WO2021153938A1 - 배터리 모듈 - Google Patents

배터리 모듈 Download PDF

Info

Publication number
WO2021153938A1
WO2021153938A1 PCT/KR2021/000751 KR2021000751W WO2021153938A1 WO 2021153938 A1 WO2021153938 A1 WO 2021153938A1 KR 2021000751 W KR2021000751 W KR 2021000751W WO 2021153938 A1 WO2021153938 A1 WO 2021153938A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
heat transfer
battery module
battery cell
fireproof
Prior art date
Application number
PCT/KR2021/000751
Other languages
English (en)
French (fr)
Inventor
김태일
김호연
Original Assignee
에스케이이노베이션 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210006104A external-priority patent/KR20210098331A/ko
Application filed by 에스케이이노베이션 주식회사 filed Critical 에스케이이노베이션 주식회사
Priority to CN202180011648.7A priority Critical patent/CN115004455A/zh
Priority to EP21747424.6A priority patent/EP4099480A1/en
Publication of WO2021153938A1 publication Critical patent/WO2021153938A1/ko
Priority to US17/877,745 priority patent/US20220367934A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/658Means for temperature control structurally associated with the cells by thermal insulation or shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/289Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs
    • H01M50/293Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by spacing elements or positioning means within frames, racks or packs characterised by the material
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/07Fire prevention, containment or extinguishing specially adapted for particular objects or places in vehicles, e.g. in road vehicles
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C3/00Fire prevention, containment or extinguishing specially adapted for particular objects or places
    • A62C3/16Fire prevention, containment or extinguishing specially adapted for particular objects or places in electrical installations, e.g. cableways
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module.
  • a secondary battery cell is a battery capable of repeating charging and discharging because mutual conversion between chemical energy and electrical energy is reversible.
  • the secondary battery cell includes an electrode assembly such as a positive electrode, a negative electrode, a separator and an electrolyte, which are main components of a secondary battery, and a cell body member of a laminated film case that protects the electrode assembly.
  • an electrode assembly such as a positive electrode, a negative electrode, a separator and an electrolyte, which are main components of a secondary battery, and a cell body member of a laminated film case that protects the electrode assembly.
  • a plurality of the secondary battery cells are mounted to be installed as a battery module in an electric vehicle or the like.
  • any one of the secondary battery cells may explode due to an internal factor of the battery module, such as an increase in the temperature of the secondary battery cell, or any one of the secondary battery cells may explode due to an external impact.
  • the explosion of any one secondary battery cell may cause a problem leading to a chain explosion of secondary battery cells by applying high temperature and high pressure to other secondary battery cells in the vicinity.
  • an object of the present invention is to provide a battery module in which other secondary battery cells are sequentially exploded by a flame caused by the explosion of any one secondary battery cell.
  • a battery module according to an embodiment of the present invention is provided between a plurality of secondary battery cells, a housing member accommodating the plurality of secondary battery cells therein, and the plurality of secondary battery cells, wherein at least a portion in a thickness direction is different It may include a multi-layer member formed of a material having a lower thermal conductivity compared to the above.
  • the fireproof portion forming an outer layer adjacent to the secondary battery cell and the fireproof portion are provided in contact with both sides to form an inner layer, It may include a heat transfer prevention part formed of a material having a lower thermal conductivity than the part.
  • the heat transfer preventing unit of the battery module according to an embodiment of the present invention may be formed of a material having a thermal conductivity of 0.3 W/(m ⁇ K) or less.
  • the heat transfer preventing unit of the battery module may be formed of a material including at least one of a polymer material, an inorganic material material, and a ceramic material.
  • the fire resistant part of the battery module according to an embodiment of the present invention may be formed of a material having a higher fire resistance than the heat transfer preventing part.
  • the fire resistant part of the battery module according to an embodiment of the present invention may be formed of a material having a melting point higher than at least 1000°C.
  • the fireproof part of the battery module according to an embodiment of the present invention may be formed of a material that maintains its shape at at least 1000°C.
  • the fire resistant portion of the battery module according to an embodiment of the present invention may be formed to have a thickness of at least 0.01 mm thicker.
  • the fire resistant part of the battery module according to an embodiment of the present invention may be formed to have a thickness thinner than that of the heat transfer preventing part in the entire area in contact with the secondary battery cell.
  • the fire resistant part of the battery module according to an embodiment of the present invention may be formed to have a thickness thinner than that of the heat transfer preventing part in a central part of a region in contact with the secondary battery cell.
  • the fire resistant portion of the battery module according to an embodiment of the present invention may be formed to have a thickness greater than that of the heat transfer preventing portion at an outer portion of a region in contact with the secondary battery cell.
  • the fire resistant portion of the battery module according to an embodiment of the present invention may be gradually formed thinner than the heat transfer preventing portion from the outer portion of the region in contact with the secondary battery cell to the central portion.
  • the multi-layer member of the battery module according to an embodiment of the present invention is provided with a heat transfer preventing portion forming an outer layer adjacent to the secondary battery cell and the heat transfer preventing portion being in contact with both sides of the secondary battery cell to form an inner layer and a portion, wherein the heat transfer preventing portion may be formed of a material having lower thermal conductivity than the fire resistant portion.
  • the multi-layer member of the battery module according to an embodiment of the present invention is provided with a heat transfer preventing portion forming an outer layer adjacent to the secondary battery cell and the heat transfer preventing portion in contact with both sides to form an inner layer
  • the secondary battery cell may include a core cushioning unit that is elastically deformed and compressed when the secondary battery cell expands, and the heat transfer prevention unit may be formed of a material having lower thermal conductivity than the core cushioning unit.
  • the heat transfer preventing unit of the battery module according to an embodiment of the present invention may be fixed to the secondary battery cell with an adhesive or an adhesive tape.
  • the battery module of the present invention has an effect of preventing a problem in which heat of one secondary battery cell is transferred to another secondary battery cell.
  • the battery module of the present invention has an advantage in that it is possible to improve the problem of sequentially exploding other secondary battery cells by a flame caused by the explosion of any one secondary battery cell.
  • FIG. 1 is an exploded perspective view showing a battery module of the present invention.
  • FIG. 2 is a front view showing the battery module of the present invention.
  • FIG 3 is a front view showing an embodiment in which the thickness is adjusted in the central portion of the fireproof part in the battery module of the present invention.
  • FIG. 4 is a front view showing an embodiment in which the thickness of the fireproof part is adjusted from the outer part in the battery module of the present invention.
  • FIG. 5 is a front view showing an embodiment in which the thickness of the fireproof part is adjusted to be gradually changed from the central part to the outer part in the battery module of the present invention.
  • FIG. 6 is a front view showing an embodiment in which the heat transfer preventing unit forms the outer layer and the fire resistant unit forms the inner layer in the battery module of the present invention.
  • FIG. 7 is a front view illustrating an embodiment in which the heat transfer preventing unit forms an outer layer and the core buffer unit forms an inner layer in the battery module of the present invention.
  • FIG 8 is a front view showing an embodiment in which the heat transfer preventing unit forming the outer layer in the battery module of the present invention is fixed to the secondary battery cell with an adhesive or an adhesive tape.
  • FIG. 9 is a photograph showing a state in which the fireproof part of the present invention is not perforated in a high temperature test.
  • FIG. 10 is a graph showing the temperature change of the fireproof part and the heat transfer prevention part of the present invention in a high temperature test.
  • the present invention relates to a battery module, and it is possible to prevent the problem that heat of one secondary battery cell 10 is transferred to another secondary battery cell 10, and in another aspect, any one secondary battery cell 10 ), it is possible to improve the problem that the other secondary battery cells 10 are sequentially exploded by the flame caused by the explosion.
  • the multi-layer member 30 provided between the secondary battery cells 10 adjacent to each other is at least one of heat and flame generated in any one secondary battery cell 10 is It may be configured to be shielded from propagation to the secondary battery cell 10 .
  • FIG. 1 is an exploded perspective view showing the battery module of the present invention.
  • the battery module according to an embodiment of the present invention includes a plurality of secondary battery cells 10, the The plurality of secondary battery cells 10 are provided between the housing member 20 accommodated therein and the plurality of secondary battery cells 10, at least a portion of the thickness direction (X) of a material having a lower thermal conductivity than other portions. It may include a multi-layer member 30 formed of.
  • the battery module of the present invention includes a multi-layer member 30 between the plurality of secondary battery cells 10 so that at least one of heat and flame generated in any one secondary battery cell 10 is protected from the surrounding area. Propagation to other secondary battery cells 10 can be prevented.
  • the secondary battery cell 10 may include an electrode assembly and a cell body member surrounding the electrode assembly.
  • the electrode assembly is used to be accommodated in the cell body member together with substantially including the electrolyte.
  • the electrolyte may contain lithium salts such as LiPF 6 and LiBF 4 in an organic solvent such as EC (ethylene carbonate), PC (propylene carbonate), DEC (diethyl carbonate), EMC (ethyl methyl carbonate), and DMC (dimethyl carbonate).
  • EC ethylene carbonate
  • PC propylene carbonate
  • DEC diethyl carbonate
  • EMC ethyl methyl carbonate
  • DMC dimethyl carbonate
  • the cell body member protects the electrode assembly and has a configuration for accommodating the electrolyte
  • the cell body member may be provided as a pouch-type member or a can-type member.
  • the pouch-type member is a form of sealing and accommodating the electrode assembly on three sides, and is formed by overlapping and sealing three surfaces of the upper surface part and both side surface parts except for the one surface part, which is mainly the lower surface part, in a state in which the electrode assembly is accommodated therein.
  • the can-shaped member is a type to accommodate the electrode assembly by sealing it on one side, and it is configured to seal by overlapping one surface of the upper surface part except for the three surfaces, which are mainly the lower part and both side parts, in a state where the electrode assembly is accommodated therein. is the absence of being
  • pouch-type secondary battery cells 10 and can-type secondary battery cells 10 are only examples of the secondary battery cells 10 accommodated in the battery module of the present invention, and secondary battery cells accommodated in the battery module of the present invention. (10) is not limited to this kind.
  • the housing member 20 serves as a body of the battery module in which the plurality of secondary battery cells 10 are accommodated.
  • the housing member 20 has a configuration in which a plurality of secondary batteries are installed, and while protecting the secondary batteries, the electrical energy generated by the secondary batteries is transmitted to the outside, or the electrical energy from the outside is transmitted to the secondary batteries.
  • the housing member 20 may include a bottom member 21 and a side wall member 22 accommodating the plurality of secondary battery cells 10 .
  • the housing member 20 may include a bottom member 21 on which the secondary battery cell 10 is mounted, and a side wall member 22 provided at a corner of the bottom member 21 .
  • the bottom member 21 has the plurality of secondary battery cells 10 seated therein, and serves to support the plurality of secondary battery cells 10 seated in this way.
  • the bottom member 21 may be configured to transfer heat generated in the secondary battery cell 10 to an external heat sink to cool it.
  • the side wall member 22 forming the side of the housing member 20 may also discharge heat generated in the secondary battery cell 10 to the outside.
  • the housing member 20 may include a cover member 23 provided on the upper end of the side wall member 22 to protect the upper end of the secondary battery.
  • the housing member 20 may include a front member 26 and a rear member 27 adjacent to the side wall member 22 , and thus is configured to surround the plurality of secondary battery cells 10 . can be
  • bus bar member 25 for electrically connecting the secondary battery to the outside may be provided in the housing member 20 .
  • a compression member 24 may be provided on the inner surface of the side wall member 22 to more firmly protect the secondary battery 10 .
  • the multi-layer member 30 serves to prevent at least one of heat and flame generated in one secondary battery cell 10 from propagating to other secondary battery cells 10 in the vicinity.
  • the multi-layer member 30 may be provided between the secondary battery cells 10 adjacent to each other.
  • the multi-layer member 30 is provided to form a plurality of layers, and at least a portion may be formed of a material having a lower thermal conductivity than other portions.
  • the multi-layer member 30 is formed to have a lower thermal conductivity than other portions, thereby preventing the transfer of heat generated in any one of the secondary battery cells 10 .
  • the multi-layer member 30 may include a fireproof part 31 and a heat transfer prevention part 32 so as to be formed in several layers in the thickness direction (X). A detailed description thereof will be described later with reference to FIGS. 2 to 10 .
  • FIG. 2 is a front view showing a battery module of the present invention.
