JP2007270658A - Cylinder injection spark ignition type internal combustion engine - Google Patents

Cylinder injection spark ignition type internal combustion engine Download PDF

Info

Publication number
JP2007270658A
JP2007270658A JP2006094447A JP2006094447A JP2007270658A JP 2007270658 A JP2007270658 A JP 2007270658A JP 2006094447 A JP2006094447 A JP 2006094447A JP 2006094447 A JP2006094447 A JP 2006094447A JP 2007270658 A JP2007270658 A JP 2007270658A
Authority
JP
Japan
Prior art keywords
ignition
injection
signal
engine
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006094447A
Other languages
Japanese (ja)
Inventor
Masaru Tanaka
大 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Motors Corp
Original Assignee
Mitsubishi Motors Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Motors Corp filed Critical Mitsubishi Motors Corp
Priority to JP2006094447A priority Critical patent/JP2007270658A/en
Publication of JP2007270658A publication Critical patent/JP2007270658A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Ignition Installations For Internal Combustion Engines (AREA)
  • Electrical Control Of Ignition Timing (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cylinder injection spark ignition type internal combustion engine capable of realizing stable stratified combustion by sure ignition, by always properly controlling the ignition timing to fuel injection and a charging period of an ignition system performed before the ignition, while preventing complication of arithmetic processing and a circuit constitution. <P>SOLUTION: A mode changeover switch 27 is switched to a B terminal 27b in a stratified combustion mode of a spray guide. A transistor 26 is driven on the basis of an injection signal. Charging is started by making a primary current flow to a primary winding 23 simultaneously with the rising of the injection signal. A spark plug 6 is ignited by discharge voltage induced in a secondary winding 24 by cutting off the primary current synchronously with the trailing of the injection signal. Thus, an ignition coil 22 is charged over a fuel injection period, and the ignition is performed just after the fuel injection. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は筒内噴射型火花点火式内燃機関に係り、詳しくは燃料噴射弁から噴射された燃料噴霧が点火プラグ近傍を通過したときに点火して成層燃焼を行う筒内噴射型火花点火式内燃機関に関するものである。   The present invention relates to a cylinder injection type spark ignition type internal combustion engine, and more particularly, to a cylinder injection type spark ignition type internal combustion engine that ignites and performs stratified combustion when fuel spray injected from a fuel injection valve passes through the vicinity of a spark plug. It is about the institution.

燃焼室内に燃料を直接噴射する筒内噴射型火花点火式内燃機関では、例えば圧縮行程で燃料噴射弁から噴射された燃料噴霧を点火プラグ近傍に移送して、点火プラグの周囲に理論空燃比近傍の混合気を形成した上で、全体として極めてリーンな空燃比で点火する成層希薄燃焼を可能としている。燃料噴霧を点火プラグ近傍に移送する形態としては種々のものがあり、所謂スプレーガイド式の燃料噴霧の移送方法により成層燃焼を成立させるものがある。   In a cylinder injection type spark ignition internal combustion engine that directly injects fuel into the combustion chamber, for example, the fuel spray injected from the fuel injection valve in the compression stroke is transferred to the vicinity of the spark plug, and the vicinity of the theoretical air-fuel ratio is around the spark plug. In this way, stratified lean combustion can be performed by igniting at an extremely lean air-fuel ratio as a whole. There are various modes for transferring the fuel spray to the vicinity of the spark plug, and there is a type in which stratified combustion is established by a so-called spray guide type fuel spray transfer method.

当該スプレーガイド式の筒内噴射型火花点火式内燃機関では、燃焼室の頂部に燃料噴射弁を略直立配置すると共に、燃料噴射弁の噴孔部の近傍に電極部を臨ませるように点火プラグを配設し、燃料噴射弁からの燃料噴霧が自己の運動エネルギにより点火プラグ近傍に到達したときに点火して成層燃焼を成立させている。点火プラグ近傍を通過する燃料噴霧を点火可能な期間はごく短いため、図3に示すようにスプレーガイド式により安定した成層燃焼が成立する点火時期SA及び燃料噴射時期ITの領域(以下、燃焼安定領域と称する)はかなり狭く、燃料噴射中またはその直後に点火時期を設定する必要がある。   In the spray-guided in-cylinder spark-ignition internal combustion engine, a fuel injection valve is disposed substantially upright at the top of the combustion chamber, and an ignition plug is provided so that the electrode portion faces the vicinity of the injection hole of the fuel injection valve. And ignited when fuel spray from the fuel injection valve reaches the vicinity of the spark plug by its own kinetic energy to establish stratified combustion. Since the period during which the fuel spray passing through the vicinity of the spark plug can be ignited is very short, as shown in FIG. 3, regions of ignition timing SA and fuel injection timing IT where stable stratified combustion is established by the spray guide method (hereinafter referred to as combustion stability) (Referred to as a region) is quite narrow, and it is necessary to set the ignition timing during or immediately after fuel injection.

また、このような特性から燃料噴射期間が短くなるほど適切な点火時期の許容幅が縮小するため、例えば機関負荷の低下と共に噴射期間が短縮化される低負荷域、或いは同一噴射量であっても回転低下に伴ってクランク角換算した燃料噴射期間が短縮化される低回転域では、必然的に点火時期の許容幅も狭まってしまう。従って、低負荷域や低回転域での過渡運転などでは燃焼安定領域を外れて失火などを引き起こし易いという問題があった。   Further, since the allowable range of the appropriate ignition timing is reduced as the fuel injection period is shortened from such characteristics, for example, even in a low load region where the injection period is shortened with a decrease in engine load, or the same injection amount. In the low rotation range where the fuel injection period converted to the crank angle is shortened as the rotation decreases, the allowable range of the ignition timing is inevitably narrowed. Therefore, there has been a problem that misfires are likely to occur outside the stable combustion region during transient operation in a low load region or a low rotation region.

なお、燃焼安定化のために低負荷低回転域で空燃比をリッチ化したり、或いは均一燃焼に切換えたりする対策も考えられるが、何れも燃費悪化を招くため抜本的な対策とは言い難かった。
一方、スプレーガイド式の内燃機関において、燃料噴射時期ITに対して適切な点火時期を設定すべく種々の手法が提案されている(例えば、特許文献1参照)。当該特許文献1の技術では内燃機関の運転状態に基づき遅れ時間を設定し、燃料噴射期間の終了から遅れ時間の経過後に点火を実行している。
特開昭60−125748号公報
In order to stabilize the combustion, measures to enrich the air-fuel ratio in the low load and low rotation range or to switch to uniform combustion can be considered, but all of them were not drastic measures because they caused fuel consumption deterioration. .
On the other hand, in a spray guide type internal combustion engine, various methods have been proposed to set an appropriate ignition timing with respect to the fuel injection timing IT (see, for example, Patent Document 1). In the technique of Patent Document 1, a delay time is set based on the operating state of the internal combustion engine, and ignition is performed after the delay time elapses from the end of the fuel injection period.
JP 60-125748 A

上記特許文献1の技術には点火系の充電期間の設定に関する記載はないが、例えば噴射期間の終了をトリガとして充電開始した場合には、設定された遅れ時間によっては遅れ時間が経過しても十分な充電量が得られない可能性があり、結果として放電エネルギの不足により失火するという不具合が発生してしまう。
また、適切な充電期間を確保すべく点火時期より所定のドエル角(=点火コイルの充電所要時間)だけ先行して充電を開始することも考えられるが、この場合には予め噴射期間の終了時期及び遅れ時間から点火時期を確定し、点火時期からドエル角だけ先行した充電開始時期を決定する演算手順を採る必要があり、処理が複雑化するという別の問題が発生してしまう。
Although there is no description regarding the setting of the charging period of the ignition system in the technique of the above-mentioned Patent Document 1, for example, when charging is started with the end of the injection period as a trigger, even if the delay time elapses depending on the set delay time There is a possibility that a sufficient amount of charge cannot be obtained, and as a result, a problem of misfire due to lack of discharge energy occurs.
In addition, in order to ensure an appropriate charging period, it is conceivable to start charging by a predetermined dwell angle (= time required for charging the ignition coil) before the ignition timing. In addition, it is necessary to take a calculation procedure for determining the ignition timing from the delay time and determining the charge start timing that precedes the dwell angle from the ignition timing, which causes another problem of complicated processing.

加えて、上記特許文献1の技術では、点火時期を制御するイグナイタ回路などの付加により点火系の構成が複雑化するという問題もある。
本発明はこのような問題点を解決するためになされたもので、その目的とするところは、演算処理や回路構成の複雑化を防止した上で、燃料噴射に対する点火時期及び点火に先行して実行する点火系の充電期間を常に適切に制御でき、もって確実な点火により安定した成層燃焼を実現することができる筒内噴射型火花点火式内燃機関を提供することにある。
In addition, the technique of Patent Document 1 has a problem that the configuration of the ignition system becomes complicated due to the addition of an igniter circuit for controlling the ignition timing.
The present invention has been made to solve such problems, and the object of the present invention is to prevent the calculation process and the circuit configuration from becoming complicated, and to precede the ignition timing and ignition for fuel injection. It is an object of the present invention to provide an in-cylinder injection spark ignition type internal combustion engine that can always properly control the charge period of the ignition system to be executed and can realize stable stratified combustion by reliable ignition.

