WO2021157322A1 - Subsidiary chamber type ignition system - Google Patents

Subsidiary chamber type ignition system Download PDF

Info

Publication number
WO2021157322A1
WO2021157322A1 PCT/JP2021/001283 JP2021001283W WO2021157322A1 WO 2021157322 A1 WO2021157322 A1 WO 2021157322A1 JP 2021001283 W JP2021001283 W JP 2021001283W WO 2021157322 A1 WO2021157322 A1 WO 2021157322A1
Authority
WO
WIPO (PCT)
Prior art keywords
timing
ignition
chamber
sub
control unit
Prior art date
Application number
PCT/JP2021/001283
Other languages
French (fr)
Japanese (ja)
Inventor
良 田村
泰臣 今中
勇司 梶
篤 岩見
祐太 河嶋
岡 達也
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2021157322A1 publication Critical patent/WO2021157322A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/12Engines characterised by precombustion chambers with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D43/00Conjoint electrical control of two or more functions, e.g. ignition, fuel-air mixture, recirculation, supercharging or exhaust-gas treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D45/00Electrical control not provided for in groups F02D41/00 - F02D43/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P13/00Sparking plugs structurally combined with other parts of internal-combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T13/00Sparking plugs
    • H01T13/54Sparking plugs having electrodes arranged in a partly-enclosed ignition chamber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • the present disclosure relates to a sub-chamber ignition system that ignites fuel in the sub-chamber of a combustion chamber divided into a main chamber and a sub-chamber.
  • the sub-chamber ignition system has a partition wall that divides the combustion chamber of the engine into a sub-chamber and a main chamber, an ignition plug that ignites fuel in the sub-chamber, and an ignition control unit that controls the spark plug.
  • Some partition walls are provided with a communication hole for communicating the sub chamber and the main chamber.
  • the fuel in the sub-chamber is first ignited and the flame spreads in the sub-chamber, and then the flame is ejected from the communication hole into the main chamber and the flame spreads in the main chamber. become. Therefore, the time from ignition to the spread of the flame in the main chamber becomes long. Then, such a problem becomes particularly remarkable in a low load state in which the magnitude of the load applied to the engine is small. That is, in a low load state where the amount of depression of the accelerator is small, the amount of fuel supplied to the combustion chamber is reduced, so that the amount of fuel in the sub-chamber or main chamber is reduced and it becomes difficult to burn. This is because the progress of combustion in the main chamber is slowed down. Therefore, when the load is low in the sub-chamber ignition system, the time from ignition to the spread of the flame in the main chamber becomes long, particularly remarkably.
  • the present discloser has focused on the following problems when the following optimum ignition control is performed in a low load state in the sub-chamber ignition system.
  • ignition timing the timing at which the spark plug ignites
  • combustion timing the timing at which a predetermined amount of fuel in the combustion chamber is burned after the ignition timing
  • the time from the ignition timing to the combustion timing is defined as the "combustion time”.
  • the optimum ignition timing which is the timing earlier than the optimum combustion timing as the optimum combustion timing.
  • the ignition timing is controlled to the optimum ignition timing.
  • the time from ignition to the spread of the flame in the main chamber becomes long, so that the above-mentioned combustion time becomes long.
  • the optimum ignition timing which is earlier than the optimum combustion timing by the amount of the combustion time, becomes too early.
  • the calculated optimum ignition timing is too early, it becomes virtually impossible to control the ignition timing to that optimum ignition timing.
  • the amount of combustion before the compression top dead point, that is, in the compression stroke becomes too large, and the reverse torque generated by the combustion, that is, the reverse applied in the direction of attenuating the rotation of the engine. This is because the torque in the direction cancels out a part of the torque of the engine and the torque drops.
  • the present disclosure has been made in view of the above circumstances, and its main purpose is to enable the ignition timing to be controlled to the optimum ignition timing even in a low load state in the sub-chamber ignition system.
  • the sub-chamber type ignition system of the present disclosure uses a partition wall that divides the combustion chamber of an engine into a sub-chamber and a main chamber, and applies a voltage to a predetermined discharge gap to generate a discharge spark to use the fuel in the sub-chamber. It has an ignition plug for igniting and an ignition control unit for controlling the ignition plug. Then, a communication hole for communicating the sub chamber and the main chamber is formed in the partition wall.
  • a state in which the load applied to the engine is a predetermined magnitude is defined as a high load state, and a state in which the load applied to the engine is smaller than the predetermined magnitude is defined as a low load state.
  • the timing at which the spark plug starts discharging in the discharge gap is defined as the ignition timing, and the timing at which a predetermined amount of fuel in the combustion chamber is burned after the ignition timing is defined as the combustion timing. Then, the time from the ignition timing to the combustion timing is defined as the combustion time.
  • the ignition control unit calculates the optimum ignition timing which is the timing earlier than the optimum combustion timing as the optimum combustion timing by the combustion time, and controls the ignition timing to the optimum ignition timing. This is performed in the high load state.
  • the timing at which the flame generated in the sub chamber starts to eject from the communication hole into the main chamber between the ignition timing and the combustion timing is defined as the ejection timing.
  • the time from the ignition timing to the ejection timing is defined as the ejection time.
  • the ignition control unit has an ejection control unit that performs ejection delay suppression control that suppresses the ejection time from becoming longer in the low load state as compared with the high load state. Then, in the low load state, the ejection delay suppression control is performed by the ejection control unit, so that the combustion time is suppressed to be longer than in the high load state, and the ignition control unit performs the ejection delay suppression control. Optimal ignition control is performed.
  • the present disclosure it is possible to suppress an increase in combustion time as compared with a high load state by performing ejection delay suppression control in a low load state. Therefore, it is possible to prevent the optimum ignition timing, which is earlier than the optimum combustion timing by the amount of the combustion time, from becoming too early. As a result, it becomes possible to control the ignition timing to the optimum ignition timing even in a low load state in the sub-chamber ignition system. Then, by actually performing the optimum ignition control, the ignition timing is controlled to the optimum ignition timing. As a result, the combustion timing is controlled to the optimum combustion timing, and torque can be efficiently generated.
  • FIG. 1 is a cross-sectional view showing the ignition system of the first embodiment.
  • FIG. 2 is a cross-sectional view showing the sub-chamber and its surroundings.
  • FIG. 3 is a circuit diagram showing a circuit of the spark plug and its surroundings.
  • FIG. 4 is a timing chart showing ignition by a spark plug.
  • FIG. 5 is a graph showing the control of discharge energy.
  • FIG. 6 is a cross-sectional view showing the sub chamber and its surroundings in the ignition control before top dead center.
  • FIG. 7 is a cross-sectional view showing the sub chamber and its surroundings in ignition control after top dead center.
  • FIG. 8 is a graph showing the change in the flow velocity of the continuous airflow.
  • FIG. 9 is a timing chart showing the progress of combustion.
  • FIG. 10 is a flowchart showing control by the ignition control unit.
  • FIG. 1 is a cross-sectional view showing the sub-chamber ignition system 70 of the first embodiment.
  • the sub-chamber ignition system 70 is installed with respect to the engine 90.
  • the engine 90 is a four-stroke engine in which one combustion cycle consists of four strokes of intake stroke ⁇ compression stroke ⁇ expansion stroke ⁇ exhaust stroke.
  • compression top dead center tD the top dead center between the compression stroke and the expansion stroke among them.
  • the engine 90 has a cylinder 10 and a head 20 attached to the top of the cylinder 10.
  • the length direction of the center line X of the cylinder 10 will be described as the vertical direction according to the drawing.
  • the engine 90 and the sub-chamber ignition system 70 may be installed with the center line X oblique to the vertical direction, or the engine 90 and the sub-chamber ignition system 70 may be installed with the center line X horizontal.
  • the engine 90 and the sub-chamber ignition system 70 can be installed in any direction.
  • a piston 18 is installed in the cylinder 10.
  • the piston 18 is connected to the crankshaft 11 via a link 12, and moves up and down according to the rotation of the crankshaft 11.
  • a combustion chamber 30 is formed above the piston 18.
  • the head 20 is provided with an intake passage 21 for sucking gas into the combustion chamber 30 and an exhaust passage 29 for discharging the gas in the combustion chamber 30.
  • An intake valve 24 is installed in the intake passage 21, and an exhaust valve 26 is installed in the exhaust passage 29.
  • the intake valve 24 is driven by the intake cam 23, and the exhaust valve 26 is driven by the exhaust cam 27.
  • the head 20 is provided with a fuel injection device 22 for injecting fuel into the intake passage 21.
  • the sub-chamber ignition system 70 includes an ignition plug 40 attached to the head 20, an air flow support structure As for facilitating the flow of air flow into the discharge gap 45 of the ignition plug 40, sensors 51 to 53, and each sensor. It has an ignition control unit 60 that controls the spark plug 40 based on inputs from 51 to 53.
  • Each sensor 51 to 53 includes a crank sensor 51, an intake pressure sensor 52, and a water temperature sensor 53.
  • the crank sensor 51 detects the crank angle and the rotational speed of the engine 90.
  • the intake pressure sensor 52 detects the intake pressure, which is the air pressure of the intake passage 21.
  • the water temperature sensor 53 detects the temperature of the cooling water for cooling the engine 90.
  • the ignition control unit 60 is a part of an ECU (electronic control unit) or the like, and has an ejection control unit 63 and an airflow control unit 64.
  • the ejection control unit 63 controls the ejection time t13, which is the time from when the fuel in the sub chamber 38 is ignited by the spark plug 40 until the flame starts to eject into the main chamber.
  • the ejection control unit 63 includes the load applied to the engine 90, the air-fuel ratio of the engine 90, the EGR amount which is the amount of returning the exhaust gas to the intake air in the engine 90, and the water temperature of the cooling water of the engine 90.
  • the fluctuation of the ejection time t13 is controlled to be small even by the fluctuation of those parameters.
  • the above load may be calculated from, for example, the amount of depression of the accelerator pedal, the load applied to the engine 90 may be directly detected, or may be calculated from a change in the rotational speed of the engine 90 or the like. ..
  • the airflow control unit 64 controls the spark plug 40 so that the discharge spark F of the spark plug 40 is not interrupted by the airflow caused by the airflow support structure As.
  • FIG. 2 is a cross-sectional view showing the sub chamber 38 and its surroundings.
  • the spark plug 40 has a center electrode 44 and an insulator 41 provided on the outer peripheral side thereof.
  • a partition wall 34 is attached to the lower end of the insulating insulator 41.
  • the combustion chamber 30 is divided into a main chamber 31 and a sub chamber 38 by the partition wall 34. Specifically, the inside of the partition wall 34 constitutes the sub chamber 38, and the outside of the partition wall 34 constitutes the main chamber 31.
  • the partition wall 34 is made of a conductor and also serves as a ground electrode for the spark plug 40.
  • a plurality of communication holes 35 are formed in the partition wall 34, and the sub chamber 38 and the main chamber 31 communicate with each other through the plurality of communication holes 35.
  • the central communication hole 35c which is one of the plurality of communication holes 35, is provided on the center line X of the cylinder 10 and penetrates the partition wall 34 in the vertical direction.
  • the lower end of the center electrode 44 is located just above the central communication hole 35c. That is, the lower portion of the center electrode 44 extends downward from the lower end of the insulating insulator 41 and is close to the central communication hole 35c.
  • the gap between the lower end of the center electrode 44 and the peripheral portion of the upper end of the central communication hole 35c in the partition wall 34 constitutes the discharge gap 45. Therefore, the discharge gap 45 is provided in the sub chamber 38 in the immediate vicinity of the central communication hole 35c, and is closest to the central communication hole 35c among the plurality of communication holes 35.
  • This structure constitutes the airflow support structure As. That is, as the airflow support structure As, a structure in which the discharge gap 45 is close to the central communication hole 35c is formed.
  • the spark plug 40 generates a discharge spark F by applying a voltage to the discharge gap 45.
  • the discharge spark F is extended by the airflow due to the airflow support structure As, so that the ignitability to the fuel is improved.
  • FIG. 3 is a circuit diagram showing the circuit of the spark plug 40 and its surroundings.
  • the spark plug 40 has a primary coil 412 and a secondary coil 421.
  • the primary coil 412 and the secondary coil 421 are wound around the core 401.
  • a battery 411 and a switching element 413 are connected in series to the primary coil 412.
  • the discharge gap 45 and the diode 422 are connected in series to the secondary coil 421.
  • the switching element 413 is controlled by the ignition control unit 60.
  • forward direction the direction in which current flows in the secondary coil 421 when the switching element 413 is turned from ON to OFF
  • reverse direction the opposite direction
  • the diode 422 is installed in a direction that allows a forward current to flow and prevents a current from flowing in the reverse direction.
  • FIG. 4 is a timing chart showing the control of the spark plug 40.
  • the ignition control unit 60 turns on the switching element 413 accordingly.
  • the primary current shown in FIG. 4B begins to flow in the primary coil 412, and the primary current increases with the passage of time.
  • the discharge energy E is stored in the primary coil 412 in the form of magnetic energy.
  • the ignition signal shown in FIG. 4A becomes Low at the ignition timing t1 after a predetermined charging time t01 from the energization timing t0.
  • FIG. 5A is a graph showing the time change of the primary current when the discharge energy E is controlled to be relatively small
  • FIG. 5B is a graph showing the time change of the primary current when the discharge energy E is controlled to be relatively large. It is a graph which shows the time change of an electric current.
  • FIG. 5 (a) when the discharge energy E is controlled to be relatively small, the charging time t01 is set relatively short, and as shown in FIG. 5 (b), the discharge energy E is relatively small. In the case of large control, the charging time t01 is set to be relatively long.
  • the ejection control unit 63 and the airflow control unit 64 control the discharge energy E.
  • FIG. 6 is a cross-sectional view showing the sub-chamber 38 and its surroundings in the pre-dead center ignition control in which ignition is performed before the compression top dead center tD (that is, the compression stroke). Such pre-dead center ignition control is performed at normal times.
  • the airflow flowing through the central communication hole 35c is referred to as “communication flow A”.
  • an upward continuous airflow A flowing from the main chamber 31 side to the sub chamber 38 side flows into the discharge gap 45. Due to the continuous airflow A, the discharge spark F extends upward in the sub chamber 38.
  • the extended discharge spark F ignites a flame in the fuel in the sub chamber 38.
  • the flame generated in the sub chamber 38 propagates into the sub chamber 38 and then is discharged from each communication hole 35 toward the inside of the main chamber 31.
  • FIG. 7 is a cross-sectional view showing the sub-chamber 38 and its surroundings in the post-top dead center ignition control in which ignition is performed after the compression top dead center tD (that is, the expansion stroke).
  • Such post-dead center ignition control is performed when the engine 90 is in a predetermined operating condition, such as during first idling.
  • the idle speed is set higher than usual due to catalyst warm-up or the like.
  • a downward continuous airflow A flowing from the sub chamber 38 side to the main chamber 31 side flows into the discharge gap 45. Due to the communication flow A, the discharge spark F extends from the sub chamber 38 into the main chamber 31 through the central communication hole 35c.
  • the extended discharge spark F ignites the fuel in both the sub chamber 38 and the main chamber 31.
  • FIG. 8 is a graph showing an image of a change in the flow velocity (absolute value) of the continuous airflow A.
  • the flow velocity flowing through the discharge gap 45 is substantially proportional to the flow velocity of the continuous airflow A.
  • the gas in the main chamber 31 flows concentratedly in each communication hole 35 including the central communication hole 35c, so that the main chamber 31 and the sub chamber 38 flow. It becomes stronger than the air flow inside. Therefore, the airflow flowing through the discharge gap 45 close to the central communication hole 35c is also stronger than the airflow in the main chamber 31 and the sub chamber 38.
  • the flow velocity of the continuous airflow A decreases as it approaches the compression top dead center tD, and temporarily becomes substantially zero at or near the compression top dead center tD. However, the continuous airflow A occurs rapidly again after the compression top dead center tD.
  • the gas in the sub chamber 38 includes the central communication hole 35c. This is because it is generated promptly by concentrating the flow in each communication hole 35.
  • the sub-chamber ignition system 70 positively utilizes this continuous ventilation flow A to allow an air flow to flow through the discharge gap 45. That is the above-mentioned airflow support structure As. As described above, the continuous airflow A becomes stronger as the distance from the compression top dead center tD increases. Specifically, before the compression top dead center tD, that is, in the latter half of the compression stroke, the airflow flowing through the discharge gap 45 becomes stronger as the crank angle advances from the compression top dead center tD. On the other hand, after the compression top dead center tD, that is, in the first half of the expansion stroke, the more the crank angle is retarded from the compression top dead center tD, the stronger the airflow flowing through the discharge gap 45.
