WO2021157584A1 - Curable composition and cured product - Google Patents

Curable composition and cured product Download PDF

Info

Publication number
WO2021157584A1
WO2021157584A1 PCT/JP2021/003810 JP2021003810W WO2021157584A1 WO 2021157584 A1 WO2021157584 A1 WO 2021157584A1 JP 2021003810 W JP2021003810 W JP 2021003810W WO 2021157584 A1 WO2021157584 A1 WO 2021157584A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylic acid
acid ester
ester monomer
curable composition
Prior art date
Application number
PCT/JP2021/003810
Other languages
French (fr)
Japanese (ja)
Inventor
平林 和彦
岡井 次郎
太亮 佐々木
健一 吉橋
Original Assignee
株式会社カネカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ filed Critical 株式会社カネカ
Priority to JP2021575812A priority Critical patent/JPWO2021157584A1/ja
Publication of WO2021157584A1 publication Critical patent/WO2021157584A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention relates to a curable composition and a cured product.
  • a polymer molecule having an alkoxysilyl group forms a siloxane bond with another polymer molecule by hydrolyzing the alkoxysilyl group. It is known that a rubber-like cured product can be obtained by this cross-linking reaction. Taking advantage of this feature, polymers having an alkoxysilyl group are used in a wide range of applications such as sealants, adhesives and paints.
  • An example of such a polymer is a polyoxyalkylene polymer having an alkoxysilyl group.
  • the curable composition containing a polyoxyalkylene polymer having an alkoxysilyl group has good workability and an excellent balance of mechanical properties such as elongation at break and strength at break.
  • the hydrogen atom bonded to the tertiary carbon is easily oxidized unless an antioxidant is used. Therefore, there is a problem that the weather resistance of the curable composition is deteriorated.
  • Patent Document 1 describes a vinyl polymer (A) having an alkoxysilyl group, a polyoxyalkylene compound (B) having an alkoxysilyl group at the terminal, and a polypropylene glycol (C1) having a specific molecular weight or an alkoxysilyl group.
  • a sealant composition containing a vinyl polymer (C2) that does not have it is disclosed.
  • Patent Document 2 discloses a sealing material composition containing (A) an oxyalkylene polymer having an alkoxysilyl group and (B) a specific vinyl polymer having a crosslinkable functional group.
  • Patent Document 3 includes a specific vinyl polymer containing a (meth) acrylic acid ester monomer having a hydrolyzable silyl group as a constituent monomer, and a hydrolyzable silyl group-containing oxyalkylene polymer.
  • a curable resin composition comprising the above is disclosed.
  • Patent Document 4 describes a curable composition containing a polyether polymer (I) having a number average molecular weight of 10,000 or more and a vinyl polymer (II) having at least one crosslinkable functional group at the end of the polymer. The thing is disclosed.
  • compositions disclosed in Patent Documents 1 to 4 had room for improvement in terms of viscosity. That is, there is room for improving workability by further reducing the viscosity of these compositions.
  • One aspect of the present invention is to provide a curable composition having a reduced viscosity.
  • a curable composition comprising a (meth) acrylic copolymer (A) having an alkoxysilyl group and a polyoxyalkylene-based polymer (B) having an alkoxysilyl group.
  • the (meth) acrylic copolymer (A) randomly contains a repeating unit derived from the (meth) acrylic acid ester monomer ( ⁇ ).
  • the (meth) acrylic acid ester monomer ( ⁇ ) has an alkyl group ester-bonded to (meth) acrylic acid, and the alkyl group has an alkoxy group having 1 to 5 carbon atoms.
  • the repeating unit derived from the (meth) acrylic acid ester monomer ( ⁇ ) is contained in an amount of 5 to 20% by weight based on the weight of all the repeating units contained in the (meth) acrylic copolymer (A). It has been.
  • AB representing a numerical range means “A or more, B or less”.
  • (meth) acrylic means "acrylic” and / or "methacryl”.
  • the curable composition according to one aspect of the present invention contains a (meth) acrylic copolymer (A) having an alkoxysilyl group.
  • This (meth) acrylic copolymer (A) randomly contains a repeating unit derived from the (meth) acrylic acid ester monomer ( ⁇ ).
  • the repeating unit derived from the (meth) acrylic acid ester monomer ( ⁇ ) is contained in an amount of 5 to 20% by weight based on the weight of all the repeating units contained in the (meth) acrylic copolymer (A). (This value has a critical significance).
  • the (meth) acrylic acid ester monomer ( ⁇ ) has an alkyl group ester-bonded to (meth) acrylic acid, and the alkyl group is an alkoxy group having 1 to 5 carbon atoms. It is a monomer having.
  • the alkyl group ester-bonded with acrylic acid has 1 to 5 carbon atoms.
  • the lower limit of the content of the repeating unit derived from the (meth) acrylic acid ester monomer ( ⁇ ) is 6 weights based on the weight of all the repeating units contained in the (meth) acrylic copolymer (A). % Or more, 7% by weight or more, 8% by weight or more, 9% by weight or more, or 10% by weight or more is more preferable.
  • the upper limit of the content of the repeating unit derived from the (meth) acrylic acid ester monomer ( ⁇ ) is 19 weight based on the weight of all the repeating units contained in the (meth) acrylic copolymer (A). More preferably, it is less than or equal to% or 18% by weight or less.
  • the viscosity of the (meth) acrylic copolymer (A) itself and ( The viscosity of the curable composition containing the meta) acrylic copolymer (A) can be reduced.
  • the viscosity of the (meth) acrylic copolymer (A) itself measured at 23 ° C. is preferably 200 Pa ⁇ s or less, preferably 150 Pa ⁇ s or less, and more preferably 130 Pa ⁇ s or less. Viscosity can be measured with a suitable viscometer.
  • the viscosity of the curable composition measured at 23 ° C. is preferably 55 Pa ⁇ s or less, more preferably 53 Pa ⁇ s or less.
  • the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer having an alkoxysilyl group (meth) The compatibility with B) is high. Therefore, a curable composition and a cured product having good properties can be obtained.
  • the repeating unit derived from the (meth) acrylic acid ester monomer ( ⁇ ) is not randomly contained, the viscosity of the (meth) acrylic copolymer (A) itself or the polyoxyalkylene polymer (B)
  • the repeating unit derived from the (meth) acrylic acid ester monomer ( ⁇ ) is the main component of the main chain. Examples thereof include a polymer and a polymer having a repeating unit derived from a (meth) acrylic acid ester monomer ( ⁇ ) in a block.
  • the number average molecular weight of the (meth) acrylic copolymer (A) is preferably 4,000 to 80,000, more preferably 20,000 to 50,000.
  • the number average molecular weight is 4,000 or more, the characteristics of the (meth) acrylic copolymer (A) can be fully exhibited.
  • the number average molecular weight is 80,000 or less, the viscosity does not become too high and sufficient workability can be ensured.
  • the number average molecular weight can be measured, for example, by gel permeation chromatography (GPC).
  • the molecular weight distribution of the (meth) acrylic copolymer (A) is 1.8 or less.
  • the molecular weight distribution of the (meth) acrylic copolymer (A) is preferably 1.7 or less, more preferably 1.6 or less, still more preferably 1.5 or less, and particularly preferably 1. It is 4 or less, and most preferably 1.3 or less. If the molecular weight distribution is too large, the viscosity of the curable composition tends to increase, and workability tends to decrease.
  • the weight average molecular weight and the number average molecular weight can be measured by, for example, gel permeation chromatography (GPC). Chloroform can be used as the mobile phase and polystyrene gel column can be used as the stationary phase for GPC measurement. Moreover, these molecular weights can be calculated in terms of polystyrene.
  • GPC gel permeation chromatography
  • the (meth) acrylic copolymer (A) having such a small molecular weight distribution can be suitably produced by, for example, living radical polymerization.
  • an alkoxysilyl group is distributed only at at least one end of the molecular chain. Therefore, the molecule as a whole has one or two alkoxysilyl groups.
  • a copolymer is, for example, [3.1. ] It can be manufactured by the manufacturing method described in the section.
  • the (meth) acrylic copolymer (A) has an alkoxysilyl group distributed in the vicinity of at least one end of the molecular chain. Therefore, the molecule as a whole may have one or more alkoxysilyl groups and may have more than two alkoxysilyl groups.
  • a copolymer is, for example, [3.2. ] Can be produced by the production method described in the section (according to this production method, the (meth) acrylic copolymer (A1) described later can be obtained).
  • the number of alkoxysilyl groups introduced into the (meth) acrylic copolymer (A) is 1.0 or more or more than 1.0 on average as a whole molecule. In one embodiment, the number of alkoxysilyl groups is preferably 1.1 or more, more preferably 1.2 or more. In another embodiment, the number of alkoxysilyl groups is preferably 2.2 or more, more preferably 2.4 or more.
  • the upper limit of the number of alkoxysilyl groups introduced into the (meth) acrylic copolymer (A) is preferably 10.0 or less, more preferably 8.0 or less, and even more preferably 6.0 or less. 4.0 or less is particularly preferable.
  • the physical properties of the curable composition and the cured product using the (meth) acrylic copolymer (A) are good.
  • the (meth) acrylic copolymer (A) preferably has an alkoxysilyl group at at least one end (or end region) of the molecular chain, and alkoxy is provided at both ends (or end regions). It preferably has a silyl group.
  • the (meth) acrylic copolymer (A) according to the embodiment of the present invention contains a structural unit derived from the (meth) acrylic acid ester monomer in the main chain.
  • the (meth) acrylic acid ester monomer constituting the main chain is not particularly limited as long as the above requirements are satisfied. Only one type of (meth) acrylic acid ester monomer may be used, or two or more types of (meth) acrylic acid ester monomers may be used in combination.
  • Examples of the type of such (meth) acrylic acid ester monomer include the following.
  • the content of the repeating unit derived from the (meth) acrylic acid ester monomer ( ⁇ ) is 5 based on the weight of all the repeating units contained in the (meth) acrylic copolymer (A). It is about 20% by weight, preferably 10 to 20% by weight.
  • the content of the repeating unit derived from the (meth) acrylic acid ester monomer ( ⁇ ) is 45 to 70% by weight based on the weight of all the repeating units contained in the (meth) acrylic copolymer (A). Is preferable, and 50 to 70% by weight is more preferable.
  • the content of the repeating unit derived from the (meth) acrylic acid ester monomer ( ⁇ ) is 0 to 25% by weight based on the weight of all the repeating units contained in the (meth) acrylic copolymer (A). Is preferable, and 10 to 25% by weight is more preferable.
  • the content of the repeating unit derived from the (meth) acrylic acid ester monomer ( ⁇ ) is 15 to 25% by weight based on the weight of all the repeating units contained in the (meth) acrylic copolymer (A). Is preferable, and 15 to 20% by weight is more preferable.
  • the content of the repeating unit derived from the (meth) acrylic acid ester monomer ( ⁇ ) is within the above range, the compatibility between the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B) is high. It can be secured sufficiently.
  • the content of the repeating unit derived from the (meth) acrylic acid ester monomer ( ⁇ ) is 10% by weight or more, it is possible to prevent an increase in viscosity at a low temperature and prevent a decrease in workability.
  • the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B) are combined. Sufficient compatibility can be ensured. If the content of the repeating unit derived from the (meth) acrylic acid ester monomer ( ⁇ ) is 15% by weight or more, the compatibility between the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B) Can be sufficiently secured. Further, when the content of the repeating unit derived from the (meth) acrylic acid ester monomer ( ⁇ ) is 25% by weight or less, it is possible to prevent an increase in viscosity at a low temperature and prevent a decrease in workability.
  • the (meth) acrylic acid ester monomer is not particularly limited, and conventionally known ones can be used.
  • Examples of the (meth) acrylic acid ester monomer ( ⁇ ) include 2-methoxyethyl (meth) acrylic acid, 2-ethoxyethyl (meth) acrylic acid, 2-butoxyethyl (meth) acrylic acid, and (meth) acrylic acid. Isopropoxyethyl can be mentioned.
  • Examples of (meth) acrylic acid ester monomer ( ⁇ ) are methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, and (meth) acrylic.
  • Examples thereof include isobutyl acid and tert-butyl (meth) acrylate.
  • Examples of (meth) acrylic acid ester monomer ( ⁇ ) are n-hexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, (meth).
  • Nonyl acrylate, decyl (meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate can be mentioned.
  • Examples of the (meth) acrylic acid ester monomer ( ⁇ ) include pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, octadecyl (meth) acrylate, and icosyl (meth) acrylate.
  • (Meta) Docosyl acrylate can be mentioned.
  • 2-methoxyethyl acrylate is preferable as the (meth) acrylic acid ester monomer ( ⁇ ).
  • the (meth) acrylate monomer ( ⁇ ) butyl acrylate is preferable.
  • the (meth) acrylic acid ester monomer ( ⁇ ) 2-ethylhexyl acrylate and dodecyl acrylate are preferable.
  • the (meth) acrylic acid ester monomer ( ⁇ ) octadecyl acrylate is preferable.
  • the (meth) acrylic copolymer (A) produced by selecting these monomers has viscosity, compatibility with the polyoxyalkylene polymer (B), weather resistance, mechanical properties, and durability. It can be achieved at a high level and in a well-balanced manner.
  • the (meth) acrylic acid ester monomer ( ⁇ ) is (a) and / or (b) below.
  • (A) A monomer having 1 to 5 carbon atoms in an alkyl group ester-bonded with (meth) acrylic acid.
  • the "carbon number of the alkyl group” does not include the carbon contained in the alkoxy group of the alkyl group.
  • (B) One or more selected from the group consisting of 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, and isopropoxyethyl (meth) acrylate. Monomer.
  • the repeating unit derived from the (meth) acrylic acid ester monomer contained in the (meth) acrylic copolymer (A) is 70% by weight based on all the repeating units contained in the polymer (A). The above is preferable, and 90% or more by weight is more preferable.
  • the content of the repeating unit derived from the (meth) acrylic acid ester monomer is 70% or more, the produced (meth) acrylic copolymer (A) is in phase with the polyoxyalkylene-based polymer (B). Sufficient solubility can be ensured, and good weather resistance, mechanical properties and durability can be obtained.
  • the (meth) acrylic copolymer (A) contains a repeating unit derived from a (meth) acrylic acid ester monomer having an alkoxysilyl group.
  • the alkoxysilyl group is represented by the following general formula (1). -[Si (R 1 ) 2-b (Y) b O] m -Si (R 2 ) 3-a (Y) a (1).
  • R 1 and R 2 are independently an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, a methoxymethyl group, or (R') 3 It is a triorganosyloxy group represented by SiO ⁇ (at this time, R'is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the three R'existing may be the same or different. May be good). When two or more R 1 or R 2 are present, the R 1 or R 2 may be the same or different.
  • Y is an alkoxy group having 1 to 20 carbon atoms (when two or more Ys are present, the Ys may be the same or different).
  • a is 0, 1, 2 or 3.
  • b is 0, 1 or 2.
  • m is an integer from 0 to 19. Moreover, the relationship of a + mb ⁇ 1 is satisfied.
  • the alkoxy group has higher reactivity when it has a smaller number of carbon atoms. That is, the reactivity decreases in the order of methoxy group, ethoxy group, propoxy group, and so on. Therefore, an alkoxy group can be appropriately selected depending on the production method and application of the (meth) acrylic copolymer (A).
  • the specific structure of the (meth) acrylic acid ester monomer having an alkoxysilyl group is not particularly limited.
  • a monomer represented by the following general formula (2) can be mentioned.
  • R 3 is a hydrogen or methyl group.
  • R 4 and R 5 are one or more selected from the group consisting of hydrogen, methyl group and ethyl group. When there are a plurality of R 4 and / or R 5 , the R 4 and / or R 5 are independently selected.
  • m is an integer from 0 to 10.
  • n is an integer of 0 to 2.
  • (meth) acrylic acid ester monomer having an alkoxysilyl group examples include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, and 3-acryloxy. Examples thereof include propyltrimethoxysilane, 3-acryloxypropylmethyldimethoxysilane, and 3-methacryloxypropylmethyldimethoxysilane.
  • the (meth) acrylic copolymer (A) has an X block and a Y block, and contains an XY diblock structure or an XYX triblock structure in the molecule.
  • Such a (meth) acrylic copolymer is referred to as a (meth) acrylic copolymer (A1) in the present specification.
  • the structure of the entire molecule of the (meth) acrylic copolymer (A) is not particularly limited as long as it contains an XY diblock structure or an XYX triblock structure, and may be, for example, an XYXY tetrapod structure. ..
  • XYX triblock structure means the "ABA triblock structure” generally referred to by those skilled in the art.
  • the ratio of XY in the XY diblock structure and the XYX triblock structure is preferably (5/95) to (60/40), more preferably (15/85) to (40/60).
  • the molecule of the (meth) acrylic copolymer (A1) has an XY diblock structure.
  • the X block can be a region of 40% or less, 30% or less, or 25% or less from one end of the molecule (all units contained in the molecule are 100%).
  • the X block is a block on the side where a relatively large number of alkoxysilyl groups are distributed.
  • the molecule of the (meth) acrylic copolymer (A1) has an XYX triblock structure.
  • the X block can be a region of 40% or less, 30% or less, or 25% or less from the end of the molecule (all units contained in the molecule are 100%).
  • the X block is a block located at both ends of the molecule.
  • the (meth) acrylic copolymer (A1) is a repeating unit derived from the (meth) acrylic acid ester monomer ( ⁇ ), and all the repeating units contained in the (meth) acrylic copolymer (A1). It is randomly included in an amount of 5 to 20% by weight based on the weight.
  • the repeating unit derived from the (meth) acrylic acid ester monomer ( ⁇ ) may be different between the X block and the Y block. That is, (i) (meth) acrylic acid ester monomer ( ⁇ ) -derived repeating units are randomly distributed throughout the molecule, and (ii) the content of the repeating units is 5 to 20% by weight (preferably 10). If it is ⁇ 20% by weight), it is included in the category of the (meth) acrylic copolymer (A1).
  • the (meth) acrylic copolymer (A1) has a repeating unit derived from a (meth) acrylic acid ester monomer having an alkoxysilyl group.
  • the repeating unit derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group is relatively abundantly contained in the X block. Specifically, the number of repeating units derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the X block is 1.0 or more on average.
  • the repeating unit derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the Y block is 0 to 3% by weight based on the weight of all the repeating units contained in the Y block. be. Therefore, the repeating unit derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group is localized at the end (one end or both ends) in the (meth) acrylic copolymer (A1).
  • the number of repeating units derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the X block is preferably 1.5 or more on average, and more preferably 1.7 or more.
  • the repeating unit derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the X block is preferably more than 3% by weight based on the weight of all the repeating units contained in the X block. , 4.5% by weight or more is more preferable, and 5% by weight or more is further preferable.
  • the upper limit of the repeating unit derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the Y block is 2% by weight or less based on the weight of all the repeating units contained in the Y block. Preferably, it is 1% by weight or less, more preferably.
  • the lower limit of the repeating unit derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the Y block is more than 0% by weight based on the weight of all the repeating units contained in the Y block. It is preferable, and 0% by weight or more is more preferable.
  • the number of alkoxysilyl groups introduced into the (meth) acrylic copolymer (A1) differs between the X block and the Y block, and is specifically as described above.
  • the (meth) acrylic copolymer (A1) has an XY diblock structure
  • the number of molecules as a whole is 1 or more on average, preferably 1.1 or more, and more preferably 1.2 or more.
  • the alkoxysilyl group of is introduced.
  • the (meth) acrylic copolymer (A1) has an XYX triblock structure or an XYXY tetrapod structure
  • the number of molecules as a whole is 2 or more, preferably 2.2 or more, more preferably 2.
  • Four or more alkoxysilyl groups have been introduced.
  • the upper limit of the number of alkoxysilyl groups introduced into the (meth) acrylic copolymer (A1) is preferably 10.0 or less, more preferably 8.0 or less, and even more preferably 6.0 or less. 4.0 or less is particularly preferable. When the number of alkoxysilyl groups is in the above range, the physical properties of the curable composition and the cured product using the (meth) acrylic copolymer (A1) are good.
  • the polymerization method of the (meth) acrylic copolymer (A) is not particularly limited, and a known polymerization method can be used (radical polymerization method, cationic polymerization method, anion polymerization method, etc.). Above all, the living polymerization method is preferable because a functional group can be introduced into the terminal of the polymer molecule and an XY block polymer or an XYX block polymer can be synthesized. Examples of the living radical polymerization method include a living radical polymerization method, a living cationic polymerization method, and a living anion polymerization method.
  • the living radical polymerization method is suitable for polymerizing an acrylic acid ester monomer.
  • the living radical polymerization method include the following. Atom Transfer Radical Polymerization (ATRP (see J. Am. Chem. Soc. 1995, 117, 5614; Macromolecules. 1995, 28, 1721)) -Sigle Electron Transfer Polymerization; SET-LRP (J. Am. Chem. Soc. 2006, 128, 14156; see JPSChem 2007, 45, 1607)) -Reversible Chain Transfer Catalyzed Polymerization; RTCP ("Living Radical Polymerization Controlled by Organocatalysis", "Polymer Papers" 68, 223-231 (2011); (Refer to Japanese Patent Application Laid-Open No.
  • RAFT polymerization -Reversible addition-Cleavage chain transfer polymerization
  • NMP method Nitroxy radical method
  • TMP method -Polymerization method using organic tellurium compounds
  • SBRP method -Polymerization method using organic antimony compounds
  • BIRP organic bismuth compounds
  • the (meth) acrylic copolymer (A) is produced by the method described in JP-A-2007-302479. Among them, a method of adding a hydrosilane compound having an alkoxysilyl group to a (meth) acrylic polymer having at least one alkenyl group in the presence of a hydrosilylation catalyst is preferable in that control is easier.
  • the alkoxysilyl group is introduced into the (meth) acrylic polymer as follows. 1. 1. The (meth) acrylic acid ester-based monomer is subjected to living radical polymerization to obtain a (meth) acrylic acid-based polymer. The (meth) acrylic polymer obtained in 2.1 is reacted with a compound having at least two alkenyl groups having low polymerizable properties (diene compound) to obtain a vinyl polymer having at least one alkenyl group. A hydrosilane compound having an alkoxysilyl group is added to the vinyl polymer obtained in 3.2 in the presence of a hydrosilylation catalyst.
  • the above method more specifically comprises a diene compound (1,5-hexadiene, 1,7) at the end of the polymerization reaction or after the reaction of a predetermined monomer is completed.
  • -It is carried out by reacting octadiene, 1,9-decadien, etc.).
  • the hydrosilane compound having an alkoxysilyl group is not particularly limited.
  • the compound represented by the general formula (3) is exemplified. H- [Si (R 6 ) 2-b (Y) b O] m -Si (R 7 ) 3-a (Y) a (3).
  • R 6 and R 7 are independently alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, aralkyl groups having 7 to 20 carbon atoms, methoxymethyl groups, or groups.
  • R 8 in selected from triorganosiloxy group represented by 3 SiO- (wherein, R 8 R 8 is present .3 or a monovalent hydrocarbon group having 1 to 20 carbon atoms, with the same May be present or different). When two or more R 6 or R 7 are present, they may be the same or different.
  • Y represents an alkoxy group having 1 to 20 carbon atoms. When there are two or more Ys, the Ys may be the same or different.
  • a represents 0, 1, 2 or 3.
  • b represents 0, 1, or 2.
  • m is an integer from 0 to 19. However, it is satisfied that a + mb ⁇ 1.
  • hydrosilane compounds the compound represented by the following general formula (4) is preferable from the viewpoint of easy availability.
  • R 6 and Y are as described above.
  • a is an integer of 1 to 3.
  • transition metal catalyst When adding a hydrosilane compound having an alkoxysilyl group to an alkenyl group, a transition metal catalyst is usually used.
  • transition metal catalysts include platinum-based catalysts. Platinum alone; Platinum solid dispersed in a carrier (alumina, silica, carbon black, etc.); Platinum chloride acid; Complex of platinum chloride acid with alcohol, aldehyde, ketone, etc .; Platinum-olefin complex; Platinum (0)- Examples thereof include a divinyltetramethyldisiloxane complex.
  • catalysts other than platinum-based catalysts include RhCl (PPh 3 ) 3 , RhCl 3 , RuCl 3 , IrCl 3 , FeCl 3 , AlCl 3 , PdCl 2 ⁇ H 2 O, NiCl 2 , and TiCl 4 .
  • the (meth) acrylic copolymer (A) can be produced by a production method including the following steps 1a and 2a, or the following steps 1b and 2b. Since a block copolymer is produced by this production method, the obtained (meth) acrylic copolymer (A) is a (meth) acrylic copolymer (A1).
  • the (meth) acrylic copolymer (A1) obtained by this production method is preferable in that the viscosity of the polymer is lowered.
  • containing 0% by weight of the (meth) acrylic acid ester monomer having an alkoxysilyl group means “not containing the (meth) acrylic acid ester monomer having an alkoxysilyl group”.
  • Step 1a A step of polymerizing a (meth) acrylic acid ester monomer mixture containing a (meth) acrylic acid ester monomer having an alkoxysilyl group (preferably more than 3% by weight) with a living polymerization initiator.
  • Step 2a A step of adding a (meth) acrylic acid ester monomer mixture containing 0 to 3% by weight of a (meth) acrylic acid ester monomer having an alkoxysilyl group to the reaction system after the first step and polymerizing.
  • Step 1b A step of polymerizing a (meth) acrylic acid ester monomer mixture containing 0 to 3% by weight of a (meth) acrylic acid ester monomer having an alkoxysilyl group by a living polymerization initiator.
  • Step 2b A step of adding a (meth) acrylic acid ester monomer mixture containing (preferably more than 3% by weight) a (meth) acrylic acid ester monomer having an alkoxysilyl group to the reaction system after the first b step and polymerizing. ..
  • the (meth) acrylic acid copolymer (A1) which is a molecule having an XY diblock structure, can be produced by the above-mentioned steps 1a and 2a, or by the steps 1b and 2b. At this time, the first step 1a and the second step 2b form an X block containing a relatively large amount of alkoxysilyl groups. On the other hand, the steps 2a and 1b form a Y block containing a relatively small amount of alkoxysilyl groups.
  • a (meth) acrylic acid ester monomer having an alkoxysilyl group is polymerized by a living polymerization initiator.
  • a living polymerization initiator for example, an initiator having one halogen group in the molecule can be used.
  • the amount of the (meth) acrylic acid ester monomer having an alkoxysilyl group can be 1-10 molar equivalents relative to 1 molar equivalent of the initiator. Further, if necessary, 1 to 100 molar equivalents of (meth) acrylic acid ester monomer having no alkoxysilyl group may be polymerized together.
  • the amount of the (meth) acrylic acid ester monomer having an alkoxysilyl group added to the reaction system in step 1a accounts for more than 3% by weight of the monomer mixture added to the reaction system in step 1a.
  • a (meth) acrylic acid ester monomer having no alkoxysilyl group is added to the reaction system after the first step and polymerized.
  • the input amount of the (meth) acrylic acid ester monomer having no alkoxysilyl group can be 2 to 600 molar equivalents with respect to 1 molar equivalent of the polymer obtained in the first step a.
  • a (meth) acrylic acid ester monomer having an alkoxysilyl group may be added to the reaction system.
  • the amount of the (meth) acrylic acid ester monomer having an alkoxysilyl group added to the reaction system in the second a step accounts for 0 to 3% by weight of the monomer mixture added to the reaction system in the second a step.
  • the (meth) acrylic acid ester monomer having no alkoxysilyl group is polymerized by the living polymerization initiator.
  • the living polymerization initiator the same one as in the first step can be used.
  • the amount of the (meth) acrylic acid ester monomer having no alkoxysilyl group can be 2 to 600 molar equivalents relative to 1 molar equivalent of the initiator.
  • a (meth) acrylic acid ester monomer having an alkoxysilyl group may be added to the reaction system.
  • the amount of the (meth) acrylic acid ester monomer having an alkoxysilyl group added to the reaction system in the first b step accounts for 0 to 3% by weight of the monomer mixture added to the reaction system in the first b step.
  • a (meth) acrylic acid ester monomer having an alkoxysilyl group is added to the reaction system after the first b step and polymerized.
  • the amount of the (meth) acrylic acid ester monomer having an alkoxysilyl group can be 1 to 10 molar equivalents with respect to 1 molar equivalent of the polymer obtained in the first b step. Further, if necessary, 1 to 100 molar equivalents of (meth) acrylic acid ester monomer having no alkoxysilyl group may be polymerized together.
  • the amount of the (meth) acrylic acid ester monomer having an alkoxysilyl group added to the reaction system in step 2b accounts for more than 3% by weight of the monomer mixture added to the reaction system in step 2b.
  • the (meth) acrylic acid copolymer (A1) which is a molecule having an XYX triblock structure, can be produced by undergoing an additional polymerization step (a) after the above-mentioned first step 1a and second a step. At this time, the first step a and the additional polymerization step (a) form an X block containing a relatively large amount of alkoxysilyl groups. Regarding this production method, the description of JP-A-2018-162394 can be referred to.
  • a (meth) acrylic acid ester monomer having an alkoxysilyl group is added to the reaction system after the second a step to polymerize.
  • the input amount of the (meth) acrylic acid ester monomer having an alkoxysilyl group can be 1 to 10 molar equivalents with respect to 1 molar equivalent of the polymer obtained in the second a step. Further, if necessary, 1 to 100 molar equivalents of (meth) acrylic acid ester monomer having no alkoxysilyl group may be polymerized together.
  • the amount of the (meth) acrylic acid ester monomer having an alkoxysilyl group added to the reaction system in the additional polymerization step (a) accounts for more than 3% by weight of the monomer mixture added to the reaction system in the step. ing.
  • the (meth) acrylic acid copolymer (A1) which is a molecule having a YXY triblock structure, can be produced by undergoing an additional polymerization step (b) after the above-mentioned first step and second b step. At this time, the second b step forms an X block containing a relatively large amount of alkoxysilyl groups.
  • a (meth) acrylic acid ester monomer having no alkoxysilyl group is added to the reaction system after the second b step to polymerize.
  • the input amount of the (meth) acrylic acid ester monomer having no alkoxysilyl group can be 2 to 600 molar equivalents with respect to 1 molar equivalent of the polymer obtained in the second b step.
  • a (meth) acrylic acid ester monomer having an alkoxysilyl group may be added to the reaction system.
  • the amount of the (meth) acrylic acid ester monomer having an alkoxysilyl group added to the reaction system in the additional polymerization step (b) accounts for 0 to 3% by weight of the monomer mixture added to the reaction system in the step. ..
  • the (meth) acrylic copolymer (A1) having four or more blocks can be produced.
  • a (meth) acrylic copolymer (A1) having an XYXY tetrapod structure can be produced.
  • the (meth) acrylic acid ester monomer having no alkoxysilyl group added as the (meth) acrylic acid ester monomer having no alkoxysilyl group is (based on the weight of all the monomers).
  • Meta) Acrylic ester monomer ( ⁇ ) is contained in an amount of 5 to 20% by weight.
  • halogen atoms may remain at one end or both ends (extended end of the molecular chain at the time of polymerization) of the molecule of the (meth) acrylic copolymer (A1). be.
  • the (meth) acrylic copolymer (A1) has, on average, one or more halogen atoms per extended end of the molecular chain during polymerization.
  • a living radical polymerization method of a vinyl-based monomer using ATRP or SET-LRP and using a transition metal or a transition metal complex (composed of a transition metal compound and a ligand) as a catalyst is able to.
  • RTCP which does not use transition metals as a catalyst can be mentioned.
  • living radical polymerization consists of the equilibrium of the following two reactions (as an example, the case of using a copper complex will be described).
  • the monovalent copper complex abstracts the halogen at the end of the polymer to generate radicals, and becomes a divalent copper complex.
  • the divalent copper complex becomes a monovalent copper complex by adding a halogen to the radical at the polymerization terminal.
  • living radical polymerization consists of the equilibrium of the following three reactions (as an example, the case of using a copper complex will be described).
  • the zero-valent metallic copper or copper complex abstracts the halogen at the end of the polymer to generate radicals, and becomes a divalent copper complex.
  • the divalent copper complex becomes a zero-valent copper complex by adding a halogen to the radical at the polymerization terminal.
  • the above-mentioned production method can also be interpreted as either living radical polymerization system, but the present invention does not particularly distinguish between the two. Any living radical polymerization system using a transition metal or a transition metal compound and a ligand as a catalyst is included in the scope of the present invention.
  • ARGET which is an improved synthesis method of ATRP, has also been reported (Macromolecules. 2006, 39, 39).
  • ARGET which is an improved synthesis method of ATRP, has also been reported (Macromolecules. 2006, 39, 39).
  • the high oxidation transition metal complex that causes the delay or termination of polymerization is reduced by using a reducing agent, so that the polymerization reaction can be rapidly advanced to a high reaction rate even under low catalytic conditions with few transition metal complexes. Can be made to.
  • This ARGET can also be adopted in the present invention.
  • the (meth) acrylic copolymer (A) is defined as the copolymer obtained by the above-mentioned production method. That is, the (meth) acrylic copolymer (A) can be a copolymer obtained by a production method including steps 1a and 2a, or steps 1b and 2b.
  • the (meth) acrylic copolymer (A) must be defined not as a specific structure of the copolymer molecule but as a copolymer obtained by the above-mentioned production method. May not be obtained.
  • agents that can be used in the production method according to the embodiment of the present invention will be individually described. Any of these agents may be used alone or in combination of two or more. Further, these agents themselves may be put into the polymerization system, or these agents may be produced in the polymerization system.
  • initiator a radical initiator having one halogen group in the molecule can be used.
  • initiators are ethyl 2-bromoisobutyrate, ethyl 2-bromobutyrate (also referred to as ethyl ⁇ -bromobutyrate), ethyl bromoacetate, methyl bromoacetate, (1-bromoethyl) benzene, allyl bromide, 2 -Methyl bromopropionate, methyl chloroacetate, methyl 2-chloropropionate, (1-chloroethyl) benzene can be mentioned.
  • ethyl 2-bromobutyrate From the viewpoint of easy availability, ethyl 2-bromobutyrate, (1-bromoethyl) benzene, and methyl chloroacetate are preferable. From the viewpoint of reactivity and safety, ethyl 2-bromobutyrate is preferable.
  • an initiator having an alkoxysilyl group may be used as the initiator.
  • an alkoxysilyl group may be introduced into the initiator before or after the polymerization reaction.
  • the (meth) acrylic copolymer (A) having an alkoxysilyl group at least at the terminal portion can be produced.
  • a metal complex having a group 7, group 8, group 9, group 10 or group 11 element in the periodic table as a central metal can be used. .. Among them, a metal complex having monovalent copper, divalent ruthenium, and divalent iron as the central metal is particularly preferable.
  • cuprous chloride cuprous bromide, cuprous iodide, cuprous cyanide, cuprous oxide, cuprous acetate, and cuprous perchlorate.
  • a copper compound is used as a polymerization catalyst, it is preferable to add an amine ligand to the polymerization system in order to enhance the catalytic activity.
  • a triphenylphosphine complex of divalent ruthenium chloride (RuCl 2 (PPh 3 ) 3 ) is also suitable as a catalyst.
  • this catalyst it is preferable to add an aluminum compound (trialkoxyaluminum or the like) to the polymerization system in order to enhance the catalytic activity.
  • a triphenylphosphine complex of divalent iron chloride FeCl 2 (PPh 3 ) 3
  • FeCl 2 (PPh 3 ) 3 is also suitable as a catalyst.
  • the copper catalyst is preferable because it is inexpensive. It is more preferable to use a polydentate amine and a copper catalyst in combination in order to increase the catalytic activity and increase the productivity.
  • polydentate amines that can be used as ligands include: Bidentate polydentate amines: 2,2-bipyridine, 4,4'-di- (5-nonyl) -2,2'-bipyridine, N- (n-propyl) pyridylmethaneimine, N- ( n-octyl) pyridylmethaneimine tridentate polydentate amines: N, N, N', N'', N''-pentamethyldiethylenetriamine, N-propyl-N, N-di (2-pyridylmethyl) ) Amine / tetradentate polydentate amines: hexamethyltris (2-aminoethyl) amine (Me 6 TREN), N, N-bis (2-dimethylaminoethyl) -N, N'-dimethylethylenediamine, 2, 5,9,12-T
  • Bases may be added to the polymerization system to neutralize the acids present or generated in the polymerization system and prevent acid accumulation.
  • bases include: -Monoamine: A monoamine refers to a compound having one site per molecule that acts as a base. Examples of monoamines include primary amines (methylamine, aniline, lysine, etc.), secondary amines (dimethylamine, piperidine, etc.), tertiary amines (trimethylamine, triethylamine, etc.), aromatic amines (pyridine, pyrrol, etc.), Ammonia can be mentioned.
  • -Polyamines examples include diamines (ethylenediamine, tetramethylethylenediamine, etc.), triamines (diethylenetriamine, pentamethyldiethylenetriamine, etc.), tetramines (triethylenetetramine, hexamethyltriethylenetetramine, hexamethylenetetramine, etc.), polyethyleneimine, etc. Can be mentioned.
  • -Inorganic base An inorganic base refers to a simple substance or a compound of an element belonging to Group 1 and Group 2 of the periodic table. Examples of elemental elements belonging to Group 1 and Group 2 of the periodic table include lithium, sodium, and calcium.
  • Examples of compounds of elements belonging to Group 1 and Group 2 of the Periodic Table are sodium methoxydo, potassium ethoxydo, methyllithium, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium hydrogencarbonate, ammonium hydrogencarbonate, phosphoric acid.
  • Examples include trisodium, disodium hydrogen phosphate, tripotassium phosphate, dipotassium hydrogen phosphate, sodium acetate, potassium acetate, sodium oxalate, potassium oxalate, phenoxysodium, phenoxypotassium, sodium ascorbate, and potassium ascorbate. ..
  • reducing agent In living radical polymerization using a copper complex as a catalyst, it is known that the polymerization activity is improved by using a reducing agent in combination (ARGET ATRP). In ARGET ATRP, it is considered that the polymerization activity is improved by reducing and reducing the highly oxidized transition metal complex (generated by coupling of radicals or the like) that causes the delay or termination of the polymerization reaction. This makes it possible to reduce the transition metal catalyst, which normally requires hundreds to thousands of ppm, to tens to hundreds of ppm. In the production method according to the embodiment of the present invention, a reducing agent can be used to have a reaction mechanism similar to that of ARGET ATRP. Examples of reducing agents include:
  • metals include alkali metals (lithium, sodium, potassium, etc.), alkaline earth metals (berylium, magnesium, calcium, barium, etc.), typical metals (aluminum, zinc, etc.), transition metals (copper, nickel, etc.). , Luthenium, iron, etc.). These metals can also be used in the form of alloys with mercury (amalgam).
  • metal compounds include metal salts and metal complexes. Examples of ligands coordinated to metal complexes include carbon monoxide, olefins, nitrogen-containing compounds, oxygen-containing compounds, phosphorus-containing compounds, and sulfur-containing compounds.
  • More specific examples include metal and ammonia / amine compounds, titanium trichloride, titanium alkoxide, chromium chloride, chromium sulfate, chromium acetate, iron chloride, copper chloride, copper bromide, tin chloride, zinc acetate, water.
  • -Organotin compounds Specific examples thereof include tin octylate, tin 2-ethylhexylate, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin mercaptide, dibutyltin thiocarboxylate, dibutyltin dimalate, and dioctyltinthiocarboxylate.
  • -Phosphorus or phosphorus compound Specific examples include phosphorus, trimethylphosphine, triethylphosphine, triphenylphosphine, trimethylphosphine, triethylphosphine, triphenylphosphine, hexamethylphosphorustriamide, and hexaethylphosphorustriamide. Can be mentioned.
  • -Sulfur or sulfur compounds Specific examples include sulfur, longalits, hydrosulfites, and thiourea dioxide.
  • Longarit refers to a formaldehyde derivative of sulfoxyphosphate and is represented by the general formula: MSO 2 ⁇ CH 2 O (in the formula, M is Na or Zn). Specific examples of Longarit include sodium formaldehyde sulfoxylate and zinc formaldehyde sulfoxylate.
  • Hydrosulfite refers to sodium hyposulfite and formaldehyde derivatives of sodium hyposulfite.
  • Reducing agent that generates acid when reducing copper complex (hydride reducing agent) -Metal hydride: Specific examples include sodium hydride, germanium hydride, tungsten hydride, and aluminum hydride (diisobutyl aluminum hydride, lithium aluminum hydride, sodium aluminum hydrogen, triethoxyaluminum hydride, bis hydride. (2-methoxyethoxy) sodium aluminum, etc.), Organic tin hydrides (triphenyltin hydride, tri-n-butyltin hydride, diphenyltin hydride, di-n-butyltin hydride, triethyltin hydride, trimethyl hydride (Suzu, etc.).
  • -Silicon hydride Specific examples thereof include trichlorosilane, trimethylsilane, triethylsilane, diphenylsilane, phenylsilane, and polymethylhydrosiloxane.
  • -Boron hydride Specific examples include borane, diborane, sodium borohydride, sodium trimethoxyborate hydride, sodium borohydride, sodium borohydride cyanide, lithium borohydride cyanide, lithium borohydride, lithium triethylborohydride, and hydrogen.
  • Examples thereof include tri-s-butylborone lithium borohydride, tri-t-butylborane borohydride lithium, calcium borohydride, potassium borohydride, zinc borohydride, and tetra-n-butylammonium borohydride.
  • -Nitrogen hydrogen compound Specific examples include hydrazine and diimide.
  • -Phosphorus or phosphorus compound Specific examples include phosphine and diazaphosphoren.
  • -Sulfur or sulfur compounds Specific examples include hydrogen sulfide.
  • -Organic compounds exhibiting a reducing action Specific examples include alcohols, aldehydes, phenols, and organic acid compounds.
  • Examples of alcohols include methanol, ethanol, propanol and isopropanol.
  • Examples of aldehydes include formaldehyde, acetaldehyde, benzaldehyde and formic acid.
  • Examples of phenols include phenol, hydroquinone, dibutylhydroxytoluene and tocopherol.
  • Examples of organic acid compounds include citric acid, oxalic acid, ascorbic acid, ascorbic acid salt, and ascorbic acid ester.
  • the reducing agent may be produced in the polymerization system by electrolytic reduction.
  • electrolytic reduction the electrons generated at the cathode directly (or after solvation) exhibit a reducing action. That is, the reducing agent may be produced by electrolysis.
  • solvent examples include the following. However, ATRP can be carried out under the condition that no solvent is used.
  • -Highly polar aprotonic solvent dimethylsulfoxide (DMSO), dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methylpyrrolidone-carbonate-based solvent: ethylene carbonate, propylene carbonate-alcohol-based solvent: methanol , Ethanol, propanol, isopropanol, n-butyl alcohol, tert-butyl alcohol / nitrile solvent: acetonitrile, propionitrile, benzonitrile / ketone solvent: acetone, methyl ethyl ketone, methyl isobutyl ketone / ether solvent: diethyl ether, tetrahydrofuran -Halogenized carbide solvent: methylene chloride, chloroform-ester solvent: ethyl
  • the reaction control and polymerization reaction are that the transition metal or transition metal compound, polydentate amine, base, reducing agent, monomer and initiator are uniform in the polymerization system. Preferred in terms of speed, ease of preparation and scale-up risk. Therefore, it is preferable to select a solvent that can dissolve these substances.
  • the curable composition according to one aspect of the present invention contains a polyoxyalkylene polymer (B) having an alkoxysilyl group.
  • the main chain structure of the polyoxyalkylene polymer (B) may be linear or branched. Further, it may be a mixture of molecules having these structures. Among these, a main chain derived from one or more selected from the group consisting of polyoxypropylene diol and polyoxypropylene triol is particularly preferable.
  • Examples of the main chain of the polyoxyalkylene polymer (B) include those having a repeating unit represented by the general formula (5) "-R 7- O-" (in the formula, R 7 is It is a divalent alkylene group).
  • “substantially” means that the repeating unit represented by the general formula (5) is 50% by weight or more (preferably 80% by weight) based on the total weight of the polyoxyalkylene polymer (B). (Above) It means that it is included.
  • R 7 in the general formula (5) is not particularly limited as long as it is a divalent alkylene group.
  • R 7 is preferably an alkylene group having 1 to 14 carbon atoms, and more preferably a linear or branched alkylene group having 2 to 4 carbon atoms.
  • the repeating unit represented by the general formula (5) is not particularly limited. Specific examples, -CH 2 O -, - CH 2 CH 2 O -, - CH 2 CH (CH 3) O -, - CH 2 CH (C 2 H 5) O -, - CH 2 C (CH 3 ) 2 O-, -CH 2 CH 2 CH 2 CH 2 O- can be mentioned.
  • the main chain of the main chain of the polyoxyalkylene polymer (B) is preferably polypropylene oxide composed of —CH 2 CH (CH 3) O—.
  • the polyoxyalkylene polymer (B) may contain a urethane bond or a urea bond in the main chain structure.
  • the number average molecular weight of the polyoxyalkylene polymer (B) is not particularly limited.
  • the number average molecular weight is preferably 5,000 or more, more preferably 5,000 to 50,000, and even more preferably 5,000 to 25,000.
  • the number average molecular weight can be measured, for example, by gel permeation chromatography.
  • the molecular structure of the polyoxyalkylene polymer (B) differs depending on the intended use and the intended properties.
  • the polyoxyalkylene polymer (B) the compound described in JP-A-63-112642 can be used.
  • Such a polyoxyalkylene polymer (B) can be synthesized by a usual polymerization method (anionic polymerization method using caustic alkali). Further, refer to cesium metal catalyst, porphyrin / aluminum complex catalyst (Japanese Patent Laid-Open No. 61-197631, JP-A-61-215622, JP-A-61-215623, JP-A-61-218632, etc.).
  • the molecular weight distribution (Mw / Mn) is 1.6 or less (preferably 1.5 or less, particularly preferable). 1.2 or less) can be obtained. It is preferable to use the polyoxyalkylene polymer (B) having a small molecular weight distribution because the viscosity of the curable composition can be reduced while maintaining low modulus and high elongation of the cured product.
  • the alkoxysilyl group contained in the polyoxyalkylene polymer (B) is not particularly limited.
  • it may be an alkoxysilyl group represented by the general formula (1) described in Section [1].
  • the alkoxysilyl group contained in the polyoxyalkylene polymer (B) may have the same structure as the alkoxysilyl group contained in the (meth) acrylic copolymer (A), or may have a different structure. It may be.
  • the number of alkoxysilyl groups contained in the polyoxyalkylene polymer (B) is preferably more than 0.5, more preferably 1.2 to 6.0, and 1.5 to 2 per molecule. .5 is more preferable. When the number of alkoxysilyl groups is in the above range, good curability can be imparted to the curable composition.
  • the alkoxysilyl group contained in the polyoxyalkylene polymer (B) is preferably located at at least one end of the molecule, and more preferably located at both ends of the molecule. If the alkoxysilyl group is located at the end of the molecule, good rubber elasticity can be given to the cured product. Even if the polyoxyalkylene polymer (B) in which the alkoxysilyl group is located at one end of the molecule and the polyoxyalkylene polymer (B) in which the alkoxysilyl group is located at both ends of the molecule are used in combination. good.
  • Method 1 An unsaturated group-containing oxyalkylene by reacting an oxyalkylene polymer having a functional group such as a hydroxyl group at the terminal with an organic compound having an active group and an unsaturated group exhibiting reactivity with this functional group. Obtain a polymer.
  • an unsaturated group-containing oxyalkylene polymer is obtained by copolymerizing an oxyalkylene polymer having a functional group such as a hydroxyl group at the terminal with an unsaturated group-containing epoxy compound. Then, a hydrosilane having an alkoxysilyl group is allowed to act on the obtained reaction product to hydrosilylate it.
  • Method 2 The unsaturated group-containing oxyalkylene polymer obtained in the same manner as in Method 1 is reacted with a compound having a mercapto group and an alkoxysilyl group.
  • Method 3 A compound having a Y'functional group and an alkoxysilyl group is reacted with an oxyalkylene polymer having a functional group of a Y functional group at the terminal.
  • the Y functional group is a hydroxyl group, an epoxy group, an isocyanate group, or the like.
  • the Y'functional group is a functional group that exhibits reactivity with the Y functional group.
  • Examples of compounds having a Y'functional group and an alkoxysilyl group that can be used in Method 3 include amino group-containing silanes ( ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ - (2-aminoethyl)).
  • the curable composition according to one aspect of the present invention contains a (meth) acrylic copolymer (A) having an alkoxysilyl group and a polyoxyalkylene-based polymer (B) having an alkoxysilyl group. There is. In addition, the curable composition may contain other additives.
  • the above composition can be produced by mixing the (meth) acrylic copolymer (A) and the polyoxyalkylene polymer (B).
  • the blending ratio of the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B) in the curable composition according to the embodiment of the present invention can be appropriately adjusted.
  • the blending ratio of the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B) is preferably (95/5) to (5/95) in terms of weight ratio, and is preferably (90/10). )-(10/90) is more preferable, and (80/20)-(20/80) is even more preferable.
  • the curable composition according to one embodiment of the present invention may contain various additives in addition to the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B). .. By containing these additives, the physical properties of the curable composition and the cured product can be adjusted. Examples of additives include: Only one kind of these additives may be used, or two or more kinds of these additives may be used in combination.
  • Tin-based curing catalyst The curable composition in the present invention can be crosslinked and cured by forming a siloxane bond using a known condensation catalyst.
  • a condensation catalyst is a tin-based curing catalyst.
  • Specific examples of tin-based curing catalysts include dialkyltin carboxylates (dibutyltin dilaurate, dibutyltin diacetate, dibutyltin diethylhexanolate, dibutyltin dioctate, dibutyltin dimethylmalate, dibutyltin diethylmalate, and dibutyltin dibutyl.
  • chelate compounds dibutyltin bisacetylacetonate, etc.
  • tin alcoholates are preferably highly active as silanol condensation catalysts. Further, it is preferable that dibutyltin dilaurate is less colored even when added to a curable composition, is inexpensive, and is easily available.
  • the blending amount of the tin-based curing catalyst is preferably 0.1 to 20 parts by weight, preferably 0, based on 100 parts by weight of the total amount of the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B). .5 to 10 parts by weight is more preferable.
  • An adhesiveness-imparting agent may be added to the curable composition according to the embodiment of the present invention.
  • the adhesive By adding the adhesive, the risk of the sealing material peeling from the adherend such as a siding board can be reduced (this peeling occurs when the joint width or the like fluctuates due to an external force). It may also eliminate the need to use primers to improve adhesion. In this case, simplification of construction work is expected.
  • an adhesive-imparting agent is a silane coupling agent.
  • the silane coupling agent include isocyanate group-containing silanes ( ⁇ -isocyanatepropyltrimethoxysilane, ⁇ -isocyanatepropyltriethoxysilane, ⁇ -isocyanatepropylmethyldiethoxysilane, ⁇ -isocyanatepropylmethyldimethoxysilane, etc.).
  • Amino group-containing isocyanates ( ⁇ -aminopropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropylmethyldimethoxysilane, ⁇ -aminopropylmethyldiethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -Aminopropyltrimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropylmethyldimethoxysilane, N- ( ⁇ -aminoethyl) - ⁇ -aminopropyltriethoxysilane, N- ( ⁇ -aminoethyl)- ⁇ -Aminopropylmethyldiethoxysilane, ⁇ -ureidopropyltrimethoxysilane, N-phenyl- ⁇ -aminopropyltrimethoxysilane, N-benzyl- ⁇ -a
  • silylated amino polymers silylated amino polymers, unsaturated aminosilane complexes, phenylamino long-chain alkylsilanes, aminosilylated silicones, silylated polyesters, and the like, which are derivatives obtained by modifying silane coupling agents, are also silane coupling agents. Can be used as.
  • the blending amount of the adhesiveness-imparting agent is preferably 0.1 to 20 parts by weight, preferably 0, based on 100 parts by weight of the total amount of the (meth) acrylic copolymer (A) and the polyoxyalkylene polymer (B). .5 to 10 parts by weight is more preferable.
  • the curable composition according to one embodiment of the present invention may contain a plasticizer.
  • the plasticizer and the filler described later are used in combination, the elongation of the cured product is increased and a large amount of the filler can be mixed.
  • plasticizers examples include phthalates (dibutylphthalate, diheptylphthalate, di (2-ethylhexyl) phthalate, diisodecylphthalate, butylbenzylphthalate, etc.); non-aromatic dibasic acid esters (dioctyl adipate, dioctyl ver).
  • epoxy plasticizers include epoxidized soybean oil, epoxidized linseed oil, di- (2-ethylhexyl) 4,5-epoxycyclohexane-1,2-dicarboxylate (E-PS), and epoxy. Examples include octyl stearate and epoxy butyl steerate. Among the above-mentioned epoxy plasticizers, E-PS is preferable. When a compound having an epoxy group is used as a plasticizer, the resilience of the cured product can be enhanced.
  • the acrylic plasticizer can be produced by a high-temperature continuous polymerization method without using a solvent and a chain transfer agent (US Pat. No. 4,414,370, JP-A-59-6207, JP-A-5-58805). , Japanese Patent Application Laid-Open No. 1-313522, US Pat. No. 5,010166).
  • Specific examples of acrylic plasticizers include ARUFON UP-1000, UP-1020, UP-1110 (above, manufactured by Toagosei Co., Ltd.), JDX-P1000, JDX-P1010, JDX-P1020 (above, Johnson Polymer (above, Johnson Polymer)). Made by Co., Ltd.).
  • an acrylic reactive plasticizer having an alkoxysilyl group may be used.
  • a specific example of such a plasticizer is ARFUON US-6100.
  • the amount of the plasticizer to be blended is preferably 5 to 800 parts by weight, preferably 10 to 600 parts by weight, based on 100 parts by weight of the total amount of the (meth) acrylic copolymer (A) and the polyoxyalkylene polymer (B). Is more preferable, and 10 to 500 parts by weight is further preferable.
  • the curable composition according to one embodiment of the present invention may contain a filler.
  • fillers are wood flour; reinforcing fillers (pulp, cotton chips, asbestos, mica, walnut shell powder, fir shell powder, graphite, white clay, silica (hummed silica, precipitated silica, crystalline silica, molten).
  • the blending amount of the filler is preferably 5 to 5000 parts by weight, preferably 10 to 2500 parts by weight, based on 100 parts by weight of the total amount of the (meth) acrylic copolymer (A) and the polyoxyalkylene polymer (B). More preferably, 15 to 1500 parts by weight is particularly preferable.
  • the curable composition according to one embodiment of the present invention may contain a physical property adjusting agent for adjusting the tensile properties of the cured product.
  • a physical property adjusting agent for adjusting the tensile properties of the cured product.
  • Examples of physical property adjusting agents include alkylalkoxysilanes (methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, n-propyltrimethoxysilane, etc.); alkylisopropenoxysilane (dimethyldiisopropenoxysilane, methyltri).
  • the blending amount of the physical property adjusting agent is preferably 0.1 to 80 parts by weight, preferably 0.1 to 80 parts by weight, based on 100 parts by weight of the total amount of the (meth) acrylic copolymer (A) and the polyoxyalkylene polymer (B). More preferably, 1 to 50 parts by weight.
  • the curable composition according to one embodiment of the present invention may contain a thixophilic imparting agent (anti-dripping agent) in order to prevent dripping and improve workability.
  • thixophilic imparting agent examples include polyamide waxes; hydrogenated castor oil derivatives; metal soaps (calcium stearate, aluminum stearate, barium stearate, etc.).
  • the blending amount of the thixophilicity-imparting agent is preferably 0.1 to 50 parts by weight, preferably 0, based on 100 parts by weight of the total amount of the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B). .2 to 25 parts by weight is more preferable.
  • the curable composition according to one embodiment of the present invention may contain a photocurable substance.
  • a photocurable substance is a substance that undergoes a chemical change in a short time by the action of light to cause a physical change (curing or the like). By containing a photocurable substance, the adhesiveness (residual tack) on the surface of the cured product can be reduced.
  • a typical photocurable substance can be cured by allowing it to stand at room temperature for one day, for example, in a sunny position in a room (near a window or the like).
  • Many known photocurable substances include organic monomers, oligomers, resins, and compositions containing these, and the types thereof are not particularly limited. Examples of photocurable substances include unsaturated acrylic compounds, vinyl chlorides, and azide resins.
  • unsaturated acrylic compounds include (meth) acrylic acid esters of low molecular weight alcohols (ethylene glycol, glycerin, trimethylolpropane, pentaerythritol, neopentyl alcohol, etc.); acids (bisphenol A, isocyanuric acid).
  • acrylic acid esters polymers having a main chain of polyether and a hydroxyl group at the end).
  • Polypoly polymer polyol obtained by radical polymerization of vinyl-based monomer in polyol whose main chain is polyether, polyester polyol whose main chain is polyester and has a hydroxyl group at the end, main chain is vinyl-based or (meth) acrylic-based Polycarbonate which is a copolymer and has a hydroxyl group in the main chain); Epoxyacrylate-based oligomers obtained by reacting an epoxy resin (bisphenol A type, novolak type, etc.) with (meth) acrylic acid; polyol, polyisocyanate , A urethane acrylate-based oligomer having a urethane bond and a (meth) acrylic group in the molecular chain obtained by reacting with a hydroxyl group-containing (meth) acrylate or the like.
  • Epoxyacrylate-based oligomers obtained by reacting an epoxy resin (bisphenol A type, novolak type, etc.) with (meth) acrylic acid
  • polyol, polyisocyanate
  • the blending amount of the photocurable substance is preferably 0.01 to 30 parts by weight with respect to 100 parts by weight of the total amount of the (meth) acrylic copolymer (A) and the polyoxyalkylene polymer (B).
  • the curable composition according to one embodiment of the present invention may contain an air oxidative curable substance.
  • the air oxidatively curable substance refers to a compound having an unsaturated group that can be crosslinked and cured by oxygen in the air.
  • the adhesiveness (residual tack) on the surface of the cured product can be reduced.
  • a typical air oxidatively curable substance can be cured by allowing it to stand indoors for one day, for example, in the air.
  • air oxidatively curable substances include drying oil (tung oil, flaxseed oil, etc.); various alkyd resins obtained by modifying the drying oil; acrylic polymers, epoxy resins, silicone resins, etc. are modified with the drying oil. Substances; 1,2-polybutadiene; 1,4-polybutadiene; polymers or copolymers of C5-C8 diene; polymers of C5-C8 diene or various modified products of copolymers (maleinized modified products, boiling oil) Modified products, etc.).
  • tung oil, a liquid diene polymer and a modified product thereof are preferable.
  • the blending amount of the air oxidatively curable substance is preferably 0.01 to 30 parts by weight with respect to 100 parts by weight of the total amount of the (meth) acrylic copolymer (A) and the polyoxyalkylene polymer (B).
  • the curable composition according to one embodiment of the present invention may contain an antioxidant and / or a light stabilizer.
  • an antioxidant and / or a light stabilizer Various kinds of antioxidants and light stabilizers are known. For example, [Kenichi Saruwatari et al., "Handbook of Antioxidants” Taiseisha, 1976] [Supervised by Zenjiro Osawa, “Deterioration and Stabilization of Polymer Materials", CMC, 1990, pp. 235-242] Can be mentioned.
  • antioxidants examples include thioether-based antioxidants such as Adecastab PEP-36 and Adecastab AO-23 (all manufactured by Asahi Denka Kogyo); Irgafos38, Irgafos168, IrgafosP-EPQ (all Ciba Specialty Chemicals). ), Etc. Phosphorus-based antioxidants; hindered phenol-based antioxidants; Among the above, hindered phenolic antioxidants are preferred.
  • hindered phenolic antioxidants include 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-ethylphenol, mono (or di or tri).
  • ( ⁇ -Methylbenzyl) phenol 2,2'-methylenebis (4 ethyl-6-t-butylphenol), 2,2'-methylenebis (4methyl-6-t-butylphenol), 4,4'-butylidenebis (3-) Methyl-6-t-butylphenol), 4,4'-thiobis (3-methyl-6-t-butylphenol), 2,5-di-t-butylhydroquinone, 2,5-di-t-amylhydroquinone, tri Ethyleneglycol-bis- [3- (3-t-butyl-5-methyl-4hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-) Hydroxyphen
  • antioxidants examples include Nocrack 200, Nocrack M-17, Nocrack SP, Nocrack SP-N, Nocrack NS-5, Nocrack NS-6, Nocrack NS-30, Nocrack 300, Nocrack NS-7.
  • Nocrack DAH (all manufactured by Ouchi Shinko Kagaku Kogyo); Adekastab AO-30, Adekastab AO-40, Adekastab AO-50, Adekastab AO-60, Adekastab AO-616, Adekastab AO-635, Adekastab AO-658, Adekastab AO-80, Adekastab AO-15, Adekastab AO-18, Adekastab 328, Adekastab AO-37 (all manufactured by Asahi Denka Kogyo); IRGANOX-245, IRGANOX-259, IRGANOX-565, IRGANOX-1010, IRGANOX- 1024, IRGANOX-1035, IRGANOX-1076, IRGANOX-1081, IRGANOX-1098, IRGANOX-1222, IRGANOX-1330, IRGANOX-1425WL (all manufactured by Ciba Specialty Chemicals); , All made by Sumito
  • light stabilizers include benzotriazole compounds such as UV absorbers (Tinubin P, Tinubin 234, Tinubin 320, Tinubin 326, Tinubin 327, Tinubin 329, Tinubin 213 (all manufactured by Ciba Specialty Chemicals); Examples thereof include triazine-based photostabilizers such as tinuvin 1577; benzophenone-based compounds such as CHIMASSORB81; benzoate-based compounds such as tinubin 120 (manufactured by Ciba Specialty Chemicals); hindered amine-based compounds). Among the above, hindered amine compounds are preferable.
  • hindered amine compound examples include dimethyl-1- (2-hydroxyethyl) succinate-4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, poly [ ⁇ 6- (1,1). , 3,3-Tetramethylbutyl) Amino-1,3,5-triazine-2,4-diyl ⁇ ⁇ (2,2,6,6-tetramethyl-4-piperidyl) imino ⁇ ], N, N' -Bis (3 aminopropyl) ethylenediamine-2,4-bis [N-butyl-N- (1,2,2,6,6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5 -Triazine condensate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis succinate (2,2,6,6-tetramethyl-4-piperidinyl) ester can be mentioned.
  • Examples of commercially available light stabilizers include Cibabin 622LD, Chinubin 144, CHIMASSORB944LD, CHIMASORB119FL; (all manufactured by Ciba Specialty Chemicals), Adecastab LA-52, Adecastab LA-57, Adecastab LA-62, Adecastab.
  • Antioxidants and light stabilizers may be used in combination. By using these in combination, the respective effects may be further improved, and the heat resistance, weather resistance, etc. of the cured product may be improved.
  • an ultraviolet absorber and a hindered amine compound (HALS) can be combined to improve weather resistance. This combination is preferable because the effect of each drug can be further improved.
  • the blending amount of the antioxidant and / or the light stabilizer is 0.1 to 100 parts by weight, respectively, with respect to 100 parts by weight of the total amount of the (meth) acrylic copolymer (A) and the polyoxyalkylene polymer (B). 20 parts by weight is preferable.
  • the curable composition according to one embodiment of the present invention may be a one-component type or a two-component type.
  • the one-component curable composition is a composition in which all the ingredients are mixed in advance and then sealed and stored.
  • the one-component curable composition is cured by moisture in the air after use.
  • a curing agent containing components such as a curing catalyst, a filler, a plasticizer, and water is separately prepared.
  • the two-component curable composition is used by mixing a curing agent and a main agent containing a (meth) acrylic copolymer (A) and / or a (meth) acrylic copolymer (A1).
  • the two-component curable composition may contain an agent (coloring agent, etc.) other than the main agent and the curing agent.
  • the curable composition When the curable composition is prepared as a two-component type, a colorant can be further added when the two components are mixed. This makes it possible to provide a sealant having a wide variety of colors to match the color of the siding board, for example, from a limited variety of curable compositions. Therefore, the two-component curable composition can easily meet the market demand for multicoloring, and is suitable for low-rise building applications and the like.
  • the colorant for example, a pigment, a plasticizer, and a filler mixed with a filler as needed to form a paste are preferable because of their high workability.
  • a retarder can be added when the two components are mixed. As a result, the curing speed can be finely adjusted at the work site.
  • the use of the curable composition and the cured product according to the embodiment of the present invention is not particularly limited.
  • building and industrial sealing materials high durability building elastic sealing materials used for working joints, siding board sealing materials, multi-layer glass sealing materials, vehicle sealing materials, etc.
  • electricity ⁇ Electronic component materials solar cell backside sealants, etc.
  • electrical insulation materials electrical wire / cable insulation coating materials, etc.
  • Anti-rust / waterproof sealing material, anti-vibration / anti-vibration / soundproof / seismic isolation material used for automobiles, ships, home appliances, etc.
  • liquid sealant automobile parts, electrical parts, various mechanical parts
  • waterproofing agents can be
  • the curable composition and the cured product according to the embodiment of the present invention are particularly useful as a sealing material and an adhesive.
  • it is useful for applications that require weather resistance or durability, or applications that require transparency.
  • the curable composition and the cured product according to the embodiment of the present invention are excellent in weather resistance and adhesiveness, they can be used in an outer wall tile bonding method without joint filling.
  • it is useful for bonding materials having different coefficients of linear expansion and for bonding elastic adhesives used for bonding members that are repeatedly displaced by a heat cycle.
  • it is also useful as a coating agent for applications where the base can be seen by utilizing transparency, and as an adhesive used for bonding transparent materials (glass, polycarbonate, methacrylic resin, etc.).
  • a curable composition comprising a (meth) acrylic copolymer (A) having an alkoxysilyl group and a polyoxyalkylene-based polymer (B) having an alkoxysilyl group.
  • the (meth) acrylic copolymer (A) randomly contains a repeating unit derived from the (meth) acrylic acid ester monomer ( ⁇ ).
  • the (meth) acrylic acid ester monomer ( ⁇ ) has an alkyl group ester-bonded to (meth) acrylic acid, and the alkyl group has an alkoxy group having 1 to 5 carbon atoms.
  • the repeating unit derived from the (meth) acrylic acid ester monomer ( ⁇ ) is contained in an amount of 5 to 20% by weight based on the weight of all the repeating units contained in the (meth) acrylic copolymer (A).
  • the (meth) acrylic acid ester monomer ( ⁇ ) has 1 to 5 carbon atoms in the alkyl group ester-bonded to the (meth) acrylic acid.
  • the (meth) acrylic acid ester monomer ( ⁇ ) has an alkyl group ester-bonded to (meth) acrylic acid having 6 to 15 carbon atoms.
  • the (meth) acrylic acid ester monomer ( ⁇ ) has 16 to 25 carbon atoms of the alkyl ester-bonded to the (meth) acrylic acid.
  • ⁇ 3> The curable composition according to ⁇ 1> or ⁇ 2>, wherein the molecular weight distribution (Mw / Mn) of the (meth) acrylic copolymer (A) is 1.8 or less.
  • the molecule of the (meth) acrylic copolymer (A) is a (meth) acrylic copolymer (A1) containing an XY diblock structure or an XYX triblock structure having an X block and a Y block in the molecule.
  • the number of repeating units derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the X block is 1.0 or more on average.
  • the repeating unit derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the Y block is 0 to 3% by weight based on the weight of all the repeating units contained in the Y block.
  • the repeating unit derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the X block is more than 3% by weight based on the weight of all the repeating units contained in the X block.
  • the (meth) acrylic acid ester monomer ( ⁇ ) includes pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, octadecyl (meth) acrylate, icosyl (meth) acrylate and (meth).
  • the curable composition according to ⁇ 2> which is one or more selected from the group consisting of docosil acrylate.
  • the number of alkoxysilyl groups contained in the (meth) acrylic copolymer (A) is 1.0 to 10.0 on average as a whole molecule, of ⁇ 1> to ⁇ 7>.
  • the curable composition according to any one. ⁇ 9> The curable composition according to any one of ⁇ 1> to ⁇ 8>, wherein the polyoxyalkylene polymer (B) has a number average molecular weight of 5,000 to 50,000.
  • the compounding ratio of the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B) is (95/5) to (5/95) by weight, ⁇ 1> to The curable composition according to any one of ⁇ 9>.
  • ⁇ 11> The curable composition according to any one of ⁇ 1> to ⁇ 10>, which satisfies the following conditions (a) and / or (b): Condition (a): The viscosity of the (meth) acrylic copolymer (A) measured at 23 ° C. is 200 Pa ⁇ s or less; Condition (b): The viscosity of the curable composition measured at 23 ° C. is 55 Pa ⁇ s or less.
  • ⁇ 12> A cured product obtained by curing the curable composition according to any one of ⁇ 1> to ⁇ 11>.
  • ⁇ 13> A sealant or adhesive containing the curable composition according to any one of ⁇ 1> to ⁇ 11> or the cured product according to ⁇ 12>.
  • the method for producing a curable composition according to ⁇ 1> A step of polymerizing the above (meth) acrylic copolymer (A) by a living polymerization method, and A step of mixing the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B), Manufacturing method, including.
  • the step of polymerizing the (meth) acrylic copolymer (A) by the living radical polymerization method includes a step of polymerizing the (meth) acrylic copolymer (A) by the living radical polymerization method, according to ⁇ 14>.
  • the present invention also includes the following aspects.
  • ⁇ 1a> In the curable composition, the total weight of the repeating units derived from the (meth) acrylic acid ester monomer contained in the (meth) acrylic copolymer (A) is the (meth) acrylic copolymer. It may be 90% by weight or more based on the weight of all the repeating units contained in (A).
  • the (meth) acrylate monomer ( ⁇ ) In the curable composition, the (meth) acrylate monomer ( ⁇ ) may be butyl acrylate.
  • the (meth) acrylic acid ester monomer ( ⁇ ) may be one or more selected from the group consisting of 2-ethylhexyl acrylate and dodecyl acrylate.
  • the (meth) acrylic acid ester monomer ( ⁇ ) may be octadecyl acrylate.
  • the number average molecular weight of the (meth) acrylic copolymer (A) measured by gel permeation chromatography may be 30,000 or more.
  • the compounding ratio of the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B) is (95/5) to (5/95). You may.
  • one or more selected from the group consisting of the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B) is the following general formula (1). It may have an alkoxysilyl group represented by: -[Si (R 1 ) 2-b (Y) b O] m -Si (R 2 ) 3-a (Y) a (1) (During the ceremony, R 1 and R 2 are independently an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, a methoxymethyl group, or (R') 3 SiO-.
  • R' is a triorganosyloxy group indicated by R'is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the three R'existing may be the same or different.
  • R 1 or R 2 there are two or more the R 1 or R 2 can be identical or different
  • Y is an alkoxy group having 1 to 20 carbon atoms.
  • the Ys may be the same or different.
  • a is 0, 1, 2 or 3
  • b is 0, 1 or 2
  • m is an integer from 0 to 19 and a + mb ⁇ 1).
  • Method for producing (meth) acrylic copolymer (A) by atom transfer radical polymerization which comprises the following steps: (I) 1 to 10 molar equivalents of a (meth) acrylic acid ester monomer having an alkoxysilyl group and no alkoxysilyl group with respect to 1 molar equivalent of an initiator having one halogen group in the molecule.
  • pentamethyldiethylenetriamine was appropriately added to adjust the polymerization rate.
  • the total amount of pentamethyldiethylenetriamine used in the whole polymerization reaction was 1.49 g.
  • the temperature of the reaction system tended to rise due to the heat of reaction, but the temperature of the reaction system was adjusted to about 80 ° C. to about 90 ° C.
  • the monomer conversion rate polymerization reaction rate
  • the volatile matter was removed by devolatile under reduced pressure to obtain a polymer concentrate. The time required to reach this stage was 5 hours.
  • 1,7-octadiene 189.85 g of 1,7-octadiene, 354.94 g of acetonitrile, and 2.99 g of pentamethyldiethylenetriamine were added.
  • 1,7-octadiene was reacted at the end of the polymer by heating and stirring for 4 hours while adjusting the temperature of the reaction system to about 80 ° C. to about 90 ° C.
  • an oxygen-nitrogen mixed gas was introduced into the gas phase part in the reaction vessel.
  • the reaction solution was heated and stirred for 4 hours to bring the polymerization catalyst contained in the reaction solution into contact with oxygen.
  • acetonitrile and unreacted 1,7-octadien were removed by volatilization under reduced pressure to obtain a polymer concentrate. The time required for the process up to this point was 6 hours.
  • the filtrate was placed in a stainless steel reaction vessel equipped with a stirrer, and adsorbents (Kyoward 700SEN-S and Kyoward 500SH) were added.
  • adsorbents Kelco 700SEN-S and Kyoward 500SH
  • an oxygen-nitrogen mixed gas was introduced into the gas phase portion in the reaction vessel, and the mixture was heated and stirred at about 100 ° C. for 1 hour.
  • insoluble components adsorbents and the like
  • the filtrate was concentrated to obtain a crude polymer product.
  • a heat stabilizer (Smilizer GS: manufactured by Sumitomo Chemical Co., Ltd.) and an adsorbent (Kyoward 700SEN-S, Kyoward 500SH) were added to the crude polymer product.
  • the temperature of the system was raised, and the crude polymer product was adsorbed and purified by heating, stirring, and devolatile under reduced pressure at a high temperature of about 170 ° C. to about 200 ° C. for about 2 hours.
  • 10 times the amount of butyl acetate was added to the polymer for dilution, and adsorbents (Kyoward 700SEN and Kyoward 500SH) were added.
  • the gas phase portion in the reaction vessel was set to an oxygen-nitrogen mixed gas atmosphere, and the adsorption purification was continued by heating and stirring at a high temperature of about 170 ° C. to about 200 ° C. for about 4 hours.
  • the polymer was diluted with 90 times the amount of butyl acetate and then filtered to remove the adsorbent. The filtrate was concentrated to give a polymer having alkenyl groups at both ends.
  • the polymerization reaction was started by continuously dropping an ascorbic acid solution.
  • the dropping rate of the ascorbic acid solution at this time was the rate at which 3 mg of ascorbic acid was added to the polymerization system per hour.
  • the solvent was devolatile.
  • a diaphragm pump was used first, and then a vacuum pump was used. After the volatilization was completed, the jacket was cooled to 60 ° C. or lower.
  • Examples 1 to 4, Comparative Examples 1 and 2 The physical characteristics of the (meth) acrylic copolymers obtained in Production Examples 1 to 6 were evaluated. In addition, the physical properties of a curable composition containing a (meth) acrylic copolymer and a polyoxyalkylene-based polymer (B) and a cured product obtained by curing the curable composition were also evaluated.
  • the (meth) acrylic copolymers (A) evaluated in Examples 1 to 4 were produced in Production Examples 1 to 4, respectively.
  • the (meth) acrylic copolymers evaluated in Comparative Examples 1 and 2 were produced in Production Examples 5 and 6, respectively.
  • the viscosity of the (meth) acrylic copolymer was measured at 23 ° C. using a viscometer (VISCOMETER TV-25 manufactured by Toki Sangyo Co., Ltd., 3 ° ⁇ R14 cone rotor, 1 rpm). The measurement is JIS K This was done in accordance with 7117-2. The amount of sample used for the measurement was 0.4 mL. The results are shown in Table 2.
  • a curable composition was prepared by mixing a (meth) acrylic copolymer and a polyoxyalkylene-based polymer (B).
  • a polyoxyalkylene-based polymer B
  • SAX220 manufactured by Kaneka Corporation
  • the mixing ratio of the two was 50:50 by weight.
  • the viscosity of the curable composition was measured at 23 ° C. using a viscometer (VISCOMETER TV-25 manufactured by Toki Sangyo Co., Ltd., 3 ° ⁇ R14 cone rotor, 1 rpm). The measurement was performed in accordance with JIS K 7117-2. The amount of sample used for the measurement was 0.4 mL. The results are shown in Table 2.
  • the (meth) acrylic copolymer (A) according to Examples 1 to 4 has a significantly lower viscosity of the copolymer itself than the (meth) acrylic copolymer according to Comparative Examples 1 and 2.
  • the viscosity of the curable composition was also reduced. This suggests that the viscosity of the copolymer itself and the viscosity of the curable composition can be reduced by randomly including a predetermined ratio of repeating units derived from the (meth) acrylic acid ester monomer ( ⁇ ). ..
  • the (meth) acrylic copolymer (A) according to Examples 1 to 4 had good compatibility with the polyoxyalkylene-based polymer (B) and good mechanical properties of the cured product.
  • a copolymer was produced by the same method as in Production Example 2 except that 3- (dimethoxymethylsilyl) propyl methacrylate was used as the alkoxysilyl group-containing monomer.
  • the copolymer according to Production Example 7 is a (meth) acrylic copolymer (A1) because it contains a unit derived from the (meth) acrylic acid ester monomer ( ⁇ ).
  • the copolymer according to Production Example 8 does not contain a unit derived from the (meth) acrylic acid ester monomer ( ⁇ ).
  • the specific composition of the (meth) acrylic monomer mixture B is as shown in Table 3.
  • Example 5 Comparative Example 3
  • the physical characteristics of the (meth) acrylic copolymers obtained in Production Examples 7 and 8 were evaluated.
  • the physical characteristics of the cured product obtained by curing the (meth) acrylic copolymer were also evaluated (note that this cured product does not contain the polyoxyalkylene copolymer (B)).
  • the results are shown in Table 4.
  • the (meth) acrylic copolymer (A) evaluated in Example 5 was produced in Production Example 7.
  • the (meth) acrylic copolymer evaluated in Comparative Example 3 was produced in Production Example 8.
  • the present invention can be used as a sealing material, an adhesive, and the like.