  • the multi-layer member 30 of the battery module according to an embodiment of the present invention is located outside adjacent to the secondary battery cell 10 .
  • the fire resistant unit 31 forming a layer and the fire resistant unit 31 are provided in contact with both sides to form an inner layer, and include a heat transfer prevention unit 32 formed of a material having lower thermal conductivity than the fire resistant unit 31. can
  • the multi-layer member 30 is formed to have a lower thermal conductivity than that of the other parts, so that the heat generated in any one of the secondary battery cells 10 can be prevented from being transferred, the fireproof part 31 and It may include a heat transfer preventing unit 32 having a lower thermal conductivity than the fire resistant unit 31 .
  • the multi-layer member 30 may be formed with the heat transfer preventing portion 32 formed at a central portion in the thickness direction (X) and the fire resistant portion 31 being formed on an outer portion in the thickness direction (X). .
  • the fire resistant part 31 and the heat transfer prevention part 32 are each other in the height direction (Y) of the multi-layer member 30 at a rate of formation in the thickness direction (X) of the multi-layer member (30).
  • it may be configured to more effectively secure durability and prevent heat transfer. A detailed description thereof will be described later with reference to FIGS. 3 to 5 .
  • the fire resistant part 31 is provided on the outside of the heat transfer preventing part 32 in the thickness direction (X) of the multi-layer member 30 to form an outer layer.
  • the fireproof part 31 is configured not to be lost by melting or burning by the heat and flame generated in any one of the secondary battery cells 10 , and serves to increase the durability of the multi-layer member 30 . .
  • the heat transfer preventing portion 32 has a lower thermal conductivity than the fire resistant portion 31 to prevent heat transfer, but may melt or disappear by heat or flame. can be configured to complement this point.
  • the fire resistant part 31 of the battery module may be formed of a material having a higher fire resistance than the heat transfer preventing part 32 .
  • the fireproof part 31 forming the outer layer of the multi-layer member 30 is directly exposed to heat or flame. do. Therefore, in order to prevent problems such as melting or burning of the heat transfer preventing part 32 by such heat and flame, the fire resistant part 31 is formed of a material having a higher fire resistance than the heat transfer preventing part 32. will be.
  • the fire resistant part 31 of the battery module according to an embodiment of the present invention may be formed of a material having a melting point higher than at least 1000°C.
  • the multi-layer member 30 can ensure durability.
  • the fireproof part 31 may be formed of a material such as iron (Fe) or copper (Cu) having a melting point higher than 1000° C., so that durability of the multi-layer member 30 may be secured.
  • the fireproof part 31 may be formed of an inorganic material such as ceramics to ensure durability against heat or flame.
  • the fireproof part 31 of the battery module according to an embodiment of the present invention may be formed of a material that maintains its shape at at least 1000°C.
  • the fireproof part 31 maintains its shape. Accordingly, the multi-layer member 30 prevents or delays the problem of direct transfer of heat, gas, etc. to the other secondary battery cells 10 in the vicinity.
  • the fire resistant part 31 may be formed of a material such as iron (Fe), copper (Cu), aluminum (Al), or the like without additional processing, or may be formed of iron (Fe) or copper (Cu). , may be configured by coating or heat-treating a material advantageous for shape maintenance on the outer surface of a metal material such as aluminum (Al).
  • the fire resistant portion 31 of the battery module according to an embodiment of the present invention may be formed to have a thickness of at least 0.01 mm thicker.
  • FIG. 9 is a photograph showing a state in which the fireproof part 31 of the present invention is not perforated in a high temperature test, and the technical significance of the thickness limitation of the fireproof part 31 can be confirmed.
  • the high temperature test was performed by applying a flame to a specific point in front of the fireproof part 31 with a torch.
  • the fire resistant part 31 was formed of an iron alloy material (SUS 304) having a melting point of about 1400° C.
  • the heat transfer prevention part 32 was formed of a mica sheet.
  • the thickness of the fireproof part 31 was formed to be 0.01m or 0.5mm.
  • the fire resistant unit 31 also has an effect of preventing heat transfer in part as the thickness thereof increases.
  • the fire resistant unit 31 of the battery module according to an embodiment of the present invention is , in the entire area in contact with the secondary battery cell 10 may be formed to have a thickness thinner than that of the heat transfer preventing unit 32 .
  • the fireproof part 31 when the fireproof part 31 is formed to be thinner than the heat transfer preventing part 32, the heat transfer preventing part 32 relative to the space of a limited distance between the secondary battery cells 10 adjacent to each other. can be formed thicker.
  • the heat transfer prevention part 32 is provided relatively thickly, the effect of blocking the transfer of heat generated in any one of the secondary battery cells 10 can be further enhanced.
  • the amount of heat conduction is inversely proportional to the distance, and since the heat transfer prevention part 32, which has lower thermal conductivity than the fireproof part 31, is formed relatively more, there is an effect of increasing the heat conduction distance.
  • the heat transfer prevention part 32 is provided inside the fireproof part 31 in the thickness direction (X) of the multi-layer member 30 to form a core layer.
  • the heat transfer prevention unit 32 may be provided to improve the problem of heat generated in one of the secondary battery cells 10 being transferred to the other secondary battery cells 10 in the vicinity.
  • the heat transfer preventing unit 32 may be configured to have a lower thermal conductivity than the fire resistant unit 31 .
  • the heat transfer preventing unit 32 of the battery module according to an embodiment of the present invention may be formed of a material having a thermal conductivity of 0.3 W/(m ⁇ K) or less.
  • the thermal conductivity of the heat transfer prevention unit 32 is formed to be equal to or smaller than 0.3 W/(m ⁇ K) at least, the heat generated in any one of the secondary battery cells 10 is transferred to other secondary battery cells in the vicinity. (10) will improve the transfer problem.
  • the thermal conductivity of the heat transfer preventing part 32 is formed to be at least equal to or smaller than 0.03 W/(m ⁇ K), thereby further enhancing the effect of improving the heat transfer problem.
  • the fire resistant part 31 is provided on the outer surface of the heat transfer preventing part 32, a material can be selected in consideration of only the physical properties of thermal conductivity. That is, since the heat transfer preventing unit 32 can select a material by excluding the problem of durability that melts or burns due to heat or flame, the range of material selection can be further expanded.
  • the heat transfer preventing unit 32 of the battery module may be formed of a material including at least one of a polymer material, an inorganic material material, and a ceramic material.
  • the polymer material may include, for example, a silicone-based material.
  • the inorganic material is a material that does not contain carbon (C).
  • C carbon
  • the ceramic material is, for example, silicon (Si), aluminum (Al), titanium (Ti), a metal element such as zirconium (Zr) made by combining oxygen, carbon, nitrogen, etc.
  • These ceramic materials are manufactured using natural raw materials such as, for example, clay, kaolin, feldspar, silica, etc., silicon carbide, silicon nitride, alumina, zirconia, It may be prepared using a synthetic raw material such as barium titanate.
  • the multi-layer member 30 is formed of any one secondary battery cell ( It is possible to shield the heat generated in 10) from propagating to other secondary battery cells 10 in the vicinity.
  • FIG. 3 is a front view illustrating an embodiment in which the thickness is adjusted at the central portion of the fire resistant unit 31 in the battery module of the present invention.
  • the fire resistant unit 31 of the battery module according to an embodiment of the present invention is shown in FIG. ) may be formed to have a thickness thinner than that of the heat transfer preventing unit 32 in the central portion of the region in contact with the secondary battery cell 10 .
  • the multi-layer member 30 has a thickness tc2 of the heat transfer preventing part 32 thicker than the thickness tc1 of the fireproof part 31 in the central part of the region in contact with the secondary battery cell 10 . be able to form
  • the thickness te1 of the fireproof part 31 and the thickness te2 of the heat transfer prevention part 32 may be the same, or the fireproof part 31 ) may have a thickness te1 thicker than a thickness te2 of the heat transfer preventing unit 32 .
  • the fire resistant part of the battery module according to an embodiment of the present invention may be formed to have a thickness greater than that of the heat transfer preventing unit 32 at the outer portion of the region in contact with the secondary battery cell 10 .
  • the multi-layer member 30 has a thickness (te1) of the fireproof part (31) thicker than a thickness (te2) of the heat transfer prevention part (32) at the outer side of the region in contact with the secondary battery cell (10). be able to form
  • the thickness tc1 of the fireproof part 31 and the thickness tc2 of the heat transfer prevention part 32 may be the same, or the heat transfer prevention part ( The thickness tc2 of 32 ) may be thicker than the thickness tc1 of the fire resistant part 31 .
  • the region where the flame is generated by the explosion of the secondary battery cell 10 is mainly the outer portion of the secondary battery cell 10, and faces the outer portion of the secondary battery cell 10 having a high flame generation rate as described above. It is possible to form the fire resistant part 31 in a larger ratio in the area where
  • the durability is increased in the portion where a relatively large number of flames are generated and the problem of burning the material occurs, and the durability is relatively low in the portion where the flame is relatively small, thereby securing the durability more effectively.
  • FIG. 5 is a front view showing an embodiment in which the fireproof part 31 in the battery module of the present invention is adjusted to have a thickness gradually changed from the central part to the outer part.
  • the fireproof part 31 of the battery module may be formed to be thinner than the heat transfer preventing part 32 gradually from the outer part of the region in contact with the secondary battery cell 10 to the central part.
  • the multi-layer member 30 has a thickness tc2 of the heat transfer preventing part 32 thicker than the thickness tc1 of the fireproof part 31 in the central part of the region in contact with the secondary battery cell 10 . While forming, it is possible to form the thickness te1 of the fireproof part 31 thicker than the thickness te2 of the heat transfer preventing part 32 at the outer side of the region in contact with the secondary battery cell 10 .
  • the heat transfer prevention effect can be formed to gradually increase toward the central portion of the secondary battery cell 10 , which generates relatively much heat.
  • FIG. 6 is a front view showing an embodiment in which the heat transfer preventing unit 32 forms an outer layer and the fire resistant unit 31 forms an inner layer in the battery module of the present invention.
  • the multi-layer member 30 of the battery module according to an embodiment of the present invention is provided on both sides of the heat transfer preventing part 32 forming an outer layer adjacent to the secondary battery cell 10 and on both sides.
  • the heat transfer prevention part 32 is provided in contact with the fireproof part 31 forming an inner layer, and the heat transfer prevention part 32 may be formed of a material having a lower thermal conductivity than the fireproof part 31 .
  • the multi-layer member 30 is formed to have a lower thermal conductivity than that of the other parts, so that the heat generated in any one of the secondary battery cells 10 can be prevented from being transferred, the fireproof part 31 and It may include a heat transfer preventing unit 32 having a lower thermal conductivity than the fire resistant unit 31 .
  • the fire resistant part 31 may be formed in a central portion in the thickness direction (X), and the heat transfer preventing portion 32 may be formed in an outer portion in the thickness direction (X). .
  • the embodiment described with reference to FIG. 2 above has a structure in which the fire resistant part 31 forms an outer layer and the heat transfer prevention part 32 forms an inner layer
  • the embodiment described with reference to FIG. 6 is It has a structure in which the fireproof part 31 forms an inner layer and the heat transfer prevention part 32 forms an outer layer.
  • limitations such as material and thickness of the fire resistant part 31 and the heat transfer preventing part 32 described with reference to FIG. 2 and the like may be applied to the embodiment described with reference to FIG. 6 .
  • the multi-layer member 30 of the battery module according to an embodiment of the present invention is provided on both sides of the heat transfer preventing part 32 forming an outer layer adjacent to the secondary battery cell 10 and on both sides.
  • the heat transfer prevention part 32 is provided in contact to form an inner layer, and includes a core buffer part 33 that is elastically deformed and compressed when the secondary battery cell 10 expands, and the heat transfer prevention part 32 is the It may be formed of a material having a lower thermal conductivity than the core buffer part 33 .
  • the core cushioning part 33 is formed in the central portion in the thickness direction (X), and the heat transfer preventing portion 32 may be formed in the outer portion in the thickness direction (X). there is.
  • the multi-layer member 30 has a lower thermal conductivity than that of the other parts, so that the heat generated in any one of the secondary battery cells 10 can be prevented from being transferred, the core buffer part 33 and a thermal transfer preventing unit 32 having a lower thermal conductivity than the core buffering unit 33 .
  • the core cushioning unit 33 may be provided in the form of a pad or a sheet.
  • the core buffer part 33 may be formed using a foam-type material such as polyurethane foam, but is not limited thereto.
  • FIG. 8 is a front view showing an embodiment in which the heat transfer preventing part 32 forming the outer layer in the battery module of the present invention is fixed to the secondary battery cell 10 with an adhesive or an adhesive tape T.
  • the heat transfer preventing unit 32 of the battery module according to an embodiment of the present invention may be fixed to the secondary battery cell 10 with an adhesive or an adhesive tape T. Accordingly, the multi-layer member 30 including the heat transfer preventing part 32 can be stably disposed between the secondary battery cells 10 .
  • the multi-layer member 30 including the heat transfer preventing part 32 when the multi-layer member 30 including the heat transfer preventing part 32 is disposed between the secondary battery cells 10, it may be provided so as not to be fixed without an adhesive or an adhesive tape T.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