  • the anti-airflow control unit 64 controls the discharge energy E so that the discharge spark F is not interrupted by the airflow.
  • the anti-airflow control unit 64 compares with the case where the ignition timing t1 is a predetermined timing at the time of ignition control before top dead center, that is, when ignition is performed in the latter half of the compression stroke.
  • the discharge energy E is controlled to be large. More specifically, for example, the discharge energy E is controlled to increase as the ignition timing t1 becomes earlier.
  • the ignition timing t1 is compared with the case where the ignition timing t1 is a predetermined timing. Is controlled so that the discharge energy E becomes large when the timing is later than the predetermined timing. More specifically, for example, the discharge energy E is controlled to increase as the ignition timing t1 is delayed.
  • FIG. 9 is a timing chart showing the progress of combustion in the ignition control before top dead center.
  • ignition timing t1 the timing at which the spark plug 40 applies a voltage to the discharge gap 45 is referred to as “ignition timing t1”.
  • ignition timing t2 the timing at which the flame is ignited by the discharge spark F is defined as the “secondary chamber ignition timing t2”.
  • the ignition timing t2 of the sub chamber the timing at which the flame generated in the sub chamber 38 starts to be ejected from the communication hole 35 into the main chamber 31 is defined as “spout timing t3”.
  • the timing at which the flame starts to ignite in earnest on the fuel in the main chamber 31 due to the ejected flame is defined as the “main chamber ignition timing t4”. Further, the timing at which a predetermined amount of fuel (for example, 50% of the mass) in the combustion chamber 30 is in a burned state after the ignition timing t4 of the main chamber is referred to as “combustion timing t5”.
  • the period from the ignition timing t1 to the sub-chamber ignition timing t2 is defined as the "spark stage period t12". Further, the period from the ignition timing t2 of the sub-chamber to the ejection timing t3 is defined as the “sub-chamber propagation period t23”. Further, the period from the ejection timing t3 to the main chamber ignition timing t4 is defined as the “flame ejection period t34”. Further, the period from the main chamber ignition timing t4 to the combustion timing t5 is defined as the "main chamber propagation period t45”. Further, the time from the ignition timing t1 to the ejection timing t3 is defined as the “spouting time t13”. Further, the time from the ignition timing t1 to the combustion timing t5 is defined as "combustion time t15".
  • the sub-chamber ignition system 70 of the comparative example is different from that of the present embodiment in that it does not have the airflow support structure As shown in FIG. That is, the sub-chamber ignition system 70 of the comparative example has a shorter center electrode 44 and a ground electrode separate from the partition wall 34 as compared with the present embodiment. Therefore, the discharge gap 45 is not close to the central communication hole 35c. Further, the sub-chamber ignition system 70 of the comparative example is different from the present embodiment in that the ignition control unit 60 shown in FIG. 1 does not have the ejection control unit 63.
  • FIG. 9A is a timing chart showing the progress of combustion in a high load state in the ignition control before top dead center in the comparative example.
  • the ignition control unit 60 performs the following optimum ignition control.
  • the optimum combustion timing T5 as the optimum combustion timing t5 is acquired.
  • the optimum combustion timing T5 is, for example, the combustion timing t5 at which the obtained torque is substantially maximized, and more specifically, for example, the timing 10 CA (crank angle) after the compression top dead center tD.
  • the burning time t15 is calculated. The details will be described later.
  • the optimum ignition timing T1 which is a timing earlier than the optimum combustion timing T5 by the combustion time t15 is calculated.
  • the ignition timing t1 is controlled at the optimum ignition timing T1.
  • the combustion timing t5 is controlled at the optimum combustion timing T5.
  • FIG. 9B is a timing chart showing the progress of combustion in a low load state in the ignition control before top dead center in the comparative example.
  • the optimum ignition timing T1 is calculated by the optimum ignition control, which is earlier than the optimum combustion timing T5 by the combustion time t15, the optimum ignition timing T1 becomes too early. Therefore, if ignition is performed at the optimum ignition timing T1, the amount of combustion before the compression top dead center tD, that is, in the compression stroke becomes too large, and the reverse torque generated by the combustion causes the torque of the engine 90 to increase. It is offset and the torque drops. Therefore, in this low load state, the optimum ignition control cannot be performed, and the ignition timing t1 is controlled at a timing later than the optimum ignition timing T1. As a result, the timing later than the optimum combustion timing T5 becomes the combustion timing t5.
  • FIG. 9C is a timing chart showing the progress of combustion in a high load state in the pre-dead center ignition control in the present embodiment. Also in this embodiment, the same optimum ignition control as in the comparative example is performed. However, since the airflow support structure As is provided in the present embodiment, the discharge spark F is extended as compared with the high load state of the comparative example shown in FIG. 9A. As a result, the ignitability in the sub chamber 38 is improved, and the spark stage period t12 before the sub chamber ignition timing t2 is shortened. Further, the extension of the discharge spark F causes the flame to ignite strongly and firmly to the fuel in the sub chamber 38.
  • the flame is easily propagated in the sub-chamber 38, and the sub-chamber propagation period t23 is shortened.
  • the ejection time t13 is shortened.
  • the flame ejection period t34 and the main chamber propagation period t45 are also slightly shortened accordingly. Due to the action of the airflow support structure As described above, the combustion time t15 becomes shorter than that in the high load state of the comparative example shown in FIG. 9A.
  • the ignition timing t1 is controlled by the optimum ignition control so that the ignition timing t1 is delayed by the shorter the combustion time t15 as compared with the comparative example.
  • FIG. 9D is a timing chart showing the progress of combustion in a low load state in the ignition control before top dead center in the present embodiment. Since there is an airflow support structure As in this embodiment, the combustion time t15 is shorter than that in the low load state of the comparative example shown in FIG. 9B by itself. Further, in addition to that, the ejection control unit 63 performs ejection delay suppression control for suppressing the ejection time t13 from becoming longer in the low load state as compared with the high load state, so that the combustion time t15 is further increased. It gets shorter.
  • the discharge energy E is increased as compared with the high load state as the ejection delay suppression control.
  • the ignitability in the sub chamber 38 is improved.
  • the spark stage period t12 before the sub-chamber ignition timing t2 is shorter than that in the case where the ejection delay suppression control is not performed.
  • the discharge energy E becomes large, the fuel in the sub chamber 38 is strongly ignited with a strong flame. Therefore, the flame is easily propagated in the sub chamber 38, and the sub chamber propagation period t23 is shortened as compared with the case where the ejection delay suppression control is not performed.
  • the ejection time t13 is shortened as compared with the case where the ejection delay suppression control is not performed, and the flame ejection period t34 and the main chamber propagation period t45 are also slightly shortened accordingly.
  • the combustion time t15 is shortened as compared with the low load state of the comparative example shown in FIG. 9B. That is, due to the actions of both the airflow support structure As and the ejection delay suppression control, the combustion time t15 is remarkably shortened as compared with the low load state of the comparative example shown in FIG. 9B.
  • the optimum ignition control is performed by the amount of the combustion time t15. Even if the optimum ignition timing T1 that is earlier than the optimum combustion timing T5 is calculated, the optimum ignition timing T1 does not become too early. Therefore, even if the ignition timing t1 is controlled at the optimum ignition timing T1, the amount of combustion before the compression top dead center tD, that is, in the expansion stroke, does not become too large and the reverse torque does not become too strong. .. Therefore, in the present embodiment, the optimum ignition control can be performed even in a low load state. Then, by actually performing the optimum ignition control, that is, by controlling the ignition timing t1 at the optimum ignition timing T1, the combustion timing t5 can be controlled at the optimum combustion timing T5.
  • FIG. 10 is a flowchart showing control by the ignition control unit 60 having the ejection control unit 63 and the airflow control unit 64 shown above.
  • each sensor 51 to 53 acquires each parameter indicating the operating status of the engine 90 (S101).
  • the discharge energy E and the optimum ignition timing T1 are calculated based on those parameters (S102). That is, the ejection control unit 63 calculates the discharge energy E based on the load applied to the engine 90, the air-fuel ratio of the engine 90, the amount of EGR in the engine 90, the temperature of the cooling water of the engine 90, and the like.
  • the ejection control unit 63 calculates so that the discharge energy E becomes larger when the air-fuel ratio is larger than the predetermined air-fuel ratio as compared with the case where the air-fuel ratio is the predetermined air-fuel ratio. More specifically, for example, the larger the air-fuel ratio, the larger the discharge energy E. Further, the ejection control unit 63 controls so that the discharge energy E becomes larger when the EGR amount is larger than the predetermined amount as compared with the case where the EGR amount is the predetermined amount. More specifically, for example, the larger the EGR amount, the larger the discharge energy E. Further, the discharge energy E is controlled to be larger when the water temperature is lower than the predetermined temperature as compared with the case where the water temperature is the predetermined temperature. More specifically, for example, the lower the temperature of the cooling water, the larger the discharge energy E.
  • the airflow control unit 64 calculates so that the discharge energy E becomes large when the optimum ignition timing T1 is farther than the compression top dead center tD. Therefore, these discharge energies E and the optimum ignition timing T1 are calculated at the same time. This is because the larger the discharge energy E, the shorter the combustion time t15, and the later the optimum ignition timing T1. Therefore, the discharge energy E affects the optimum ignition timing T1.
  • the airflow control unit 64 increases the discharge energy E when the optimum ignition timing T1 is farther than the compression top dead center tD. Therefore, the optimum ignition timing T1 affects the discharge energy E. In this way, each of the discharge energy E and the optimum ignition timing T1 affects the other. Therefore, both values of the discharge energy E and the optimum ignition timing T1 are calculated at the same time by using, for example, a simultaneous equation or a multidimensional map that can calculate both values at the same time (S102).
  • the energization timing t0 is calculated from the optimum ignition timing T1 and the discharge energy E (S103).
  • the energization timing t0 is a timing earlier than the optimum ignition timing T1 by the charging time t01.
  • the charging time t01 becomes longer as the discharge energy E is larger, and becomes longer as the voltage of the battery 411 is lower. Further, even if the charging time t01 is the same, the faster the rotation speed of the engine 90, the larger the crank angle occupied by the charging time t01.
  • the ignition control unit 60 calculates the charging time t01, and further calculates the energization timing t0 based on the charging time t01 (S103). This calculation may be calculated based on, for example, a mathematical formula, or may be calculated based on a map.
  • the switching element 413 is turned on at the calculated energization timing t0 (S104).
  • the switching element 413 is turned off (S105). That is, the ignition timing t1 is controlled at the optimum ignition timing T1.
  • the above-mentioned predetermined amount for example, 50% of the mass
  • the combustion timing t5 is controlled at the optimum combustion timing T5.
  • the combustion timing t5 is not the optimum combustion timing T5 but the optimum combustion timing T5 in the ignition control after top dead center during first idling.
  • the ignition timing t1 is controlled so as to be later than the timing. Therefore, the optimum combustion control is not performed in the ignition control after top dead center.
  • the following effects can be obtained.
  • the ejection delay suppression control in addition to the airflow support structure As, it is possible to suppress the combustion time t15 in the low load state in the ignition control before top dead center. Therefore, it is possible to prevent the optimum ignition timing T1, which is earlier than the optimum combustion timing T5 by the amount of the combustion time t15, from becoming too early.
  • the ignition timing t1 can be controlled to the optimum ignition timing T1 even in a low load state in the sub-chamber ignition system 70.
  • the ignition timing t1 is controlled at the optimum ignition timing T1.
  • the combustion timing t5 is controlled at the optimum combustion timing T5, and torque can be efficiently generated.
  • the ejection control unit 63 controls the ejection delay suppression control so that the discharge energy E becomes larger in the low load state than in the high load state. As a result, when the load is low, the ejection time t13 can be shortened and the combustion time t15 can be shortened.
  • the discharge spark F can be extended by facilitating the flow of airflow through the discharge gap 45 by the airflow support structure As.
  • the ignitability by the discharge spark F can be improved and the ejection time t13 can be shortened.
  • the combustion time t15 can be shortened.
  • the airflow support structure As can be efficiently formed by using the communication hole 35.
  • the airflow control unit 64 controls the discharge energy E so that the discharge spark F is not interrupted by the airflow caused by the airflow support structure As. Therefore, the stability of the discharge spark F can be ensured even when the airflow support structure As is provided in this way.
  • the airflow control unit 64 controls so that the discharge energy E becomes larger when the ignition timing t1 is in the latter half of the compression stroke and when the ignition timing t1 is earlier than when it is later. As a result, it is possible to efficiently prevent the blowout.
  • the airflow control unit 64 controls so that the discharge energy E becomes larger when the ignition timing t1 is in the first half of the expansion stroke and when the ignition timing t1 is later than when it is earlier. As a result, it is possible to efficiently prevent the blowout.
  • the partition wall 34 also serves as a ground electrode for the spark plug 40.
  • a communication hole 35 is formed in the partition wall 34. Therefore, the discharge gap 45 can be efficiently arranged close to the communication hole 35.
  • the ejection control unit 63 controls the discharge energy E based on each parameter indicating the operating state of the engine 90 such as the air-fuel ratio, EGR, and water temperature. Thereby, it is possible to efficiently suppress the lengthening of the ejection time t13 under a predetermined situation.
  • the ejection control unit 63 controls so that the discharge energy E becomes large when the air-fuel ratio is large as compared with when the air-fuel ratio is small. Therefore, it is possible to prevent the ejection time t13 from becoming longer when the air-fuel ratio is large as compared with when the air-fuel ratio is small.
  • the ejection control unit 63 controls so that the discharge energy E becomes larger when the EGR amount is larger than when it is small. Therefore, it is possible to prevent the ejection time t13 from becoming longer when the EGR amount is large as compared with when the EGR amount is small.
  • the ejection control unit 63 controls so that the discharge energy E becomes larger when the temperature of the cooling water is lower than when the water temperature is high. Therefore, it is possible to prevent the ejection time t13 from becoming longer when the temperature of the cooling water is lower than when the temperature is high.
  • the following effects can be obtained in ignition control after top dead center. That is, in the ignition control after top dead center, the discharge spark F extends into the main chamber 31 through the central communication hole 35c and directly ignites the fuel in the main chamber 31.
  • the burning time t15 can be shortened.
  • the embodiment shown above can be modified and implemented as follows.
  • the fuel is injected into the intake passage 21, but instead of or in addition to this, the fuel may be injected into the sub chamber 38 or the main chamber 31.
  • the discharge energy E is controlled by controlling the charging time t01, but instead of or in addition to this, the discharge energy E is controlled by controlling the current flowing through the primary coil 412. It may be controlled.
  • the ejection control unit 63 of the first embodiment changes the discharge energy E based on each parameter of the air-fuel ratio, the EGR amount, and the water temperature. It may be eliminated to change the discharge energy E based on this.
  • the discharge energy E is controlled by the airflow control unit 64 in both the case of being ignited in the latter half of the compression stroke and the case of being ignited in the first half of the expansion stroke. Instead, the discharge energy E may not be controlled by the airflow control unit 64 in one or both of the case where the ignition is performed in the latter half of the compression stroke and the case where the ignition is performed in the first half of the expansion stroke.
  • the airflow support structure As and the airflow control unit 64 are provided, but the airflow control unit 64 is eliminated, or both the airflow support structure As and the airflow control unit 64 are eliminated. You may do it. Even in such a case, the effect of the ejection delay suppression control by the ejection control unit 63 can be obtained.
  • the ejection control unit 63 performs ejection delay suppression control by controlling the discharge energy E, but instead of this, ejection delay suppression control is performed as follows. You may do so. That is, a spraying device for blowing an airflow is provided in the discharge gap 45, and the spraying device is controlled by the ejection control unit 63 so that the airflow is strongly blown to the discharge gap 45 in a low load state as compared with a high load state. You may. In this case, in the low load state, the discharge spark F extends for a longer time to improve the ignitability, and it is suppressed that the ejection time t13 becomes longer than in the high load state.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Spark Plugs (AREA)

