WO2021153777A1 - Tab lead for batteries - Google Patents

Tab lead for batteries Download PDF

Info

Publication number
WO2021153777A1
WO2021153777A1 PCT/JP2021/003376 JP2021003376W WO2021153777A1 WO 2021153777 A1 WO2021153777 A1 WO 2021153777A1 JP 2021003376 W JP2021003376 W JP 2021003376W WO 2021153777 A1 WO2021153777 A1 WO 2021153777A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
resin
adhesive layer
conductor
lead
Prior art date
Application number
PCT/JP2021/003376
Other languages
French (fr)
Japanese (ja)
Inventor
友多佳 松村
太郎 藤田
利紀 吉羽
和聡 椎名
貴章 島田
峻介 岡本
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to CN202180002678.1A priority Critical patent/CN113632312A/en
Priority to JP2021535216A priority patent/JPWO2021153777A1/ja
Priority to KR1020217032218A priority patent/KR20210134758A/en
Publication of WO2021153777A1 publication Critical patent/WO2021153777A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/197Sealing members characterised by the material having a layered structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • H01M50/174Arrangements of electric connectors penetrating the casing adapted for the shape of the cells
    • H01M50/176Arrangements of electric connectors penetrating the casing adapted for the shape of the cells for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/193Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • H01M50/19Sealing members characterised by the material
    • H01M50/198Sealing members characterised by the material characterised by physical properties, e.g. adhesiveness or hardness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • H01M50/557Plate-shaped terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to battery tab leads.
  • This application claims priority based on Japanese Application No. 2020-014715 filed on January 31, 2020, and incorporates all the contents described in these Japanese applications.
  • Patent Document 1 describes a lead member (tab lead) in which a pair of insulating films are attached to both surfaces of a heat-sealed portion of a lead conductor, and the insulating film has a two-layer structure of a crosslinked layer and an adhesive layer. A heat-sealed portion of a lead conductor is covered with an adhesive layer, and the outside thereof is covered with a crosslinked layer.
  • Patent Document 2 includes a lead conductor, a first insulating layer that directly covers at least a part of the lead conductor, and a second insulating layer that covers the first insulating layer.
  • Lead wire for non-aqueous electrolyte battery (tab lead) formed from a crosslinked resin composition containing olefin crystal / ethylene butene / olefin crystal block polymer and polypropylene in a mass ratio of 10:90 to 40:60. Is disclosed.
  • the present disclosure is a battery tab lead including a lead conductor and a resin layer covering a heat-sealed portion of the lead conductor.
  • the resin layer has a conductor adhesive layer provided on the lead conductor side, an intermediate layer, and a packaging material adhesive layer provided on the side of the intermediate layer opposite to the conductor adhesive layer side.
  • the conductor adhesive layer contains a polyolefin resin and contains
  • the intermediate layer contains a crosslinked polyolefin resin
  • the packaging material adhesive layer contains a polyolefin resin and has an elastic modulus at 200 ° C. of 0.1 MPa or more and 15 MPa or less.
  • the present disclosure is a tab lead used for a battery, particularly a non-aqueous electrolyte battery, and can sufficiently prevent a short circuit between the lead conductor and the metal layer of the sealed container at the time of heat fusion of the opening of the sealed container when manufacturing the battery. Further, the resin layer and the lead conductor are sufficiently adhered to each other, and the tab lead and the laminate film of the encapsulation container are sufficiently adhered to provide a tab lead in which the generation of voids between the resin layer and the thermoplastic resin layer of the laminate film is suppressed. The task is to do.
  • the present inventor has attached a resin layer covering the heat-sealed portion of the lead conductor together with a conductor adhesive layer capable of adhering to the lead conductor and an intermediate layer made of crosslinked resin, and the conductor adhesive layer of the intermediate layer. If the packaging material adhesive layer provided on the opposite side to the above is included, and the packaging material adhesive layer has an elastic coefficient in a specific range formed by using a polyolefin resin, a tab lead that solves the above-mentioned problems can be obtained. We have completed the tab lead for batteries of the present disclosure.
  • a tab lead for a battery including a lead conductor and a resin layer that covers a heat-sealed portion of the lead conductor.
  • the resin layer has a conductor adhesive layer provided on the lead conductor side, an intermediate layer, and a packaging material adhesive layer provided on the side of the intermediate layer opposite to the conductor adhesive layer side.
  • the conductor adhesive layer contains a polyolefin resin and contains
  • the intermediate layer contains a crosslinked polyolefin resin
  • the packaging material adhesive layer is a tab lead for a battery containing a polyolefin resin and having an elastic modulus of 0.1 MPa or more and 15 MPa or less at 200 ° C.
  • the packaging material adhesive layer has an elastic modulus of 1.0 MPa or more and 10 MPa or less at 200 ° C.
  • a tab lead for a battery including a lead conductor and a resin layer that covers a heat-sealed portion of the lead conductor.
  • the resin layer has a conductor adhesive layer provided on the lead conductor side, an intermediate layer, and a packaging material adhesive layer provided on the side of the intermediate layer opposite to the conductor adhesive layer side.
  • the conductor adhesive layer contains a polyolefin resin and contains
  • the intermediate layer contains a crosslinked polyolefin resin
  • the packaging material adhesive layer is a tab lead for a battery containing a polyolefin resin and having an elastic modulus of 0.1 MPa or more and 15 MPa or less at 200 ° C.
  • the battery tab lead (hereinafter, also simply referred to as a tab lead) of the present disclosure includes a lead conductor and a resin layer that covers a heat-sealed portion of the lead conductor, and the resin layer is a packaging material in addition to a conductor adhesive layer and an intermediate layer. It is characterized by having an adhesive layer.
  • FIG. 1 is a perspective view showing the vicinity of a heat-sealed portion of an example of a battery tab lead of the present disclosure.
  • 1 is a lead conductor and 2 is a resin layer. As shown in FIG.
  • the surface of the heat-sealed portion A (the portion that is heat-sealed when the sealed container is sealed) of the lead conductor 1 is covered with the resin layer 2.
  • the encapsulation container and the lead conductor 1 are adhered (heat-sealed) via the resin layer 2.
  • FIG. 2 is a schematic cross-sectional view schematically showing a cross section of a heat-sealed portion of the battery tab lead of FIG.
  • the resin layer 2 is composed of a conductor adhesive layer 3, an intermediate layer 4, and a packaging material adhesive layer 5.
  • FIG. 3 is a cross-sectional view schematically showing a cross section of a heat-sealed portion of a conventional battery tab lead.
  • 11 is a lead conductor
  • 21 is a resin layer
  • the resin layer 21 is composed of a conductor adhesive layer 31 and a crosslinked layer 41.
  • the battery tab lead of the present disclosure shown in FIG. 2 differs from the conventional battery tab lead shown in FIG. 3 in that it has a packaging material adhesive layer 5 in addition to the conductor adhesive layer 3 and the intermediate layer 4. ing.
  • the resin layer 2 includes the conductor adhesive layer 3, the intermediate layer 4, and the packaging material adhesive layer 5 as essential components, but may have other layers.
  • a layer for improving the adhesiveness between the conductor adhesive layer 3 and the intermediate layer 4 and / or between the intermediate layer 4 and the packaging material adhesive layer 5 may be provided.
  • a polyolefin resin is used for the conductor adhesive layer 3, the intermediate layer 4, and the packaging material adhesive layer 5, when a layer for improving the adhesiveness between the layers is provided, the polyolefin resin is used as the layer. Layer is preferred.
  • the resin layer 2 may be composed of three or more layers.
  • the conductor adhesive layer is a layer provided on the lead conductor side in the resin layer and adheres to the lead conductor.
  • the conductor adhesive layer contains a thermoplastic polyolefin resin that can be adhered to the lead conductor.
  • the polyolefin resin include polyethylene, polypropylene, ethylene-based elastomers, styrene-based elastomers, and ionomer resins obtained by cross-linking a copolymer of ethylene and methacrylic acid with Na, Mg, K, or the like.
  • the resin contained in the conductor adhesive layer is preferably a resin having a high adhesive strength to the lead conductor.
  • a resin obtained by modifying the above-mentioned polyolefin resin with maleic acid, acrylic acid, methacrylic acid, maleic anhydride, or an epoxy group is also preferable because the modification improves the adhesive strength with the lead conductor.
  • a maleic anhydride-modified polyolefin resin can be preferably used.
  • the conductor adhesive layer may be composed of only a thermoplastic polyolefin resin that can be adhered to the lead conductor, or may contain other components.
  • Various additives such as flame retardants, ultraviolet absorbers, light stabilizers, heat stabilizers, lubricants, and colorants can be mixed in the conductor adhesive layer.
  • the conductor adhesive layer containing the thermoplastic polyolefin resin that can be adhered to the lead conductor and various additives is such that the polyolefin resin and the additives are used in an open roll, a pressure kneader, a single-screw mixer, a twin-screw mixer, or the like.
  • the conductor adhesive layer varies depending on the thickness of the lead conductor, but is usually preferably 20 ⁇ m or more and 250 ⁇ m or less.
  • the intermediate layer contains a crosslinked polyolefin resin.
  • a polyolefin resin as a forming material, the intermediate layer can obtain excellent adhesiveness to a conductor adhesive layer made of a polyolefin resin that can be adhered to a lead conductor.
  • the crosslinked polyolefin resin include a crosslinked polypropylene resin or a crosslinked body of a resin composition containing a polypropylene resin and a thermoplastic elastomer in a mass ratio of 90:10 to 60:40.
  • thermoplastic elastomer examples include ethylene / butene copolymer resin, ethylene / octene copolymer resin, olefin crystal / ethylene butene / olefin crystal block polymer, polypropylene-based elastomer such as Toughmer PN2070 manufactured by Mitsui Chemicals, Inc. and the like. can. As the thermoplastic elastomer, at least one selected from these can be used.
  • Polyolefin resin has improved heat-resistant deformability by cross-linking, and is less likely to be thermally deformed even when heated above the melting point of the resin. Therefore, by providing an intermediate layer containing the crosslinked polyolefin resin on the surface of the heat-sealed portion of the lead conductor, thermal deformation and melting of the intermediate layer are suppressed even when the tab leads are heat-sealed to the opening of the encapsulation container. , It is possible to prevent a short circuit between the lead conductor and the metal layer of the sealed container.
  • Examples of the method for cross-linking the polyolefin resin include cross-linking by irradiation with ionizing radiation such as electron beam and gamma ray, chemical cross-linking with peroxide and the like, and silane cross-linking.
  • ionizing radiation such as electron beam and gamma ray
  • chemical cross-linking with peroxide and the like and silane cross-linking.
  • the method by irradiation with ionizing radiation is preferable from the viewpoint of productivity, ease of control, and the like.
  • a cross-linking aid may be added to the material for forming the intermediate layer together with the polyolefin resin before cross-linking, if necessary.
  • this cross-linking aid examples include compounds containing at least two unsaturated groups in the molecule, specifically, triallyl isocyanurate, triallyl cyanurate, and tris (2-acryloyloxyethyl) isocyanurate. , Trimethylolpropane trimethacrylate, pentaerythritol triacrylate, ethine glycol dimethacrylate and the like.
  • the cross-linking of the olefin resin constituting the intermediate layer can be confirmed, for example, by immersing the sample in xylene at 120 ° C. for 24 hours, and then the insoluble matter remains.
  • the degree of cross-linking in the cross-linked polyolefin resin is preferably such that the gel fraction is 20% to 90%.
  • the gel fraction is a value measured by the method shown below. (Measurement method of gel fraction) Approximately 1.0 g of a sample (crosslinked polyolefin resin (intermediate layer)) (this weight is W1) is immersed in xylene at 120 ° C. for 24 hours, the liquid portion is discarded, and the solid portion is at 120 ° C. Heat for 3 hours to dry to remove xylene components. Then, the weight of the solid portion (referred to as W2) is measured, and (W2 / W1) ⁇ 100 (%) is defined as the gel fraction.
  • the amount of the cross-linking aid and the irradiation amount of the ionizing radiation are preferably selected from the range in which the degree of cross-linking is within the above range and the resin is not deteriorated.
  • the thermal deformation residual ratio of the intermediate layer is measured by a thermomechanical analysis (TMA (Thermal Mechanical Analysis)) method, and if the thermal deformation residual ratio is 20% or more, it is determined that the olefin resin is crosslinked. I decided to.
  • TMA Thermal Mechanical Analysis
  • various additives such as flame retardants, ultraviolet absorbers, light stabilizers, heat stabilizers, lubricants, and colorants can be mixed in the material for forming the intermediate layer. ..
  • the intermediate layer is prepared by using an open roll of the polyolefin resin, the cross-linking aid and the additive before cross-linking, a pressure kneader, and the like.
  • extrusion molding is performed with a T-die, an inflation extruder or the like to form a film-like layer, which is then obtained by the method described above.
  • This can be done by cross-linking the olefin resin contained in the film-like layer.
  • the intermediate layer may be composed of only the crosslinked polyolefin resin, or may be composed of the crosslinked polyolefin resin and other components such as a crosslinking aid and an antioxidant.
  • the optimum thickness of the intermediate layer varies depending on the thickness of the lead conductor, but is usually preferably 10 ⁇ m to 200 ⁇ m.