본 발명의 일 실시예에 따른 배터리모듈은 복수의 이차전지셀, 상기 복수의 이차전지셀이 내부에 수용되는 하우징부재 및 상기 복수의 이차전지셀 사이에 구비되며, 두께 방향의 적어도 일부는 다른 부분에 비하여 열전도율이 낮은 소재로 형성된 다중층부재를 포함할 수 있다.

Description

배터리 모듈
본 발명은 배터리 모듈에 관한 것이다.
모바일 기기, 전기자동차 등에 대한 기술 개발과 수요가 증가함에 따라 에너지원으로서의 이차전지셀의 수요가 급격히 증가하고 있다. 이차전지셀은 화학에너지와 전기에너지 간의 상호변환이 가역적이어서 충전과 방전을 반복할 수 있는 전지이다.
이러한 이차전지셀은 이차전지의 주요 구성물인 양극, 음극, 분리막 및 전해액 등의 전극조립체 및 이를 보호하는 다층 외장재(Laminated Film Case)의 셀바디부재를 포함한다.
또한 상기 이차전지셀 복수 개를 장착하여 배터리 모듈로 전기자동차 등에 설치되기도 한다.
그런데 이러한 전극조립체는 충전 및 방전의 과정을 거치면서 발열이 발생하게 되는데, 이러한 발열에 의한 온도 상승은 이차전지셀의 성능을 저하시키게 된다.
또한, 이러한 이차전지셀의 온도 상승과 같은 배터리 모듈의 내부적인 요인으로 어느 하나의 이차전지셀이 폭발하거나, 외부적인 충격에 의해서 어느 하나의 이차전지셀이 폭발하는 문제가 발생할 수 있다.
더욱이, 어느 하나의 이차전지셀의 폭발이 주변의 다른 이차전지셀에 고온, 고압을 작용하여 연쇄적인 이차전지셀의 폭발로 이어지는 문제가 야기될 수 있다.
따라서, 전술한 문제 내지 한계를 개선하기 위해서, 배터리 모듈에 대한 연구가 필요하게 되었다.
본 발명은 어느 하나의 이차전지셀의 열이 다른 이차전지셀로 전이되는 문제를 방지할 수 있는 배터리 모듈을 제공하는 것을 목적으로 한다.
다른 측면에서, 본 발명은 어느 하나의 이차전지셀의 폭발에 의한 화염에 의해서 다른 이차전지셀이 연쇄적으로 폭발하는 문제를 개선한 배터리 모듈을 제공하는 것을 목적으로 한다.
본 발명의 일 실시예에 따른 배터리모듈은 복수의 이차전지셀, 상기 복수의 이차전지셀이 내부에 수용되는 하우징부재 및 상기 복수의 이차전지셀 사이에 구비되며, 두께 방향의 적어도 일부는 다른 부분에 비하여 열전도율이 낮은 소재로 형성된 다중층부재를 포함할 수 있다.
구체적으로, 본 발명의 일 실시예에 따른 배터리모듈의 상기 다중층부재는, 상기 이차전지셀에 인접한 외부층을 형성하는 내화부 및 양측면에 상기 내화부가 접하게 구비되어 내부층을 형성하며, 상기 내화부보다 열전도율이 낮은 소재로 형성된 열전이방지부를 포함할 수 있다.
여기서, 본 발명의 일 실시예에 따른 배터리모듈의 상기 열전이방지부는, 열전도율이 0.3 W/(m·K) 이하인 소재로 형성될 수 있다.
또한, 본 발명의 일 실시예에 따른 배터리모듈의 상기 열전이방지부는, 폴리머류 소재, 무기물류 소재 및 세라믹스 소재 중 적어도 하나를 포함하는 소재로 형성될 수 있다.
그리고, 본 발명의 일 실시예에 따른 배터리모듈의 상기 내화부는, 상기 열전이방지부 보다 내화성이 높은 소재로 형성될 수 있다.
또한, 본 발명의 일 실시예에 따른 배터리모듈의 상기 내화부는, 녹는점이 적어도 1000℃ 보다 높은 소재로 형성될 수 있다.
또한, 본 발명의 일 실시예에 따른 배터리모듈의 상기 내화부는, 적어도 1000℃에서 형태를 유지하는 소재로 형성될 수 있다.
여기서, 본 발명의 일 실시예에 따른 배터리모듈의 상기 내화부는, 두께가 적어도 0.01mm보다 두껍게 형성될 수 있다.
그리고, 본 발명의 일 실시예에 따른 배터리모듈의 상기 내화부는, 상기 이차전지셀과 접하는 전체 영역에서 상기 열전이방지부보다 두께가 얇게 형성될 수 있다.
또한, 본 발명의 일 실시예에 따른 배터리모듈의 상기 내화부는, 상기 이차전지셀과 접하는 영역의 중앙부에서 상기 열전이방지부보다 두께가 얇게 형성될 수 있다.
그리고, 본 발명의 일 실시예에 따른 배터리모듈의 상기 내화부는, 상기 이차전지셀과 접하는 영역의 외측부에서 상기 열전이방지부보다 두께가 두껍게 형성될 수 있다.
또한, 본 발명의 일 실시예에 따른 배터리모듈의 상기 내화부는, 상기 이차전지셀과 접하는 영역의 외측부에서 중앙부로 갈수록 점차적으로 상기 열전이방지부보다 두께가 얇게 형성될 수 있다.
그리고, 본 발명의 일 실시예에 따른 배터리모듈의 상기 다중층부재는, 상기 이차전지셀에 인접한 외부층을 형성하는 열전이방지부 및 양측면에 상기 열전이방지부가 접하게 구비되어 내부층을 형성하는 내화부를 포함하며, 상기 열전이방지부는 상기 내화부보다 열전도율이 낮은 소재로 형성될 수 있다.
또한, 본 발명의 일 실시예에 따른 배터리모듈의 상기 다중층부재는, 상기 이차전지셀에 인접한 외부층을 형성하는 열전이방지부 및 양측면에 상기 열전이방지부가 접하게 구비되어 내부층을 형성하며, 상기 이차전지셀이 팽창하면 탄성 변형되어 압축되는 코어완충부를 포함하며, 상기 열전이방지부는 상기 코어완충부보다 열전도율이 낮은 소재로 형성될 수 있다.
그리고, 본 발명의 일 실시예에 따른 배터리모듈의 상기 열전이방지부는, 상기 이차전지셀에 접착제 또는 접착 테이프로 고정될 수 있다.
본 발명의 배터리 모듈은 어느 하나의 이차전지셀의 열이 다른 이차전지셀로 전이되는 문제를 방지할 수 있는 효과가 있다.
다른 측면에서, 본 발명의 배터리 모듈은 어느 하나의 이차전지셀의 폭발에 의한 화염에 의해서 다른 이차전지셀이 연쇄적으로 폭발하는 문제를 개선할 수 있는 이점이 있다.
다만, 본 발명의 다양하면서도 유익한 장점과 효과는 상술한 내용에 한정되지 않으며, 본 발명의 구체적인 실시 형태를 설명하는 과정에서 보다 쉽게 이해될 수 있을 것이다.
도 1은 본 발명의 배터리 모듈을 도시한 분해사시도이다.
도 2는 본 발명의 배터리 모듈을 도시한 정면도이다.
도 3은 본 발명의 배터리 모듈에서 내화부 중앙부에서 두께를 조정한 실시예를 도시한 정면도이다.
도 4는 본 발명의 배터리 모듈에서 내화부가 외측부에서 두께를 조정한 실시예를 도시한 정면도이다.
도 5는 본 발명의 배터리 모듈에서 내화부가 중앙부에서 외측부로 갈수록 점차적으로 두께가 변화되게 조정한 실시예를 도시한 정면도이다.
도 6은 본 발명의 배터리 모듈에서 열전이방지부가 외부층을 형성하고 내화부가 내부층을 형성하는 실시예를 도시한 정면도이다.
도 7은 본 발명의 배터리 모듈에서 열전이방지부가 외부층을 형성하고 코어완충부가 내부층을 형성하는 실시예를 도시한 정면도이다.
도 8은 본 발명의 배터리 모듈에서 외부층을 형성하는 열전이방지부가 이차전지셀과 접착제 또는 접착 테이프로 고정되는 실시예를 도시한 정면도이다.
도 9는 고온시험에서 본 발명의 내화부가 천공되지 않은 상태를 나타낸 사진이다.
도 10은 고온시험에서 본 발명의 내화부와 열전이방지부의 온도 변화를 나타낸 그래프이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시 형태들을 설명한다. 그러나, 본 발명의 실시 형태는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 이하 설명하는 실시 형태로 한정되는 것은 아니다. 또한, 본 발명의 실시형태는 당해 기술분야에서 평균적인 지식을 가진 자에게 본 발명을 더욱 완전하게 설명하기 위해서 제공되는 것이다. 도면에서 요소들의 형상 및 크기 등은 보다 명확한 설명을 위해 과장될 수 있다.
또한, 본 명세서에서 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함하며, 명세서 전체에 걸쳐 동일 참조 부호 또는 유사한 방식으로 부여된 참조 부호는 동일 구성 요소 또는 대응하는 구성요소를 지칭하는 것으로 한다.
본 발명은 배터리 모듈에 관한 것으로, 어느 하나의 이차전지셀(10)의 열이 다른 이차전지셀(10)로 전이되는 문제를 방지할 수 있으며, 다른 측면에서, 어느 하나의 이차전지셀(10)의 폭발에 의한 화염에 의해서 다른 이차전지셀(10)이 연쇄적으로 폭발하는 문제를 개선할 수 있다.