Abstract

A subsidiary chamber type ignition system (70) comprises: a partition wall (34) that partitions a combustion chamber (30) of an engine (90) into a subsidiary chamber (38) and a main chamber (31); and an ignition plug (40) that ignites fuel inside the subsidiary chamber (38). In a high load state, an ignition control unit (60) calculates optimum ignition timing (T1) earlier by a combustion time (t15) than prescribed optimum combustion timing (T5) as shown in Fig. 9(c), and performs optimum ignition control to control ignition timing (t1) at the optimum ignition timing (T1). In a low load state, a jetting control unit (63) performs jetting delay prevention control to prevent a jetting time (t13) from being longer compared with the high load state as shown in Fig. 9(d) to prevent the combustion time (t15) from being long, while the ignition control unit (60) performs the above optimum ignition control.

Description

副室式点火システムSub-chamber ignition system 関連出願の相互参照Cross-reference of related applications
 本出願は、2020年2月5日に出願された日本出願番号2020-017879号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2020-017879 filed on February 5, 2020, and the contents of the description are incorporated herein by reference.
 本開示は、主室と副室とに区分けされた燃焼室の副室内の燃料に点火する副室式点火システムに関する。 The present disclosure relates to a sub-chamber ignition system that ignites fuel in the sub-chamber of a combustion chamber divided into a main chamber and a sub-chamber.
 副室式点火システムの中には、エンジンの燃焼室を副室と主室とに区分けする隔壁と、副室内の燃料に点火する点火プラグと、点火プラグを制御する点火制御部とを有し、隔壁に、副室と主室とを連通させる連通孔が設けられているものがある。そして、このような技術を示す文献としては、次の特許文献1がある。 The sub-chamber ignition system has a partition wall that divides the combustion chamber of the engine into a sub-chamber and a main chamber, an ignition plug that ignites fuel in the sub-chamber, and an ignition control unit that controls the spark plug. Some partition walls are provided with a communication hole for communicating the sub chamber and the main chamber. Then, as a document showing such a technique, there is the following Patent Document 1.
特開2009-270541号公報Japanese Unexamined Patent Publication No. 2009-270541
 上記の副室式点火システムでは、まず副室内の燃料に炎が着火して副室内に火炎が広がってから、次にその火炎が連通孔から主室内に噴出して主室内に火炎が広がることになる。そのため、点火から主室内に火炎が広がるまでの時間が長くなる。そして、このような問題は、エンジンに加わっている負荷の大きさが小さい低負荷状態の時に、特に顕著になる。すなわち、アクセルの踏み込み量等が少ない低負荷状態の時には、燃焼室内に供給される燃料の量が少なくなること等により、副室内や主室内における燃料が少なくなり燃え難くなることにより、副室内や主室内における燃焼の進行が遅くなるからである。そのため、副室式点火システムにおける低負荷状態の時には、特に顕著に、点火から主室内に火炎が広がるまでの時間が長くなる。 In the above-mentioned sub-chamber ignition system, the fuel in the sub-chamber is first ignited and the flame spreads in the sub-chamber, and then the flame is ejected from the communication hole into the main chamber and the flame spreads in the main chamber. become. Therefore, the time from ignition to the spread of the flame in the main chamber becomes long. Then, such a problem becomes particularly remarkable in a low load state in which the magnitude of the load applied to the engine is small. That is, in a low load state where the amount of depression of the accelerator is small, the amount of fuel supplied to the combustion chamber is reduced, so that the amount of fuel in the sub-chamber or main chamber is reduced and it becomes difficult to burn. This is because the progress of combustion in the main chamber is slowed down. Therefore, when the load is low in the sub-chamber ignition system, the time from ignition to the spread of the flame in the main chamber becomes long, particularly remarkably.
 そのため、副室式点火システムにおける低負荷状態の時において、次に示す最適点火制御を行おうとした場合、次に示す問題があることに本開示者は着目した。以下では、点火プラグが点火を行うタイミングを「点火タイミング」とし、点火タイミングの後において、燃焼室内の燃料のうちの所定量が燃焼した状態になるタイミングを「燃焼タイミング」とする。そして、点火タイミングから燃焼タイミングまでの時間を「燃焼時間」とする。 Therefore, the present discloser has focused on the following problems when the following optimum ignition control is performed in a low load state in the sub-chamber ignition system. In the following, the timing at which the spark plug ignites is referred to as “ignition timing”, and the timing at which a predetermined amount of fuel in the combustion chamber is burned after the ignition timing is referred to as “combustion timing”. Then, the time from the ignition timing to the combustion timing is defined as the "combustion time".
 最適点火制御では、最適な燃焼タイミングとしての最適燃焼タイミングよりも燃焼時間だけ早いタイミングである最適点火タイミングを算出する。その最適点火タイミングに点火タイミングを制御する。しかしながら、副室式点火システムにおける低負荷状態の時には、上記のとおり、点火から主室内に火炎が広がるまでの時間が長くなることにより、上記の燃焼時間が長くなってしまう。それにより、その燃焼時間の分だけ最適燃焼タイミングよりも早い最適点火タイミングが、早くなり過ぎてしまう。 In the optimum ignition control, the optimum ignition timing, which is the timing earlier than the optimum combustion timing as the optimum combustion timing, is calculated. The ignition timing is controlled to the optimum ignition timing. However, in the low load state in the sub-chamber ignition system, as described above, the time from ignition to the spread of the flame in the main chamber becomes long, so that the above-mentioned combustion time becomes long. As a result, the optimum ignition timing, which is earlier than the optimum combustion timing by the amount of the combustion time, becomes too early.
 そして、算出された最適点火タイミングが早過ぎる場合、事実上、その最適点火タイミングに点火タイミングを制御することは不可能になる。その最適点火タイミングで実際に点火した場合、圧縮上死点前での、すなわち圧縮行程での燃焼量が多くなり過ぎ、その燃焼により発生する逆トルク、すなわちエンジンの回転を減衰させる方向に加わる逆方向のトルクにより、エンジンのトルクの一部が相殺されてトルクが下がってしまうからである。 Then, if the calculated optimum ignition timing is too early, it becomes virtually impossible to control the ignition timing to that optimum ignition timing. When actually ignited at the optimum ignition timing, the amount of combustion before the compression top dead point, that is, in the compression stroke becomes too large, and the reverse torque generated by the combustion, that is, the reverse applied in the direction of attenuating the rotation of the engine. This is because the torque in the direction cancels out a part of the torque of the engine and the torque drops.
 そのため、副室式点火システムにおける低負荷状態の時には、最適点火タイミングよりも遅いタイミングに点火タイミングを制御する他なくなる。しかしながら、その場合、燃焼タイミングが最適燃焼タイミングよりも遅くなることにより、効率的にトルクを得ることができなくなってしまう。 Therefore, when the load is low in the sub-chamber ignition system, there is no choice but to control the ignition timing later than the optimum ignition timing. However, in that case, since the combustion timing is later than the optimum combustion timing, it becomes impossible to efficiently obtain the torque.
 本開示は、上記事情に鑑みてなされたものであり、副室式点火システムにおける低負荷状態の時においても、最適点火タイミングに点火タイミングを制御できるようにすることを、主たる目的とする。 The present disclosure has been made in view of the above circumstances, and its main purpose is to enable the ignition timing to be controlled to the optimum ignition timing even in a low load state in the sub-chamber ignition system.
 本開示の副室式点火システムは、エンジンの燃焼室を副室と主室とに区分けする隔壁と、所定の放電ギャップに電圧を印加して放電火花を発生させることにより前記副室内の燃料に点火する点火プラグと、前記点火プラグを制御する点火制御部とを有する。そして、前記隔壁に、前記副室と前記主室とを連通させる連通孔が形成されている。 The sub-chamber type ignition system of the present disclosure uses a partition wall that divides the combustion chamber of an engine into a sub-chamber and a main chamber, and applies a voltage to a predetermined discharge gap to generate a discharge spark to use the fuel in the sub-chamber. It has an ignition plug for igniting and an ignition control unit for controlling the ignition plug. Then, a communication hole for communicating the sub chamber and the main chamber is formed in the partition wall.
 以下では、前記エンジンに加わっている負荷が所定の大きさである状態を高負荷状態とし、前記エンジンに加わっている負荷が当該所定の大きさよりも小さい状態を低負荷状態とする。また、前記点火プラグが前記放電ギャップにおける放電を開始するタイミングを点火タイミングとし、前記点火タイミングの後において前記燃焼室内の燃料のうちの所定量が燃焼した状態になるタイミングを燃焼タイミングとする。そして、前記点火タイミングから前記燃焼タイミングまでの時間を燃焼時間とする。 In the following, a state in which the load applied to the engine is a predetermined magnitude is defined as a high load state, and a state in which the load applied to the engine is smaller than the predetermined magnitude is defined as a low load state. Further, the timing at which the spark plug starts discharging in the discharge gap is defined as the ignition timing, and the timing at which a predetermined amount of fuel in the combustion chamber is burned after the ignition timing is defined as the combustion timing. Then, the time from the ignition timing to the combustion timing is defined as the combustion time.
 前記点火制御部は、最適な前記燃焼タイミングとしての最適燃焼タイミングよりも前記燃焼時間だけ早いタイミングである最適点火タイミングを算出して、前記最適点火タイミングに前記点火タイミングを制御する最適点火制御を、前記高負荷状態の時に行う。 The ignition control unit calculates the optimum ignition timing which is the timing earlier than the optimum combustion timing as the optimum combustion timing by the combustion time, and controls the ignition timing to the optimum ignition timing. This is performed in the high load state.
 以下では、前記点火タイミングと前記燃焼タイミングとの間において、前記副室内に発生した火炎が前記連通孔から前記主室内に噴出し始めるタイミングを噴出タイミングとする。そして、前記点火タイミングから前記噴出タイミングまでの時間を噴出時間とする。 In the following, the timing at which the flame generated in the sub chamber starts to eject from the communication hole into the main chamber between the ignition timing and the combustion timing is defined as the ejection timing. Then, the time from the ignition timing to the ejection timing is defined as the ejection time.
 前記点火制御部は、前記高負荷状態の時に比べて前記低負荷状態の時に前記噴出時間が長くなるのを抑制する噴出遅延抑制制御を行う噴出制御部を有する。そして、前記低負荷状態の時には、前記噴出制御部により前記噴出遅延抑制制御を行うことにより、前記高負荷状態の時に比べて前記燃焼時間が長くなるのを抑制しつつ、前記点火制御部により前記最適点火制御を行う。 The ignition control unit has an ejection control unit that performs ejection delay suppression control that suppresses the ejection time from becoming longer in the low load state as compared with the high load state. Then, in the low load state, the ejection delay suppression control is performed by the ejection control unit, so that the combustion time is suppressed to be longer than in the high load state, and the ignition control unit performs the ejection delay suppression control. Optimal ignition control is performed.
 本開示によれば、低負荷状態の時に、噴出遅延抑制制御を行うことにより、高負荷状態の時に比べて燃焼時間が大きくなるのを抑制できる。そのため、その燃焼時間の分だけ最適燃焼タイミングよりも早い最適点火タイミングが、早くなり過ぎるのを抑制できる。それにより、副室式点火システムにおける低負荷状態の時においても、最適点火タイミングに点火タイミングを制御することが可能になる。そして、実際に最適点火制御を行うことにより、最適点火タイミングに点火タイミングが制御される。それにより、最適燃焼タイミングに燃焼タイミングが制御されることになり、トルクを効率的に発生させることができる。 According to the present disclosure, it is possible to suppress an increase in combustion time as compared with a high load state by performing ejection delay suppression control in a low load state. Therefore, it is possible to prevent the optimum ignition timing, which is earlier than the optimum combustion timing by the amount of the combustion time, from becoming too early. As a result, it becomes possible to control the ignition timing to the optimum ignition timing even in a low load state in the sub-chamber ignition system. Then, by actually performing the optimum ignition control, the ignition timing is controlled to the optimum ignition timing. As a result, the combustion timing is controlled to the optimum combustion timing, and torque can be efficiently generated.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、第1実施形態の点火システムを示す断面図であり、 図2は、副室及びその周辺を示す断面図であり、 図3は、点火プラグ及びその周辺の回路を示す回路図であり、 図4は、点火プラグによる点火を示すタイミングチャートであり、 図5は、放電エネルギの制御を示すグラフであり、 図6は、上死点前点火制御における副室及びその周辺を示す断面図であり、 図7は、上死点後点火制御における副室及びその周辺を示す断面図であり、 図8は、連通気流の流速変化を示すグラフであり、 図9は、燃焼の進行を示すタイミングチャートであり、 図10は、点火制御部による制御を示すフローチャートである。
The above objectives and other objectives, features and advantages of the present disclosure will be clarified by the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a cross-sectional view showing the ignition system of the first embodiment. FIG. 2 is a cross-sectional view showing the sub-chamber and its surroundings. FIG. 3 is a circuit diagram showing a circuit of the spark plug and its surroundings. FIG. 4 is a timing chart showing ignition by a spark plug. FIG. 5 is a graph showing the control of discharge energy. FIG. 6 is a cross-sectional view showing the sub chamber and its surroundings in the ignition control before top dead center. FIG. 7 is a cross-sectional view showing the sub chamber and its surroundings in ignition control after top dead center. FIG. 8 is a graph showing the change in the flow velocity of the continuous airflow. FIG. 9 is a timing chart showing the progress of combustion. FIG. 10 is a flowchart showing control by the ignition control unit.
 次に本開示の実施形態について、図面を参照しつつ説明する。ただし、本開示は実施形態に限定されるものではなく、開示の趣旨を逸脱しない範囲で適宜変更して実施できる。 Next, the embodiment of the present disclosure will be described with reference to the drawings. However, the present disclosure is not limited to the embodiment, and can be appropriately modified and implemented without departing from the spirit of the disclosure.
 [第1実施形態]
 図1は、第1実施形態の副室式点火システム70を示す断面図である。この副室式点火システム70は、エンジン90に対して設置されている。エンジン90は、一燃焼サイクルが吸気行程→圧縮行程→膨張行程→排気行程の4行程からなる4ストロークエンジンである。以下では、それらのうちの圧縮行程と膨張行程との間の上死点を「圧縮上死点tD」という。エンジン90は、シリンダ10と、その上部に取り付けられているヘッド20とを有する。
[First Embodiment]
FIG. 1 is a cross-sectional view showing the sub-chamber ignition system 70 of the first embodiment. The sub-chamber ignition system 70 is installed with respect to the engine 90. The engine 90 is a four-stroke engine in which one combustion cycle consists of four strokes of intake stroke → compression stroke → expansion stroke → exhaust stroke. In the following, the top dead center between the compression stroke and the expansion stroke among them is referred to as "compression top dead center tD". The engine 90 has a cylinder 10 and a head 20 attached to the top of the cylinder 10.
 以下では、図に合わせて、シリンダ10の中心線Xの長さ方向を上下方向として説明する。ただし、例えば、当該中心線Xを上下方向に対して斜めにしてエンジン90及び副室式点火システム70を設置したり、当該中心線Xを水平方向にしてエンジン90及び副室式点火システム70を設置したりする等、エンジン90及び副室式点火システム70は、任意の方向に設置することができる。 In the following, the length direction of the center line X of the cylinder 10 will be described as the vertical direction according to the drawing. However, for example, the engine 90 and the sub-chamber ignition system 70 may be installed with the center line X oblique to the vertical direction, or the engine 90 and the sub-chamber ignition system 70 may be installed with the center line X horizontal. The engine 90 and the sub-chamber ignition system 70 can be installed in any direction.
 シリンダ10内には、ピストン18が設置されている。ピストン18は、リンク12を介してクランクシャフト11に連結されており、クランクシャフト11の回転に従い上下動する。そのピストン18の上方に燃焼室30が形成されている。 A piston 18 is installed in the cylinder 10. The piston 18 is connected to the crankshaft 11 via a link 12, and moves up and down according to the rotation of the crankshaft 11. A combustion chamber 30 is formed above the piston 18.
 ヘッド20には、燃焼室30内に気体を吸入するための吸気通路21と、燃焼室30内の気体を排出するための排気通路29とが設けられている。そして、吸気通路21には吸気弁24が設置され、排気通路29には排気弁26が設置されている。吸気弁24は吸気カム23により駆動され、排気弁26は排気カム27により駆動される。そして、ヘッド20には、吸気通路21に燃料を噴射するための燃料噴射装置22が設置されている。 The head 20 is provided with an intake passage 21 for sucking gas into the combustion chamber 30 and an exhaust passage 29 for discharging the gas in the combustion chamber 30. An intake valve 24 is installed in the intake passage 21, and an exhaust valve 26 is installed in the exhaust passage 29. The intake valve 24 is driven by the intake cam 23, and the exhaust valve 26 is driven by the exhaust cam 27. The head 20 is provided with a fuel injection device 22 for injecting fuel into the intake passage 21.
 副室式点火システム70は、ヘッド20に取り付けられている点火プラグ40と、気流を点火プラグ40の放電ギャップ45に流れ易くするための気流支援構造Asと、各センサ51~53と、各センサ51~53からの入力に基づいて点火プラグ40を制御する点火制御部60とを有する。 The sub-chamber ignition system 70 includes an ignition plug 40 attached to the head 20, an air flow support structure As for facilitating the flow of air flow into the discharge gap 45 of the ignition plug 40, sensors 51 to 53, and each sensor. It has an ignition control unit 60 that controls the spark plug 40 based on inputs from 51 to 53.
 各センサ51~53は、クランクセンサ51と吸気圧センサ52と水温センサ53とを含む。クランクセンサ51は、クランク角度やエンジン90の回転速度を検出する。吸気圧センサ52は、吸気通路21の気圧である吸気圧を検出する。水温センサ53は、エンジン90を冷却するための冷却水の水温を検出する。 Each sensor 51 to 53 includes a crank sensor 51, an intake pressure sensor 52, and a water temperature sensor 53. The crank sensor 51 detects the crank angle and the rotational speed of the engine 90. The intake pressure sensor 52 detects the intake pressure, which is the air pressure of the intake passage 21. The water temperature sensor 53 detects the temperature of the cooling water for cooling the engine 90.