  • the packaging material adhesive layer is a layer containing a polyolefin resin having an elastic modulus of 0.1 MPa or more and 15 MPa or less at 200 ° C. measured by the method shown below.
  • the packaging material adhesive layer is provided on the side opposite to the conductor adhesive layer with respect to the intermediate layer.
  • the method for measuring the elastic modulus at 200 ° C. is shown below.
  • the tab lead insulating film is cross-sectioned using a microtome so that each layer can be observed.
  • an atomic force microscope (Asylum Research Cypher ES manufactured by Oxford Instruments), using an indenter made of silicon with a tip diameter of nominally 20 nm, the film thickness at 1 ⁇ m intervals and 1 Hz speed in a 200 ° C environment. 20 points in the parallel direction and 20 points in the vertical direction, totaling about 400 points, are mapped for force curve measurement.
  • a histogram is created at 1 MPa intervals based on the obtained data, and the mode is defined as "elastic modulus at 200 ° C.”.
  • the elastic modulus of the packaging material adhesive layer at 200 ° C. is less than 0.1 MPa, the resin will flow out significantly during heat fusion, and the problem of large wetting and spreading on the surface of the lead conductor and the end portion of the lead conductor is likely to occur.
  • the elastic modulus of the packaging material adhesive layer at 200 ° C. exceeds 15 MPa, it becomes difficult to sufficiently fill the space between the resin layer near the end of the lead conductor and the thermoplastic resin layer of the laminate film, and voids are generated. It will be easier. As a result, problems such as leakage of electrolytic solution and infiltration of water from the outside are likely to occur.
  • the elastic modulus of the polyolefin resin for forming the packaging material adhesive layer at 200 ° C. is preferably 0.1 MPa or more and 15 MPa or less, and more preferably 1.0 MPa or more and 10 MPa or less.
  • the packaging material adhesive layer is desired to have excellent adhesiveness to the thermoplastic resin layer of the intermediate layer and the laminate film of the encapsulation container. Therefore, as the polyolefin resin for forming the packaging material adhesive layer, a polyolefin resin having the same or similar chemical structure as the polyolefin resin before cross-linking, which is the material for forming the intermediate layer, is preferable.
  • the thickness of the packaging material adhesive layer is usually preferably 10 ⁇ m or more and 200 ⁇ m or less, but this preferable range varies depending on the thickness of the lead conductor, and is preferably 0.1 times or more and 1.0 times or less the thickness of the lead conductor.
  • the thickness of the packaging material adhesive layer is thinner than the above range, it becomes difficult to fill the space between the resin layer near the end of the lead conductor and the thermoplastic resin layer of the laminate film with resin, and voids are likely to occur (filling property). Will decrease).
  • the packaging material adhesive layer is made thicker than the above range, a large amount of heat is required to melt the packaging material adhesive layer, so that the resin is likely to be insufficiently melted and the filling property is lowered.
  • the thickness of the thermoplastic resin layer (sealant layer) of the laminated film is thin, the space between the resin layer and the thermoplastic resin layer of the laminated film is sufficient. In order to fill and suppress the generation of voids, it is desirable to thicken the packaging material adhesive layer.
  • the sealant layer of the laminated film is made of a polyolefin resin, it is usually preferable that the total thickness of the sealant layer (the thermoplastic resin layer) of the laminated film and the packaging material adhesive layer is 80 ⁇ m or more.
  • the packaging material adhesive layer may be composed of only a polyolefin resin or may contain other components.
  • Various additives such as flame retardants, ultraviolet absorbers, light stabilizers, heat stabilizers, lubricants, and colorants can be mixed in the packaging material adhesive layer.
  • the polyolefin resin and the above additives are mixed with a known mixing device such as an open roll, a pressure kneader, a single-screw mixer, or a twin-screw mixer. After mixing, it can be extruded into a film by a T-die, an inflation extruder or the like.
  • the shape of the lead conductor is not particularly limited, but as the lead conductor used in the lithium ion battery which is a non-aqueous electrolyte battery, a flat metal having a thickness of 50 ⁇ m to 2 mm and a width of about 1 mm to 200 mm is often preferable.
  • the metal used as the lead conductor include aluminum, titanium, nickel, copper, nickel-plated copper and the like.
  • aluminum or titanium or an alloy thereof is often preferable as the lead conductor connected to the positive electrode plate, and the lead conductor connected to the negative electrode plate is often used. Nickel or copper or alloys thereof are often preferred.
  • a conductor adhesive layer, an intermediate layer, and a packaging material adhesive layer are provided in this order on both surfaces at positions corresponding to the heat-sealed portion of a flat plate-shaped lead conductor (part A in FIG. 1).
  • the resin layer containing the conductor can be produced by a method in which the conductor adhesive layer (resin layer) and the lead conductor are heat-sealed by being brought into close contact with each other so that the conductor adhesive layer is on the lead conductor side and then heated.
  • the resin layer including the conductor adhesive layer, the intermediate layer, and the packaging material adhesive layer can be produced by superimposing each film-like layer produced by the above-mentioned method or the like and laminating them by thermal laminating.
  • the heating temperature, pressure, and heating time for heat fusion and heat laminating are the same as for the production of conventional tab leads, and a simple preliminary experiment is performed if necessary with reference to conventionally known conditions. It can be determined by adjusting as appropriate.
  • the laminate film forming the battery encapsulation container is composed of a metal layer and a thermoplastic resin layer (sealant layer) that insulates and coats both surfaces thereof.
  • a pair of the laminated films having a rectangular shape of a predetermined size are prepared, these are laminated so as to face each other, and the three sides around the rectangle are designated by using a sealing machine. It can be produced by heat-sealing by a desired seal width under heating conditions. In this way, a bag-shaped enclosed container having an opening on one side can be produced.
  • Other methods for producing the enclosed container include deep drawing of the laminated film.
  • the method for producing the enclosed container is not particularly limited as long as it can produce a bag-shaped enclosed container having an opening on one side and can provide a volume for accommodating the battery constituent members inside.
  • a positive electrode plate and a negative electrode plate to which the tab lead of the present disclosure is connected to one end thereof, an electrolytic solution, and the like are placed.
  • the heat-sealed portion of the tab lead, that is, the resin layer covering the surface of the lead conductor is located at the opening of the encapsulation container, and the other end of the tab lead is extended to the outside of the encapsulation container, and then the opening is heated and added.
  • a non-aqueous electrolyte battery can be manufactured by pressing and heat-sealing (sealing the packaging material).
  • heating temperature, pressurizing pressure, and heating / pressurizing time at the time of heat fusion refer to the conditions conventionally adopted in the manufacture of non-aqueous electrolyte batteries, and perform a simple preliminary experiment if necessary. Can be easily selected by performing the above and adjusting as appropriate.
  • FIG. 4 is a cross-sectional view showing the structure of the non-aqueous electrolyte battery manufactured as described above.
  • 6 is a positive electrode plate
  • 7 is a negative electrode plate
  • 8 is a tab lead of the present disclosure in which one end is connected to a positive electrode plate 6 or a negative electrode plate 7, and 9 covers the surface of a heat-sealed portion of a lead conductor. It is a resin layer.
  • 52 is a non-aqueous electrolyte
  • 53 is a sealing portion of the sealed container 51.
  • the resin layer 9 of the tab lead 8 is located at the heat-sealing portion 10 (opening) of the sealed container 51.
  • the heat-sealing portion 10 of the enclosed container 51 is heat-sealed (packaging material seal) by heating and pressurizing.
  • 5 and 6 are views showing the state of the heat-sealed portion after heat-sealing.
  • FIG. 5 is a schematic cross-sectional view schematically showing a cross section of a heat-sealed portion using the tab leads of the present disclosure
  • FIG. 6 is a schematic cross-sectional view schematically showing a cross section of a heat-sealed portion using a conventional tab lead. It is a cross-sectional view.
  • the laminate film 101 covers the metal layer 102 made of an aluminum foil, the polyamide resin layer 103 that covers the first surface of the metal layer 102, and the second surface of the metal layer 102. It is composed of a sealant layer 104 made of polypropylene resin.
  • the resin layer 2 includes the conductor adhesive layer 3, the intermediate layer 4, and the packaging material adhesive layer 5.
  • the resin layer 21 includes the conductor adhesive layer 31 and the crosslinked layer 41.
  • the intermediate layer 4 included in the resin layer 2 of the example of FIG. 5 and the crosslinked layer 41 included of the resin layer 21 of the example of FIG. 6 are both layers containing a crosslinked resin, and are crosslinked by heating during heat fusion. The layer containing the crosslinked resin is not easily deformed. Therefore, in the examples of FIGS. 5 and 6, a short circuit between the metal layer 102 and the lead conductor 1 or the lead conductor 11 is prevented.
  • a gap 105 is formed between the sealant layer 104 near the end of the lead conductor 11 and the cross-linking layer 41, but in the example of FIG. 5, the sealant near the end of the lead conductor 1 is formed.
  • the space between the layer 104 and the intermediate layer 4 (the portion indicated by (105)) is filled with the packaging material adhesive layer 5.
  • the packaging material adhesive layer 5 By forming the packaging material adhesive layer 5 using a polyolefin resin (polypropylene resin or the like) that is melted by heating during heat melting, the polyolefin resin (polypropylene resin or the like) is melted during heat melting, and the end portion of the lead conductor 1 is formed.
  • the voids generated between the nearby sealant layer 104 and the intermediate layer 4 can be filled. As a result, problems such as leakage of the electrolytic solution and infiltration of water from the outside can be suppressed.
  • the battery to which the tab lead of the present invention is applied is not limited to the above-mentioned non-aqueous electrolyte battery, but is a battery in which the encapsulation container is formed of a metal foil, a laminate film containing a metal layer, or a laminate material. If there is, there is no particular limitation.
  • Tables 1 and 2 show the following resins a), b) or c) under the conditions of an extrusion temperature of 220 ° C. and a take-up speed of 10 m / min using a single-layer T-die film forming machine. A film (layer) of material and thickness was formed.
  • Adomah QE060 Maleic anhydride-modified polypropylene, elastic modulus at 200 ° C., manufactured by Mitsui Chemicals, Inc. (indicated as "metal-adhesive PP" in the table).
  • Noblen FL6747 Polypropylene, elastic modulus at 200 ° C., manufactured by Sumitomo Chemical Co., Ltd.
  • the films of each layer have a width of 10 mm, are stacked in the order shown in Tables 1 and 2 (in the order of the first layer to the fifth layer in the table), and thermocompression bonded using a laminator machine to obtain a resin layer (laminated film).
  • Tables 1 and 2 in the order of the first layer to the fifth layer in the table
  • thermocompression bonded using a laminator machine to obtain a resin layer (laminated film).
  • the resin layer prepared by the above method is laminated on both surfaces of the lead conductor so that the first layer is on the laminate film side (outermost layer: packaging material adhesive layer), and thermocompression bonding (heat pressing) is performed to prepare a tab lead. did.
  • a sealant made of the material shown in Tables 1 and 2 (PP having a melting point of 135 ° C.) and having the thickness shown in the same table (the sealant layer of the laminated film) is extruded and laminated to have the thickness shown in Tables 1 and 2.
  • Attach to aluminum foil (apply adhesive PP resin to the interface with aluminum foil).
  • a solvent adhesive is applied to the aluminum foil side, a polyamide film produced by extrusion molding and having the thickness shown in Tables 1 and 2 is laminated on the polyamide film, and then roll-pressed at room temperature to obtain the polyamide film. I pasted it. Then, it was cut into an A3 size rectangle to prepare a laminated film.
  • the laminate film obtained above was laminated on both surfaces of the tab lead obtained above so that the sealant was on the tab lead side, and then thermocompression bonding (heat pressing) was performed.
  • thermocompression bonding heat pressing
  • the elastic modulus at 200 ° C. is 0.1 MPa or more and 15 MPa or less on the outside of the layer made of the crosslinked resin (PP), and the non-crosslinked resin (PP). It has been shown that a layer consisting of is necessary.
  • the thickness of the packaging material adhesive layer (outermost layer: PP) is 25 ⁇ m and the thickness of the sealant layer is 50 ⁇ m, totaling 75 ⁇ m
  • the filling property is inferior to that of the other cases.
  • the generation of voids between the laminated film and the tab lead was suppressed, it could not be sufficiently prevented. From this result, it is shown that the total thickness of the packaging material adhesive layer and the sealant layer of the laminated film is preferably 80 ⁇ m or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

A tab lead for batteries, which is provided with a lead conductor and a resin layer that coats a heat-fused part in the lead conductor, wherein the resin layer has a conductor-adhesive layer arranged on the lead conductor side, an intermediate layer and a packaging-material-adhesive layer arranged on the opposite side to the conductor-adhesive layer side of the intermediate layer, the conductor-adhesive layer contains a polyolefin resin, the intermediate layer contains a crosslinked polyolefin resin, the packaging-material-adhesive layer contains a polyolefin resin, and the elastic modulus at 200°C is 0.1 MPa to 15 MPa inclusive.

