WO2021153706A1 - Genetically modified potato, production method thereof, and method of editing potato genome - Google Patents

Genetically modified potato, production method thereof, and method of editing potato genome Download PDF

Info

Publication number
WO2021153706A1
WO2021153706A1 PCT/JP2021/003139 JP2021003139W WO2021153706A1 WO 2021153706 A1 WO2021153706 A1 WO 2021153706A1 JP 2021003139 W JP2021003139 W JP 2021003139W WO 2021153706 A1 WO2021153706 A1 WO 2021153706A1
Authority
WO
WIPO (PCT)
Prior art keywords
potato
gene
nucleic acid
genetically modified
orange
Prior art date
Application number
PCT/JP2021/003139
Other languages
French (fr)
Japanese (ja)
Inventor
亮 遠藤
洋三 柳楽
晴康 濱田
直行 梅基
斉藤 和季
Original Assignee
株式会社カネカ
国立研究開発法人理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社カネカ, 国立研究開発法人理化学研究所 filed Critical 株式会社カネカ
Priority to JP2021574131A priority Critical patent/JPWO2021153706A1/ja
Publication of WO2021153706A1 publication Critical patent/WO2021153706A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H5/00Angiosperms, i.e. flowering plants, characterised by their plant parts; Angiosperms characterised otherwise than by their botanic taxonomy
    • A01H5/04Stems
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H6/00Angiosperms, i.e. flowering plants, characterised by their botanic taxonomy
    • A01H6/82Solanaceae, e.g. pepper, tobacco, potato, tomato or eggplant
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae

Definitions

  • the present invention relates to a genetically modified potato, a method for producing the same, and a method for editing the genome of the potato.
  • Carotenoids have a basic nutritional role as antioxidants and precursors of vitamin A. Ingestion of carotenoids is also associated with protection from various illnesses. Furthermore, it is also known that it is commercially used as a coloring agent for safe foods, feeds and cosmetics, and protects plants from photooxidative stress (Non-Patent Document 1). Therefore, breeding of high carotenoids is an important issue both in Japan and worldwide. As potatoes showing carotenoid accumulation, Kita Akari, Toya, Sassy, etc. are known as yellow meat potato varieties, and Inca Awakening, Nagasaki Golden are known as potato varieties in which more carotenoids, especially zeaxanthin, are accumulated. ing. It is speculated that these are mutations in the CHY and ZEP genes (Non-Patent Document 2).
  • Non-Patent Documents 3, 4, and 5 a gene named Orage (Or) is known (Non-Patent Documents 3, 4, and 5).
  • Orage Orage
  • overexpression of an overt mutation gene that produces an orange color of orange cauliflower in potatoes causes the inside of the tuber of the potato variety Desiree to turn yellow, and violaxanthin, lutein, and ⁇ -carotene are accumulated.
  • violaxanthin, lutein, and ⁇ -carotene Has been reported (Non-Patent Document 6).
  • Non-Patent Document 7 the amount of carotenoids increased in callus due to the modification of the Orange gene, but the amount of carotenoids did not increase in the redifferentiated plants.
  • Non-Patent Document 8 synthetic pathways (for example, pigment synthesis, etc.) and metabolic pathways are often different. Therefore, it is not easy to apply the finding that an agriculturally good phenotype appears when a gene of a certain plant species is modified to another crop species as it is.
  • An object of the present invention is to solve the above-mentioned problems in the past and to achieve the following objects. That is, an object of the present invention is to provide a genetically modified potato in which carotenoids are accumulated, and an efficient method for producing the same.
  • the present inventors have accumulated carotenoids due to genetically modified potatoes in which a deletion, insertion, or substitution has been introduced into the Orange gene. And an efficient method for producing the same, and by adopting a method for producing a genetically modified potato, which comprises a step of introducing a deletion, insertion, or substitution into the Orange gene of potato, a gene in which carotenoids are accumulated. It has been found that an efficient method for producing modified potatoes can be provided.
  • the present invention is based on the above-mentioned findings by the present inventors, and the means for solving the above-mentioned problems are as follows. That is, ⁇ 1> A genetically modified potato characterized in that a deletion, insertion, or substitution has been introduced into the Orange gene. ⁇ 2> A method for producing a genetically modified potato, which comprises a step of introducing a deletion, insertion, or substitution into the Orange gene of potato. ⁇ 3> A potato genome editing method comprising a step of introducing a deletion, insertion, or substitution into a potato Orange gene using a genome editing means.
  • ⁇ 4> Containing either a guide RNA targeting the Orange gene or a nucleic acid encoding a guide RNA targeting the Orange gene, and either a nucleic acid metabolizing enzyme or a nucleic acid encoding the nucleic acid metabolizing enzyme. It is a composition for producing a genetically modified potato, which is characterized by the above.
  • a method for determining a genetically modified potato which comprises a step of determining whether or not the potato is a genetically modified potato, using the presence or absence of deletion, insertion, or substitution of the Orange gene of the potato as an index.
  • FIG. 1 is a schematic diagram showing the genomic structure of the Orange gene of potato (S. tuberosum) and the site of the primer that sequenced the 3rd to 5th exons.
  • FIG. 2 is a schematic diagram showing a design site of gRNA used for genome editing.
  • FIG. 3 is a diagram showing the structure of the vector used for transformation.
  • FIG. 4 is an electrophoretic image showing the results of heteroduplex mobility analysis (HMA) in which genome editing was detected for potatoes transformed with pStOr_t1 and pSTor_t2.
  • HMA heteroduplex mobility analysis
  • FIG. 6 is a diagram showing the results of analyzing the genome sequence of the tuber of pStOr_t2 # 8Y.
  • the genetically modified potato has a deletion, insertion, or substitution introduced into the Orange gene.
  • the Orange gene is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a potato ortholog of the cauliflower Orange gene.
  • the potato ortholog of the cauliflower Orange gene is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it has a gene having the sequence of SEQ ID NO: 1 or 2 or the sequence of SEQ ID NO: 1 or 2. Examples include gene homologues.
  • the homolog is not particularly limited and may be appropriately selected depending on the intended purpose, but the sequence identity with the sequence of SEQ ID NO: 1 or 2 is preferably 80% or more, preferably 85% or more.
  • the sequence identity of is more preferable, 90% or more of the sequence identity is more preferable, 95% or more of the sequence identity is particularly preferable, and 99% or more of the sequence identity is most preferable.
  • the deletion, insertion, or substitution is not particularly limited as long as the deletion, insertion, or substitution is introduced into the Orange gene, and can be appropriately selected depending on the intended purpose. , Or a replacement, or a combination thereof. Among these, it is preferable that the deletion, insertion, or substitution is introduced into three consecutive bases (however, the introduction that becomes a stop codon is excluded).
  • the gene modification rate of the genetically modified potato due to deletion, insertion, or substitution of the Orange gene is not particularly limited and may be appropriately selected depending on the intended purpose, but 1% to 100% is more preferable. % To 100% is more preferable, and 5% to 100% is particularly preferable.
  • the gene modification rate was determined by using TOPO (R) TA Cloning (R) Kit for the genomic DNA of the gene-modified potato amplified using primers U1131: TCACATTTTTGGATTGTTCTCTG (SEQ ID NO: 3) and U1017: TGGACCATAAATCATGCCTTC (SEQ ID NO: 4). Randomly clone 16 to 100 clones to Securing (Thermofisher), obtain gene fragments, compare the sequence identity of the nucleotide sequence cloned into Escherichia coli with the sequence of SEQ ID NO: 5, and lack It is measured by calculating the percentage of clones that have been introduced into three consecutive bases lost, inserted, or substituted (excluding introductions that serve as stop codons).