Abstract

Provided is a curable composition the viscosity of which is lowered. A curable composition according to one mode of the present invention contains a (meth)acrylic copolymer (A) having an alkoxysilyl group and a polyoxyalkylene polymer (B) having an alkoxysilyl group. The (meth)acrylic copolymer (A) randomly includes a repeating unit derived from a (meth)acrylic acid ester monomer (α). The (meth)acrylic acid ester monomer (α) has an alkyl group forming an ester bond with a (meth)acrylic acid. Said alkyl group has an alkoxy group having 1-5 carbon atoms. The repeating unit derived from the (meth)acrylic acid ester monomer (α) accounts for 5-20 wt% with respect to the weight of all repeating units included in the (meth)acrylic copolymer (A).

Description

硬化性組成物および硬化物Curable composition and cured product
 本発明は、硬化性組成物および硬化物に関する。 The present invention relates to a curable composition and a cured product.
 アルコキシシリル基を有する重合体分子は、当該アルコキシシリル基が加水分解することにより、他の重合体分子との間でシロキサン結合を形成する。そして、この架橋反応によって、ゴム状の硬化物が得られることが知られている。この特徴を利用して、アルコキシシリル基を有する重合体は、シーリング材、接着剤、塗料などの広汎な用途に使用されている。 A polymer molecule having an alkoxysilyl group forms a siloxane bond with another polymer molecule by hydrolyzing the alkoxysilyl group. It is known that a rubber-like cured product can be obtained by this cross-linking reaction. Taking advantage of this feature, polymers having an alkoxysilyl group are used in a wide range of applications such as sealants, adhesives and paints.
 このような重合体の一例として、アルコキシシリル基を有するポリオキシアルキレン系重合体が挙げられる。アルコキシシリル基を有するポリオキシアルキレン系重合体を含む硬化性組成物は、作業性が良好であり、破断伸びや破断強度などの機械的物性のバランスにも優れている。しかし、ポリオキシアルキレン系重合体は、老化防止剤を使用しないと、3級炭素に結合した水素原子が酸化されやすい。そのため、硬化性組成物の耐候性が悪くなるという問題があった。 An example of such a polymer is a polyoxyalkylene polymer having an alkoxysilyl group. The curable composition containing a polyoxyalkylene polymer having an alkoxysilyl group has good workability and an excellent balance of mechanical properties such as elongation at break and strength at break. However, in the polyoxyalkylene polymer, the hydrogen atom bonded to the tertiary carbon is easily oxidized unless an antioxidant is used. Therefore, there is a problem that the weather resistance of the curable composition is deteriorated.
 この問題を解決するために、アルコキシシリル基を有するポリオキシアルキレン系重合体に、アルコキシシリル基を有する(メタ)アクリル系共重合体を混合した硬化性組成物が提案されている。例えば、特許文献1には、アルコキシシリル基を有するビニル重合体(A)、末端にアルコキシシリル基を有するポリオキシアルキレン化合物(B)、および、特定分子量のポリプロピレングリコール(C1)またはアルコキシシリル基を有していないビニル重合体(C2)を含有するシーリング材組成物が開示されている。特許文献2には、(A)アルコキシシリル基を有するオキシアルキレン重合体、および、(B)架橋性官能基を有する特定のビニル重合体を含むシーリング材組成物が開示されている。特許文献3には、加水分解性シリル基を有する(メタ)アクリル酸エステル単量体を構成単量体に含む特定のビニル重合体、および、加水分解性シリル基含有オキシアルキレン系重合体を含んでなる硬化性樹脂組成物が開示されている。特許文献4には、数平均分子量が10000以上のポリエーテル系重合体(I)、および、架橋性官能基を重合体末端に少なくとも1個有するビニル系重合体(II)を含有する硬化性組成物が開示されている。 In order to solve this problem, a curable composition in which a polyoxyalkylene-based polymer having an alkoxysilyl group is mixed with a (meth) acrylic copolymer having an alkoxysilyl group has been proposed. For example, Patent Document 1 describes a vinyl polymer (A) having an alkoxysilyl group, a polyoxyalkylene compound (B) having an alkoxysilyl group at the terminal, and a polypropylene glycol (C1) having a specific molecular weight or an alkoxysilyl group. A sealant composition containing a vinyl polymer (C2) that does not have it is disclosed. Patent Document 2 discloses a sealing material composition containing (A) an oxyalkylene polymer having an alkoxysilyl group and (B) a specific vinyl polymer having a crosslinkable functional group. Patent Document 3 includes a specific vinyl polymer containing a (meth) acrylic acid ester monomer having a hydrolyzable silyl group as a constituent monomer, and a hydrolyzable silyl group-containing oxyalkylene polymer. A curable resin composition comprising the above is disclosed. Patent Document 4 describes a curable composition containing a polyether polymer (I) having a number average molecular weight of 10,000 or more and a vinyl polymer (II) having at least one crosslinkable functional group at the end of the polymer. The thing is disclosed.
日本国公開特許公報「特開2004-018748号」Japanese Patent Publication "Japanese Patent Laid-Open No. 2004-018748" 国際公開第2008/059872号パンフレットInternational Publication No. 2008/059872 Pamphlet 日本国公開特許公報「特開2014-118502号」Japanese Patent Publication "Japanese Patent Laid-Open No. 2014-118502" 国際公開第2005/095492号パンフレットInternational Publication No. 2005/095492 Pamphlet
 特許文献1~4に開示されている組成物には、粘度に関して改善の余地があった。すなわち、これらの組成物の粘度をさらに低下させることにより、作業性を向上させる余地が残されていた。 The compositions disclosed in Patent Documents 1 to 4 had room for improvement in terms of viscosity. That is, there is room for improving workability by further reducing the viscosity of these compositions.
 本発明の一態様は、粘度を低下させた硬化性組成物を提供することを目的とする。 One aspect of the present invention is to provide a curable composition having a reduced viscosity.
 上記の課題を解決するために、本発明の一態様に係る硬化性組成物は、
 アルコキシシリル基を有する(メタ)アクリル系共重合体(A)と、アルコキシシリル基を有するポリオキシアルキレン系重合体(B)と、を含む硬化性組成物であって、
 上記(メタ)アクリル系共重合体(A)は、(メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位をランダムに含んでおり、
  上記(メタ)アクリル酸エステルモノマー(α)は、(メタ)アクリル酸とエステル結合しているアルキル基を有しており、かつ、上記アルキル基は炭素数が1~5のアルコキシ基を有しており、
  上記(メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位は、上記(メタ)アクリル系共重合体(A)に含まれている全ての繰り返し単位の重量を基準として、5~20重量%含まれている。
In order to solve the above problems, the curable composition according to one aspect of the present invention may be used.
A curable composition comprising a (meth) acrylic copolymer (A) having an alkoxysilyl group and a polyoxyalkylene-based polymer (B) having an alkoxysilyl group.
The (meth) acrylic copolymer (A) randomly contains a repeating unit derived from the (meth) acrylic acid ester monomer (α).
The (meth) acrylic acid ester monomer (α) has an alkyl group ester-bonded to (meth) acrylic acid, and the alkyl group has an alkoxy group having 1 to 5 carbon atoms. And
The repeating unit derived from the (meth) acrylic acid ester monomer (α) is contained in an amount of 5 to 20% by weight based on the weight of all the repeating units contained in the (meth) acrylic copolymer (A). It has been.
 本発明の一態様によれば、粘度を低下させた硬化性組成物を提供できる。 According to one aspect of the present invention, it is possible to provide a curable composition having a reduced viscosity.
 以下、本発明の実施の形態の一例について詳細に説明するが、本発明は、これらに限定されない。 Hereinafter, an example of the embodiment of the present invention will be described in detail, but the present invention is not limited thereto.
 本明細書において特記しない限り、数値範囲を表す「A~B」は、「A以上、B以下」を意味する。本明細書において、「(メタ)アクリル」とは、「アクリル」および/または「メタアクリル」を意味する。 Unless otherwise specified in the present specification, "AB" representing a numerical range means "A or more, B or less". As used herein, the term "(meth) acrylic" means "acrylic" and / or "methacryl".
 〔1.アルコキシシリル基を有する(メタ)アクリル系共重合体(A)〕
 本発明の一態様に係る硬化性組成物は、アルコキシシリル基を有する(メタ)アクリル系共重合体(A)を含んでいる。この(メタ)アクリル系共重合体(A)は、(メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位をランダムに含んでいる。この(メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位は、(メタ)アクリル系共重合体(A)に含まれている全ての繰り返し単位の重量を基準として、5~20重量%含まれている(この値には臨界的意義が存在する)。ここで、(メタ)アクリル酸エステルモノマー(α)とは、(メタ)アクリル酸とエステル結合しているアルキル基を有しており、かつ、上記アルキル基は炭素数が1~5のアルコキシ基を有しているモノマーのことである。好ましくは、アクリル酸とエステル結合しているアルキル基の炭素数は、1~5である。
[1. (Meta) acrylic copolymer having an alkoxysilyl group (A)]
The curable composition according to one aspect of the present invention contains a (meth) acrylic copolymer (A) having an alkoxysilyl group. This (meth) acrylic copolymer (A) randomly contains a repeating unit derived from the (meth) acrylic acid ester monomer (α). The repeating unit derived from the (meth) acrylic acid ester monomer (α) is contained in an amount of 5 to 20% by weight based on the weight of all the repeating units contained in the (meth) acrylic copolymer (A). (This value has a critical significance). Here, the (meth) acrylic acid ester monomer (α) has an alkyl group ester-bonded to (meth) acrylic acid, and the alkyl group is an alkoxy group having 1 to 5 carbon atoms. It is a monomer having. Preferably, the alkyl group ester-bonded with acrylic acid has 1 to 5 carbon atoms.
 (メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位の含有率の下限値は、(メタ)アクリル系共重合体(A)に含まれている全ての繰り返し単位の重量を基準として、6重量%以上、7重量%以上、8重量%以上、9重量%以上または10重量%以上であることがより好ましい。(メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位の含有率の上限値は、(メタ)アクリル系共重合体(A)に含まれている全ての繰り返し単位の重量を基準として、19重量%以下または18重量%以下であることがより好ましい。 The lower limit of the content of the repeating unit derived from the (meth) acrylic acid ester monomer (α) is 6 weights based on the weight of all the repeating units contained in the (meth) acrylic copolymer (A). % Or more, 7% by weight or more, 8% by weight or more, 9% by weight or more, or 10% by weight or more is more preferable. The upper limit of the content of the repeating unit derived from the (meth) acrylic acid ester monomer (α) is 19 weight based on the weight of all the repeating units contained in the (meth) acrylic copolymer (A). More preferably, it is less than or equal to% or 18% by weight or less.
 (メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位がランダムに含まれており、その含有率が上述の範囲であれば、(メタ)アクリル系共重合体(A)自体の粘度、および(メタ)アクリル系共重合体(A)を含む硬化性組成物の粘度を低減させることができる。23℃において測定した(メタ)アクリル系共重合体(A)自体の粘度は、200Pa・s以下が好ましく、150Pa・s以下が好ましく、130Pa・s以下がより好ましい。粘度は、適切な粘度計によって測定できる。また、23℃において測定した硬化性組成物の粘度は、55Pa・s以下が好ましく、53Pa・s以下がより好ましい。 If the repeating unit derived from the (meth) acrylic acid ester monomer (α) is randomly contained and the content is within the above range, the viscosity of the (meth) acrylic copolymer (A) itself and ( The viscosity of the curable composition containing the meta) acrylic copolymer (A) can be reduced. The viscosity of the (meth) acrylic copolymer (A) itself measured at 23 ° C. is preferably 200 Pa · s or less, preferably 150 Pa · s or less, and more preferably 130 Pa · s or less. Viscosity can be measured with a suitable viscometer. The viscosity of the curable composition measured at 23 ° C. is preferably 55 Pa · s or less, more preferably 53 Pa · s or less.
 また、(メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位の含有率が上記の範囲ならば、(メタ)アクリル系共重合体(A)とアルコキシシリル基を有するポリオキシアルキレン系重合体(B)との相溶性が高くなる。したがって、良好な性質の硬化性組成物および硬化物を得ることができる。 If the content of the repeating unit derived from the (meth) acrylic acid ester monomer (α) is within the above range, the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer having an alkoxysilyl group (meth) The compatibility with B) is high. Therefore, a curable composition and a cured product having good properties can be obtained.
 (メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位がランダムに含まれていない場合には、(メタ)アクリル系共重合体(A)自体の粘度や、ポリオキシアルキレン系重合体(B)との相溶性に悪影響が出る場合がある。この悪影響には、(メタ)アクリル酸エステルモノマー(α)と、その他のモノマーとの極性の違いが原因していると考えられる。(メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位がランダムに含まれていない重合体の例としては、(メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位が主鎖の主成分である重合体、(メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位をブロックで有している重合体が挙げられる。 When the repeating unit derived from the (meth) acrylic acid ester monomer (α) is not randomly contained, the viscosity of the (meth) acrylic copolymer (A) itself or the polyoxyalkylene polymer (B) The compatibility with and may be adversely affected. It is considered that this adverse effect is caused by the difference in polarity between the (meth) acrylic acid ester monomer (α) and other monomers. As an example of a polymer that does not randomly contain a repeating unit derived from the (meth) acrylic acid ester monomer (α), the repeating unit derived from the (meth) acrylic acid ester monomer (α) is the main component of the main chain. Examples thereof include a polymer and a polymer having a repeating unit derived from a (meth) acrylic acid ester monomer (α) in a block.
 一実施形態において、(メタ)アクリル系共重合体(A)の数平均分子量は、4,000~80,000が好ましく、20,000~50,000がより好ましい。数平均分子量が4,000以上ならば、(メタ)アクリル系共重合体(A)の特性を充分に発揮させられる。数平均分子量が80,000以下ならば、粘度が高くなりすぎず、充分な作業性を確保できる。数平均分子量は、例えば、ゲルパーミエーションクロマトグラフィ(GPC)により測定できる。 In one embodiment, the number average molecular weight of the (meth) acrylic copolymer (A) is preferably 4,000 to 80,000, more preferably 20,000 to 50,000. When the number average molecular weight is 4,000 or more, the characteristics of the (meth) acrylic copolymer (A) can be fully exhibited. When the number average molecular weight is 80,000 or less, the viscosity does not become too high and sufficient workability can be ensured. The number average molecular weight can be measured, for example, by gel permeation chromatography (GPC).
 一実施形態において、(メタ)アクリル系共重合体(A)の分子量分布は、1.8以下である。(メタ)アクリル系共重合体(A)の分子量分布は、好ましくは1.7以下であり、より好ましくは1.6以下であり、さらに好ましくは1.5以下であり、特に好ましくは1.4以下であり、最も好ましくは1.3以下である。分子量分布が大きすぎると硬化性組成物の粘度が増大し、作業性が低下する傾向にある。 In one embodiment, the molecular weight distribution of the (meth) acrylic copolymer (A) is 1.8 or less. The molecular weight distribution of the (meth) acrylic copolymer (A) is preferably 1.7 or less, more preferably 1.6 or less, still more preferably 1.5 or less, and particularly preferably 1. It is 4 or less, and most preferably 1.3 or less. If the molecular weight distribution is too large, the viscosity of the curable composition tends to increase, and workability tends to decrease.
 重量平均分子量および数平均分子量は、例えば、ゲルパーミエーションクロマトグラフィ(GPC)により測定できる。GPC測定には、移動相としてクロロホルム、固定相としてポリスチレンゲルカラムを用いることができる。また、これらの分子量は、ポリスチレン換算で算出できる。 The weight average molecular weight and the number average molecular weight can be measured by, for example, gel permeation chromatography (GPC). Chloroform can be used as the mobile phase and polystyrene gel column can be used as the stationary phase for GPC measurement. Moreover, these molecular weights can be calculated in terms of polystyrene.
 このように分子量分布の小さい(メタ)アクリル系共重合体(A)は、例えば、リビングラジカル重合によって好適に製造できる。 The (meth) acrylic copolymer (A) having such a small molecular weight distribution can be suitably produced by, for example, living radical polymerization.
 一実施形態において、(メタ)アクリル系共重合体(A)は、分子鎖の少なくとも一方の末端のみにアルコキシシリル基が分布している。したがって、分子全体としては、1個または2個のアルコキシシリル基を有している。このような共重合体は、例えば、[3.1.]節に説明されている製造方法によって製造できる。 In one embodiment, in the (meth) acrylic copolymer (A), an alkoxysilyl group is distributed only at at least one end of the molecular chain. Therefore, the molecule as a whole has one or two alkoxysilyl groups. Such a copolymer is, for example, [3.1. ] It can be manufactured by the manufacturing method described in the section.
 一実施形態において、(メタ)アクリル系共重合体(A)は、分子鎖の少なくとも一方の末端近傍にアルコキシシリル基が分布している。したがって、分子全体としては、1個以上のアルコキシシリル基を有しており、2個超のアルコキシシリル基を有しうる。このような共重合体は、例えば、[3.2.]節に説明されている製造方法によって製造できる(この製造方法によれば、後述する(メタ)アクリル系共重合体(A1)が得られる)。 In one embodiment, the (meth) acrylic copolymer (A) has an alkoxysilyl group distributed in the vicinity of at least one end of the molecular chain. Therefore, the molecule as a whole may have one or more alkoxysilyl groups and may have more than two alkoxysilyl groups. Such a copolymer is, for example, [3.2. ] Can be produced by the production method described in the section (according to this production method, the (meth) acrylic copolymer (A1) described later can be obtained).
 (メタ)アクリル系共重合体(A)に導入されているアルコキシシリル基の数は、分子全体として、平均して1.0個以上であるか、または1.0個より多い。一実施形態において、アルコキシシリル基の数は、好ましくは1.1個以上であり、より好ましくは1.2個以上である。別の実施形態において、アルコキシシリル基の数は、好ましくは2.2個以上であり、より好ましくは2.4個以上である。(メタ)アクリル系共重合体(A)に導入されているアルコキシシリル基の数の上限は、10.0個以下が好ましく、8.0個以下がより好ましく、6.0個以下がさらに好ましく、4.0個以下が特に好ましい。アルコキシシリル基の数が上記の範囲であれば、(メタ)アクリル系共重合体(A)を用いた硬化性組成物および硬化物の物性が良好となる。また、(メタ)アクリル系共重合体(A)は、分子鎖の少なくとも一方の末端(または末端領域)にアルコキシシリル基を有していることが好ましく、両方の末端(または末端領域)にアルコキシシリル基を有していることが好ましい。 The number of alkoxysilyl groups introduced into the (meth) acrylic copolymer (A) is 1.0 or more or more than 1.0 on average as a whole molecule. In one embodiment, the number of alkoxysilyl groups is preferably 1.1 or more, more preferably 1.2 or more. In another embodiment, the number of alkoxysilyl groups is preferably 2.2 or more, more preferably 2.4 or more. The upper limit of the number of alkoxysilyl groups introduced into the (meth) acrylic copolymer (A) is preferably 10.0 or less, more preferably 8.0 or less, and even more preferably 6.0 or less. 4.0 or less is particularly preferable. When the number of alkoxysilyl groups is in the above range, the physical properties of the curable composition and the cured product using the (meth) acrylic copolymer (A) are good. Further, the (meth) acrylic copolymer (A) preferably has an alkoxysilyl group at at least one end (or end region) of the molecular chain, and alkoxy is provided at both ends (or end regions). It preferably has a silyl group.
 [1.1.(メタ)アクリル酸エステルモノマー]
 本発明の一実施形態に係る(メタ)アクリル系共重合体(A)は、主鎖に、(メタ)アクリル酸エステルモノマーに由来する構成単位を含んでいる。主鎖を構成する(メタ)アクリル酸エステルモノマーは、上述の要件を満たす限り、特に限定されない。1種類のみの(メタ)アクリル酸エステルモノマーを用いてもよいし、2種類以上の(メタ)アクリル酸エステルモノマーを組合せて用いてもよい。
[1.1. (Meta) acrylic acid ester monomer]
The (meth) acrylic copolymer (A) according to the embodiment of the present invention contains a structural unit derived from the (meth) acrylic acid ester monomer in the main chain. The (meth) acrylic acid ester monomer constituting the main chain is not particularly limited as long as the above requirements are satisfied. Only one type of (meth) acrylic acid ester monomer may be used, or two or more types of (meth) acrylic acid ester monomers may be used in combination.
 このような(メタ)アクリル酸エステルモノマーの類型として、以下のものが挙げられる。
・(メタ)アクリル酸エステルモノマー(α):(メタ)アクリル酸とエステル結合しているアルキル基を有しており、かつ、上記アルキル基は炭素数が1~5のアルコキシ基を有しているモノマー。アルキル基の炭素数は、1~5が好ましく、1~3がより好ましく、2が特に好ましい。アルコキシ基の炭素数は、1~3が好ましく、1~2がさらに好ましく、1が特に好ましい。
・(メタ)アクリル酸エステルモノマー(β):(メタ)アクリル酸とエステル結合しているアルキル基の炭素数が1~5であるモノマー。
・(メタ)アクリル酸エステルモノマー(γ):(メタ)アクリル酸とエステル結合しているアルキル基の炭素数が6~15であるモノマー。
・(メタ)アクリル酸エステルモノマー(δ):(メタ)アクリル酸とエステル結合しているアルキル基の炭素数が16~25であるモノマー。
Examples of the type of such (meth) acrylic acid ester monomer include the following.
(Meta) Acrylic Acid Ester Monomer (α): Has an alkyl group ester-bonded to (meth) acrylic acid, and the alkyl group has an alkoxy group having 1 to 5 carbon atoms. Monomer. The number of carbon atoms of the alkyl group is preferably 1 to 5, more preferably 1 to 3, and particularly preferably 2. The number of carbon atoms of the alkoxy group is preferably 1 to 3, more preferably 1 to 2, and particularly preferably 1.
(Meta) Acrylic Acid Ester Monomer (β): A monomer having 1 to 5 carbon atoms in an alkyl group ester-bonded to (meth) acrylic acid.
(Meta) Acrylic Acid Ester Monomer (γ): A monomer having 6 to 15 carbon atoms in an alkyl group ester-bonded to (meth) acrylic acid.
(Meta) Acrylic Acid Ester Monomer (δ): A monomer having 16 to 25 carbon atoms in an alkyl group ester-bonded to (meth) acrylic acid.
 上述した通り、(メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位の含有率は、(メタ)アクリル系共重合体(A)に含まれている全ての繰り返し単位の重量を基準として、5~20重量%であり、10~20重量%が好ましい。(メタ)アクリル酸エステルモノマー(β)由来の繰り返し単位の含有率は、(メタ)アクリル系共重合体(A)に含まれている全ての繰り返し単位の重量を基準として、45~70重量%が好ましく、50~70重量%がより好ましい。(メタ)アクリル酸エステルモノマー(γ)由来の繰り返し単位の含有率は、(メタ)アクリル系共重合体(A)に含まれている全ての繰り返し単位の重量を基準として、0~25重量%が好ましく、10~25重量%がより好ましい。(メタ)アクリル酸エステルモノマー(δ)由来の繰り返し単位の含有率は、(メタ)アクリル系共重合体(A)に含まれている全ての繰り返し単位の重量を基準として、15~25重量%が好ましく、15~20重量%がより好ましい。このような組成で各(メタ)アクリル酸エステルモノマーを含有することにより、(メタ)アクリル系共重合体(A)は、良好な作業性、機械物性および耐候性を得ることができる。 As described above, the content of the repeating unit derived from the (meth) acrylic acid ester monomer (α) is 5 based on the weight of all the repeating units contained in the (meth) acrylic copolymer (A). It is about 20% by weight, preferably 10 to 20% by weight. The content of the repeating unit derived from the (meth) acrylic acid ester monomer (β) is 45 to 70% by weight based on the weight of all the repeating units contained in the (meth) acrylic copolymer (A). Is preferable, and 50 to 70% by weight is more preferable. The content of the repeating unit derived from the (meth) acrylic acid ester monomer (γ) is 0 to 25% by weight based on the weight of all the repeating units contained in the (meth) acrylic copolymer (A). Is preferable, and 10 to 25% by weight is more preferable. The content of the repeating unit derived from the (meth) acrylic acid ester monomer (δ) is 15 to 25% by weight based on the weight of all the repeating units contained in the (meth) acrylic copolymer (A). Is preferable, and 15 to 20% by weight is more preferable. By containing each (meth) acrylic acid ester monomer with such a composition, the (meth) acrylic copolymer (A) can obtain good workability, mechanical properties and weather resistance.
 (メタ)アクリル酸エステルモノマー(β)由来の繰り返し単位の含有率が上記の範囲ならば、(メタ)アクリル系共重合体(A)とポリオキシアルキレン系重合体(B)との相溶性が充分に確保できる。(メタ)アクリル酸エステルモノマー(γ)由来の繰り返し単位の含有率が10重量%以上ならば、低温下における粘度の上昇を防ぎ、作業性の低下を防止できる。また、(メタ)アクリル酸エステルモノマー(γ)由来の繰り返し単位の含有率が25重量%以下ならば、(メタ)アクリル系共重合体(A)とポリオキシアルキレン系重合体(B)との相溶性が充分に確保できる。(メタ)アクリル酸エステルモノマー(δ)由来の繰り返し単位の含有率が15重量%以上ならば、(メタ)アクリル系共重合体(A)とポリオキシアルキレン系重合体(B)との相溶性が充分に確保できる。また、(メタ)アクリル酸エステルモノマー(δ)由来の繰り返し単位の含有率が25重量%以下ならば、低温下における粘度の上昇を防ぎ、作業性の低下を防止できる。 If the content of the repeating unit derived from the (meth) acrylic acid ester monomer (β) is within the above range, the compatibility between the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B) is high. It can be secured sufficiently. When the content of the repeating unit derived from the (meth) acrylic acid ester monomer (γ) is 10% by weight or more, it is possible to prevent an increase in viscosity at a low temperature and prevent a decrease in workability. Further, if the content of the repeating unit derived from the (meth) acrylic acid ester monomer (γ) is 25% by weight or less, the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B) are combined. Sufficient compatibility can be ensured. If the content of the repeating unit derived from the (meth) acrylic acid ester monomer (δ) is 15% by weight or more, the compatibility between the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B) Can be sufficiently secured. Further, when the content of the repeating unit derived from the (meth) acrylic acid ester monomer (δ) is 25% by weight or less, it is possible to prevent an increase in viscosity at a low temperature and prevent a decrease in workability.
 (メタ)アクリル酸エステルモノマーは、特に限定されず、従来公知のものが使用できる。(メタ)アクリル酸エステルモノマー(α)の例としては、(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸2-ブトキシエチル、(メタ)アクリル酸イソプロポキシエチルが挙げられる。(メタ)アクリル酸エステルモノマー(β)の例としては(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸イソブチル、(メタ)アクリル酸tert-ブチルが挙げられる。(メタ)アクリル酸エステルモノマー(γ)の例としては、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸トリデシル、(メタ)アクリル酸テトラデシルが挙げられる。(メタ)アクリル酸エステルモノマー(δ)の例としては、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸イコシル、(メタ)アクリル酸ドコシルが挙げられる。 The (meth) acrylic acid ester monomer is not particularly limited, and conventionally known ones can be used. Examples of the (meth) acrylic acid ester monomer (α) include 2-methoxyethyl (meth) acrylic acid, 2-ethoxyethyl (meth) acrylic acid, 2-butoxyethyl (meth) acrylic acid, and (meth) acrylic acid. Isopropoxyethyl can be mentioned. Examples of (meth) acrylic acid ester monomer (β) are methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, n-butyl (meth) acrylate, and (meth) acrylic. Examples thereof include isobutyl acid and tert-butyl (meth) acrylate. Examples of (meth) acrylic acid ester monomer (γ) are n-hexyl (meth) acrylate, heptyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, octyl (meth) acrylate, (meth). Nonyl acrylate, decyl (meth) acrylate, undecyl (meth) acrylate, dodecyl (meth) acrylate, tridecyl (meth) acrylate, tetradecyl (meth) acrylate can be mentioned. Examples of the (meth) acrylic acid ester monomer (δ) include pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, octadecyl (meth) acrylate, and icosyl (meth) acrylate. (Meta) Docosyl acrylate can be mentioned.
 上述したモノマーの中で、(メタ)アクリル酸エステルモノマー(α)としては、アクリル酸2-メトキシエチルが好ましい。(メタ)アクリル酸エステルモノマー(β)としては、アクリル酸ブチルが好ましい。(メタ)アクリル酸エステルモノマー(γ)としては、アクリル酸2-エチルヘキシルおよびアクリル酸ドデシルが好ましい。(メタ)アクリル酸エステルモノマー(δ)としては、アクリル酸オクタデシルが好ましい。これらのモノマーを選択することにより、製造される(メタ)アクリル系共重合体(A)は、粘度、ポリオキシアルキレン系重合体(B)との相溶性、耐候性、機械物性、耐久性が高水準でバランスよく達成されうる。 Among the above-mentioned monomers, 2-methoxyethyl acrylate is preferable as the (meth) acrylic acid ester monomer (α). As the (meth) acrylate monomer (β), butyl acrylate is preferable. As the (meth) acrylic acid ester monomer (γ), 2-ethylhexyl acrylate and dodecyl acrylate are preferable. As the (meth) acrylic acid ester monomer (δ), octadecyl acrylate is preferable. The (meth) acrylic copolymer (A) produced by selecting these monomers has viscosity, compatibility with the polyoxyalkylene polymer (B), weather resistance, mechanical properties, and durability. It can be achieved at a high level and in a well-balanced manner.
 一実施形態において、(メタ)アクリル酸エステルモノマー(α)は、下記(a)および/または(b)である。 In one embodiment, the (meth) acrylic acid ester monomer (α) is (a) and / or (b) below.
 (a)(メタ)アクリル酸とエステル結合しているアルキル基の炭素数が1~5個であるモノマー。ただし、「アルキル基の炭素数」には、当該アルキル基が有するアルコキシ基に含まれる炭素は含めない。 (A) A monomer having 1 to 5 carbon atoms in an alkyl group ester-bonded with (meth) acrylic acid. However, the "carbon number of the alkyl group" does not include the carbon contained in the alkoxy group of the alkyl group.
 (b)(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸2-ブトキシエチル、(メタ)アクリル酸イソプロポキシエチルからなる群から選ばれる1つ以上のモノマー。 (B) One or more selected from the group consisting of 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, and isopropoxyethyl (meth) acrylate. Monomer.
 (メタ)アクリル系共重合体(A)に含まれている(メタ)アクリル酸エステルモノマー由来の繰り返し単位は、重合体(A)に含まれている全ての繰り返し単位を基準として、70重量%以上が好ましく、90%重量以上がより好ましい。(メタ)アクリル酸エステルモノマー由来の繰り返し単位の含有率が70%以上であれば、製造される(メタ)アクリル系共重合体(A)は、ポリオキシアルキレン系重合体(B)との相溶性が充分に確保でき、また、良好な耐候性、機械物性および耐久性が得られる。 The repeating unit derived from the (meth) acrylic acid ester monomer contained in the (meth) acrylic copolymer (A) is 70% by weight based on all the repeating units contained in the polymer (A). The above is preferable, and 90% or more by weight is more preferable. When the content of the repeating unit derived from the (meth) acrylic acid ester monomer is 70% or more, the produced (meth) acrylic copolymer (A) is in phase with the polyoxyalkylene-based polymer (B). Sufficient solubility can be ensured, and good weather resistance, mechanical properties and durability can be obtained.
 [1.2.アルコキシシリル基を有する(メタ)アクリル酸エステルモノマー]
 (メタ)アクリル系共重合体(A)は、アルコキシシリル基を有する(メタ)アクリル酸エステルモノマー由来の繰り返し単位を含んでいる。一実施形態において、上記のアルコキシシリル基は、下記一般式(1)により表される。
-[Si(R2-b(Y)O]-Si(R3-a(Y) (1)。
[1.2. (Meta) acrylic acid ester monomer having an alkoxysilyl group]
The (meth) acrylic copolymer (A) contains a repeating unit derived from a (meth) acrylic acid ester monomer having an alkoxysilyl group. In one embodiment, the alkoxysilyl group is represented by the following general formula (1).
-[Si (R 1 ) 2-b (Y) b O] m -Si (R 2 ) 3-a (Y) a (1).
 式中、RおよびRは、独立に、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、メトキシメチル基、または(R’)SiO-で示されるトリオルガノシロキシ基である(このとき、R’は炭素数1~20の1価の炭化水素基であり、3個存在するR’は同一であってもよく、異なっていてもよい)。RまたはRが2個以上存在するとき、当該RまたはRは、同一であってもよく、異なっていてもよい。Yは、炭素数1~20のアルコキシ基である(Yが2個以上存在するとき、当該Yは同一であってもよく、異なっていてもよい)。aは、0、1、2または3である。bは、0、1または2である。mは、0~19の整数である。また、a+mb≧1の関係を満たしている。 In the formula, R 1 and R 2 are independently an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, a methoxymethyl group, or (R') 3 It is a triorganosyloxy group represented by SiO− (at this time, R'is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the three R'existing may be the same or different. May be good). When two or more R 1 or R 2 are present, the R 1 or R 2 may be the same or different. Y is an alkoxy group having 1 to 20 carbon atoms (when two or more Ys are present, the Ys may be the same or different). a is 0, 1, 2 or 3. b is 0, 1 or 2. m is an integer from 0 to 19. Moreover, the relationship of a + mb ≧ 1 is satisfied.
 一般に、アルコキシ基は、炭素数が少ない方が反応性は高い。すなわち、メトキシ基、エトキシ基、プロポキシ基…の順に、反応性が低くなる。したがって、(メタ)アクリル系共重合体(A)の製造方法や用途に応じて、適宜アルコキシ基を選択できる。 In general, the alkoxy group has higher reactivity when it has a smaller number of carbon atoms. That is, the reactivity decreases in the order of methoxy group, ethoxy group, propoxy group, and so on. Therefore, an alkoxy group can be appropriately selected depending on the production method and application of the (meth) acrylic copolymer (A).
 アルコキシシリル基を有する(メタ)アクリル酸エステルモノマーの具体的な構造は、特に制限されない。一例として、下記一般式(2)で示されるモノマーが挙げられる。
C=CRC(=O)O-(CH-SiR (OR3-n (2)。
The specific structure of the (meth) acrylic acid ester monomer having an alkoxysilyl group is not particularly limited. As an example, a monomer represented by the following general formula (2) can be mentioned.
H 2 C = CR 3 C (= O) O- (CH 2 ) m- SiR 4 n (OR 5 ) 3-n (2).
 式中、Rは、水素またはメチル基である。RおよびRは、水素、メチル基およびエチル基からなる群より選択される1種類以上である。Rおよび/またはRが複数存在する場合、当該Rおよび/またはRは独立に選択される。mは、0~10の整数である。nは、0~2の整数である。 In the formula, R 3 is a hydrogen or methyl group. R 4 and R 5 are one or more selected from the group consisting of hydrogen, methyl group and ethyl group. When there are a plurality of R 4 and / or R 5 , the R 4 and / or R 5 are independently selected. m is an integer from 0 to 10. n is an integer of 0 to 2.
 アルコキシシリル基を有する(メタ)アクリル酸エステルモノマーの具体例としては、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシランが挙げられる。 Specific examples of the (meth) acrylic acid ester monomer having an alkoxysilyl group include 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, and 3-acryloxy. Examples thereof include propyltrimethoxysilane, 3-acryloxypropylmethyldimethoxysilane, and 3-methacryloxypropylmethyldimethoxysilane.
 〔2.(メタ)アクリル系共重合体(A1)〕
 一実施形態において、(メタ)アクリル系共重合体(A)は、XブロックおよびYブロックを有しており、分子中にXYジブロック構造またはXYXトリブロック構造を含んでいる。このような(メタ)アクリル系共重合体を、本明細書では、(メタ)アクリル系共重合体(A1)と称する。なお、(メタ)アクリル系共重合体(A)の分子全体の構造は、XYジブロック構造またはXYXトリブロック構造を含んでいれば特に限定されず、例えば、XYXYテトラブロック構造であってもよい。
[2. (Meta) Acrylic copolymer (A1)]
In one embodiment, the (meth) acrylic copolymer (A) has an X block and a Y block, and contains an XY diblock structure or an XYX triblock structure in the molecule. Such a (meth) acrylic copolymer is referred to as a (meth) acrylic copolymer (A1) in the present specification. The structure of the entire molecule of the (meth) acrylic copolymer (A) is not particularly limited as long as it contains an XY diblock structure or an XYX triblock structure, and may be, for example, an XYXY tetrapod structure. ..
 ここで、「XYXトリブロック構造」とは、当業者間で一般に言われている「ABAトリブロック構造」を意味する。XYジブロック構造およびXYXトリブロック構造におけるX/Yの比は、(5/95)~(60/40)が好ましく、(15/85)~(40/60)がより好ましい。 Here, the "XYX triblock structure" means the "ABA triblock structure" generally referred to by those skilled in the art. The ratio of XY in the XY diblock structure and the XYX triblock structure is preferably (5/95) to (60/40), more preferably (15/85) to (40/60).
 一実施形態において、(メタ)アクリル系共重合体(A1)の分子はXYジブロック構造である。XYジブロック構造の分子において、Xブロックとは、分子の一方の末端から40%以下、30%以下または25%以下の領域でありうる(分子に含まれる全ユニットを100%とする)。ここで、Xブロックは、アルコキシシリル基が相対的に多く分布している側のブロックである。 In one embodiment, the molecule of the (meth) acrylic copolymer (A1) has an XY diblock structure. In a molecule having an XY diblock structure, the X block can be a region of 40% or less, 30% or less, or 25% or less from one end of the molecule (all units contained in the molecule are 100%). Here, the X block is a block on the side where a relatively large number of alkoxysilyl groups are distributed.
 一実施形態において、(メタ)アクリル系共重合体(A1)の分子はXYXトリブロック構造である。XYXトリブロック構造の分子において、Xブロックとは、分子の末端から40%以下、30%以下または25%以下の領域でありうる(分子に含まれる全ユニットを100%とする)。ここで、Xブロックは、分子の両末端に位置しているブロックである。 In one embodiment, the molecule of the (meth) acrylic copolymer (A1) has an XYX triblock structure. In a molecule having an XYX triblock structure, the X block can be a region of 40% or less, 30% or less, or 25% or less from the end of the molecule (all units contained in the molecule are 100%). Here, the X block is a block located at both ends of the molecule.
 (メタ)アクリル系共重合体(A1)は、(メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位を、(メタ)アクリル系共重合体(A1)に含まれている全ての繰り返し単位の重量を基準として5~20重量%、ランダムに含んでいる。ここで、(メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位は、XブロックとYブロックとで異なっていてもよい。つまり、分子全体として、(i)(メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位がランダムに分布しており、(ii)当該繰り返し単位の含有率が5~20重量%(好ましくは10~20重量%)であれば、(メタ)アクリル系共重合体(A1)の範疇に含まれる。 The (meth) acrylic copolymer (A1) is a repeating unit derived from the (meth) acrylic acid ester monomer (α), and all the repeating units contained in the (meth) acrylic copolymer (A1). It is randomly included in an amount of 5 to 20% by weight based on the weight. Here, the repeating unit derived from the (meth) acrylic acid ester monomer (α) may be different between the X block and the Y block. That is, (i) (meth) acrylic acid ester monomer (α) -derived repeating units are randomly distributed throughout the molecule, and (ii) the content of the repeating units is 5 to 20% by weight (preferably 10). If it is ~ 20% by weight), it is included in the category of the (meth) acrylic copolymer (A1).
 一実施形態において、(メタ)アクリル系共重合体(A1)は、アルコキシシリル基を有する(メタ)アクリル酸エステルモノマー由来の繰り返し単位を有している。このアルコキシシリル基を有する(メタ)アクリル酸エステルモノマー由来の繰り返し単位は、Xブロックに相対的に多く含まれている。具体的には、Xブロックに含まれているアルコキシシリル基を有する(メタ)アクリル酸エステルモノマー由来の繰り返し単位は、平均で1.0個以上である。一方、Yブロックに含まれているアルコキシシリル基を有する(メタ)アクリル酸エステルモノマー由来の繰り返し単位は、Yブロックに含まれている全ての繰り返し単位の重量を基準として、0~3重量%である。したがって、アルコキシシリル基を有する(メタ)アクリル酸エステルモノマー由来の繰り返し単位は、(メタ)アクリル系共重合体(A1)において、末端(一端または両端)に局在している。 In one embodiment, the (meth) acrylic copolymer (A1) has a repeating unit derived from a (meth) acrylic acid ester monomer having an alkoxysilyl group. The repeating unit derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group is relatively abundantly contained in the X block. Specifically, the number of repeating units derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the X block is 1.0 or more on average. On the other hand, the repeating unit derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the Y block is 0 to 3% by weight based on the weight of all the repeating units contained in the Y block. be. Therefore, the repeating unit derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group is localized at the end (one end or both ends) in the (meth) acrylic copolymer (A1).