Description

電池用タブリードBattery tab lead
 本開示は、電池用タブリードに関する。
 本出願は、2020年1月31日出願の日本出願第2020-014715号に基づく優先権を主張し、これらの日本出願に記載された全ての記載内容を援用するものである。
The present disclosure relates to battery tab leads.
This application claims priority based on Japanese Application No. 2020-014715 filed on January 31, 2020, and incorporates all the contents described in these Japanese applications.
 電池に使用されるリード線として、電池の正極や負極に接続されるリード導体と前記リード導体を被覆する絶縁性の樹脂層からなる電池用タブリードが提案されている。
 特許文献1には、リード導体の熱融着部の両表面に一対の絶縁フィルムが張り付けられたリード部材(タブリード)であって、前記絶縁フィルムを架橋層と接着層との2層構造とし、リード導体の熱融着部を接着層で覆いその外側を架橋層で覆ったものが開示されている。
As a lead wire used in a battery, a tab lead for a battery composed of a lead conductor connected to a positive electrode or a negative electrode of the battery and an insulating resin layer covering the lead conductor has been proposed.
Patent Document 1 describes a lead member (tab lead) in which a pair of insulating films are attached to both surfaces of a heat-sealed portion of a lead conductor, and the insulating film has a two-layer structure of a crosslinked layer and an adhesive layer. A heat-sealed portion of a lead conductor is covered with an adhesive layer, and the outside thereof is covered with a crosslinked layer.
 特許文献2には、リード導体と、前記リード導体の少なくとも一部を直接被覆する第1の絶縁層と、前記第1の絶縁層を被覆する第2の絶縁層とを有し、前記第2の絶縁層を、オレフィン結晶・エチレンブテン・オレフィン結晶ブロックポリマーとポリプロピレンとを質量比10:90~40:60で含有する樹脂組成物の架橋体から形成した非水電解質電池用リード線(タブリード)が開示されている。 Patent Document 2 includes a lead conductor, a first insulating layer that directly covers at least a part of the lead conductor, and a second insulating layer that covers the first insulating layer. Lead wire for non-aqueous electrolyte battery (tab lead) formed from a crosslinked resin composition containing olefin crystal / ethylene butene / olefin crystal block polymer and polypropylene in a mass ratio of 10:90 to 40:60. Is disclosed.
特開2011-103245号公報Japanese Unexamined Patent Publication No. 2011-103245 WO2018/074090号公報WO2018 / 074090
 本開示は、リード導体、及び前記リード導体の熱融着部を被覆する樹脂層を備える電池用タブリードであって、
 前記樹脂層が、前記リード導体側に設けられた導体接着層、中間層、及び前記中間層の前記導体接着層側とは反対側に設けられた包材接着層を有し、
 前記導体接着層は、ポリオレフィン樹脂を含み、
 前記中間層は、架橋されたポリオレフィン樹脂を含み、かつ
 前記包材接着層は、ポリオレフィン樹脂を含み、200℃の弾性率が0.1MPa以上15MPa以下である、電池用タブリードに関する。
The present disclosure is a battery tab lead including a lead conductor and a resin layer covering a heat-sealed portion of the lead conductor.
The resin layer has a conductor adhesive layer provided on the lead conductor side, an intermediate layer, and a packaging material adhesive layer provided on the side of the intermediate layer opposite to the conductor adhesive layer side.
The conductor adhesive layer contains a polyolefin resin and contains
The intermediate layer contains a crosslinked polyolefin resin, and the packaging material adhesive layer contains a polyolefin resin and has an elastic modulus at 200 ° C. of 0.1 MPa or more and 15 MPa or less.
本開示のタブリードの一例の熱融着部の近傍を表す斜視図である。It is a perspective view which shows the vicinity of the heat fusion part of an example of a tab lead of this disclosure. 本開示のタブリードの熱融着部の断面を模式的に示す模式断面図である。It is a schematic cross-sectional view which shows typically the cross section of the heat fusion part of the tab lead of this disclosure. 従来のタブリードの熱融着部の断面を模式的に示す模式断面図である。It is a schematic cross-sectional view which shows typically the cross section of the heat fusion part of the conventional tab lead. 本開示のタブリードを使用する非水電解質電池の一例の断面構造を示す断面図である。It is sectional drawing which shows the cross-sectional structure of an example of the non-aqueous electrolyte battery using the tab lead of this disclosure. 本開示のタブリードを用いた熱融着部を模式的に示す断面図である。It is sectional drawing which shows typically the heat fusion part using the tab lead of this disclosure. 従来のタブリードを用いた熱融着部を模式的に示す断面図である。It is sectional drawing which shows typically the heat fusion part using the conventional tab lead.
[本開示が解決しようとする課題]
 特許文献1、2に記載されているように、リード導体の熱融着部を接着層で覆いさらにその外側を架橋された樹脂からなる架橋層で覆ったタブリードを用いることにより、熱融着時におけるリード導体と封入容器の金属層との短絡を防ぎながらリード導体との優れた接着性を得ることができる。その結果、得られた電池は、電解液の漏出や外部からの水分の浸入等を抑制することができる。
[Issues to be solved by this disclosure]
As described in Patent Documents 1 and 2, by using a tab lead in which the heat-sealed portion of the lead conductor is covered with an adhesive layer and the outside thereof is covered with a crosslinked layer made of a crosslinked resin, at the time of heat fusion. It is possible to obtain excellent adhesiveness to the lead conductor while preventing a short circuit between the lead conductor and the metal layer of the sealed container. As a result, the obtained battery can suppress the leakage of the electrolytic solution and the infiltration of water from the outside.
 しかし、このようなタブリードを用い、電池の封入容器の開口部を熱融着により封止した場合、タブリードの架橋層と封入容器のラミネートフィルムとの間が密着せず空隙(架橋層とラミネートフィルムの熱可塑性樹脂層との間が充分に埋まらず空隙となる箇所)が生じる場合があることが見出された。特にリード導体が平板形状でその厚みが厚い場合、この空隙が発生しやすい。空隙が発生すれば、電解液の漏出や電池内部への水分の進入等が生じやすくなるので、電池の信頼性(電池の性能が低下しにくい性質)の点で問題となる。そこで、開口部を熱融着する工程(包材シール工程)における前記のような空隙の発生が防止されるタブリードの開発が望まれる。 However, when the opening of the battery encapsulation container is sealed by heat fusion using such a tab lead, the cross-linked layer of the tab lead and the laminate film of the encapsulation container do not adhere to each other, and a gap (cross-linked layer and laminated film) does not adhere. It was found that there may be a case where a gap is formed because the space between the film and the thermoplastic resin layer is not sufficiently filled. In particular, when the lead conductor has a flat plate shape and its thickness is thick, this void is likely to occur. If voids are generated, leakage of the electrolytic solution and ingress of water into the battery are likely to occur, which poses a problem in terms of battery reliability (property that the performance of the battery is unlikely to deteriorate). Therefore, it is desired to develop a tab lead that prevents the generation of voids as described above in the step of heat-sealing the opening (packaging material sealing step).
 本開示は、電池、特に非水電解質電池に用いるタブリードであって、電池を製造する際の封入容器の開口部の熱融着時に、リード導体と封入容器の金属層との短絡を充分防止できかつ樹脂層とリード導体とは充分密着されるとともに、タブリードと封入容器のラミネートフィルムは充分密着し、樹脂層とラミネートフィルムの熱可塑性樹脂層との間の空隙の発生が抑制されるタブリードを提供することを課題とする。 The present disclosure is a tab lead used for a battery, particularly a non-aqueous electrolyte battery, and can sufficiently prevent a short circuit between the lead conductor and the metal layer of the sealed container at the time of heat fusion of the opening of the sealed container when manufacturing the battery. Further, the resin layer and the lead conductor are sufficiently adhered to each other, and the tab lead and the laminate film of the encapsulation container are sufficiently adhered to provide a tab lead in which the generation of voids between the resin layer and the thermoplastic resin layer of the laminate film is suppressed. The task is to do.
[課題を解決するための手段]
 本発明者は検討の結果、リード導体の熱融着部を被覆する樹脂層を、リード導体と接着可能な導体接着層及び架橋された樹脂からなる中間層とともに、前記中間層の前記導体接着層とは反対側に設けられる包材接着層を含むものとし、前記包材接着層をポリオレフィン樹脂を用いて形成された特定範囲の弾性率を有するものとすれば、前記の課題を解決するタブリードが得られることを見出し、本開示の電池用タブリードを完成した。
[Means to solve problems]
As a result of the study, the present inventor has attached a resin layer covering the heat-sealed portion of the lead conductor together with a conductor adhesive layer capable of adhering to the lead conductor and an intermediate layer made of crosslinked resin, and the conductor adhesive layer of the intermediate layer. If the packaging material adhesive layer provided on the opposite side to the above is included, and the packaging material adhesive layer has an elastic coefficient in a specific range formed by using a polyolefin resin, a tab lead that solves the above-mentioned problems can be obtained. We have completed the tab lead for batteries of the present disclosure.
 前記課題を解決するためになされた本開示の態様は、
 リード導体、及び前記リード導体の熱融着部を被覆する樹脂層を備える電池用タブリードであって、
 前記樹脂層が、前記リード導体側に設けられた導体接着層、中間層、及び前記中間層の前記導体接着層側とは反対側に設けられた包材接着層を有し、
 前記導体接着層は、ポリオレフィン樹脂を含み、
 前記中間層は、架橋されたポリオレフィン樹脂を含み、かつ
 前記包材接着層は、ポリオレフィン樹脂を含み、200℃の弾性率が0.1MPa以上15MPa以下である、電池用タブリードである。
Aspects of the present disclosure made to solve the above problems
A tab lead for a battery including a lead conductor and a resin layer that covers a heat-sealed portion of the lead conductor.
The resin layer has a conductor adhesive layer provided on the lead conductor side, an intermediate layer, and a packaging material adhesive layer provided on the side of the intermediate layer opposite to the conductor adhesive layer side.
The conductor adhesive layer contains a polyolefin resin and contains
The intermediate layer contains a crosslinked polyolefin resin, and the packaging material adhesive layer is a tab lead for a battery containing a polyolefin resin and having an elastic modulus of 0.1 MPa or more and 15 MPa or less at 200 ° C.
 本開示のより好ましい態様において、前記包材接着層は、200℃の弾性率が1.0MPa以上10MPa以下である。 In a more preferred embodiment of the present disclosure, the packaging material adhesive layer has an elastic modulus of 1.0 MPa or more and 10 MPa or less at 200 ° C.
[本開示の効果]
 本開示の電池用タブリードを用いて電池、例えば非水電解質電池を製造すれば、封入容器の開口部を熱融着する際に、樹脂層とリード導体は充分密着されるとともに、リード導体と封入容器の金属層との短絡の発生を充分に防止できる。さらに、樹脂層とラミネートフィルム(封入容器)の熱可塑性樹脂層との間が密着され層間の空隙の発生が抑制されるので、電解液の漏出や外部から電池内への水分の侵入等の問題を抑制することができ、信頼性に優れた電池を容易に製造することができる。
[Effect of the present disclosure]
When a battery, for example, a non-aqueous electrolyte battery is manufactured using the tab lead for a battery of the present disclosure, the resin layer and the lead conductor are sufficiently adhered to each other when the opening of the sealed container is heat-sealed, and the lead conductor and the lead conductor are sealed. It is possible to sufficiently prevent the occurrence of a short circuit with the metal layer of the container. Further, since the resin layer and the thermoplastic resin layer of the laminated film (encapsulated container) are in close contact with each other and the generation of voids between the layers is suppressed, problems such as leakage of the electrolytic solution and invasion of water from the outside into the battery are problems. It is possible to easily manufacture a battery having excellent reliability.
[本開示を実施するための形態]
 以下、本開示を実施するための形態について具体的に説明する。なお、本発明は、以下の内容に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
[Form for implementing the present disclosure]