上記目的を達成するため、請求項1の発明は、燃焼室内に直接燃料を噴射する燃料噴射弁と、燃料噴射弁からの燃料噴霧の噴射経路近傍に電極部が配置された点火プラグとを備え、機関の圧縮行程で燃料噴射弁から噴射された燃料噴霧が点火プラグの電極部近傍を通過したときに点火して成層燃焼させる筒内噴射型火花点火式内燃機関において、機関の回転に同期する所定タイミングの噴射信号を生成し、噴射信号に基づき燃料噴射弁を駆動制御する噴射制御手段と、1次巻線及び2次巻線を有し、噴射信号を1次電流として1次巻線に供給すると共に、燃料噴射の終了と同期して1次電流が遮断されたときに2次巻線の誘導作用により高圧電流を生起して点火プラグに供給する点火電流生成手段とを備えたものである。   In order to achieve the above object, the invention of claim 1 includes a fuel injection valve that directly injects fuel into the combustion chamber, and an ignition plug having an electrode portion disposed in the vicinity of an injection path of fuel spray from the fuel injection valve. In a cylinder injection type spark ignition type internal combustion engine that ignites and stratifies combustion when fuel spray injected from the fuel injection valve in the compression stroke of the engine passes near the electrode part of the spark plug, it synchronizes with the rotation of the engine An injection control means for generating an injection signal at a predetermined timing and drivingly controlling the fuel injection valve based on the injection signal, a primary winding and a secondary winding, and using the injection signal as a primary current to the primary winding And an ignition current generating means for generating a high voltage current by the induction action of the secondary winding and supplying the spark plug to the spark plug when the primary current is cut off in synchronization with the end of fuel injection. is there.

従って、機関の圧縮行程では噴射信号に基づき噴射制御手段により燃料噴射弁が駆動制御されて燃料が噴射され、その燃料噴霧は点火プラグの電極部近傍を通過する。一方、噴射信号は点火電流生成手段の1次巻線に1次電流として供給されて燃料噴射期間中に亘って1次電流による充電が行われ、燃料噴射の終了と同期して1次電流が遮断されると2次巻線には誘導作用により高圧電流が生成され、この高圧電流が点火プラグに供給されて点火される。結果として点火プラグは燃料噴射直後に点火されるが、この時点では燃料噴射弁からの燃料噴霧が点火プラグを通過中であることから確実に燃料噴霧が点火される。   Therefore, in the compression stroke of the engine, the fuel injection valve is driven and controlled by the injection control means based on the injection signal to inject fuel, and the fuel spray passes near the electrode part of the spark plug. On the other hand, the injection signal is supplied as a primary current to the primary winding of the ignition current generating means and charged by the primary current during the fuel injection period, and the primary current is synchronized with the end of the fuel injection. When cut off, a high voltage current is generated in the secondary winding by an inductive action, and this high voltage current is supplied to the spark plug and ignited. As a result, the spark plug is ignited immediately after fuel injection. At this time, the fuel spray from the fuel injection valve is passing through the spark plug, so that the fuel spray is reliably ignited.

また、スプレーガイドでは噴射期間が長くなると,点火プラグ位置の流速が上昇し,点火が困難になるため,機関負荷が増加するほど点火時に大きな放電エネルギが要求されるが、機関負荷の増加と共に燃料噴射期間、即ち1次電流による充電期間も延長化されるため、点火電流生成手段の充電量と共に点火プラグの放電エネルギも増大する。結果として機関負荷に応じた適切な放電エネルギにより点火が実行されるため、放電エネルギの不足による失火や過剰な放電エネルギによる電極部の消耗などが未然に回避される。   Further, in the spray guide, if the injection period becomes longer, the flow velocity at the spark plug position increases and ignition becomes difficult. Therefore, as the engine load increases, a larger discharge energy is required at the time of ignition. Since the injection period, that is, the charging period by the primary current is also extended, the discharge energy of the spark plug increases with the amount of charge of the ignition current generating means. As a result, since ignition is performed with an appropriate discharge energy according to the engine load, misfire due to insufficient discharge energy, wear of the electrode portion due to excessive discharge energy, and the like can be avoided in advance.

さらに、以上の最適な点火時期及び充電期間は燃料噴射期間(噴射信号)が確定すれば自ずと定まることから、制御装置の処理や点火系の構成を何ら複雑化することなく、これらの点火時期及び充電期間に基づいて最適制御を実現可能となる。
請求項2の発明は、請求項1において、内燃機関が成層燃焼に加えて、吸気行程で燃料噴射して均一な混合気を点火する均一燃焼を実行可能であり、均一燃焼と成層燃焼とを運転領域に応じて切換えるように構成され、機関の運転状態に基づき均一燃焼時の点火信号を生成する点火信号生成手段と、点火信号生成手段の点火信号と噴射制御手段の噴射信号とを選択的に点火電流生成手段の1次巻線に供給する切換手段と、均一燃焼時に切換手段を点火信号側に切換えると共に、成層燃焼時に切換手段を噴射信号側に切換える切換制御手段とを備えたものである。
Furthermore, since the optimum ignition timing and charging period described above are determined automatically once the fuel injection period (injection signal) is determined, these ignition timing and charging period can be determined without complicating the processing of the control device and the configuration of the ignition system. Optimal control can be realized based on the charging period.
According to a second aspect of the present invention, in the first aspect, in addition to the stratified combustion, the internal combustion engine can execute uniform combustion in which fuel is injected in the intake stroke to ignite a uniform mixture. The ignition signal generating means for generating an ignition signal at the time of uniform combustion based on the operating state of the engine, and the ignition signal of the ignition signal generating means and the injection signal of the injection control means are selectively configured to switch according to the operating region Switching means for supplying to the primary winding of the ignition current generating means, and switching control means for switching the switching means to the ignition signal side during uniform combustion and switching the switching means to the injection signal side during stratified combustion. is there.

従って、機関の均一燃焼時には、切換制御手段により切換手段が点火信号側に切換えられ、点火信号生成手段により生成された点火信号が点火電流生成手段の1次巻線に供給されて点火が行われる。また、機関の成層燃焼時には、切換手段が噴射信号側に切換えられ、噴射制御手段により生成された噴射信号が点火電流生成手段の1次巻線に供給されて点火が行われる。   Therefore, at the time of uniform combustion of the engine, the switching means is switched to the ignition signal side by the switching control means, and the ignition signal generated by the ignition signal generating means is supplied to the primary winding of the ignition current generating means for ignition. . Further, at the time of stratified combustion of the engine, the switching means is switched to the injection signal side, and the injection signal generated by the injection control means is supplied to the primary winding of the ignition current generating means to perform ignition.

このように均一燃焼では、噴射信号に基づく点火時期とは異なる均一燃焼に適合した点火時期が適用されるため、均一燃焼と成層燃焼との何れでも安定した燃焼が可能となる。
請求項3の発明は、請求項1において、機関の運転状態に基づき成層燃焼時の点火信号を生成する点火信号生成手段と、点火信号生成手段の点火信号と噴射制御手段の噴射信号とを選択的に点火電流生成手段の1次巻線に供給する切換手段と、成層燃焼を実行する運転領域内の機関回転速度または機関負荷が高い領域で切換手段を点火信号側に切換えると共に、運転領域内の機関回転速度または機関負荷が低い領域で切換手段を噴射信号側に切換える切換制御手段とを備えたものである。
As described above, in the uniform combustion, since the ignition timing suitable for the uniform combustion different from the ignition timing based on the injection signal is applied, stable combustion is possible in both uniform combustion and stratified combustion.
According to a third aspect of the present invention, in the first aspect, the ignition signal generating means for generating an ignition signal at the time of stratified combustion based on the operating state of the engine, and the ignition signal of the ignition signal generating means and the injection signal of the injection control means are selected. Switching means for supplying to the primary winding of the ignition current generating means, and switching means to the ignition signal side in the region where the engine rotational speed or engine load is high in the operation region where stratified combustion is performed, and in the operation region Switching control means for switching the switching means to the injection signal side in a region where the engine rotational speed or engine load is low.

従って、成層燃焼の運転領域内の機関回転速度または機関負荷が高い領域では、切換制御手段により切換手段が点火信号側に切換えられ、点火信号生成手段により生成された点火信号が点火電流生成手段の1次巻線に供給されて点火が行われる。また、成層燃焼の運転領域内の機関回転速度または機関負荷が低い領域では、切換手段が噴射信号側に切換えられ、噴射制御手段により生成された噴射信号が点火電流生成手段の1次巻線に供給されて点火が行われる。   Therefore, in a region where the engine speed or engine load in the stratified combustion operation region is high, the switching means is switched to the ignition signal side by the switching control means, and the ignition signal generated by the ignition signal generating means is It is supplied to the primary winding and ignited. In the region where the engine speed or engine load in the stratified combustion operation region is low, the switching means is switched to the injection signal side, and the injection signal generated by the injection control means is applied to the primary winding of the ignition current generating means. Supplied and ignited.

特に機関回転速度や機関負荷が低い領域では適切な点火時期の範囲が狭く燃焼が不安定になり易いが、このような領域で噴射信号に基づく最適な点火時期及び充電期間で点火が実行されることから、成層燃焼の全領域で安定した燃焼が可能となる。
請求項4の発明は、請求項1乃至3において、機関の運転状態に応じて噴射信号の期間を補正し、補正後の噴射信号を点火電流生成手段の1次巻線に供給する噴射信号補正手段を備えたものである。
Particularly in the region where the engine speed and engine load are low, the range of the appropriate ignition timing is narrow and the combustion tends to become unstable. In such a region, ignition is performed with the optimal ignition timing and charging period based on the injection signal. Therefore, stable combustion is possible in the entire stratified combustion region.
The invention of claim 4 is the injection signal correction according to claims 1 to 3, wherein the injection signal period is corrected in accordance with the operating state of the engine and the corrected injection signal is supplied to the primary winding of the ignition current generating means. Means are provided.

従って、機関の運転状態に応じて補正後の噴射信号が点火電流生成手段の1次巻線に供給されて点火が行われる。例えば、低負荷域では点火電流生成手段の充電期間が短過ぎて放電エネルギが不足気味となり、高負荷域では充電期間が長過ぎて放電エネルギが過剰気味となる場合があるが、噴射信号補正手段による補正の結果、機関負荷に関わらず点火電流生成手段の充電期間は常に最適に制御されるため、放電エネルギの不足による失火や過剰な放電エネルギによる点火プラグの電極部の消耗などが防止される。   Accordingly, the corrected injection signal is supplied to the primary winding of the ignition current generating means in accordance with the operating state of the engine, and ignition is performed. For example, the charging period of the ignition current generating means is too short in the low load range and the discharge energy is insufficient. In the high load range, the charging period is too long and the discharge energy is excessive, but the injection signal correction means As a result of this correction, the charging period of the ignition current generating means is always optimally controlled regardless of the engine load, thereby preventing misfire due to insufficient discharge energy or wear of the electrode portion of the spark plug due to excessive discharge energy. .