 Xブロックに含まれているアルコキシシリル基を有する(メタ)アクリル酸エステルモノマー由来の繰り返し単位は、平均して1.5個以上が好ましく、1.7個以上がより好ましい。同じく、Xブロックに含まれているアルコキシシリル基を有する(メタ)アクリル酸エステルモノマー由来の繰り返し単位は、Xブロックに含まれている全ての繰り返し単位の重量を基準として、3重量%超が好ましく、4.5重量%以上がより好ましく、5重量%以上がさらに好ましい。Yブロックに含まれているアルコキシシリル基を有する(メタ)アクリル酸エステルモノマー由来の繰り返し単位の上限値は、Yブロックに含まれている全ての繰り返し単位の重量を基準として、2重量%以下が好ましく、1重量%以下がより好ましい。Yブロックに含まれているアルコキシシリル基を有する(メタ)アクリル酸エステルモノマー由来の繰り返し単位の下限値は、Yブロックに含まれている全ての繰り返し単位の重量を基準として、0重量%超が好ましく、0重量%以上がより好ましい。 The number of repeating units derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the X block is preferably 1.5 or more on average, and more preferably 1.7 or more. Similarly, the repeating unit derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the X block is preferably more than 3% by weight based on the weight of all the repeating units contained in the X block. , 4.5% by weight or more is more preferable, and 5% by weight or more is further preferable. The upper limit of the repeating unit derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the Y block is 2% by weight or less based on the weight of all the repeating units contained in the Y block. Preferably, it is 1% by weight or less, more preferably. The lower limit of the repeating unit derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the Y block is more than 0% by weight based on the weight of all the repeating units contained in the Y block. It is preferable, and 0% by weight or more is more preferable.
 一実施形態においては、(メタ)アクリル系共重合体(A1)に導入されているアルコキシシリル基の数は、XブロックとYブロックとで異なっており、具体的には上述した通りである。(メタ)アクリル系共重合体(A1)がXYジブロック構造を取る場合、分子全体としては、平均して1個以上であり、好ましくは1.1個以上、より好ましくは1.2個以上のアルコキシシリル基が導入されている。(メタ)アクリル系共重合体(A1)がXYXトリブロック構造またはXYXYテトラブロック構造を取る場合、分子全体としては、平均して2個以上、好ましくは2.2個以上、より好ましくは2.4個以上のアルコキシシリル基が導入されている。(メタ)アクリル系共重合体(A1)に導入されているアルコキシシリル基の数の上限は、10.0個以下が好ましく、8.0個以下がより好ましく、6.0個以下がさらに好ましく、4.0個以下が特に好ましい。アルコキシシリル基の数が上記の範囲であれば、(メタ)アクリル系共重合体(A1)を用いた硬化性組成物および硬化物の物性が良好となる。 In one embodiment, the number of alkoxysilyl groups introduced into the (meth) acrylic copolymer (A1) differs between the X block and the Y block, and is specifically as described above. When the (meth) acrylic copolymer (A1) has an XY diblock structure, the number of molecules as a whole is 1 or more on average, preferably 1.1 or more, and more preferably 1.2 or more. The alkoxysilyl group of is introduced. When the (meth) acrylic copolymer (A1) has an XYX triblock structure or an XYXY tetrapod structure, the number of molecules as a whole is 2 or more, preferably 2.2 or more, more preferably 2. Four or more alkoxysilyl groups have been introduced. The upper limit of the number of alkoxysilyl groups introduced into the (meth) acrylic copolymer (A1) is preferably 10.0 or less, more preferably 8.0 or less, and even more preferably 6.0 or less. 4.0 or less is particularly preferable. When the number of alkoxysilyl groups is in the above range, the physical properties of the curable composition and the cured product using the (meth) acrylic copolymer (A1) are good.
 〔3.(メタ)アクリル系共重合体(A)および(メタ)アクリル系共重合体(A1)の製造方法〕
 (メタ)アクリル系共重合体(A)の重合方法は特に限定されず、公知の重合方法を用いることができる(ラジカル重合法、カチオン重合法、アニオン重合法など)。中でも、重合体分子の末端に官能基を導入でき、XYブロック重合体やXYXブロック重合体を合成できることから、リビング重合法が好ましい。リビング重合法の例としては、リビングラジカル重合法、リビングカチオン重合法、リビングアニオン重合法が挙げられ、その中でもリビングラジカル重合法がアクリル酸エステルモノマーの重合に適している。リビングラジカル重合法の例としては、以下が挙げられる。
・原子移動ラジカル重合(Atom Transfer Radical Polymerization;ATRP(J. Am. Chem. Soc. 1995, 117, 5614; Macromolecules. 1995, 28, 1721を参照))
・一電子移動重合(Sigle Electron Transfer Polymerization;SET-LRP(J. Am.
 Chem. Soc. 2006, 128, 14156; JPSChem 2007, 45, 1607を参照))
・可逆移動触媒重合(Reversible Chain Transfer Catalyzed Polymerization;RTCP(「有機触媒で制御するリビングラジカル重合」『高分子論文集』68, 223-231 (2011);
 特開2014-111798を参照))
・可逆的付加-開裂連鎖移動重合法(RAFT重合)
・ニトロキシラジカル法(NMP法)
・有機テルル化合物を用いる重合法(TERP)法
・有機アンチモン化合物を用いる重合法(SBRP法)
・有機ビスマス化合物を用いる重合法(BIRP)
・ヨウ素移動重合法。
[3. Method for Producing (Meta) Acrylic Copolymer (A) and (Meta) Acrylic Copolymer (A1)]
The polymerization method of the (meth) acrylic copolymer (A) is not particularly limited, and a known polymerization method can be used (radical polymerization method, cationic polymerization method, anion polymerization method, etc.). Above all, the living polymerization method is preferable because a functional group can be introduced into the terminal of the polymer molecule and an XY block polymer or an XYX block polymer can be synthesized. Examples of the living radical polymerization method include a living radical polymerization method, a living cationic polymerization method, and a living anion polymerization method. Among them, the living radical polymerization method is suitable for polymerizing an acrylic acid ester monomer. Examples of the living radical polymerization method include the following.
Atom Transfer Radical Polymerization (ATRP (see J. Am. Chem. Soc. 1995, 117, 5614; Macromolecules. 1995, 28, 1721))
-Sigle Electron Transfer Polymerization; SET-LRP (J. Am.
Chem. Soc. 2006, 128, 14156; see JPSChem 2007, 45, 1607))
-Reversible Chain Transfer Catalyzed Polymerization; RTCP ("Living Radical Polymerization Controlled by Organocatalysis", "Polymer Papers" 68, 223-231 (2011);
(Refer to Japanese Patent Application Laid-Open No. 2014-111798))
-Reversible addition-Cleavage chain transfer polymerization (RAFT polymerization)
・ Nitroxy radical method (NMP method)
-Polymerization method using organic tellurium compounds (TERP) -Polymerization method using organic antimony compounds (SBRP method)
-Polymerization method using organic bismuth compounds (BIRP)
-Iodine transfer polymerization method.
 [3.1.製造方法の第1の形態]
 一例において、(メタ)アクリル系共重合体(A)は、特開2007-302749公報に記載の方法によって製造される。その中でも、アルケニル基を少なくとも1個有する(メタ)アクリル系重合体に、アルコキシシリル基を有するヒドロシラン化合物を、ヒドロシリル化触媒存在下にて付加させる方法が、制御がより容易である点において好ましい。
[3.1. First form of manufacturing method]
In one example, the (meth) acrylic copolymer (A) is produced by the method described in JP-A-2007-302479. Among them, a method of adding a hydrosilane compound having an alkoxysilyl group to a (meth) acrylic polymer having at least one alkenyl group in the presence of a hydrosilylation catalyst is preferable in that control is easier.
 この方法では、以下のようにしてアルコキシシリル基を(メタ)アクリル系重合体に導入する。
1.(メタ)アクリル酸エステル系モノマーをリビングラジカル重合し、(メタ)アクリル系重合体を得る。
2.1で得られた(メタ)アクリル系重合体に、重合性の低いアルケニル基を少なくとも2個有する化合物(ジエン化合物)を反応させ、アルケニル基を少なくとも1個有するビニル系重合体を得る。
3.2で得られたビニル系重合体に、アルコキシシリル基を有するヒドロシラン化合物を、ヒドロシリル化触媒存在下にて付加させる。
In this method, the alkoxysilyl group is introduced into the (meth) acrylic polymer as follows.
1. 1. The (meth) acrylic acid ester-based monomer is subjected to living radical polymerization to obtain a (meth) acrylic acid-based polymer.
The (meth) acrylic polymer obtained in 2.1 is reacted with a compound having at least two alkenyl groups having low polymerizable properties (diene compound) to obtain a vinyl polymer having at least one alkenyl group.
A hydrosilane compound having an alkoxysilyl group is added to the vinyl polymer obtained in 3.2 in the presence of a hydrosilylation catalyst.
 より具体的には、上記の方法は、リビングラジカル重合により(メタ)アクリル系重合体の製造において、重合反応の終期または所定モノマーの反応終了後に、ジエン化合物(1,5-ヘキサジエン、1,7-オクタジエン、1,9-デカジエンなど)を反応させることにより実施される。 More specifically, in the production of a (meth) acrylic polymer by living radical polymerization, the above method more specifically comprises a diene compound (1,5-hexadiene, 1,7) at the end of the polymerization reaction or after the reaction of a predetermined monomer is completed. -It is carried out by reacting octadiene, 1,9-decadien, etc.).
 アルコキシシリル基を有するヒドロシラン化合物は、特に限定されない。代表例としては、一般式(3)で示される化合物が例示される。
H-[Si(R2-b(Y)O]-Si(R3-a(Y) (3)。
The hydrosilane compound having an alkoxysilyl group is not particularly limited. As a typical example, the compound represented by the general formula (3) is exemplified.
H- [Si (R 6 ) 2-b (Y) b O] m -Si (R 7 ) 3-a (Y) a (3).
 一般式(3)中、RおよびRは、それぞれ独立に、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、メトキシメチル基、または(RSiO-で示されるトリオルガノシロキシ基から選択される(式中、Rは炭素数1~20の1価の炭化水素基である。3個存在するRは、同一であってもよく、異なっていてもよい)。RまたはRが2個以上存在するとき、それらは同一であってもよく、異なっていてもよい。Yは、炭素数1~20のアルコキシ基を表す。Yが2個以上存在するとき、当該Yは、同一であってもよく、異なっていてもよい。aは、0、1、2または3を表す。bは、0、1、または2を表す。mは、0~19の整数である。ただし、a+mb≧1であることを満足する。 In the general formula (3), R 6 and R 7 are independently alkyl groups having 1 to 20 carbon atoms, aryl groups having 6 to 20 carbon atoms, aralkyl groups having 7 to 20 carbon atoms, methoxymethyl groups, or groups. (R 8) in selected from triorganosiloxy group represented by 3 SiO- (wherein, R 8 R 8 is present .3 or a monovalent hydrocarbon group having 1 to 20 carbon atoms, with the same May be present or different). When two or more R 6 or R 7 are present, they may be the same or different. Y represents an alkoxy group having 1 to 20 carbon atoms. When there are two or more Ys, the Ys may be the same or different. a represents 0, 1, 2 or 3. b represents 0, 1, or 2. m is an integer from 0 to 19. However, it is satisfied that a + mb ≧ 1.
 これらヒドロシラン化合物の中でも、下記一般式(4)で表される化合物が、入手容易な点から好ましい。
H-Si(R3-a(Y) (4)。
Among these hydrosilane compounds, the compound represented by the following general formula (4) is preferable from the viewpoint of easy availability.
H-Si (R 6 ) 3-a (Y) a (4).
 一般式(4)中、RおよびYは上述の通りである。aは、1~3の整数である。 In the general formula (4), R 6 and Y are as described above. a is an integer of 1 to 3.
 アルコキシシリル基を有するヒドロシラン化合物をアルケニル基に付加させる際には、通常、遷移金属触媒が用いられる。遷移金属触媒の例としては、白金系触媒が挙げられる。白金単体;担体(アルミナ、シリカ、カーボンブラックなど)に白金固体を分散させたもの;塩化白金酸;塩化白金酸とアルコール、アルデヒド、ケトンなどとの錯体;白金-オレフィン錯体;白金(0)-ジビニルテトラメチルジシロキサン錯体が挙げられる。白金系触媒以外の触媒の例としては、RhCl(PPh、RhCl、RuCl、IrCl、FeCl、AlCl、PdCl・HO、NiCl、TiClが挙げられる。 When adding a hydrosilane compound having an alkoxysilyl group to an alkenyl group, a transition metal catalyst is usually used. Examples of transition metal catalysts include platinum-based catalysts. Platinum alone; Platinum solid dispersed in a carrier (alumina, silica, carbon black, etc.); Platinum chloride acid; Complex of platinum chloride acid with alcohol, aldehyde, ketone, etc .; Platinum-olefin complex; Platinum (0)- Examples thereof include a divinyltetramethyldisiloxane complex. Examples of catalysts other than platinum-based catalysts include RhCl (PPh 3 ) 3 , RhCl 3 , RuCl 3 , IrCl 3 , FeCl 3 , AlCl 3 , PdCl 2 · H 2 O, NiCl 2 , and TiCl 4 .
 [3.2.製造方法の第2の形態]
 一実施形態において、(メタ)アクリル系共重合体(A)は、下記第1a工程および第2a工程、または、下記第1b工程および第2b工程、を含む製造方法によって製造できる。この製造方法ではブロック共重合体が製造されるので、得られる(メタ)アクリル系共重合体(A)は、(メタ)アクリル系共重合体(A1)である。この製造方法により得られる(メタ)アクリル系共重合体(A1)は、重合体の粘度が低下している点において好ましい。
[3.2. Second form of manufacturing method]
In one embodiment, the (meth) acrylic copolymer (A) can be produced by a production method including the following steps 1a and 2a, or the following steps 1b and 2b. Since a block copolymer is produced by this production method, the obtained (meth) acrylic copolymer (A) is a (meth) acrylic copolymer (A1). The (meth) acrylic copolymer (A1) obtained by this production method is preferable in that the viscosity of the polymer is lowered.
 なお、以下の記載において、「アルコキシシリル基を有する(メタ)アクリル酸エステルモノマーを0重量%含む」とは、「アルコキシシリル基を有する(メタ)アクリル酸エステルモノマーを含まない」ことを意味する。 In the following description, "containing 0% by weight of the (meth) acrylic acid ester monomer having an alkoxysilyl group" means "not containing the (meth) acrylic acid ester monomer having an alkoxysilyl group". ..
 (第1a工程)リビング重合開始剤によって、アルコキシシリル基を有する(メタ)アクリル酸エステルモノマーを(好ましくは3重量%超)含む(メタ)アクリル酸エステルモノマー混合物を重合させる工程。 (Step 1a) A step of polymerizing a (meth) acrylic acid ester monomer mixture containing a (meth) acrylic acid ester monomer having an alkoxysilyl group (preferably more than 3% by weight) with a living polymerization initiator.
 (第2a工程)第1a工程後の反応系に、アルコキシシリル基を有する(メタ)アクリル酸エステルモノマーを0~3重量%含む(メタ)アクリル酸エステルモノマー混合物を加えて重合させる工程。 (Step 2a) A step of adding a (meth) acrylic acid ester monomer mixture containing 0 to 3% by weight of a (meth) acrylic acid ester monomer having an alkoxysilyl group to the reaction system after the first step and polymerizing.
 (第1b工程)リビング重合開始剤によって、アルコキシシリル基を有する(メタ)アクリル酸エステルモノマーを0~3重量%含む(メタ)アクリル酸エステルモノマー混合物を重合させる工程。 (Step 1b) A step of polymerizing a (meth) acrylic acid ester monomer mixture containing 0 to 3% by weight of a (meth) acrylic acid ester monomer having an alkoxysilyl group by a living polymerization initiator.
 (第2b工程)第1b工程後の反応系に、アルコキシシリル基を有する(メタ)アクリル酸エステルモノマーを(好ましくは3重量%超)含む(メタ)アクリル酸エステルモノマー混合物を加えて重合させる工程。 (Step 2b) A step of adding a (meth) acrylic acid ester monomer mixture containing (preferably more than 3% by weight) a (meth) acrylic acid ester monomer having an alkoxysilyl group to the reaction system after the first b step and polymerizing. ..
 以下、(メタ)アクリル共重合体(A1)の構造ごとに、各工程をより具体的に説明する。 Hereinafter, each step will be described more specifically for each structure of the (meth) acrylic copolymer (A1).
 (共重合体がXYジブロック構造である場合)
 XYジブロック構造の分子である(メタ)アクリル酸共重合体(A1)は、上述の第1a工程および第2a工程によって、または第1b工程および第2b工程によって、製造できる。このとき、第1a工程および第2b工程によって、アルコキシシリル基が相対的に多く含まれるXブロックが形成される。一方、第2a工程および第1b工程によって、アルコキシシリル基が相対的に少なく含まれるYブロックが形成される。
(When the copolymer has an XY diblock structure)
The (meth) acrylic acid copolymer (A1), which is a molecule having an XY diblock structure, can be produced by the above-mentioned steps 1a and 2a, or by the steps 1b and 2b. At this time, the first step 1a and the second step 2b form an X block containing a relatively large amount of alkoxysilyl groups. On the other hand, the steps 2a and 1b form a Y block containing a relatively small amount of alkoxysilyl groups.
 第1a工程においては、リビング重合開始剤によって、アルコキシシリル基を有する(メタ)アクリル酸エステルモノマーを重合させる。リビング重合開始剤としては、例えば、分子内にハロゲン基を1つ有する開始剤を用いることができる。アルコキシシリル基を有する(メタ)アクリル酸エステルモノマーの量は、開始剤の1モル当量に対して、1~10モル当量とすることができる。また、必要に応じて、アルコキシシリル基を有さない(メタ)アクリル酸エステルモノマーを1~100モル当量、一緒に重合してもよい。好ましくは、第1a工程において反応系に加えられるアルコキシシリル基を有する(メタ)アクリル酸エステルモノマーの量は、第1a工程において反応系に加えられるモノマー混合物の、3重量%超を占めている。 In the first step, a (meth) acrylic acid ester monomer having an alkoxysilyl group is polymerized by a living polymerization initiator. As the living polymerization initiator, for example, an initiator having one halogen group in the molecule can be used. The amount of the (meth) acrylic acid ester monomer having an alkoxysilyl group can be 1-10 molar equivalents relative to 1 molar equivalent of the initiator. Further, if necessary, 1 to 100 molar equivalents of (meth) acrylic acid ester monomer having no alkoxysilyl group may be polymerized together. Preferably, the amount of the (meth) acrylic acid ester monomer having an alkoxysilyl group added to the reaction system in step 1a accounts for more than 3% by weight of the monomer mixture added to the reaction system in step 1a.
 第2a工程においては、第1a工程後の反応系に、アルコキシシリル基を有さない(メタ)アクリル酸エステルモノマーを加えて重合させる。アルコキシシリル基を有さない(メタ)アクリル酸エステルモノマーの投入量は、第1a工程で得られる重合物の1モル当量に対して、2~600モル当量でありうる。第2a工程において、アルコキシシリル基を有する(メタ)アクリル酸エステルモノマーを反応系に加えてもよい。第2a工程において反応系に加えられるアルコキシシリル基を有する(メタ)アクリル酸エステルモノマーの量は、第2a工程において反応系に加えられるモノマー混合物の、0~3重量%を占めている。 In the second step, a (meth) acrylic acid ester monomer having no alkoxysilyl group is added to the reaction system after the first step and polymerized. The input amount of the (meth) acrylic acid ester monomer having no alkoxysilyl group can be 2 to 600 molar equivalents with respect to 1 molar equivalent of the polymer obtained in the first step a. In step 2a, a (meth) acrylic acid ester monomer having an alkoxysilyl group may be added to the reaction system. The amount of the (meth) acrylic acid ester monomer having an alkoxysilyl group added to the reaction system in the second a step accounts for 0 to 3% by weight of the monomer mixture added to the reaction system in the second a step.
 第1b工程においては、リビング重合開始剤によって、アルコキシシリル基を有さない(メタ)アクリル酸エステルモノマーを重合させる。リビング重合開始剤としては、第1a工程と同じものが利用できる。アルコキシシリル基を有さない(メタ)アクリル酸エステルモノマーの量は、開始剤の1モル当量に対して、2~600モル当量とすることができる。第1b工程において、アルコキシシリル基を有する(メタ)アクリル酸エステルモノマーを反応系に加えてもよい。第1b工程において反応系に加えられるアルコキシシリル基を有する(メタ)アクリル酸エステルモノマーの量は、第1b工程において反応系に加えられるモノマー混合物の、0~3重量%を占めている。 In the first step, the (meth) acrylic acid ester monomer having no alkoxysilyl group is polymerized by the living polymerization initiator. As the living polymerization initiator, the same one as in the first step can be used. The amount of the (meth) acrylic acid ester monomer having no alkoxysilyl group can be 2 to 600 molar equivalents relative to 1 molar equivalent of the initiator. In step 1b, a (meth) acrylic acid ester monomer having an alkoxysilyl group may be added to the reaction system. The amount of the (meth) acrylic acid ester monomer having an alkoxysilyl group added to the reaction system in the first b step accounts for 0 to 3% by weight of the monomer mixture added to the reaction system in the first b step.
 第2b工程においては、第1b工程後の反応系に、アルコキシシリル基を有する(メタ)アクリル酸エステルモノマーを加えて重合させる。アルコキシシリル基を有する(メタ)アクリル酸エステルモノマーの量は、第1b工程で得られる重合体1モル当量に対して、1~10モル当量とすることができる。また、必要に応じて、アルコキシシリル基を有さない(メタ)アクリル酸エステルモノマーを1~100モル当量、一緒に重合してもよい。好ましくは、第2b工程において反応系に加えられるアルコキシシリル基を有する(メタ)アクリル酸エステルモノマーの量は、第2b工程において反応系に加えられるモノマー混合物の、3重量%超を占めている。 In the second b step, a (meth) acrylic acid ester monomer having an alkoxysilyl group is added to the reaction system after the first b step and polymerized. The amount of the (meth) acrylic acid ester monomer having an alkoxysilyl group can be 1 to 10 molar equivalents with respect to 1 molar equivalent of the polymer obtained in the first b step. Further, if necessary, 1 to 100 molar equivalents of (meth) acrylic acid ester monomer having no alkoxysilyl group may be polymerized together. Preferably, the amount of the (meth) acrylic acid ester monomer having an alkoxysilyl group added to the reaction system in step 2b accounts for more than 3% by weight of the monomer mixture added to the reaction system in step 2b.
 上記の工程において、「アルコキシシリル基を有さない(メタ)アクリル酸エステルモノマー」の例としては、[1.1.]節で説明した(メタ)アクリル酸エステルモノマー(α)、(β)、(γ)、(δ)が挙げられる。これは、以下の説明でも同様である。 In the above step, as an example of "(meth) acrylic acid ester monomer having no alkoxysilyl group", [1.1. ] The (meth) acrylic acid ester monomer (α), (β), (γ), and (δ) described in the section can be mentioned. This also applies to the following description.
 (共重合体がXYXトリブロック構造である場合)
 XYXトリブロック構造の分子である(メタ)アクリル酸共重合体(A1)は、上述の第1a工程および第2a工程の後、追加の重合工程(a)を経ることによって、製造できる。このとき、第1a工程および追加の重合工程(a)によって、アルコキシシリル基が相対的に多く含まれるXブロックが形成される。なお、この製造方法に関しては、特開2018-162394号の記載を参照することができる。
(When the copolymer has an XYX triblock structure)
The (meth) acrylic acid copolymer (A1), which is a molecule having an XYX triblock structure, can be produced by undergoing an additional polymerization step (a) after the above-mentioned first step 1a and second a step. At this time, the first step a and the additional polymerization step (a) form an X block containing a relatively large amount of alkoxysilyl groups. Regarding this production method, the description of JP-A-2018-162394 can be referred to.
 追加の重合工程(a)では、第2a工程後の反応系に、アルコキシシリル基を有する(メタ)アクリル酸エステルモノマーを加えて重合させる。アルコキシシリル基を有する(メタ)アクリル酸エステルモノマーの投入量は、第2a工程で得られる重合体の1モル当量に対して、1~10モル当量でありうる。また、必要に応じて、アルコキシシリル基を有さない(メタ)アクリル酸エステルモノマーを1~100モル当量、一緒に重合してもよい。好ましくは、追加の重合工程(a)において反応系に加えられるアルコキシシリル基を有する(メタ)アクリル酸エステルモノマーの量は、当該工程において反応系に加えられるモノマー混合物の、3重量%超を占めている。 In the additional polymerization step (a), a (meth) acrylic acid ester monomer having an alkoxysilyl group is added to the reaction system after the second a step to polymerize. The input amount of the (meth) acrylic acid ester monomer having an alkoxysilyl group can be 1 to 10 molar equivalents with respect to 1 molar equivalent of the polymer obtained in the second a step. Further, if necessary, 1 to 100 molar equivalents of (meth) acrylic acid ester monomer having no alkoxysilyl group may be polymerized together. Preferably, the amount of the (meth) acrylic acid ester monomer having an alkoxysilyl group added to the reaction system in the additional polymerization step (a) accounts for more than 3% by weight of the monomer mixture added to the reaction system in the step. ing.
 YXYトリブロック構造の分子である(メタ)アクリル酸共重合体(A1)は、上述の第1b工程および第2b工程の後、追加の重合工程(b)を経ることによって、製造できる。このとき、第2b工程によって、アルコキシシリル基が相対的に多く含まれるXブロックが形成される。 The (meth) acrylic acid copolymer (A1), which is a molecule having a YXY triblock structure, can be produced by undergoing an additional polymerization step (b) after the above-mentioned first step and second b step. At this time, the second b step forms an X block containing a relatively large amount of alkoxysilyl groups.
 追加の重合工程(b)では、第2b工程後の反応系に、アルコキシシリル基を有さない(メタ)アクリル酸エステルモノマーを加えて重合させる。アルコキシシリル基を有さない(メタ)アクリル酸エステルモノマーの投入量は、第2b工程で得られる重合体の1モル当量に対して、2~600モル当量でありうる。追加の重合工程(b)において、アルコキシシリル基を有する(メタ)アクリル酸エステルモノマーを反応系に加えてもよい。追加の重合工程(b)において反応系に加えられるアルコキシシリル基を有する(メタ)アクリル酸エステルモノマーの量は、当該工程において反応系に加えられるモノマー混合物の、0~3重量%を占めている。 In the additional polymerization step (b), a (meth) acrylic acid ester monomer having no alkoxysilyl group is added to the reaction system after the second b step to polymerize. The input amount of the (meth) acrylic acid ester monomer having no alkoxysilyl group can be 2 to 600 molar equivalents with respect to 1 molar equivalent of the polymer obtained in the second b step. In the additional polymerization step (b), a (meth) acrylic acid ester monomer having an alkoxysilyl group may be added to the reaction system. The amount of the (meth) acrylic acid ester monomer having an alkoxysilyl group added to the reaction system in the additional polymerization step (b) accounts for 0 to 3% by weight of the monomer mixture added to the reaction system in the step. ..
 (共重合体が4つ以上のブロックを有する場合)
 上述した第1a工程、第2a工程、第1b工程、第2b工程および追加の重合工程を適宜組み合わせることによって、4つ以上のブロックを有する(メタ)アクリル系共重合体(A1)を製造できる。例えば、XYXYテトラブロック構造を有する(メタ)アクリル系共重合体(A1)を製造できる。
(When the copolymer has 4 or more blocks)
By appropriately combining the above-mentioned first step, second a step, first b step, second b step and additional polymerization step, the (meth) acrylic copolymer (A1) having four or more blocks can be produced. For example, a (meth) acrylic copolymer (A1) having an XYXY tetrapod structure can be produced.
 上述の製造方法において、アルコキシシリル基を有さない(メタ)アクリル酸エステルモノマーとして加えられるアルコキシシリル基を有さない(メタ)アクリル酸エステルモノマーには、全てのモノマーの重量を基準として、(メタ)アクリル酸エステルモノマー(α)が5~20重量%含まれている。 In the above-mentioned production method, the (meth) acrylic acid ester monomer having no alkoxysilyl group added as the (meth) acrylic acid ester monomer having no alkoxysilyl group is (based on the weight of all the monomers). Meta) Acrylic ester monomer (α) is contained in an amount of 5 to 20% by weight.
 第2の形態の製造方法を採用した場合、(メタ)アクリル系共重合体(A1)の分子の一端または両端(重合時における分子鎖の伸長末端)に、ハロゲン原子が残存している場合がある。一実施形態において、(メタ)アクリル系共重合体(A1)は、重合時における分子鎖の伸長末端1個あたり、平均して1個以上のハロゲン原子を有している。 When the production method of the second embodiment is adopted, halogen atoms may remain at one end or both ends (extended end of the molecular chain at the time of polymerization) of the molecule of the (meth) acrylic copolymer (A1). be. In one embodiment, the (meth) acrylic copolymer (A1) has, on average, one or more halogen atoms per extended end of the molecular chain during polymerization.
 [3.3.リビングラジカル重合による(メタ)アクリル系重合体の製造に関する一般的な事項]
 上記に例示した製造方法はいずれも、リビングラジカル重合法を採用することにより、好適に実行できる。その中でも、原子移動ラジカル重合、一電子移動重合、および可逆移動触媒重合が好ましい。
[3.3. General matters concerning the production of (meth) acrylic polymers by living radical polymerization]
Any of the production methods exemplified above can be suitably carried out by adopting the living radical polymerization method. Among them, atom transfer radical polymerization, one-electron transfer polymerization, and reversible transfer catalyst polymerization are preferable.
 より好ましい製造方法としては、ATRPまたはSET-LRPを利用して、遷移金属または遷移金属錯体(遷移金属化合物と配位子とからなる)を触媒とする、ビニル系モノマーのリビングラジカル重合方法を挙げることができる。さらに、遷移金属類を触媒としないRTCPも挙げられる。 As a more preferable production method, there is a living radical polymerization method of a vinyl-based monomer using ATRP or SET-LRP and using a transition metal or a transition metal complex (composed of a transition metal compound and a ligand) as a catalyst. be able to. Further, RTCP which does not use transition metals as a catalyst can be mentioned.
 遷移金属錯体を触媒とするリビングラジカル重合のメカニズムには、現在のところ、ATRPおよびSET-LRPの2通りの解釈がある。ATRPに基づいて解釈すると、リビングラジカル重合は、以下の2つの反応の平衡からなる(例として、銅錯体を使用する場合で説明する)。 At present, there are two interpretations of the mechanism of living radical polymerization catalyzed by a transition metal complex: ATRP and SET-LRP. Interpreted based on ATRP, living radical polymerization consists of the equilibrium of the following two reactions (as an example, the case of using a copper complex will be described).
 (a)1価銅錯体は、重合体末端のハロゲンを引き抜いてラジカルを発生させ、2価銅錯体となる。 (A) The monovalent copper complex abstracts the halogen at the end of the polymer to generate radicals, and becomes a divalent copper complex.
 (b)2価銅錯体は、重合末端のラジカルにハロゲンを付加し、1価銅錯体となる。 (B) The divalent copper complex becomes a monovalent copper complex by adding a halogen to the radical at the polymerization terminal.
 一方、SET LRPに基づいて解釈すると、リビングラジカル重合は、以下の3つの反応の平衡からなる(例として、銅錯体を使用する場合で説明する)。 On the other hand, when interpreted based on SET LRP, living radical polymerization consists of the equilibrium of the following three reactions (as an example, the case of using a copper complex will be described).
 (a)0価の金属銅または銅錯体は、重合体末端のハロゲンを引き抜いてラジカルを発生させて、2価銅錯体となる。 (A) The zero-valent metallic copper or copper complex abstracts the halogen at the end of the polymer to generate radicals, and becomes a divalent copper complex.
 (b)2価銅錯体は、重合末端のラジカルにハロゲンを付加して、0価銅錯体となる。 (B) The divalent copper complex becomes a zero-valent copper complex by adding a halogen to the radical at the polymerization terminal.
 (c)1価銅錯体は、不均化して、0価および2価の銅錯体となる。 (C) The monovalent copper complex is disproportionated into 0-valent and divalent copper complexes.
 上述した製造方法も、いずれかのリビングラジカル重合系として解釈されうるが、本発明では両者を特に区別しない。触媒に遷移金属または遷移金属化合物と配位子とを用いたリビングラジカル重合系であれば全て、本発明の範疇に含まれる。 The above-mentioned production method can also be interpreted as either living radical polymerization system, but the present invention does not particularly distinguish between the two. Any living radical polymerization system using a transition metal or a transition metal compound and a ligand as a catalyst is included in the scope of the present invention.
 また、ATRPを改良した合成方法である、Activators Regenerated by Electron Transfer:ARGETも報告されている(Macromolecules. 2006, 39, 39)。この方法は、重合の遅延または停止の原因となる高酸化遷移金属錯体を、還元剤を用いて減らすことによって、遷移金属錯体が少ない低触媒条件においても、速やかに高反応率まで重合反応を進行させることができる。このARGETも、本発明では採用できる。 In addition, Activators Regenerated by Electron Transfer: ARGET, which is an improved synthesis method of ATRP, has also been reported (Macromolecules. 2006, 39, 39). In this method, the high oxidation transition metal complex that causes the delay or termination of polymerization is reduced by using a reducing agent, so that the polymerization reaction can be rapidly advanced to a high reaction rate even under low catalytic conditions with few transition metal complexes. Can be made to. This ARGET can also be adopted in the present invention.
 (製造方法による(メタ)アクリル系共重合体(A)の構造の特定)
 一実施形態において、(メタ)アクリル系共重合体(A)は、上述の製造方法により得られる共重合体として定義される。すなわち、(メタ)アクリル系共重合体(A)は、第1a工程および第2a工程、または、第1b工程および第2b工程、を含む製造方法によって得られる共重合体でありうる。
(Specification of the structure of the (meth) acrylic copolymer (A) by the manufacturing method)
In one embodiment, the (meth) acrylic copolymer (A) is defined as the copolymer obtained by the above-mentioned production method. That is, the (meth) acrylic copolymer (A) can be a copolymer obtained by a production method including steps 1a and 2a, or steps 1b and 2b.
 上述の製造方法は、アルコキシシリル基を有する(メタ)アクリル酸エステルモノマーを共重合により導入する。そのため、得られる共重合体分子におけるアルコキシシリル基の位置を具体的に特定することは、およそ実際的ではない。 In the above-mentioned production method, a (meth) acrylic acid ester monomer having an alkoxysilyl group is introduced by copolymerization. Therefore, it is not practical to specifically specify the position of the alkoxysilyl group in the obtained copolymer molecule.
 また、上述の製造方法において、第1a工程および第2a工程(または、第1b工程および第2b工程)で同じ種類のアルコキシシリル基を有さない(メタ)アクリル酸エステルモノマーを反応系に加える場合、得られる共重合体の主鎖構造は、XブロックもYブロックも同じになる。このような共重合体において、XブロックとYブロックとの境界を具体的に特定することは、およそ実際的でない。 Further, in the above-mentioned production method, when a (meth) acrylic acid ester monomer having no alkoxysilyl group of the same type is added to the reaction system in the first step and the second step (or the first step and the second b step). The main chain structure of the obtained copolymer is the same for both the X block and the Y block. In such a copolymer, it is practically impractical to specifically specify the boundary between the X block and the Y block.
 このような事情のため、(メタ)アクリル系共重合体(A)を、共重合体分子の具体的な構造として定義するのではなく、上述の製造方法により得られる共重合体として定義せざるをえない場合がある。 Due to such circumstances, the (meth) acrylic copolymer (A) must be defined not as a specific structure of the copolymer molecule but as a copolymer obtained by the above-mentioned production method. May not be obtained.
 以下、本発明の一実施形態における製造方法に使用できる各種の薬剤について、個別に説明する。これらの薬剤はいずれも、1種類のみを用いてもよいし、2種類以上を組合せて用いてもよい。また、これらの薬剤自体を重合系に投入してもよいし、重合系内でこれらの薬剤が生成するようにしてもよい。 Hereinafter, various agents that can be used in the production method according to the embodiment of the present invention will be individually described. Any of these agents may be used alone or in combination of two or more. Further, these agents themselves may be put into the polymerization system, or these agents may be produced in the polymerization system.
 (a.開始剤)
 開始剤としては、分子内にハロゲン基を1つ有するラジカル開始剤を使用することができる。このような開始剤の例としては、2-ブロモイソ酪酸エチル、2-ブロモ酪酸エチル(α-ブロモ酪酸エチルとも称する)、ブロモ酢酸エチル、ブロモ酢酸メチル、(1-ブロモエチル)ベンゼン、アリルブロミド、2-ブロモプロピオン酸メチル、クロロ酢酸メチル、2-クロロプロピオン酸メチル、(1-クロロエチル)ベンゼンが挙げられる。
(A. Initiator)
As the initiator, a radical initiator having one halogen group in the molecule can be used. Examples of such initiators are ethyl 2-bromoisobutyrate, ethyl 2-bromobutyrate (also referred to as ethyl α-bromobutyrate), ethyl bromoacetate, methyl bromoacetate, (1-bromoethyl) benzene, allyl bromide, 2 -Methyl bromopropionate, methyl chloroacetate, methyl 2-chloropropionate, (1-chloroethyl) benzene can be mentioned.
 容易に入手できるという観点からは、2-ブロモ酪酸エチル、(1-ブロモエチル)ベンゼン、クロロ酢酸メチルが好ましい。反応性および安全性の観点からは、2-ブロモ酪酸エチルが好ましい。 From the viewpoint of easy availability, ethyl 2-bromobutyrate, (1-bromoethyl) benzene, and methyl chloroacetate are preferable. From the viewpoint of reactivity and safety, ethyl 2-bromobutyrate is preferable.
 また、開始剤として、アルコキシシリル基を有する開始剤を用いてもよい。あるいは、重合反応前または重合反応後などに、開始剤中にアルコキシシリル基を導入してもよい。このような方法によっても、アルコキシシリル基を少なくとも末端部に有する(メタ)アクリル系共重合体(A)を製造できる。 Further, as the initiator, an initiator having an alkoxysilyl group may be used. Alternatively, an alkoxysilyl group may be introduced into the initiator before or after the polymerization reaction. Also by such a method, the (meth) acrylic copolymer (A) having an alkoxysilyl group at least at the terminal portion can be produced.
 (b.重合触媒)
 還元剤を使用する場合も還元剤を使用しない場合も、ATRP系においては、周期表の7族、8族、9族、10族または11族元素を中心金属とする金属錯体を用いることができる。その中でも、特に1価の銅、2価のルテニウム、2価の鉄を中心金属とする金属錯体が好適である。
(B. Polymerization catalyst)
Regardless of whether a reducing agent is used or not, in the ATRP system, a metal complex having a group 7, group 8, group 9, group 10 or group 11 element in the periodic table as a central metal can be used. .. Among them, a metal complex having monovalent copper, divalent ruthenium, and divalent iron as the central metal is particularly preferable.
 具体例を挙げると、塩化第一銅、臭化第一銅、ヨウ化第一銅、シアン化第一銅、酸化第一銅、酢酸第一銅、過塩素酸第一銅などがある。銅化合物を重合触媒として用いる場合には、触媒活性を高めるために、アミン配位子を重合系に添加することが好ましい。また、二価の塩化ルテニウムのトリストリフェニルホスフィン錯体(RuCl(PPh)も、触媒として好適である。この触媒を使用する場合は、触媒活性を高めるために、アルミニウム化合物(トリアルコキシアルミニウムなど)を重合系に添加することが好ましい。さらに、二価の塩化鉄のトリストリフェニルホスフィン錯体(FeCl(PPh)も、触媒として好適である。 Specific examples include cuprous chloride, cuprous bromide, cuprous iodide, cuprous cyanide, cuprous oxide, cuprous acetate, and cuprous perchlorate. When a copper compound is used as a polymerization catalyst, it is preferable to add an amine ligand to the polymerization system in order to enhance the catalytic activity. A triphenylphosphine complex of divalent ruthenium chloride (RuCl 2 (PPh 3 ) 3 ) is also suitable as a catalyst. When this catalyst is used, it is preferable to add an aluminum compound (trialkoxyaluminum or the like) to the polymerization system in order to enhance the catalytic activity. Further, a triphenylphosphine complex of divalent iron chloride (FeCl 2 (PPh 3 ) 3 ) is also suitable as a catalyst.
 上述した中では、銅触媒が廉価で好ましい。触媒活性が高めて生産性を高めるために、多座アミンと銅触媒とを組合せて使用することがより好ましい。 Among the above, the copper catalyst is preferable because it is inexpensive. It is more preferable to use a polydentate amine and a copper catalyst in combination in order to increase the catalytic activity and increase the productivity.
 (c.多座アミン)
 配位子として使用されうる多座アミンの例としては、以下が挙げられる。
・二座配位の多座アミン:2,2-ビピリジン、4,4’-ジ-(5-ノニル)-2,2’-ビピリジン、N-(n-プロピル)ピリジルメタンイミン、N-(n-オクチル)ピリジルメタンイミン
・三座配位の多座アミン:N,N,N’,N’’,N’’-ペンタメチルジエチレントリアミン、N-プロピル-N,N-ジ(2-ピリジルメチル)アミン
・四座配位の多座アミン:ヘキサメチルトリス(2-アミノエチル)アミン(MeTREN)、N,N-ビス(2-ジメチルアミノエチル)-N,N’-ジメチルエチレンジアミン、2,5,9,12-テトラメチル-2,5,9,12-テトラアザテトラデカン、2,6,9,13-テトラメチル-2,6,9,13-テトラアザテトラデカン、4,11-ジメチル-1,4,8,11-テトラアザビシクロヘキサデカン、N’,N’’-ジメチル-N’,N’’-ビス((ピリジン-2-イル)メチル)エタン-1,2-ジアミン、トリス[(2-ピリジル)メチル]アミン、2,5,8,12-テトラメチル-2,5,8,12-テトラアザテトラデカン
・五座配位の多座アミン:N,N,N’,N’’,N’’’,N’’’’,N’’’’-ヘプタメチルテトラエチレンテトラミン
・六座配位の多座アミン:N,N,N’,N’-テトラキス(2-ピリジルメチル)エチレンジアミン
・ポリアミン:ポリエチレンイミン。
(C. Polydentate amine)
Examples of polydentate amines that can be used as ligands include:
Bidentate polydentate amines: 2,2-bipyridine, 4,4'-di- (5-nonyl) -2,2'-bipyridine, N- (n-propyl) pyridylmethaneimine, N- ( n-octyl) pyridylmethaneimine tridentate polydentate amines: N, N, N', N'', N''-pentamethyldiethylenetriamine, N-propyl-N, N-di (2-pyridylmethyl) ) Amine / tetradentate polydentate amines: hexamethyltris (2-aminoethyl) amine (Me 6 TREN), N, N-bis (2-dimethylaminoethyl) -N, N'-dimethylethylenediamine, 2, 5,9,12-Tetramethyl-2,5,9,12-Tetraazatetradecane, 2,6,9,13-Tetramethyl-2,6,9,13-Tetraazatetradecane, 4,11-Dimethyl- 1,4,8,11-Tetraazabicyclohexadecane, N', N''-dimethyl-N', N''-bis ((pyridine-2-yl) methyl) ethane-1,2-diamine, tris [ (2-Pyridyl) Methyl] Amine, 2,5,8,12-Tetramethyl-2,5,8,12-Tetraazatetradecane / pentadentate polydentate amine: N, N, N', N'',N''',N'''',N''''-Heptamethyltetraethylenetetramine / hexadentate polydentate amine: N, N, N', N'-tetrakis (2-pyridylmethyl) ) Ethylenediamine / polyamine: Polyethyleneimine.