  • the genetically modified potato preferably contains 1.1 times or more of carotenoids, more preferably 1.3 times or more, and even more preferably 1.5 times or more of the unmodified potatoes. It is particularly preferable to contain 1.8 times or more.
  • the gene-unmodified potato is a potato before the deletion, insertion, or substitution is introduced into the Orange gene.
  • the carotenoid is not particularly limited and may be appropriately selected depending on the intended purpose.
  • carotenes such as ⁇ -carotene, ⁇ -carotene, ⁇ -carotene, ⁇ -carotene and lycopene, lutein, zeaxanthin, cantaxanthin and fucoxanthin.
  • Xanthophylls such as astaxanthin, anteraxanthin, and violaxanthin.
  • violaxanthin, lutein, and ⁇ -carotene are preferable.
  • the method for producing a genetically modified potato includes a step of introducing a deletion, insertion, or substitution into the Orange gene of the potato, and can further include other steps.
  • the step of introducing a deletion, insertion, or substitution into the Orange gene of the potato is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the method using the genome editing is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the method of introduction is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a genome editing vector is introduced into Agrobacterium by an electroporation method, and the Agrobacterium is introduced into a microtuber of potato. Examples include a method of infecting tumef (Agrobacterium method) and a method of shooting fine particles coated by genome editing means into potato buds or axillary buds (particle bombardment method).
  • the genome editing means is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a guide RNA or a nucleic acid encoding the guide RNA, a nucleic acid metabolizing enzyme, or the nucleic acid metabolizing enzyme can be selected.
  • examples include a combination with any of the encoding nucleic acids.
  • a guide RNA targeting the Orange gene or a nucleic acid encoding a guide RNA targeting the Orange gene, a nucleic acid metabolizing enzyme, or the nucleic acid metabolizing enzyme is encoded.
  • a combination of any of the nucleic acids is preferable, and a combination of a nucleic acid encoding a guide RNA targeting the Orange gene and a nucleic acid encoding a nucleic acid metabolizing enzyme is more preferable.
  • the lower limit of the length of the guide RNA is not particularly limited and may be appropriately selected depending on the intended purpose, but 15 nucleotides or more is preferable, 16 nucleotides or more is more preferable, 17 nucleotides or more is further preferable, and 18 Nucleotides and above are particularly preferred, 19 nucleotides and above are even more preferred, and 20 nucleotides and above are most preferred.
  • the upper limit of the length of the guide RNA is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 30 nucleotides or less, more preferably 25 nucleotides or less, further preferably 22 nucleotides or less, and 20 Nucleotides and below are particularly preferred.
  • the guide RNA may contain a guide sequence fused to the tracr sequence.
  • the guide RNA that targets the Orange gene is not particularly limited and may be appropriately selected depending on the intended purpose.
  • it is represented by either StOr_t1 (SEQ ID NO: 6) or STOR_t2 (SEQ ID NO: 7). Examples thereof include sequences and sequences having sequence identity with respect to these sequences.
  • sequence identity is not particularly limited and may be appropriately selected depending on the intended purpose, but 80% or more of sequence identity is preferable, 85% or more of sequence identity is more preferable, and 90% or more of sequences is preferable. Identity is even more preferred, with 95% or greater sequence identity being particularly preferred.
  • the Orange gene may be mutated by inserting or substituting foreign DNA by recombination between the cleaved sites.
  • the nucleic acid-metabolizing enzyme is not particularly limited and may be appropriately selected depending on the intended purpose, and examples thereof include nuclease and deaminase.
  • the nucleic acid metabolizing enzyme may contain one or more nuclear localization signals (NLS).
  • the nuclease is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the nuclease may be derived from a different species, and for example, genes such as animals, plants, microorganisms, and viruses, or artificially synthesized genes can be used.
  • the CASnuclease is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include type I CRISPR enzyme, type II CRISPR enzyme, type III CRISPR enzyme, and type II CRISPR enzyme. Cas9 is preferable.
  • the Cas nuclease may be codon-optimized for expression in eukaryotic cells. The Cas nuclease can direct the cleavage of one or two strands in the localization of the target sequence. In another aspect of the invention, the expression of the gene product is reduced and the gene product is a protein.
  • the Cas9 is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the deaminase is not particularly limited as long as it has deamination enzyme activity, and can be appropriately selected depending on the intended purpose. It is used by adding it to a CRISPR-CAS system from which nuclease activity has been removed. can do.
  • nucleic acid encoding the guide RNA or the nucleic acid encoding the nucleic acid metabolizing enzyme one incorporated in a vector can be used.
  • the type of the vector may be a circular plasmid, and may be a linear DNA obtained by cutting the plasmid with a restriction enzyme or the like, a linear plasmid, a nucleic acid cassette fragment obtained by cutting out only the DNA fragment to be introduced, or one or both of the cassette fragments. It may be a DNA fragment to which a nucleic acid of 0.8 kb or more and 1.2 kb or less is added to the end. These DNA fragments may be DNA fragments amplified by PCR.
  • the nucleic acid to be added is not particularly limited and may be a sequence derived from a vector, but the sequence of the target site for introduction is more preferable.
  • the lower limit of the length of the nucleic acid added to the end of the cassette fragment is preferably 0.5 kb or more, more preferably 0.8 kb or more, still more preferably 1.0 kb or more.
  • the upper limit of the length of the nucleic acid added to the end of the cassette fragment is preferably 3.0 kb or less, more preferably 2.0 kb or less, still more preferably 1.5 kb or less.
  • Examples of the vector include pAL system (pAL51, pAL156, etc.), pUC system (pUC18, pUC19, pUC9, etc.), pBI system (pBI121, pBI101, pBI221, pBI2113, pBI101.2, etc.), pPZP system, pSMA system, etc.
  • Examples include intermediate vector systems (pLGV23Neo, pNCAT, etc.), cauliflower mosaic virus (CaMV), green beans mosaic virus (BGMV), tobacco mosaic virus (TMV), and the like.
  • the method for inserting the target sequence into the vector is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a purified nucleic acid is cleaved with an appropriate restriction enzyme and an appropriate vector DNA restriction enzyme is used. Examples thereof include a method of inserting into a site or a multi-cloning site and linking to a vector.
  • the target sequence may be inserted into the intermediate vector by double cross-over, and TA cloning, In-Fusion cloning, or the like may be used.
  • nucleic acid encoding the guide RNA or the nucleic acid encoding the nucleic acid metabolizing enzyme for example, a promoter, an enhancer, an insulator, an intron, a terminator, a poly
  • a promoter, an enhancer, an insulator, an intron, a terminator, a poly is ligated to the vector. Can be done.
  • the promoter may be derived from a plant as long as it is a DNA that functions in a plant or in a plant cell and is constitutively expressed, or can induce expression in a specific tissue of a plant or at a specific developmental stage. It does not have to be. Specific examples include, for example, cauliflower mosaic virus (CaMV) 35S promoter, El2-35S omega promoter, noparin synthase gene promoter (Pnos), corn-derived ubiquitin promoter, rice-derived actin promoter, tobacco-derived PR protein promoter, ADH. Promoters, RuBisco promoters and the like can be mentioned. Translation efficiency can be increased by using a sequence that enhances translation activity, for example, an omega sequence of tobacco mosaic virus.
  • a protein can be translated from a plurality of coding regions by inserting an IRES (internal ribosome entry site) as a translation start region on the 3'-downstream side of the promoter and on the 5'-upstream side of the translation start codon.
  • IRES internal ribosome entry site
  • the terminator may be any sequence that can terminate the transcription of the gene transcribed by the promoter and has a poly A addition signal.