Hereinafter, a mode for carrying out the present disclosure will be specifically described. It should be noted that the present invention is not limited to the following contents, but is indicated by the scope of claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of claims.
 本開示の態様は、
 リード導体、及び前記リード導体の熱融着部を被覆する樹脂層を備える電池用タブリードであって、
 前記樹脂層が、前記リード導体側に設けられた導体接着層、中間層、及び前記中間層の前記導体接着層側とは反対側に設けられた包材接着層を有し、
 前記導体接着層は、ポリオレフィン樹脂を含み、
 前記中間層は、架橋されたポリオレフィン樹脂を含み、かつ
 前記包材接着層は、ポリオレフィン樹脂を含み、200℃の弾性率が0.1MPa以上15MPa以下である、電池用タブリードである。
Aspects of the present disclosure are:
A tab lead for a battery including a lead conductor and a resin layer that covers a heat-sealed portion of the lead conductor.
The resin layer has a conductor adhesive layer provided on the lead conductor side, an intermediate layer, and a packaging material adhesive layer provided on the side of the intermediate layer opposite to the conductor adhesive layer side.
The conductor adhesive layer contains a polyolefin resin and contains
The intermediate layer contains a crosslinked polyolefin resin, and the packaging material adhesive layer is a tab lead for a battery containing a polyolefin resin and having an elastic modulus of 0.1 MPa or more and 15 MPa or less at 200 ° C.
(本開示の電池用タブリードの構成)
 本開示の電池用タブリード(以下、単にタブリードともいう)は、リード導体及びリード導体の熱融着部を被覆する樹脂層を備え、前記樹脂層は、導体接着層及び中間層に加えて包材接着層を有することを特徴とする。
 図1は、本開示の電池用タブリードの一例の熱融着部の近傍を表す斜視図である。図1中、1はリード導体、2は樹脂層である。図1で示されるように、リード導体1の熱融着部A(封入容器の封止時に熱融着される部分)の表面は樹脂層2で被覆されている。封入容器とリード導体1とはこの樹脂層2を介して接着(熱融着)される。
(Battery tab lead configuration of the present disclosure)
The battery tab lead (hereinafter, also simply referred to as a tab lead) of the present disclosure includes a lead conductor and a resin layer that covers a heat-sealed portion of the lead conductor, and the resin layer is a packaging material in addition to a conductor adhesive layer and an intermediate layer. It is characterized by having an adhesive layer.
FIG. 1 is a perspective view showing the vicinity of a heat-sealed portion of an example of a battery tab lead of the present disclosure. In FIG. 1, 1 is a lead conductor and 2 is a resin layer. As shown in FIG. 1, the surface of the heat-sealed portion A (the portion that is heat-sealed when the sealed container is sealed) of the lead conductor 1 is covered with the resin layer 2. The encapsulation container and the lead conductor 1 are adhered (heat-sealed) via the resin layer 2.
 図2は、図1の電池用タブリードの熱融着部の断面を模式的に示す模式断面図である。樹脂層2は、導体接着層3、中間層4及び包材接着層5からなる。図3は、従来の電池用タブリードの熱融着部の断面を模式的に示す断面図である。図3中、11はリード導体、21は樹脂層であり、樹脂層21は、導体接着層31及び架橋層41からなる。図2で表される本開示の電池用タブリードは、導体接着層3、中間層4に加えて、包材接着層5を有する点で、図3で表される従来の電池用タブリードとは異なっている。 FIG. 2 is a schematic cross-sectional view schematically showing a cross section of a heat-sealed portion of the battery tab lead of FIG. The resin layer 2 is composed of a conductor adhesive layer 3, an intermediate layer 4, and a packaging material adhesive layer 5. FIG. 3 is a cross-sectional view schematically showing a cross section of a heat-sealed portion of a conventional battery tab lead. In FIG. 3, 11 is a lead conductor, 21 is a resin layer, and the resin layer 21 is composed of a conductor adhesive layer 31 and a crosslinked layer 41. The battery tab lead of the present disclosure shown in FIG. 2 differs from the conventional battery tab lead shown in FIG. 3 in that it has a packaging material adhesive layer 5 in addition to the conductor adhesive layer 3 and the intermediate layer 4. ing.
 樹脂層2は、導体接着層3、中間層4及び包材接着層5を必須の構成要素とするが、他の層を有していてもよい。例えば、導体接着層3と中間層4の間、及び/又は、中間層4と包材接着層5の間に、これらの層間の接着性を向上させるための層を設けてもよい。導体接着層3、中間層4及び包材接着層5にはポリオレフィン樹脂が用いられているため、前記層間の接着性を向上させるための層を設ける場合、当該層としては、ポリオレフィン樹脂が用いられた層が好ましい。
 このように、樹脂層2は、3層以上の層からなるものであってもよい。
The resin layer 2 includes the conductor adhesive layer 3, the intermediate layer 4, and the packaging material adhesive layer 5 as essential components, but may have other layers. For example, a layer for improving the adhesiveness between the conductor adhesive layer 3 and the intermediate layer 4 and / or between the intermediate layer 4 and the packaging material adhesive layer 5 may be provided. Since a polyolefin resin is used for the conductor adhesive layer 3, the intermediate layer 4, and the packaging material adhesive layer 5, when a layer for improving the adhesiveness between the layers is provided, the polyolefin resin is used as the layer. Layer is preferred.
As described above, the resin layer 2 may be composed of three or more layers.
 次に、本開示の電池用タブリードの各構成要素について説明する。 Next, each component of the battery tab lead of the present disclosure will be described.
(導体接着層)
 導体接着層は、前記樹脂層においてリード導体側に設けられた層であり、リード導体と接着する。
 導体接着層は、リード導体に接着可能な熱可塑性のポリオレフィン樹脂を含む。前記ポリオレフィン樹脂としては、ポリエチレン、ポリプロピレン、エチレン系エラストマー、スチレン系エラストマー、エチレンとメタクリル酸等の共重合体をNa、Mg、K等で架橋させたアイオノマー樹脂等を挙げることができる。導体接着層に含まれる樹脂は、リード導体に対する接着強度が大きい樹脂が好ましい。前記導体接着層に含まれる樹脂としては、上述したポリオレフィン樹脂をマレイン酸、アクリル酸、メタクリル酸、無水マレイン酸、エポキシ基によって変性した樹脂も、変性によりリード導体との接着強度が向上するので好ましく使用される。特に無水マレイン酸変性ポリオレフィン樹脂が好ましく使用できる。
(Conductor adhesive layer)
The conductor adhesive layer is a layer provided on the lead conductor side in the resin layer and adheres to the lead conductor.
The conductor adhesive layer contains a thermoplastic polyolefin resin that can be adhered to the lead conductor. Examples of the polyolefin resin include polyethylene, polypropylene, ethylene-based elastomers, styrene-based elastomers, and ionomer resins obtained by cross-linking a copolymer of ethylene and methacrylic acid with Na, Mg, K, or the like. The resin contained in the conductor adhesive layer is preferably a resin having a high adhesive strength to the lead conductor. As the resin contained in the conductor adhesive layer, a resin obtained by modifying the above-mentioned polyolefin resin with maleic acid, acrylic acid, methacrylic acid, maleic anhydride, or an epoxy group is also preferable because the modification improves the adhesive strength with the lead conductor. used. In particular, a maleic anhydride-modified polyolefin resin can be preferably used.
 導体接着層は、リード導体に接着可能な熱可塑性のポリオレフィン樹脂のみで構成されていてもよいし、他の成分を含んでいてもよい。導体接着層には、難燃剤、紫外線吸収剤、光安定剤、熱安定剤、滑剤、着色剤等の各種添加剤を混合することが可能である。リード導体に接着可能な熱可塑性のポリオレフィン樹脂と各種添加剤とを含む導体接着層は、前記のポリオレフィン樹脂及び前記の添加剤をオープンロール、加圧ニーダー、単軸混合機、2軸混合機等の既知の混合装置を用いて混合した後、Tダイ成形、インフレーション成形等の押出成形によってフィルム状の層とすることにより作製することができる。
 導体接着層の最適の厚みは、リード導体の厚みにより変動するが、通常20μm以上250μm以下が好ましい。
The conductor adhesive layer may be composed of only a thermoplastic polyolefin resin that can be adhered to the lead conductor, or may contain other components. Various additives such as flame retardants, ultraviolet absorbers, light stabilizers, heat stabilizers, lubricants, and colorants can be mixed in the conductor adhesive layer. The conductor adhesive layer containing the thermoplastic polyolefin resin that can be adhered to the lead conductor and various additives is such that the polyolefin resin and the additives are used in an open roll, a pressure kneader, a single-screw mixer, a twin-screw mixer, or the like. After mixing using a known mixing device of the above, it can be produced by forming a film-like layer by extrusion molding such as T-die molding and inflation molding.
The optimum thickness of the conductor adhesive layer varies depending on the thickness of the lead conductor, but is usually preferably 20 μm or more and 250 μm or less.
(中間層)
 中間層は、架橋されたポリオレフィン樹脂を含む。中間層は、形成材料にポリオレフィン樹脂を用いることにより、リード導体に接着可能なポリオレフィン樹脂で形成された導体接着層との優れた接着性が得られる。特に、導体接着層を構成するポリオレフィン樹脂と同じ化学構造又は類似する化学構造のポリオレフィン樹脂を用いると導体接着層とのより優れた接着性が得られる。
 前記架橋されたポリオレフィン樹脂としては、例えば、架橋されたポリプロピレン樹脂、又は、ポリプロピレン樹脂及び熱可塑性エラストマーを90:10から60:40の質量比で含有する樹脂組成物の架橋体を挙げることができる。この樹脂組成物は、架橋性に優れるので、中間層の形成にこの樹脂組成物を用いることにより、下記の架橋助剤の量を低減しても架橋可能となり、架橋助剤による成形設備や製品への悪影響を抑制することができる。
 前記熱可塑性エラストマーとしては、エチレン・ブテン共重合体樹脂、エチレン・オクテン共重合体樹脂、オレフィン結晶・エチレンブテン・オレフィン結晶ブロックポリマー、三井化学社製タフマーPN2070等のポリプロピレン系エラストマー等を挙げることができる。前記熱可塑性エラストマーとしては、これらから選ばれる少なくとも1種を用いることができる。
(Middle layer)
The intermediate layer contains a crosslinked polyolefin resin. By using a polyolefin resin as a forming material, the intermediate layer can obtain excellent adhesiveness to a conductor adhesive layer made of a polyolefin resin that can be adhered to a lead conductor. In particular, when a polyolefin resin having the same or similar chemical structure as the polyolefin resin constituting the conductor adhesive layer is used, better adhesiveness to the conductor adhesive layer can be obtained.
Examples of the crosslinked polyolefin resin include a crosslinked polypropylene resin or a crosslinked body of a resin composition containing a polypropylene resin and a thermoplastic elastomer in a mass ratio of 90:10 to 60:40. .. Since this resin composition has excellent crosslinkability, by using this resin composition for forming an intermediate layer, it becomes possible to crosslink even if the amount of the following cross-linking aid is reduced, and molding equipment and products using the cross-linking aid can be used. It is possible to suppress the adverse effect on.
Examples of the thermoplastic elastomer include ethylene / butene copolymer resin, ethylene / octene copolymer resin, olefin crystal / ethylene butene / olefin crystal block polymer, polypropylene-based elastomer such as Toughmer PN2070 manufactured by Mitsui Chemicals, Inc. and the like. can. As the thermoplastic elastomer, at least one selected from these can be used.
 ポリオレフィン樹脂は、架橋させることで耐熱変形性が向上し、樹脂の融点以上に加熱されても熱変形しにくいものとなる。そこで、架橋されたポリオレフィン樹脂を含む中間層をリード導体の熱融着部の表面に設けることにより、封入容器の開口部にタブリードを熱融着させるときでも中間層の熱変形、溶融が抑制され、リード導体と封入容器の金属層との短絡を防止することができる。 Polyolefin resin has improved heat-resistant deformability by cross-linking, and is less likely to be thermally deformed even when heated above the melting point of the resin. Therefore, by providing an intermediate layer containing the crosslinked polyolefin resin on the surface of the heat-sealed portion of the lead conductor, thermal deformation and melting of the intermediate layer are suppressed even when the tab leads are heat-sealed to the opening of the encapsulation container. , It is possible to prevent a short circuit between the lead conductor and the metal layer of the sealed container.
 ポリオレフィン樹脂を架橋する方法としては、電子線やガンマ線等の電離放射線の照射による架橋、パーオキサイド等による化学架橋、シラン架橋等を挙げることができる。これらのなかでは、生産性や制御の容易さ等の観点から、電離放射線の照射による方法が好ましい。
 電離放射線の照射により架橋する場合、前記中間層の形成材料には、架橋前のポリオレフィン樹脂とともに、必要に応じて架橋助剤が添加されてもよい。この架橋助剤としては、分子中に不飽和基を少なくとも2個以上含む化合物を挙げることができ、具体的にはトリアリルイソシアヌレート、トリアリルシアヌレート、トリス(2-アクリロイルオキシエチル)イソシアヌレート、トリメチロールプロパントリメタクリレート、ペンタエリスリトールトリアクリレート、エチングリコールジメタクリレート等を挙げることができる。