 (d.塩基)
 重合系中に存在または発生する酸を中和して、酸の蓄積を防ぐために、塩基を重合系に添加してもよい。塩基の例としては、以下が挙げられる。
・モノアミン:モノアミンとは、塩基として作用する部位が、1分子あたり1個ある化合物を指す。モノアミンの例としては、一級アミン(メチルアミン、アニリン、リシンなど)、二級アミン(ジメチルアミン、ピペリジンなど)、三級アミン(トリメチルアミン、トリエチルアミンなど)、芳香族系アミン(ピリジン、ピロールなど)、アンモニアが挙げられる。
・ポリアミン:ポリアミンの例としては、ジアミン(エチレンジアミン、テトラメチルエチレンジアミンなど)、トリアミン(ジエチレントリアミン、ペンタメチルジエチレントリアミンなど)、テトラミン(トリエチレンテトラミン、ヘキサメチルトリエチレンテトラミン、ヘキサメチレンテトラミンなど)、ポリエチレンイミンなどが挙げられる。
・無機塩基:無機塩基とは、周期表の1族および2族に属する元素の単体または化合物を指す。周期表の1族および2族に属する元素の単体の例としては、リチウム、ナトリウム、カルシウムが挙げられる。周期表の1族および2族に属する元素の化合物の例としては、ナトリウムメトキシド、カリウムエトキシド、メチルリチウム、水酸化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素アンモニウム、リン酸三ナトリウム、リン酸水素二ナトリウム、リン酸三カリウム、リン酸水素二カリウム、酢酸ナトリウム、酢酸カリウム、シュウ酸ナトリウム、シュウ酸カリウム、フェノキシナトリウム、フェノキシカリウム、アスコルビン酸ナトリウム、アスコルビン酸カリウムが挙げられる。
(D. Base)
Bases may be added to the polymerization system to neutralize the acids present or generated in the polymerization system and prevent acid accumulation. Examples of bases include:
-Monoamine: A monoamine refers to a compound having one site per molecule that acts as a base. Examples of monoamines include primary amines (methylamine, aniline, lysine, etc.), secondary amines (dimethylamine, piperidine, etc.), tertiary amines (trimethylamine, triethylamine, etc.), aromatic amines (pyridine, pyrrol, etc.), Ammonia can be mentioned.
-Polyamines: Examples of polyamines include diamines (ethylenediamine, tetramethylethylenediamine, etc.), triamines (diethylenetriamine, pentamethyldiethylenetriamine, etc.), tetramines (triethylenetetramine, hexamethyltriethylenetetramine, hexamethylenetetramine, etc.), polyethyleneimine, etc. Can be mentioned.
-Inorganic base: An inorganic base refers to a simple substance or a compound of an element belonging to Group 1 and Group 2 of the periodic table. Examples of elemental elements belonging to Group 1 and Group 2 of the periodic table include lithium, sodium, and calcium. Examples of compounds of elements belonging to Group 1 and Group 2 of the Periodic Table are sodium methoxydo, potassium ethoxydo, methyllithium, sodium hydroxide, potassium hydroxide, potassium carbonate, sodium hydrogencarbonate, ammonium hydrogencarbonate, phosphoric acid. Examples include trisodium, disodium hydrogen phosphate, tripotassium phosphate, dipotassium hydrogen phosphate, sodium acetate, potassium acetate, sodium oxalate, potassium oxalate, phenoxysodium, phenoxypotassium, sodium ascorbate, and potassium ascorbate. ..
 (e.還元剤)
 銅錯体を触媒とするリビングラジカル重合においては、還元剤を併用することにより、重合活性が向上することが知られている(ARGET ATRP)。ARGET ATRPにおいては、重合反応の遅延または停止の原因となる高酸化遷移金属錯体(ラジカル同士のカップリングなどによって生じる)を、還元して減少させることにより、重合活性が向上すると考えられている。これによって、通常ならば数百~数千ppm必要な遷移金属触媒を、数十~数百ppmまで減少させることができる。本発明の一実施形態における製造方法では、還元剤を用いて、ARGET ATRPと同様の反応機構とすることができる。還元剤の例としては、以下が挙げられる。
(E. Reducing agent)
In living radical polymerization using a copper complex as a catalyst, it is known that the polymerization activity is improved by using a reducing agent in combination (ARGET ATRP). In ARGET ATRP, it is considered that the polymerization activity is improved by reducing and reducing the highly oxidized transition metal complex (generated by coupling of radicals or the like) that causes the delay or termination of the polymerization reaction. This makes it possible to reduce the transition metal catalyst, which normally requires hundreds to thousands of ppm, to tens to hundreds of ppm. In the production method according to the embodiment of the present invention, a reducing agent can be used to have a reaction mechanism similar to that of ARGET ATRP. Examples of reducing agents include:
 (銅錯体を還元する際に酸を発生させない還元剤)
・金属:金属の例としては、アルカリ金属(リチウム、ナトリウム、カリウムなど)、アルカリ土類金属(ベリリウム、マグネシウム、カルシウム、バリウムなど)、典型金属(アルミニウム、亜鉛など)、遷移金属(銅、ニッケル、ルテニウム、鉄など)が挙げられる。これらの金属は、水銀との合金(アマルガム)の形態で用いることもできる。
・金属化合物:金属化合物の例としては、金属塩、金属錯体が挙げられる。金属錯体に配位している配位子の例としては、一酸化炭素、オレフィン、含窒素化合物、含酸素化合物、含リン化合物、含硫黄化合物が挙げられる。より具体的な例としては、金属とアンモニア/アミンとの化合物、三塩化チタン、チタンアルコキシド、塩化クロム、硫酸クロム、酢酸クロム、塩化鉄、塩化銅、臭化銅、塩化スズ、酢酸亜鉛、水酸化亜鉛、カルボニル錯体(Ni(CO)、CoCOなど)、オレフィン錯体([Ni(cod)]、[RuCl(cod)]、[PtCl(cod)]など;codはシクロオクタジエンを表す)、ホスフィン錯体([RhCl(P(C]、[RuCl(P(C]、[PtCl(P(C]など)が挙げられる。
・有機スズ化合物:具体例としては、オクチル酸スズ、2-エチルヘキシル酸スズ、ジブチルスズジアセテート、ジブチルスズジラウレート、ジブチルスズメルカプチド、ジブチルスズチオカルボキシレート、ジブチルスズジマレエート、ジオクチルスズチオカルボキシレートが挙げられる。
・リンまたはリン化合物:具体例としては、リン、トリメチルホスフィン、トリエチルホスフィン、トリフェニルホスフィン、トリメチルホスファイト、トリエチルホスファイト、トリフェニルホスファイト、ヘキサメチルホスフォラストリアミド、ヘキサエチルホスフォラストリアミドが挙げられる。
・硫黄または硫黄化合物:具体例としては、硫黄、ロンガリット類、ハイドロサルファイト類、二酸化チオ尿素が挙げられる。ロンガリットとは、スルホキシル酸塩のホルムアルデヒド誘導体のことを指し、一般式:MSO・CHOで表される(式中、MはNaまたはZnである)。ロンガリットの具体例としては、ソジウムホルムアルデヒドスルホキシレート、亜鉛ホルムアルデヒドスルホキシレートが挙げられる。ハイドロサルファイトとは、次亜硫酸ナトリウムおよび次亜硫酸ナトリウムのホルムアルデヒド誘導体を指す。
(Reducing agent that does not generate acid when reducing copper complex)
-Metal: Examples of metals include alkali metals (lithium, sodium, potassium, etc.), alkaline earth metals (berylium, magnesium, calcium, barium, etc.), typical metals (aluminum, zinc, etc.), transition metals (copper, nickel, etc.). , Luthenium, iron, etc.). These metals can also be used in the form of alloys with mercury (amalgam).
-Metal compounds: Examples of metal compounds include metal salts and metal complexes. Examples of ligands coordinated to metal complexes include carbon monoxide, olefins, nitrogen-containing compounds, oxygen-containing compounds, phosphorus-containing compounds, and sulfur-containing compounds. More specific examples include metal and ammonia / amine compounds, titanium trichloride, titanium alkoxide, chromium chloride, chromium sulfate, chromium acetate, iron chloride, copper chloride, copper bromide, tin chloride, zinc acetate, water. Zinc oxide, carbonyl complex (Ni (CO) 4 , Co 2 CO 8, etc.), olefin complex ([Ni (cod) 2 ], [RuCl 2 (cod)], [PtCl 2 (cod)], etc .; cod is cyclo (Representing octadiene), phosphine complex ([RhCl (P (C 6 H 5 ) 3 ) 3 ], [RuCl 2 (P (C 6 H 5 ) 3 ) 2 ], [PtCl 2 (P (C 6 H 5) 5) ) 3 ) 2 ] etc.).
-Organotin compounds: Specific examples thereof include tin octylate, tin 2-ethylhexylate, dibutyltin diacetate, dibutyltin dilaurate, dibutyltin mercaptide, dibutyltin thiocarboxylate, dibutyltin dimalate, and dioctyltinthiocarboxylate.
-Phosphorus or phosphorus compound: Specific examples include phosphorus, trimethylphosphine, triethylphosphine, triphenylphosphine, trimethylphosphine, triethylphosphine, triphenylphosphine, hexamethylphosphorustriamide, and hexaethylphosphorustriamide. Can be mentioned.
-Sulfur or sulfur compounds: Specific examples include sulfur, longalits, hydrosulfites, and thiourea dioxide. Longarit refers to a formaldehyde derivative of sulfoxyphosphate and is represented by the general formula: MSO 2 · CH 2 O (in the formula, M is Na or Zn). Specific examples of Longarit include sodium formaldehyde sulfoxylate and zinc formaldehyde sulfoxylate. Hydrosulfite refers to sodium hyposulfite and formaldehyde derivatives of sodium hyposulfite.
 (銅錯体を還元する際に酸を発生させる還元剤(水素化物還元剤))
・金属水素化物:具体例としては、水素化ナトリウム、水素化ゲルマニウム、水素化タングステン、アルミニウム水素化物(水素化ジイソブチルアルミニウム、水素化アルミニウムリチウム、水素アルミニウムナトリウム、水素化トリエトキシアルミニウムナトリウム、水素化ビス(2-メトキシエトキシ)アルミニウムナトリウムなど)、有機スズ水素化物(水素化トリフェニルスズ、水素化トリ-n-ブチルスズ、水素化ジフェニルスズ、水素化ジ-n-ブチルスズ、水素化トリエチルスズ、水素化トリメチルスズなど)が挙げられる。
・ケイ素水素化物:具体例としては、トリクロロシラン、トリメチルシラン、トリエチルシラン、ジフェニルシラン、フェニルシラン、ポリメチルヒドロシロキサンが挙げられる。
・ホウ素水素化物。具体例としては、ボラン、ジボラン、水素化ホウ素ナトリウム、水素化トリメトキシホウ酸ナトリウム、硫化水素化ホウ素ナトリウム、シアン化水素化ホウ素ナトリウム、シアン化水素化ホウ素リチウム、水素化ホウ素リチウム、水素化トリエチルホウ素リチウム、水素化トリ-s-ブチルホウ素リチウム、水素化トリ-t-ブチルホウ素リチウム、水素化ホウ素カルシウム、水素化ホウ素カリウム、水素化ホウ素亜鉛、水素化ホウ素テトラ-n-ブチルアンモニウムが挙げられる。
・窒素水素化合物:具体例としては、ヒドラジン、ジイミドが挙げられる。
・リンまたはリン化合物:具体例としては、ホスフィン、ジアザホスホレンが挙げられる。
・硫黄または硫黄化合物:具体例としては硫化水素が挙げられる。
・還元作用を示す有機化合物:具体例としては、アルコール、アルデヒド、フェノール類、有機酸化合物が挙げられる。アルコールの例としては、メタノール、エタノール、プロパノール、イソプロパノールが挙げられる。アルデヒドの例としては、ホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド、ギ酸が挙げられる。フェノール類の例としては、フェノール、ハイドロキノン、ジブチルヒドロキシトルエン、トコフェロールが挙げられる。有機酸化合物の例としては、クエン酸、シュウ酸、アスコルビン酸、アスコルビン酸塩、アスコルビン酸エステルが挙げられる。
(Reducing agent that generates acid when reducing copper complex (hydride reducing agent))
-Metal hydride: Specific examples include sodium hydride, germanium hydride, tungsten hydride, and aluminum hydride (diisobutyl aluminum hydride, lithium aluminum hydride, sodium aluminum hydrogen, triethoxyaluminum hydride, bis hydride. (2-methoxyethoxy) sodium aluminum, etc.), Organic tin hydrides (triphenyltin hydride, tri-n-butyltin hydride, diphenyltin hydride, di-n-butyltin hydride, triethyltin hydride, trimethyl hydride (Suzu, etc.).
-Silicon hydride: Specific examples thereof include trichlorosilane, trimethylsilane, triethylsilane, diphenylsilane, phenylsilane, and polymethylhydrosiloxane.
-Boron hydride. Specific examples include borane, diborane, sodium borohydride, sodium trimethoxyborate hydride, sodium borohydride, sodium borohydride cyanide, lithium borohydride cyanide, lithium borohydride, lithium triethylborohydride, and hydrogen. Examples thereof include tri-s-butylborone lithium borohydride, tri-t-butylborane borohydride lithium, calcium borohydride, potassium borohydride, zinc borohydride, and tetra-n-butylammonium borohydride.
-Nitrogen hydrogen compound: Specific examples include hydrazine and diimide.
-Phosphorus or phosphorus compound: Specific examples include phosphine and diazaphosphoren.
-Sulfur or sulfur compounds: Specific examples include hydrogen sulfide.
-Organic compounds exhibiting a reducing action: Specific examples include alcohols, aldehydes, phenols, and organic acid compounds. Examples of alcohols include methanol, ethanol, propanol and isopropanol. Examples of aldehydes include formaldehyde, acetaldehyde, benzaldehyde and formic acid. Examples of phenols include phenol, hydroquinone, dibutylhydroxytoluene and tocopherol. Examples of organic acid compounds include citric acid, oxalic acid, ascorbic acid, ascorbic acid salt, and ascorbic acid ester.
 また、電解還元によって、還元剤を重合系中で生成させてもよい。電解還元においては、陰極で生じた電子が直接に(または、溶媒和した後で)、還元作用を示す。つまり、還元剤を、電気分解により生成させてもよい。 Further, the reducing agent may be produced in the polymerization system by electrolytic reduction. In electrolytic reduction, the electrons generated at the cathode directly (or after solvation) exhibit a reducing action. That is, the reducing agent may be produced by electrolysis.
 (f.溶媒)
 溶媒の例としては、以下が挙げられる。ただし、ATRPは、溶媒を用いない条件でも実施可能である。
・高極性非プロトン性溶媒:ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、N,N-ジメチルアセトアミド(DMAc)、N-メチルピロリドン
・カーボネート系溶媒:エチレンカーボネート、プロピレンカーボネート
・アルコール系溶媒:メタノール、エタノール、プロパノール、イソプロパノール、n-ブチルアルコール、tert-ブチルアルコール
・ニトリル系溶媒:アセトニトリル、プロピオニトリル、ベンゾニトリル
・ケトン系溶媒:アセトン、メチルエチルケトン、メチルイソブチルケトン
・エーテル系溶媒:ジエチルエーテル、テトラヒドロフラン
・ハロゲン化炭化系溶媒:塩化メチレン、クロロホルム
・エステル系溶媒:酢酸エチル、酢酸ブチル
・炭化水素系溶媒:ペンタン、ヘキサン、ヘプタン、シクロヘキサン、オクタン、デカン、ベンゼン、トルエン、キシレン
・その他の溶媒:イオン性液体、水、超臨界流体。
(F. Solvent)
Examples of the solvent include the following. However, ATRP can be carried out under the condition that no solvent is used.
-Highly polar aprotonic solvent: dimethylsulfoxide (DMSO), dimethylformamide (DMF), N, N-dimethylacetamide (DMAc), N-methylpyrrolidone-carbonate-based solvent: ethylene carbonate, propylene carbonate-alcohol-based solvent: methanol , Ethanol, propanol, isopropanol, n-butyl alcohol, tert-butyl alcohol / nitrile solvent: acetonitrile, propionitrile, benzonitrile / ketone solvent: acetone, methyl ethyl ketone, methyl isobutyl ketone / ether solvent: diethyl ether, tetrahydrofuran -Halogenized carbide solvent: methylene chloride, chloroform-ester solvent: ethyl acetate, butyl acetate-hydrocarbon solvent: pentane, hexane, heptane, cyclohexane, octane, decane, benzene, toluene, xylene-Other solvents: ions Solvents, waters, supercritical solvents.
 還元剤を用いるATRP(ARGET)系においては、遷移金属または遷移金属化合物、多座アミン、塩基、還元剤、モノマーおよび開始剤が重合系中で均一になっていることが、反応制御、重合反応速度、仕込みやすさおよびスケールアップリスクの点から好ましい。したがって、これらの物質を溶解させられる溶媒を選択することが好ましい。 In the ATRP (ARGET) system using a reducing agent, the reaction control and polymerization reaction are that the transition metal or transition metal compound, polydentate amine, base, reducing agent, monomer and initiator are uniform in the polymerization system. Preferred in terms of speed, ease of preparation and scale-up risk. Therefore, it is preferable to select a solvent that can dissolve these substances.
 〔4.アルコキシシリル基を有するポリオキシアルキレン系重合体(B)〕
 本発明の一態様に係る硬化性組成物は、アルコキシシリル基を有するポリオキシアルキレン系重合体(B)を含んでいる。
[4. Polyoxyalkylene polymer having an alkoxysilyl group (B)]
The curable composition according to one aspect of the present invention contains a polyoxyalkylene polymer (B) having an alkoxysilyl group.
 [4.1.ポリオキシアルキレン系重合体(B)の主鎖)]
 ポリオキシアルキレン系重合体(B)の主鎖構造は、直鎖状であってもよいし、分枝状であってもよい。また、これらの構造を有する分子の混合物であってもよい。これらの中でも、ポリオキシプロピレンジオールおよびポリオキシプロピレントリオールからなる群より選択される1つ以上に由来する主鎖が、特に好ましい。
[4.1. Main chain of polyoxyalkylene polymer (B))]
The main chain structure of the polyoxyalkylene polymer (B) may be linear or branched. Further, it may be a mixture of molecules having these structures. Among these, a main chain derived from one or more selected from the group consisting of polyoxypropylene diol and polyoxypropylene triol is particularly preferable.
 ポリオキシアルキレン系重合体(B)の主鎖の例は、実質的に一般式(5)「-R-O-」で示される繰り返し単位を有するものが挙げられる(式中、Rは2価のアルキレン基である)。ここで、「実質的に」とは、一般式(5)で表される繰り返し単位が、ポリオキシアルキレン系重合体(B)の全重量を基準として、50重量%以上(好ましくは80重量%以上)含まれていることを指す。 Examples of the main chain of the polyoxyalkylene polymer (B) include those having a repeating unit represented by the general formula (5) "-R 7- O-" (in the formula, R 7 is It is a divalent alkylene group). Here, "substantially" means that the repeating unit represented by the general formula (5) is 50% by weight or more (preferably 80% by weight) based on the total weight of the polyoxyalkylene polymer (B). (Above) It means that it is included.
 一般式(5)中にあるRは、2価のアルキレン基ならば特に限定されない。Rは、炭素数1~14のアルキレン基であることが好ましく、炭素数2~4の直鎖状または分岐状のアルキレン基であることがより好ましい。 R 7 in the general formula (5) is not particularly limited as long as it is a divalent alkylene group. R 7 is preferably an alkylene group having 1 to 14 carbon atoms, and more preferably a linear or branched alkylene group having 2 to 4 carbon atoms.
 一般式(5)で表される繰り返し単位は、特に限定されない。具体例としては、-CHO-、-CHCHO-、-CHCH(CH)O-、-CHCH(C)O-、-CHC(CHO-、-CHCHCHCHO-が挙げられる。この中でも、ポリオキシアルキレン系重合体(B)の主鎖の主鎖は、-CHCH(CH)O-からなるポリプロピレンオキシドであることが好ましい。 The repeating unit represented by the general formula (5) is not particularly limited. Specific examples, -CH 2 O -, - CH 2 CH 2 O -, - CH 2 CH (CH 3) O -, - CH 2 CH (C 2 H 5) O -, - CH 2 C (CH 3 ) 2 O-, -CH 2 CH 2 CH 2 CH 2 O- can be mentioned. Among these, the main chain of the main chain of the polyoxyalkylene polymer (B) is preferably polypropylene oxide composed of —CH 2 CH (CH 3) O—.
 ポリオキシアルキレン系重合体(B)は、主鎖構造中にウレタン結合またはウレア結合を含んでいてもよい。 The polyoxyalkylene polymer (B) may contain a urethane bond or a urea bond in the main chain structure.
 ポリオキシアルキレン系重合体(B)の数平均分子量は、特に制限はされない。数平均分子量は、好ましくは5,000以上であり、より好ましくは5,000~50,000であり、さらに好ましくは5,000~25,000である。数平均分子量は、例えば、ゲルパーミエーションクロマトグラフィによって測定できる。 The number average molecular weight of the polyoxyalkylene polymer (B) is not particularly limited. The number average molecular weight is preferably 5,000 or more, more preferably 5,000 to 50,000, and even more preferably 5,000 to 25,000. The number average molecular weight can be measured, for example, by gel permeation chromatography.
 [4.2.ポリオキシアルキレン系重合体(B)の製造方法]
 ポリオキシアルキレン系重合体(B)の分子構造は、使用用途や目的とする特性により相違する。例えば、ポリオキシアルキレン系重合体(B)として、特開昭63-112642に記載の化合物を使用できる。このようなポリオキシアルキレン系重合体(B)は、通常の重合方法(苛性アルカリを用いるアニオン重合法)で合成することができる。さらに、セシウム金属触媒、ポルフィリン/アルミ錯体触媒(特開昭61-197631号公報、特開昭61-215622号公報、特開昭61-215623号公報および特開昭61-218632号公報などを参照)、複合金属シアン化錯体触媒(特公昭46-27250号公報、特公昭59-15336号公報などを参照)、ポリフォスファゼン塩からなる触媒(特開平10-273512号公報などを参照)を用いた方法によっても合成することができる。
[4.2. Method for Producing Polyoxyalkylene Polymer (B)]
The molecular structure of the polyoxyalkylene polymer (B) differs depending on the intended use and the intended properties. For example, as the polyoxyalkylene polymer (B), the compound described in JP-A-63-112642 can be used. Such a polyoxyalkylene polymer (B) can be synthesized by a usual polymerization method (anionic polymerization method using caustic alkali). Further, refer to cesium metal catalyst, porphyrin / aluminum complex catalyst (Japanese Patent Laid-Open No. 61-197631, JP-A-61-215622, JP-A-61-215623, JP-A-61-218632, etc.). ), Composite metal cesium complex catalyst (see Japanese Patent Publication No. 46-27250, Japanese Patent Publication No. 59-15336, etc.), catalyst composed of polyphosphazene salt (see Japanese Patent Application Laid-Open No. 10-273512, etc.) It can also be synthesized by the method used.
 ポルフィリン/アルミ錯体触媒、複合金属シアン化錯体触媒またはポリフォスファゼン塩からなる触媒を用いる方法を採用すれば、分子量分布(Mw/Mn)が1.6以下(好ましくは1.5以下、特に好ましくは1.2以下)のポリオキシアルキレン重合体を得ることができる。分子量分布が小さいポリオキシアルキレン系重合体(B)を使用すれば、硬化物の低モジュラスおよび高伸びを維持しつつ、硬化性組成物の粘度を小さくできるので好ましい。 If a method using a porphyrin / aluminum complex catalyst, a composite metal cyanation complex catalyst, or a catalyst composed of a polyphosphazene salt is adopted, the molecular weight distribution (Mw / Mn) is 1.6 or less (preferably 1.5 or less, particularly preferable). 1.2 or less) can be obtained. It is preferable to use the polyoxyalkylene polymer (B) having a small molecular weight distribution because the viscosity of the curable composition can be reduced while maintaining low modulus and high elongation of the cured product.
 (アルコキシシリル基)
 ポリオキシアルキレン系重合体(B)が有しているアルコキシシリル基は、特に限定されない。例えば、〔1〕節で説明した、一般式(1)で表されるアルコキシシリル基であってもよい。ポリオキシアルキレン系重合体(B)が有しているアルコキシシリル基は、(メタ)アクリル系共重合体(A)が有しているアルコキシシリル基と同じ構造であってもよいし、異なる構造であってもよい。
(Alkoxysilyl group)
The alkoxysilyl group contained in the polyoxyalkylene polymer (B) is not particularly limited. For example, it may be an alkoxysilyl group represented by the general formula (1) described in Section [1]. The alkoxysilyl group contained in the polyoxyalkylene polymer (B) may have the same structure as the alkoxysilyl group contained in the (meth) acrylic copolymer (A), or may have a different structure. It may be.
 ポリオキシアルキレン系重合体(B)が有しているアルコキシシリル基の数は、1分子あたり、0.5個超が好ましく、1.2~6.0個がより好ましく、1.5~2.5個がさらに好ましい。アルコキシシリル基の数が上記の範囲であれば、硬化性組成物に良好な硬化性を与えることができる。 The number of alkoxysilyl groups contained in the polyoxyalkylene polymer (B) is preferably more than 0.5, more preferably 1.2 to 6.0, and 1.5 to 2 per molecule. .5 is more preferable. When the number of alkoxysilyl groups is in the above range, good curability can be imparted to the curable composition.
 ポリオキシアルキレン系重合体(B)が有しているアルコキシシリル基は、分子の少なくとも一方の末端に位置することが好ましく、分子の両方の末端に位置することがより好まし。アルコキシシリル基が分子の末端に位置していれば、硬化物に良好なゴム弾性を与えることができる。アルコキシシリル基が分子の一方の末端に位置するポリオキシアルキレン系重合体(B)と、アルコキシシリル基が分子の両方の末端に位置するポリオキシアルキレン系重合体(B)とを併用してもよい。 The alkoxysilyl group contained in the polyoxyalkylene polymer (B) is preferably located at at least one end of the molecule, and more preferably located at both ends of the molecule. If the alkoxysilyl group is located at the end of the molecule, good rubber elasticity can be given to the cured product. Even if the polyoxyalkylene polymer (B) in which the alkoxysilyl group is located at one end of the molecule and the polyoxyalkylene polymer (B) in which the alkoxysilyl group is located at both ends of the molecule are used in combination. good.
 (アルコキシシリル基の導入法)
 ポリオキシアルキレン系重合体にアルコキシシリル基を導入する方法は、従来公知の方法を使用することができる。例えば、複合金属シアン化錯体触媒を用いて得られるオキシアルキレン重合体へのアルコキシシリル基の導入は、特開平3-72527号公報を参照することができる。また、ポリフォスファゼン塩および活性水素を触媒として得られるオキシアルキレン重合体へのアルコキシシリル基の導入は、特開平11-60723号公報を参照することができる。
(Introduction method of alkoxysilyl group)
As a method for introducing an alkoxysilyl group into a polyoxyalkylene polymer, a conventionally known method can be used. For example, for the introduction of the alkoxysilyl group into the oxyalkylene polymer obtained by using the composite metal cyanide complex catalyst, Japanese Patent Application Laid-Open No. 3-72527 can be referred to. Further, for the introduction of the alkoxysilyl group into the oxyalkylene polymer obtained by using the polyphosphazene salt and active hydrogen as a catalyst, Japanese Patent Application Laid-Open No. 11-60723 can be referred to.
 その他にも、以下の導入方法が挙げられる。
・方法1:末端に水酸基などの官能基を有するオキシアルキレン重合体と、この官能基に対して反応性を示す活性基および不飽和基を有する有機化合物を反応させて、不飽和基含有オキシアルキレン重合体を得る。あるいは、末端に水酸基などの官能基を有するオキシアルキレン重合体と、不飽和基含有エポキシ化合物との共重合により、不飽和基含有オキシアルキレン重合体を得る。その後、得られた反応生成物にアルコキシシリル基を有するヒドロシランを作用させて、ヒドロシリル化する。
・方法2:方法1と同様にして得た不飽和基含有オキシアルキレン重合体に、メルカプト基およびアルコキシシリル基を有する化合物を反応させる。
・方法3:末端にY官能基の官能基を有するオキシアルキレン重合体に、Y’官能基およびアルコキシシリル基を有する化合物を反応させる。ここで、Y官能基とは、水酸基、エポキシ基やイソシアネート基などである。Y’官能基とは、Y官能基に対して反応性を示す官能基である。
In addition, the following introduction methods can be mentioned.
Method 1: An unsaturated group-containing oxyalkylene by reacting an oxyalkylene polymer having a functional group such as a hydroxyl group at the terminal with an organic compound having an active group and an unsaturated group exhibiting reactivity with this functional group. Obtain a polymer. Alternatively, an unsaturated group-containing oxyalkylene polymer is obtained by copolymerizing an oxyalkylene polymer having a functional group such as a hydroxyl group at the terminal with an unsaturated group-containing epoxy compound. Then, a hydrosilane having an alkoxysilyl group is allowed to act on the obtained reaction product to hydrosilylate it.
Method 2: The unsaturated group-containing oxyalkylene polymer obtained in the same manner as in Method 1 is reacted with a compound having a mercapto group and an alkoxysilyl group.
Method 3: A compound having a Y'functional group and an alkoxysilyl group is reacted with an oxyalkylene polymer having a functional group of a Y functional group at the terminal. Here, the Y functional group is a hydroxyl group, an epoxy group, an isocyanate group, or the like. The Y'functional group is a functional group that exhibits reactivity with the Y functional group.
 方法3で使用できる、Y’官能基およびアルコキシシリル基を有する化合物の例としては、アミノ基含有シラン類(γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-アミノプロピルトリエトキシシラン、3-アミノ-2-メチルプロピルトリメトキシシラン、N-エチル-3-アミノ-2-メチルプロピルトリメトキシシラン、4-アミノ-3-メチルプロピルトリメトキシシラン、4-アミノ-3-メチルプロピルメチルジメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン;さらに、アミノ基含有シランと、マレイン酸エステルまたはアクリレート化合物との部分マイケル付加反応物など)、メルカプト基含有シラン類(γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシランなど)、エポキシシラン類(γ-グリシドキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシランなど)、ビニル型不飽和基含有シラン類(ビニルトリエトキシシラン、γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-アクリロイルオキシプロピルメチルジメトキシシランなど)、塩素原子含有シラン類(γ-クロロプロピルトリメトキシシランなど)、イソシアネート含有シラン類(γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシラン、γ-イソシアネートプロピルトリメトキシシランなど)、ハイドロシラン類(メチルジメトキシシラン、トリメトキシシラン、メチルジエトキシシラン、トリエトキシシランなど)が挙げられる。 Examples of compounds having a Y'functional group and an alkoxysilyl group that can be used in Method 3 include amino group-containing silanes (γ- (2-aminoethyl) aminopropyltrimethoxysilane, γ- (2-aminoethyl)). Aminopropylmethyldimethoxysilane, γ-aminopropyltriethoxysilane, 3-amino-2-methylpropyltrimethoxysilane, N-ethyl-3-amino-2-methylpropyltrimethoxysilane, 4-amino-3-methylpropyl Trimethoxysilane, 4-amino-3-methylpropylmethyldimethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane; further, a partial Michael addition reaction product of an amino group-containing silane and a maleic acid ester or acrylate compound, etc. ), Mercapto group-containing silanes (γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, etc.), epoxysilanes (γ-glycidoxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl)) Ethyltrimethoxysilane, etc.), Vinyl-type unsaturated group-containing silanes (vinyltriethoxysilane, γ-methacryloyloxypropyltrimethoxysilane, γ-acryloyloxypropylmethyldimethoxysilane, etc.), Chlorine atom-containing silanes (γ-chloro) (Propyltrimethoxysilane, etc.), isocyanate-containing silanes (γ-isocyanoxidetriethoxysilane, γ-isocyanabomethyldimethoxysilane, γ-isocyanoxidetrimethoxysilane, etc.), hydrosilanes (methyldimethoxysilane, trimethoxysilane, etc.) Methyldiethoxysilane, triethoxysilane, etc.).
 〔5.硬化性組成物〕
 本発明の一態様に係る硬化性組成物は、アルコキシシリル基を有する(メタ)アクリル系共重合体(A)と、アルコキシシリル基を有するポリオキシアルキレン系重合体(B)と、を含んでいる。また、上記硬化性組成物は、その他の添加剤を含んでいてもよい。上記組成物は、(メタ)アクリル系共重合体(A)と、ポリオキシアルキレン系重合体(B)とを混合することにより、製造できる。
[5. Curable composition]
The curable composition according to one aspect of the present invention contains a (meth) acrylic copolymer (A) having an alkoxysilyl group and a polyoxyalkylene-based polymer (B) having an alkoxysilyl group. There is. In addition, the curable composition may contain other additives. The above composition can be produced by mixing the (meth) acrylic copolymer (A) and the polyoxyalkylene polymer (B).
 [5.1.(メタ)アクリル系共重合体(A)とポリオキシアルキレン系重合体(B)との配合比]
 本発明の一実施形態に係る硬化性組成物における、(メタ)アクリル系共重合体(A)とポリオキシアルキレン系重合体(B)との配合比は、適宜調節できる。(メタ)アクリル系共重合体(A)と、ポリオキシアルキレン系重合体(B)との配合比は、重量比で、(95/5)~(5/95)が好ましく、(90/10)~(10/90)がより好ましく、(80/20)~(20/80)がさらに好ましい。配合比が上記の範囲であれば、硬化物の耐候性を充分に発現させることができる。
[5.1. Mixing ratio of (meth) acrylic copolymer (A) and polyoxyalkylene polymer (B)]
The blending ratio of the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B) in the curable composition according to the embodiment of the present invention can be appropriately adjusted. The blending ratio of the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B) is preferably (95/5) to (5/95) in terms of weight ratio, and is preferably (90/10). )-(10/90) is more preferable, and (80/20)-(20/80) is even more preferable. When the compounding ratio is in the above range, the weather resistance of the cured product can be sufficiently exhibited.
 [5.2.その他の添加剤]
 本発明の一実施形態に係る硬化性組成物には、(メタ)アクリル系共重合体(A)およびポリオキシアルキレン系重合体(B)以外にも、種々の添加剤を含有させてもよい。これらの添加剤を含有させることによって、硬化性組成物および硬化物の諸物性を調節することができる。添加剤の例としては、以下が挙げられる。これらの添加剤は、1種類のみを用いてもよいし、2種類以上を組合せて用いてもよい。
[5.2. Other additives]
The curable composition according to one embodiment of the present invention may contain various additives in addition to the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B). .. By containing these additives, the physical properties of the curable composition and the cured product can be adjusted. Examples of additives include: Only one kind of these additives may be used, or two or more kinds of these additives may be used in combination.
 (錫系硬化触媒)
 本発明における硬化性組成物は、公知の縮合触媒を用いてシロキサン結合を形成することにより、架橋、硬化させることができる。このような縮合触媒の例として、錫系硬化触媒が挙げられる。錫系硬化触媒の具体例としては、ジアルキル錫カルボン酸塩類(ジブチル錫ジラウレート、ジブチル錫ジアセテート、ジブチル錫ジエチルヘキサノレート、ジブチル錫ジオクテート、ジブチル錫ジメチルマレート、ジブチル錫ジエチルマレート、ジブチル錫ジブチルマレート、ジブチル錫ジイソオクチルマレート、ジブチル錫ジトリデシルマレート、ジブチル錫ジベンジルマレート、ジブチル錫マレエート、ジオクチル錫ジアセテート、ジオクチル錫ジステアレート、ジオクチル錫ジラウレート、ジオクチル錫ジエチルマレート、ジオクチル錫ジイソオクチルマレートなど);ジアルキル錫オキサイド類(ジブチル錫オキサイド、ジオクチル錫オキサイド、ジブチル錫オキサイドとフタル酸エステルとの混合物など);4価錫化合物(ジアルキル錫オキサイド、ジアルキル錫ジアセテートなど)とアルコキシシリル基を有する低分子ケイ素化合物(テトラエトキシシラン、メチルトリエトキシシラン、ジフェニルジメトキシシラン、フェニルトリメトキシシランなど)との反応物;2価の錫化合物類(オクチル酸錫、ナフテン酸錫、ステアリン酸錫など);モノアルキル錫類(モノブチル錫化合物(モノブチル錫トリスオクトエート、モノブチル錫トリイソプロポキシドなど)、モノオクチル錫化合物など);アミン系化合物と有機錫化合物との反応物または混合物(ラウリルアミンとオクチル酸錫の反応物または混合物など);キレート化合物(ジブチル錫ビスアセチルアセトナート、ジオクチル錫ビスアセチルセトナート、ジブチル錫ビスエチルアセトナート、ジオクチル錫ビスエチルアセトナートなど);錫アルコラート類(ジブチル錫ジメチラート、ジブチル錫ジエチラート、ジオクチル錫ジメチラート、ジオクチル錫ジエチラートなど)が挙げられる。
(Tin-based curing catalyst)
The curable composition in the present invention can be crosslinked and cured by forming a siloxane bond using a known condensation catalyst. An example of such a condensation catalyst is a tin-based curing catalyst. Specific examples of tin-based curing catalysts include dialkyltin carboxylates (dibutyltin dilaurate, dibutyltin diacetate, dibutyltin diethylhexanolate, dibutyltin dioctate, dibutyltin dimethylmalate, dibutyltin diethylmalate, and dibutyltin dibutyl. Malate, dibutyltin diisooctylmalate, dibutyltin ditridecylmalate, dibutyltin dibenzylmalate, dibutyltin maleate, dioctyltin diacetate, dioctyltin distearate, dioctyltin dilaurate, dioctyltin diethylmalate, dioctyltin Diisooctylmalate, etc.); Dialkyltin oxides (dibutyltin oxide, dioctyltin oxide, mixture of dibutyltin oxide and phthalate ester, etc.); With tetravalent tin compounds (dialkyltin oxide, dialkyltin diacetate, etc.) Reactants with low molecular weight silicon compounds having an alkoxysilyl group (tetraethoxysilane, methyltriethoxysilane, diphenyldimethoxysilane, phenyltrimethoxysilane, etc.); divalent tin compounds (tin octylate, tin naphthenate, stear) Tin acid (such as tin acid); monoalkyl tins (monobutyltin compounds (monobutyltin trisoctate, monobutyltin triisopropoxide, etc.), monooctyltin compounds, etc.); reactants or mixtures of amine compounds and organotin compounds ( Reactants or mixtures of laurylamine and tin octylate, etc.); Chelate compounds (dibutyltin bisacetylacetonate, dioctyltin bisacetylsettnate, dibutyltin bisethylacetonate, dioctyltin bisethylacetonate, etc.); tin alcoholates (Dibutyltin dimethylate, dibutyltin diethylate, dioctyltin dimethylate, dioctyltin diethylate, etc.) can be mentioned.
 この中でも、キレート化合物(ジブチル錫ビスアセチルアセトナートなど)および錫アルコラート類は、シラノール縮合触媒としての活性が高い点が好ましい。また、ジブチル錫ジラウレートは、硬化性組成物に添加しても着色が少なく、廉価であり、入手が容易である点が好ましい。 Among these, chelate compounds (dibutyltin bisacetylacetonate, etc.) and tin alcoholates are preferably highly active as silanol condensation catalysts. Further, it is preferable that dibutyltin dilaurate is less colored even when added to a curable composition, is inexpensive, and is easily available.
 錫系硬化触媒の配合量は、(メタ)アクリル系共重合体(A)およびポリオキシアルキレン系重合体(B)の総量100重量部に対して、0.1~20重量部が好ましく、0.5~10重量部がより好ましい。 The blending amount of the tin-based curing catalyst is preferably 0.1 to 20 parts by weight, preferably 0, based on 100 parts by weight of the total amount of the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B). .5 to 10 parts by weight is more preferable.
 (接着性付与剤)
 本発明の一実施形態に係る硬化性組成物には、接着性付与剤を添加してもよい。接着付与剤を添加することにより、シーリング材がサイディングボードなどの被着体から剥離する危険性を低減できる(この剥離は、外力により目地幅などが変動することによって生じる)。また、接着性を向上させるためのプライマーを使用する必要性がなくなる場合もある。この場合は、施工作業の簡略化が期待される。
(Adhesive imparting agent)
An adhesiveness-imparting agent may be added to the curable composition according to the embodiment of the present invention. By adding the adhesive, the risk of the sealing material peeling from the adherend such as a siding board can be reduced (this peeling occurs when the joint width or the like fluctuates due to an external force). It may also eliminate the need to use primers to improve adhesion. In this case, simplification of construction work is expected.
 接着性付与剤の例としては、シランカップリング剤が挙げられる。シランカップリング剤の具体例としては、イソシアネート基含有シラン類(γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、γ-イソシアネートプロピルメチルジエトキシシラン、γ-イソシアネートプロピルメチルジメトキシシランなど);アミノ基含有シラン類(γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリエトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルメチルジエトキシシラン、γ-ウレイドプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-ベンジル-γ-アミノプロピルトリメトキシシラン、N-ビニルベンジル-γ-アミノプロピルトリエトキシシランなど);メルカプト基含有シラン類(γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、γ-メルカプトプロピルメチルジエトキシシランなど);エポキシ基含有シラン類(γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリエトキシシランなど);カルボキシシラン類(β-カルボキシエチルトリエトキシシラン、β-カルボキシエチルフェニルビス(2-メトキシエトキシ)シラン、N-(β-カルボキシメチル)アミノエチル-γ-アミノプロピルトリメトキシシランなど);ビニル型不飽和基含有シラン類(ビニルトリメトキシシラン、ビニルトリエトキシシラン、γ-メタクリロイルオキシプロピルメチルジメトキシシラン、γ-アクロイルオキシプロピルメチルトリエトキシシランなど);ハロゲン含有シラン類(γ-クロロプロピルトリメトキシシランなど);イソシアヌレートシラン類(トリス(トリメトキシシリル)イソシアヌレートなど)が挙げられる。また、シランカップリング剤を変性させた誘導体である、アミノ変性シリルポリマー、シリル化アミノポリマー、不飽和アミノシラン錯体、フェニルアミノ長鎖アルキルシラン、アミノシリル化シリコーン、シリル化ポリエステルなども、シランカップリング剤として用いることができる。 An example of an adhesive-imparting agent is a silane coupling agent. Specific examples of the silane coupling agent include isocyanate group-containing silanes (γ-isocyanatepropyltrimethoxysilane, γ-isocyanatepropyltriethoxysilane, γ-isocyanatepropylmethyldiethoxysilane, γ-isocyanatepropylmethyldimethoxysilane, etc.). Amino group-containing isocyanates (γ-aminopropyltrimethoxysilane, γ-aminopropyltriethoxysilane, γ-aminopropylmethyldimethoxysilane, γ-aminopropylmethyldiethoxysilane, N- (β-aminoethyl) -γ -Aminopropyltrimethoxysilane, N- (β-aminoethyl) -γ-aminopropylmethyldimethoxysilane, N- (β-aminoethyl) -γ-aminopropyltriethoxysilane, N- (β-aminoethyl)- γ-Aminopropylmethyldiethoxysilane, γ-ureidopropyltrimethoxysilane, N-phenyl-γ-aminopropyltrimethoxysilane, N-benzyl-γ-aminopropyltrimethoxysilane, N-vinylbenzyl-γ-aminopropyl Triethoxysilane, etc.); Mercapto group-containing isocyanates (γ-mercaptopropyltrimethoxysilane, γ-mercaptopropyltriethoxysilane, γ-mercaptopropylmethyldimethoxysilane, γ-mercaptopropylmethyldiethoxysilane, etc.); Silanes (γ-glycidoxypropyltrimethoxysilane, γ-glycidoxypropyltriethoxysilane, γ-glycidoxypropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltriethoxysilane, etc.); Carboxylsilanes (β-carboxyethyltriethoxysilane, β-carboxyethylphenylbis (2-methoxyethoxy) silane, N- (β-carboxymethyl) amino Ethyl-γ-aminopropyltrimethoxysilane, etc.); Vinyl-type unsaturated group-containing silanes (vinyltrimethoxysilane, vinyltriethoxysilane, γ-methacryloyloxypropylmethyldimethoxysilane, γ-acroyloxypropylmethyltriethoxysilane) Etc.); Halogen-containing silanes (γ-chloropropyltrimethoxysilane, etc.); Isocyanurate silanes (Tris (trimethoxysilyl) isocyanurate, etc.). In addition, amino-modified silyl polymers, silylated amino polymers, unsaturated aminosilane complexes, phenylamino long-chain alkylsilanes, aminosilylated silicones, silylated polyesters, and the like, which are derivatives obtained by modifying silane coupling agents, are also silane coupling agents. Can be used as.
 接着性付与剤の配合量は、(メタ)アクリル系共重合体(A)およびポリオキシアルキレン系重合体(B)の総量100重量部に対して、0.1~20重量部が好ましく、0.5~10重量部がより好ましい。 The blending amount of the adhesiveness-imparting agent is preferably 0.1 to 20 parts by weight, preferably 0, based on 100 parts by weight of the total amount of the (meth) acrylic copolymer (A) and the polyoxyalkylene polymer (B). .5 to 10 parts by weight is more preferable.
 (可塑剤)
 本発明の一実施形態に係る硬化性組成物には、可塑剤を含有させてもよい。可塑剤と充填材(後述)とを併用すると、硬化物の伸びが大きくなったり、多量の充填材を混合できるようになったりする。
(Plasticizer)
The curable composition according to one embodiment of the present invention may contain a plasticizer. When the plasticizer and the filler (described later) are used in combination, the elongation of the cured product is increased and a large amount of the filler can be mixed.