  • the terminator of the nopaline synthase (NOS) gene and the octopine synthase (OCS) gene examples include a terminator and a CaMV 35S terminator.
  • the selection marker gene examples include a herbicide resistance gene (biaraphos resistance gene, glyphosate resistance gene (EPSPS), sulfonylurea resistance gene (ALS), etc.), drug resistance gene (tetracycline resistance gene, ampicillin resistance gene, canamycin). Resistance genes, hyglomycin resistance genes, spectinomycin resistance genes, chloramphenicol resistance genes, neomycin resistance genes, etc.), fluorescent or luminescent reporter genes (luciferase, ⁇ -galactosidase, ⁇ -glucuronidase (GUS), green fluorescence Examples include enzyme genes such as protein (GFP), neomycin phosphotransferase II (NPT II), and dihydrofolate reductase. However, according to the present invention, it is possible to prepare a transformant without introducing a selectable marker gene.
  • EPSPS glyphosate resistance gene
  • ALS sulfonylurea resistance gene
  • drug resistance gene tetracycline resistance
  • the target sequence to be inserted into the vector may be a plurality of types per vector. Further, a recombinant vector containing a nucleic acid encoding the guide RNA and / or a nucleic acid encoding the nucleic acid metabolizing enzyme and a recombinant vector containing a drug resistance gene are separately prepared, mixed and coated with fine particles. You may.
  • the target gene for genome editing may be two or more, or a vector may be constructed so that two or more target genes can be cleaved. In that case, two or more kinds of vectors may be prepared, or a plurality of guide RNAs may be inserted so as to be expressed on one plasmid.
  • the guide RNA and the nucleic acid-metabolizing enzyme may be naturally occurring (combinations) or may be non-naturally occurring combinations.
  • the method for introducing the genome editing vector into Agrobacterium by the electroporation method is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the method for introducing the genome editing vector into Agrobacterium by the electroporation method is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Gelvin and Schilleror Plant Molecular Biology Manual, C2 , 1-32 (1994), Klewer Academic Publicers, and the like.
  • the method for infecting potatoes with the Agrobacterium is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include the method described in Monma (1990) Plant Tissue Culture 7: 57-63. Be done.
  • the fine particles are not particularly limited and may be appropriately selected depending on the intended purpose. From the viewpoint of increasing the penetrating power, those having a high specific gravity, which are chemically inactive and do not easily cause harm to the living body are preferable, and examples thereof include metal fine particles, ceramic fine particles, and glass fine particles.
  • the metal fine particles are not particularly limited and may be appropriately selected depending on the intended purpose, and examples thereof include metal simple substance fine particles and alloy fine particles. As the simple metal fine particles, gold particles, tungsten particles and the like are preferable.
  • the lower limit of the average particle size of the fine particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.3 ⁇ m or more, more preferably 0.4 ⁇ m or more, and further preferably 0.5 ⁇ m or more. Preferably, 0.6 ⁇ m is particularly preferable.
  • the upper limit of the average particle size of the fine particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1.5 ⁇ m or less, more preferably 1.4 ⁇ m or less, still more preferably 1.3 ⁇ m or less. , 1.2 ⁇ m or less is particularly preferable, 1.1 ⁇ m is even more preferable, and 1.0 ⁇ m or less is most preferable.
  • the average particle size is not particularly limited and may be appropriately selected depending on the intended purpose, and examples thereof include a number average particle size.
  • the shape of the fine particles is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a sphere, a cube, a rod and a plate, and among these, a sphere is preferable.
  • the coating method is not particularly limited and may be appropriately selected depending on the intended purpose.
  • the fine particles are washed and sterilized, and the fine particles, nucleic acids (recombinant vector, linear DNA, RNA, etc.) and / Or add protein, CaCl 2 , spermidine, etc. with stirring with a vortex mixer or the like, coat (coat) the nucleic acid and / or protein with fine particles, and wash with ethanol or phosphate buffered saline (PBS, etc.).
  • PBS phosphate buffered saline
  • the fine particles can be applied to the macrocarrier film as uniformly as possible using a micropipette or the like, and then dried in a sterile environment such as a clean bench.
  • a hydrophilic macrocarrier film it is preferable to use a hydrophilic macrocarrier film.
  • hydrophilic macrocarrier film a hydrophilic film may be attached to the macrocarrier film, or a hydrophilic coating may be applied.
  • a hydrophilic coating may be applied.
  • the method for making a film hydrophilic include a method using a surfactant, a photocatalyst, and a hydrophilic polymer.
  • the hydrophilic polymer is not particularly limited and may be appropriately selected depending on the intended purpose.
  • Hydrophilicity such as methacrylate, vinylpyrrolidone, acrylic acid, acrylamide, dimethylacrylamide, glucoxyoxyethyl methacrylate, 3-sulfopropylmethacryloxyethyldimethylammonium betaine, 2-methacryloyloxyethylphosphorylcholine, 1-carboxydimethylmethacryloyloxyethylmethaneammonium, etc.
  • Examples thereof include polymers of monomers.
  • the coverage of the fine particles is not particularly limited and may be appropriately selected depending on the intended purpose, and may be the entire surface or a part of the fine particles.
  • the means for shooting the fine particles is not particularly limited as long as the fine particles can be shot into plant cells, and examples thereof include a particle gun (gene gun) in the particle gun method. From the viewpoint of introduction efficiency, a method of introducing into young buds or axillary buds by using a particle gun method is preferable.
  • the method of introducing into the bud or axillary bud by using the particle gun method is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a macrocarrier film coated with fine particles, a target bud or a target bud or An example is a method in which a plate on which the axillary bud apex is placed is installed in a particle gun device, and high-pressure gas is emitted from a gas acceleration tube toward a macrocarrier film.
  • the macrocarrier film stops at the stopping plate, but the fine particles coated on the macrocarrier film pass through the stopping plate and penetrate into the target placed under the stopping plate, and the target gene is introduced.
  • the high-pressure gas is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include helium.
  • the particle gun device is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include Biolistic (registered trademark) PDS-1000 / He Particle Delivery System (BIO-RAD).
  • the upper limit of the distance between the stopping plate and the target shoot apex is not particularly limited and may be appropriately selected depending on the intended purpose, but 9 cm or less is preferable, 8 cm or less is more preferable, and 7 cm or less is preferable. More preferably, 6 cm or less is particularly preferable.
  • the lower limit of the distance between the stopping plate and the target shoot apex is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 2 cm or more, more preferably 3 cm or more, and 4 cm or more. More preferred.
  • the gas pressure of the particle gun device is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1,100 to 1,600 psi, more preferably 1,200 to 1,500 psi.
  • the lower limit of the number of times the fine particles are shot into the shoot apex is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 2 times or more, more preferably 3 times or more, still more preferably 4 times or more. ..
  • the upper limit of the number of times the fine particles are shot into the shoot apex is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 20 times or less, more preferably 15 times or less, still more preferably 10 times or less. ..
  • RNAi vector is introduced into Agrobacterium by an electroporation method, and the Agrobacterium is introduced into a potato microtuber. Examples include methods for infecting Um.
  • the RNAi vector is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a vector based on a binary vector.
  • the sequence contained in the RNAi vector is not particularly limited as long as it contains the Orange gene fragment of potato, and can be appropriately selected depending on the intended purpose, and may contain other sequences. Among these, it is preferable to contain the Orange gene fragment of potato in the forward direction and the reverse direction.
  • the Orange gene fragment of the potato is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a gene fragment amplified by a primer having the sequences of SEQ ID NOs: 3 and 4, a homologue of this gene fragment, and the like. can be mentioned.