請求項5の発明は、請求項4において、燃料噴射弁が、時間当たりの噴射量を調整可能に構成され、燃料噴射弁の時間当たりの噴射量を補正する噴射量補正手段を備えたものである。
従って、噴射量補正手段により燃料噴射弁の時間当たりの噴射量が補正されることで、噴射信号の補正に伴って発生する燃料噴射量の変動が補償される。
According to a fifth aspect of the present invention, in the fourth aspect, the fuel injection valve is configured to be capable of adjusting an injection amount per hour, and is provided with an injection amount correcting means for correcting the injection amount per hour of the fuel injection valve. is there.
Therefore, by correcting the injection amount per time of the fuel injection valve by the injection amount correcting means, the variation in the fuel injection amount that occurs with the correction of the injection signal is compensated.

以上説明したように請求項1の発明の筒内噴射型火花点火式内燃機関によれば、演算処理や回路構成の複雑化を防止した上で、燃料噴射に対する点火時期及び点火に先行して実行する点火系の充電期間を常に適切に制御でき、もって確実な点火により安定した成層燃焼を実現することができる。
請求項2の発明の筒内噴射型火花点火式内燃機関によれば、請求項1に加えて、成層燃焼のみならず均一燃焼でも安定した燃焼を実現することができる。
As described above, according to the in-cylinder injection spark ignition internal combustion engine of the first aspect of the present invention, the calculation process and the circuit configuration are prevented from being complicated, and the ignition timing and the ignition for the fuel injection are executed prior to the ignition. Therefore, the charging period of the ignition system can be controlled appropriately at all times, and stable stratified combustion can be realized by reliable ignition.
According to the cylinder injection type spark ignition internal combustion engine of the invention of claim 2, in addition to claim 1, stable combustion can be realized not only in stratified combustion but also in uniform combustion.

請求項3の発明の筒内噴射型火花点火式内燃機関によれば、請求項1に加えて、成層燃焼の領域内でも特に燃焼が不安定になり易い機関回転速度または機関負荷が低い領域において、確実な点火により安定した成層燃焼を実現することができる。
請求項4の発明の筒内噴射型火花点火式内燃機関によれば、請求項1乃至3に加えて、機関負荷に関わらず点火電流生成手段の充電期間を常に最適制御して、放電エネルギの不足による失火や過剰な放電エネルギによる点火プラグの電極部の消耗などを未然に防止することができる。
According to the in-cylinder injection type spark ignition type internal combustion engine of the invention of claim 3, in addition to claim 1, in the region where the engine rotational speed or the engine load is low, especially in the region of stratified combustion, the combustion is likely to be unstable. Stable stratified combustion can be realized by reliable ignition.
According to the in-cylinder injection type spark ignition internal combustion engine of the invention of claim 4, in addition to claims 1 to 3, the charging period of the ignition current generating means is always optimally controlled regardless of the engine load, and the discharge energy is controlled. Misfire due to shortage and wear of the electrode portion of the spark plug due to excessive discharge energy can be prevented in advance.

請求項5の発明の筒内噴射型火花点火式内燃機関によれば、請求項4に加えて、噴射信号の補正に伴う燃料噴射量の変動を補償して、運転状態に応じた適切な燃料噴射量を維持することができる。   According to the in-cylinder injection type spark ignition internal combustion engine of the fifth aspect of the invention, in addition to the fourth aspect of the invention, the variation of the fuel injection amount accompanying the correction of the injection signal is compensated, and an appropriate fuel corresponding to the operating state is compensated. The injection amount can be maintained.

[第1実施形態]
以下、本発明を具体化した筒内噴射型火花点火式内燃機関の第1実施形態を説明する。
図1は本実施形態の筒内噴射型火花点火式内燃機関を示す概略構成図である。本実施形態の内燃機関Eは直列4気筒機関として構成されており、各図では1気筒分を示しているが、他の気筒についても全く同一構成である。
[First Embodiment]
Hereinafter, a first embodiment of an in-cylinder injection spark ignition internal combustion engine embodying the present invention will be described.
FIG. 1 is a schematic configuration diagram showing an in-cylinder injection spark ignition type internal combustion engine of the present embodiment. The internal combustion engine E of the present embodiment is configured as an in-line four-cylinder engine, and each figure shows one cylinder, but the other cylinders have the same configuration.

内燃機関Eのシリンダブロック1に形成されたシリンダ1a内には上下方向に摺動可能にピストン2が配設され、シリンダブロック1上にはシリンダヘッド3が固定されている。シリンダヘッド3の下面には内燃機関Eの吸気側(図の左方)及び排気側(図の右方)に向けてそれぞれ傾斜する一対の斜面3a,3bが形成され、これらの傾斜面3a,3b、シリンダ1aの内壁、ピストン2の頂面に囲まれて所謂ペントルーフ型燃焼室4が形作られている。   A piston 2 is slidable in a vertical direction in a cylinder 1 a formed in a cylinder block 1 of the internal combustion engine E, and a cylinder head 3 is fixed on the cylinder block 1. A pair of inclined surfaces 3a and 3b are formed on the lower surface of the cylinder head 3 so as to incline toward the intake side (left side in the figure) and the exhaust side (right side in the figure) of the internal combustion engine E. A so-called pent roof type combustion chamber 4 is formed by being surrounded by 3b, the inner wall of the cylinder 1a, and the top surface of the piston 2.

シリンダヘッド3の両斜面3a,3bが交わる稜線より若干吸気側の位置には燃料噴射弁5が配設され、当該燃料噴射弁5は上端を僅かに吸気側に傾斜させた直立姿勢に保持され、下端に設けられた噴孔部5aを燃焼室4内に臨ませて当該燃焼室4内に燃料を噴射し得る。また、シリンダヘッド3の両斜面3a,3bの稜線より若干排気側の位置には点火プラグ6が配設され、当該点火プラグ6は上端を僅かに排気側に傾斜させた直立姿勢に保持されて、下端の電極部6aを燃焼室4内に臨ませている。   A fuel injection valve 5 is provided at a position slightly on the intake side from the ridge line where both the inclined surfaces 3a and 3b of the cylinder head 3 intersect, and the fuel injection valve 5 is held in an upright posture with its upper end slightly inclined toward the intake side. The injection hole 5 a provided at the lower end faces the combustion chamber 4 and fuel can be injected into the combustion chamber 4. An ignition plug 6 is disposed at a position slightly on the exhaust side from the ridge lines of the both inclined surfaces 3a and 3b of the cylinder head 3, and the ignition plug 6 is held in an upright posture with its upper end slightly inclined toward the exhaust side. The lower electrode portion 6a faces the combustion chamber 4.

このような燃料噴射弁5と点火プラグ6との位置関係の結果、燃焼室4内において燃料噴射弁5の噴孔部5aと点火プラグ6の電極部6aとは互いに近接しており、噴孔部5aから噴射された燃料噴霧が電極部6aの近傍(直下)を通過するようになっている。なお、燃料噴霧の移送経路と電極部6aとの位置関係はこれに限ることはなく、後述するスプレーガイド式により燃料噴霧を移送可能であれば任意に変更可能であり、例えば燃料噴霧の移送経路を電極部6aと一致させてもよい。   As a result of the positional relationship between the fuel injection valve 5 and the ignition plug 6, the injection hole 5 a of the fuel injection valve 5 and the electrode part 6 a of the ignition plug 6 are close to each other in the combustion chamber 4. The fuel spray injected from the part 5a passes through the vicinity (directly below) of the electrode part 6a. The positional relationship between the fuel spray transfer path and the electrode portion 6a is not limited to this, and can be arbitrarily changed as long as the fuel spray can be transferred by a spray guide method described later. For example, the fuel spray transfer path May coincide with the electrode portion 6a.

シリンダヘッド3の吸気側の斜面3aには燃料噴射弁5を間に挟んで内燃機関Eの前後方向(紙面と直交する方向)に一対の吸気ポート7が併設され、同様にシリンダヘッド3の排気側の斜面3bには点火プラグ6を挟んで前後方向に一対の排気ポート8が併設されている。両吸気ポート7にはそれぞれ吸気弁7aが設けられ、両排気ポート8にはそれぞれ排気弁8aが設けられ、これらの吸気弁7a及び排気弁8aは、シリンダヘッド3上の図示しない動弁機構によりクランク軸の回転に同期した所定のタイミングで開閉駆動される。   A pair of intake ports 7 are provided on the inclined surface 3 a on the intake side of the cylinder head 3 in the front-rear direction of the internal combustion engine E (a direction orthogonal to the paper surface) with the fuel injection valve 5 interposed therebetween. A pair of exhaust ports 8 are provided on the side slope 3b in the front-rear direction with the spark plug 6 interposed therebetween. Both intake ports 7 are provided with intake valves 7a, and both exhaust ports 8 are provided with exhaust valves 8a. These intake valves 7a and exhaust valves 8a are provided by a valve mechanism (not shown) on the cylinder head 3. It is opened and closed at a predetermined timing synchronized with the rotation of the crankshaft.