즉, 본 발명의 배터리 모듈은 서로 이웃하는 이차전지셀(10) 사이에 구비되는 다중층부재(30)가 어느 하나의 이차전지셀(10)에서 발생하는 열 및 화염 중 적어도 하나가 주변의 다른 이차전지셀(10)로 전파되지 않게 쉴딩할 수 있게 구성될 수 있다.
이에 의해서, 어느 하나의 이차전지셀(10)에서의 열 전이 문제 또는 폭발 전파 문제를 방지할 수 있게 된다.
구체적으로 도면을 참조하여 설명하면, 도 1은 본 발명의 배터리 모듈을 도시한 분해사시도로서, 상기 도면에 의하면, 본 발명의 일 실시예에 따른 배터리모듈은 복수의 이차전지셀(10), 상기 복수의 이차전지셀(10)이 내부에 수용되는 하우징부재(20) 및 상기 복수의 이차전지셀(10) 사이에 구비되며, 두께 방향(X)의 적어도 일부는 다른 부분에 비하여 열전도율이 낮은 소재로 형성된 다중층부재(30)를 포함할 수 있다.
이와 같이, 본 발명의 배터리 모듈은 복수의 상기 이차전지셀(10) 사이에 다중층부재(30)를 구비하여 어느 하나의 이차전지셀(10)에서 발생하는 열 및 화염 중 적어도 하나가 주변의 다른 이차전지셀(10)로 전파되는 것을 방지할 수 있게 된다.
여기서, 상기 이차전지셀(10)은 전극조립체 및 상기 전극조립체를 감싸는 셀바디부재를 포함할 수 있다.
상기 전극조립체는 실질적으로 전해액을 포함하여 함께 상기 셀바디부재에 수납되어 사용된다. 상기 전해액은 EC(ethylene carbonate), PC(propylene carbonate), DEC(diethyl carbonate), EMC(ethyl methyl carbonate), DMC(dimethyl carbonate) 등과 같은 유기 용매에 LiPF 6, LiBF 4 등과 같은 리튬염을 포함할 수 있다. 나아가, 상기 전해액은 액체, 고체 또는 겔상일 수 있다.
그리고, 상기 셀바디부재는 상기 전극조립체를 보호하며, 상기 전해액을 수용하는 구성으로, 일례로, 상기 셀바디부재는 파우치형 부재 또는 캔형 부재로 구비될 수 있다. 여기서, 파우치형 부재는 상기 전극조립체를 3면에서 실링하여 수용하는 형태로서, 주로 하면부인 일면부를 제외한 상면부 및 양측면부의 3면을 내부에 상기 전극조립체가 수용된 상태에서 포개어 접합하여 실링하게 구성되는 부재이다. 그리고, 상기 캔형 부재는 상기 전극조립체를 1면에서 실링하여 수용하는 형태로서, 주로 하면부 및 양측면부인 세개 면을 제외한 상면부의 1면을 내부에 상기 전극조립체가 수용된 상태에서 포개어 접합하여 실링하게 구성되는 부재이다.
다만, 이러한 파우치형 이차전지셀(10), 캔형 이차전지셀(10)은 본 발명의 배터리 모듈에 수용되는 이차전지셀(10)의 일례일 뿐이고, 본 발명의 배터리 모듈에 수용되는 이차전지셀(10)이 이러한 종류에 한정되는 것은 아니다.
상기 하우징부재(20)는, 복수의 상기 이차전지셀(10)이 수용되는 배터리 모듈의 바디 역할을 하게 된다.
즉, 상기 하우징부재(20)는 복수의 이차전지가 설치되는 구성으로 상기 이차전지를 보호하면서도 상기 이차전지가 발생한 전기 에너지를 외부로 전달하거나, 외부에서 전기 에너지를 상기 이차전지로 전달하는 역할을 하게 된다.
이를 위해서, 상기 하우징부재(20)는 상기 복수의 이차전지셀(10)을 수용하는 바닥부재(21), 측벽부재(22) 등으로 구성될 수 있다.
즉, 상기 하우징부재(20)는 상기 이차전지셀(10)이 안착되는 바닥부재(21) 및 상기 바닥부재(21)의 모서리에 구비되는 측벽부재(22)를 포함할 수 있다.
상기 바닥부재(21)는 상기 복수의 이차전지셀(10)이 안착되며, 이렇게 안착된 상기 복수의 이차전지셀(10)을 지지하는 역할을 하게 된다.
여기서, 상기 바닥부재(21)는 상기 이차전지셀(10)에서 발생한 열을 외부의 히트싱크로 전달하여 냉각시키게 구성될 수 있다.
또한, 상기 하우징부재(20)의 측부를 형성하는 측벽부재(22)도 상기 이차전지셀(10)에서 발생한 열을 외부로 배출할 수도 있다.
상기 하우징부재(20)는 상기 측벽부재(22)의 상단에 구비되는 커버부재(23)를 포함하여 상기 이차전지의 상단부를 보호하게 구성될 수 있다. 또한 상기 하우징부재(20)는 상기 측벽부재(22)와 이웃한 전방부재(26), 후방부재(27)를 포함할 수 있으며, 이에 따라 상기 복수의 이차전지셀(10)을 감싸는 형태로 구성될 수 있다.
그밖에 상기 하우징부재(20)에는 상기 이차전지를 외부와 전기적으로 연결하는 버스바부재(25) 등의 부가 구성이 구비될 수도 있다.
또한, 상기 측벽부재(22)의 내측면에는 압축부재(24)가 구비되어 상기 이차전지(10)를 더욱 견고하게 보호할 수도 있다.
상기 다중층부재(30)는 어느 하나의 이차전지셀(10)에서 발생하는 열 및 화염 중 적어도 하나가 주변의 다른 이차전지셀(10)로 전파되는 것을 방지하는 역할을 하게 된다.
이를 위해서, 상기 다중층부재(30)는 서로 이웃하는 상기 이차전지셀(10) 사이에 구비될 수 있다. 그리고 다중층부재(30)는 복수의 층을 형성하게 구비되며, 적어도 일부가 다른 부분에 비하여 열전도율이 낮은 소재로 형성될 수 있다.
즉, 상기 다중층부재(30)는 적어도 일부가 다른 부분에 비하여 열전도율이 낮게 형성됨에 의해서, 어느 하나의 이차전지셀(10)에서 발생한 열의 전이를 방지할 수 있게 되는 것이다.
구체적으로 상기 다중층부재(30)는 두께 방향(X)으로 여러 층으로 형성되도록, 내화부(31), 열전이방지부(32)를 포함할 수 있다. 이에 대한 자세한 설명은 도 2 내지 도 10을 참조하여 후술한다.
도 2는 본 발명의 배터리 모듈을 도시한 정면도로서, 상기 도면을 참조하면, 본 발명의 일 실시예에 따른 배터리모듈의 상기 다중층부재(30)는, 상기 이차전지셀(10)에 인접한 외부층을 형성하는 내화부(31) 및 양측면에 상기 내화부(31)가 접하게 구비되어 내부층을 형성하며, 상기 내화부(31)보다 열전도율이 낮은 소재로 형성된 열전이방지부(32)를 포함할 수 있다.
즉, 상기 다중층부재(30)는 적어도 일부가 다른 부분에 비하여 열전도율이 낮게 형성됨에 의해서, 어느 하나의 이차전지셀(10)에서 발생한 열의 전이를 방지할 수 있도록, 상기 내화부(31) 및 상기 내화부(31)보다 열전도율이 낮은 열전이방지부(32)를 포함할 수 있는 것이다.
여기서, 상기 다중층부재(30)는 두께 방향(X)의 중앙 부분에 상기 열전이방지부(32)가 형성되고, 두께 방향(X)의 외측 부분에 상기 내화부(31)로 형성될 수 있다.
또한, 상기 내화부(31)와 상기 열전이방지부(32)는 상기 다중층부재(30)의 두께 방향(X)에서의 형성 비율을 상기 다중층부재(30)의 높이 방향(Y)에서 서로 다르게 형성하여, 좀 더 효과적으로 내구성을 확보하고 열 전이를 방지하게 구성될 수 있다. 이에 대한 자세한 설명은 도 3 내지 도 5를 참조하여 후술한다.
상기 내화부(31)는 상기 다중층부재(30)의 두께 방향(X)에서 상기 열전이방지부(32)의 외측에 구비되어 외부층을 형성하게 된다.
그리고, 상기 내화부(31)는 어느 하나의 상기 이차전지셀(10)에서 발생한 열 및 화염에 의해서 녹거나 타서 소실되지 않도록 구성되어, 상기 다중층부재(30)의 내구성을 높이는 역할을 하게 된다.
다시 말해, 상기 열전이방지부(32)는 상기 내화부(31)에 비하여 열전도율이 낮게 형성되어 열 전이를 방지할 수 있으나, 열 또는 화염에 의해서 녹거나 소실될 수 있는데, 상기 내화부(31)가 이러한 점을 보완하게 구성될 수 있는 것이다.
이를 위해서, 본 발명의 일 실시예에 따른 배터리모듈의 상기 내화부(31)는, 상기 열전이방지부(32) 보다 내화성이 높은 소재로 형성될 수 있다.
즉, 인접한 상기 이차전지셀(10)에서 발열 또는 폭발 등에 의해서 열 또는 화염이 발생한 경우에, 상기 다중층부재(30)의 외부층을 형성하는 상기 내화부(31)가 직접 열 또는 화염이 노출된다. 따라서, 이러한 열 및 화염에 의해서 상기 열전이방지부(32)가 녹거나 타버리는 등의 문제를 방지하기 위해서, 상기 내화부(31)를 상기 열전이방지부(32)보다 내화성이 높은 소재로 형성하는 것이다.
일례로, 본 발명의 일 실시예에 따른 배터리모듈의 상기 내화부(31)는, 녹는점이 적어도 1000℃ 보다 높은 소재로 형성될 수 있다.