  • the homolog is not particularly limited and may be appropriately selected depending on the intended purpose, but the sequence identity with the gene fragment amplified by the primers having the sequences of SEQ ID NOs: 3 and 4 is 80% or more. Sequence identity is preferred, 85% or higher sequence identity is more preferred, 90% or higher sequence identity is even more preferred, 95% or higher sequence identity is particularly preferred, and 99% or higher sequence identity is most preferred.
  • the other sequence is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include promoters, enhancers, insulators, introns, terminators, poly-A addition signals, and selectable marker genes.
  • the promoter does not have to be of plant origin as long as it is a DNA that functions in potato and can be constitutively expressed, or can induce expression in a specific tissue of potato or at a specific developmental stage.
  • Specific examples include, for example, cauliflower mosaic virus (CaMV) 35S promoter, El2-35S omega promoter, noparin synthase gene promoter (Pnos), corn-derived ubiquitin promoter, rice-derived actin promoter, tobacco-derived PR protein promoter, ADH. Promoters, RuBisco promoters and the like can be mentioned.
  • Translation efficiency can be increased by using a sequence that enhances translation activity, for example, an omega sequence of tobacco mosaic virus.
  • a protein can be translated from a plurality of coding regions by inserting an IRES (internal ribosome entry site) as a translation start region on the 3'-downstream side of the promoter and on the 5'-upstream side of the translation start codon.
  • IRES internal ribosome entry site
  • the terminator may be any sequence that can terminate the transcription of the gene transcribed by the promoter and has a poly A addition signal.
  • the terminator of the nopaline synthase (NOS) gene and the octopine synthase (OCS) gene examples include a terminator and a CaMV 35S terminator.
  • selection marker gene examples include a herbicide resistance gene (the third intron of the phytoendesaturase gene (AT4g14210), bialaphos resistance gene, glyphosate resistance gene (EPSPS), sulfonylurea resistance gene (ALS), etc.), and drug resistance.
  • a herbicide resistance gene the third intron of the phytoendesaturase gene (AT4g14210)
  • bialaphos resistance gene glyphosate resistance gene (EPSPS), sulfonylurea resistance gene (ALS), etc.
  • EPSPS glyphosate resistance gene
  • ALS sulfonylurea resistance gene
  • Genes (tetracycline resistance gene, ampicillin resistance gene, canamycin resistance gene, hyglomycin resistance gene, spectinomycin resistance gene, chloramphenicol resistance gene, neomycin resistance gene, etc.), fluorescent or luminescent reporter gene (luciferase, ⁇ -galactosidase) , ⁇ -Glucronidase (GUS), Green Fluorescence Protein (GFP), etc.), Neomycin Phosphortransferase II (NPT II), Dihydrofolate Reductase, and other enzyme genes.
  • fluorescent or luminescent reporter gene luciferase, ⁇ -galactosidase
  • GUS ⁇ -Glucronidase
  • GFP Green Fluorescence Protein
  • NPT II Neomycin Phosphortransferase II
  • Dihydrofolate Reductase Dihydrofolate Reductase, and other enzyme genes.
  • Examples of the other steps include a step of selecting an individual into which a deletion, insertion, or substitution has been introduced into the Orange gene of potato.
  • the selection step is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a method of selection based on a drug resistance gene.
  • the potato genome editing method includes a step of introducing a deletion, insertion, or substitution into a potato Orange gene by using a genome editing means, and can further include other steps.
  • the step of introducing a deletion, insertion, or substitution into a potato Orange gene using the above-mentioned genome editing means introduces a deletion, insertion, or substitution into a potato Orange gene using the above-mentioned genome editing means.
  • the method is as follows.
  • composition for producing genetically modified potatoes comprises either a guide RNA targeting the Orange gene or a nucleic acid encoding a guide RNA targeting the Orange gene, a nucleic acid metabolizing enzyme, or a nucleic acid encoding the nucleic acid metabolizing enzyme. And any of the above, and may further contain other components.
  • Either the guide RNA targeting the Orange gene or the nucleic acid encoding the guide RNA targeting the Orange gene, and either the nucleic acid metabolizing enzyme or the nucleic acid encoding the nucleic acid metabolizing enzyme are as described above. be.
  • the method for determining a genetically modified potato includes a step of determining whether or not the potato is a genetically modified potato, using the presence or absence of deletion, insertion, or substitution of the Orange gene of the potato as an index, and may further include other steps.
  • the step of determining whether or not the potato is a genetically modified potato using the presence or absence of deletion, insertion, or substitution of the Orange gene of the potato as an index is not particularly limited and can be appropriately selected depending on the purpose, for example. , A method of analyzing the Orange gene sequence of potato and comparing it with the DNA sequence of SEQ ID NO: 5 and the like. According to the method for determining a potato modified potato, it can be efficiently determined whether or not the potato has accumulated carotenoids.
  • carotenoids are accumulated in flower buds which are edible parts due to mutation of the Orange gene in potash flowers, while in rice, the amount of carotenoids is increased in curls by editing the Orange gene, but significant carotenoid accumulation in endosperm. Is not recognized (Rice 2019 12:81). Since some of the carotenoid synthases are deficient in the endosperm of rice, it has been reported that carotenoids are not accumulated in the endosperm unless a new synthase is supplemented from the outside (Nature Biotechnology 2005 23: 482-487). ).
  • Example 1 Acquisition of potato Orange candidate gene> A tblast analysis was performed on the sequences contained in the potato (S. tuberosum) genome database (Spud DB: http: // solaraceae.plantcauliflower.mus.edu/index.shtml), and two expected transcripts were obtained. (PGSC0003DMT4000022863 and PGSC0003DMT400021454) were found to be homologous to the cauliflower genome gene.
  • SRX3127474 Solanum tuberosum, Atlantic, leaf, RNA-Seq, which are NGS data registered in the NCBI database, were subjected to Trinity (https://ghub.com/trinityrinaseq/triny).
  • Example 2 Acquisition of genome sequence of potato Orange candidate gene>
  • synthesis was performed on the genomic DNA of "Sassy” based on the above PGSC0003DMT40022863.
  • PCR (30 cycles, using Takara Bio's PrimeSTAR) was performed at an annealing temperature of 55 ° C. using the primers U1200: GTACGTAGCTAAGAATACAACAAAG (SEQ ID NO: 8) and U1201: GGCAAGTAATCCACCGAAGA (SEQ ID NO: 9). rice field.
  • the box in FIG. 1 indicates each exon.
  • the obtained PCR amplification product was cloned into a pENTR / D-TOPO vector (manufactured by Thermo Fisher) to obtain a gene fragment, and two types of full-length sequences (3rd to 5th exons) were determined (SEQ ID NO:). : 1 and 2).
  • Example 3 Preparation of genome editing vector for potato Orange candidate gene> Based on the genomic DNA sequence identified in Example 2, it is assumed that the insertion deletion mutation caused by DNA cleavage of Cas9 induces splicing abnormality of the StOr transcript, near the boundary site between the 3rd exon and the 3rd intron.
  • Two target sequences were designed (StOr_t1: SEQ ID NO: 6, STOR_t2: SEQ ID NO: 7) (FIG. 2).
  • the white arrows in FIG. 2 indicate each expected cutting site.
  • Two vectors, pStOr_t1 and pSTor_t2, containing the target sequence were prepared (FIG. 3).
  • FIG. 3 shows the right border (RB) and left border (LB) of the T-DNA of the gene portion to be introduced, and the internal structure of these borders.
  • Example 4 Preparation of transformant of potato Orange candidate gene>
  • the vector prepared in Example 4 was introduced into Agrobacterium tumefaciens GV3101 by an electroporation method (Gelvin and Schilperor ed., Plant Molecular Biology Manual, C2, 1-32 (1994), Kruwer Academic Publicers).