 点火制御部60は、ECU(電子制御ユニット)等の一部であり、噴出制御部63及び対気流制御部64を有する。噴出制御部63は、点火プラグ40により副室38内の燃料に点火してから火炎が主室内に噴出し始めるまでの時間である噴出時間t13を制御する。
具体的には、噴出制御部63は、エンジン90に加わっている負荷や、エンジン90の空燃比や、エンジン90において排気を再び吸気に戻す量であるEGR量や、エンジン90の冷却水の水温等の各パラメータに基づいて、それらのパラメータの変動によっても噴出時間t13の変動が小さくなるように制御する。上記の負荷は、例えば、アクセルペダルの踏み込み量から算出してもよいし、エンジン90に加わっている負荷を直接検出してもよいし、エンジン90の回転速度の変化等から算出してもよい。対気流制御部64は、気流支援構造Asによる気流によっても点火プラグ40の放電火花Fが途切れないように点火プラグ40を制御する。
The ignition control unit 60 is a part of an ECU (electronic control unit) or the like, and has an ejection control unit 63 and an airflow control unit 64. The ejection control unit 63 controls the ejection time t13, which is the time from when the fuel in the sub chamber 38 is ignited by the spark plug 40 until the flame starts to eject into the main chamber.
Specifically, the ejection control unit 63 includes the load applied to the engine 90, the air-fuel ratio of the engine 90, the EGR amount which is the amount of returning the exhaust gas to the intake air in the engine 90, and the water temperature of the cooling water of the engine 90. Based on each parameter such as, the fluctuation of the ejection time t13 is controlled to be small even by the fluctuation of those parameters. The above load may be calculated from, for example, the amount of depression of the accelerator pedal, the load applied to the engine 90 may be directly detected, or may be calculated from a change in the rotational speed of the engine 90 or the like. .. The airflow control unit 64 controls the spark plug 40 so that the discharge spark F of the spark plug 40 is not interrupted by the airflow caused by the airflow support structure As.
 図2は、副室38及びその周辺を示す断面図である。点火プラグ40は、中心電極44とその外周側に設けられている絶縁碍子41とを有する。絶縁碍子41の下端部には、隔壁34が取り付けられている。その隔壁34により、燃焼室30が主室31と副室38とに区分けされている。具体的には、隔壁34よりも内側が副室38を構成し、隔壁34よりも外側が主室31を構成している。隔壁34は、導電体製であり、点火プラグ40の接地電極を兼ねている。 FIG. 2 is a cross-sectional view showing the sub chamber 38 and its surroundings. The spark plug 40 has a center electrode 44 and an insulator 41 provided on the outer peripheral side thereof. A partition wall 34 is attached to the lower end of the insulating insulator 41. The combustion chamber 30 is divided into a main chamber 31 and a sub chamber 38 by the partition wall 34. Specifically, the inside of the partition wall 34 constitutes the sub chamber 38, and the outside of the partition wall 34 constitutes the main chamber 31. The partition wall 34 is made of a conductor and also serves as a ground electrode for the spark plug 40.
 隔壁34には複数の連通孔35が形成されており、それら複数の連通孔35により、副室38と主室31とが連通している。それら複数の連通孔35のうちの1つである中央連通孔35cは、シリンダ10の中心線X上に設けられており、隔壁34を上下方向に貫通している。 A plurality of communication holes 35 are formed in the partition wall 34, and the sub chamber 38 and the main chamber 31 communicate with each other through the plurality of communication holes 35. The central communication hole 35c, which is one of the plurality of communication holes 35, is provided on the center line X of the cylinder 10 and penetrates the partition wall 34 in the vertical direction.
 その中央連通孔35cのすぐ上方に中心電極44の下端部が位置している。すなわち、中心電極44の下部は、絶縁碍子41の下端から下方に長く延びており、中央連通孔35cに近接している。その中心電極44の下端部と、隔壁34における中央連通孔35cの上端周辺部との間の隙間が、放電ギャップ45を構成している。よって、放電ギャップ45は、副室38内における中央連通孔35cの直ぐ近くに設けられており、複数の連通孔35のうち中央連通孔35cに最も近接している。 The lower end of the center electrode 44 is located just above the central communication hole 35c. That is, the lower portion of the center electrode 44 extends downward from the lower end of the insulating insulator 41 and is close to the central communication hole 35c. The gap between the lower end of the center electrode 44 and the peripheral portion of the upper end of the central communication hole 35c in the partition wall 34 constitutes the discharge gap 45. Therefore, the discharge gap 45 is provided in the sub chamber 38 in the immediate vicinity of the central communication hole 35c, and is closest to the central communication hole 35c among the plurality of communication holes 35.
 このように、放電ギャップ45が中央連通孔35cに近接していることにより、放電ギャップ45に気流が流れ易くなっている。この構造が、気流支援構造Asを構成している。すなわち、気流支援構造Asとして、放電ギャップ45が中央連通孔35cに近接している構造が形成されている。点火プラグ40は、その放電ギャップ45に電圧を印加することにより放電火花Fを発生させる。その放電火花Fが、気流支援構造Asによる気流により伸長することにより、燃料に対する着火性が向上する。 As described above, since the discharge gap 45 is close to the central communication hole 35c, the airflow can easily flow through the discharge gap 45. This structure constitutes the airflow support structure As. That is, as the airflow support structure As, a structure in which the discharge gap 45 is close to the central communication hole 35c is formed. The spark plug 40 generates a discharge spark F by applying a voltage to the discharge gap 45. The discharge spark F is extended by the airflow due to the airflow support structure As, so that the ignitability to the fuel is improved.
 図3は、点火プラグ40の回路及びその周辺を示す回路図である。点火プラグ40は、一次コイル412と2次コイル421とを有する。一次コイル412と2次コイル421とはコア401に巻かれている。一次コイル412にはバッテリ411とスイッチング素子413とが直列に接続されている。他方、2次コイル421には、放電ギャップ45とダイオード422とが直列に接続されている。スイッチング素子413は、点火制御部60により制御される。 FIG. 3 is a circuit diagram showing the circuit of the spark plug 40 and its surroundings. The spark plug 40 has a primary coil 412 and a secondary coil 421. The primary coil 412 and the secondary coil 421 are wound around the core 401. A battery 411 and a switching element 413 are connected in series to the primary coil 412. On the other hand, the discharge gap 45 and the diode 422 are connected in series to the secondary coil 421. The switching element 413 is controlled by the ignition control unit 60.
 以下では、スイッチング素子413をONからOFFにした際に2次コイル421において電流が流れる方向を「順方向」といい、その反対方向を「逆方向」という。ダイオード422は、順方向の電流が流れるのを許容し、逆方向に電流が流れるのを阻止する方向に設置されている。 In the following, the direction in which current flows in the secondary coil 421 when the switching element 413 is turned from ON to OFF is referred to as "forward direction", and the opposite direction is referred to as "reverse direction". The diode 422 is installed in a direction that allows a forward current to flow and prevents a current from flowing in the reverse direction.
 図4は、点火プラグ40の制御を示すタイミングチャートである。図4(a)に示すように、所定の通電タイミングt0で点火信号がHighになると、それに伴い点火制御部60は、スイッチング素子413をONにする。それにより、一次コイル412に図4(b)に示す一次電流が流れ始め、その一次電流は、時間の経過と共に大きくなっていく。それにより図4(e)に示すように、一次コイル412に放電エネルギEが磁気エネルギの形で蓄えられる。そして、図4(a)に示す点火信号が、通電タイミングt0よりも所定の充電時間t01だけ後の点火タイミングt1でLowになる。それにより、2次コイル421に、図4(c)に示す二次電圧が発生して、放電ギャップ45に絶縁破壊が生じる。それにより、放電ギャップ45に図4(d)に示す二次電流が流れて、放電ギャップ45に放電火花Fが発生する。その後は、図4(e)に示すように、磁気エネルギとして蓄えられていた放電エネルギEが、図4(d)に示す二次電流が流れるのに従い減少していき、それに伴い二次電流の大きさも減少する。 FIG. 4 is a timing chart showing the control of the spark plug 40. As shown in FIG. 4A, when the ignition signal becomes High at a predetermined energization timing t0, the ignition control unit 60 turns on the switching element 413 accordingly. As a result, the primary current shown in FIG. 4B begins to flow in the primary coil 412, and the primary current increases with the passage of time. As a result, as shown in FIG. 4 (e), the discharge energy E is stored in the primary coil 412 in the form of magnetic energy. Then, the ignition signal shown in FIG. 4A becomes Low at the ignition timing t1 after a predetermined charging time t01 from the energization timing t0. As a result, the secondary voltage shown in FIG. 4C is generated in the secondary coil 421, causing dielectric breakdown in the discharge gap 45. As a result, the secondary current shown in FIG. 4D flows through the discharge gap 45, and a discharge spark F is generated in the discharge gap 45. After that, as shown in FIG. 4 (e), the discharge energy E stored as magnetic energy decreases as the secondary current shown in FIG. 4 (d) flows, and the secondary current increases accordingly. The size also decreases.
 次に図5を参照しつつ、放電ギャップ45に印加する放電エネルギEの制御について説明する。図5(a)は、放電エネルギEを相対的に小さく制御した場合の一次電流の時間変化を示すグラフであり、図5(b)は、放電エネルギEを相対的に大きく制御した場合の一次電流の時間変化を示すグラフである。図5(a)に示すように、放電エネルギEを相対的に小さく制御する場合には、充電時間t01を相対的に短く設定し、図5(b)に示すように、放電エネルギEを相対的に大きく制御する場合には、充電時間t01を相対的に長く設定する。以上の制御により、噴出制御部63及び対気流制御部64は放電エネルギEを制御する。 Next, the control of the discharge energy E applied to the discharge gap 45 will be described with reference to FIG. FIG. 5A is a graph showing the time change of the primary current when the discharge energy E is controlled to be relatively small, and FIG. 5B is a graph showing the time change of the primary current when the discharge energy E is controlled to be relatively large. It is a graph which shows the time change of an electric current. As shown in FIG. 5 (a), when the discharge energy E is controlled to be relatively small, the charging time t01 is set relatively short, and as shown in FIG. 5 (b), the discharge energy E is relatively small. In the case of large control, the charging time t01 is set to be relatively long. By the above control, the ejection control unit 63 and the airflow control unit 64 control the discharge energy E.
 図6は、圧縮上死点tDよりも前(すなわち圧縮行程)に点火を行う上死点前点火制御における、副室38及びその周辺を示す断面図である。このような上死点前点火制御は、通常時に行う。以下では、中央連通孔35cに流れる気流を「連通気流A」という。この上死点前点火制御における点火の際には、主室31側から副室38側に流れる上向きの連通気流Aが放電ギャップ45に流れる。その連通気流Aにより、放電火花Fが副室38内において上方に伸長する。その伸長した放電火花Fにより、副室38内の燃料に炎が着火する。それにより副室38内に発生した火炎は、副室38内に伝播した後、各連通孔35から主室31内に向けて放出される。 FIG. 6 is a cross-sectional view showing the sub-chamber 38 and its surroundings in the pre-dead center ignition control in which ignition is performed before the compression top dead center tD (that is, the compression stroke). Such pre-dead center ignition control is performed at normal times. Hereinafter, the airflow flowing through the central communication hole 35c is referred to as “communication flow A”. At the time of ignition in the ignition control before top dead center, an upward continuous airflow A flowing from the main chamber 31 side to the sub chamber 38 side flows into the discharge gap 45. Due to the continuous airflow A, the discharge spark F extends upward in the sub chamber 38. The extended discharge spark F ignites a flame in the fuel in the sub chamber 38. As a result, the flame generated in the sub chamber 38 propagates into the sub chamber 38 and then is discharged from each communication hole 35 toward the inside of the main chamber 31.
 図7は、圧縮上死点tDよりも後(すなわち膨張行程)に点火を行う上死点後点火制御における、副室38及びその周辺を示す断面図である。このような上死点後点火制御は、ファーストアイドリング時等、エンジン90が所定の運転状況の時に行う。ファーストアイドリング時は、エンジン90の始動後において、触媒暖機等のためにアイドル回転数を通常よりも高くする時期である。この上死点後点火制御における点火の際には、副室38側から主室31側に流れる下向きの連通気流Aが放電ギャップ45に流れる。その連通気流Aにより、放電火花Fが副室38内から中央連通孔35cを通じて主室31内にまで伸長する。その伸長した放電火花Fにより、副室38内及び主室31内の両室内の燃料に炎が着火する。 FIG. 7 is a cross-sectional view showing the sub-chamber 38 and its surroundings in the post-top dead center ignition control in which ignition is performed after the compression top dead center tD (that is, the expansion stroke). Such post-dead center ignition control is performed when the engine 90 is in a predetermined operating condition, such as during first idling. During the first idling, after the engine 90 is started, the idle speed is set higher than usual due to catalyst warm-up or the like. At the time of ignition in the ignition control after top dead center, a downward continuous airflow A flowing from the sub chamber 38 side to the main chamber 31 side flows into the discharge gap 45. Due to the communication flow A, the discharge spark F extends from the sub chamber 38 into the main chamber 31 through the central communication hole 35c. The extended discharge spark F ignites the fuel in both the sub chamber 38 and the main chamber 31.
 図8は、連通気流Aの流速(絶対値)の変化のイメージを示すグラフである。放電ギャップ45に流れる流速は、この連通気流Aの流速に略比例する。具体的には、連通気流Aは、圧縮行程の後半においては、主室31内の気体が中央連通孔35cを含む各連通孔35に集中して流れることにより、主室31内や副室38内の気流に比べて強くなる。そのため、中央連通孔35cに近接している放電ギャップ45に流れる気流も、主室31内や副室38内の気流に比べて強くなる。その後、連通気流Aの流速は、この図8に示すように、圧縮上死点tDに近づくに従い低下していき、圧縮上死点tD又はその近傍で、一旦略零になる。しかし連通気流Aは、圧縮上死点tDの後に再び速やかに発生する。連通気流Aは、ピストン18が下降を開始して副室38と主室31との間に気圧差が発生し始めると、今度は逆に、副室38内の気体が中央連通孔35cを含む各連通孔35に集中して流れることにより、速やかに発生するからである。 FIG. 8 is a graph showing an image of a change in the flow velocity (absolute value) of the continuous airflow A. The flow velocity flowing through the discharge gap 45 is substantially proportional to the flow velocity of the continuous airflow A. Specifically, in the communication flow A, in the latter half of the compression stroke, the gas in the main chamber 31 flows concentratedly in each communication hole 35 including the central communication hole 35c, so that the main chamber 31 and the sub chamber 38 flow. It becomes stronger than the air flow inside. Therefore, the airflow flowing through the discharge gap 45 close to the central communication hole 35c is also stronger than the airflow in the main chamber 31 and the sub chamber 38. After that, as shown in FIG. 8, the flow velocity of the continuous airflow A decreases as it approaches the compression top dead center tD, and temporarily becomes substantially zero at or near the compression top dead center tD. However, the continuous airflow A occurs rapidly again after the compression top dead center tD. In the communication flow A, when the piston 18 starts descending and a pressure difference begins to occur between the sub chamber 38 and the main chamber 31, the gas in the sub chamber 38 includes the central communication hole 35c. This is because it is generated promptly by concentrating the flow in each communication hole 35.
 副室式点火システム70は、この連通気流Aを積極的に利用して、放電ギャップ45に気流を流すようにしている。それが上記の気流支援構造Asである。以上のように、連通気流Aは、圧縮上死点tDから離れるに従い強くなる。具体的には、圧縮上死点tDよりも前、すなわち圧縮行程の後半においては、クランク角度が圧縮上死点tDから進角するほど放電ギャップ45に流れる気流が強くなる。他方、圧縮上死点tDよりも後、すなわち膨張行程の前半においては、クランク角度が圧縮上死点tDから遅角するほど、放電ギャップ45に流れる気流が強くなる。そのため、点火タイミングt1が圧縮上死点tDから離れるほど、放電火花Fは吹き消えやすくなる。そのため、対気流制御部64は、その気流によっても放電火花Fが途切れないように放電エネルギEを制御する。 The sub-chamber ignition system 70 positively utilizes this continuous ventilation flow A to allow an air flow to flow through the discharge gap 45. That is the above-mentioned airflow support structure As. As described above, the continuous airflow A becomes stronger as the distance from the compression top dead center tD increases. Specifically, before the compression top dead center tD, that is, in the latter half of the compression stroke, the airflow flowing through the discharge gap 45 becomes stronger as the crank angle advances from the compression top dead center tD. On the other hand, after the compression top dead center tD, that is, in the first half of the expansion stroke, the more the crank angle is retarded from the compression top dead center tD, the stronger the airflow flowing through the discharge gap 45. Therefore, the farther the ignition timing t1 is from the compression top dead center tD, the easier it is for the discharge spark F to be blown out. Therefore, the anti-airflow control unit 64 controls the discharge energy E so that the discharge spark F is not interrupted by the airflow.
 具体的には、対気流制御部64は、上死点前点火制御の際、すなわち、圧縮行程の後半に点火が行われる際には、点火タイミングt1が所定のタイミングである場合に比べて、点火タイミングt1が当該所定のタイミングよりも早いタイミングである場合に、放電エネルギEが大きくなるように制御する。より具体的には、例えば、点火タイミングt1が早くなるに従い放電エネルギEが大きくなるように制御する。 Specifically, the anti-airflow control unit 64 compares with the case where the ignition timing t1 is a predetermined timing at the time of ignition control before top dead center, that is, when ignition is performed in the latter half of the compression stroke. When the ignition timing t1 is earlier than the predetermined timing, the discharge energy E is controlled to be large. More specifically, for example, the discharge energy E is controlled to increase as the ignition timing t1 becomes earlier.