両吸気ポート7は他の気筒の吸気ポートと共に図示しない共通の吸気通路と連通し、機関運転時には、吸気通路に導入された吸気がスロットル弁の開度に応じて流量調整された後に各気筒に分配され、吸気弁7aの開弁に伴って燃焼室4内に流入する。また、両排気ポート8は他の気筒の排気ポートと共に図示しない共通の排気通路と連通し、機関運転時には、燃焼室4内で燃焼後の排ガスが排気弁8aの開弁に伴って排気通路へと排出されて他の気筒の排ガスと合流し、排気通路に設けられた触媒や消音器を経て外部に排出される。   Both intake ports 7 communicate with a common intake passage (not shown) together with intake ports of other cylinders. During engine operation, the intake air introduced into the intake passage is adjusted in flow rate according to the opening of the throttle valve, and then is supplied to each cylinder. It is distributed and flows into the combustion chamber 4 as the intake valve 7a is opened. Both exhaust ports 8 communicate with a common exhaust passage (not shown) together with the exhaust ports of the other cylinders. During engine operation, exhaust gas after combustion in the combustion chamber 4 enters the exhaust passage as the exhaust valve 8a is opened. Are discharged and merged with the exhaust gas of the other cylinders, and are discharged to the outside through a catalyst and a silencer provided in the exhaust passage.

車室内には、図示しない入出力装置、制御プログラムや制御マップなどの記憶に供される記憶装置(ROM,RAMなど)、中央処理装置11a(CPUであり、後述する図2に示す)、タイマカウンタなどを備えたECU(電子制御ユニット)11が設置されている。ECU11の入力側には、内燃機関Eの回転速度Neを検出する回転速度センサ12、内燃機関Eのスロットル開度θthを検出するスロットルセンサ13、アクセル操作量θaccを検出するアクセルセンサ14などの各種センサ類が接続され、出力側には上記燃料噴射弁5や点火プラグ6などの各種デバイス類が接続されている。   In the vehicle compartment, an input / output device (not shown), a storage device (ROM, RAM, etc.) used for storing control programs and control maps, a central processing unit 11a (CPU, shown in FIG. 2 described later), a timer An ECU (electronic control unit) 11 having a counter and the like is installed. On the input side of the ECU 11, there are various types such as a rotational speed sensor 12 that detects the rotational speed Ne of the internal combustion engine E, a throttle sensor 13 that detects the throttle opening θth of the internal combustion engine E, and an accelerator sensor 14 that detects the accelerator operation amount θacc. Sensors are connected, and various devices such as the fuel injection valve 5 and the spark plug 6 are connected to the output side.

図2は燃料噴射系及び点火系の回路構成を示す図である。
ECU11内のCPU11aには駆動回路21を介して上記燃料噴射弁5が接続され、CPU11aから出力される駆動信号に応じて駆動回路21により燃料噴射弁5が開弁して開弁期間中に燃焼室4内への燃料噴射が行われる。また、CPU11aには点火コイル22を介して上記点火プラグ6が接続されている。点火コイル22の1次巻線23及び2次巻線24の一端はCPU11aに接続され、CPU11aと1次巻線23との間には車両に搭載されたバッテリ25が接続されている。2次巻線24の他端は上記点火プラグ6の電極部6aの中心電極側に接続され、電極部6aの外部電極側は接地されている。
FIG. 2 is a diagram showing a circuit configuration of the fuel injection system and the ignition system.
The fuel injection valve 5 is connected to the CPU 11a in the ECU 11 via a drive circuit 21, and the fuel injection valve 5 is opened by the drive circuit 21 in accordance with a drive signal output from the CPU 11a and burns during the valve opening period. Fuel injection into the chamber 4 is performed. The ignition plug 6 is connected to the CPU 11a via an ignition coil 22. One end of the primary winding 23 and the secondary winding 24 of the ignition coil 22 is connected to the CPU 11a, and a battery 25 mounted on the vehicle is connected between the CPU 11a and the primary winding 23. The other end of the secondary winding 24 is connected to the center electrode side of the electrode portion 6a of the spark plug 6, and the external electrode side of the electrode portion 6a is grounded.

1次巻線23の他端はトランジスタ26のコレクタに接続され、トランジスタ26のエミッタはアースされている。ベースへの電圧印加によりトランジスタ26がオンすると、点火コイル22の1次巻線23に1次電流が流れて充電が開始される。また、ベースへの電圧印加が中断されてトランジスタ26がオフされると、1次電流の遮断により点火コイル22の2次巻線24には誘導作用により高電圧が生成され、この高電圧が点火プラグ5に供給されて電極部6aに火花放電が生じる(点火電流生成手段)。   The other end of the primary winding 23 is connected to the collector of the transistor 26, and the emitter of the transistor 26 is grounded. When the transistor 26 is turned on by applying a voltage to the base, a primary current flows through the primary winding 23 of the ignition coil 22 and charging is started. When the voltage application to the base is interrupted and the transistor 26 is turned off, a high voltage is generated in the secondary winding 24 of the ignition coil 22 by inductive action due to the interruption of the primary current, and this high voltage is ignited. A spark discharge is generated in the electrode portion 6a by being supplied to the plug 5 (ignition current generating means).

トランジスタ26のベースはモード切換スイッチ27(切換手段)に接続され、このモード切換スイッチ27はCPU11aからのモード切換信号を受け、CPU11aの点火信号の出力端と接続されたA端子27a、または上記CPU11aと駆動回路21との間に接続されたB端子27bの何れかに選択的に切換えられる(切換制御手段)。従って、モード切換スイッチ27がA端子27a側に切換えられたときにはCPU11aから出力される点火信号がトランジスタ26のベースに印加され、モード切換スイッチ27がB端子27b側に切換えられたときにはCPU11aから出力される噴射信号がトランジスタ26のベースに印加される。   The base of the transistor 26 is connected to a mode changeover switch 27 (switching means). The mode changeover switch 27 receives a mode changeover signal from the CPU 11a, and the A terminal 27a connected to the output terminal of the ignition signal of the CPU 11a or the CPU 11a. Is selectively switched to one of the B terminals 27b connected between the drive circuit 21 and the drive circuit 21 (switching control means). Therefore, when the mode switch 27 is switched to the A terminal 27a side, the ignition signal output from the CPU 11a is applied to the base of the transistor 26, and when the mode switch 27 is switched to the B terminal 27b side, it is output from the CPU 11a. The injection signal is applied to the base of transistor 26.

一方、CPU11aは予め設定された燃料噴射量マップ、燃料噴射時期マップ及び点火時期マップに基づき、機関回転速度Ne、目標平均有効圧Pe(機関負荷)、燃圧などから燃料噴射量Q、噴射時期IT及び点火時期SAを設定し、これらの目標値に基づいて燃料噴射弁5や点火プラグ6を制御する。また、CPU11aは内燃機関Eの運転モードを運転状態に応じて均一燃焼モードと成層燃焼モードとの間で切換えており、具体的にはスロットル開度θthと機関回転速度Neとから目標平均有効圧Peを求め、この目標平均有効圧Peと機関回転速度Neとから予め設定されたマップに従って実行すべき運転モードを決定する。均一燃焼モードは目標平均有効圧Peまたは機関回速度Neが比較的高い運転領域で実行され、吸気行程で噴射した燃料により均一な混合気を形成して燃焼(均一燃焼)させる運転モードであり、成層燃焼モードは比較的低回点低負荷域で実行され、圧縮行程で噴射した燃料により点火プラグ6の電極部6aの周囲に理論空燃比近傍の混合気を形成した上で、全体として極めてリーンな空燃比で燃焼(成層燃焼)させる運転モードである。   On the other hand, the CPU 11a determines the fuel injection amount Q, the injection timing IT from the engine speed Ne, the target average effective pressure Pe (engine load), the fuel pressure, etc., based on the preset fuel injection amount map, fuel injection timing map, and ignition timing map. And the ignition timing SA is set, and the fuel injection valve 5 and the spark plug 6 are controlled based on these target values. Further, the CPU 11a switches the operation mode of the internal combustion engine E between the uniform combustion mode and the stratified combustion mode according to the operation state. Specifically, the target average effective pressure is determined from the throttle opening θth and the engine rotational speed Ne. Pe is obtained, and an operation mode to be executed is determined according to a preset map from the target average effective pressure Pe and the engine speed Ne. The uniform combustion mode is an operation mode that is executed in an operation region in which the target average effective pressure Pe or the engine speed Ne is relatively high, and forms a uniform mixture with the fuel injected in the intake stroke to burn (uniform combustion). The stratified combustion mode is executed in a relatively low point low load region, and an air-fuel mixture near the stoichiometric air-fuel ratio is formed around the electrode portion 6a of the spark plug 6 by the fuel injected in the compression stroke. This is an operation mode in which combustion (stratified combustion) is performed at a low air-fuel ratio.

本実施形態では、成層燃焼を成立させるためにスプレーガイド式の燃料噴霧の移送方法が適用されている。即ち、圧縮行程で燃料噴射弁5から噴射された燃料噴霧は自己の運動エネルギにより点火プラグ6の電極部6aの直下を通過し、このときの燃料噴霧の通過に合わせたタイミングで点火プラグ6が点火されて成層燃焼が行なわれる。
図3はある空燃比を前提としてスプレーガイド式により安定した成層燃焼を成立可能な燃焼安定領域を示しており、当該燃焼安定領域の周囲は燃焼不能若しくは燃焼不完全な失火領域である。点火プラグ6近傍を通過する燃料噴霧を点火可能な期間はごく短いため、図に示すようにスプレーガイド式の燃焼安定領域はかなり狭く、ある燃料噴射時期ITを前提として燃焼安定領域での運転を実現可能な点火時期SAは噴射期間及びその直後付近に限られる。
In this embodiment, a spray-guided fuel spray transfer method is applied to establish stratified combustion. That is, the fuel spray injected from the fuel injection valve 5 in the compression stroke passes directly under the electrode portion 6a of the spark plug 6 by its own kinetic energy, and the spark plug 6 is moved at a timing in accordance with the passage of the fuel spray at this time. It is ignited and stratified combustion is performed.
FIG. 3 shows a combustion stable region in which stable stratified combustion can be established by a spray guide method on the premise of a certain air-fuel ratio, and the periphery of the combustion stable region is a misfire region where combustion is not possible or combustion is incomplete. Since the period during which the fuel spray passing through the vicinity of the spark plug 6 can be ignited is very short, the spray-guided combustion stable region is considerably narrow as shown in the figure, and the operation in the combustion stable region is premised on a certain fuel injection timing IT. The feasible ignition timing SA is limited to the injection period and the vicinity immediately after it.