  • 1.5 mL of the culture broth was centrifuged at 10,000 rpm for 3 minutes to collect the cells, and then washed with 1 mL of LB medium to remove kanamycin. After further centrifuging at 10,000 rpm for 3 minutes and collecting the bacteria, MS medium containing 1.5 mL of 3% sucrose [Murashige & Skoog, Physiol. Plant. , 15,473-497 (1962)] to prepare a bacterial solution for infection.
  • Potato transformation was performed according to [Monma (1990) plant tissue culture 7: 57-63].
  • Microtubers obtained from the potato variety "Sassy” were sliced into 2-3 mm pieces and used as a material for Agrobacterium infection. After immersing this in the above-mentioned Agrobacterium solution, it was placed on a sterilized filter paper to remove excess Agrobacterium. Place on MS medium (including Zeatin 1 ppm, IAA 0.1 ppm, acetosyringone 100 ⁇ M, and agar 0.8%) in a petri dish, and culture for 3 days at 25 ° C. for 16 hours (photon bundle density 32 ⁇ E / m2s). / 8 hours under no lighting conditions.
  • the cells were cultured in a medium containing 250 ppm of carbenicillin instead of acetosyringone for 1 week. Then, it was further transferred onto a medium containing 50 ppm of kanamycin and subcultured every two weeks. During this time, adventitious shoots formed and shoots were produced.
  • the elongated shoots were placed in MS medium containing 250 ppm of carbenicin and 100 ppm of kanamycin and not containing plant growth regulators.
  • An individual containing a kanamycin resistance gene as a foreign gene from a plant in which rooted shoots are resistant to kanamycin is subjected to PCR (conditions: 95 ° C. for 5 minutes, (95 ° C.
  • HMA Heteroduplex mobility assay
  • HMA heteroduplex mobility analysis
  • Amplified fragment DNA of gRNA in the genome of leaves of transformants # 13 of pStOr_t1 and # 8 of pSTor_t2 obtained in Example 4 was transferred to TOPO (R) TA Cloning (R) Kit for Sequencing (Thermofisher). It was cloned and a gene fragment was obtained.
  • the nucleotide sequences of the following SEQ ID NOs: 11 to 42 cloned into Escherichia coli were determined, and it was confirmed that genome editing had occurred (Fig. 5).
  • the "-" in FIG. 5 indicates the deletion, and the underline indicates the third exon.
  • Nucleotide sequence near the target sequence of genome editing of Orange gene (SEQ ID NO: 5) pSOr_t1 # 13 # 3 (SEQ ID NO: 11) pSOr_t1 # 13 # 14 (SEQ ID NO: 12) pSOr_t1 # 13 # 5 (SEQ ID NO: 13) pSOr_t1 # 13 # 7 (SEQ ID NO: 14) pSOr_t1 # 13 # 12 (SEQ ID NO: 15) pSOr_t1 # 13 # 13 (SEQ ID NO: 16) pSOr_t1 # 13 # 10 (SEQ ID NO: 17) pSOr_t1 # 13 # 2 (SEQ ID NO: 18) pSOr_t1 # 13 # 8 (SEQ ID NO: 19) pSOr_t1 # 13 # 15 (SEQ ID NO: 20) pSOr_t1 # 13 # 16 (SEQ ID NO: 21) pSOr_t1 # 13 # 4 (SEQ ID NO: 22) p
  • Example 6 Genome editing of potato Orange candidate gene Preparation of microtuber from potato strain> Potatoes cultured in vitro (transformant obtained in Example 4) were transferred to foliage growth medium: MS + suc 1% + BA 0.02 ppm + KCl 1 g / L and illuminated at 23 ° C. for 16 hours (photon bundle density 32 ⁇ E / m2 s). ) / 8 hours under unlit conditions for 4-5 weeks. Next, the medium was transferred to MT-forming medium: MS + suc 10% + BA 2 ppm + KCl 1 g / L, and cultured at 23 ° C. in the dark for 6 weeks to prepare a microtuber. When the produced microtubers were stored for about 3 weeks and then the tubers were cut, it became clear that the tubers obtained from # 13 of pStOr_t1 and # 8 of pSTor_t2 had a deep yellow color.
  • Example 7 Genome editing of potato Orange gene Analysis of microtuber of potato strain> Examples of the method described in the document “Simultaneous quantification of carotenes in commercial vegetable juice by high performance liquid chromatography” (Hokuriku Gakuin University / Hokuriku Gakuin University Junior College Research Bulletin No. 6 (2013)). The amount of carotenoids in the stalks obtained from the transformants of pStOr_t1 # 13 and pSTor_t2 # 8 obtained in No. 4 was analyzed.
  • the genome was extracted and cloned from the tubers of the # 8 strain of pSTor_t2, and the sequence was analyzed.
  • the following genomic sequences (SEQ ID NOs: 43 to 57) are shown in the upper part of FIG. 6, and the expected amino acid sequences (SEQ ID NOs: 58 to 60) are shown in the lower part of FIG.
  • a genotype in which the amount of carotenoid is considered to be high (Fig. 6 pSOr-t2 # 8Y # 10: Deletion, insertion, or substitution is introduced into 3 consecutive bases (excluding introduction that becomes a stop codon)) was detected.
  • Examples of aspects of the present invention include the following.
  • ⁇ 1> A genetically modified potato characterized in that a deletion, insertion, or substitution has been introduced into the Orange gene.
  • ⁇ 2> The genetically modified potato according to ⁇ 1>, wherein the deletion, insertion, or substitution has been introduced into three consecutive bases (excluding the introduction that serves as a stop codon).
  • ⁇ 3> The genetically modified potato according to any one of ⁇ 1> to ⁇ 2> above, which contains 1.3 times or more of carotenoids with respect to the genetically modified potato.
  • ⁇ 4> A method for producing a genetically modified potato, which comprises a step of introducing a deletion, insertion, or substitution into the Orange gene of potato.
  • a potato genome editing method comprising a step of introducing a deletion, insertion, or substitution into a potato Orange gene using a genome editing means.
  • the genome editing means includes either a guide RNA targeting the Orange gene or a nucleic acid encoding a guide RNA targeting the Orange gene, and a nucleic acid metabolizing enzyme or a nucleic acid encoding the nucleic acid metabolizing enzyme.
  • the method for editing a nucleic acid of a potato according to ⁇ 5> which comprises any of the above.
  • ⁇ 8> Containing either a guide RNA targeting the Orange gene or a nucleic acid encoding a guide RNA targeting the Orange gene, and either a nucleic acid metabolizing enzyme or a nucleic acid encoding the nucleic acid metabolizing enzyme. It is a composition for producing a genetically modified potato, which is characterized by the above.
  • a method for determining a genetically modified potato which comprises a step of determining whether or not the potato is a genetically modified potato, using the presence or absence of deletion, insertion, or substitution of the Orange gene of the potato as an index.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Botany (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Environmental Sciences (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Physiology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Plant Pathology (AREA)
  • Natural Medicines & Medicinal Plants (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

This genetically modified potato is characterized in that a deletion, an insertion, or a substitution is introduced into the Orange gene, and this method for producing a genetically modified potato is characterized by comprising a step of introducing a deletion, an insertion, or a substitution into the Orange gene of a potato.

Description

遺伝子改変ジャガイモ、及びその作製方法、並びにジャガイモのゲノム編集方法Genetically modified potatoes, their production methods, and potato genome editing methods
 本発明は、遺伝子改変ジャガイモ、及びその作製方法、並びにジャガイモのゲノム編集方法に関する。 The present invention relates to a genetically modified potato, a method for producing the same, and a method for editing the genome of the potato.