이에 의해서, 인접한 상기 이차전지셀(10)에서 발열 또는 폭발 등에 의해서 열이 발생하되, 1000℃ 이하의 열을 형성하는 경우에, 상기 내화부(31)가 녹지 않게 된다. 이에 따라 상기 다중층부재(30)는 내구성을 확보할 수 있게 된다.
일례로 상기 내화부(31)는 녹는점이 1000℃ 보다 높은 철(Fe) 또는 구리(Cu) 등의 소재로 형성되어, 상기 다중층부재(30)의 내구성을 확보할 수 있다. 또는 상기 내화부(31)는 세라믹 등의 무기질재료로 형성되어 열이나 화염에 대한 내구성을 확보할 수 있게 구비될 수도 있다.
또한, 일례로 본 발명의 일 실시예에 따른 배터리모듈의 상기 내화부(31)는, 적어도 1000℃에서 형태를 유지하는 소재로 형성될 수 있다.
이와 같은 소재도, 인접한 상기 이차전지셀(10)에서 발열 또는 폭발 등에 의해서 열이 발생하되, 1000℃ 이하의 열을 형성하는 경우에, 상기 내화부(31)가 형태를 유지하게 된다. 이에 따라 상기 다중층부재(30)는 주변의 다른 이차전지셀(10)로 열, 가스 등이 직접 전달되는 문제를 방지하거나 지연시키게 된다.
이러한 경우에, 일례로 상기 내화부(31)는 별도의 추가 처리를 하지 않은 철(Fe), 구리(Cu), 알루미늄(Al) 등의 소재로 형성되거나, 철(Fe), 구리(Cu), 알루미늄(Al) 등의 금속 소재의 외면에 형태 유지에 유리한 소재를 코팅하거나, 열처리하여 구성될 수도 있다.
그리고, 본 발명의 일 실시예에 따른 배터리모듈의 상기 내화부(31)는 두께가 적어도 0.01mm보다 두껍게 형성될 수 있다.
이와 같은 두께로 상기 내화부(31)를 형성하는 경우에, 상기 내화부(31)는 적어도 1000℃의 화염이 가해지더라도 구멍이 뚫리지 않고 형태를 유지할 수 있게 된다. 이는 도 9의 사진을 참조하여 확인할 수 있다. 즉, 도 9는 고온시험에서 본 발명의 내화부(31)가 천공되지 않은 상태를 나타낸 사진으로, 상기 내화부(31) 두께 한정의 기술적 의의를 확인할 수 있는 것이다.
여기서 고온시험은 상기 내화부(31) 전방의 특정 포인트에 토치(torch)로 화염을 가하여 수행되었다. 또한 고온시험에서 상기 내화부(31)는 녹는점이 약 1400℃인 철 합금 소재(SUS 304)로 형성되었고, 상기 열전이방지부(32)는 운모(mica) 시트로 형성되었다. 상기 내화부(31)의 두께는 0.01m 또는 0.5mm로 형성하여 수행되었다. 이와 같은 고온시험에 따른 결과는 도 9의 사진, 도 10의 온도 변화 및 아래의 표 1에 정리하였다.
구성 두께(mm) 평균 온도(℃) 전후방 온도 변화(℃)
전방 후방
내화부 0.01 1142 724 418
0.5 1132 606 526
열전이방지부 1.0 1164 372 792
상기 고온시험을 통하여 상기 내화부(31)도 두께가 두꺼워짐에 따라 일부 열전이 방지 효과가 있음을 확인할 수 있다.또한, 본 발명의 일 실시예에 따른 배터리모듈의 상기 내화부(31)는, 상기 이차전지셀(10)과 접하는 전체 영역에서 상기 열전이방지부(32)보다 두께가 얇게 형성될 수 있다.
이와 같이, 상기 내화부(31)가 상기 열전이방지부(32)보다 두께가 얇게 형성되면, 서로 이웃하는 상기 이차전지셀(10) 사이의 한정된 간격의 공간에 상대적으로 상기 열전이방지부(32)를 더 두껍게 형성할 수 있게 된다.
여기서, 상기 열전이방지부(32)가 비교적 두껍게 구비됨에 의해서, 어느 하나의 이차전지셀(10)에서 발생한 열의 전달을 차단하는 효과를 더욱 높일 수 있게 된다.
즉, 열의 전도량은 거리에 반비례하는데, 상기 내화부(31)보다 열전도도가 낮은 상기 열전이방지부(32)가 상대적으로 더 많이 형성됨에 의해서, 열의 전도 거리를 늘리는 효과가 있는 것이다.
이에 따라, 상기 다중층부재(30)가 상기 이차전지셀(10)과 접하는 전체 영역에서 열 전이 효과를 높일 수 있게 된다.
상기 열전이방지부(32)는 상기 다중층부재(30)의 두께 방향(X)에서 상기 내화부(31)의 내측에 구비되어 코어층을 형성하게 된다.
그리고, 상기 열전이방지부(32)는 어느 하나의 상기 이차전지셀(10)에서 발생한 열이 주변의 다른 이차전지셀(10)로 전이되는 문제를 개선할 수 있게 구비될 수 있다.
이를 위해서, 상기 열전이방지부(32)는 상기 내화부(31)보다 열전도율이 낮게 구성될 수 있다.
일례로, 본 발명의 일 실시예에 따른 배터리모듈의 상기 열전이방지부(32)는, 열전도율이 0.3 W/(m·K) 이하인 소재로 형성될 수 있다.
이와 같이, 상기 열전이방지부(32)의 열전도율이 적어도 0.3 W/(m·K)와 같거나 작게 형성됨에 의해서, 어느 하나의 상기 이차전지셀(10)에서 발생한 열이 주변의 다른 이차전지셀(10)로 전이되는 문제를 개선하게 된다.
더욱 바람직하게, 상기 열전이방지부(32)의 열전도율은 적어도 0.03 W/(m·K)와 같거나 작게 형성되어 이러한 열 전이 문제 개선 효과를 더 높일 수도 있다.
이러한 상기 열전이방지부(32)는 외측면에 상기 내화부(31)가 구비되기 때문에, 열전도율의 물성만을 고려하여 소재를 선택할 수 있게 된다. 즉, 상기 열전이방지부(32)는 열 또는 화염 등에 의해 녹거나 타는 내구성의 문제를 배제하여 소재를 선택할 수 있기 때문에, 소재 선택의 폭이 더 넓힐 수 있게 된다.
일례로, 본 발명의 일 실시예에 따른 배터리모듈의 상기 열전이방지부(32)는, 폴리머류 소재, 무기물류 소재 및 세라믹스 소재 중 적어도 하나를 포함하는 소재로 형성될 수 있다.
여기서 폴리머류 소재는 일례로 실리콘 계열 등의 소재가 있을 수 있다. 그리고 무기물류 소재는 탄소(C)를 포함하지 않는 소재로서, 일례로 운모(mica), 석회, 소금, 유리와 같은 규소화합물 및 철 등의 일부 금속이 있을 수 있다. 상기 세라믹스 소재는 일례로 실리콘(Si), 알루미늄(Al), 타이타늄(Ti), 지르코늄(Zr) 등과 같은 금속원소가 산소, 탄소, 질소 등과 결합하여 만든 산화물, 탄화물, 질화물로 이루어진 소재가 있을 수 있다. 이러한 세라믹 소재는 일례로 점토(粘土), 고령토(高嶺土), 장석(長石), 규석(硅石) 등과 같은 천연원료를 사용하여 제조되거나, 탄화규소, 질화규소, 알루미나(alumina), 지르코니아(zirconia), 바륨티타네이트(barium titanate) 등과 같은 합성원료를 사용하여 제조될 수도 있다.
이와 같이 상기 열전이방지부(32)가 상기 내화부(31)보다 열전도율이 낮은 폴리머류 소재, 무기물류 소재 또는 세라믹스 소재로 형성됨에 의해서, 상기 다중층부재(30)는 어느 하나의 이차전지셀(10)에서 발생하는 열이 주변의 다른 이차전지셀(10)로 전파되지 않게 쉴딩할 수 있게 된다.
도 3은 본 발명의 배터리 모듈에서 내화부(31) 중앙부에서 두께를 조정한 실시예를 도시한 정면도로서, 상기 도면을 참조하면, 본 발명의 일 실시예에 따른 배터리모듈의 상기 내화부(31)는, 상기 이차전지셀(10)과 접하는 영역의 중앙부에서 상기 열전이방지부(32)보다 두께가 얇게 형성될 수 있다.
즉, 상기 다중층부재(30)는 상기 이차전지셀(10)과 접하는 영역의 중앙부에서 상기 내화부(31)의 두께(tc1)보다 상기 열전이방지부(32)의 두께(tc2)를 더 두껍게 형성할 수 있게 된다.
이때, 상기 이차전지셀(10)과 접하는 영역의 외측부에서는 상기 내화부(31)의 두께(te1)와 상기 열전이방지부(32)의 두께(te2)는 같을 수 있으며, 또는 상기 내화부(31)의 두께(te1)가 상기 열전이방지부(32)의 두께(te2)보다 더 두꺼울 수 있다.
상기 이차전지셀(10)과 접하는 영역의 외측부에서 상기 내화부(31)의 두께(te1)가 상기 열전이방지부(32)의 두께(te2)보다 더 두꺼운 실시예는 도 4를 참조하여 후술한다.
이와 같이, 상기 이차전지셀(10)에서 비교적 열이 많이 발생하는 중앙부와 대면 하는 영역에서 상기 열전이방지부(32)를 더 많은 비율로 형성할 수 있게 되는 것이다.
이에 의하면, 상기 이차전지셀(10)에서 비교적 열이 많이 발생하는 중앙부에서 비교적 더 높은 비율로 열 전이를 방지할 수 있게 된다.