次に、以上のように構成された本実施形態の筒内噴射型火花点火式内燃機関の運転状況、特に運転モードに応じた燃料噴射時期IT及び点火時期SAの制御に関して説明する。
均一燃焼モードの運転領域ではCPU11aにより運転モードとして均一燃焼モードが選択されると共に、モード切換スイッチ27がA端子27aに切換えられる。均一燃焼モードに対しては、予め目標平均有効圧Pe及び機関回転速度Neに応じて噴射時期IT及び点火時期SAの目標値がマップとして設定されており、これらの目標値に基づいて噴射信号及び点火信号が生成され、これらの噴射信号と点火信号とが出力される(点火信号生成手段)。なお、本実施形態では噴射時期ITを噴射終了時期として設定し、この噴射時期ITを基準として燃料噴射量Q相当だけ先行する時期を噴射信号の立上げ時期とし、噴射時期ITを噴射信号の立下げ時期として設定しているが、例えば噴射時期ITを噴射開始時期として設定してもよい。
Next, the operation state of the direct injection spark ignition type internal combustion engine of the present embodiment configured as described above, particularly the control of the fuel injection timing IT and the ignition timing SA according to the operation mode will be described.
In the operation region of the uniform combustion mode, the CPU 11a selects the uniform combustion mode as the operation mode, and the mode changeover switch 27 is switched to the A terminal 27a. For the uniform combustion mode, target values of the injection timing IT and the ignition timing SA are set in advance as a map in accordance with the target average effective pressure Pe and the engine rotational speed Ne. Based on these target values, the injection signal and An ignition signal is generated, and these injection signal and ignition signal are output (ignition signal generation means). In the present embodiment, the injection timing IT is set as the injection end timing, the timing preceding the fuel injection amount Q with respect to the injection timing IT is set as the rising timing of the injection signal, and the injection timing IT is set as the rising timing of the injection signal. Although the lowering time is set, for example, the injection time IT may be set as the injection start time.

均一燃焼モードでの制御は一般的なものであるため詳細は説明しないが、噴射信号のオン期間に同期して駆動回路21により燃料噴射弁5が開弁されて燃料噴射が行われる一方、点火信号のオン期間に同期して点火コイル22のトランジスタ26のベースに電圧が印加されて点火コイル22が充電され、オン期間の終了と共にトランジスタ26がオフされて1次電流の遮断と共に2次巻線24に誘起された高圧電流により点火プラグ6が点火される。このようにして実行された燃料噴射及び点火により、吸気行程噴射により形成された均一な混合気が点火されて均一燃焼により内燃機関Eが運転される。   Although the control in the uniform combustion mode is general and will not be described in detail, the fuel injection valve 5 is opened by the drive circuit 21 in synchronism with the ON period of the injection signal, and fuel injection is performed. A voltage is applied to the base of the transistor 26 of the ignition coil 22 in synchronism with the on period of the signal to charge the ignition coil 22, and the transistor 26 is turned off at the end of the on period to interrupt the primary current and the secondary winding. The spark plug 6 is ignited by the high-voltage current induced in 24. Due to the fuel injection and ignition executed in this way, the uniform air-fuel mixture formed by the intake stroke injection is ignited, and the internal combustion engine E is operated by uniform combustion.

成層燃焼モードの運転領域ではCPU11aにより運転モードとして成層燃焼モードが選択されると共に、モード切換スイッチ27がB端子27bに切換えられる。成層燃焼モードに対しては、予め噴射時期ITの目標値はマップとして設定されているが点火時期SAのマップは設定されておらず、CPU11aではマップから読み出した噴射時期ITや燃料噴射量Qから噴射信号が生成され、この噴射信号のみが出力される。従って、燃料噴射に関しては上記均一燃焼モードと同様に行われ、噴射信号のオン期間に同期して駆動回路21により燃料噴射弁5が駆動される(噴射制御手段)。   In the operation region of the stratified combustion mode, the stratified combustion mode is selected as the operation mode by the CPU 11a, and the mode changeover switch 27 is switched to the B terminal 27b. For the stratified combustion mode, the target value of the injection timing IT is set in advance as a map, but the map of the ignition timing SA is not set. The CPU 11a uses the injection timing IT and the fuel injection amount Q read from the map. An injection signal is generated and only this injection signal is output. Accordingly, fuel injection is performed in the same manner as in the uniform combustion mode, and the fuel injection valve 5 is driven by the drive circuit 21 in synchronization with the ON period of the injection signal (injection control means).

また、モード切換スイッチ27のB端子27bへの切換により噴射信号は点火コイル22のトランジスタ26のベースに印加され、この成層燃焼モードでは均一燃焼モードの点火信号に代えて噴射信号に基づいて点火が実行される。即ち、噴射信号に対する点火コイル22の作動状況を示す図4のタイムチャートのように、噴射信号の立上がりと共に1次巻線23に1次電流が流れて充電が開始され、噴射信号の立下がりに同期して1次電流が遮断されて2次巻線24に高電圧が誘起される。従って、燃料噴射期間Tに対応して点火コイル22の充電が行われると共に、燃料噴射の終了直後に点火が行われる(例えば、図3中のポイントA)。このようにして実行された燃料噴射及び点火により、燃料噴射弁5から噴射された燃料噴霧が点火されて成層燃焼により内燃機関Eが運転される。   Further, when the mode changeover switch 27 is switched to the B terminal 27b, the injection signal is applied to the base of the transistor 26 of the ignition coil 22. In this stratified combustion mode, ignition is performed based on the injection signal instead of the ignition signal in the uniform combustion mode. Executed. That is, as shown in the time chart of FIG. 4 showing the operating state of the ignition coil 22 with respect to the injection signal, as the injection signal rises, the primary current flows through the primary winding 23 to start charging, and the injection signal falls. Synchronously, the primary current is cut off and a high voltage is induced in the secondary winding 24. Therefore, charging of the ignition coil 22 is performed corresponding to the fuel injection period T, and ignition is performed immediately after the end of fuel injection (for example, point A in FIG. 3). The fuel spray injected from the fuel injection valve 5 is ignited by the fuel injection and ignition executed in this way, and the internal combustion engine E is operated by stratified combustion.

以上の成層燃焼時の点火時期制御は以下の観点に基づくものである。
上記のように点火プラグ6を通過する燃料噴霧を点火するスプレーガイドでは燃焼安定領域が狭く、均一燃焼時に比較してより適切な点火時期SAの設定が要求される。スプレーガイド式での点火時期SAの設定は、燃料噴霧が点火プラグ6の電極部6aの近傍を通過している噴射期間中に限られるが、以下の理由で噴射終了直後に放電することが望ましく、上記のように燃料噴射の終了直後に点火が行われる本実施形態はこのような観点でも好都合な点火時期設定となる。
1)燃料噴射期間T中は燃料噴霧が点火プラグ6の電極部6aに衝突してウェット失火する可能性が高い。
2)燃料噴射期間T中は電極部6aのギャップ位置の燃料噴霧の流速が速いため、点火アークが流されたり消失したりする可能性が高い。
3)燃料噴霧の気化及び適度な拡散の期間を確保する必要があり、この要因は結果としてMBT(Minimum advance for the Best Torque)近傍での運転に繋がる。
などを挙げることができる。
The above ignition timing control during stratified combustion is based on the following viewpoint.
As described above, the spray guide for igniting the fuel spray passing through the spark plug 6 has a narrow combustion stable region, and requires a more appropriate setting of the ignition timing SA compared with the case of uniform combustion. The setting of the ignition timing SA by the spray guide type is limited to the injection period in which the fuel spray passes in the vicinity of the electrode portion 6a of the spark plug 6, but it is desirable to discharge immediately after the end of the injection for the following reason. As described above, the present embodiment, in which ignition is performed immediately after the end of fuel injection, is an advantageous ignition timing setting from this point of view.
1) During the fuel injection period T, there is a high possibility that the fuel spray collides with the electrode portion 6a of the spark plug 6 and wet misfire occurs.
2) During the fuel injection period T, since the flow rate of the fuel spray at the gap position of the electrode portion 6a is high, there is a high possibility that the ignition arc is caused to flow or disappear.
3) It is necessary to ensure a period of vaporization of fuel spray and an appropriate diffusion, and this factor results in operation in the vicinity of MBT (Minimum advance for the Best Torque).
And so on.

なお、点火時の放電エネルギを高めれば上記1),2)などの点火条件の悪化にある程度は対処できるが、点火系のコストアップや点火プラグ6の電極部6aの消耗などの弊害を生じるため抜本的な対策とは言い難い。
また、点火コイル22の充電期間(点火ドエル角)に関する要件としては、
4)スプレーガイドでは,機関負荷の増加と共に点火時に要求される放電エネルギが増大する傾向があるため、それに応じて1次巻線23の充電期間を延長化することが望ましい。
If the discharge energy at the time of ignition is increased, the deterioration of the ignition conditions such as 1) and 2) described above can be dealt with to some extent, but this causes problems such as an increase in the cost of the ignition system and the consumption of the electrode portion 6a of the spark plug 6. It is hard to say that this is a drastic measure.
Moreover, as a requirement regarding the charging period (ignition dwell angle) of the ignition coil 22,
4) In the spray guide, the discharge energy required at the time of ignition tends to increase as the engine load increases, so it is desirable to extend the charging period of the primary winding 23 accordingly.