 カロテノイドは、酸化防止剤、及びビタミンAの前駆物質として栄養面からの基本的な役割を有している。また、カロテノイドの摂取は、様々な病気からの保護と関連付けられている。さらに、安全な食品、飼料、化粧品の着色料として商業的に使用され、植物を光酸化ストレスから保護していることも知られている(非特許文献1)。そのため、高カロテノイドの育種は、日本においても世界的においても重要な課題である。
 カロテノイド蓄積を示すジャガイモとしては、黄肉のジャガイモ品種としてキタアカリ、とうや、サッシーなどが知られ、それらよりさらに多くのカロテノイド、特にゼアキサンチンが蓄積しているジャガイモ品種としてインカのめざめ、ながさき黄金が知られている。これらはCHYやZEP遺伝子の変異であることが推測されている(非特許文献2)。
Carotenoids have a basic nutritional role as antioxidants and precursors of vitamin A. Ingestion of carotenoids is also associated with protection from various illnesses. Furthermore, it is also known that it is commercially used as a coloring agent for safe foods, feeds and cosmetics, and protects plants from photooxidative stress (Non-Patent Document 1). Therefore, breeding of high carotenoids is an important issue both in Japan and worldwide.
As potatoes showing carotenoid accumulation, Kita Akari, Toya, Sassy, etc. are known as yellow meat potato varieties, and Inca Awakening, Nagasaki Golden are known as potato varieties in which more carotenoids, especially zeaxanthin, are accumulated. ing. It is speculated that these are mutations in the CHY and ZEP genes (Non-Patent Document 2).
 一方、カリフラワー、メロン、サツマイモには高カロテノイドの品種としてオレンジカリフラワー、赤肉メロン、オレンジ色のサツマイモの自然突然変異が知られている。これらの原因遺伝子としては、Orage(Or)と命名されている遺伝子が知られている(非特許文献3、4、5)。また、オレンジ色のカリフラワーのオレンジ色を生じる顕性の変異遺伝子のジャガイモでの過剰発現によって、ジャガイモ品種Desireeの塊茎内部の色が黄色になり、ビオラキサンチン、ルテイン、β-カロテンが蓄積されることが報告されている(非特許文献6)。 On the other hand, natural mutations of orange cauliflower, red meat melon, and orange sweet potato are known as high carotenoid varieties in cauliflower, melon, and sweet potato. As these causative genes, a gene named Orage (Or) is known (Non-Patent Documents 3, 4, and 5). In addition, overexpression of an overt mutation gene that produces an orange color of orange cauliflower in potatoes causes the inside of the tuber of the potato variety Desiree to turn yellow, and violaxanthin, lutein, and β-carotene are accumulated. Has been reported (Non-Patent Document 6).
 しかしながら、ジャガイモでは、そのような変異は知られておらず、ジャガイモが本来有している遺伝子において、機能的にOrange遺伝子と同じ機能を持つ遺伝子があるかどうかは不明であった。むしろ、長い栽培の歴史の中で同遺伝子による高カロテノイド変異体が得られていないことは、ジャガイモの内在性の相同遺伝子が高カロテノイドの原因となる変異を作りうることに否定的な考えもあった。
 上述のとおり、ジャガイモでは機能するOrange遺伝子が同定されていない。そのためジャガイモの内生のOrange遺伝子の改変により、カロテノイドが蓄積している、遺伝子改変ジャガイモを製造するに至っていなかった。
However, in potatoes, such mutations are not known, and it was unclear whether or not there is a gene that has the same function as the Orange gene among the genes originally possessed by potatoes. Rather, the lack of high carotenoid mutants from the same gene in the long history of cultivation is negatively thought to be that the endogenous homologous gene of potatoes can make mutations that cause high carotenoids. rice field.
As mentioned above, no functional Orange gene has been identified in potatoes. Therefore, modification of the endogenous Orange gene of potatoes has not led to the production of genetically modified potatoes in which carotenoids are accumulated.
 したがって、カロテノイドが蓄積している、遺伝子改変ジャガイモ、及びその効率的な作製方法は未だ提供されておらず、その速やかな提供が強く求められている。
 なお、イネではOrange遺伝子の改変によりカルスでカロテノイド量が増加したものの、再分化した植物体ではカロテノイド量の増加は認められていない(非特許文献7)。一般的に、作物の科、属、種、等が異なる場合、(例えば、色素合成等の)合成経路、代謝経路も異なることが多い(非特許文献8等)。従って、ある植物種の遺伝子を改変すると農業的に良好な表現型が現れるという知見を、そのまま他の作物種に適用することは容易ではない。
Therefore, genetically modified potatoes in which carotenoids are accumulated and efficient production methods thereof have not yet been provided, and prompt provision thereof is strongly required.
In rice, the amount of carotenoids increased in callus due to the modification of the Orange gene, but the amount of carotenoids did not increase in the redifferentiated plants (Non-Patent Document 7). In general, when crop families, genera, species, etc. are different, synthetic pathways (for example, pigment synthesis, etc.) and metabolic pathways are often different (Non-Patent Document 8 etc.). Therefore, it is not easy to apply the finding that an agriculturally good phenotype appears when a gene of a certain plant species is modified to another crop species as it is.
 本発明は、従来における前記諸問題を解決し、以下の目的を達成することを課題とする。即ち、本発明は、カロテノイドが蓄積している、遺伝子改変ジャガイモ、及びその効率的な作製方法を提供することを目的とする。 An object of the present invention is to solve the above-mentioned problems in the past and to achieve the following objects. That is, an object of the present invention is to provide a genetically modified potato in which carotenoids are accumulated, and an efficient method for producing the same.
 本発明者らが、前記目的を達成すべく鋭意研究を重ねた結果、Orange遺伝子に欠失、挿入、又は置換が導入されている遺伝子改変ジャガイモにより、カロテノイドが蓄積している、遺伝子改変ジャガイモ、及びその効率的な作製方法が提供でき、ジャガイモのOrange遺伝子に欠失、挿入、又は置換を導入する工程を含む、遺伝子改変ジャガイモの作製方法を採用することにより、カロテノイドが蓄積している、遺伝子改変ジャガイモの効率的な作製方法が提供できることを知見した。 As a result of diligent research to achieve the above object, the present inventors have accumulated carotenoids due to genetically modified potatoes in which a deletion, insertion, or substitution has been introduced into the Orange gene. And an efficient method for producing the same, and by adopting a method for producing a genetically modified potato, which comprises a step of introducing a deletion, insertion, or substitution into the Orange gene of potato, a gene in which carotenoids are accumulated. It has been found that an efficient method for producing modified potatoes can be provided.
 本発明は、本発明者らによる前記知見に基づくものであり、前記課題を解決するための手段としては以下の通りである。即ち、
 <1> Orange遺伝子に欠失、挿入、又は置換が導入されていることを特徴とする、遺伝子改変ジャガイモである。
 <2> ジャガイモのOrange遺伝子に欠失、挿入、又は置換を導入する工程を含むことを特徴とする遺伝子改変ジャガイモの作製方法である。
 <3> ゲノム編集手段を用いて、ジャガイモのOrange遺伝子に欠失、挿入、又は置換を導入する工程を含むことを特徴とするジャガイモのゲノム編集方法である。
 <4> Orange遺伝子を標的とするガイドRNA、又は前記Orange遺伝子を標的とするガイドRNAをコードする核酸のいずれかと、核酸代謝酵素、又は前記核酸代謝酵素をコードする核酸のいずれかと、を含むことを特徴とする、遺伝子改変ジャガイモ作製用組成物である。
 <5> ジャガイモのOrange遺伝子の欠失、挿入、又は置換の存否を指標に、遺伝子改変ジャガイモであるか否かを判定する工程を含むことを特徴とする、遺伝子改変ジャガイモの判定方法である。
The present invention is based on the above-mentioned findings by the present inventors, and the means for solving the above-mentioned problems are as follows. That is,
<1> A genetically modified potato characterized in that a deletion, insertion, or substitution has been introduced into the Orange gene.