 他方、対気流制御部64は、上死点後点火制御の際、すなわち、膨張行程の前半に点火が行われる際には、点火タイミングt1が所定のタイミングである場合に比べて、点火タイミングt1が当該所定のタイミングよりも遅いタイミングである場合に、放電エネルギEが大きくなるように制御する。より具体的には、例えば、点火タイミングt1が遅くなるに従い放電エネルギEが大きくなるように制御する。 On the other hand, in the airflow control unit 64, when the ignition is controlled after the top dead center, that is, when the ignition is performed in the first half of the expansion stroke, the ignition timing t1 is compared with the case where the ignition timing t1 is a predetermined timing. Is controlled so that the discharge energy E becomes large when the timing is later than the predetermined timing. More specifically, for example, the discharge energy E is controlled to increase as the ignition timing t1 is delayed.
 図9は、上死点前点火制御における燃焼の進行を示すタイミングチャートである。以下では、点火プラグ40が放電ギャップ45に電圧を印加するタイミングを「点火タイミングt1」とする。また、点火タイミングt1の後において、放電火花Fにより燃料に炎が着火するタイミングを「副室着火タイミングt2」とする。また、副室着火タイミングt2の後において、副室38内で発生した火炎が連通孔35から主室31内に噴出し始めるタイミングを「噴出タイミングt3」とする。また、噴出タイミングt3の後において、噴出した火炎により主室31内の燃料に本格的に炎が着火し始めるタイミングを「主室着火タイミングt4」とする。また、主室着火タイミングt4の後において燃焼室30内の燃料の所定量(例えば質量の50%)が燃焼した状態になるタイミングを「燃焼タイミングt5」とする。 FIG. 9 is a timing chart showing the progress of combustion in the ignition control before top dead center. In the following, the timing at which the spark plug 40 applies a voltage to the discharge gap 45 is referred to as “ignition timing t1”. Further, after the ignition timing t1, the timing at which the flame is ignited by the discharge spark F is defined as the “secondary chamber ignition timing t2”. Further, after the ignition timing t2 of the sub chamber, the timing at which the flame generated in the sub chamber 38 starts to be ejected from the communication hole 35 into the main chamber 31 is defined as “spout timing t3”. Further, after the ejection timing t3, the timing at which the flame starts to ignite in earnest on the fuel in the main chamber 31 due to the ejected flame is defined as the “main chamber ignition timing t4”. Further, the timing at which a predetermined amount of fuel (for example, 50% of the mass) in the combustion chamber 30 is in a burned state after the ignition timing t4 of the main chamber is referred to as “combustion timing t5”.
 また、点火タイミングt1から副室着火タイミングt2までの期間を、「火花段階期間t12」とする。また、副室着火タイミングt2から噴出タイミングt3までの期間を「副室伝播期間t23」とする。また、噴出タイミングt3から主室着火タイミングt4までの期間を「火炎噴出期間t34」とする。また、主室着火タイミングt4から燃焼タイミングt5までの期間を「主室伝播期間t45」とする。また、点火タイミングt1から噴出タイミングt3までの時間を「噴出時間t13」とする。また、点火タイミングt1から燃焼タイミングt5までの時間を「燃焼時間t15」とする。 The period from the ignition timing t1 to the sub-chamber ignition timing t2 is defined as the "spark stage period t12". Further, the period from the ignition timing t2 of the sub-chamber to the ejection timing t3 is defined as the “sub-chamber propagation period t23”. Further, the period from the ejection timing t3 to the main chamber ignition timing t4 is defined as the “flame ejection period t34”. Further, the period from the main chamber ignition timing t4 to the combustion timing t5 is defined as the "main chamber propagation period t45". Further, the time from the ignition timing t1 to the ejection timing t3 is defined as the “spouting time t13”. Further, the time from the ignition timing t1 to the combustion timing t5 is defined as "combustion time t15".
 図9(a)(b)は、比較例での上死点前点火制御における燃焼の進行を示すタイミングチャートである。比較例において、第1実施形態のものと同一の又は対応する部材等については、同一の符号を付して説明する。比較例の副室式点火システム70は、本実施形態のものと比較して、図2に示す気流支援構造Asを有していない点で相違している。すなわち、比較例の副室式点火システム70は、本実施形態に比べて中心電極44が短く、且つ隔壁34とは別に接地電極を有している。そのため、放電ギャップ45が中央連通孔35cに近接していない。さらに、比較例の副室式点火システム70は、本実施形態と比較して、図1に示す点火制御部60が噴出制御部63を有していない点で相違している。 9 (a) and 9 (b) are timing charts showing the progress of combustion in the pre-dead center ignition control in the comparative example. In the comparative example, the same or corresponding members and the like as those of the first embodiment will be described with the same reference numerals. The sub-chamber ignition system 70 of the comparative example is different from that of the present embodiment in that it does not have the airflow support structure As shown in FIG. That is, the sub-chamber ignition system 70 of the comparative example has a shorter center electrode 44 and a ground electrode separate from the partition wall 34 as compared with the present embodiment. Therefore, the discharge gap 45 is not close to the central communication hole 35c. Further, the sub-chamber ignition system 70 of the comparative example is different from the present embodiment in that the ignition control unit 60 shown in FIG. 1 does not have the ejection control unit 63.
 図9(a)は、比較例での上死点前点火制御における、高負荷状態での燃焼の進行を示すタイミングチャートである。ここでは、点火制御部60は、次に示す最適点火制御を行う。その最適点火制御では、まず、最適な燃焼タイミングt5としての最適燃焼タイミングT5を取得する。その最適燃焼タイミングT5は、例えば、得られるトルクが略最大となる燃焼タイミングt5であり、より具体的には、例えば、圧縮上死点tDよりも10CA(クランクアングル)後のタイミングである。次に、燃焼時間t15を算出する。その詳細については後述する。次に、最適燃焼タイミングT5よりも燃焼時間t15だけ早いタイミングである最適点火タイミングT1を算出する。次に、その最適点火タイミングT1に点火タイミングt1を制御する。以上の最適点火制御により、最適燃焼タイミングT5に燃焼タイミングt5が制御される。 FIG. 9A is a timing chart showing the progress of combustion in a high load state in the ignition control before top dead center in the comparative example. Here, the ignition control unit 60 performs the following optimum ignition control. In the optimum ignition control, first, the optimum combustion timing T5 as the optimum combustion timing t5 is acquired. The optimum combustion timing T5 is, for example, the combustion timing t5 at which the obtained torque is substantially maximized, and more specifically, for example, the timing 10 CA (crank angle) after the compression top dead center tD. Next, the burning time t15 is calculated. The details will be described later. Next, the optimum ignition timing T1 which is a timing earlier than the optimum combustion timing T5 by the combustion time t15 is calculated. Next, the ignition timing t1 is controlled at the optimum ignition timing T1. By the above optimum ignition control, the combustion timing t5 is controlled at the optimum combustion timing T5.
 図9(b)は、比較例での上死点前点火制御における、低負荷状態での燃焼の進行を示すタイミングチャートである。ここでは、最適点火制御により、最適燃焼タイミングT5よりも燃焼時間t15だけ早い最適点火タイミングT1を算出すると、その最適点火タイミングT1は早くなり過ぎてしまう。そのため、もしこの最適点火タイミングT1で点火した場合、圧縮上死点tDよりも前での、すなわち圧縮行程での燃焼量が多くなり過ぎ、その燃焼により発生する逆トルクにより、エンジン90のトルクが相殺されてトルクが下がってしまう。そのため、この低負荷状態の時には、最適点火制御を行うことはできず、最適点火タイミングT1よりも遅いタイミングに点火タイミングt1を制御する。それにより、最適燃焼タイミングT5よりも遅いタイミングが燃焼タイミングt5となってしまう。 FIG. 9B is a timing chart showing the progress of combustion in a low load state in the ignition control before top dead center in the comparative example. Here, if the optimum ignition timing T1 is calculated by the optimum ignition control, which is earlier than the optimum combustion timing T5 by the combustion time t15, the optimum ignition timing T1 becomes too early. Therefore, if ignition is performed at the optimum ignition timing T1, the amount of combustion before the compression top dead center tD, that is, in the compression stroke becomes too large, and the reverse torque generated by the combustion causes the torque of the engine 90 to increase. It is offset and the torque drops. Therefore, in this low load state, the optimum ignition control cannot be performed, and the ignition timing t1 is controlled at a timing later than the optimum ignition timing T1. As a result, the timing later than the optimum combustion timing T5 becomes the combustion timing t5.
 図9(c)は、本実施形態での上死点前点火制御における、高負荷状態での燃焼の進行を示すタイミングチャートである。本実施形態においても、比較例と同様の最適点火制御を行う。ただし、本実施形態では気流支援構造Asがあるので、図9(a)に示す比較例の高負荷状態に比べて、放電火花Fが伸長する。それにより、副室38内における着火性が向上し、副室着火タイミングt2よりも手前の火花段階期間t12が短くなる。さらに、放電火花Fが伸長することにより、副室38内の燃料に強くしっかりと炎が着火する。それにより、副室38内において火炎が伝播し易くなり、副室伝播期間t23も短くなる。以上により、噴出時間t13が短くなる。さらに、それに伴い、火炎噴出期間t34や主室伝播期間t45も若干短くなる。以上の気流支援構造Asの作用により、燃焼時間t15が、図9(a)に示す比較例の高負荷状態に比べて短くなる。 FIG. 9C is a timing chart showing the progress of combustion in a high load state in the pre-dead center ignition control in the present embodiment. Also in this embodiment, the same optimum ignition control as in the comparative example is performed. However, since the airflow support structure As is provided in the present embodiment, the discharge spark F is extended as compared with the high load state of the comparative example shown in FIG. 9A. As a result, the ignitability in the sub chamber 38 is improved, and the spark stage period t12 before the sub chamber ignition timing t2 is shortened. Further, the extension of the discharge spark F causes the flame to ignite strongly and firmly to the fuel in the sub chamber 38. As a result, the flame is easily propagated in the sub-chamber 38, and the sub-chamber propagation period t23 is shortened. As a result, the ejection time t13 is shortened. Further, the flame ejection period t34 and the main chamber propagation period t45 are also slightly shortened accordingly. Due to the action of the airflow support structure As described above, the combustion time t15 becomes shorter than that in the high load state of the comparative example shown in FIG. 9A.
 このとき、もし仮に、点火タイミングt1が、図9(c)に破線で示すように、図9(a)に示す比較例の高負荷状態の時と同じだと、燃焼タイミングt5が、最適燃焼タイミングT5よりも早くなってしまう。そのため、本実施形態では、比較例に比べて、燃焼時間t15が短くなった分だけ、点火タイミングt1が遅くなるように、最適点火制御により制御される。 At this time, if the ignition timing t1 is the same as in the high load state of the comparative example shown in FIG. 9 (a) as shown by the broken line in FIG. 9 (c), the combustion timing t5 is the optimum combustion. It will be earlier than the timing T5. Therefore, in the present embodiment, the ignition timing t1 is controlled by the optimum ignition control so that the ignition timing t1 is delayed by the shorter the combustion time t15 as compared with the comparative example.
 図9(d)は、本実施形態での上死点前点火制御における、低負荷状態での燃焼の進行を示すタイミングチャートである。本実施形態では気流支援構造Asがあるので、それだけでも、図9(b)に示す比較例の低負荷状態に比べて燃焼時間t15が短くなる。さらに、それに加えて、噴出制御部63により、高負荷状態の時に比べて低負荷状態の時に噴出時間t13が長くなるのを抑制する噴出遅延抑制制御が行われることにより、さらに、燃焼時間t15が短くなる。 FIG. 9D is a timing chart showing the progress of combustion in a low load state in the ignition control before top dead center in the present embodiment. Since there is an airflow support structure As in this embodiment, the combustion time t15 is shorter than that in the low load state of the comparative example shown in FIG. 9B by itself. Further, in addition to that, the ejection control unit 63 performs ejection delay suppression control for suppressing the ejection time t13 from becoming longer in the low load state as compared with the high load state, so that the combustion time t15 is further increased. It gets shorter.
 具体的には、低負荷状態の時には、噴出遅延抑制制御として、高負荷状態の時に比べて放電エネルギEを大きくする。それにより、副室38内における着火性が向上する。それにより、噴出遅延抑制制御を行わない場合に比べて、副室着火タイミングt2よりも手前の火花段階期間t12が短くなる。さらに、放電エネルギEが大きくなることにより、副室38内の燃料に炎が強くしっかりと着火する。そのため、副室38内において火炎が伝播し易くなり、噴出遅延抑制制御を行わない場合に比べて、副室伝播期間t23も短くなる。以上により、噴出遅延抑制制御を行わない場合に比べて、噴出時間t13が短くなり、それに伴い、火炎噴出期間t34や主室伝播期間t45も若干短くなる。以上の噴出遅延抑制制御の作用によっても、図9(b)に示す比較例の低負荷状態に比べて、燃焼時間t15が短くなる。すなわち、気流支援構造Asと噴出遅延抑制制御との双方の作用により、図9(b)に示す比較例の低負荷状態に比べて、燃焼時間t15が顕著に短くなる。 Specifically, in the low load state, the discharge energy E is increased as compared with the high load state as the ejection delay suppression control. As a result, the ignitability in the sub chamber 38 is improved. As a result, the spark stage period t12 before the sub-chamber ignition timing t2 is shorter than that in the case where the ejection delay suppression control is not performed. Further, as the discharge energy E becomes large, the fuel in the sub chamber 38 is strongly ignited with a strong flame. Therefore, the flame is easily propagated in the sub chamber 38, and the sub chamber propagation period t23 is shortened as compared with the case where the ejection delay suppression control is not performed. As a result, the ejection time t13 is shortened as compared with the case where the ejection delay suppression control is not performed, and the flame ejection period t34 and the main chamber propagation period t45 are also slightly shortened accordingly. Due to the action of the ejection delay suppression control as described above, the combustion time t15 is shortened as compared with the low load state of the comparative example shown in FIG. 9B. That is, due to the actions of both the airflow support structure As and the ejection delay suppression control, the combustion time t15 is remarkably shortened as compared with the low load state of the comparative example shown in FIG. 9B.
 そのため、この図9(d)に示す本実施形態の低負荷状態の時には、図9(b)に示す比較例の低負荷状態の時とは違い、最適点火制御により、燃焼時間t15の分だけ最適燃焼タイミングT5よりも早い最適点火タイミングT1を算出しても、その最適点火タイミングT1は早くなり過ぎない。そのため、この最適点火タイミングT1に点火タイミングt1を制御したとしても、圧縮上死点tDよりも前での、すなわち膨張行程での燃焼量が多くなり過ぎて逆トルクが強くなり過ぎるといったことはない。そのため、本実施形態では、低負荷状態の時にも最適点火制御を行うことができる。そして、実際に最適点火制御を行うことにより、すなわち、最適点火タイミングT1に点火タイミングt1を制御することにより、最適燃焼タイミングT5に燃焼タイミングt5を制御することができる。 Therefore, in the low load state of the present embodiment shown in FIG. 9 (d), unlike the low load state of the comparative example shown in FIG. 9 (b), the optimum ignition control is performed by the amount of the combustion time t15. Even if the optimum ignition timing T1 that is earlier than the optimum combustion timing T5 is calculated, the optimum ignition timing T1 does not become too early. Therefore, even if the ignition timing t1 is controlled at the optimum ignition timing T1, the amount of combustion before the compression top dead center tD, that is, in the expansion stroke, does not become too large and the reverse torque does not become too strong. .. Therefore, in the present embodiment, the optimum ignition control can be performed even in a low load state. Then, by actually performing the optimum ignition control, that is, by controlling the ignition timing t1 at the optimum ignition timing T1, the combustion timing t5 can be controlled at the optimum combustion timing T5.
 図10は、以上に示した噴出制御部63及び対気流制御部64を有する点火制御部60による制御を示すフローチャートである。まず、各センサ51~53により、エンジン90の運転状況を示す各パラメータを取得する(S101)。 FIG. 10 is a flowchart showing control by the ignition control unit 60 having the ejection control unit 63 and the airflow control unit 64 shown above. First, each sensor 51 to 53 acquires each parameter indicating the operating status of the engine 90 (S101).
 次に、それらのパラメータに基づいて、放電エネルギEと最適点火タイミングT1とを算出する(S102)。すなわち、噴出制御部63は、エンジン90に加わっている負荷や、エンジン90の空燃比や、エンジン90におけるEGR量や、エンジン90の冷却水の水温等に基づいて、放電エネルギEを算出する。 Next, the discharge energy E and the optimum ignition timing T1 are calculated based on those parameters (S102). That is, the ejection control unit 63 calculates the discharge energy E based on the load applied to the engine 90, the air-fuel ratio of the engine 90, the amount of EGR in the engine 90, the temperature of the cooling water of the engine 90, and the like.
 具体的には、噴出制御部63は、空燃比が所定の空燃比である場合に比べて当該所定の空燃比よりも大きい場合に、放電エネルギEが大きくなるように算出する。より具体的には、例えば、空燃比が大きい程、放電エネルギEが大きくなるように算出する。また、噴出制御部63は、EGR量が所定量である時に比べて当該所定量よりも大きい時に、放電エネルギEが大きくなるように制御する。より具体的には、例えばEGR量が大きい程、放電エネルギEが大きくなるように算出する。また、水温が所定温度である時に比べて、水温が当該所定温度よりも低い時に、放電エネルギEが大きくなるように制御する。より具体的には、例えば冷却水の水温が低い程、放電エネルギEが大きくなるように算出する。 Specifically, the ejection control unit 63 calculates so that the discharge energy E becomes larger when the air-fuel ratio is larger than the predetermined air-fuel ratio as compared with the case where the air-fuel ratio is the predetermined air-fuel ratio. More specifically, for example, the larger the air-fuel ratio, the larger the discharge energy E. Further, the ejection control unit 63 controls so that the discharge energy E becomes larger when the EGR amount is larger than the predetermined amount as compared with the case where the EGR amount is the predetermined amount. More specifically, for example, the larger the EGR amount, the larger the discharge energy E. Further, the discharge energy E is controlled to be larger when the water temperature is lower than the predetermined temperature as compared with the case where the water temperature is the predetermined temperature. More specifically, for example, the lower the temperature of the cooling water, the larger the discharge energy E.