従って、上記した噴射信号に同期した点火時期制御により燃料噴射直後に点火が実行された時点では、図5に示すように既に電極部6aにおける燃料噴霧のガス流速が低下し始めていることから、上記要件1)の燃料噴霧の電極部6aへの衝突によりウェット失火する現象、及び要件2)の点火アークが流されたり消失したりする現象が未然に防止される。さらに燃料噴射直後では燃料噴霧の気化及び拡散が十分に促進されているため、上記3)の要件も十分に満足する。よって、成層燃焼モードのどの運転領域でも常に適切なタイミングで点火プラグ6が点火され、機関回転速度Neが急変する過渡運転時でも燃料噴霧を確実に点火でき、もって安定したスプレーガイドによる成層燃焼を実現することができる。   Accordingly, when ignition is performed immediately after fuel injection by the ignition timing control synchronized with the above-described injection signal, the gas flow rate of fuel spray in the electrode portion 6a has already started to decrease as shown in FIG. The phenomenon of wet misfire due to the collision of the fuel spray on the electrode part 6a of requirement 1) and the phenomenon of the ignition arc flowing or disappearing of requirement 2) are prevented in advance. Further, since the vaporization and diffusion of the fuel spray are sufficiently promoted immediately after the fuel injection, the requirement 3) is sufficiently satisfied. Therefore, the spark plug 6 is always ignited at an appropriate timing in any operating region of the stratified combustion mode, and the fuel spray can be reliably ignited even during a transient operation in which the engine rotational speed Ne changes suddenly. Can be realized.

また、機関負荷の増加と共に燃料噴射制御で設定される燃料噴射量も増加するため、成層燃焼モードでは高負荷域ほど噴射期間T(噴射信号のオン期間)と共に点火コイル22の充電期間が延長化され、点火コイル22の充電量、ひいては点火時の点火プラグ6の放電エネルギも増大する。従って、成層燃焼モードの運転領域内において、特に高い放電エネルギを必要としない低負荷域では、噴射期間Tと共に点火コイル22の充電期間が短縮化されるため、点火時の点火プラグ6の放電エネルギが低減されることで点火プラグ6の無用な消耗を抑制できる。結果として消耗した点火プラグ6が原因の失火を未然に防止できると共に、点火プラグ6の交換インターバルを延長化できる。一方、高い放電エネルギを必要とする高負荷域では、噴射期間Tと共に点火コイル22の充電期間が延長化されるため、放電エネルギの増大により燃料噴霧を確実に点火でき、この要因も上記した成層燃焼の安定化に貢献する。   In addition, since the fuel injection amount set by the fuel injection control increases as the engine load increases, in the stratified combustion mode, the charging period of the ignition coil 22 is extended along with the injection period T (injection signal ON period) in the higher load range. As a result, the amount of charge of the ignition coil 22, and thus the discharge energy of the spark plug 6 during ignition, also increases. Therefore, in the low load range where high discharge energy is not particularly required in the operation region of the stratified combustion mode, the charging period of the ignition coil 22 is shortened together with the injection period T, so that the discharge energy of the spark plug 6 at the time of ignition is reduced. As a result, the unnecessary consumption of the spark plug 6 can be suppressed. As a result, misfire caused by the consumed spark plug 6 can be prevented and the replacement interval of the spark plug 6 can be extended. On the other hand, in a high load range that requires high discharge energy, the charging period of the ignition coil 22 is extended together with the injection period T, so that the fuel spray can be reliably ignited by increasing the discharge energy. Contributes to stable combustion.

加えて、点火コイル22の充電期間を可変制御することで、例えば充電期間を一定にした一般的な点火時期制御に比較して点火に要するトータルの消費電力を節減できる。よって、点火コイル22、バッテリ25、オルタネータなどの容量を縮小でき、コスト低減を達成することができる。
そして、以上のように点火時期SA及び点火コイルの充電期間は常に適切に制御され、しかも、噴射信号が確定すれば自ずと点火時期SA(噴射信号の立下がり)及び充電期間(噴射信号のオン期間)も定まることから、制御装置の処理や点火系の構成を何ら複雑化することなく最適制御を実現することができる。
In addition, by variably controlling the charging period of the ignition coil 22, for example, the total power consumption required for ignition can be reduced as compared with general ignition timing control in which the charging period is constant. Therefore, the capacities of the ignition coil 22, the battery 25, the alternator, etc. can be reduced, and cost reduction can be achieved.
As described above, the ignition timing SA and the charging period of the ignition coil are always appropriately controlled. Moreover, if the injection signal is determined, the ignition timing SA (fall of the injection signal) and the charging period (on period of the injection signal) are naturally determined. Therefore, optimal control can be realized without complicating the processing of the control device and the configuration of the ignition system.

さらに、噴射信号に基づいて点火時期SAを決定する本実施形態の設定手法によれば、制御のための事前のマッチングに関して以下の大きな利点を有する。
即ち、スプレーガイド式の成層燃焼では、燃料噴霧の点火のために燃料噴霧が噴射される噴射時期ITと噴射された燃料噴霧を点火する点火時期SAとの関係が重要なため、従来の一般的な設定手法では、それぞれの個別マッチングのみならず噴射時期ITと点火時期SAとの相互マッチングを入念に行う必要がある。しかも、噴射時期ITと点火時期SAで規定される運転点を図3の燃焼安定領域内に設定するだけでなく、外乱などに起因する点火時期SAの制御誤差を見込んで運転点を燃焼安定領域の中心付近(例えば、図3中のポイントB)に設定する必要があり、このためには各運転領域毎(例えば、各空燃比毎)に燃焼安定領域の綿密な調査を要する。これらの要因により従来手法では事前のマッチングのために膨大な工数を要している。
Furthermore, according to the setting method of the present embodiment in which the ignition timing SA is determined based on the injection signal, the following great advantages are obtained with respect to the prior matching for control.
That is, in the spray-guided stratified combustion, the relationship between the injection timing IT at which the fuel spray is injected for ignition of the fuel spray and the ignition timing SA at which the injected fuel spray is ignited is important. In such a setting method, it is necessary to carefully perform mutual matching between the injection timing IT and the ignition timing SA as well as individual matching. In addition, the operating point defined by the injection timing IT and the ignition timing SA is not only set in the combustion stable region of FIG. 3, but the operating point is set in the combustion stable region in anticipation of a control error of the ignition timing SA caused by a disturbance or the like. It is necessary to set the vicinity of the center of the engine (for example, point B in FIG. 3), and for this purpose, a detailed investigation of the combustion stable region is required for each operation region (for example, for each air-fuel ratio). Due to these factors, the conventional method requires enormous man-hours for prior matching.

これに対して本実施形態では、噴射時期ITの設定により自ずと最適な点火時期SAが決定されるため、点火時期SAに関するマッチングを省略できると共に、点火時期SAの制御誤差を考慮する必要もなくなる。よって、事前のマッチング作業を大幅に簡略化できるという優れた効果を奏する。
[第2実施形態]
次に、本発明を具体化した筒内噴射型火花点火式内燃機関の第2実施形態を説明する。
On the other hand, in the present embodiment, the optimal ignition timing SA is automatically determined by setting the injection timing IT. Therefore, matching with respect to the ignition timing SA can be omitted, and there is no need to consider a control error of the ignition timing SA. Therefore, there is an excellent effect that the prior matching work can be greatly simplified.
[Second Embodiment]
Next, a second embodiment of a direct injection spark ignition type internal combustion engine embodying the present invention will be described.

本実施形態の内燃機関の全体的な構成は図1,2に示した第1実施形態のものと同一であり、相違点は燃料噴射期間Tの設定にある。従って、構成が共通の箇所の説明は省略し、相違点を重点的に説明する。
本実施形態の燃料噴射弁5は、図示はしないが噴射制御用のニードル弁のリフト量を可変して単位時間当たりの噴射量を調整できるように構成されている。ECU11内の記憶装置には、目標平均有効圧Pe(機関負荷)に対応して噴射期間T(噴射信号のオン期間)の補正係数、及びニードル弁のリフト量の補正係数がマップとして記憶されている。噴射期間Tの補正係数は目標平均有効圧Peの増加と共に噴射期間Tを減少補正する特性に、リフト量の補正係数は目標平均有効圧Peの増加と共にリフト量を増加補正する特性に設定されている。これらの補正係数に基づく補正により、例えば図6のタイムチャートに示すように、低負荷域では破線のように噴射期間Tが延長化されると共にリフト量が低減され、高負荷域では実線のように噴射期間Tが短縮化されると共にリフト量が増加される。
The overall configuration of the internal combustion engine of the present embodiment is the same as that of the first embodiment shown in FIGS. 1 and 2, and the difference is in the setting of the fuel injection period T. Therefore, the description of the parts having the same configuration is omitted, and the differences are mainly described.
Although not shown, the fuel injection valve 5 of the present embodiment is configured to be able to adjust the injection amount per unit time by varying the lift amount of the needle valve for injection control. The storage device in the ECU 11 stores a correction coefficient for the injection period T (on period of the injection signal) and a correction coefficient for the lift amount of the needle valve corresponding to the target average effective pressure Pe (engine load) as a map. Yes. The correction coefficient for the injection period T is set to a characteristic for correcting the decrease in the injection period T as the target average effective pressure Pe increases, and the correction coefficient for the lift amount is set to a characteristic for correcting the lift amount to increase as the target average effective pressure Pe increases. Yes. By correction based on these correction coefficients, for example, as shown in the time chart of FIG. 6, the injection period T is extended and the lift amount is reduced as shown by the broken line in the low load region, and the solid amount is shown in the high load region. In addition, the injection period T is shortened and the lift amount is increased.