Examples of the method for cross-linking the polyolefin resin include cross-linking by irradiation with ionizing radiation such as electron beam and gamma ray, chemical cross-linking with peroxide and the like, and silane cross-linking. Among these, the method by irradiation with ionizing radiation is preferable from the viewpoint of productivity, ease of control, and the like.
When cross-linking is performed by irradiation with ionizing radiation, a cross-linking aid may be added to the material for forming the intermediate layer together with the polyolefin resin before cross-linking, if necessary. Examples of this cross-linking aid include compounds containing at least two unsaturated groups in the molecule, specifically, triallyl isocyanurate, triallyl cyanurate, and tris (2-acryloyloxyethyl) isocyanurate. , Trimethylolpropane trimethacrylate, pentaerythritol triacrylate, ethine glycol dimethacrylate and the like.
 中間層を構成するオレフィン樹脂が架橋していることは、例えば、サンプルをキシレンに120℃で24時間浸漬した後、不溶分が残留することで確認することができる。
 架橋されたポリオレフィン樹脂における架橋の程度は、ゲル分率が20%から90%となる程度が好ましい。ここでゲル分率とは、以下に示す方法により測定した値である。
(ゲル分率の測定方法)
 サンプル(架橋されたポリオレフィン樹脂(中間層))の約1.0g(この重量をW1とする)を、キシレンに120℃で24時間浸漬した後、液体部分を廃棄し、固体部分を120℃で3時間加熱して乾燥しキシレン成分を除去する。その後、固体部分の重量(W2とする)を測定し、(W2/W1)×100(%)をゲル分率とする。
The cross-linking of the olefin resin constituting the intermediate layer can be confirmed, for example, by immersing the sample in xylene at 120 ° C. for 24 hours, and then the insoluble matter remains.
The degree of cross-linking in the cross-linked polyolefin resin is preferably such that the gel fraction is 20% to 90%. Here, the gel fraction is a value measured by the method shown below.
(Measurement method of gel fraction)
Approximately 1.0 g of a sample (crosslinked polyolefin resin (intermediate layer)) (this weight is W1) is immersed in xylene at 120 ° C. for 24 hours, the liquid portion is discarded, and the solid portion is at 120 ° C. Heat for 3 hours to dry to remove xylene components. Then, the weight of the solid portion (referred to as W2) is measured, and (W2 / W1) × 100 (%) is defined as the gel fraction.
 ゲル分率が20%未満では、架橋が不十分でリード導体と封入容器の金属層との短絡の防止が不十分となる傾向がある。一方、ゲル分率が90%を超えると、包材接着層との接着性が低下し電解液の漏出等が生じやすくなる傾向がある。架橋助剤の量や電離放射線の照射量は、架橋の程度が上記範囲内になるとともに樹脂の劣化等を生じない範囲より選択することが好ましい。 If the gel fraction is less than 20%, cross-linking tends to be insufficient and the prevention of short circuit between the lead conductor and the metal layer of the encapsulation container tends to be insufficient. On the other hand, when the gel fraction exceeds 90%, the adhesiveness with the packaging material adhesive layer is lowered, and the electrolytic solution tends to leak easily. The amount of the cross-linking aid and the irradiation amount of the ionizing radiation are preferably selected from the range in which the degree of cross-linking is within the above range and the resin is not deteriorated.
 中間層を構成するオレフィン樹脂が架橋していることは、上述した方法以外に、中間層の加熱変形残率によっても確認することができる。この場合、中間層の加熱変形残率を熱機械分析(TMA(Thermal Mechanical Analysis))法によって測定し、当該加熱変形残率が20%以上であると、前記オレフィン樹脂が架橋していると判断することとする。 The fact that the olefin resin constituting the intermediate layer is crosslinked can be confirmed by the heat deformation residual ratio of the intermediate layer in addition to the above-mentioned method. In this case, the thermal deformation residual ratio of the intermediate layer is measured by a thermomechanical analysis (TMA (Thermal Mechanical Analysis)) method, and if the thermal deformation residual ratio is 20% or more, it is determined that the olefin resin is crosslinked. I decided to.
 中間層の形成材料には、上述したポリオレフィン樹脂や架橋助剤の他に、難燃剤、紫外線吸収剤、光安定剤、熱安定剤、滑剤、着色剤等の各種添加剤を混合することができる。前記形成材料が、ポリオレフィン樹脂と、任意成分である架橋助剤及び添加剤を含有する場合、中間層の作製は、架橋前のポリオレフィン樹脂、架橋助剤及び添加剤をオープンロール、加圧ニーダー、単軸混合機、2軸混合機等の既知の混合装置を用いて混合した後、Tダイやインフレーション押出機等により押出成形してフィルム状の層とし、その後、上述した方法によって、得られたフィルム状の層に含まれるオレフィン樹脂を架橋することにより行うことができる。前記中間層は、架橋されたポリオレフィン樹脂のみで構成されていてもよいし、架橋されたポリオレフィン樹脂と架橋助剤や酸化防止剤など、他の成分とを含んで構成されていてもよい。
 中間層の最適の厚みは、リード導体の厚みにより変動するが、通常10μmから200μmが好ましい。
In addition to the above-mentioned polyolefin resin and cross-linking aid, various additives such as flame retardants, ultraviolet absorbers, light stabilizers, heat stabilizers, lubricants, and colorants can be mixed in the material for forming the intermediate layer. .. When the forming material contains a polyolefin resin and an optional cross-linking aid and additive, the intermediate layer is prepared by using an open roll of the polyolefin resin, the cross-linking aid and the additive before cross-linking, a pressure kneader, and the like. After mixing using a known mixing device such as a single-screw mixer or a twin-screw mixer, extrusion molding is performed with a T-die, an inflation extruder or the like to form a film-like layer, which is then obtained by the method described above. This can be done by cross-linking the olefin resin contained in the film-like layer. The intermediate layer may be composed of only the crosslinked polyolefin resin, or may be composed of the crosslinked polyolefin resin and other components such as a crosslinking aid and an antioxidant.
The optimum thickness of the intermediate layer varies depending on the thickness of the lead conductor, but is usually preferably 10 μm to 200 μm.
(包材接着層)
 包材接着層は、以下に示す方法等で測定された200℃の弾性率が0.1MPa以上15MPa以下であり、ポリオレフィン樹脂を含む層である。包材接着層は、中間層に対して導体接着層とは反対側に設けられる。前記の範囲の弾性率を有し、ポリオレフィン樹脂を含む包材接着層を設けることにより、樹脂層とラミネートフィルム(封入容器)との間での空隙(樹脂層とラミネートフィルムの熱可塑性樹脂層との間が充分に埋まらず空隙となる箇所)の発生を抑制することができる(以下、空隙の発生を抑制する性質を「埋まり性」と言うことがある)。従って、電解液の漏出や外部からの水分の浸入等の問題が抑制され、信頼性に優れた(電池の性能の低下が抑制された)非水電解質電池を製造することができる。
(Packaging material adhesive layer)
The packaging material adhesive layer is a layer containing a polyolefin resin having an elastic modulus of 0.1 MPa or more and 15 MPa or less at 200 ° C. measured by the method shown below. The packaging material adhesive layer is provided on the side opposite to the conductor adhesive layer with respect to the intermediate layer. By providing a packaging material adhesive layer having an elastic modulus in the above range and containing a polyolefin resin, a gap (a resin layer and a thermoplastic resin layer of the laminate film) between the resin layer and the laminate film (encapsulated container) can be provided. It is possible to suppress the occurrence of gaps (locations that are not sufficiently filled and become voids) (hereinafter, the property of suppressing the generation of voids may be referred to as "fillability"). Therefore, problems such as leakage of the electrolytic solution and infiltration of water from the outside are suppressed, and a highly reliable non-aqueous electrolyte battery (with suppressed deterioration of battery performance) can be manufactured.
(200℃の弾性率の測定方法)
 前記200℃の弾性率の測定方法を以下に示す。
 タブリードの絶縁フィルムについて、各層を観察できるようにミクロトームを用いて断面出しを行う。原子間顕微鏡(オックスフォード・インスツルメント社製アサイラムリサーチCypher ES)を使用し、シリコン製・先端径公称20nmの圧子を用いて、1μm間隔、1Hzの速度にて、200℃環境下で、フィルム厚みと平行方向に20点、垂直方向に20点、計400点程度のフォースカーブ測定のマッピングを行う。得られたデータを基に1MPa間隔でのヒストグラムを作成し、その最頻値を「200℃の弾性率」と定義する。
(Measuring method of elastic modulus at 200 ° C)
The method for measuring the elastic modulus at 200 ° C. is shown below.
The tab lead insulating film is cross-sectioned using a microtome so that each layer can be observed. Using an atomic force microscope (Asylum Research Cypher ES manufactured by Oxford Instruments), using an indenter made of silicon with a tip diameter of nominally 20 nm, the film thickness at 1 μm intervals and 1 Hz speed in a 200 ° C environment. 20 points in the parallel direction and 20 points in the vertical direction, totaling about 400 points, are mapped for force curve measurement. A histogram is created at 1 MPa intervals based on the obtained data, and the mode is defined as "elastic modulus at 200 ° C.".
 包材接着層の200℃の弾性率が0.1MPa未満の場合は、熱融着時に、樹脂の流れ出しが大きくなりリード導体の表面やリード導体の端部に大きく濡れ広がる問題が生じやすくなる。
 一方、包材接着層の200℃の弾性率が15MPaを超える場合は、リード導体の端部近傍の樹脂層とラミネートフィルムの熱可塑性樹脂層との間を充分に埋めにくくなり、空隙が発生しやすくなる。その結果、電解液漏れや外部からの水分の浸入等の問題が生じやすくなる。前記200℃の弾性率は、好ましくは、1.0MPa以上10.0MPa以下の範囲である。
 包材接着層を形成するためのポリオレフィン樹脂の200℃の弾性率は、0.1MPa以上15MPa以下が好ましく、1.0MPa以上10MPa以下がより好ましい。
If the elastic modulus of the packaging material adhesive layer at 200 ° C. is less than 0.1 MPa, the resin will flow out significantly during heat fusion, and the problem of large wetting and spreading on the surface of the lead conductor and the end portion of the lead conductor is likely to occur.
On the other hand, when the elastic modulus of the packaging material adhesive layer at 200 ° C. exceeds 15 MPa, it becomes difficult to sufficiently fill the space between the resin layer near the end of the lead conductor and the thermoplastic resin layer of the laminate film, and voids are generated. It will be easier. As a result, problems such as leakage of electrolytic solution and infiltration of water from the outside are likely to occur. The elastic modulus at 200 ° C. is preferably in the range of 1.0 MPa or more and 10.0 MPa or less.
The elastic modulus of the polyolefin resin for forming the packaging material adhesive layer at 200 ° C. is preferably 0.1 MPa or more and 15 MPa or less, and more preferably 1.0 MPa or more and 10 MPa or less.
 包材接着層には、前記の範囲の弾性率に加えて、中間層及び封入容器のラミネートフィルムの熱可塑性樹脂層との優れた接着性が望まれる。従って、包材接着層を形成するポリオレフィン樹脂としては、中間層の形成材料である架橋前のポリオレフィン樹脂と同じ又は類似の化学構造のポリオレフィン樹脂が好ましい。 In addition to the elastic modulus in the above range, the packaging material adhesive layer is desired to have excellent adhesiveness to the thermoplastic resin layer of the intermediate layer and the laminate film of the encapsulation container. Therefore, as the polyolefin resin for forming the packaging material adhesive layer, a polyolefin resin having the same or similar chemical structure as the polyolefin resin before cross-linking, which is the material for forming the intermediate layer, is preferable.
 包材接着層の厚みは、通常10μm以上200μm以下が好ましいが、この好ましい範囲はリード導体の厚みにより変動し、リード導体の厚みの0.1倍以上1.0倍以下が好ましい。包材接着層の厚みが前記範囲より薄い場合は、リード導体の端部近傍の樹脂層とラミネートフィルムの熱可塑性樹脂層との間を樹脂で埋めにくくなり、空隙が発生しやすくなる(埋まり性が低下する)。一方、包材接着層を前記範囲より厚くした場合も、包材接着層を溶融させるために多量の熱が必要になるので、樹脂の溶融が不十分となりやすく埋まり性は低下する。
 ただし、ラミネートフィルムの(タブリードの樹脂層と熱融着する側の)熱可塑性樹脂層(シーラント層)の厚みが薄い場合は、樹脂層とラミネートフィルムの前記熱可塑性樹脂層との間を充分に埋め、空隙の発生を抑制するためには、包材接着層を厚くすることが望まれる。ラミネートフィルムのシーラント層がポリオレフィン樹脂からなる場合は、通常、ラミネートフィルムのシーラント層(前記熱可塑性樹脂層)と包材接着層の合計の厚みを80μm以上とすることが好ましい。