 他方、対気流制御部64は、最適点火タイミングT1が圧縮上死点tDに近い場合よりも遠い場合に、放電エネルギEが大きくなるように算出する。よって、これらの放電エネルギEと最適点火タイミングT1とは同時に算出される。なぜなら、放電エネルギEが大きくなるほど燃焼時間t15が短くなることにより最適点火タイミングT1が遅くなる。よって、放電エネルギEは最適点火タイミングT1に影響を及ぼす。他方、対気流制御部64は、上記のとおり、最適点火タイミングT1が圧縮上死点tDに近い場合よりも遠い場合に、放電エネルギEを大きくする。よって、最適点火タイミングT1は放電エネルギEに影響を及ぼす。このように、放電エネルギE及び最適点火タイミングT1の各方は他方に影響を及ぼす。そのため、放電エネルギE及び最適点火タイミングT1の両値は、例えば、それら両値を同時に算出することができる連立方程式や多次元マップを用いることにより、同時に算出する(S102)。 On the other hand, the airflow control unit 64 calculates so that the discharge energy E becomes large when the optimum ignition timing T1 is farther than the compression top dead center tD. Therefore, these discharge energies E and the optimum ignition timing T1 are calculated at the same time. This is because the larger the discharge energy E, the shorter the combustion time t15, and the later the optimum ignition timing T1. Therefore, the discharge energy E affects the optimum ignition timing T1. On the other hand, as described above, the airflow control unit 64 increases the discharge energy E when the optimum ignition timing T1 is farther than the compression top dead center tD. Therefore, the optimum ignition timing T1 affects the discharge energy E. In this way, each of the discharge energy E and the optimum ignition timing T1 affects the other. Therefore, both values of the discharge energy E and the optimum ignition timing T1 are calculated at the same time by using, for example, a simultaneous equation or a multidimensional map that can calculate both values at the same time (S102).
 次に、最適点火タイミングT1及び放電エネルギEから通電タイミングt0を算出する(S103)。通電タイミングt0は、最適点火タイミングT1よりも充電時間t01だけ早いタイミングである。その充電時間t01は、放電エネルギEが大きい程長くなり、また、バッテリ411の電圧が低い程長くなる。また、充電時間t01は同じでも、エンジン90の回転速度が速くなるほど、その充電時間t01が占めるクランク角度は大きくなる。以上に基づいて、点火制御部60は充電時間t01を算出し、さらにその充電時間t01に基づいて通電タイミングt0を算出する(S103)。この算出は、例えば数式に基づいて算出してもいし、マップに基づいて算出してもよい。 Next, the energization timing t0 is calculated from the optimum ignition timing T1 and the discharge energy E (S103). The energization timing t0 is a timing earlier than the optimum ignition timing T1 by the charging time t01. The charging time t01 becomes longer as the discharge energy E is larger, and becomes longer as the voltage of the battery 411 is lower. Further, even if the charging time t01 is the same, the faster the rotation speed of the engine 90, the larger the crank angle occupied by the charging time t01. Based on the above, the ignition control unit 60 calculates the charging time t01, and further calculates the energization timing t0 based on the charging time t01 (S103). This calculation may be calculated based on, for example, a mathematical formula, or may be calculated based on a map.
 次に、算出された通電タイミングt0で、スイッチング素子413をONにする(S104)。次に、算出された最適点火タイミングT1で、スイッチング素子413をOFFにする(S105)。すなわち、最適点火タイミングT1に点火タイミングt1を制御する。これにより、点火プラグ40による点火が実行されて、最適燃焼タイミングT5に上記の所定量(例えば質量の50%)の燃料が燃焼した状態になる。すなわち、最適燃焼タイミングT5に燃焼タイミングt5が制御される。 Next, the switching element 413 is turned on at the calculated energization timing t0 (S104). Next, at the calculated optimum ignition timing T1, the switching element 413 is turned off (S105). That is, the ignition timing t1 is controlled at the optimum ignition timing T1. As a result, ignition by the spark plug 40 is executed, and the above-mentioned predetermined amount (for example, 50% of the mass) of fuel is burned at the optimum combustion timing T5. That is, the combustion timing t5 is controlled at the optimum combustion timing T5.
 なお、以上には、通常時等の上死点前点火制御を説明したが、ファーストアイドリング時等の上死点後点火制御では、燃焼タイミングt5が最適燃焼タイミングT5ではなく、あえて最適燃焼タイミングT5よりも遅いタイミングになるように点火タイミングt1を制御する。よって、上死点後点火制御では、最適燃焼制御を行わない。 Although the ignition control before the top dead center during normal operation has been described above, the combustion timing t5 is not the optimum combustion timing T5 but the optimum combustion timing T5 in the ignition control after top dead center during first idling. The ignition timing t1 is controlled so as to be later than the timing. Therefore, the optimum combustion control is not performed in the ignition control after top dead center.
 本実施形態によれば、次の効果が得られる。気流支援構造Asが有るのに加え噴出遅延抑制制御を行うことにより、上死点前点火制御における低負荷状態での燃焼時間t15を抑制することができる。そのため、その燃焼時間t15の分だけ最適燃焼タイミングT5よりも早い最適点火タイミングT1が、早くなり過ぎるのを抑制できる。それにより、副室式点火システム70における低負荷状態の時においても、最適点火タイミングT1に点火タイミングt1を制御することが可能になる。そして、実際に最適点火制御を行うことにより、最適点火タイミングT1に点火タイミングt1が制御される。それにより、最適燃焼タイミングT5に燃焼タイミングt5が制御されることになり、トルクを効率的に発生させることができる。 According to this embodiment, the following effects can be obtained. By performing the ejection delay suppression control in addition to the airflow support structure As, it is possible to suppress the combustion time t15 in the low load state in the ignition control before top dead center. Therefore, it is possible to prevent the optimum ignition timing T1, which is earlier than the optimum combustion timing T5 by the amount of the combustion time t15, from becoming too early. As a result, the ignition timing t1 can be controlled to the optimum ignition timing T1 even in a low load state in the sub-chamber ignition system 70. Then, by actually performing the optimum ignition control, the ignition timing t1 is controlled at the optimum ignition timing T1. As a result, the combustion timing t5 is controlled at the optimum combustion timing T5, and torque can be efficiently generated.
 具体的には、噴出制御部63は、噴出遅延抑制制御として、高負荷状態の時に比べて低負荷状態の時に放電エネルギEが大きくなるように制御する。それにより低負荷状態の時に、噴出時間t13を短縮して燃焼時間t15を短縮することができる。 Specifically, the ejection control unit 63 controls the ejection delay suppression control so that the discharge energy E becomes larger in the low load state than in the high load state. As a result, when the load is low, the ejection time t13 can be shortened and the combustion time t15 can be shortened.
 また、副室式点火システム70は、気流支援構造Asにより、放電ギャップ45に気流を流れ易くすることにより、放電火花Fを伸長させることができる。それにより、放電火花Fによる着火性を向上させて噴出時間t13を短くすることができる。それにより燃焼時間t15を短縮できる。また、気流支援構造Asとして、放電ギャップ45が連通孔35に近接する構造を採用することにより、連通孔35を利用して効率的に気流支援構造Asを形成することができる。 Further, in the sub-chamber type ignition system 70, the discharge spark F can be extended by facilitating the flow of airflow through the discharge gap 45 by the airflow support structure As. Thereby, the ignitability by the discharge spark F can be improved and the ejection time t13 can be shortened. Thereby, the combustion time t15 can be shortened. Further, by adopting a structure in which the discharge gap 45 is close to the communication hole 35 as the airflow support structure As, the airflow support structure As can be efficiently formed by using the communication hole 35.
 また、対気流制御部64は、気流支援構造Asによる気流によっても放電火花Fが途切れないように放電エネルギEを制御する。そのため、このように気流支援構造Asが有る場合においても、放電火花Fの安定性を確保することができる。 Further, the airflow control unit 64 controls the discharge energy E so that the discharge spark F is not interrupted by the airflow caused by the airflow support structure As. Therefore, the stability of the discharge spark F can be ensured even when the airflow support structure As is provided in this way.
 具体的には、圧縮行程の後半においては、タイミングが早い程、すなわち圧縮上死点tDから離れる程、放電ギャップ45に流れる気流が強くなる。そのため、点火タイミングt1が早い程、放電火花Fが吹き消え易くなる。その点、対気流制御部64は、点火タイミングt1が圧縮行程の後半の場合においては、点火タイミングt1が遅い場合に比べて早い場合に、放電エネルギEが大きくなるように制御する。これにより、効率的に吹き消えを防止することができる。 Specifically, in the latter half of the compression stroke, the earlier the timing, that is, the farther away from the compression top dead center tD, the stronger the airflow flowing through the discharge gap 45. Therefore, the earlier the ignition timing t1, the easier it is for the discharge spark F to be blown out. In that respect, the airflow control unit 64 controls so that the discharge energy E becomes larger when the ignition timing t1 is in the latter half of the compression stroke and when the ignition timing t1 is earlier than when it is later. As a result, it is possible to efficiently prevent the blowout.
 また、膨張行程の前半においては、タイミングが遅い程、すなわち圧縮上死点tDから離れる程、放電ギャップ45に流れる気流が強くなる。そのため、点火タイミングt1が遅い程、放電火花Fが吹き消え易くなる。その点、対気流制御部64は、点火タイミングt1が膨張行程の前半の場合においては、点火タイミングt1が早い場合に比べて遅い場合に、放電エネルギEが大きくなるように制御する。これにより、効率的に吹き消えを防止することができる。 Further, in the first half of the expansion stroke, the later the timing, that is, the farther away from the compression top dead center tD, the stronger the airflow flowing through the discharge gap 45. Therefore, the later the ignition timing t1, the easier it is for the discharge spark F to be blown out. In that respect, the airflow control unit 64 controls so that the discharge energy E becomes larger when the ignition timing t1 is in the first half of the expansion stroke and when the ignition timing t1 is later than when it is earlier. As a result, it is possible to efficiently prevent the blowout.
 また、隔壁34は、点火プラグ40の接地電極を兼ねている。その隔壁34に連通孔35が形成されている。そのため、放電ギャップ45を効率的に連通孔35に近接させて配置することができる。 The partition wall 34 also serves as a ground electrode for the spark plug 40. A communication hole 35 is formed in the partition wall 34. Therefore, the discharge gap 45 can be efficiently arranged close to the communication hole 35.
 また、噴出制御部63は、空燃比、EGR、水温等のエンジン90の運転状態を示す各パラメータに基づいて放電エネルギEを制御する。それにより、所定の状況下で噴出時間t13が長くなるのを効率的に抑制できる。 Further, the ejection control unit 63 controls the discharge energy E based on each parameter indicating the operating state of the engine 90 such as the air-fuel ratio, EGR, and water temperature. Thereby, it is possible to efficiently suppress the lengthening of the ejection time t13 under a predetermined situation.
 具体的には、エンジン90の空燃比が大きい時には、燃焼室30内の燃料が希薄になることにより、燃料が燃え難くなり火炎が伝播し難くなる。その点、噴出制御部63は、空燃比が小さい時に比べて大きい時に放電エネルギEが大きくなるように制御する。そのため、空燃比が小さい時に比べて大きい時に噴出時間t13が長くなるのを抑制できる。 Specifically, when the air-fuel ratio of the engine 90 is large, the fuel in the combustion chamber 30 becomes lean, which makes it difficult for the fuel to burn and the flame to propagate. In that respect, the ejection control unit 63 controls so that the discharge energy E becomes large when the air-fuel ratio is large as compared with when the air-fuel ratio is small. Therefore, it is possible to prevent the ejection time t13 from becoming longer when the air-fuel ratio is large as compared with when the air-fuel ratio is small.
 また、エンジン90のEGR量が多い時には、吸気に戻る排気の量が多くなることにより、燃料が燃え難くなり火炎が伝播し難くなる。その点、噴出制御部63は、EGR量が小さい時に比べて大きい時に放電エネルギEが大きくなるように制御する。そのため、EGR量が小さい時に比べて大きい時に噴出時間t13が長くなるのを抑制できる。 Further, when the amount of EGR of the engine 90 is large, the amount of exhaust gas returning to the intake air is large, so that the fuel is hard to burn and the flame is hard to propagate. In that respect, the ejection control unit 63 controls so that the discharge energy E becomes larger when the EGR amount is larger than when it is small. Therefore, it is possible to prevent the ejection time t13 from becoming longer when the EGR amount is large as compared with when the EGR amount is small.
 また、エンジン90の冷却水の水温が低い時には、燃焼室30内の燃料が温まり難いことにより、燃料が燃え難くなり火炎が伝播し難くなる。その点、噴出制御部63は、冷却水の水温が高い時に比べて低い時に放電エネルギEが大きくなるように制御する。そのため、冷却水の水温が高い時に比べて低い時に噴出時間t13が長くなるのを抑制できる。 Further, when the temperature of the cooling water of the engine 90 is low, the fuel in the combustion chamber 30 is difficult to warm, so that the fuel is hard to burn and the flame is hard to propagate. In that respect, the ejection control unit 63 controls so that the discharge energy E becomes larger when the temperature of the cooling water is lower than when the water temperature is high. Therefore, it is possible to prevent the ejection time t13 from becoming longer when the temperature of the cooling water is lower than when the temperature is high.
 また、上死点後点火制御においては、次の効果が得られる。すなわち、上死点後点火制御においては、放電火花Fが中央連通孔35cを通じて主室31内にまで伸長して、直接、主室31内の燃料に炎を着火することになるので、これにより燃焼時間t15を短縮することができる。 In addition, the following effects can be obtained in ignition control after top dead center. That is, in the ignition control after top dead center, the discharge spark F extends into the main chamber 31 through the central communication hole 35c and directly ignites the fuel in the main chamber 31. The burning time t15 can be shortened.
 [他の実施形態]
 以上に示した実施形態は、次のように変更して実施できる。例えば、第1実施形態では、吸気通路21に燃料を噴射しているが、これに代えて又は加えて、副室38内や主室31内に燃料を噴射するようにしてもよい。また例えば、第1実施形態では、充電時間t01を制御することにより放電エネルギEを制御しているが、これに代えて又は加えて、一次コイル412に流れる電流を制御することにより放電エネルギEを制御するようにしてもよい。
[Other Embodiments]
The embodiment shown above can be modified and implemented as follows. For example, in the first embodiment, the fuel is injected into the intake passage 21, but instead of or in addition to this, the fuel may be injected into the sub chamber 38 or the main chamber 31. Further, for example, in the first embodiment, the discharge energy E is controlled by controlling the charging time t01, but instead of or in addition to this, the discharge energy E is controlled by controlling the current flowing through the primary coil 412. It may be controlled.
 また例えば、第1実施形態の噴出制御部63は、空燃比、EGR量、水温の各パラメータに基づいて、放電エネルギEを変更しているが、それらのうちのいずれかについては、当該パラメータに基づいて放電エネルギEを変更するのをなくしてもよい。また例えば、第1実施形態では、圧縮行程の後半に点火される場合及び膨張行程の前半に点火される場合の両方において、対気流制御部64による放電エネルギEの制御を行っている。これに代えて、圧縮行程の後半に点火される場合及び膨張行程の前半に点火される場合の一方又は両方において、対気流制御部64による放電エネルギEの制御を行わないようにしてもよい。 Further, for example, the ejection control unit 63 of the first embodiment changes the discharge energy E based on each parameter of the air-fuel ratio, the EGR amount, and the water temperature. It may be eliminated to change the discharge energy E based on this. Further, for example, in the first embodiment, the discharge energy E is controlled by the airflow control unit 64 in both the case of being ignited in the latter half of the compression stroke and the case of being ignited in the first half of the expansion stroke. Instead, the discharge energy E may not be controlled by the airflow control unit 64 in one or both of the case where the ignition is performed in the latter half of the compression stroke and the case where the ignition is performed in the first half of the expansion stroke.
 また例えば、第1実施形態では、気流支援構造As及び対気流制御部64が設けられているが、対気流制御部64をなくしたり、気流支援構造Asと対気流制御部64との両方をなくしたりしてもよい。このような場合においても、噴出制御部63による噴出遅延抑制制御の効果は得ることができる。 Further, for example, in the first embodiment, the airflow support structure As and the airflow control unit 64 are provided, but the airflow control unit 64 is eliminated, or both the airflow support structure As and the airflow control unit 64 are eliminated. You may do it. Even in such a case, the effect of the ejection delay suppression control by the ejection control unit 63 can be obtained.
 また例えば、第1実施形態では、噴出制御部63が、放電エネルギEを制御することにより噴出遅延抑制制御を行っているが、これに代えて、次のようにして、噴出遅延抑制制御を行うようにしてもよい。すなわち、放電ギャップ45に気流を吹き付ける吹付装置を設け、その吹付装置を噴出制御部63により制御することにより、高負荷状態の時に比べて低負荷状態の時に強く気流を放電ギャップ45に吹き付けるようにしてもよい。この場合、低負荷状態の時には、放電火花Fがより長く伸長することにより着火性が向上して、高負荷状態の時に比べて噴出時間t13が長くなるのが抑制される。 Further, for example, in the first embodiment, the ejection control unit 63 performs ejection delay suppression control by controlling the discharge energy E, but instead of this, ejection delay suppression control is performed as follows. You may do so. That is, a spraying device for blowing an airflow is provided in the discharge gap 45, and the spraying device is controlled by the ejection control unit 63 so that the airflow is strongly blown to the discharge gap 45 in a low load state as compared with a high load state. You may. In this case, in the low load state, the discharge spark F extends for a longer time to improve the ignitability, and it is suppressed that the ejection time t13 becomes longer than in the high load state.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although this disclosure has been described in accordance with the examples, it is understood that the disclosure is not limited to the examples and structures. The present disclosure also includes various modifications and modifications within an equal range. In addition, various combinations and forms, as well as other combinations and forms that include only one element, more, or less, are also within the scope of the present disclosure.