噴射期間Tに対する補正は点火コイル22の充電期間を最適化するための処理である。即ち、第1実施形態のように点火コイル22の充電期間を噴射期間Tに対して完全一致させると、低負荷域や高負荷域では適切な充電期間が達成できない場合がある。具体的には低負荷域では充電期間が短過ぎて放電エネルギが不足気味となり、高負荷域では充電期間が長過ぎて放電エネルギが過剰気味となる場合があるが、補正係数に基づく補正により機関負荷に関わらず常に最適な充電期間(噴射期間T)に制御される(噴射信号補正手段)。   The correction for the injection period T is a process for optimizing the charging period of the ignition coil 22. That is, if the charging period of the ignition coil 22 is completely matched to the injection period T as in the first embodiment, an appropriate charging period may not be achieved in a low load region or a high load region. Specifically, in the low load range, the charging period is too short and the discharge energy may be insufficient. In the high load range, the charging period may be too long and the discharge energy may be excessive. Regardless of the load, it is always controlled to the optimum charging period (injection period T) (injection signal correcting means).

また、リフト量に対する補正は上記噴射期間Tの補正に伴う燃料噴射量Qの変動を補償するためのものであり、低負荷域では噴射期間Tの延長化に伴う燃料噴射量Qの増加がリフト量の低減(時間当たりの噴射量の減少)により抑制され、高負荷域では噴射期間Tの短縮化に伴う燃料噴射量Qの減少がリフト量の増加(時間当たりの噴射量の増加)により抑制される(噴射量補正手段)。   Further, the correction for the lift amount is for compensating for the fluctuation of the fuel injection amount Q accompanying the correction of the injection period T. In the low load region, the increase in the fuel injection amount Q accompanying the extension of the injection period T is lifted. Suppressed by reducing the amount of fuel (decreasing the injection amount per hour), and reducing the fuel injection amount Q accompanying the shortening of the injection period T by increasing the lift amount (increasing the injection amount per hour) in the high load range (Injection amount correcting means).

従って、以上の補正を実行することにより、常に運転状態(Pe,Ne)に応じた適切な燃料噴射量Qを維持した上で点火コイル22の充電期間(点火ドエル角)を機関負荷に関わらず最適値に制御でき、もって、放電エネルギの不足による失火や過剰な放電エネルギによる電極部の消耗などを未然に回避することができる。
なお、駆動回路21に入力する噴射信号とは別系統で、上記噴射期間Tに対する補正後の噴射信号をモード切換スイッチ27のB端子27bに供給するようにしてもよく、この場合には燃料噴射弁5のリフト量に対する補正を省略できる。
Therefore, by executing the above correction, the fuel injection amount Q corresponding to the operating state (Pe, Ne) is always maintained, and the charging period (ignition dwell angle) of the ignition coil 22 is set regardless of the engine load. It can be controlled to an optimum value, so that misfire due to lack of discharge energy and consumption of the electrode portion due to excessive discharge energy can be avoided in advance.
The injection signal after correction for the injection period T may be supplied to the B terminal 27b of the mode changeover switch 27 in a system different from the injection signal input to the drive circuit 21. In this case, fuel injection is performed. Correction for the lift amount of the valve 5 can be omitted.

以上で実施形態の説明を終えるが、本発明の態様はこの実施形態に限定されるものではない。例えば上記実施形態では成層燃焼モードとしてスプレーガイド式のみを実行したが、スプレーガイド式に加えて、吸気流動を利用して燃料噴霧を移送する所謂ウォールガイド式の成層燃焼も実行可能な内燃機関に適用し、スプレーガイドでの成層燃焼時に上記実施形態の噴射信号に基づく点火時期制御を実行してもよい。   This is the end of the description of the embodiment, but the aspect of the present invention is not limited to this embodiment. For example, in the above-described embodiment, only the spray guide type is executed as the stratified combustion mode. However, in addition to the spray guide type, an internal combustion engine capable of performing so-called wall guide type stratified combustion that transfers fuel spray using intake air flow. The ignition timing control based on the injection signal of the above embodiment may be executed during stratified combustion in the spray guide.

また、上記実施形態では、均一燃焼モードとスプレーガイドによる成層燃焼モードとを切換可能な内燃機関に具体化したが、必ずしも均一燃焼モードを実行する必要はなく、例えば全ての運転領域でスプレーガイドの成層燃焼を実行するようにしてもよい。
また、上記実施形態では、スプレーガイドの全領域で噴射信号に基づく点火時期制御を実行したが、例えば当該制御の適用を一部領域に限り、その他の領域では一般的な点火時期制御を適用するようにしてもよい。即ち、成層燃焼モードの運転領域を高回転高負荷域と低回転低負荷域とに区分し、高回転高負荷域に対しては均一燃焼モードと同様に目標値として点火時期SAを設定しておき、当該領域では図2においてモード切換スイッチ27をA端子27a側に切換えると共に(切換制御手段)、点火時期SAなどから生成した点火信号をCPU11aから出力して(点火信号生成手段)、この点火信号に基づきトランジスタ26を駆動する。また、低回転低負荷域に対しては上記実施形態と同じくモード切換スイッチをB端子26b側に切換えて噴射信号に基づく点火時期制御を行う。このように構成すれば、成層燃焼の領域内でも特に燃焼が不安定になり易い低回転低負荷域において、確実な点火により安定した成層燃焼を実現することができる。
In the above embodiment, the present invention has been embodied in an internal combustion engine that can switch between the uniform combustion mode and the stratified combustion mode by the spray guide. However, it is not always necessary to execute the uniform combustion mode. You may make it perform stratified combustion.
In the above embodiment, the ignition timing control based on the injection signal is executed in the entire area of the spray guide. However, for example, the application of the control is limited to a partial area, and the general ignition timing control is applied to the other areas. You may do it. That is, the operation region of the stratified combustion mode is divided into a high rotation high load region and a low rotation low load region, and the ignition timing SA is set as a target value for the high rotation high load region as in the uniform combustion mode. In this region, the mode changeover switch 27 is switched to the A terminal 27a side in FIG. 2 (switching control means), and an ignition signal generated from the ignition timing SA is output from the CPU 11a (ignition signal generating means). The transistor 26 is driven based on the signal. For the low rotation and low load range, the ignition timing control based on the injection signal is performed by switching the mode selector switch to the B terminal 26b side as in the above embodiment. If comprised in this way, the stable stratified combustion can be implement | achieved by reliable ignition especially in the low rotation low load area | region where combustion tends to become unstable also in the area | region of stratified combustion.

第1及び第2実施形態の筒内噴射型火花点火式内燃機関を示す概略構成図である。It is a schematic block diagram which shows the cylinder injection type spark ignition type internal combustion engine of 1st and 2nd embodiment. 燃料噴射系及び点火系の回路構成を示す図である。It is a figure which shows the circuit structure of a fuel-injection system and an ignition system. スプレーガイド式の成層燃焼による燃焼安定領域を示す図である。It is a figure which shows the combustion stable area | region by spray-stratified stratified combustion. 成層燃焼モードでの噴射信号に対する点火コイルの作動状況を示すタイムチャートである。It is a time chart which shows the operating condition of the ignition coil with respect to the injection signal in a stratified combustion mode. 噴射信号と電極部のガス流速との関係を示すタイムチャートである。It is a time chart which shows the relationship between an injection signal and the gas flow rate of an electrode part. 第2実施形態の噴射期間とニードル弁のリフト量との設定状況を示すタイムチャートである。It is a time chart which shows the setting condition of the injection period of 2nd Embodiment, and the lift amount of a needle valve.

符号の説明Explanation of symbols

4 燃焼室
5 燃料噴射弁
6 点火プラグ
6a 電極部
11a CPU(噴射制御手段、点火信号生成手段、切換制御手段、
噴射信号補正手段、噴射量補正手段)
21 駆動回路(噴射制御手段)
22 点火コイル(点火電流生成手段)
23 1次巻線
24 2次巻線
27 モード切換スイッチ(切換手段)
E 内燃機関
4 Combustion chamber 5 Fuel injection valve 6 Spark plug 6a Electrode 11a CPU (Injection control means, ignition signal generating means, switching control means,
Injection signal correction means, injection amount correction means)
21 Drive circuit (injection control means)
22 Ignition coil (ignition current generating means)
23 Primary winding 24 Secondary winding 27 Mode selector switch (switching means)
E Internal combustion engine

Claims (5)