<2> A method for producing a genetically modified potato, which comprises a step of introducing a deletion, insertion, or substitution into the Orange gene of potato.
<3> A potato genome editing method comprising a step of introducing a deletion, insertion, or substitution into a potato Orange gene using a genome editing means.
<4> Containing either a guide RNA targeting the Orange gene or a nucleic acid encoding a guide RNA targeting the Orange gene, and either a nucleic acid metabolizing enzyme or a nucleic acid encoding the nucleic acid metabolizing enzyme. It is a composition for producing a genetically modified potato, which is characterized by the above.
<5> A method for determining a genetically modified potato, which comprises a step of determining whether or not the potato is a genetically modified potato, using the presence or absence of deletion, insertion, or substitution of the Orange gene of the potato as an index.
 本発明によると、従来における前記諸問題を解決し、前記目的を達成することができ、カロテノイドが蓄積している、遺伝子改変ジャガイモ、及びその効率的な作製方法を提供することができる。 According to the present invention, it is possible to solve the above-mentioned problems in the past, achieve the above-mentioned object, provide a genetically modified potato in which carotenoids are accumulated, and an efficient method for producing the same.
図1は、ジャガイモ(S.tuberosum)のOrange遺伝子のゲノム構造と第3エクソンから第5エクソンの配列を決定したプライマーの部位を示す概略図である。FIG. 1 is a schematic diagram showing the genomic structure of the Orange gene of potato (S. tuberosum) and the site of the primer that sequenced the 3rd to 5th exons. 図2は、ゲノム編集に用いたgRNAのデザイン部位を示す概略図である。FIG. 2 is a schematic diagram showing a design site of gRNA used for genome editing. 図3は、形質転換に使用したベクターの構造を示す図である。FIG. 3 is a diagram showing the structure of the vector used for transformation. 図4は、pStOr_t1とpSTOr_t2で形質転換したジャガイモに対するゲノム編集を検出したヘテロ二本鎖移動度分析(HMA)の結果を示す電気泳動像である。FIG. 4 is an electrophoretic image showing the results of heteroduplex mobility analysis (HMA) in which genome editing was detected for potatoes transformed with pStOr_t1 and pSTor_t2. 図5は、Orange遺伝子のゲノム編集の標的配列近傍の塩基配列(1段目)とゲノム編集された個体からゲノム編集領域を含む増幅された断片をクローニングして塩基配列を決定したもの(2段目以降)とのアライメント結果を示す図である。In FIG. 5, the nucleotide sequence near the target sequence of genome editing of the Orange gene (first stage) and the amplified fragment containing the genome editing region were cloned from the genome-edited individual to determine the nucleotide sequence (second stage). It is a figure which shows the alignment result with (after eyes). 図6は、pStOr_t2 #8Yの塊茎のゲノム配列を解析した結果を示す図である。FIG. 6 is a diagram showing the results of analyzing the genome sequence of the tuber of pStOr_t2 # 8Y.
 (遺伝子改変ジャガイモ)
 前記遺伝子改変ジャガイモは、Orange遺伝子に欠失、挿入、又は置換が導入されている。
(Genetically modified potato)
The genetically modified potato has a deletion, insertion, or substitution introduced into the Orange gene.
 前記Orange遺伝子としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、カリフラワーOrange遺伝子のジャガイモオルソログなどが挙げられる。
 前記カリフラワーOrange遺伝子のジャガイモオルソログとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、配列番号1、又は2の配列を有する遺伝子、配列番号1、又は2の配列を有する遺伝子のホモログなどが挙げられる。
The Orange gene is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a potato ortholog of the cauliflower Orange gene.
The potato ortholog of the cauliflower Orange gene is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it has a gene having the sequence of SEQ ID NO: 1 or 2 or the sequence of SEQ ID NO: 1 or 2. Examples include gene homologues.
 前記ホモログとしては、特に制限はなく、目的に応じて適宜選択することができるが、配列番号1、又は2の配列との配列同一性が、80%以上の配列同一性が好ましく、85%以上の配列同一性がより好ましく、90%以上の配列同一性がさらに好ましく、95%以上の配列同一性が特に好ましく、99%以上の配列同一性が最も好ましい。 The homolog is not particularly limited and may be appropriately selected depending on the intended purpose, but the sequence identity with the sequence of SEQ ID NO: 1 or 2 is preferably 80% or more, preferably 85% or more. The sequence identity of is more preferable, 90% or more of the sequence identity is more preferable, 95% or more of the sequence identity is particularly preferable, and 99% or more of the sequence identity is most preferable.
 前記欠失、挿入、又は置換としては、前記Orange遺伝子に欠失、挿入、又は置換が導入されている限り、特に制限はなく、目的に応じて適宜選択することができ、前記欠失、挿入、又は置換のいずれかであっても、これらの組合せであってもよい。これらの中でも、前記欠失、挿入、又は置換が、連続した3塩基に導入されている(ただし、ストップコドンとなる導入は除く)ことが好ましい。 The deletion, insertion, or substitution is not particularly limited as long as the deletion, insertion, or substitution is introduced into the Orange gene, and can be appropriately selected depending on the intended purpose. , Or a replacement, or a combination thereof. Among these, it is preferable that the deletion, insertion, or substitution is introduced into three consecutive bases (however, the introduction that becomes a stop codon is excluded).
 前記遺伝子改変ジャガイモの、Orange遺伝子の欠失、挿入、又は置換による遺伝子改変率としては、特に制限はなく、目的に応じて適宜選択することができるが、1%から100%がより好ましく、3%から100%がさらに好ましく、5%から100%が特に好ましい。 The gene modification rate of the genetically modified potato due to deletion, insertion, or substitution of the Orange gene is not particularly limited and may be appropriately selected depending on the intended purpose, but 1% to 100% is more preferable. % To 100% is more preferable, and 5% to 100% is particularly preferable.
 前記遺伝子改変率は、プライマーU1131:TCACATCTTTGGATTGTTCTCTG(配列番号:3)及びU1017:TGGACCATAAATCATGCCTTC(配列番号:4)を用いて増幅した前記遺伝子改変ジャガイモのゲノムDNAをTOPO(R)TA Cloning(R)Kit for Sequencing(サーモフィッシャー社)へ無作為に16~100クローンについてクローニングし、遺伝子断片を取得し、これを大腸菌にクローニングした塩基配列と、配列番号5の配列と、の配列同一性を比較し、欠失、挿入、又は置換が連続した3塩基に導入されている(ただし、ストップコドンとなる導入は除く)クローンの割合を算出することにより測定する。 The gene modification rate was determined by using TOPO (R) TA Cloning (R) Kit for the genomic DNA of the gene-modified potato amplified using primers U1131: TCACATTTTTGGATTGTTCTCTG (SEQ ID NO: 3) and U1017: TGGACCATAAATCATGCCTTC (SEQ ID NO: 4). Randomly clone 16 to 100 clones to Securing (Thermofisher), obtain gene fragments, compare the sequence identity of the nucleotide sequence cloned into Escherichia coli with the sequence of SEQ ID NO: 5, and lack It is measured by calculating the percentage of clones that have been introduced into three consecutive bases lost, inserted, or substituted (excluding introductions that serve as stop codons).