 可塑剤の例としては、フタル酸エステル類(ジブチルフタレート、ジヘプチルフタレート、ジ(2-エチルヘキシル)フタレート、ジイソデシルフタレート、ブチルベンジルフタレートなど);非芳香族二塩基酸エステル類(ジオクチルアジペート、ジオクチルセバケート、ジブチルセバケート、コハク酸イソデシルなど);脂肪族エステル類(オレイン酸ブチル、アセチルリシノール酸メチルなど);ポリアルキレングリコールのエステル類(ジエチレングリコールジベンゾエート、トリエチレングリコールジベンゾエート、ペンタエリスリトールエステルなど);リン酸エステル類(トリクレジルホスフェート、トリブチルホスフェートなど);トリメリット酸エステル類、ポリスチレン類(ポリスチレン、ポリ-α-メチルスチレンなど);ポリブタジエン;ポリブテン;ポリイソブチレン;ブタジエン-アクリロニトリル;ポリクロロプレン;塩素化パラフィン類;炭化水素系油(アルキルジフェニル、部分水添ターフェニルなど);プロセスオイル類;ポリエーテル類(ポリエーテルポリオール(ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなど)、および、ポリエーテルポリオールの水酸基をエステル基、エーテル基などに変換した誘導体など);エポキシ可塑剤類(エポキシ化不飽和油脂類、エポキシ化不飽和脂肪酸エステル類、脂環族エポキシ化合物類、エピクロルヒドリン誘導体およびそれらの混合物など);2塩基酸と2価アルコールから得られるポリエステル系可塑剤類(セバシン酸、アジピン酸、アゼライン酸、フタル酸などと、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコールなどと、から得られるポリエステルなど);ビニル系重合体類(アクリル系可塑剤などのビニル系モノマーを、種々の方法で重合して得られる)が挙げられる。 Examples of plasticizers include phthalates (dibutylphthalate, diheptylphthalate, di (2-ethylhexyl) phthalate, diisodecylphthalate, butylbenzylphthalate, etc.); non-aromatic dibasic acid esters (dioctyl adipate, dioctyl ceva). Kate, dibutyl sebacate, isodecyl succinate, etc.); aliphatic esters (butyl oleate, methyl acetyllithinolate, etc.); polyalkylene glycol esters (diethylene glycol dibenzoate, triethylene glycol dibenzoate, pentaerythritol ester, etc.) Phthalates (tricresyl phosphate, tributyl phosphate, etc.); Trimellitic acid esters, polystyrene (polystyrene, poly-α-methylstyrene, etc.); Polybutadiene; Polybutene; Polyisobutylene; butadiene-acrylonitrile; Polychloroprene; Chlorinated paraffins; hydrocarbon oils (alkyldiphenyl, partially hydrogenated phthallate, etc.); process oils; polyethers (polyether polyols (polyethylene glycol, polypropylene glycol, polytetramethylene glycol, etc.), and polyethers Derivatives in which the hydroxyl groups of polyols are converted to ester groups, ether groups, etc.); Epoxide plasticizers (epoxidized unsaturated fats and oils, epoxidized unsaturated fatty acid esters, alicyclic epoxy compounds, epichlorohydrin derivatives and mixtures thereof) Etc.); Polyester plasticizers obtained from dibasic acid and dihydric alcohol (sevacinic acid, adipic acid, azelaic acid, phthalate, etc., and ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, dipropylene glycol, etc.) , Etc.); Vinyl-based polymers (obtained by polymerizing vinyl-based monomers such as acrylic plasticizers by various methods) can be mentioned.
 エポキシ可塑剤類の具体例としては、エポキシ化大豆油、エポキシ化あまに油、ジ-(2-エチルヘキシル)4,5-エポキシシクロヘキサン-1,2-ジカーボキシレート(E-PS)、エポキシオクチルステアレ-ト、エポキシブチルステアレ-トなどが挙げられる。上述したエポキシ可塑剤の中では、E-PSが好ましい。エポキシ基を有する化合物を可塑剤として使用すると、硬化物の復元性を高めることができる。 Specific examples of epoxy plasticizers include epoxidized soybean oil, epoxidized linseed oil, di- (2-ethylhexyl) 4,5-epoxycyclohexane-1,2-dicarboxylate (E-PS), and epoxy. Examples include octyl stearate and epoxy butyl steerate. Among the above-mentioned epoxy plasticizers, E-PS is preferable. When a compound having an epoxy group is used as a plasticizer, the resilience of the cured product can be enhanced.
 アクリル系可塑剤は、溶剤および連鎖移動剤を使用せずに、高温連続重合法にて作製できる(米国特許第4414370号明細書、特開昭59-6207号公報、特公平5-58005号公報、特開平1-313522号公報、米国特許第5010166号明細書を参照)。アクリル系可塑剤の具体例としては、ARUFON UP-1000、UP-1020、UP-1110(以上、東亞合成(株)製)、JDX-P1000、JDX-P1010、JDX-P1020(以上、ジョンソンポリマー(株)製)が挙げられる。また、アルコキシシリル基を有するアクリル系反応性可塑剤を用いてもよい。このような可塑剤の具体例としては、ARFUON US-6100が挙げられる。 The acrylic plasticizer can be produced by a high-temperature continuous polymerization method without using a solvent and a chain transfer agent (US Pat. No. 4,414,370, JP-A-59-6207, JP-A-5-58805). , Japanese Patent Application Laid-Open No. 1-313522, US Pat. No. 5,010166). Specific examples of acrylic plasticizers include ARUFON UP-1000, UP-1020, UP-1110 (above, manufactured by Toagosei Co., Ltd.), JDX-P1000, JDX-P1010, JDX-P1020 (above, Johnson Polymer (above, Johnson Polymer)). Made by Co., Ltd.). Further, an acrylic reactive plasticizer having an alkoxysilyl group may be used. A specific example of such a plasticizer is ARFUON US-6100.
 可塑剤の配合量は、(メタ)アクリル系共重合体(A)およびポリオキシアルキレン系重合体(B)の総量100重量部に対して、5~800重量部が好ましく、10~600重量部がより好ましく、10~500重量部がさらに好ましい。 The amount of the plasticizer to be blended is preferably 5 to 800 parts by weight, preferably 10 to 600 parts by weight, based on 100 parts by weight of the total amount of the (meth) acrylic copolymer (A) and the polyoxyalkylene polymer (B). Is more preferable, and 10 to 500 parts by weight is further preferable.
 (充填材)
 本発明の一実施形態に係る硬化性組成物には、充填材を含有させてもよい。充填材の例としては木粉;補強性充填材(パルプ、木綿チップ、アスベスト、マイカ、クルミ殻粉、もみ殻粉、グラファイト、白土、シリカ(ヒュームドシリカ、沈降性シリカ、結晶性シリカ、溶融シリカ、ドロマイト、無水ケイ酸、含水ケイ酸など)、カーボンブラックなど);充填材(重質炭酸カルシウム、膠質炭酸カルシウム、炭酸マグネシウム、ケイソウ土、焼成クレー、クレー、タルク、酸化チタン、ベントナイト、有機ベントナイト、酸化第二鉄、べんがら、アルミニウム微粉末、フリント粉末、酸化亜鉛、活性亜鉛華、亜鉛末、炭酸亜鉛、シラスバルーンなど);繊維状充填材(石綿、ガラス繊維およびガラスフィラメント、炭素繊維、ケブラー繊維、ポリエチレンファイバーなど)が挙げられる。
(Filler)
The curable composition according to one embodiment of the present invention may contain a filler. Examples of fillers are wood flour; reinforcing fillers (pulp, cotton chips, asbestos, mica, walnut shell powder, fir shell powder, graphite, white clay, silica (hummed silica, precipitated silica, crystalline silica, molten). Silica, dolomite, silicon dioxide, hydrous silicic acid, etc.), carbon black, etc.); Fillers (heavy calcium carbonate, collagen carbonate, magnesium carbonate, zelkova soil, calcined clay, clay, talc, titanium oxide, bentonite, organic Bentnite, ferric oxide, Bengara, fine aluminum powder, flint powder, zinc oxide, active zinc white, zinc powder, zinc carbonate, silas balloon, etc.; Fibrous fillers (asbestos, glass fibers and glass filaments, carbon fibers, etc.) Kevlar fiber, polyethylene fiber, etc.).
 充填材の配合量は、(メタ)アクリル系共重合体(A)およびポリオキシアルキレン系重合体(B)の総量100重量部に対して、5~5000重量部が好ましく、10~2500重量部より好ましく、15~1500重量部が特に好ましい。 The blending amount of the filler is preferably 5 to 5000 parts by weight, preferably 10 to 2500 parts by weight, based on 100 parts by weight of the total amount of the (meth) acrylic copolymer (A) and the polyoxyalkylene polymer (B). More preferably, 15 to 1500 parts by weight is particularly preferable.
 (物性調整剤)
 本発明の一実施形態に係る硬化性組成物には、硬化物の引張特性を調整する物性調整剤を含有させてもよい。物性調整剤を用いることにより、硬化物の硬度を上げたり、逆に硬化物の硬度を下げて伸びを出したりすることができる。
(Physical characteristic adjuster)
The curable composition according to one embodiment of the present invention may contain a physical property adjusting agent for adjusting the tensile properties of the cured product. By using the physical property adjusting agent, the hardness of the cured product can be increased, or conversely, the hardness of the cured product can be decreased to increase the elongation.
 物性調整剤の例としては、アルキルアルコキシシラン類(メチルトリメトキシシラン、ジメチルジメトキシシラン、トリメチルメトキシシラン、n-プロピルトリメトキシシランなど);アルキルイソプロペノキシシラン(ジメチルジイソプロペノキシシラン、メチルトリイソプロペノキシシラン、γ-グリシドキシプロピルメチルジイソプロペノキシシランなど);官能基を有するアルコキシシラン類(γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルジメチルメトキシシラン、γ-アミノプロピルトリメトキシシラン、N-(β-アミノエチル)アミノプロピルメチルジメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシランなど);シリコーンワニス類;ポリシロキサン類が挙げられる。 Examples of physical property adjusting agents include alkylalkoxysilanes (methyltrimethoxysilane, dimethyldimethoxysilane, trimethylmethoxysilane, n-propyltrimethoxysilane, etc.); alkylisopropenoxysilane (dimethyldiisopropenoxysilane, methyltri). Isopropenoxysilane, γ-glycidoxypropylmethyldiisopropenoxysilane, etc.); alkoxysilanes having a functional group (γ-glycidoxypropylmethyldimethoxysilane, γ-glycidoxypropyltrimethoxysilane, vinyltri) Methoxysilane, vinyldimethylmethoxysilane, γ-aminopropyltrimethoxysilane, N- (β-aminoethyl) aminopropylmethyldimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, etc.); Silicone varnish Kind: Polysiloxanes can be mentioned.
 物性調整剤の配合量は、(メタ)アクリル系共重合体(A)およびポリオキシアルキレン系重合体(B)の総量100重量部に対して、0.1~80重量部が好ましく、0.1~50重量部がより好ましい。 The blending amount of the physical property adjusting agent is preferably 0.1 to 80 parts by weight, preferably 0.1 to 80 parts by weight, based on 100 parts by weight of the total amount of the (meth) acrylic copolymer (A) and the polyoxyalkylene polymer (B). More preferably, 1 to 50 parts by weight.
 (チクソ性付与剤(垂れ防止剤))
 本発明の一実施形態に係る硬化性組成物には、垂れを防止し、作業性を良くするために、チクソ性付与剤(垂れ防止剤)を含有させてもよい。
(Tixogenic agent (anti-dripping agent))
The curable composition according to one embodiment of the present invention may contain a thixophilic imparting agent (anti-dripping agent) in order to prevent dripping and improve workability.
 チクソ性付与剤の例としては、ポリアミドワックス類;水添ヒマシ油誘導体類;金属石鹸類(ステアリン酸カルシウム、ステアリン酸アルミニウム、ステアリン酸バリウムなど)が挙げられる。 Examples of the thixophilic imparting agent include polyamide waxes; hydrogenated castor oil derivatives; metal soaps (calcium stearate, aluminum stearate, barium stearate, etc.).
 チクソ性付与剤の配合量は、(メタ)アクリル系共重合体(A)およびポリオキシアルキレン系重合体(B)の総量100重量部に対して、0.1~50重量部が好ましく、0.2~25重量部がより好ましい。 The blending amount of the thixophilicity-imparting agent is preferably 0.1 to 50 parts by weight, preferably 0, based on 100 parts by weight of the total amount of the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B). .2 to 25 parts by weight is more preferable.
 (光硬化性物質)
 本発明の一実施形態に係る硬化性組成物には、光硬化性物質を含有させてもよい。光硬化性物質とは、光の作用によって短時間で化学変化をおこし、物性的変化(硬化など)を生ずる物質である。光硬化性物質を含有させることにより、硬化物表面の粘着性(残留タック)を低減できる。典型的な光硬化性物質は、例えば室内の日の当たる位置(窓付近など)に、1日間、室温にて静置することにより硬化させることができる。光硬化性物質には、有機単量体、オリゴマー、樹脂およびこれらを含む組成物など、多くのものが知られており、その種類は特に限定されない。光硬化性物質の例としては、不飽和アクリル系化合物、ポリケイ皮酸ビニル類、アジド化樹脂が挙げられる。
(Photocurable substance)
The curable composition according to one embodiment of the present invention may contain a photocurable substance. A photocurable substance is a substance that undergoes a chemical change in a short time by the action of light to cause a physical change (curing or the like). By containing a photocurable substance, the adhesiveness (residual tack) on the surface of the cured product can be reduced. A typical photocurable substance can be cured by allowing it to stand at room temperature for one day, for example, in a sunny position in a room (near a window or the like). Many known photocurable substances include organic monomers, oligomers, resins, and compositions containing these, and the types thereof are not particularly limited. Examples of photocurable substances include unsaturated acrylic compounds, vinyl chlorides, and azide resins.
 不飽和アクリル系化合物の具体例としては、低分子量アルコール類(エチレングリコール、グリセリン、トリメチロールプロパン、ペンタエリスリトール、ネオペンチルアルコールなど)の(メタ)アクリル酸エステル類;酸(ビスフェノールA、イソシアヌル酸)または低分子量アルコールなどを、エチレンオキシド、プロピレンオキシドなどで変性させた、アルコール類の(メタ)アクリル酸エステル類;(メタ)アクリル酸エステル類(主鎖がポリエーテルであり末端に水酸基を有するポリエーテルポリオール、主鎖がポリエーテルであるポリオール中でビニル系モノマーをラジカル重合することにより得られるポリマーポリオール、主鎖がポリエステルで末端に水酸基を有するポリエステルポリオール、主鎖がビニル系または(メタ)アクリル系共重合体であり主鎖中に水酸基を有するポリオールなど);エポキシ樹脂(ビスフェノールA型やノボラック型など)と(メタ)アクリル酸を反応させることにより得られるエポキシアクリレート系オリゴマー類;ポリオール、ポリイソシアネート、水酸基含有(メタ)アクリレートなどを反応させることにより得られる分子鎖中に、ウレタン結合および(メタ)アクリル基を有する、ウレタンアクリレート系オリゴマーが挙げられる。 Specific examples of unsaturated acrylic compounds include (meth) acrylic acid esters of low molecular weight alcohols (ethylene glycol, glycerin, trimethylolpropane, pentaerythritol, neopentyl alcohol, etc.); acids (bisphenol A, isocyanuric acid). Alternatively, (meth) acrylic acid esters of alcohols obtained by modifying low molecular weight alcohols with ethylene oxide, propylene oxide, etc .; (meth) acrylic acid esters (polymers having a main chain of polyether and a hydroxyl group at the end). Polypoly, polymer polyol obtained by radical polymerization of vinyl-based monomer in polyol whose main chain is polyether, polyester polyol whose main chain is polyester and has a hydroxyl group at the end, main chain is vinyl-based or (meth) acrylic-based Polycarbonate which is a copolymer and has a hydroxyl group in the main chain); Epoxyacrylate-based oligomers obtained by reacting an epoxy resin (bisphenol A type, novolak type, etc.) with (meth) acrylic acid; polyol, polyisocyanate , A urethane acrylate-based oligomer having a urethane bond and a (meth) acrylic group in the molecular chain obtained by reacting with a hydroxyl group-containing (meth) acrylate or the like.
 光硬化性物質の配合量は、(メタ)アクリル系共重合体(A)およびポリオキシアルキレン系重合体(B)の総量100重量部に対して、0.01~30重量部が好ましい。 The blending amount of the photocurable substance is preferably 0.01 to 30 parts by weight with respect to 100 parts by weight of the total amount of the (meth) acrylic copolymer (A) and the polyoxyalkylene polymer (B).
 (空気酸化硬化性物質)
 本発明の一実施形態に係る硬化性組成物には、空気酸化硬化性物質を含有させてもよい。空気酸化硬化性物質とは、空気中の酸素により架橋硬化しうる不飽和基を有している化合物を指す。空気酸化硬化性物質を含有させることにより、硬化物表面の粘着性(残留タック)を低減できる。典型的な空気酸化硬化性物質は、例えば空気中にて、室内に1日間静置することにより硬化させることができる。
(Air oxidative curable substance)
The curable composition according to one embodiment of the present invention may contain an air oxidative curable substance. The air oxidatively curable substance refers to a compound having an unsaturated group that can be crosslinked and cured by oxygen in the air. By containing an air oxidatively curable substance, the adhesiveness (residual tack) on the surface of the cured product can be reduced. A typical air oxidatively curable substance can be cured by allowing it to stand indoors for one day, for example, in the air.
 空気酸化硬化性物質の例としては、乾性油(桐油、アマニ油など);乾性油を変性して得られる各種アルキッド樹脂;アクリル系重合体、エポキシ系樹脂、シリコーン樹脂などを乾性油により変性させた物質;1,2-ポリブタジエン;1,4-ポリブタジエン;C5~C8ジエンの重合体または共重合体;C5~C8ジエンの重合体または共重合体の各種変性物(マレイン化変性物、ボイル油変性物など)が挙げられる。上述した中では、桐油、液状のジエン系重合体およびその変性物が好ましい。 Examples of air oxidatively curable substances include drying oil (tung oil, flaxseed oil, etc.); various alkyd resins obtained by modifying the drying oil; acrylic polymers, epoxy resins, silicone resins, etc. are modified with the drying oil. Substances; 1,2-polybutadiene; 1,4-polybutadiene; polymers or copolymers of C5-C8 diene; polymers of C5-C8 diene or various modified products of copolymers (maleinized modified products, boiling oil) Modified products, etc.). Among the above, tung oil, a liquid diene polymer and a modified product thereof are preferable.
 空気酸化硬化性物質の配合量は、(メタ)アクリル系共重合体(A)およびポリオキシアルキレン系重合体(B)の総量100重量部に対して、0.01~30重量部が好ましい。 The blending amount of the air oxidatively curable substance is preferably 0.01 to 30 parts by weight with respect to 100 parts by weight of the total amount of the (meth) acrylic copolymer (A) and the polyoxyalkylene polymer (B).
 (酸化防止剤および光安定剤)
 本発明の一実施形態に係る硬化性組成物には、酸化防止剤および/または光安定剤を含有させてもよい。酸化防止剤および光安定剤は、各種のものが知られている。例えば、[猿渡健市 他『酸化防止剤ハンドブック』大成社、1976年][大沢善次郎 監『高分子材料の劣化と安定化』シーエムシー、1990年、235-242ページ]などに記載された物質が挙げられる。
(Antioxidants and light stabilizers)
The curable composition according to one embodiment of the present invention may contain an antioxidant and / or a light stabilizer. Various kinds of antioxidants and light stabilizers are known. For example, [Kenichi Saruwatari et al., "Handbook of Antioxidants" Taiseisha, 1976] [Supervised by Zenjiro Osawa, "Deterioration and Stabilization of Polymer Materials", CMC, 1990, pp. 235-242] Can be mentioned.
 酸化防止剤の例としては、アデカスタブ PEP-36、アデカスタブ AO-23などのチオエーテル系酸化防止剤(以上、全て旭電化工業製);Irgafos38、Irgafos168、IrgafosP-EPQ(以上、全てチバ・スペシャルティ・ケミカルズ製)などリン系酸化防止剤;ヒンダードフェノール系酸化防止剤;が挙げられる。上述した中では、ヒンダードフェノール系酸化防止剤が好ましい。 Examples of antioxidants are thioether-based antioxidants such as Adecastab PEP-36 and Adecastab AO-23 (all manufactured by Asahi Denka Kogyo); Irgafos38, Irgafos168, IrgafosP-EPQ (all Ciba Specialty Chemicals). ), Etc. Phosphorus-based antioxidants; hindered phenol-based antioxidants; Among the above, hindered phenolic antioxidants are preferred.
 ヒンダードフェノール系酸化防止剤の具体例としては、2,6-ジ-t-ブチル-4-メチルフェノール、2,6-ジ-t-ブチル-4-エチルフェノール、モノ(またはジもしくはトリ)(αメチルベンジル)フェノール、2,2’-メチレンビス(4エチル-6-t-ブチルフェノール)、2,2’-メチレンビス(4メチル-6-t-ブチルフェノール)、4,4’-ブチリデンビス(3-メチル-6-t-ブチルフェノール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、2,5-ジ-t-ブチルハイドロキノン、2,5-ジ-t-アミルハイドロキノン、トリエチレングリコール-ビス-[3-(3-t-ブチル-5-メチル-4ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,4-ビス-(n-オクチルチオ)-6-(4-ヒドロキシ-3,5-ジ-t-ブチルアニリノ)-1,3,5-トリアジン、ペンタエリスリチル-テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2-チオ-ジエチレンビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、N,N’-ヘキサメチレンビス(3,5-ジ-t-ブチル-4-ヒドロキシ-ヒドロシンナマミド)、3,5-ジ-t-ブチル-4-ヒドロキシ-ベンジルフォスフォネート-ジエチルエステル、1,3,5-トリメチル-2,4,6-トリス(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)ベンゼン、ビス(3,5-ジ-t-ブチル-4-ヒドロキシベンジルホスホン酸エチル)カルシウム、トリス-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)イソシアヌレート、2,4-ビス[(オクチルチオ)メチル]o-クレゾール、N,N’-ビス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオニル]ヒドラジン、トリス(2,4-ジ-t-ブチルフェニル)フォスファイト、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジ-t-ブチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジ-t-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)-ベンゾトリアゾール、メチル-3-[3-t-ブチル-5-(2H-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェニル]プロピオネート-ポリエチレングリコール(分子量約300)縮合物、ヒドロキシフェニルベンゾトリアゾール誘導体、2-(3,5-ジ-t-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、2,4-ジ-t-ブチルフェニル-3,5-ジ-t-ブチル-4-ヒドロキシベンゾエート挙げられる。 Specific examples of hindered phenolic antioxidants include 2,6-di-t-butyl-4-methylphenol, 2,6-di-t-butyl-4-ethylphenol, mono (or di or tri). (Α-Methylbenzyl) phenol, 2,2'-methylenebis (4 ethyl-6-t-butylphenol), 2,2'-methylenebis (4methyl-6-t-butylphenol), 4,4'-butylidenebis (3-) Methyl-6-t-butylphenol), 4,4'-thiobis (3-methyl-6-t-butylphenol), 2,5-di-t-butylhydroquinone, 2,5-di-t-amylhydroquinone, tri Ethyleneglycol-bis- [3- (3-t-butyl-5-methyl-4hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- (3,5-di-t-butyl-4-) Hydroxyphenyl) propionate], 2,4-bis- (n-octylthio) -6- (4-hydroxy-3,5-di-t-butylanilino) -1,3,5-triazine, pentaerythrityl-tetrakis [ 3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate], 2,2-thio-diethylenebis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate] , Octadecyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate, N, N'-hexamethylenebis (3,5-di-t-butyl-4-hydroxy-hydrocinnamamide) ), 3,5-Di-t-Butyl-4-hydroxy-benzylphosphonate-diethyl ester, 1,3,5-trimethyl-2,4,6-Tris (3,5-di-t-butyl-) 4-Hydroxybenzyl) benzene, bis (3,5-di-t-butyl-4-hydroxybenzylphosphonate) calcium, tris- (3,5-di-t-butyl-4-hydroxybenzyl) isocyanurate, 2,4-bis [(octylthio) methyl] o-cresol, N, N'-bis [3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyl] hydrazine, tris (2,4- Di-t-butylphenyl) phosphite, 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H- Benzotriazole, 2- (3,5-di-t-butyl-2-hydroxypheni) Le) Benzotriazole, 2- (3-t-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3,5-di-t-butyl-2-hydroxyphenyl) -5 -Chlorobenzotriazole, 2- (3,5-di-t-amyl-2-hydroxyphenyl) benzotriazole, 2- (2'-hydroxy-5'-t-octylphenyl) -benzotriazole, methyl-3- [3-t-Butyl-5- (2H-benzotriazole-2-yl) -4-hydroxyphenyl] Propionate-polyethylene glycol (molecular weight about 300) condensate, hydroxyphenylbenzotriazole derivative, 2- (3,5-) Di-t-butyl-4-hydroxybenzyl) -2-n-butylmalate bis (1,2,2,6,6-pentamethyl-4-piperidyl), 2,4-di-t-butylphenyl-3 , 5-Di-t-Butyl-4-hydroxybenzoate.
 市販されている酸化防止剤の例としては、ノクラック200、ノクラックM-17、ノクラックSP、ノクラックSP-N、ノクラックNS-5、ノクラックNS-6、ノクラックNS-30、ノクラック300、ノクラックNS-7、ノクラックDAH(以上、全て大内新興化学工業製);アデカスタブ AO-30、アデカスタブ AO-40、アデカスタブ AO-50、アデカスタブ AO-60、アデカスタブ AO-616、アデカスタブ AO-635、アデカスタブ AO-658、アデカスタブ AO-80、アデカスタブ AO-15、アデカスタブ AO-18、アデカスタブ 328、アデカスタブ AO-37(以上、全て旭電化工業製);IRGANOX-245、IRGANOX-259、IRGANOX-565、IRGANOX-1010、IRGANOX-1024、IRGANOX-1035、IRGANOX-1076、IRGANOX-1081、IRGANOX-1098、IRGANOX-1222、IRGANOX-1330、IRGANOX-1425WL(以上、全てチバ・スペシャルティ・ケミカルズ製);SumilizerGM、SumilizerGA-80、SumilizerGS(以上、全て住友化学製)が挙げられる。 Examples of commercially available antioxidants are Nocrack 200, Nocrack M-17, Nocrack SP, Nocrack SP-N, Nocrack NS-5, Nocrack NS-6, Nocrack NS-30, Nocrack 300, Nocrack NS-7. , Nocrack DAH (all manufactured by Ouchi Shinko Kagaku Kogyo); Adekastab AO-30, Adekastab AO-40, Adekastab AO-50, Adekastab AO-60, Adekastab AO-616, Adekastab AO-635, Adekastab AO-658, Adekastab AO-80, Adekastab AO-15, Adekastab AO-18, Adekastab 328, Adekastab AO-37 (all manufactured by Asahi Denka Kogyo); IRGANOX-245, IRGANOX-259, IRGANOX-565, IRGANOX-1010, IRGANOX- 1024, IRGANOX-1035, IRGANOX-1076, IRGANOX-1081, IRGANOX-1098, IRGANOX-1222, IRGANOX-1330, IRGANOX-1425WL (all manufactured by Ciba Specialty Chemicals); , All made by Sumitomo Chemical).
 光安定剤の例としては、紫外線吸収剤(チヌビンP、チヌビン234、チヌビン320、チヌビン326、チヌビン327、チヌビン329、チヌビン213(以上、全てチバ・スペシャルティ・ケミカルズ製)などのベンゾトリアゾール系化合物;チヌビン1577などトリアジン系光安定剤;CHIMASSORB81などのベンゾフェノン系化合物;チヌビン120(チバ・スペシャルティ・ケミカルズ製)などのベンゾエート系化合物;ヒンダードアミン系化合物)が挙げられる。上述した中では、ヒンダードアミン系化合物が好ましい。 Examples of light stabilizers include benzotriazole compounds such as UV absorbers (Tinubin P, Tinubin 234, Tinubin 320, Tinubin 326, Tinubin 327, Tinubin 329, Tinubin 213 (all manufactured by Ciba Specialty Chemicals); Examples thereof include triazine-based photostabilizers such as tinuvin 1577; benzophenone-based compounds such as CHIMASSORB81; benzoate-based compounds such as tinubin 120 (manufactured by Ciba Specialty Chemicals); hindered amine-based compounds). Among the above, hindered amine compounds are preferable.
 ヒンダードアミン系化合物の具体例としては、コハク酸ジメチル-1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、ポリ[{6-(1,1,3,3-テトラメチルブチル)アミノ-1,3,5-トリアジン-2,4-ジイル}{(2,2,6,6-テトラメチル-4-ピペリジル)イミノ}]、N,N’-ビス(3アミノプロピル)エチレンジアミン-2,4-ビス[N-ブチル-N-(1,2,2,6,6-ペンタメチル-4-ピペリジル)アミノ]-6-クロロ-1,3,5-トリアジン縮合物、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、コハク酸ビス(2,2,6,6-テトラメチル-4-ピペリディニル)エステルが挙げられる。 Specific examples of the hindered amine compound include dimethyl-1- (2-hydroxyethyl) succinate-4-hydroxy-2,2,6,6-tetramethylpiperidine polycondensate, poly [{6- (1,1). , 3,3-Tetramethylbutyl) Amino-1,3,5-triazine-2,4-diyl} {(2,2,6,6-tetramethyl-4-piperidyl) imino}], N, N' -Bis (3 aminopropyl) ethylenediamine-2,4-bis [N-butyl-N- (1,2,2,6,6-pentamethyl-4-piperidyl) amino] -6-chloro-1,3,5 -Triazine condensate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis succinate (2,2,6,6-tetramethyl-4-piperidinyl) ester can be mentioned.
 市販されている光安定剤の例としては、チヌビン622LD、チヌビン144、CHIMASSORB944LD、CHIMASSORB119FL;(以上、全てチバ・スペシャルティ・ケミカルズ製)、アデカスタブ LA-52、アデカスタブ LA-57、アデカスタブ LA-62、アデカスタブ LA-67、アデカスタブ LA-63、アデカスタブ LA-68、アデカスタブ LA-82、アデカスタブ LA-87(以上、全て旭電化工業製);サノールLS-770、サノールLS-765、サノールLS-292、サノールLS-2626、サノールLS-1114、サノールLS-744、サノールLS-440(以上、全て三共製)が挙げられる。 Examples of commercially available light stabilizers include Cibabin 622LD, Chinubin 144, CHIMASSORB944LD, CHIMASORB119FL; (all manufactured by Ciba Specialty Chemicals), Adecastab LA-52, Adecastab LA-57, Adecastab LA-62, Adecastab. LA-67, Adecastab LA-63, Adecastab LA-68, Adecastab LA-82, Adecastab LA-87 (all manufactured by Asahi Denka Kogyo); Sanol LS-770, Sanol LS-765, Sanol LS-292, Sanol LS -2626, Sanol LS-1114, Sanol LS-744, Sanol LS-440 (all manufactured by Sankyo).
 酸化防止剤および光安定剤を、併用してもよい。これらを併用することにより、それぞれの効果がさらに向上し、硬化物の耐熱性、耐候性などが向上することがある。例えば、耐候性を向上させるために、紫外線吸収剤とヒンダードアミン系化合物(HALS)とを組合せることできる。この組合せは、それぞれの薬剤の効果をより向上させることができ、好ましい。 Antioxidants and light stabilizers may be used in combination. By using these in combination, the respective effects may be further improved, and the heat resistance, weather resistance, etc. of the cured product may be improved. For example, an ultraviolet absorber and a hindered amine compound (HALS) can be combined to improve weather resistance. This combination is preferable because the effect of each drug can be further improved.
 酸化防止剤および/または光安定剤の配合量は、(メタ)アクリル系共重合体(A)およびポリオキシアルキレン系重合体(B)の総量100重量部に対して、それぞれ、0.1~20重量部が好ましい。 The blending amount of the antioxidant and / or the light stabilizer is 0.1 to 100 parts by weight, respectively, with respect to 100 parts by weight of the total amount of the (meth) acrylic copolymer (A) and the polyoxyalkylene polymer (B). 20 parts by weight is preferable.
 [5.3.硬化性組成物の形態]
 本発明の一実施形態に係る硬化性組成物は、1成分型であってもよいし、2成分型であってもよい。1成分型の硬化性組成物とは、全ての配合成分を予め配合した後、密封保存したものである。1成分型の硬化性組成物は、使用後に空気中の湿気により硬化する。一方、2成分型の硬化性組成物においては、硬化触媒、充填材、可塑剤、水などの成分を配合した硬化剤を別途用意する。2成分型の硬化性組成物は、硬化剤と、(メタ)アクリル系共重合体(A)および/または(メタ)アクリル系共重合体(A1)を含む主剤とを混合して使用する。なお、2成分型の硬化性組成物は、主剤および硬化剤以外の剤(着色剤など)を備えていてもよい。
[5.3. Morphology of curable composition]
The curable composition according to one embodiment of the present invention may be a one-component type or a two-component type. The one-component curable composition is a composition in which all the ingredients are mixed in advance and then sealed and stored. The one-component curable composition is cured by moisture in the air after use. On the other hand, in the two-component curable composition, a curing agent containing components such as a curing catalyst, a filler, a plasticizer, and water is separately prepared. The two-component curable composition is used by mixing a curing agent and a main agent containing a (meth) acrylic copolymer (A) and / or a (meth) acrylic copolymer (A1). The two-component curable composition may contain an agent (coloring agent, etc.) other than the main agent and the curing agent.
 硬化性組成物を2成分型として調製すると、2成分の混合時に、着色剤をさらに添加することができる。このことにより、例えば、限られた硬化性組成物の種類から、サイディングボードの色に合わせて豊富な色揃えのシーリング材を提供することができるようになる。それゆえ、2成分型の硬化性組成物は、多色化に対する市場からの要望に容易に応えることができ、低層建物用途などに好適である。着色剤は、例えば、顔料、可塑剤、必要に応じて充填材を混合し、ペースト化したものが、作業性が高く好ましい。 When the curable composition is prepared as a two-component type, a colorant can be further added when the two components are mixed. This makes it possible to provide a sealant having a wide variety of colors to match the color of the siding board, for example, from a limited variety of curable compositions. Therefore, the two-component curable composition can easily meet the market demand for multicoloring, and is suitable for low-rise building applications and the like. As the colorant, for example, a pigment, a plasticizer, and a filler mixed with a filler as needed to form a paste are preferable because of their high workability.
 また、2成分型の硬化性組成物は、2成分の混合時に遅延剤を添加することができる。これにより、硬化速度を作業現場にて微調整することができる。 Further, in the two-component curable composition, a retarder can be added when the two components are mixed. As a result, the curing speed can be finely adjusted at the work site.
 [5.4.硬化性組成物の用途]
 本発明の一実施形態に係る硬化性組成物および硬化物の用途は、特に限定はされない。一例として、建築用および工業用のシーリング材(ワーキングジョイントに用いられる高耐久性建築用弾性シーリング材に加えて、サイディングボード用シーリング材、複層ガラス用シーリング材、車両用シーリング材など)、電気・電子部品材料(太陽電池裏面封止剤など)、電気絶縁材料(電線・ケーブル用絶縁被覆材など)、粘着剤、接着剤、弾性接着剤、コンタクト接着剤、タイル用接着剤、反応性ホットメルト接着剤、塗料、粉体塗料、コーティング材、発泡体、缶蓋などのシール材、電気電子用ポッティング剤、フィルム、ガスケット、注型材料、各種成形材料、人工大理石、網入りガラスや合わせガラスの切断部の防錆・防水用封止材、防振・制振・防音・免震材料(自動車、船舶、家電などに使用される)、液状シール剤(自動車部品、電機部品、各種機械部品などに使用される)、防水剤が挙げられる。
[5.4. Uses of curable composition]
The use of the curable composition and the cured product according to the embodiment of the present invention is not particularly limited. As an example, building and industrial sealing materials (high durability building elastic sealing materials used for working joints, siding board sealing materials, multi-layer glass sealing materials, vehicle sealing materials, etc.), electricity・ Electronic component materials (solar cell backside sealants, etc.), electrical insulation materials (electric wire / cable insulation coating materials, etc.), adhesives, adhesives, elastic adhesives, contact adhesives, tile adhesives, reactive hots Melt adhesives, paints, powder paints, coating materials, foams, sealing materials for can lids, electrical and electronic potting agents, films, gaskets, casting materials, various molding materials, artificial marble, meshed glass and laminated glass Anti-rust / waterproof sealing material, anti-vibration / anti-vibration / soundproof / seismic isolation material (used for automobiles, ships, home appliances, etc.), liquid sealant (automobile parts, electrical parts, various mechanical parts) (Used for etc.), waterproofing agents can be mentioned.
 上述した中でも、本発明の一実施形態に係る硬化性組成物および硬化物は、シーリング材および接着剤として特に有用である。とりわけ、耐候性もしくは耐久性が要求される用途、または透明性が必要な用途に有用である。また、本発明の一実施形態に係る硬化性組成物および硬化物、耐候性および接着性に優れるので、目地埋めのない外壁タイル接着工法に使用できる。さらに、線膨張係数の異なる材料の接着や、ヒートサイクルにより繰り返し変位を受けるような部材の接着に用いる弾性接着剤の用途に有用である。さらに、透明性を活用して、下地が見える用途でのコーティング剤、透明材料(ガラス、ポリカ、メタクリル樹脂など)の貼り合わせに用いる接着剤としても有用である。 Among the above, the curable composition and the cured product according to the embodiment of the present invention are particularly useful as a sealing material and an adhesive. In particular, it is useful for applications that require weather resistance or durability, or applications that require transparency. Further, since the curable composition and the cured product according to the embodiment of the present invention are excellent in weather resistance and adhesiveness, they can be used in an outer wall tile bonding method without joint filling. Further, it is useful for bonding materials having different coefficients of linear expansion and for bonding elastic adhesives used for bonding members that are repeatedly displaced by a heat cycle. Further, it is also useful as a coating agent for applications where the base can be seen by utilizing transparency, and as an adhesive used for bonding transparent materials (glass, polycarbonate, methacrylic resin, etc.).
 〔まとめ〕
 本発明には、以下の態様が含まれている。
<1>
 アルコキシシリル基を有する(メタ)アクリル系共重合体(A)と、アルコキシシリル基を有するポリオキシアルキレン系重合体(B)と、を含む硬化性組成物であって、
 上記(メタ)アクリル系共重合体(A)は、(メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位をランダムに含んでおり、
  上記(メタ)アクリル酸エステルモノマー(α)は、(メタ)アクリル酸とエステル結合しているアルキル基を有しており、かつ、上記アルキル基は炭素数が1~5のアルコキシ基を有しており、
  上記(メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位は、上記(メタ)アクリル系共重合体(A)に含まれている全ての繰り返し単位の重量を基準として、5~20重量%含まれている、
硬化性組成物。
<2>
 上記(メタ)アクリル系共重合体(A)は、全ての繰り返し単位の重量を基準として、
  (メタ)アクリル酸エステルモノマー(β)由来の繰り返し単位を、45~70重量%、
  (メタ)アクリル酸エステルモノマー(γ)由来の繰り返し単位を、0~25重量%、
  (メタ)アクリル酸エステルモノマー(δ)由来の繰り返し単位を、15~25重量%、
含んでおり、
 上記(メタ)アクリル酸エステルモノマー(β)は、(メタ)アクリル酸とエステル結合しているアルキル基の炭素数が1~5であり、
 上記(メタ)アクリル酸エステルモノマー(γ)は、(メタ)アクリル酸とエステル結合しているアルキル基の炭素数が6~15であり、
 上記(メタ)アクリル酸エステルモノマー(δ)は、(メタ)アクリル酸とエステル結合しているアルキルの炭素数が16~25である、
<1>に記載の硬化性組成物。
<3>
 上記(メタ)アクリル系共重合体(A)の分子量分布(Mw/Mn)は、1.8以下である、<1>または<2>に記載の硬化性組成物。
<4>
 上記(メタ)アクリル系共重合体(A)の分子は、XブロックおよびYブロックを有するXYジブロック構造またはXYXトリブロック構造を分子中に含む(メタ)アクリル系共重合体(A1)であり、
 上記Xブロックに含まれているアルコキシシリル基を有する(メタ)アクリル酸エステルモノマー由来の繰り返し単位は、平均で1.0個以上であり、
 上記Yブロックに含まれているアルコキシシリル基を有する(メタ)アクリル酸エステルモノマー由来の繰り返し単位は、上記Yブロックに含まれている全ての繰り返し単位の重量を基準として、0~3重量%である、
<1>~<3>のいずれかに記載の硬化性組成物。
<5>
 上記Xブロックに含まれているアルコキシシリル基を有する(メタ)アクリル酸エステルモノマー由来の繰り返し単位は、上記Xブロックに含まれている全ての繰り返し単位の重量を基準として、3重量%超である、<4>に記載の硬化性組成物。
<6>
 上記(メタ)アクリル酸エステルモノマー(α)は、下記(a)および/または(b)である、<1>~<5>のいずれかに記載の硬化性組成物:
 (a)(メタ)アクリル酸とエステル結合しているアルキル基の炭素数が1~5個であるモノマー(ただし、アルコキシ基に含まれる炭素は含めない);
 (b)(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸2-ブトキシエチル、(メタ)アクリル酸イソプロポキシエチルからなる群から選ばれる1つ以上のモノマー。
<7>
 上記(メタ)アクリル酸エステルモノマー(δ)は、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸イコシルおよび(メタ)アクリル酸ドコシルからなる群から選ばれる1つ以上である、<2>に記載の硬化性組成物。
<8>
 上記(メタ)アクリル系共重合体(A)が有しているアルコキシシリル基の数は、分子全体として、平均して1.0~10.0個である、<1>~<7>のいずれかに記載の硬化性組成物。
<9>
 上記ポリオキシアルキレン系重合体(B)の数平均分子量は、5,000~50,000である、<1>~<8>のいずれかに記載の硬化性組成物。
<10>
 上記(メタ)アクリル系共重合体(A)と上記ポリオキシアルキレン系重合体(B)との配合比は、重量比で(95/5)~(5/95)である、<1>~<9>のいずれかに記載の硬化性組成物。
<11>
 下記条件(a)および/または(b)を満たしている、<1>~<10>のいずれかに記載の硬化性組成物:
条件(a):上記(メタ)アクリル系共重合体(A)の23℃において測定した粘度が、200Pa・s以下である;
条件(b):上記硬化性組成物の23℃において測定した粘度が、55Pa・s以下である。
<12>
 <1>~<11>のいずれかに記載の硬化性組成物を硬化させてなる、硬化物。
<13>
 <1>~<11>のいずれかに記載の硬化性組成物、または、<12>に記載の硬化物を含有する、シーリング材または接着剤。
<14>
 <1>に記載の硬化性組成物の製造方法であって、
 上記(メタ)アクリル系共重合体(A)を、リビング重合法により重合する工程と、
 上記(メタ)アクリル系共重合体(A)と、上記ポリオキシアルキレン系重合体(B)とを混合する工程と、
を含む、製造方法。
<15>
 上記(メタ)アクリル系共重合体(A)をリビング重合法により重合する工程は、上記(メタ)アクリル系共重合体(A)をリビングラジカル重合法により重合する工程を含む、<14>に記載の硬化性組成物の製造方法。
〔summary〕
The present invention includes the following aspects.
<1>
A curable composition comprising a (meth) acrylic copolymer (A) having an alkoxysilyl group and a polyoxyalkylene-based polymer (B) having an alkoxysilyl group.
The (meth) acrylic copolymer (A) randomly contains a repeating unit derived from the (meth) acrylic acid ester monomer (α).
The (meth) acrylic acid ester monomer (α) has an alkyl group ester-bonded to (meth) acrylic acid, and the alkyl group has an alkoxy group having 1 to 5 carbon atoms. And
The repeating unit derived from the (meth) acrylic acid ester monomer (α) is contained in an amount of 5 to 20% by weight based on the weight of all the repeating units contained in the (meth) acrylic copolymer (A). Is
Curable composition.
<2>
The (meth) acrylic copolymer (A) is based on the weight of all repeating units.
Repeating unit derived from (meth) acrylic acid ester monomer (β), 45-70% by weight,
Repeating unit derived from (meth) acrylic acid ester monomer (γ), 0 to 25% by weight,
Repeating unit derived from (meth) acrylic acid ester monomer (δ), 15 to 25% by weight,
Includes
The (meth) acrylic acid ester monomer (β) has 1 to 5 carbon atoms in the alkyl group ester-bonded to the (meth) acrylic acid.
The (meth) acrylic acid ester monomer (γ) has an alkyl group ester-bonded to (meth) acrylic acid having 6 to 15 carbon atoms.
The (meth) acrylic acid ester monomer (δ) has 16 to 25 carbon atoms of the alkyl ester-bonded to the (meth) acrylic acid.
The curable composition according to <1>.
<3>
The curable composition according to <1> or <2>, wherein the molecular weight distribution (Mw / Mn) of the (meth) acrylic copolymer (A) is 1.8 or less.
<4>
The molecule of the (meth) acrylic copolymer (A) is a (meth) acrylic copolymer (A1) containing an XY diblock structure or an XYX triblock structure having an X block and a Y block in the molecule. ,
The number of repeating units derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the X block is 1.0 or more on average.
The repeating unit derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the Y block is 0 to 3% by weight based on the weight of all the repeating units contained in the Y block. be,
The curable composition according to any one of <1> to <3>.
<5>
The repeating unit derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the X block is more than 3% by weight based on the weight of all the repeating units contained in the X block. , <4>.
<6>
The curable composition according to any one of <1> to <5>, wherein the (meth) acrylic acid ester monomer (α) is the following (a) and / or (b):
(A) Monomer having 1 to 5 carbon atoms in the alkyl group ester-bonded with (meth) acrylic acid (however, carbon contained in the alkoxy group is not included);
(B) One or more selected from the group consisting of 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, and isopropoxyethyl (meth) acrylate. Monomer.
<7>