The thickness of the packaging material adhesive layer is usually preferably 10 μm or more and 200 μm or less, but this preferable range varies depending on the thickness of the lead conductor, and is preferably 0.1 times or more and 1.0 times or less the thickness of the lead conductor. When the thickness of the packaging material adhesive layer is thinner than the above range, it becomes difficult to fill the space between the resin layer near the end of the lead conductor and the thermoplastic resin layer of the laminate film with resin, and voids are likely to occur (filling property). Will decrease). On the other hand, even when the packaging material adhesive layer is made thicker than the above range, a large amount of heat is required to melt the packaging material adhesive layer, so that the resin is likely to be insufficiently melted and the filling property is lowered.
However, if the thickness of the thermoplastic resin layer (sealant layer) of the laminated film (on the side that is heat-sealed with the resin layer of the tab lead) is thin, the space between the resin layer and the thermoplastic resin layer of the laminated film is sufficient. In order to fill and suppress the generation of voids, it is desirable to thicken the packaging material adhesive layer. When the sealant layer of the laminated film is made of a polyolefin resin, it is usually preferable that the total thickness of the sealant layer (the thermoplastic resin layer) of the laminated film and the packaging material adhesive layer is 80 μm or more.
 包材接着層は、ポリオレフィン樹脂のみで構成されていてもよいし、他の成分を含んでいてもよい。包材接着層には、難燃剤、紫外線吸収剤、光安定剤、熱安定剤、滑剤、着色剤等の各種添加剤を混合することが可能である。ポリオレフィン樹脂と各種添加剤とを含む包材接着層の作製は、ポリオレフィン樹脂及び前記の添加剤をオープンロール、加圧ニーダー、単軸混合機、2軸混合機等の既知の混合装置を用いて混合した後、Tダイやインフレーション押出機等により、フィルム状に押出成形して行うことができる。 The packaging material adhesive layer may be composed of only a polyolefin resin or may contain other components. Various additives such as flame retardants, ultraviolet absorbers, light stabilizers, heat stabilizers, lubricants, and colorants can be mixed in the packaging material adhesive layer. To prepare the packaging material adhesive layer containing the polyolefin resin and various additives, the polyolefin resin and the above additives are mixed with a known mixing device such as an open roll, a pressure kneader, a single-screw mixer, or a twin-screw mixer. After mixing, it can be extruded into a film by a T-die, an inflation extruder or the like.
(リード導体)
 リード導体の形状は特に限定されないが、非水電解質電池であるリチウムイオン電池に使用されるリード導体としては、厚み50μmから2mm、幅1mmから200mm程度の平板形状の金属が好ましい場合が多い。リード導体として使用される金属としては、アルミニウム、チタン、ニッケル、銅、ニッケルめっき銅等を挙げることができる。前記リード導体が、リチウムイオン電池に使用される場合、正極板に接続されるリード導体としては、アルミニウムもしくはチタン又はこれらの合金が好適な場合が多く、負極板に接続されるリード導体としては、ニッケルもしくは銅又はこれらの合金が好適な場合が多い。
(Lead conductor)
The shape of the lead conductor is not particularly limited, but as the lead conductor used in the lithium ion battery which is a non-aqueous electrolyte battery, a flat metal having a thickness of 50 μm to 2 mm and a width of about 1 mm to 200 mm is often preferable. Examples of the metal used as the lead conductor include aluminum, titanium, nickel, copper, nickel-plated copper and the like. When the lead conductor is used in a lithium ion battery, aluminum or titanium or an alloy thereof is often preferable as the lead conductor connected to the positive electrode plate, and the lead conductor connected to the negative electrode plate is often used. Nickel or copper or alloys thereof are often preferred.
(本開示のタブリードの作製)
 本開示のタブリードは、例えば、平板形状のリード導体の熱融着部に該当する位置(図1のAの部分)の両表面に、導体接着層、中間層及び包材接着層をこの順序で含む樹脂層を、導体接着層がリード導体側となるように密着させた後加熱して、導体接着層(樹脂層)とリード導体とを熱融着させる方法により作製することができる。
 導体接着層、中間層及び包材接着層を含む樹脂層は、上述した方法等で作製されたフィルム状の各層を重ね合わせ、熱ラミネートにより貼りあわせることにより作製することができる。
 前記熱融着や熱ラミネートのときの加熱温度、圧力、加熱時間は、従来のタブリードの作製の場合と同様であり、従来知られている条件を参考にして、必要により簡易な予備実験を行って適宜調整することにより、決定することができる。
(Preparation of tab lead of the present disclosure)
In the tab lead of the present disclosure, for example, a conductor adhesive layer, an intermediate layer, and a packaging material adhesive layer are provided in this order on both surfaces at positions corresponding to the heat-sealed portion of a flat plate-shaped lead conductor (part A in FIG. 1). The resin layer containing the conductor can be produced by a method in which the conductor adhesive layer (resin layer) and the lead conductor are heat-sealed by being brought into close contact with each other so that the conductor adhesive layer is on the lead conductor side and then heated.
The resin layer including the conductor adhesive layer, the intermediate layer, and the packaging material adhesive layer can be produced by superimposing each film-like layer produced by the above-mentioned method or the like and laminating them by thermal laminating.
The heating temperature, pressure, and heating time for heat fusion and heat laminating are the same as for the production of conventional tab leads, and a simple preliminary experiment is performed if necessary with reference to conventionally known conditions. It can be determined by adjusting as appropriate.
(非水電解質電池の製造)
 電池の封入容器を形成するラミネートフィルムは金属層とその両表面を絶縁被覆する熱可塑性樹脂層(シーラント層)からなる。
 非水電解質電池の封入容器は、例えば、所定の大きさの矩形とした前記ラミネートフィルムを一対用意し、これらを対向するように重ねあわせ、矩形の周囲3辺を、シール機を用いて所定の加熱条件で所望のシール幅だけ熱融着して作製することができる。このようにして一辺に開口部を有する袋状の封入容器を作製することができる。
 封入容器の作製方法としては、他にも、前記ラミネートフィルムの深絞り加工等を挙げることができる。封入容器の作製方法は、一辺に開口部を有する袋状の封入容器を作製でき、内部に前記電池構成部材を収めるための容積を設けることができる方法であれば特に限定されない。
(Manufacturing of non-aqueous electrolyte batteries)
The laminate film forming the battery encapsulation container is composed of a metal layer and a thermoplastic resin layer (sealant layer) that insulates and coats both surfaces thereof.
For the encapsulation container of the non-aqueous electrolyte battery, for example, a pair of the laminated films having a rectangular shape of a predetermined size are prepared, these are laminated so as to face each other, and the three sides around the rectangle are designated by using a sealing machine. It can be produced by heat-sealing by a desired seal width under heating conditions. In this way, a bag-shaped enclosed container having an opening on one side can be produced.
Other methods for producing the enclosed container include deep drawing of the laminated film. The method for producing the enclosed container is not particularly limited as long as it can produce a bag-shaped enclosed container having an opening on one side and can provide a volume for accommodating the battery constituent members inside.
 前記のようにして作製された封入容器に、前記の本開示のタブリードをその一端に接続した正極板及び負極板、及び電解液等を入れる。タブリードの熱融着部すなわちリード導体の表面を覆う樹脂層が、封入容器の開口部に位置するようにして、タブリードの他端を封入容器の外部へ延ばした後、前記開口部を加熱、加圧して熱融着(包材シール)することにより、非水電解質電池を製造することができる。
 前記熱融着(包材シール)の際の加熱温度、加圧の圧力、加熱加圧の時間は、非水電解質電池の製造において従来採用されている条件を参考にし、必要により簡易な予備実験を行って適宜調整することにより、容易に選択することができる。
In the sealed container produced as described above, a positive electrode plate and a negative electrode plate to which the tab lead of the present disclosure is connected to one end thereof, an electrolytic solution, and the like are placed. The heat-sealed portion of the tab lead, that is, the resin layer covering the surface of the lead conductor is located at the opening of the encapsulation container, and the other end of the tab lead is extended to the outside of the encapsulation container, and then the opening is heated and added. A non-aqueous electrolyte battery can be manufactured by pressing and heat-sealing (sealing the packaging material).
For the heating temperature, pressurizing pressure, and heating / pressurizing time at the time of heat fusion (packaging material seal), refer to the conditions conventionally adopted in the manufacture of non-aqueous electrolyte batteries, and perform a simple preliminary experiment if necessary. Can be easily selected by performing the above and adjusting as appropriate.
 図4は、前記のようにして製造された非水電解質電池の構造を示す断面図である。図4中、6は正極板、7は負極板、8は正極板6又は負極板7にその一端が接続された本開示のタブリードであり、9はリード導体の熱融着部の表面を覆う樹脂層である。図4中、52は非水電解質であり、53は封入容器51のシール部である。図4に示されるように、タブリード8の樹脂層9は、封入容器51の熱融着部10(開口部)に位置している。 FIG. 4 is a cross-sectional view showing the structure of the non-aqueous electrolyte battery manufactured as described above. In FIG. 4, 6 is a positive electrode plate, 7 is a negative electrode plate, 8 is a tab lead of the present disclosure in which one end is connected to a positive electrode plate 6 or a negative electrode plate 7, and 9 covers the surface of a heat-sealed portion of a lead conductor. It is a resin layer. In FIG. 4, 52 is a non-aqueous electrolyte, and 53 is a sealing portion of the sealed container 51. As shown in FIG. 4, the resin layer 9 of the tab lead 8 is located at the heat-sealing portion 10 (opening) of the sealed container 51.
 封入容器51の熱融着部10は、加熱、加圧により熱融着(包材シール)されている。図5、6は、熱融着された後の熱融着部の様子を示す図である。図5は、本開示のタブリードを用いた熱融着部の断面を模式的に示す模式断面図であり、図6は、従来のタブリードを用いた熱融着部の断面を模式的に示す模式断面図である。 The heat-sealing portion 10 of the enclosed container 51 is heat-sealed (packaging material seal) by heating and pressurizing. 5 and 6 are views showing the state of the heat-sealed portion after heat-sealing. FIG. 5 is a schematic cross-sectional view schematically showing a cross section of a heat-sealed portion using the tab leads of the present disclosure, and FIG. 6 is a schematic cross-sectional view schematically showing a cross section of a heat-sealed portion using a conventional tab lead. It is a cross-sectional view.
 図5、6の例では、ラミネートフィルム101は、アルミニウムの箔からなる金属層102と、金属層102の第1の表面を被覆するポリアミド樹脂層103及び金属層102の第2の表面を被覆するポリプロピレン樹脂からなるシーラント層104から構成されている。また、図5の例では、樹脂層2は、導体接着層3、中間層4及び包材接着層5を含む。図6の例では、樹脂層21は、導体接着層31及び架橋層41を含む。図5の例の樹脂層2が含む中間層4、及び図6の例の樹脂層21が含む架橋層41は、いずれも架橋された樹脂を含む層であり、熱融着時の加熱によって架橋された樹脂を含む層は変形しにくい。そのため、図5、6の例では、金属層102とリード導体1又はリード導体11との短絡が防止されている。 In the examples of FIGS. 5 and 6, the laminate film 101 covers the metal layer 102 made of an aluminum foil, the polyamide resin layer 103 that covers the first surface of the metal layer 102, and the second surface of the metal layer 102. It is composed of a sealant layer 104 made of polypropylene resin. Further, in the example of FIG. 5, the resin layer 2 includes the conductor adhesive layer 3, the intermediate layer 4, and the packaging material adhesive layer 5. In the example of FIG. 6, the resin layer 21 includes the conductor adhesive layer 31 and the crosslinked layer 41. The intermediate layer 4 included in the resin layer 2 of the example of FIG. 5 and the crosslinked layer 41 included of the resin layer 21 of the example of FIG. 6 are both layers containing a crosslinked resin, and are crosslinked by heating during heat fusion. The layer containing the crosslinked resin is not easily deformed. Therefore, in the examples of FIGS. 5 and 6, a short circuit between the metal layer 102 and the lead conductor 1 or the lead conductor 11 is prevented.