Claims (10)

  1.  エンジン(90)の燃焼室(30)を副室(38)と主室(31)とに区分けする隔壁(34)と、所定の放電ギャップ(45)に電圧を印加して放電火花(F)を発生させることにより前記副室内の燃料に点火する点火プラグ(40)と、前記点火プラグを制御する点火制御部(60)とを有し、前記隔壁に、前記副室と前記主室とを連通させる連通孔(35)が形成されており、
     前記エンジンに加わっている負荷が所定の大きさである状態を高負荷状態とし、前記エンジンに加わっている負荷が当該所定の大きさよりも小さい状態を低負荷状態とし、
     前記点火プラグが前記放電ギャップにおける放電を開始するタイミングを点火タイミング(t1)とし、前記点火タイミングの後において前記燃焼室内の燃料のうちの所定量が燃焼した状態になるタイミングを燃焼タイミング(t5)とし、前記点火タイミングから前記燃焼タイミングまでの時間を燃焼時間(t15)として、
     前記点火制御部は、最適な前記燃焼タイミングとしての最適燃焼タイミング(T5)よりも前記燃焼時間だけ早いタイミングである最適点火タイミング(T1)を算出して、前記最適点火タイミングに前記点火タイミングを制御する最適点火制御を、前記高負荷状態の時に行う、
     副室式点火システム(70)において、
     前記点火タイミングと前記燃焼タイミングとの間において、前記副室内に発生した火炎が前記連通孔から前記主室内に噴出し始めるタイミングを噴出タイミング(t3)とし、前記点火タイミングから前記噴出タイミングまでの時間を噴出時間(t13)として、
     前記高負荷状態の時に比べて前記低負荷状態の時に前記噴出時間が長くなるのを抑制する噴出遅延抑制制御を行う噴出制御部(63)を有し、
     前記低負荷状態の時には、前記噴出制御部により前記噴出遅延抑制制御を行うことにより、前記高負荷状態の時に比べて前記燃焼時間が長くなるのを抑制しつつ、前記点火制御部により前記最適点火制御を行う副室式点火システム。
    A discharge spark (F) by applying a voltage to a partition wall (34) that divides the combustion chamber (30) of the engine (90) into a sub chamber (38) and a main chamber (31) and a predetermined discharge gap (45). The spark plug (40) that ignites the fuel in the sub chamber and the ignition control unit (60) that controls the spark plug are provided, and the sub chamber and the main chamber are provided in the partition wall. A communication hole (35) for communication is formed, and the communication hole (35) is formed.
    A state in which the load applied to the engine is a predetermined magnitude is defined as a high load state, and a state in which the load applied to the engine is smaller than the predetermined magnitude is defined as a low load state.
    The timing at which the spark plug starts discharging in the discharge gap is defined as the ignition timing (t1), and the timing at which a predetermined amount of the fuel in the combustion chamber is burned after the ignition timing is the combustion timing (t5). The time from the ignition timing to the combustion timing is defined as the combustion time (t15).
    The ignition control unit calculates the optimum ignition timing (T1), which is a timing earlier than the optimum combustion timing (T5) as the optimum combustion timing, and controls the ignition timing to the optimum ignition timing. Optimal ignition control is performed in the high load state.
    In the sub-chamber ignition system (70)
    Between the ignition timing and the combustion timing, the timing at which the flame generated in the sub chamber starts to eject from the communication hole into the main chamber is defined as the ejection timing (t3), and the time from the ignition timing to the ejection timing. As the eruption time (t13)
    It has an ejection control unit (63) that performs ejection delay suppression control that suppresses the ejection time from becoming longer in the low load state as compared with the case of the high load state.
    In the low load state, the ejection delay suppression control is performed by the ejection control unit, so that the combustion time is suppressed to be longer than in the high load state, and the optimum ignition is performed by the ignition control unit. Sub-chamber ignition system for control.
  2.  前記噴出制御部は、前記噴出遅延抑制制御として、前記高負荷状態の時に比べて前記低負荷状態の時に、前記放電ギャップに印加する放電エネルギ(E)が大きくなるように制御する、請求項1に記載の副室式点火システム。 The ejection control unit controls the ejection delay suppression control so that the discharge energy (E) applied to the discharge gap becomes larger in the low load state than in the high load state. Sub-chamber ignition system as described in.
  3.  前記放電ギャップに気流を流れ易くするための気流支援構造(As)を有し、
     前記隔壁には前記連通孔が複数形成されており、前記気流支援構造として、前記放電ギャップが複数の前記連通孔のうちの1つに近接している、請求項1又は2に記載の副室式点火システム。
    It has an airflow support structure (As) to facilitate the flow of airflow in the discharge gap, and has an airflow support structure (As).
    The auxiliary chamber according to claim 1 or 2, wherein a plurality of the communication holes are formed in the partition wall, and the discharge gap is close to one of the plurality of communication holes as the airflow support structure. Type ignition system.
  4.  前記気流支援構造による気流によっても前記放電火花が途切れないように、前記放電ギャップに印加する放電エネルギを制御する対気流制御部(64)を有する、請求項3に記載の副室式点火システム。 The sub-chamber ignition system according to claim 3, further comprising an airflow control unit (64) that controls the discharge energy applied to the discharge gap so that the discharge spark is not interrupted by the airflow due to the airflow support structure.
  5.  前記対気流制御部は、前記点火タイミングに基づいて前記放電エネルギを制御するものであり、前記対気流制御部は、前記点火タイミングが圧縮行程の後半である場合において、前記点火タイミングが所定タイミングである場合に比べて、前記点火タイミングが当該所定タイミングよりも早いタイミングである場合に、前記放電エネルギが大きくなるように制御する、請求項4に記載の副室式点火システム。 The anti-air flow control unit controls the discharge energy based on the ignition timing, and the anti-air flow control unit controls the ignition timing at a predetermined timing when the ignition timing is the latter half of the compression stroke. The sub-chamber ignition system according to claim 4, wherein the discharge energy is controlled to be larger when the ignition timing is earlier than the predetermined timing as compared with a certain case.
  6.  前記対気流制御部は、前記点火タイミングに基づいて前記放電エネルギを制御するものであり、前記対気流制御部は、前記点火タイミングが膨張行程の前半である場合において、前記点火タイミングが所定タイミングである場合に比べて、前記点火タイミングが当該所定タイミングよりも遅いタイミングである場合に、前記放電エネルギが大きくなるように制御する、請求項4又は5に記載の副室式点火システム。 The anti-air flow control unit controls the discharge energy based on the ignition timing, and the anti-air flow control unit controls the ignition timing at a predetermined timing when the ignition timing is the first half of the expansion stroke. The sub-chamber ignition system according to claim 4 or 5, wherein the discharge energy is controlled to be larger when the ignition timing is later than the predetermined timing as compared with a certain case.
  7.  前記放電ギャップは2つの電極どうし(34,44)の間に形成されており、前記隔壁は、導電体製であり前記2つの電極のうちの一方の電極(34)を兼ねている、請求項3~6のいずれか1項に記載の副室式点火システム。 Claim that the discharge gap is formed between two electrodes (34, 44), and the partition wall is made of a conductor and also serves as one electrode (34) of the two electrodes. The sub-chamber ignition system according to any one of 3 to 6.
  8.  前記噴出制御部は、前記エンジンの空燃比に基づいて、前記放電ギャップに印加する放電エネルギを制御するものであり、前記空燃比が所定空燃比である時に比べて、前記空燃比が当該所定空燃比よりも大きい時に、前記放電エネルギが大きくなるように制御する、請求項1~7のいずれか1項に記載の副室式点火システム。 The ejection control unit controls the discharge energy applied to the discharge gap based on the air-fuel ratio of the engine, and the air-fuel ratio is the predetermined air-fuel ratio as compared with the case where the air-fuel ratio is the predetermined air-fuel ratio. The sub-chamber ignition system according to any one of claims 1 to 7, wherein the discharge energy is controlled to be large when the fuel ratio is larger than the fuel ratio.
  9.  前記噴出制御部は、前記エンジンにおいて排気を再び吸気に戻す量であるEGR量に基づいて、前記放電ギャップに印加する放電エネルギを制御するものであり、前記EGR量が所定量である時に比べて、前記EGR量が当該所定量よりも大きい時に、前記放電エネルギが大きくなるように制御する、請求項1~8のいずれか1項に記載の副室式点火システム。 The ejection control unit controls the discharge energy applied to the discharge gap based on the EGR amount which is the amount of returning the exhaust gas to the intake air in the engine, as compared with the case where the EGR amount is a predetermined amount. The sub-chamber ignition system according to any one of claims 1 to 8, wherein when the EGR amount is larger than the predetermined amount, the discharge energy is controlled to be large.
  10.  前記噴出制御部は、前記エンジンの冷却水の水温に基づいて、前記放電ギャップに印加する放電エネルギを制御するものであり、前記水温が所定温度である時に比べて、前記水温が当該所定温度よりも低い時に、前記放電エネルギが大きくなるように制御する、請求項1~9のいずれか1項に記載の副室式点火システム。 The ejection control unit controls the discharge energy applied to the discharge gap based on the water temperature of the cooling water of the engine, and the water temperature is higher than the predetermined temperature as compared with the case where the water temperature is the predetermined temperature. The sub-chamber ignition system according to any one of claims 1 to 9, wherein the discharge energy is controlled to be large when the temperature is low.
PCT/JP2021/001283 2020-02-05 2021-01-15 Subsidiary chamber type ignition system WO2021157322A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020017879A JP7334636B2 (en) 2020-02-05 2020-02-05 Pre-chamber ignition system
JP2020-017879 2020-02-05