결과적으로, 비교적 열이 많이 발생하는 부분에서 열 전이 방지 효과를 높이고, 비교적 열이 적게 발생하는 부분에서는 열 전이 방지 효과를 낮게 형성함으로서, 좀 더 효과적으로 열 전이를 방지할 수 있게 된다.
도 4는 본 발명의 배터리 모듈에서 내화부(31)가 외측부에서 두께를 조정한 실시예를 도시한 정면도로서, 상기 도면을 참조하면, 본 발명의 일 실시예에 따른 배터리모듈의 상기 내화부(31)는, 상기 이차전지셀(10)과 접하는 영역의 외측부에서 상기 열전이방지부(32)보다 두께가 두껍게 형성될 수 있다.
즉, 상기 다중층부재(30)는 상기 이차전지셀(10)과 접하는 영역의 외측부에서 상기 열전이방지부(32)의 두께(te2)보다 상기 내화부(31)의 두께(te1)를 더 두껍게 형성할 수 있게 된다.
이때, 상기 이차전지셀(10)과 접하는 영역의 중앙부에서는 상기 내화부(31)의 두께(tc1)와 상기 열전이방지부(32)의 두께(tc2)는 같을 수 있으며, 또는 상기 열전이방지부(32)의 두께(tc2)가 상기 내화부(31)의 두께(tc1)보다 더 두꺼울 수 있다.
상기 이차전지셀(10)과 접하는 영역의 중앙부에서 상기 열전이방지부(32)의 두께(te2)가 상기 내화부(31)의 두께(te1)보다 더 두꺼운 실시예는 도 3을 참조하여 전술하였다.
이와 같이, 상기 이차전지셀(10)의 폭발에 의해서 화염이 발생하는 영역은 주로 상기 이차전지셀(10)의 외측부인데, 이와 같이 화염 발생 비율이 높은 상기 이차전지셀(10)의 외측부와 대면 하는 영역에서 상기 내화부(31)를 더 많은 비율로 형성할 수 있게 되는 것이다.
이에 의하면, 상기 이차전지셀(10)에서 비교적 화염이 많이 발생하는 외측부에서 비교적 더 견고하게 내구성을 확보할 수 있게 된다.
결과적으로, 비교적 화염이 많이 발생하여 소재가 타버리는 문제가 많이 발생하는 부분에서는 내구성을 높이고, 비교적 화염이 적게 발생하는 부분에서는 내구성을 비교적 낮게 형성함으로서, 좀 더 효과적으로 내구성을 확보하게 구성된다.
도 5는 본 발명의 배터리 모듈에서 내화부(31)가 중앙부에서 외측부로 갈수록 점차적으로 두께가 변화되게 조정한 실시예를 도시한 정면도로서, 상기 도면을 참조하면, 본 발명의 일 실시예에 따른 배터리모듈의 상기 내화부(31)는, 상기 이차전지셀(10)과 접하는 영역의 외측부에서 중앙부로 갈수록 점차적으로 상기 열전이방지부(32)보다 두께가 얇게 형성될 수 있다.
즉, 상기 다중층부재(30)는 상기 이차전지셀(10)과 접하는 영역의 중앙부에서 상기 내화부(31)의 두께(tc1)보다 상기 열전이방지부(32)의 두께(tc2)를 더 두껍게 형성하면서도, 상기 이차전지셀(10)과 접하는 영역의 외측부에서 상기 열전이방지부(32)의 두께(te2)보다 상기 내화부(31)의 두께(te1)를 더 두껍게 형성할 수 있게 되는 것이다.
더하여, 이와 같은 두께 조정 비율을 점차적으로 변화하게 형성함으로서, 열의 발생이 비교적 많은 상기 이차전지셀(10)의 중앙부로 갈수록 점차적으로 열전이방지 효과가 높아지게 형성할 수 있다. 또한 화염의 발생이 비교적 많은 상기 이차전지셀(10)의 외측부로 갈수록 점차적으로 더 견고하게 형성하여 화염에 의해 소실되는 문제를 방지할 수 있게 된다.
도 6은 본 발명의 배터리 모듈에서 열전이방지부(32)가 외부층을 형성하고 내화부(31)가 내부층을 형성하는 실시예를 도시한 정면도이다. 상기 도면을 참조하면, 본 발명의 일 실시예에 따른 배터리모듈의 상기 다중층부재(30)는, 상기 이차전지셀(10)에 인접한 외부층을 형성하는 열전이방지부(32) 및 양측면에 상기 열전이방지부(32)가 접하게 구비되어 내부층을 형성하는 내화부(31)를 포함하며, 상기 열전이방지부(32)는 상기 내화부(31)보다 열전도율이 낮은 소재로 형성될 수 있다.
즉, 상기 다중층부재(30)는 적어도 일부가 다른 부분에 비하여 열전도율이 낮게 형성됨에 의해서, 어느 하나의 이차전지셀(10)에서 발생한 열의 전이를 방지할 수 있도록, 상기 내화부(31) 및 상기 내화부(31)보다 열전도율이 낮은 열전이방지부(32)를 포함할 수 있는 것이다.
여기서, 상기 다중층부재(30)는 두께 방향(X)의 중앙 부분에 상기 내화부(31)가 형성되고, 두께 방향(X)의 외측 부분에 상기 열전이방지부(32)가 형성될 수 있다.
그리고 앞서 도 2를 참조하여 설명한 실시예는 상기 내화부(31)가 외부층을 형성하고 상기 열전이방지부(32)가 내부층을 형성하는 구조이고, 여기서 도 6을 참조하여 설명하는 실시예는 상기 내화부(31)가 내부층을 형성하고 상기 열전이방지부(32)가 외부층을 형성하는 구조인 것이다. 그리고, 앞서 도 2 등을 참조하여 설명한 상기 내화부(31) 및 상기 열전이방지부(32)에 대한 소재, 두께 등의 한정 사항은 도 6을 참조하여 설명하는 실시예에서도 모두 적용될 수 있다.
도 7은 본 발명의 배터리 모듈에서 열전이방지부(32)가 외부층을 형성하고 코어완충부(33)가 내부층을 형성하는 실시예를 도시한 정면도이다. 상기 도면을 참조하면, 본 발명의 일 실시예에 따른 배터리모듈의 상기 다중층부재(30)는, 상기 이차전지셀(10)에 인접한 외부층을 형성하는 열전이방지부(32) 및 양측면에 상기 열전이방지부(32)가 접하게 구비되어 내부층을 형성하며, 상기 이차전지셀(10)이 팽창하면 탄성 변형되어 압축되는 코어완충부(33)를 포함하며, 상기 열전이방지부(32)는 상기 코어완충부(33)보다 열전도율이 낮은 소재로 형성될 수 있다.
여기서, 상기 다중층부재(30)는 두께 방향(X)의 중앙 부분에 상기 코어완충부(33)가 형성되고, 두께 방향(X)의 외측 부분에 상기 열전이방지부(32)가 형성될 수 있다.
즉, 상기 다중층부재(30)는 적어도 일부가 다른 부분에 비하여 열전도율이 낮게 형성됨에 의해서, 어느 하나의 이차전지셀(10)에서 발생한 열의 전이를 방지할 수 있도록, 상기 코어완충부(33) 및 상기 코어완충부(33)보다 열전도율이 낮은 열전이방지부(32)를 포함할 수 있는 것이다.
또한 상기 코어완충부(33)에 의해서 상기 이차전지셀(10)의 스웰링(swelling)에 의한 가압력을 흡수하여 내구성을 증가시킬 수 있다. 즉, 상기 코어완충부(33)는 특정 이차전지셀(10)이 팽창하는 경우 압축되며 탄성 변형된다. 따라서 복수의 상기 이차전지셀(10)을 포함한 배터리 모듈 전체의 부피가 팽창하는 것을 억제할 수 있다. 이를 위해 상기 코어완충부(33)는 패드(pad)나 시트(sheet) 형태로 마련될 수 있다. 그리고 상기 코어완충부(33)는 폴리우레탄 폼(PU foam) 등과 같은 폼(foam) 형태의 재질이 이용되어 형성될 수 있으나 이에 한정되는 것은 아니다.
그리고, 앞서 도 2 등을 참조하여 설명한 상기 열전이방지부(32)에 대한 소재, 두께 등의 한정 사항은 도 7을 참조하여 설명하는 실시예에서도 모두 적용될 수 있다.
도 8은 본 발명의 배터리 모듈에서 외부층을 형성하는 열전이방지부(32)가 이차전지셀(10)과 접착제 또는 접착 테이프(T)로 고정되는 실시예를 도시한 정면도이다. 즉, 상기 도면을 참조하면 본 발명의 일 실시예에 따른 배터리모듈의 상기 열전이방지부(32)는, 상기 이차전지셀(10)에 접착제 또는 접착 테이프(T)로 고정될 수 있다. 이에 따라 상기 열전이방지부(32)를 포함한 상기 다중층부재(30)를 상기 이차전지셀(10) 사이에 안정적으로 배치할 수 있게 된다.
다만 상기 열전이방지부(32)를 포함한 상기 다중층부재(30)가 상기 이차전지셀(10) 사이에 배치될 때, 접착제 또는 접착 테이프(T) 없이 고정되지 않게 구비될 수도 있다.
이상에서 본 발명의 실시예에 대하여 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 청구범위에 기재된 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 다양한 수정 및 변형이 가능하다는 것은 당 기술분야의 통상의 지식을 가진 자에게는 자명할 것이다.