燃焼室内に直接燃料を噴射する燃料噴射弁と、該燃料噴射弁からの燃料噴霧の噴射経路近傍に電極部が配置された点火プラグとを備え、機関の圧縮行程で上記燃料噴射弁から噴射された燃料噴霧が上記点火プラグの電極部近傍を通過したときに点火して成層燃焼させる筒内噴射型火花点火式内燃機関において、
上記機関の回転に同期する所定タイミングの噴射信号を生成し、該噴射信号に基づき上記燃料噴射弁を駆動制御する噴射制御手段と、
1次巻線及び2次巻線を有し、上記噴射信号を1次電流として上記1次巻線に供給すると共に、上記燃料噴射の終了と同期して上記1次電流が遮断されたときに上記2次巻線の誘導作用により高圧電流を生起させて点火プラグに供給する点火電流生成手段と
を備えたことを特徴とする筒内噴射型火花点火式内燃機関。
A fuel injection valve for directly injecting fuel into the combustion chamber and an ignition plug having an electrode portion disposed in the vicinity of an injection path of fuel spray from the fuel injection valve are injected from the fuel injection valve in the compression stroke of the engine. In-cylinder injection spark ignition internal combustion engine that ignites and stratifies combustion when the fuel spray passes near the electrode portion of the spark plug,
Injection control means for generating an injection signal at a predetermined timing synchronized with the rotation of the engine, and for driving and controlling the fuel injection valve based on the injection signal;
A primary winding and a secondary winding, when the injection signal is supplied to the primary winding as a primary current, and the primary current is cut off in synchronization with the end of the fuel injection; An in-cylinder injection spark ignition type internal combustion engine comprising: an ignition current generating means for generating a high-voltage current by the induction action of the secondary winding and supplying the high-voltage current to the spark plug.
上記機関は上記成層燃焼に加えて、吸気行程で燃料噴射して均一な混合気を点火する均一燃焼を実行可能であり、該均一燃焼と成層燃焼とを運転領域に応じて切換えるように構成され、
上記機関の運転状態に基づき上記均一燃焼時の点火信号を生成する点火信号生成手段と、
上記点火信号生成手段の点火信号と上記噴射制御手段の噴射信号とを選択的に上記点火電流生成手段の1次巻線に供給する切換手段と、
上記均一燃焼時に上記切換手段を点火信号側に切換えると共に、上記成層燃焼時に上記切換手段を噴射信号側に切換える切換制御手段と
を備えたことを特徴とする請求項1記載の筒内噴射型火花点火式内燃機関。
In addition to the stratified combustion, the engine is capable of performing uniform combustion in which fuel is injected during the intake stroke to ignite a uniform mixture, and is configured to switch between the uniform combustion and the stratified combustion according to the operating region. ,
Ignition signal generating means for generating an ignition signal at the time of uniform combustion based on the operating state of the engine;
Switching means for selectively supplying the ignition signal of the ignition signal generating means and the injection signal of the injection control means to the primary winding of the ignition current generating means;
The in-cylinder injection spark according to claim 1, further comprising: a switching control means for switching the switching means to the ignition signal side during the uniform combustion and switching the switching means to the injection signal side during the stratified combustion. Ignition internal combustion engine.
上記機関の運転状態に基づき上記成層燃焼時の点火信号を生成する点火信号生成手段と、
上記点火信号生成手段の点火信号と上記噴射制御手段の噴射信号とを選択的に上記点火電流生成手段の1次巻線に供給する切換手段と、
上記成層燃焼を実行する運転領域内の機関回転速度または機関負荷が高い領域で上記切換手段を点火信号側に切換えると共に、該運転領域内の機関回転速度または機関負荷が低い領域で上記切換手段を噴射信号側に切換える切換制御手段と
を備えたことを特徴とする請求項1記載の筒内噴射型火花点火式内燃機関。
Ignition signal generating means for generating an ignition signal at the time of stratified combustion based on the operating state of the engine;
Switching means for selectively supplying the ignition signal of the ignition signal generating means and the injection signal of the injection control means to the primary winding of the ignition current generating means;
The switching means is switched to the ignition signal side in a region where the engine rotational speed or engine load in the operating region where the stratified combustion is performed is high, and the switching means is switched in the region where the engine rotational speed or engine load is low in the operating region. 2. A direct injection spark ignition type internal combustion engine according to claim 1, further comprising switching control means for switching to the injection signal side.
上記機関の運転状態に応じて上記噴射信号の期間を補正し、補正後の噴射信号を上記点火電流生成手段の1次巻線に供給する噴射信号補正手段を備えたことを特徴とする請求項1乃至3の何れかに記載の筒内噴射型火花点火式内燃機関。   2. An injection signal correcting means for correcting a period of the injection signal in accordance with an operating state of the engine and supplying the corrected injection signal to a primary winding of the ignition current generating means. The in-cylinder injection spark ignition internal combustion engine according to any one of 1 to 3. 上記燃料噴射弁は、時間当たりの噴射量を調整可能に構成され、
上記噴射信号補正手段による上記噴射信号の補正に伴う燃料噴射量の変動を補償すべく、上記燃料噴射弁の時間当たりの噴射量を補正する噴射量補正手段を備えたことを特徴とする請求項4記載の筒内噴射型火花点火式内燃機関。
The fuel injection valve is configured to be capable of adjusting the injection amount per hour,
2. An injection amount correcting means for correcting an injection amount per time of the fuel injection valve in order to compensate for a variation in the fuel injection amount accompanying the correction of the injection signal by the injection signal correcting means. 4. An in-cylinder injection spark ignition type internal combustion engine as set forth in claim 4.
JP2006094447A 2006-03-30 2006-03-30 Cylinder injection spark ignition type internal combustion engine Withdrawn JP2007270658A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006094447A JP2007270658A (en) 2006-03-30 2006-03-30 Cylinder injection spark ignition type internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006094447A JP2007270658A (en) 2006-03-30 2006-03-30 Cylinder injection spark ignition type internal combustion engine

Publications (1)

Publication Number Publication Date
JP2007270658A true JP2007270658A (en) 2007-10-18

Family

ID=38673731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006094447A Withdrawn JP2007270658A (en) 2006-03-30 2006-03-30 Cylinder injection spark ignition type internal combustion engine

Country Status (1)

Country Link
JP (1) JP2007270658A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136879A1 (en) * 2012-03-14 2013-09-19 日立オートモティブシステムズ株式会社 Control device for internal combustion engine
WO2015143109A1 (en) * 2014-03-20 2015-09-24 GM Global Technology Operations LLC Optimum current drive for actuator control
US9624883B2 (en) 2014-03-20 2017-04-18 GM Global Technology Operations LLC Smart actuator for plug and play
US9664158B2 (en) 2014-03-20 2017-05-30 GM Global Technology Operations LLC Actuator with integrated driver
US9726099B2 (en) 2014-03-20 2017-08-08 GM Global Technology Operations LLC Actuator with feed forward control
US9777660B2 (en) 2014-03-20 2017-10-03 GM Global Technology Operations LLC Parameter estimation in an actuator
US9777686B2 (en) 2014-03-20 2017-10-03 GM Global Technology Operations LLC Actuator motion control
US9863355B2 (en) 2014-03-20 2018-01-09 GM Global Technology Operations LLC Magnetic force based actuator control
US9932947B2 (en) 2014-03-20 2018-04-03 GM Global Technology Operations LLC Actuator with residual magnetic hysteresis reset
US10480674B2 (en) 2014-03-20 2019-11-19 GM Global Technology Operations LLC Electromagnetic actuator structure
CN111971466A (en) * 2018-04-10 2020-11-20 日产自动车株式会社 Method for controlling internal combustion engine and internal combustion engine

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013136879A1 (en) * 2012-03-14 2013-09-19 日立オートモティブシステムズ株式会社 Control device for internal combustion engine
JP2013189923A (en) * 2012-03-14 2013-09-26 Hitachi Automotive Systems Ltd Control device for internal combustion engine
CN104126067A (en) * 2012-03-14 2014-10-29 日立汽车系统株式会社 Control device for internal combustion engine
WO2015143109A1 (en) * 2014-03-20 2015-09-24 GM Global Technology Operations LLC Optimum current drive for actuator control
US9624883B2 (en) 2014-03-20 2017-04-18 GM Global Technology Operations LLC Smart actuator for plug and play
US9657699B2 (en) 2014-03-20 2017-05-23 GM Global Technology Operations LLC Actuator with integrated flux sensor
US9664158B2 (en) 2014-03-20 2017-05-30 GM Global Technology Operations LLC Actuator with integrated driver
US9726099B2 (en) 2014-03-20 2017-08-08 GM Global Technology Operations LLC Actuator with feed forward control
US9726100B2 (en) 2014-03-20 2017-08-08 GM Global Technology Operations LLC Actuator with deadbeat control
US9777660B2 (en) 2014-03-20 2017-10-03 GM Global Technology Operations LLC Parameter estimation in an actuator
US9777686B2 (en) 2014-03-20 2017-10-03 GM Global Technology Operations LLC Actuator motion control
US9863355B2 (en) 2014-03-20 2018-01-09 GM Global Technology Operations LLC Magnetic force based actuator control
US9932947B2 (en) 2014-03-20 2018-04-03 GM Global Technology Operations LLC Actuator with residual magnetic hysteresis reset
US10190526B2 (en) 2014-03-20 2019-01-29 GM Global Technology Operations LLC Alternating current drive for actuators
US10480674B2 (en) 2014-03-20 2019-11-19 GM Global Technology Operations LLC Electromagnetic actuator structure
US10655583B2 (en) 2014-03-20 2020-05-19 GM Global Technology Operations LLC Optimum current drive for a actuator control
CN111971466A (en) * 2018-04-10 2020-11-20 日产自动车株式会社 Method for controlling internal combustion engine and internal combustion engine
EP3779154A4 (en) * 2018-04-10 2021-04-14 Nissan Motor Co., Ltd. Internal combustion engine control method and internal combustion engine
US11391236B2 (en) 2018-04-10 2022-07-19 Nissan Motor Co., Ltd. Control method of internal combustion engine and internal combustion engine
CN111971466B (en) * 2018-04-10 2023-05-30 日产自动车株式会社 Control method of internal combustion engine and internal combustion engine

Similar Documents

Publication Publication Date Title
JP2007270658A (en) Cylinder injection spark ignition type internal combustion engine
US6425371B2 (en) Controller for internal combustion engine
US7252069B2 (en) Gas fuel engine and control method for the same
JP4938404B2 (en) Engine control device
JP4873249B2 (en) Control device for vehicle engine
JP2009115025A (en) Apparatus and method for controlling compression self-ignited internal combustion engine
WO2000008328A1 (en) Control device for direct injection engine
US6397827B1 (en) Spark ignition device for direct injection-type engines
JP4806998B2 (en) Internal combustion engine
WO2019230406A1 (en) Control device of internal combustion engine and control method of internal combustion engine
JP2023020228A (en) engine system
JP2023020229A (en) engine system
CN1989327A (en) Method of controlling ignition timing in internal combustion engine
JP4868242B2 (en) Control device for vehicle engine
JP2008025405A (en) Control device for internal combustion engine
JP5062133B2 (en) Ignition timing control device for internal combustion engine
JP6001920B2 (en) Engine combustion control device
JP7124921B2 (en) engine controller
JP2011058372A (en) Control method for engine, and control device for the same
US7198025B2 (en) In-cylinder injection type spark-ignition internal combustion engine
JP2007239577A (en) Control device for direct injection internal combustion engine
CN110621862B (en) Control device and control method for direct injection engine
JP2004028027A (en) Cylinder injection-type internal combustion engine and its combustion method
JP3572873B2 (en) Control device for internal combustion engine
JP2015057543A (en) Combustion controller for gasoline engine

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602