The (meth) acrylic acid ester monomer (δ) includes pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, octadecyl (meth) acrylate, icosyl (meth) acrylate and (meth). ) The curable composition according to <2>, which is one or more selected from the group consisting of docosil acrylate.
<8>
The number of alkoxysilyl groups contained in the (meth) acrylic copolymer (A) is 1.0 to 10.0 on average as a whole molecule, of <1> to <7>. The curable composition according to any one.
<9>
The curable composition according to any one of <1> to <8>, wherein the polyoxyalkylene polymer (B) has a number average molecular weight of 5,000 to 50,000.
<10>
The compounding ratio of the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B) is (95/5) to (5/95) by weight, <1> to The curable composition according to any one of <9>.
<11>
The curable composition according to any one of <1> to <10>, which satisfies the following conditions (a) and / or (b):
Condition (a): The viscosity of the (meth) acrylic copolymer (A) measured at 23 ° C. is 200 Pa · s or less;
Condition (b): The viscosity of the curable composition measured at 23 ° C. is 55 Pa · s or less.
<12>
A cured product obtained by curing the curable composition according to any one of <1> to <11>.
<13>
A sealant or adhesive containing the curable composition according to any one of <1> to <11> or the cured product according to <12>.
<14>
The method for producing a curable composition according to <1>.
A step of polymerizing the above (meth) acrylic copolymer (A) by a living polymerization method, and
A step of mixing the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B),
Manufacturing method, including.
<15>
The step of polymerizing the (meth) acrylic copolymer (A) by the living radical polymerization method includes a step of polymerizing the (meth) acrylic copolymer (A) by the living radical polymerization method, according to <14>. The method for producing a curable composition according to the above.
 また、本発明には、以下の態様も含まれている。
<1a>
 上記硬化性組成物において、上記(メタ)アクリル系共重合体(A)に含まれている(メタ)アクリル酸エステルモノマーに由来する繰返し単位の総重量は、上記(メタ)アクリル系共重合体(A)に含まれている全ての繰り返し単位の重量を基準として、90重量%以上であってもよい。
<2a>
 上記硬化性組成物において、上記(メタ)アクリル酸エステルモノマー(β)は、アクリル酸ブチルであってもよい。
<3a>
 上記硬化性組成物において、上記(メタ)アクリル酸エステルモノマー(γ)は、アクリル酸2-エチルヘキシルおよびアクリル酸ドデシルからなる群より選択される1種類以上であってもよい。
<4a>
 上記硬化性組成物において、上記(メタ)アクリル酸エステルモノマー(δ)は、アクリル酸オクタデシルであってもよい。
<5a>
 上記硬化性組成物において、上記(メタ)アクリル系共重合体(A)の、ゲルパーミエーションクロマトグラフィで測定した数平均分子量は、30,000以上であってもよい。
<6a>
 上記硬化性組成物において、上記(メタ)アクリル系共重合体(A)と、上記ポリオキシアルキレン系重合体(B)との配合比は、(95/5)~(5/95)であってもよい。
<7a>
 上記硬化性組成物において、上記(メタ)アクリル系共重合体(A)、および、上記ポリオキシアルキレン系重合体(B)からなる群より選択される1つ以上は、下記一般式(1)で示されるアルコキシシリル基を有していてもよい:
 -[Si(R2-b(Y)O]-Si(R3-a(Y)  (1)
 (式中、
 RおよびRは、独立に、炭素数1~20のアルキル基、炭素数6~20のアリール基、炭素数7~20のアラルキル基、メトキシメチル基、または、(R’)SiO-で示されるトリオルガノシロキシ基であり、
  R’は、炭素数1~20の1価の炭化水素基であり、3個存在するR’は同一であってもよく、異なっていてもよく、
  RまたはRが2個以上存在するとき、当該RまたはRは、同一であってもよく、異なっていてもよく、
 Yは、炭素数1~20のアルコキシ基であり、
  Yが2個以上存在するとき、当該Yは同一であってもよく、異なっていてもよく、
 aは、0、1、2または3であり、
 bは、0、1または2であり、
 mは、0~19の整数であり、
 a+mb≧1である)。
The present invention also includes the following aspects.
<1a>
In the curable composition, the total weight of the repeating units derived from the (meth) acrylic acid ester monomer contained in the (meth) acrylic copolymer (A) is the (meth) acrylic copolymer. It may be 90% by weight or more based on the weight of all the repeating units contained in (A).
<2a>
In the curable composition, the (meth) acrylate monomer (β) may be butyl acrylate.
<3a>
In the curable composition, the (meth) acrylic acid ester monomer (γ) may be one or more selected from the group consisting of 2-ethylhexyl acrylate and dodecyl acrylate.
<4a>
In the curable composition, the (meth) acrylic acid ester monomer (δ) may be octadecyl acrylate.
<5a>
In the curable composition, the number average molecular weight of the (meth) acrylic copolymer (A) measured by gel permeation chromatography may be 30,000 or more.
<6a>
In the curable composition, the compounding ratio of the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B) is (95/5) to (5/95). You may.
<7a>
In the curable composition, one or more selected from the group consisting of the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B) is the following general formula (1). It may have an alkoxysilyl group represented by:
-[Si (R 1 ) 2-b (Y) b O] m -Si (R 2 ) 3-a (Y) a (1)
(During the ceremony,
R 1 and R 2 are independently an alkyl group having 1 to 20 carbon atoms, an aryl group having 6 to 20 carbon atoms, an aralkyl group having 7 to 20 carbon atoms, a methoxymethyl group, or (R') 3 SiO-. It is a triorganosyloxy group indicated by
R'is a monovalent hydrocarbon group having 1 to 20 carbon atoms, and the three R'existing may be the same or different.
When R 1 or R 2 there are two or more, the R 1 or R 2 can be identical or different,
Y is an alkoxy group having 1 to 20 carbon atoms.
When there are two or more Ys, the Ys may be the same or different.
a is 0, 1, 2 or 3
b is 0, 1 or 2,
m is an integer from 0 to 19 and
a + mb ≧ 1).
 さらに、本発明には、以下の態様も含まれている。
<1b>
 以下の工程を含む、原子移動ラジカル重合による(メタ)アクリル系共重合体(A)の製造方法:
 (i)分子内にハロゲン基を1つ有する開始剤の1モル当量に対して、アルコキシシリル基を有する(メタ)アクリル酸エステルモノマーを1~10モル当量、および、アルコキシシリル基を有さない(メタ)アクリル酸エステルモノマーを1~100モル当量を重合させる、第1工程;
 (ii)第1工程で得られる重合物の1モル当量に対して、アルコキシシリル基を有さない(メタ)アクリル酸エステルモノマーの2~600モル当量を反応系に加えて重合させる、第2工程;
 (iii)第2工程で得られる重合物の1モル当量に対して、アルコキシシリル基を有する(メタ)アクリル酸エステルモノマーの1~10モル当量を反応系に加えて重合させる、第3工程;
 ここで、上記第1工程および上記第3工程において反応系に加えられるアルコキシシリル基を有さない(メタ)アクリル酸エステルモノマーには、全てのモノマーの重量を基準として、(メタ)アクリル酸エステルモノマー(α)が5~20重量%含まれており、
 上記(メタ)アクリル酸エステルモノマー(α)は、(メタ)アクリル酸とエステル結合しているアルキル基を有しており、かつ、上記アルキル基は炭素数が1~5のアルコキシ基を有している、
製造方法。
Furthermore, the present invention also includes the following aspects.
<1b>
Method for producing (meth) acrylic copolymer (A) by atom transfer radical polymerization, which comprises the following steps:
(I) 1 to 10 molar equivalents of a (meth) acrylic acid ester monomer having an alkoxysilyl group and no alkoxysilyl group with respect to 1 molar equivalent of an initiator having one halogen group in the molecule. First step of polymerizing (meth) acrylic acid ester monomer in 1-100 molar equivalents;
(Ii) To 1 molar equivalent of the polymer obtained in the first step, 2 to 600 molar equivalents of the (meth) acrylic acid ester monomer having no alkoxysilyl group is added to the reaction system for polymerization. Process;
(Iii) In the third step, 1 to 10 molar equivalents of the (meth) acrylic acid ester monomer having an alkoxysilyl group are added to the reaction system for polymerization with respect to 1 molar equivalent of the polymer obtained in the second step;
Here, the (meth) acrylic acid ester monomer having no alkoxysilyl group added to the reaction system in the first step and the third step is a (meth) acrylic acid ester based on the weight of all the monomers. Contains 5 to 20% by weight of monomer (α)
The (meth) acrylic acid ester monomer (α) has an alkyl group ester-bonded to (meth) acrylic acid, and the alkyl group has an alkoxy group having 1 to 5 carbon atoms. ing,
Production method.
 上記各項目で記載した内容は、他の項目においても適宜援用できる。本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。したがって、異なる実施形態にそれぞれ開示されている技術的手段を適宜組合せて得られる実施形態についても、本発明の技術的範囲に含まれる。 The contents described in each of the above items can be appropriately used in other items as well. The present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the claims. Therefore, embodiments obtained by appropriately combining the technical means disclosed in the different embodiments are also included in the technical scope of the present invention.
 本明細書中に記載された学術文献および特許文献のすべてが、本明細書中において参考文献として援用される。 All academic and patent documents described herein are incorporated herein by reference.
 以下、実施例により本発明をさらに詳細に説明するが、本発明は下記実施例のみに限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the present invention is not limited to the following Examples.
 〔製造例1〕
 (準備)
 (メタ)アクリル酸エステルモノマー(α)、(β)、(γ)および(δ)を、表1に記載の量だけ混合し、1000gの混合物を得た。この混合物を、「(メタ)アクリル酸エステルモノマー混合物A」と称する。
[Manufacturing Example 1]
(Preparation)
The (meth) acrylic acid ester monomers (α), (β), (γ) and (δ) were mixed in the amounts shown in Table 1 to obtain 1000 g of a mixture. This mixture is referred to as "(meth) acrylic acid ester monomer mixture A".
 (重合)
 攪拌機付ステンレス製反応容器の内部を脱酸素した。この反応容器に、臭化第一銅7.41gおよび(メタ)アクリル酸エステルモノマー混合物A200gを仕込み、加熱攪拌した。次に、アセトニトリル88.73gおよび開始剤(ジエチル2,5-ジブロモアジペート)10.79gを添加し、混合した。混合液の温度を約65℃に調節した後、ペンタメチルジエチレントリアミン0.15gを添加して、重合反応を開始させた。その後、(メタ)アクリル酸エステルモノマー混合物Aの残部800gを逐次投入し、重合反応を進行させた。重合反応中には、ペンタメチルジエチレントリアミンを適宜追加し、重合速度を調整した。重合反応の全体で使用したペンタメチルジエチレントリアミンの総量は、1.49gであった。重合が進行すると反応熱により反応系の温度は上昇傾向を示すが、反応系の温度は約80℃~約90℃に調整した。モノマー転化率(重合反応率)が95%となった時点で、揮発分を減圧脱揮して除去し、重合体濃縮物を得た。この段階までに要した時間は、5時間であった。
(polymerization)
The inside of the stainless steel reaction vessel with a stirrer was deoxidized. 7.41 g of cuprous bromide and 200 g of (meth) acrylic acid ester monomer mixture A were charged into this reaction vessel, and the mixture was heated and stirred. Next, 88.73 g of acetonitrile and 10.79 g of the initiator (diethyl 2,5-dibromoadipate) were added and mixed. After adjusting the temperature of the mixture to about 65 ° C., 0.15 g of pentamethyldiethylenetriamine was added to initiate the polymerization reaction. Then, the remaining 800 g of the (meth) acrylic acid ester monomer mixture A was sequentially added to allow the polymerization reaction to proceed. During the polymerization reaction, pentamethyldiethylenetriamine was appropriately added to adjust the polymerization rate. The total amount of pentamethyldiethylenetriamine used in the whole polymerization reaction was 1.49 g. As the polymerization progressed, the temperature of the reaction system tended to rise due to the heat of reaction, but the temperature of the reaction system was adjusted to about 80 ° C. to about 90 ° C. When the monomer conversion rate (polymerization reaction rate) reached 95%, the volatile matter was removed by devolatile under reduced pressure to obtain a polymer concentrate. The time required to reach this stage was 5 hours.
 得られた重合体濃縮物に、1,7-オクタジエン189.85g、アセトニトリル354.94g、ペンタメチルジエチレントリアミン2.99gを加えた。次に、反応系の温度を約80℃~約90℃に調節しながら4時間加熱攪拌することにより、重合体の末端に1,7-オクタジエンを反応させた。 To the obtained polymer concentrate, 189.85 g of 1,7-octadiene, 354.94 g of acetonitrile, and 2.99 g of pentamethyldiethylenetriamine were added. Next, 1,7-octadiene was reacted at the end of the polymer by heating and stirring for 4 hours while adjusting the temperature of the reaction system to about 80 ° C. to about 90 ° C.
 (精製)
 反応終了時点で、反応容器内の気相部に酸素-窒素混合ガスを導入した。次に、反応系の温度を約80℃~約90℃に保ちながら、反応液を4時間加熱攪拌することにより、反応液中に含まれる重合触媒と酸素とを接触させた。次に、アセトニトリルおよび未反応の1,7-オクタジエンを減圧脱揮して除去し、重合体濃縮物を得た。ここまでの工程に要した時間は、6時間であった。
(purification)
At the end of the reaction, an oxygen-nitrogen mixed gas was introduced into the gas phase part in the reaction vessel. Next, while maintaining the temperature of the reaction system at about 80 ° C. to about 90 ° C., the reaction solution was heated and stirred for 4 hours to bring the polymerization catalyst contained in the reaction solution into contact with oxygen. Next, acetonitrile and unreacted 1,7-octadien were removed by volatilization under reduced pressure to obtain a polymer concentrate. The time required for the process up to this point was 6 hours.
 重合体濃縮物に酢酸ブチル1000gを加えて希釈した後、濾過助剤を添加して攪拌した。次に、不溶な触媒成分を濾過除去した。 After diluting the polymer concentrate by adding 1000 g of butyl acetate, a filtration aid was added and the mixture was stirred. Next, the insoluble catalyst component was removed by filtration.
 濾液を攪拌機付ステンレス製反応容器に仕込み、吸着剤(キョーワード700SEN-Sおよびキョーワード500SH)を添加した。次に、反応容器内の気相部に酸素-窒素混合ガスを導入して、約100℃で1時間加熱攪拌した。次に、不溶成分(吸着剤など)を濾過除去し、清澄な濾液を得た。この操作を2回繰り返した後、濾液を濃縮して、重合体粗精製物を得た。 The filtrate was placed in a stainless steel reaction vessel equipped with a stirrer, and adsorbents (Kyoward 700SEN-S and Kyoward 500SH) were added. Next, an oxygen-nitrogen mixed gas was introduced into the gas phase portion in the reaction vessel, and the mixture was heated and stirred at about 100 ° C. for 1 hour. Next, insoluble components (adsorbents and the like) were removed by filtration to obtain a clear filtrate. After repeating this operation twice, the filtrate was concentrated to obtain a crude polymer product.
 重合体粗精製物に、熱安定剤(スミライザーGS:住友化学(株)製)および吸着剤(キョーワード700SEN-S、キョーワード500SH)を添加した。系を昇温して、約170℃~約200℃の高温下にて2時間程度、加熱攪拌および減圧脱揮を施すことにより、重合体粗生成物を吸着精製した。次に、重合体に対して10倍量の酢酸ブチルを加えて稀釈し、吸着剤(キョーワード700SENおよびキョーワード500SH)を追加した。次に、反応容器内の気相部を酸素-窒素混合ガス雰囲気とし、約170℃~約200℃の高温下にて4時間程度加熱攪拌することにより、吸着精製を続行した。次に、重合体を90倍量の酢酸ブチルで稀釈した後、濾過して吸着剤を除去した。濾液を濃縮して、両末端にアルケニル基を有する重合体を得た。 A heat stabilizer (Smilizer GS: manufactured by Sumitomo Chemical Co., Ltd.) and an adsorbent (Kyoward 700SEN-S, Kyoward 500SH) were added to the crude polymer product. The temperature of the system was raised, and the crude polymer product was adsorbed and purified by heating, stirring, and devolatile under reduced pressure at a high temperature of about 170 ° C. to about 200 ° C. for about 2 hours. Next, 10 times the amount of butyl acetate was added to the polymer for dilution, and adsorbents (Kyoward 700SEN and Kyoward 500SH) were added. Next, the gas phase portion in the reaction vessel was set to an oxygen-nitrogen mixed gas atmosphere, and the adsorption purification was continued by heating and stirring at a high temperature of about 170 ° C. to about 200 ° C. for about 4 hours. Next, the polymer was diluted with 90 times the amount of butyl acetate and then filtered to remove the adsorbent. The filtrate was concentrated to give a polymer having alkenyl groups at both ends.
 (アルコキシシリル基の導入)
 得られた重合体1000gに対し、メチルジメトキシシラン(DMS)19.1g、オルト蟻酸メチル5.4g、ビス(1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン)白金錯体触媒のイソプロパノール溶液(1.32×10-4mmol/μL)0.388mLを混合し、約115℃にて加熱攪拌した。1時間程度経過した後、揮発分(未反応のDMSなど)を減圧留去して、(メタ)アクリル系共重合体(A)を得た。この(メタ)アクリル系共重合体(A)は、分子の両末端にジメトキシシリル基を有する重合体である。
(Introduction of alkoxysilyl group)
19.1 g of methyldimethoxysilane (DMS), 5.4 g of methyl orthoate, and a platinum complex catalyst of bis (1,3-divinyl-1,1,3,3-tetramethyldisiloxane) with respect to 1000 g of the obtained polymer. 0.388 mL of the isopropanol solution (1.32 × 10 -4 mmol / μL) of the above was mixed, and the mixture was heated and stirred at about 115 ° C. After about 1 hour, volatile components (unreacted DMS, etc.) were distilled off under reduced pressure to obtain a (meth) acrylic copolymer (A). This (meth) acrylic copolymer (A) is a polymer having dimethoxysilyl groups at both ends of the molecule.
 〔製造例2〕
 (準備)
 2000mLの3つ口フラスコを用意した。この中に、(メタ)アクリル酸エステルモノマー(α)、(β)、(γ)および(δ)を、表1に記載の重量だけ入れて混合した(合計975g)。この混合物を、「(メタ)アクリル酸エステルモノマー混合物B」と称する。
[Manufacturing Example 2]
(Preparation)
A 2000 mL three-necked flask was prepared. The (meth) acrylic acid ester monomers (α), (β), (γ) and (δ) were added thereto by the weights shown in Table 1 and mixed (total 975 g). This mixture is referred to as "(meth) acrylic acid ester monomer mixture B".
 次に、別の攪拌容器を用意した。この中に、第二臭化銅(CuBr)52.7mg、ヘキサメチルトリス(2-アミノエチル)アミン(MeTREN)54.4mg、メタノール1.82gを仕込み、窒素気流下にて、均一溶液になるまで攪拌を行った。この均一溶液を「銅溶液」と称する。なお、銅溶液中に含まれている銅は、(メタ)アクリル酸エステルモノマー混合物Bの全量に対して、15ppmに相当する。 Next, another stirring container was prepared. 52.7 mg of cupric bromide (CuBr 2 ), 54.4 mg of hexamethyltris (2-aminoethyl) amine (Me 6 TEN), and 1.82 g of methanol were charged therein and uniformly under a nitrogen stream. Stirring was performed until a solution was obtained. This uniform solution is referred to as a "copper solution". The amount of copper contained in the copper solution corresponds to 15 ppm with respect to the total amount of the (meth) acrylic acid ester monomer mixture B.
 さらに、別の攪拌容器を用意した。この中に、メタノール40.4mL、アスコルビン酸0.5g、トリエチルアミン0.79mLを仕込み、窒素気流下にて30分間攪拌して均一溶液とした。この均一溶液を、「アスコルビン酸溶液」と称する。 Furthermore, another stirring container was prepared. To this, 40.4 mL of methanol, 0.5 g of ascorbic acid, and 0.79 mL of triethylamine were charged, and the mixture was stirred under a nitrogen stream for 30 minutes to prepare a uniform solution. This uniform solution is referred to as an "ascorbic acid solution".
 (第1工程)
 攪拌機に、α-ブロモ酪酸エチル5.24g(開始剤)、(メタ)アクリル酸エステルモノマー混合物Bを全量の20重量%、メタクリル酸3-(トリメトキシシリル)プロピル12.48g、メタノール151.76g(和光純薬化学工業株式会社製)、銅溶液の全量を投入し、窒素気流下にて30分間攪拌して、均一溶液とした。このとき使用した攪拌機は、ジャケット温調付き攪拌装置であった。
(First step)
In a stirrer, 5.24 g of ethyl α-bromobutyrate (initiator), 20% by weight of the (meth) acrylic acid ester monomer mixture B, 12.48 g of 3- (trimethoxysilyl) propyl methacrylate, 151.76 g of methanol. (Manufactured by Wako Pure Chemical Industries, Ltd.), the entire amount of the copper solution was added, and the mixture was stirred under a nitrogen stream for 30 minutes to obtain a uniform solution. The stirrer used at this time was a stirrer with a jacket temperature control.
 次に、重合系内の温度が50℃以上になった時点で、アスコルビン酸溶液を連続滴下することにより、重合反応を開始させた。このときのアスコルビン酸溶液の滴下速度は、1時間あたり3mgのアスコルビン酸が重合系に投入される速度とした。 Next, when the temperature in the polymerization system reached 50 ° C. or higher, the polymerization reaction was started by continuously dropping an ascorbic acid solution. The dropping rate of the ascorbic acid solution at this time was the rate at which 3 mg of ascorbic acid was added to the polymerization system per hour.
 重合系内の温度をモニターしたところ、アスコルビン酸の滴下開始と同時に温度が上昇し、最大温度に到達した後、徐々に温度が低下していった。重合系内の温度からジャケット温度を減じた温度差が2℃になった時点で、重合系内の反応溶液を少量サンプリングし、ガスクロマトグラフで分析した。その結果、最初に投入した(メタ)アクリル酸エステルモノマー混合物Bのうち、81重量%が消費されていた。 When the temperature inside the polymerization system was monitored, the temperature rose at the same time as the start of dropping ascorbic acid, and after reaching the maximum temperature, the temperature gradually decreased. When the temperature difference obtained by subtracting the jacket temperature from the temperature in the polymerization system became 2 ° C., a small amount of the reaction solution in the polymerization system was sampled and analyzed by a gas chromatograph. As a result, 81% by weight of the (meth) acrylic acid ester monomer mixture B initially charged was consumed.
 (第2工程)
 次に、第1工程で投入しなかった(メタ)アクリル酸エステルモノマー混合物Bの残り(全量の80重量%)を、90分間かけて、重合系に連続的に滴下した。また、逐次的にサンプリングを行い、ガスクロマトグラフで分析した。そして、重合系に投入した(メタ)アクリル酸エステルモノマー混合物Bの全量のうち、98重量%が消費されるまで重合させた。
(Second step)
Next, the rest (80% by weight of the total amount) of the (meth) acrylic acid ester monomer mixture B that was not charged in the first step was continuously added dropwise to the polymerization system over 90 minutes. In addition, sampling was performed sequentially and analyzed by gas chromatography. Then, the mixture was polymerized until 98% by weight of the total amount of the (meth) acrylic acid ester monomer mixture B charged into the polymerization system was consumed.
 (第3工程)
 次に、この重合系に、メタクリル酸3-(トリメトキシシリル)プロピル13.73gを投入した。アスコルビン酸溶液の連続滴下を1.5時間継続した後、アスコルビン酸溶液の滴下を停止して、重合を終了させた。
(Third step)
Next, 13.73 g of 3- (trimethoxysilyl) propyl methacrylate was added to this polymerization system. After continuous dropping of the ascorbic acid solution was continued for 1.5 hours, the dropping of the ascorbic acid solution was stopped to complete the polymerization.
 ジャケット温度を80℃に変更してから、溶媒を脱揮した。脱揮には、最初はダイヤフラムポンプを用い、次いで真空ポンプを用いた。脱揮終了後に、ジャケット温度が60℃以下になるまで冷却した。 After changing the jacket temperature to 80 ° C, the solvent was devolatile. For volatilization, a diaphragm pump was used first, and then a vacuum pump was used. After the volatilization was completed, the jacket was cooled to 60 ° C. or lower.
 (精製)
 ジャケット温調付き攪拌装置に、酢酸ブチル1000gを投入して、脱揮を終えたポリマーと均一溶液になるまで混合攪拌した。この均一溶液に、吸着剤を加えて、1時間攪拌した。吸着剤としては、20gのキョーワード500SH(協和化学工業株式会社製)、および、20gのキョーワード700SEN-S(協和化学工業株式会社製)を用いた。
(purification)
1000 g of butyl acetate was put into a stirrer with jacket temperature control, and the mixture was mixed and stirred with the devolatile polymer until a uniform solution was obtained. An adsorbent was added to this uniform solution, and the mixture was stirred for 1 hour. As the adsorbent, 20 g of Kyoward 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) and 20 g of Kyoward 700SEN-S (manufactured by Kyowa Chemical Industry Co., Ltd.) were used.
 攪拌終了後、得られた混合物を、バグフィルター濾布を敷いた濾過器によって濾過した。これによって、清澄なポリマー溶液を得た。この溶液に、約20gの酢酸ブチルに溶解させた1.5gの酸化防止剤(SumilizerGS;住友化学製)加え、均一になるまで混合した。その後、溶液から溶媒を脱揮して、(メタ)アクリル系共重合体(A1)を得た。脱揮には、最初はダイヤフラムポンプを用い、次いで真空ポンプを用いた。この(メタ)アクリル系共重合体(A1)は、XYXトリブロック構造をとる重合体である。 After the stirring was completed, the obtained mixture was filtered through a filter lined with a bag filter filter cloth. This gave a clear polymer solution. To this solution, 1.5 g of an antioxidant (Sumilizer GS; manufactured by Sumitomo Chemical Co., Ltd.) dissolved in about 20 g of butyl acetate was added, and the mixture was mixed until uniform. Then, the solvent was devolatile from the solution to obtain a (meth) acrylic copolymer (A1). For volatilization, a diaphragm pump was used first, and then a vacuum pump was used. This (meth) acrylic copolymer (A1) is a polymer having an XYX triblock structure.
 〔製造例3、4〕
 (メタ)アクリル系モノマー混合物Bの組成を、表1に記載の通り変更した。それ以外は製造例2と同様にして、(メタ)アクリル系共重合体(A1)を製造した。
[Manufacturing Examples 3 and 4]
The composition of the (meth) acrylic monomer mixture B was changed as shown in Table 1. A (meth) acrylic copolymer (A1) was produced in the same manner as in Production Example 2 except for the above.
 〔製造例5〕
 (メタ)アクリル系モノマー混合物Aの組成を、表1に記載の通り変更した。それ以外は製造例1と同様にして、(メタ)アクリル系共重合体を製造した。この共重合体は、(メタ)アクリル酸エステルモノマー(α)に由来するユニットを含んでいない。
[Manufacturing Example 5]
The composition of the (meth) acrylic monomer mixture A was changed as shown in Table 1. A (meth) acrylic copolymer was produced in the same manner as in Production Example 1 except for the above. This copolymer does not contain a unit derived from the (meth) acrylic acid ester monomer (α).
 〔製造例6〕
 (メタ)アクリル系モノマー混合物Bの組成を、表1に記載の通り変更した。それ以外は製造例2と同様にして、(メタ)アクリル系共重合体を製造した。この共重合体は、(メタ)アクリル酸エステルモノマー(α)に由来するユニットを含んでいない。
[Manufacturing Example 6]
The composition of the (meth) acrylic monomer mixture B was changed as shown in Table 1. A (meth) acrylic copolymer was produced in the same manner as in Production Example 2 except for the above. This copolymer does not contain a unit derived from the (meth) acrylic acid ester monomer (α).
Figure JPOXMLDOC01-appb-T000001
 〔実施例1~4、比較例1、2〕
 製造例1~6で得られた(メタ)アクリル系共重合体の物性を評価した。また、(メタ)アクリル系共重合体とポリオキシアルキレン系重合体(B)とを含む硬化性組成物、および当該硬化性組成物を硬化させてなる硬化物の物性も評価した。なお、実施例1~4で評価した(メタ)アクリル系共重合体(A)は、それぞれ、製造例1~4で製造したものである。また、比較例1、2で評価した(メタ)アクリル系共重合体は、それぞれ、製造例5、6で製造したものである。
Figure JPOXMLDOC01-appb-T000001
[Examples 1 to 4, Comparative Examples 1 and 2]
The physical characteristics of the (meth) acrylic copolymers obtained in Production Examples 1 to 6 were evaluated. In addition, the physical properties of a curable composition containing a (meth) acrylic copolymer and a polyoxyalkylene-based polymer (B) and a cured product obtained by curing the curable composition were also evaluated. The (meth) acrylic copolymers (A) evaluated in Examples 1 to 4 were produced in Production Examples 1 to 4, respectively. The (meth) acrylic copolymers evaluated in Comparative Examples 1 and 2 were produced in Production Examples 5 and 6, respectively.
 [モノマー分布]
 (アルコキシシリル基を有する(メタ)アクリル酸エステルモノマー由来の繰り返し単位の分布)
 全ての(メタ)アクリル酸エステルモノマーが同じ反応率でポリマーブロックに取り込まれると仮定して、アルコキシシリル基を有する(メタ)アクリル酸エステルモノマー由来の繰り返し単位(メタクリル酸3-(トリメトキシシリル)プロピル由来の繰り返し単位)の分布を導出した。具体的には、メタクリル酸3-(トリメトキシシリル)プロピル由来の繰り返し単位に関して、以下の3つのパラメータを算出した。結果を表2に示す。(a)Xブロックに含まれている上記繰り返し単位の平均個数。
[Monomer distribution]
(Distribution of repeating units derived from (meth) acrylic acid ester monomer having an alkoxysilyl group)
A repeating unit derived from a (meth) acrylic acid ester monomer having an alkoxysilyl group (3- (trimethoxysilyl) methacrylate), assuming that all (meth) acrylic acid ester monomers are incorporated into the polymer block at the same reaction rate. The distribution of propyl-derived repeating units) was derived. Specifically, the following three parameters were calculated for the repeating unit derived from 3- (trimethoxysilyl) propyl methacrylate. The results are shown in Table 2. (A) The average number of the repeating units contained in the X block.
 (b)Xブロックに含まれている上記繰り返し単位が、重合体分子全体に占める重量比(重量%)。 (B) The weight ratio (% by weight) of the repeating unit contained in the X block to the entire polymer molecule.
 (c)Yブロックに含まれている上記繰り返し単位が、重合体分子全体に占める重量比(重量%)。 (C) The weight ratio (% by weight) of the repeating unit contained in the Y block to the entire polymer molecule.
 ((メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位の分布)
 (メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位(アクリル酸2-メトキシエチル由来の繰り返し単位)が、重合体分子全体に占める重量比(重量%)は、仕込んだモノマーの重量および当該モノマーの消費率から算出した(結果を表2に示す)。また、上述の製造例によれば、アクリル酸2-メトキシエチル由来の繰り返し単位は、(メタ)アクリル系共重合体(A)中にランダムに分布することになる。
(Distribution of repeating units derived from (meth) acrylic acid ester monomer (α))
The weight ratio (% by weight) of the repeating unit derived from the (meth) acrylic acid ester monomer (α) (repeating unit derived from 2-methoxyethyl acrylate) to the entire polymer molecule is the weight of the charged monomer and the monomer. (Results are shown in Table 2). Further, according to the above-mentioned production example, the repeating units derived from 2-methoxyethyl acrylate are randomly distributed in the (meth) acrylic copolymer (A).
 [(メタ)アクリル系共重合体の評価]
 (分子量および分子量分布)
 ゲルパーミエーションクロマトグラフィ(GPC)を用いた、標準ポリスチレン換算法により、(メタ)アクリル系共重合体の数平均分子量(Mn)、重量平均分子量(Mw)および分子量分布(Mw/Mn)を算出した。GPCのカラムには、ポリスチレン架橋ゲルを充填したカラム(shodex GPC K-804;昭和電工(株)製)を使用した。GPCの溶媒には、クロロホルムを使用した。結果を表2に示す。
[Evaluation of (meth) acrylic copolymer]
(Molecular weight and molecular weight distribution)
The number average molecular weight (Mn), weight average molecular weight (Mw), and molecular weight distribution (Mw / Mn) of the (meth) acrylic copolymer were calculated by a standard polystyrene conversion method using gel permeation chromatography (GPC). .. As the GPC column, a column filled with polystyrene crosslinked gel (shodex GPC K-804; manufactured by Showa Denko KK) was used. Chloroform was used as the solvent for GPC. The results are shown in Table 2.
 (粘度)
 (メタ)アクリル系共重合体の粘度を、粘度計(東機産業製VISCOMETER TV-25、3°×R14コーンローター、1rpm)を用いて、23℃にて測定した。測定は、JIS K
 7117-2に準拠して行った。測定に用いたサンプルの量は、0.4mLであった。結果を表2に示す。
(viscosity)
The viscosity of the (meth) acrylic copolymer was measured at 23 ° C. using a viscometer (VISCOMETER TV-25 manufactured by Toki Sangyo Co., Ltd., 3 ° × R14 cone rotor, 1 rpm). The measurement is JIS K
This was done in accordance with 7117-2. The amount of sample used for the measurement was 0.4 mL. The results are shown in Table 2.
 [硬化性組成物の評価]
 (メタ)アクリル系共重合体とポリオキシアルキレン系重合体(B)とを混合して、硬化性組成物を調製した。ポリオキシアルキレン系重合体(B)としては、SAX220(株式会社カネカ製)を使用した。両者の混合比は、重量比で50:50とした。
[Evaluation of curable composition]
A curable composition was prepared by mixing a (meth) acrylic copolymer and a polyoxyalkylene-based polymer (B). As the polyoxyalkylene polymer (B), SAX220 (manufactured by Kaneka Corporation) was used. The mixing ratio of the two was 50:50 by weight.
 (相溶性の評価)
 (メタ)アクリル系共重合体とポリオキシアルキレン系重合体(B)とを、攪拌および混合した。その後、遊星式の攪拌混合装置(シンキー製 あわとり錬太郎)を用いて、硬化性組成物を混合および脱泡した。混合時における装置の動作パラメータは、公転:1600rpm、自転:640rpm、攪拌時間:1.3分間とした。脱泡時における装置の動作パラメータは、公転:2200rpm、自転:60rpm、攪拌時間:3分間とした。得られた混合物をサンプル瓶に入れて、60℃のオーブン中にて2時間放置した後、相溶状態を確認した。その後、混合物を室温にてさらに1週間放置した後にも、相溶状態を確認した。結果を表2に示す。表2中、「○」はいずれの条件でも相溶であったことを表し、「×」は少なくとも一方の条件で非相溶であったことを表す。
(Evaluation of compatibility)
The (meth) acrylic copolymer and the polyoxyalkylene-based polymer (B) were stirred and mixed. Then, the curable composition was mixed and defoamed using a planetary stirring and mixing device (Awatori Rentaro manufactured by Shinky). The operating parameters of the device at the time of mixing were revolution: 1600 rpm, rotation: 640 rpm, and stirring time: 1.3 minutes. The operating parameters of the device at the time of defoaming were revolution: 2200 rpm, rotation: 60 rpm, and stirring time: 3 minutes. The obtained mixture was placed in a sample bottle and left in an oven at 60 ° C. for 2 hours, and then the compatibility state was confirmed. Then, even after the mixture was left at room temperature for another week, the compatibility state was confirmed. The results are shown in Table 2. In Table 2, "○" indicates that they were compatible under all conditions, and "x" indicates that they were incompatible under at least one condition.
 (粘度の評価)
 硬化性組成物の粘度を、粘度計(東機産業製VISCOMETER TV-25、3°×R14コーンローター、1rpm)を用いて、23℃にて測定した。測定は、JIS K 7117-2に準拠して行った。測定に用いたサンプルの量は、0.4mLであった。結果を表2に示す。
(Evaluation of viscosity)
The viscosity of the curable composition was measured at 23 ° C. using a viscometer (VISCOMETER TV-25 manufactured by Toki Sangyo Co., Ltd., 3 ° × R14 cone rotor, 1 rpm). The measurement was performed in accordance with JIS K 7117-2. The amount of sample used for the measurement was 0.4 mL. The results are shown in Table 2.
 [硬化物の評価]
 硬化性組成物100重量部に、オクチル酸スズ2重量部とラウリルアミン0.5重量部との反応物を加えてよく混合した。得られた混合物を型枠に流し込み、減圧脱気した。その後、50℃にて20時間加熱硬化させ、ゴム弾性を有するシート状硬化物を得た。
[Evaluation of cured product]
To 100 parts by weight of the curable composition, a reaction product of 2 parts by weight of tin octylate and 0.5 part by weight of laurylamine was added and mixed well. The obtained mixture was poured into a mold and degassed under reduced pressure. Then, it was heat-cured at 50 ° C. for 20 hours to obtain a sheet-like cured product having rubber elasticity.
 (機械物性の評価)
 得られたシート硬化物から、JIS K 7113に規定されている3号形ダンベル型試験片を打抜いた。この試験片を引張試験に供して、機械物性を測定した。具体的には、50%伸張時の応力、破断時の応力、および破断時の伸び(チャック間距離に対する伸び)を測定した。結果を表2に示す。なお、測定にはオートグラフ(島津製作所製)を使用し、測定温度:23℃、引張速度:200mm/minとした。
(Evaluation of mechanical properties)
From the obtained cured sheet, a No. 3 dumbbell type test piece specified in JIS K 7113 was punched out. This test piece was subjected to a tensile test to measure mechanical properties. Specifically, the stress at 50% elongation, the stress at fracture, and the elongation at fracture (elongation with respect to the distance between chucks) were measured. The results are shown in Table 2. An autograph (manufactured by Shimadzu Corporation) was used for the measurement, and the measurement temperature was 23 ° C. and the tensile speed was 200 mm / min.
Figure JPOXMLDOC01-appb-T000002
 [結果]
 実施例1~4に係る(メタ)アクリル系共重合体(A)は、比較例1、2に係る(メタ)アクリル系共重合体と比較して、共重合体自体の粘度が大幅に低下しており、硬化性組成物の粘度も低下していた。このことから、(メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位を所定の割合だけランダムに含ませることによって、共重合体自体の粘度および硬化性組成物の粘度を低減できることが示唆される。また、実施例1~4に係る(メタ)アクリル系共重合体(A)は、ポリオキシアルキレン系重合体(B)との相溶性や、硬化物の機械物性も良好であった。
Figure JPOXMLDOC01-appb-T000002
[result]
The (meth) acrylic copolymer (A) according to Examples 1 to 4 has a significantly lower viscosity of the copolymer itself than the (meth) acrylic copolymer according to Comparative Examples 1 and 2. The viscosity of the curable composition was also reduced. This suggests that the viscosity of the copolymer itself and the viscosity of the curable composition can be reduced by randomly including a predetermined ratio of repeating units derived from the (meth) acrylic acid ester monomer (α). .. Further, the (meth) acrylic copolymer (A) according to Examples 1 to 4 had good compatibility with the polyoxyalkylene-based polymer (B) and good mechanical properties of the cured product.
 〔製造例7、8〕
 アルコキシシリル基含有モノマーとして、メタクリル酸3-(ジメトキシメチルシリル)プロピルを使用した以外は、製造例2と同様の方法により共重合体を製造した。このうち、製造例7に係る共重合体は、(メタ)アクリル酸エステルモノマー(α)に由来するユニットを含んでいるので、(メタ)アクリル系共重合体(A1)に該当する。製造例8に係る共重合体は、(メタ)アクリル酸エステルモノマー(α)に由来するユニットを含んでいない。(メタ)アクリル系モノマー混合物Bの具体的な組成は、表3に示す通りである。
[Manufacturing Examples 7 and 8]
A copolymer was produced by the same method as in Production Example 2 except that 3- (dimethoxymethylsilyl) propyl methacrylate was used as the alkoxysilyl group-containing monomer. Of these, the copolymer according to Production Example 7 is a (meth) acrylic copolymer (A1) because it contains a unit derived from the (meth) acrylic acid ester monomer (α). The copolymer according to Production Example 8 does not contain a unit derived from the (meth) acrylic acid ester monomer (α). The specific composition of the (meth) acrylic monomer mixture B is as shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
 〔実施例5、比較例3〕
 製造例7、8で得られた(メタ)アクリル系共重合体の物性を評価した。また、(メタ)アクリル共重合体を硬化させてなる硬化物の物性も評価した(この硬化物には、ポリオキシアルキレン系共重合体(B)は含まれていないことに注意されたい)。結果を表4に示す。なお、実施例5で評価した(メタ)アクリル系共重合体(A)は、製造例7で製造したものである。また、比較例3で評価した(メタ)アクリル系共重合体は、製造例8で製造したものである。
Figure JPOXMLDOC01-appb-T000003
[Example 5, Comparative Example 3]
The physical characteristics of the (meth) acrylic copolymers obtained in Production Examples 7 and 8 were evaluated. In addition, the physical characteristics of the cured product obtained by curing the (meth) acrylic copolymer were also evaluated (note that this cured product does not contain the polyoxyalkylene copolymer (B)). The results are shown in Table 4. The (meth) acrylic copolymer (A) evaluated in Example 5 was produced in Production Example 7. The (meth) acrylic copolymer evaluated in Comparative Example 3 was produced in Production Example 8.
Figure JPOXMLDOC01-appb-T000004
 [結果]
 実施例5に係る(メタ)アクリル系共重合体(A)は、比較例3に係る(メタ)アクリル系共重合体と比較して、共重合体自体の粘度が大幅に低下していた。このことから、アルコキシシリル基を有するモノマーの種類を変更したとしても、(メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位を所定の割合だけランダムに含ませることによって、共重合体自体の粘度を低減できることが示唆される。また、実施例5に係る(メタ)アクリル系共重合体(A)は、ポリオキシアルキレン系重合体(B)との相溶性や、硬化物の機械物性も良好であった。
Figure JPOXMLDOC01-appb-T000004
[result]
In the (meth) acrylic copolymer (A) according to Example 5, the viscosity of the copolymer itself was significantly reduced as compared with the (meth) acrylic copolymer according to Comparative Example 3. From this, even if the type of the monomer having an alkoxysilyl group is changed, the viscosity of the copolymer itself is obtained by randomly including a predetermined ratio of repeating units derived from the (meth) acrylic acid ester monomer (α). It is suggested that can be reduced. Further, the (meth) acrylic copolymer (A) according to Example 5 had good compatibility with the polyoxyalkylene-based polymer (B) and good mechanical properties of the cured product.
 本発明は、シーリング材、接着剤などに利用することができる。 The present invention can be used as a sealing material, an adhesive, and the like.