Claims (15)

  1. 복수의 이차전지셀;
    상기 복수의 이차전지셀이 내부에 수용되는 하우징부재; 및
    상기 복수의 이차전지셀 사이에 구비되며, 두께 방향의 적어도 일부는 다른 부분에 비하여 열전도율이 낮은 소재로 형성된 다중층부재;
    를 포함하는 배터리 모듈.
  2. 제1항에 있어서,
    상기 다중층부재는,
    상기 이차전지셀에 인접한 외부층을 형성하는 내화부; 및
    양측면에 상기 내화부가 접하게 구비되어 내부층을 형성하며, 상기 내화부보다 열전도율이 낮은 소재로 형성된 열전이방지부;
    를 포함하는 배터리 모듈.
  3. 제2항에 있어서,
    상기 열전이방지부는, 열전도율이 0.3 W/(m·K) 이하인 소재로 형성된 배터리 모듈.
  4. 제2항에 있어서,
    상기 열전이방지부는, 폴리머류 소재, 무기물류 소재 및 세라믹스 소재 중 적어도 하나를 포함하는 소재로 형성된 배터리 모듈.
  5. 제2항에 있어서,
    상기 내화부는, 상기 열전이방지부 보다 내화성이 높은 소재로 형성된 배터리 모듈.
  6. 제2항에 있어서,
    상기 내화부는, 녹는점이 적어도 1000℃ 보다 높은 소재로 형성된 배터리 모듈.
  7. 제2항에 있어서,
    상기 내화부는, 적어도 1000℃에서 형태를 유지하는 소재로 형성된 배터리 모듈.
  8. 제2항에 있어서,
    상기 내화부는, 두께가 적어도 0.01mm보다 두껍게 형성되는 배터리 모듈.
  9. 제2항에 있어서,
    상기 내화부는, 상기 이차전지셀과 접하는 전체 영역에서 상기 열전이방지부보다 두께가 얇게 형성된 배터리 모듈.
  10. 제2항에 있어서,
    상기 내화부는, 상기 이차전지셀과 접하는 영역의 중앙부에서 상기 열전이방지부보다 두께가 얇게 형성된 배터리 모듈.
  11. 제2항에 있어서,
    상기 내화부는, 상기 이차전지셀과 접하는 영역의 외측부에서 상기 열전이방지부보다 두께가 두껍게 형성된 배터리 모듈.
  12. 제2항에 있어서,
    상기 내화부는, 상기 이차전지셀과 접하는 영역의 외측부에서 중앙부로 갈수록 점차적으로 상기 열전이방지부보다 두께가 얇게 형성된 배터리 모듈.
  13. 제1항에 있어서,
    상기 다중층부재는,
    상기 이차전지셀에 인접한 외부층을 형성하는 열전이방지부; 및
    양측면에 상기 열전이방지부가 접하게 구비되어 내부층을 형성하는 내화부;
    를 포함하며,
    상기 열전이방지부는 상기 내화부보다 열전도율이 낮은 소재로 형성되는 배터리 모듈.
  14. 제1항에 있어서,
    상기 다중층부재는,
    상기 이차전지셀에 인접한 외부층을 형성하는 열전이방지부; 및
    양측면에 상기 열전이방지부가 접하게 구비되어 내부층을 형성하며, 상기 이차전지셀이 팽창하면 탄성 변형되어 압축되는 코어완충부;
    를 포함하며,
    상기 열전이방지부는 상기 코어완충부보다 열전도율이 낮은 소재로 형성되는 배터리 모듈.
  15. 제13항 또는 제14항에 있어서,
    상기 열전이방지부는, 상기 이차전지셀에 접착제 또는 접착 테이프로 고정되는 배터리 모듈.
PCT/KR2021/000751 2020-01-31 2021-01-19 배터리 모듈 WO2021153938A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180011648.7A CN115004455A (zh) 2020-01-31 2021-01-19 电池模块
EP21747424.6A EP4099480A1 (en) 2020-01-31 2021-01-19 Battery module
US17/877,745 US20220367934A1 (en) 2020-01-31 2022-07-29 Battery module