Publications (1)

Publication Number Publication Date
WO2021157322A1 true WO2021157322A1 (en) 2021-08-12

Family

ID=77199225

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001283 WO2021157322A1 (en) 2020-02-05 2021-01-15 Subsidiary chamber type ignition system

Country Status (2)

Country Link
JP (1) JP7334636B2 (en)
WO (1) WO2021157322A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4194672A4 (en) * 2020-08-07 2024-02-07 Denso Corp Ignition system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161736A (en) * 2004-12-09 2006-06-22 Nissan Motor Co Ltd Prechamber type internal combustion engine
JP2007239603A (en) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd Variable compression ratio engine
JP2010261407A (en) * 2009-05-11 2010-11-18 Nippon Soken Inc Auxiliary chamber type ignition device
JP2016125352A (en) * 2014-12-26 2016-07-11 株式会社デンソー Ignition control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7413746B2 (en) 2019-03-21 2024-01-16 株式会社デンソー Spark plug for internal combustion engine and internal combustion engine equipped with the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006161736A (en) * 2004-12-09 2006-06-22 Nissan Motor Co Ltd Prechamber type internal combustion engine
JP2007239603A (en) * 2006-03-08 2007-09-20 Nissan Motor Co Ltd Variable compression ratio engine
JP2010261407A (en) * 2009-05-11 2010-11-18 Nippon Soken Inc Auxiliary chamber type ignition device
JP2016125352A (en) * 2014-12-26 2016-07-11 株式会社デンソー Ignition control device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4194672A4 (en) * 2020-08-07 2024-02-07 Denso Corp Ignition system

Also Published As

Publication number Publication date
JP2021124057A (en) 2021-08-30
JP7334636B2 (en) 2023-08-29

Similar Documents

Publication Publication Date Title
JP5765493B2 (en) Ignition device and ignition method for internal combustion engine
JP2007270658A (en) Cylinder injection spark ignition type internal combustion engine
JP2009036028A (en) Preignition detection device of vehicle engine
WO2015005245A1 (en) Ignition control device
US20230184160A1 (en) Ignition system
JP5482692B2 (en) Ignition control device for internal combustion engine
CN113825900B (en) Control device for internal combustion engine
JP6217490B2 (en) Start-up control device for direct injection gasoline engine
WO2021157322A1 (en) Subsidiary chamber type ignition system
JP6392535B2 (en) Control device for internal combustion engine
WO2021153275A1 (en) Ignition system
JP2006266116A (en) Fuel injection control device for internal combustion engine
WO2015122003A1 (en) Ignition device and ignition method for internal combustion engine
JP6011459B2 (en) Ignition control device
JP2010144592A (en) Ignition control device, control method and ignition device for internal combustion engine
JPH04179859A (en) Capacitor discharge multiple ignition system for cylinder injection two-cycle engine
JP7347308B2 (en) ignition system
JP6426365B2 (en) Ignition control device for internal combustion engine
JP7412599B2 (en) Internal combustion engine control device
JP2006046276A (en) Ignition control device for direct spark ignition type internal combustion engine
JP6531841B2 (en) Igniter
JP6269270B2 (en) Ignition device
JP6149765B2 (en) Control unit for direct injection gasoline engine
JP6217493B2 (en) Control unit for direct injection gasoline engine
JP2023083550A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21750424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21750424

Country of ref document: EP

Kind code of ref document: A1