | 2005-11-02 | 2008-05-21 | T�B�Tak-T�Rk�Ye B�L�Msel Ve Tekn�K Ara�Tirma Kurumu | A process for producing grain-reducing pre-alloys |
WO2013072898A2 (en) * | 2011-11-18 | 2013-05-23 | Tubitak | Grain refinement, aluminium foundry alloys |
CN104264001B (en) * | 2014-09-16 | 2016-08-17 | 广东新劲刚新材料科技股份有限公司 | In-situ synthesized particle reinforced aluminum matrix composite material and preparation method thereof |
CN106086538A (en) * | 2016-06-21 | 2016-11-09 | 上海交通大学 | High-temperature resistant nano ceramic particle strengthens hypoeutectic al-si alloy and casting method thereof |
JP6955254B2 (en) * | 2017-08-23 | 2021-10-27 | 国立大学法人 名古屋工業大学 | Crystal grain refiner for casting containing heterogeneous particles in high concentration and its manufacturing method |
-
2021
- 2021-02-05 US US17/759,929 patent/US20230075358A1/en active Pending
- 2021-02-05 CN CN202180006960.7A patent/CN114761152B/en active Active
- 2021-02-05 WO PCT/JP2021/004225 patent/WO2021157683A1/en unknown
- 2021-02-05 EP EP21750895.1A patent/EP4098382B9/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62133037A (en) * | 1985-12-04 | 1987-06-16 | Ngk Insulators Ltd | Alloy for grain refining and its manufacture |
JPH02149682A (en) * | 1988-11-30 | 1990-06-08 | Showa Alum Corp | Production of aluminum alloy material having superior wear resistance |
JPH04138842A (en) * | 1990-09-28 | 1992-05-13 | Kobe Steel Ltd | Alloy for microcrystalization and production thereof |
JPH05195108A (en) * | 1991-07-05 | 1993-08-03 | Shell Internatl Res Maatschappij Bv | Production of agent for preparing micro- crystals |
JPH11502570A (en) * | 1995-03-31 | 1999-03-02 | メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング | Aluminum, alloy metal, matrix composite reinforced with fine particle ceramic |
JPH0920939A (en) * | 1995-06-30 | 1997-01-21 | Kobe Steel Ltd | Method for adding refining agent to molten al and molten al alloy |
JPH10317083A (en) * | 1997-05-13 | 1998-12-02 | Kobe Steel Ltd | Grain refiner for aluminum alloy |
JP2001191654A (en) | 2000-01-07 | 2001-07-17 | Sky Alum Co Ltd | Method for manufacturing rolled plate of molten aluminum alloy for ps plate support, and rolled plate of molten aluminum alloy for ps plate support |
Non-Patent Citations (1)
Title |
---|
See also references of EP4098382A4 |
Also Published As
Publication number | Publication date |
---|---|
US20230075358A1 (en) | 2023-03-09 |
CN114761152B (en) | 2024-10-25 |
EP4098382B1 (en) | 2024-04-03 |
CN114761152A (en) | 2022-07-15 |
EP4098382B9 (en) | 2024-07-10 |
EP4098382A1 (en) | 2022-12-07 |
EP4098382A4 (en) | 2022-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4174524B2 (en) | Aluminum alloy plate manufacturing method and aluminum alloy plate | |
US5585067A (en) | Aluminum alloys containing very finely dispersed bismuth, cadmium, indium and/or lead and a process for obtaining them | |
JP3212133B2 (en) | Rare earth metal-nickel based hydrogen storage alloy ingot and method for producing the same | |
JP5157684B2 (en) | Hypereutectic Al-Si alloy casting method and ingot | |
JP4174526B2 (en) | Aluminum alloy plate manufacturing method and aluminum alloy plate | |
JPH0122342B2 (en) | ||
CA2827539C (en) | Aluminum alloy for vehicle and wheel for motorcycle | |
WO2021157683A1 (en) | Aluminum alloy ingot and method for manufacturing same | |
WO2017081969A1 (en) | Copper alloy material | |
Yu et al. | Grain refinement of A356 alloy by AlTiC/AlTiB master alloys | |
JPH10317083A (en) | Grain refiner for aluminum alloy | |
CN115044806A (en) | Aluminum alloy additive and preparation method and application thereof | |
JP2021123789A (en) | Aluminium alloy ingot and method for manufacturing the same | |
US20220126363A1 (en) | Alloys with a low density of precipitates for use in applications that include remelting processes, and preparation process thereof | |
JPH05331572A (en) | Copper-iron alloy | |
JP3283550B2 (en) | Method for producing hypereutectic aluminum-silicon alloy powder having maximum crystal grain size of primary silicon of 10 μm or less | |
JP4174527B2 (en) | Aluminum alloy plate manufacturing method and aluminum alloy plate | |
CN110804704A (en) | Preparation method of Al-Ti-B-Sr intermediate alloy and Al-Ti-B-Sr intermediate alloy | |
WO1992007676A1 (en) | Hypereutectic aluminum/silicon alloy powder and production thereof | |
Gursoy et al. | The Role of Bismuth as Trace Element on the Solidification Path and Microstructure of Na‐Modified AlSi7Mg Alloys | |
JP2017094391A (en) | Manufacturing method for aluminium alloy billet | |
CN106795588A (en) | Al alloys and its manufacture method containing Cu and C | |
EP3546605A1 (en) | Method for casting articles from aluminium alloys | |
JPH06206798A (en) | Production of silicon particle | |
JP7322611B2 (en) | Zinc alloy and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21750895 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021750895 Country of ref document: EP Effective date: 20220901 |