 図6の例では、リード導体11の端部の近傍のシーラント層104と架橋層41の間に、空隙105が生じているが、図5の例では、リード導体1の端部の近傍のシーラント層104と中間層4の間((105)で示される部分)は包材接着層5により埋められている。
 包材接着層5を、熱溶融時の加熱により溶融するポリオレフィン樹脂(ポリプロピレン樹脂等)を用いて形成することにより熱溶融時にポリオレフィン樹脂(ポリプロピレン樹脂等)が溶融し、リード導体1の端部の近傍のシーラント層104と中間層4の間に生じる空隙を埋めることができる。その結果、電解液の漏出や外部からの水分の浸入等の問題を抑制することができる。
In the example of FIG. 6, a gap 105 is formed between the sealant layer 104 near the end of the lead conductor 11 and the cross-linking layer 41, but in the example of FIG. 5, the sealant near the end of the lead conductor 1 is formed. The space between the layer 104 and the intermediate layer 4 (the portion indicated by (105)) is filled with the packaging material adhesive layer 5.
By forming the packaging material adhesive layer 5 using a polyolefin resin (polypropylene resin or the like) that is melted by heating during heat melting, the polyolefin resin (polypropylene resin or the like) is melted during heat melting, and the end portion of the lead conductor 1 is formed. The voids generated between the nearby sealant layer 104 and the intermediate layer 4 can be filled. As a result, problems such as leakage of the electrolytic solution and infiltration of water from the outside can be suppressed.
 なお、本発明のタブリードが適用される電池は、上記の非水電解質電池に限定されるものではなく、封入容器が、金属箔又は金属層を含むラミネートフィルム、ラミネート材により形成されている電池であれば特に限定されない。 The battery to which the tab lead of the present invention is applied is not limited to the above-mentioned non-aqueous electrolyte battery, but is a battery in which the encapsulation container is formed of a metal foil, a laminate film containing a metal layer, or a laminate material. If there is, there is no particular limitation.
(リード導体の作製)
 表1、2の「導体:材質」の欄に記載の材質からなり、同表に記載の厚みを有し、幅が50mm、長さが45mmの導体板を用意してリード導体とした。
(Manufacturing of lead conductor)
A conductor plate made of the materials described in the columns of "Conductor: Material" in Tables 1 and 2, having the thickness described in the same table, having a width of 50 mm and a length of 45 mm was prepared and used as a lead conductor.
(樹脂層)
1)以下に示す樹脂a)、b)又はc)を使用し、単層用Tダイフィルム成形機を用いて、押出温度220℃、引取速度10m/minの条件で、表1、2に示す材質、厚みのフィルム(層)を成膜した。
a)アドマーQE060:無水マレイン酸変性ポリプロピレン、200℃での弾性率 3.2MPa、三井化学社製(表中では「金属接着性PP」と示す。)
b)ノーブレンFL6747:ポリプロピレン、200℃での弾性率 4.4MPa、住友化学社製(表中では「PP」と示す。)
c)ノーブレンS131:ポリプロピレン、200℃での弾性率 32MPa、住友化学社製(流動性が低いポリプロピレン:表中では「PP2」と示す。)
 表中で「架橋PP」と示す層は、b)ノーブレンFL6747(「PP」)の層に、電子線照射装置を用いて、加速電圧120kVの電子線を線量が120kGyとなるように照射して樹脂を架橋した層である。同じ条件で架橋した樹脂の200℃での弾性率は19MPaである。
 各層のフィルムを10mm幅として、表1、2に記載の順序(表中の第1の層から第5の層の順)で重ねて、ラミネーター機を用いて熱圧着し樹脂層(積層フィルム)を作製した。
(Resin layer)
1) Tables 1 and 2 show the following resins a), b) or c) under the conditions of an extrusion temperature of 220 ° C. and a take-up speed of 10 m / min using a single-layer T-die film forming machine. A film (layer) of material and thickness was formed.
a) Adomah QE060: Maleic anhydride-modified polypropylene, elastic modulus at 200 ° C., manufactured by Mitsui Chemicals, Inc. (indicated as "metal-adhesive PP" in the table).
b) Noblen FL6747: Polypropylene, elastic modulus at 200 ° C., manufactured by Sumitomo Chemical Co., Ltd. (indicated as "PP" in the table)
c) Noblen S131: polypropylene, elastic modulus at 200 ° C., 32 MPa, manufactured by Sumitomo Chemical Co., Ltd. (polypropylene with low fluidity: indicated as "PP2" in the table)
In the table, the layer indicated as "crosslinked PP" is b) the layer of Nobleen FL6747 ("PP") is irradiated with an electron beam having an acceleration voltage of 120 kV so that the dose is 120 kGy using an electron beam irradiation device. It is a layer in which a resin is crosslinked. The elastic modulus of the resin crosslinked under the same conditions at 200 ° C. is 19 MPa.
The films of each layer have a width of 10 mm, are stacked in the order shown in Tables 1 and 2 (in the order of the first layer to the fifth layer in the table), and thermocompression bonded using a laminator machine to obtain a resin layer (laminated film). Was produced.
(タブリードの作製)
 上述した方法で作製した樹脂層を第1の層がラミネートフィルム側(最外層:包材接着層)となるように前記リード導体の両表面に重ね、熱圧着(熱プレス)してタブリードを作製した。
(Making tab leads)
The resin layer prepared by the above method is laminated on both surfaces of the lead conductor so that the first layer is on the laminate film side (outermost layer: packaging material adhesive layer), and thermocompression bonding (heat pressing) is performed to prepare a tab lead. did.
(ラミネートフィルムの作製)
 表1、2に記載の材質(融点135℃のPP)からなり、同表に記載の厚みを有するシーラント(ラミネートフィルムのシーラント層)を押出ラミネート成形により、表1、2に記載の厚みを有するアルミニウム箔に貼り付ける(アルミニウム箔との界面には接着性PP樹脂を塗布)。
 その後、前記アルミニウム箔側に溶剤接着剤を塗工し、その上に押出成形により作製され表1、2に記載の厚みを有するポリアミドフィルムを重ねた後、室温でロール圧着して前記ポリアミドフィルムを貼り付けた。その後、A3サイズの長方形に切断しラミネートフィルムを作製した。
(Making a laminated film)
A sealant made of the material shown in Tables 1 and 2 (PP having a melting point of 135 ° C.) and having the thickness shown in the same table (the sealant layer of the laminated film) is extruded and laminated to have the thickness shown in Tables 1 and 2. Attach to aluminum foil (apply adhesive PP resin to the interface with aluminum foil).
Then, a solvent adhesive is applied to the aluminum foil side, a polyamide film produced by extrusion molding and having the thickness shown in Tables 1 and 2 is laminated on the polyamide film, and then roll-pressed at room temperature to obtain the polyamide film. I pasted it. Then, it was cut into an A3 size rectangle to prepare a laminated film.
 前記で得られたタブリードの両表面に、前記で得られたラミネートフィルムをシーラントがタブリード側となるように重ねた後、熱圧着(熱プレス)した。得られたサンプルについて、以下の方法にて導体の端部近傍の埋まり性を判定した。その結果を表1、2の「埋まり性」の欄に示す。 The laminate film obtained above was laminated on both surfaces of the tab lead obtained above so that the sealant was on the tab lead side, and then thermocompression bonding (heat pressing) was performed. For the obtained sample, the filling property near the end of the conductor was determined by the following method. The results are shown in the "Fillability" column of Tables 1 and 2.
(埋まり性の判定方法)
 前記サンプルの導体端部を切り出して、エポキシ樹脂に埋め込み、研磨機にて研磨した。研磨された断面を、光学顕微鏡により10から100倍の観察を行い、1μm径以上の空隙の有無を調べた。観察の結果、空隙が見られなかった場合を良好とし、空隙が見られた場合を不良として、表1、2の「埋まり性」の欄に示した。
(Method of determining filling property)
The conductor end of the sample was cut out, embedded in an epoxy resin, and polished with a polishing machine. The polished cross section was observed 10 to 100 times with an optical microscope, and the presence or absence of voids having a diameter of 1 μm or more was examined. As a result of the observation, the case where no void was found was regarded as good, and the case where the void was found was regarded as poor, and is shown in the “Fillability” column of Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1、2に示す結果より、架橋された樹脂(PP)からなる層の外側(熱融着されるラミネートフィルム側)に、架橋されていない樹脂(PP)からなり、200℃の弾性率が0.1MPa以上15MPa以下の範囲内にある層を設けた実験2~4、6~10では、ラミネートフィルムとタブリードとを熱融着する際のラミネートフィルムとタブリードとの間の空隙の発生が抑制されており、埋まり性が向上していることが示されている。
 一方、架橋されていない樹脂(PP)からなり、200℃の弾性率が0.1MPa以上15MPa以下の範囲内にある層を設けず、架橋された樹脂(PP)からなる層が最外層(熱融着されるラミネートフィルムと接する層:包材接着層)となる実験1、5、及び最外層側が架橋されていない樹脂(PP)からなるが、200℃での弾性率が15MPaを超える層である実験11では、空隙が見られ、埋まり性が劣っていた。
From the results shown in Tables 1 and 2, it is made of non-crosslinked resin (PP) on the outside of the layer made of crosslinked resin (PP) (on the side of the laminated film to be heat-sealed), and has an elastic modulus of 200 ° C. In Experiments 2 to 4, 6 to 10 in which layers in the range of 0.1 MPa or more and 15 MPa or less were provided, the generation of voids between the laminated film and the tab leads when the laminated film and the tab leads were heat-sealed was suppressed. It has been shown that the filling property is improved.
On the other hand, a layer made of a non-crosslinked resin (PP) and having an elastic modulus at 200 ° C. of 0.1 MPa or more and 15 MPa or less is not provided, and a layer made of a crosslinked resin (PP) is the outermost layer (heat). Experiments 1 and 5 which are layers in contact with the laminated film to be fused: packaging material adhesive layer), and a layer made of resin (PP) whose outermost layer side is not crosslinked, but whose elastic modulus at 200 ° C. exceeds 15 MPa. In one experiment 11, voids were seen and the filling property was inferior.
 すなわち、優れた埋まり性を得るためには、架橋された樹脂(PP)からなる層の外側に、200℃での弾性率が0.1MPa以上15MPa以下であり、架橋されていない樹脂(PP)からなる層を設ける必要があることが示されている。 That is, in order to obtain excellent filling property, the elastic modulus at 200 ° C. is 0.1 MPa or more and 15 MPa or less on the outside of the layer made of the crosslinked resin (PP), and the non-crosslinked resin (PP). It has been shown that a layer consisting of is necessary.
 ただし、埋まり性が向上している実験2~4、6~10の中でも、架橋された樹脂(PP)からなる層(中間層)の外側にある架橋されていない層(包材接着層)の厚みとシーラント層の厚みの合計が80μm未満である実験8(包材接着層(最外層:PP)の厚み25μm、シーラント層の厚み50μmの計75μm)では、他の場合より埋まり性が劣り、ラミネートフィルムとタブリード間の空隙の発生は、抑制されてはいるが、充分に防止できなかった。この結果より、包材接着層とラミネートフィルムのシーラント層の厚みは合計で80μm以上が好ましいことが示されている。 However, among Experiments 2 to 4 and 6 to 10 in which the filling property is improved, the non-crosslinked layer (packaging adhesive layer) outside the layer (intermediate layer) made of crosslinked resin (PP) In Experiment 8 (the thickness of the packaging material adhesive layer (outermost layer: PP) is 25 μm and the thickness of the sealant layer is 50 μm, totaling 75 μm) in which the total thickness of the thickness and the sealant layer is less than 80 μm, the filling property is inferior to that of the other cases. Although the generation of voids between the laminated film and the tab lead was suppressed, it could not be sufficiently prevented. From this result, it is shown that the total thickness of the packaging material adhesive layer and the sealant layer of the laminated film is preferably 80 μm or more.
1、11 リード導体
2、21 樹脂層
3、31 導体接着層
4    中間層
41   架橋層
5    包材接着層
A    熱融着部
6    正極板
7    負極板
8    タブリード
9    樹脂層
10   熱融着部
51   封入容器
52   非水電解質
53   シール部
101  ラミネートフィルム
102  金属層(アルミニウムの箔)
103  ポリアミド樹脂層
104  シーラント層(ポリプロピレン樹脂)
105  空隙
 