Claims (15)

  1.  アルコキシシリル基を有する(メタ)アクリル系共重合体(A)と、アルコキシシリル基を有するポリオキシアルキレン系重合体(B)と、を含む硬化性組成物であって、
     上記(メタ)アクリル系共重合体(A)は、(メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位をランダムに含んでおり、
      上記(メタ)アクリル酸エステルモノマー(α)は、(メタ)アクリル酸とエステル結合しているアルキル基を有しており、かつ、上記アルキル基は炭素数が1~5のアルコキシ基を有しており、
      上記(メタ)アクリル酸エステルモノマー(α)由来の繰り返し単位は、上記(メタ)アクリル系共重合体(A)に含まれている全ての繰り返し単位の重量を基準として、5~20重量%含まれている、
    硬化性組成物。
    A curable composition comprising a (meth) acrylic copolymer (A) having an alkoxysilyl group and a polyoxyalkylene-based polymer (B) having an alkoxysilyl group.
    The (meth) acrylic copolymer (A) randomly contains a repeating unit derived from the (meth) acrylic acid ester monomer (α).
    The (meth) acrylic acid ester monomer (α) has an alkyl group ester-bonded to (meth) acrylic acid, and the alkyl group has an alkoxy group having 1 to 5 carbon atoms. And
    The repeating unit derived from the (meth) acrylic acid ester monomer (α) is contained in an amount of 5 to 20% by weight based on the weight of all the repeating units contained in the (meth) acrylic copolymer (A). Is
    Curable composition.
  2.  上記(メタ)アクリル系共重合体(A)は、全ての繰り返し単位の重量を基準として、
      (メタ)アクリル酸エステルモノマー(β)由来の繰り返し単位を、45~70重量%、
      (メタ)アクリル酸エステルモノマー(γ)由来の繰り返し単位を、0~25重量%、
      (メタ)アクリル酸エステルモノマー(δ)由来の繰り返し単位を、15~25重量%、
    含んでおり、
     上記(メタ)アクリル酸エステルモノマー(β)は、(メタ)アクリル酸とエステル結合しているアルキル基の炭素数が1~5であり、
     上記(メタ)アクリル酸エステルモノマー(γ)は、(メタ)アクリル酸とエステル結合しているアルキル基の炭素数が6~15であり、
     上記(メタ)アクリル酸エステルモノマー(δ)は、(メタ)アクリル酸とエステル結合しているアルキルの炭素数が16~25である、
    請求項1に記載の硬化性組成物。
    The (meth) acrylic copolymer (A) is based on the weight of all repeating units.
    Repeating unit derived from (meth) acrylic acid ester monomer (β), 45-70% by weight,
    Repeating unit derived from (meth) acrylic acid ester monomer (γ), 0 to 25% by weight,
    Repeating unit derived from (meth) acrylic acid ester monomer (δ), 15 to 25% by weight,
    Includes
    The (meth) acrylic acid ester monomer (β) has 1 to 5 carbon atoms in the alkyl group ester-bonded to the (meth) acrylic acid.
    The (meth) acrylic acid ester monomer (γ) has an alkyl group ester-bonded to (meth) acrylic acid having 6 to 15 carbon atoms.
    The (meth) acrylic acid ester monomer (δ) has 16 to 25 carbon atoms of the alkyl ester-bonded to the (meth) acrylic acid.
    The curable composition according to claim 1.
  3.  上記(メタ)アクリル系共重合体(A)は、
      数平均分子量が4,000~80,000であり、
      分子量分布(Mw/Mn)が1.8以下である、
    請求項1または2に記載の硬化性組成物。
    The (meth) acrylic copolymer (A) is
    The number average molecular weight is 4,000-80,000,
    The molecular weight distribution (Mw / Mn) is 1.8 or less.
    The curable composition according to claim 1 or 2.
  4.  上記(メタ)アクリル系共重合体(A)の分子は、XブロックおよびYブロックを有するXYジブロック構造またはXYXトリブロック構造を分子中に含む(メタ)アクリル系共重合体(A1)であり、
     上記Xブロックに含まれているアルコキシシリル基を有する(メタ)アクリル酸エステルモノマー由来の繰り返し単位は、平均で1.0個以上であり、
     上記Yブロックに含まれているアルコキシシリル基を有する(メタ)アクリル酸エステルモノマー由来の繰り返し単位は、上記Yブロックに含まれている全ての繰り返し単位の重量を基準として、0~3重量%である、
    請求項1~3のいずれか1項に記載の硬化性組成物。
    The molecule of the (meth) acrylic copolymer (A) is a (meth) acrylic copolymer (A1) containing an XY diblock structure or an XYX triblock structure having an X block and a Y block in the molecule. ,
    The number of repeating units derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the X block is 1.0 or more on average.
    The repeating unit derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the Y block is 0 to 3% by weight based on the weight of all the repeating units contained in the Y block. be,
    The curable composition according to any one of claims 1 to 3.
  5.  上記Xブロックに含まれているアルコキシシリル基を有する(メタ)アクリル酸エステルモノマー由来の繰り返し単位は、上記Xブロックに含まれている全ての繰り返し単位の重量を基準として、3重量%超である、請求項4に記載の硬化性組成物。 The repeating unit derived from the (meth) acrylic acid ester monomer having an alkoxysilyl group contained in the X block is more than 3% by weight based on the weight of all the repeating units contained in the X block. , The curable composition according to claim 4.
  6.  上記(メタ)アクリル酸エステルモノマー(α)は、下記(a)および/または(b)である、請求項1~5のいずれか1項に記載の硬化性組成物:
     (a)(メタ)アクリル酸とエステル結合しているアルキル基の炭素数が1~5個であるモノマー(ただし、アルコキシ基に含まれる炭素は含めない);
     (b)(メタ)アクリル酸2-メトキシエチル、(メタ)アクリル酸2-エトキシエチル、(メタ)アクリル酸2-ブトキシエチル、(メタ)アクリル酸イソプロポキシエチルからなる群から選ばれる1つ以上のモノマー。
    The curable composition according to any one of claims 1 to 5, wherein the (meth) acrylic acid ester monomer (α) is the following (a) and / or (b).
    (A) Monomer having 1 to 5 carbon atoms in the alkyl group ester-bonded with (meth) acrylic acid (however, carbon contained in the alkoxy group is not included);
    (B) One or more selected from the group consisting of 2-methoxyethyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2-butoxyethyl (meth) acrylate, and isopropoxyethyl (meth) acrylate. Monomer.
  7.  上記(メタ)アクリル酸エステルモノマー(δ)は、(メタ)アクリル酸ペンタデシル、(メタ)アクリル酸ヘキサデシル、(メタ)アクリル酸ヘプタデシル、(メタ)アクリル酸オクタデシル、(メタ)アクリル酸イコシルおよび(メタ)アクリル酸ドコシルからなる群から選ばれる1つ以上である、請求項2に記載の硬化性組成物。 The (meth) acrylic acid ester monomer (δ) includes pentadecyl (meth) acrylate, hexadecyl (meth) acrylate, heptadecyl (meth) acrylate, octadecyl (meth) acrylate, icosyl (meth) acrylate and (meth). ) The curable composition according to claim 2, which is one or more selected from the group consisting of docosil acrylate.
  8.  上記(メタ)アクリル系共重合体(A)が有しているアルコキシシリル基の数は、分子全体として、平均して1.0~10.0個である、請求項1~7のいずれか1項に記載の硬化性組成物。 Any of claims 1 to 7, wherein the number of alkoxysilyl groups contained in the (meth) acrylic copolymer (A) is 1.0 to 10.0 on average as a whole molecule. The curable composition according to item 1.
  9.  上記ポリオキシアルキレン系重合体(B)の数平均分子量は、5,000~50,000である、請求項1~8のいずれか1項に記載の硬化性組成物。 The curable composition according to any one of claims 1 to 8, wherein the polyoxyalkylene polymer (B) has a number average molecular weight of 5,000 to 50,000.
  10.  上記(メタ)アクリル系共重合体(A)と上記ポリオキシアルキレン系重合体(B)との配合比は、重量比で(95/5)~(5/95)である、請求項1~9のいずれか1項に記載の硬化性組成物。 The compounding ratio of the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B) is (95/5) to (5/95) in terms of weight ratio, claim 1 to 1. 9. The curable composition according to any one of 9.
  11.  下記条件(a)および/または(b)を満たしている、請求項1~10のいずれか1項に記載の硬化性組成物:
    条件(a):上記(メタ)アクリル系共重合体(A)の23℃において測定した粘度が、200Pa・s以下である;
    条件(b):上記硬化性組成物の23℃において測定した粘度が、55Pa・s以下である。
    The curable composition according to any one of claims 1 to 10, which satisfies the following conditions (a) and / or (b):
    Condition (a): The viscosity of the (meth) acrylic copolymer (A) measured at 23 ° C. is 200 Pa · s or less;
    Condition (b): The viscosity of the curable composition measured at 23 ° C. is 55 Pa · s or less.
  12.  請求項1~11のいずれか1項に記載の硬化性組成物を硬化させてなる、硬化物。 A cured product obtained by curing the curable composition according to any one of claims 1 to 11.
  13.  請求項1~11のいずれか1項に記載の硬化性組成物、または、請求項12に記載の硬化物を含有する、シーリング材または接着剤。 A sealant or adhesive containing the curable composition according to any one of claims 1 to 11 or the cured product according to claim 12.
  14.  請求項1に記載の硬化性組成物の製造方法であって、
     上記(メタ)アクリル系共重合体(A)を、リビング重合法により重合する工程と、
     上記(メタ)アクリル系共重合体(A)と、上記ポリオキシアルキレン系重合体(B)とを混合する工程と、
    を含む、製造方法。
    The method for producing a curable composition according to claim 1.
    A step of polymerizing the above (meth) acrylic copolymer (A) by a living polymerization method, and
    A step of mixing the (meth) acrylic copolymer (A) and the polyoxyalkylene-based polymer (B),
    Manufacturing method, including.
  15.  上記(メタ)アクリル系共重合体(A)をリビング重合法により重合する工程は、上記(メタ)アクリル系共重合体(A)をリビングラジカル重合法により重合する工程を含む、請求項14に記載の硬化性組成物の製造方法。 14. The step of polymerizing the (meth) acrylic copolymer (A) by the living radical polymerization method includes a step of polymerizing the (meth) acrylic copolymer (A) by the living radical polymerization method, according to claim 14. The method for producing a curable composition according to the above.
PCT/JP2021/003810 2020-02-04 2021-02-03 Curable composition and cured product WO2021157584A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021575812A JPWO2021157584A1 (en) 2020-02-04 2021-02-03