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0012010 2020-01-31
KR20200012010 2020-01-31
KR1020210006104A KR20210098331A (ko) 2020-01-31 2021-01-15 배터리 모듈
KR10-2021-0006104 2021-01-15

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/877,745 Continuation US20220367934A1 (en) 2020-01-31 2022-07-29 Battery module

Publications (1)

Publication Number Publication Date
WO2021153938A1 true WO2021153938A1 (ko) 2021-08-05

Family

ID=77079537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/000751 WO2021153938A1 (ko) 2020-01-31 2021-01-19 배터리 모듈

Country Status (4)

Country Link
US (1) US20220367934A1 (ko)
EP (1) EP4099480A1 (ko)
CN (1) CN115004455A (ko)
WO (1) WO2021153938A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053261A (ja) * 2013-08-08 2015-03-19 Nok株式会社 全固体電池
WO2018011384A1 (en) * 2016-07-15 2018-01-18 Von Roll Schweiz Ag Compressible and flexible composite material useful in particular as a construction material for batteries
JP2018206605A (ja) * 2017-06-05 2018-12-27 積水化学工業株式会社 熱暴走防止シート
JP2019067583A (ja) * 2017-09-29 2019-04-25 株式会社Gsユアサ 蓄電モジュール及び蓄電パック
KR20190044872A (ko) * 2017-10-23 2019-05-02 에스케이이노베이션 주식회사 열차단 기능을 구비한 전지 모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015053261A (ja) * 2013-08-08 2015-03-19 Nok株式会社 全固体電池
WO2018011384A1 (en) * 2016-07-15 2018-01-18 Von Roll Schweiz Ag Compressible and flexible composite material useful in particular as a construction material for batteries
JP2018206605A (ja) * 2017-06-05 2018-12-27 積水化学工業株式会社 熱暴走防止シート
JP2019067583A (ja) * 2017-09-29 2019-04-25 株式会社Gsユアサ 蓄電モジュール及び蓄電パック
KR20190044872A (ko) * 2017-10-23 2019-05-02 에스케이이노베이션 주식회사 열차단 기능을 구비한 전지 모듈

Also Published As

Publication number Publication date
US20220367934A1 (en) 2022-11-17
EP4099480A1 (en) 2022-12-07
CN115004455A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2022004997A1 (ko) 화재 억제를 위한 격벽과 단열층이 구비된 전지 모듈
WO2019098507A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2021071138A1 (ko) 단열부재를 포함하는 전지모듈 및 이를 포함하는 전지팩
KR20210098331A (ko) 배터리 모듈
WO2022169005A1 (ko) 배터리용 단열 소자
WO2021221478A1 (ko) 전지팩 및 이를 포함하는 디바이스
WO2021153938A1 (ko) 배터리 모듈
WO2017209423A1 (ko) 방열 카트리지 및 이를 이용한 전기자동차용 전지팩
WO2023158145A1 (ko) 전지 팩 및 이를 포함하는 디바이스
WO2023282609A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2022164182A2 (ko) 전지셀 및 전지셀 제조 장치
WO2024054098A1 (ko) 내화염성이 향상된 버스바 및 이를 포함하는 전지팩
WO2023085810A1 (ko) 방열 부재 및 이를 포함하는 전지 팩
WO2022177157A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2024076135A1 (ko) 열 전파 방지 전지 셀
WO2024090909A1 (ko) 캡 일체형 내화버스바 및 이를 구비한 배터리 팩
WO2023121415A1 (ko) 안전성이 강화된 배터리 모듈
WO2022239934A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2024090907A1 (ko) 내화케이블 및 이를 구비한 배터리 팩
WO2024071613A1 (ko) 배터리 팩 및 이를 포함하는 자동차
WO2023096193A1 (ko) 전지 모듈
WO2024039133A1 (ko) 소화액체가 포함된 인터-모듈 버스바
WO2022169127A1 (ko) 전지 모듈 및 이를 포함하는 전지 팩
WO2024090936A1 (ko) 내화버스바 및 이를 구비한 배터리 팩
WO2024090937A1 (ko) 내화 버스바 캡 및 이를 구비한 배터리 팩

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021747424

Country of ref document: EP

Effective date: 20220831