1, 11 Lead conductors 2, 21 Resin layers 3, 31 Conductor adhesive layer 4 Intermediate layer 41 Bridge layer 5 Packaging material adhesive layer A Heat fusion part 6 Positive electrode plate 7 Negative electrode plate 8 Tab lead 9 Resin layer 10 Heat fusion part 51 Encapsulation Container 52 Non-aqueous electrolyte 53 Sealing part 101 Laminated film 102 Metal layer (aluminum foil)
103 Polyamide resin layer 104 Sealant layer (polypropylene resin)
105 void

Claims (9)

  1.  リード導体、及び前記リード導体の熱融着部を被覆する樹脂層を備える電池用タブリードであって、
     前記樹脂層が、前記リード導体側に設けられた導体接着層、中間層、及び前記中間層の前記導体接着層側とは反対側に設けられた包材接着層を有し、
     前記導体接着層は、ポリオレフィン樹脂を含み、
     前記中間層は、架橋されたポリオレフィン樹脂を含み、かつ
     前記包材接着層は、ポリオレフィン樹脂を含み、200℃の弾性率が0.1MPa以上15MPa以下である、電池用タブリード。
    A tab lead for a battery including a lead conductor and a resin layer that covers a heat-sealed portion of the lead conductor.
    The resin layer has a conductor adhesive layer provided on the lead conductor side, an intermediate layer, and a packaging material adhesive layer provided on the side of the intermediate layer opposite to the conductor adhesive layer side.
    The conductor adhesive layer contains a polyolefin resin and contains
    A tab lead for a battery, wherein the intermediate layer contains a crosslinked polyolefin resin, and the packaging material adhesive layer contains a polyolefin resin and has an elastic modulus of 0.1 MPa or more and 15 MPa or less at 200 ° C.
  2.  前記包材接着層は、200℃の弾性率が1.0MPa以上10MPa以下である請求項1に記載の電池用タブリード。 The battery tab lead according to claim 1, wherein the packaging material adhesive layer has an elastic modulus of 1.0 MPa or more and 10 MPa or less at 200 ° C.
  3.  前記中間層を形成するポリオレフィン樹脂が、ポリプロピレン樹脂、又は、ポリプロピレン樹脂及び熱可塑性エラストマーを90:10から60:40の質量比で含有する樹脂組成物である請求項1又は請求項2に記載の電池用タブリード。 The first or second claim, wherein the polyolefin resin forming the intermediate layer is a polypropylene resin or a resin composition containing a polypropylene resin and a thermoplastic elastomer at a mass ratio of 90:10 to 60:40. Tab lead for batteries.
  4.  前記熱可塑性エラストマーが、エチレン・ブテン共重合樹脂、エチレン・オクテン共重合樹脂、オレフィン結晶・エチレンブテン・オレフィン結晶ブロックポリマー及びPP系エラストマーから選ばれる少なくとも1種の樹脂である請求項3に記載の電池用タブリード。 The third aspect of claim 3, wherein the thermoplastic elastomer is at least one resin selected from an ethylene / butene copolymer resin, an ethylene / octene copolymer resin, an olefin crystal / ethylene butene / olefin crystal block polymer, and a PP-based elastomer. Tab lead for batteries.
  5.  前記導体接着層に含まれるポリオレフィン樹脂が、無水マレイン酸変性ポリオレフィンである請求項1から請求項4のいずれか1項に記載の電池用タブリード。 The battery tab lead according to any one of claims 1 to 4, wherein the polyolefin resin contained in the conductor adhesive layer is maleic anhydride-modified polyolefin.
  6.  前記導体接着層の厚みが、20μm以上250μm以下である請求項1から請求項5のいずれか1項に記載の電池用タブリード。 The battery tab lead according to any one of claims 1 to 5, wherein the thickness of the conductor adhesive layer is 20 μm or more and 250 μm or less.
  7.  前記包材接着層の厚みが、前記リード導体の厚みの、0.1倍以上1.0倍以下である請求項1から請求項6のいずれか1項に記載の電池用タブリード。 The battery tab lead according to any one of claims 1 to 6, wherein the thickness of the packaging material adhesive layer is 0.1 times or more and 1.0 times or less the thickness of the lead conductor.
  8.  前記包材接着層の厚みが、10μm以上200μm以下である請求項7に記載の電池用タブリード。 The battery tab lead according to claim 7, wherein the thickness of the packaging material adhesive layer is 10 μm or more and 200 μm or less.
  9.  前記樹脂層は、3層以上の層からなる請求項1から請求項8のいずれか1項に記載の電池用タブリード。
     
    The battery tab lead according to any one of claims 1 to 8, wherein the resin layer is composed of three or more layers.
PCT/JP2021/003376 2020-01-31 2021-01-29 Tab lead for batteries WO2021153777A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180002678.1A CN113632312A (en) 2020-01-31 2021-01-29 Tab lead for battery
JP2021535216A JPWO2021153777A1 (en) 2020-01-31 2021-01-29
KR1020217032218A KR20210134758A (en) 2020-01-31 2021-01-29 battery tap lead

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-014715 2020-01-31
JP2020014715 2020-01-31

Publications (1)

Publication Number Publication Date
WO2021153777A1 true WO2021153777A1 (en) 2021-08-05

Family

ID=77078139

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003376 WO2021153777A1 (en) 2020-01-31 2021-01-29 Tab lead for batteries

Country Status (4)

Country Link
JP (1) JPWO2021153777A1 (en)
KR (1) KR20210134758A (en)
CN (1) CN113632312A (en)
WO (1) WO2021153777A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153301A1 (en) * 2022-02-08 2023-08-17 住友電気工業株式会社 Lead wire for nonaqueous electrolyte battery, insulating film, and nonaqueous electrolyte battery

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259739A (en) * 2008-04-21 2009-11-05 Sumitomo Electric Ind Ltd Electrical parts, nonaqueous electrolyte battery, and lead wire and sealing container used for them
JP2014220176A (en) * 2013-05-10 2014-11-20 住友電気工業株式会社 Lead member, nonaqueous electrolyte power storage device
JP2016091939A (en) * 2014-11-10 2016-05-23 凸版印刷株式会社 Resin film for terminal, tab using the same and power storage device
JP2017016975A (en) * 2015-07-06 2017-01-19 住友電気工業株式会社 battery

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3114174B1 (en) * 1999-07-27 2000-12-04 住友電気工業株式会社 Lead wires for non-aqueous electrolyte batteries
JP5402547B2 (en) * 2009-11-11 2014-01-29 住友電気工業株式会社 Lead member, power storage device with lead member, and method of manufacturing lead member
JP2013012468A (en) * 2011-05-31 2013-01-17 Fujimori Kogyo Co Ltd Electrode lead wire member for nonaqueous battery
JP2017169751A (en) * 2016-03-23 2017-09-28 テルモ株式会社 Guide wire
KR102162209B1 (en) 2016-10-17 2020-10-06 스미토모 덴키 고교 가부시키가이샤 Lead wire for non-aqueous electrolyte battery and non-aqueous electrolyte battery including the same
CN111279511B (en) * 2017-10-17 2023-05-05 大仓工业株式会社 Film for tab lead and tab lead using the same
KR102227239B1 (en) * 2017-12-07 2021-03-11 스미토모 덴키 고교 가부시키가이샤 Lead wire for nonaqueous electrolyte battery and nonaqueous electrolyte battery including same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009259739A (en) * 2008-04-21 2009-11-05 Sumitomo Electric Ind Ltd Electrical parts, nonaqueous electrolyte battery, and lead wire and sealing container used for them
JP2014220176A (en) * 2013-05-10 2014-11-20 住友電気工業株式会社 Lead member, nonaqueous electrolyte power storage device
JP2016091939A (en) * 2014-11-10 2016-05-23 凸版印刷株式会社 Resin film for terminal, tab using the same and power storage device
JP2017016975A (en) * 2015-07-06 2017-01-19 住友電気工業株式会社 battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153301A1 (en) * 2022-02-08 2023-08-17 住友電気工業株式会社 Lead wire for nonaqueous electrolyte battery, insulating film, and nonaqueous electrolyte battery

Also Published As

Publication number Publication date
KR20210134758A (en) 2021-11-10
CN113632312A (en) 2021-11-09
JPWO2021153777A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
JP5277702B2 (en) Electrical parts, non-aqueous electrolyte batteries, and lead wires and enclosures used for them
JP5540967B2 (en) Electrical parts, non-aqueous electrolyte batteries, lead wires and enclosures used therefor
KR101280798B1 (en) Electrochemical device and process of manufacturing same
JP5402547B2 (en) Lead member, power storage device with lead member, and method of manufacturing lead member
JP3114174B1 (en) Lead wires for non-aqueous electrolyte batteries
JP4677708B2 (en) Lead, power storage device, and lead manufacturing method
KR101290946B1 (en) Reed member for non-aqueous electrolyte device, and method of manufacturing the same
JP7105114B2 (en) Tab lead film and tab lead using the same
KR20160030937A (en) Terminal coating resin film for secondary cell, tab member for secondary cell, and secondary cell
WO2021153777A1 (en) Tab lead for batteries
JP2009026485A (en) Nonaqueous electrolyte battery, and lead wire and sealing bag used for the same
JP7120502B1 (en) Lead wire for non-aqueous electrolyte battery, insulating film and non-aqueous electrolyte battery
JP6881320B2 (en) Lead wire for non-aqueous electrolyte battery and non-aqueous electrolyte battery including it
KR20160062870A (en) Sealing member for lead tab of secondary battery and method of sealing using the member
JP2017073200A (en) Lead member
JP7104269B2 (en) Lead wire for non-aqueous electrolyte battery and non-aqueous electrolyte battery including it
KR101995734B1 (en) Lead sealant film
KR102048252B1 (en) Lead sealant films and secondary batteries using the same
WO2023153301A1 (en) Lead wire for nonaqueous electrolyte battery, insulating film, and nonaqueous electrolyte battery
JP2009164134A (en) Method of manufacturing lead
JP2021118108A (en) Tab lead, battery, and method for manufacturing tab lead
KR20200074358A (en) Lead sealant films and secondary batteries using the same
WO2023119586A1 (en) Lead wire for nonaqueous electrolyte battery, insulating film, and nonaqueous electrolyte battery
KR102048258B1 (en) Lead sealant films and secondary batteries using the same
JP2009110779A (en) Electrical component, nonaqueous electrolyte battery and lead wire and filling container to be used for the above

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021535216

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747646

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20217032218

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747646

Country of ref document: EP

Kind code of ref document: A1