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-017360 2020-02-04
JP2020017360 2020-02-04

Publications (1)

Publication Number Publication Date
WO2021157584A1 true WO2021157584A1 (en) 2021-08-12

Family

ID=77199403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003810 WO2021157584A1 (en) 2020-02-04 2021-02-03 Curable composition and cured product

Country Status (2)

Country Link
JP (1) JPWO2021157584A1 (en)
WO (1) WO2021157584A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124092A (en) * 2002-09-13 2004-04-22 Cemedine Co Ltd Curable composition
JP2006199725A (en) * 2005-01-18 2006-08-03 Konishi Co Ltd Curable resin composition
JP2008163182A (en) * 2006-12-28 2008-07-17 Sekisui Fuller Co Ltd Curable composition, adhesive and sealing material containing the curable composition

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004124092A (en) * 2002-09-13 2004-04-22 Cemedine Co Ltd Curable composition
JP2006199725A (en) * 2005-01-18 2006-08-03 Konishi Co Ltd Curable resin composition
JP2008163182A (en) * 2006-12-28 2008-07-17 Sekisui Fuller Co Ltd Curable composition, adhesive and sealing material containing the curable composition

Also Published As

Publication number Publication date
JPWO2021157584A1 (en) 2021-08-12

Similar Documents

Publication Publication Date Title
EP1371670B1 (en) Novel polymer and liquid gasket for in-place forming
WO2005023938A1 (en) Curable composition
JP4563936B2 (en) Curable composition
JP5185530B2 (en) Sealing material
JP5400073B2 (en) Curable composition
JP2005320519A (en) Curable composition
JP4439790B2 (en) Curable composition
EP1406932B1 (en) Quick curing composition
CN115038753B (en) Composition, curable composition, cured product, and storage method
JP2022149829A (en) Curable composition and cured product
JP2022149830A (en) Multi-component curable composition and cured product
JP2003313397A (en) Curable composition
WO2021157584A1 (en) Curable composition and cured product
WO2023048155A1 (en) One-pack type curable composition and cured product
JP2021155604A (en) Curable composition and cured product
JP2022182161A (en) Methacrylic polymer having terminal silyl group and method for producing the same
JP2003246861A (en) Curable composition
JP5399868B2 (en) Curable composition
JP2004346146A (en) Curable composition
JP2023040816A (en) Curable composition and cured product
WO2023282048A1 (en) Curable composition, cured product, coating agent, and concrete structure
JP2022129140A (en) Curable composition and cured product
JP2023040815A (en) Curable composition and cured product
JP2004051726A (en) Curable composition
JP2023063072A (en) Method for producing cured product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750809

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021575812

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21750809

Country of ref document: EP

Kind code of ref document: A1