 前記遺伝子改変ジャガイモは、遺伝子未改変ジャガイモに対して、カロテノイドを1.1倍以上含有することが好ましく、1.3倍以上含有することがより好ましく、1.5倍以上含有することがさらに好ましく、1.8倍以上含有することが特に好ましい。
 ここで、遺伝子未改変ジャガイモとは、前記Orange遺伝子に欠失、挿入、又は置換が導入される前のジャガイモである。
The genetically modified potato preferably contains 1.1 times or more of carotenoids, more preferably 1.3 times or more, and even more preferably 1.5 times or more of the unmodified potatoes. It is particularly preferable to contain 1.8 times or more.
Here, the gene-unmodified potato is a potato before the deletion, insertion, or substitution is introduced into the Orange gene.
 前記カロテノイドの含有量は、文献「速液体クロマトグラフィーによる市販野菜ジュース中カロテン類の同時定量」(北陸学院大学・北陸学院大学短期大学部研究紀要 第6号(2013年度))に記載の方法を一部改変した下記の方法で分析する。
 塊茎100mgに、ヘキサン/エタノール(80:20v/v)を900μL加え、1分間振とう後、遠心分離(6000回転、1分間)を行う。上層(ヘキサン層)から600μLを別のチューブに取り、残った下層にヘキサン/エタノール(80:20v/v)を400μL加え、再び1分間振とう後、遠心分離(6000回転、1分間)を行い、上層400μLを先の抽出液に加え、計1000μLの抽出液を得る。当抽出液の吸光度(OD445)を測定し、カロテノイド量(A445/g)を算出する。
For the content of the carotenoid, refer to the method described in the document "Simultaneous quantification of carotenes in commercially available vegetable juice by high performance liquid chromatography" (Hokuriku Gakuin University / Hokuriku Gakuin University Junior College Research Bulletin No. 6 (2013)). Analyze by the following method with some modifications.
900 μL of hexane / ethanol (80: 20v / v) is added to 100 mg of tubers, shaken for 1 minute, and then centrifuged (6000 rotations, 1 minute). Take 600 μL from the upper layer (hexane layer) in another tube, add 400 μL of hexane / ethanol (80: 20v / v) to the remaining lower layer, shake again for 1 minute, and then centrifuge (6000 rpm, 1 minute). , 400 μL of the upper layer is added to the above extract to obtain a total of 1000 μL of extract. The absorbance (OD445) of this extract is measured, and the amount of carotenoid (A445 / g) is calculated.
 前記カロテノイドとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、αカロテン、βカロテン、γカロテン、δカロテン、リコペン等のカロテン類、ルテイン、ゼアキサンチン、カンタキサンチン、フコキサンチン、アスタキサンチン、アンテラキサンチン、ビオラキサンチン等のキサントフィル類などが挙げられる。
 これらの中でも、ビオラキサンチン、ルテイン、βカロテンが好ましい。
The carotenoid is not particularly limited and may be appropriately selected depending on the intended purpose. For example, carotenes such as α-carotene, β-carotene, γ-carotene, δ-carotene and lycopene, lutein, zeaxanthin, cantaxanthin and fucoxanthin. , Xanthophylls such as astaxanthin, anteraxanthin, and violaxanthin.
Among these, violaxanthin, lutein, and β-carotene are preferable.
 (遺伝子改変ジャガイモの作製方法)
 前記遺伝子改変ジャガイモの作製方法は、ジャガイモのOrange遺伝子に欠失、挿入、又は置換を導入する工程を含み、さらにその他の工程を含むことができる。
(Method of producing genetically modified potatoes)
The method for producing a genetically modified potato includes a step of introducing a deletion, insertion, or substitution into the Orange gene of the potato, and can further include other steps.
<ジャガイモのOrange遺伝子に欠失、挿入、又は置換を導入する工程>
 前記ジャガイモのOrange遺伝子に欠失、挿入、又は置換を導入する工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ゲノム編集を用いる方法、RNAiを用いる方法、アンチセンスRNAを用いる方法などが挙げられる。
<Step of introducing deletion, insertion, or substitution into the Orange gene of potato>
The step of introducing a deletion, insertion, or substitution into the Orange gene of the potato is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a method using genome editing, a method using RNAi, or anti. Examples include a method using sense RNA.
-ゲノム編集を用いる方法-
 前記ゲノム編集を用いる方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ゲノム編集手段を用いて、ジャガイモのOrange遺伝子に欠失、挿入、又は置換を導入する方法などが挙げられる。
 前記導入する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エレクトロポレーション法により、ゲノム編集ベクターをアグロバクテリウムに導入し、ジャガイモのマイクロチューバーに前記アグロバクテリウムを感染させる方法(アグロバクテリウム法)、ゲノム編集手段により被覆された微粒子をジャガイモの幼芽又は腋芽に撃ち込む方法(パーティクルボンバードメント法)などが挙げられる。
-Method using genome editing-
The method using the genome editing is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a method of introducing a deletion, insertion or substitution into the Orange gene of potato by using the genome editing means. And so on.
The method of introduction is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a genome editing vector is introduced into Agrobacterium by an electroporation method, and the Agrobacterium is introduced into a microtuber of potato. Examples include a method of infecting tumef (Agrobacterium method) and a method of shooting fine particles coated by genome editing means into potato buds or axillary buds (particle bombardment method).
 前記ゲノム編集手段としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ガイドRNA、又は前記ガイドRNAをコードする核酸のいずれかと、核酸代謝酵素、又は前記核酸代謝酵素をコードする核酸のいずれかと、の組合せなどが挙げられる。
 これらの中でも、ゲノム編集効率の点から、Orange遺伝子を標的とするガイドRNA、又は前記Orange遺伝子を標的とするガイドRNAをコードする核酸のいずれかと、核酸代謝酵素、又は前記核酸代謝酵素をコードする核酸のいずれかと、の組合せが好ましく、Orange遺伝子を標的とするガイドRNAをコードする核酸と、核酸代謝酵素をコードする核酸と、の組合せがより好ましい。
The genome editing means is not particularly limited and may be appropriately selected depending on the intended purpose. For example, either a guide RNA or a nucleic acid encoding the guide RNA, a nucleic acid metabolizing enzyme, or the nucleic acid metabolizing enzyme can be selected. Examples include a combination with any of the encoding nucleic acids.
Among these, from the viewpoint of genome editing efficiency, either a guide RNA targeting the Orange gene or a nucleic acid encoding a guide RNA targeting the Orange gene, a nucleic acid metabolizing enzyme, or the nucleic acid metabolizing enzyme is encoded. A combination of any of the nucleic acids is preferable, and a combination of a nucleic acid encoding a guide RNA targeting the Orange gene and a nucleic acid encoding a nucleic acid metabolizing enzyme is more preferable.
 前記ガイドRNAの長さの下限値としては、特に制限はなく、目的に応じて適宜選択することができるが、15ヌクレオチド以上が好ましく、16ヌクレオチド以上がより好ましく、17ヌクレオチド以上がさらに好ましく、18ヌクレオチド以上が特に好ましく、19ヌクレオチド以上がさらに特に好ましく、20ヌクレオチド以上が最も好ましい。
 前記ガイドRNAの長さの上限値としては、特に制限はなく、目的に応じて適宜選択することができるが、30ヌクレオチド以下が好ましく、25ヌクレオチド以下がより好ましく、22ヌクレオチド以下がさらに好ましく、20ヌクレオチド以下が特に好ましい。
 前記ガイドRNAは、tracr配列に融合しているガイド配列を含んでいてもよい。
The lower limit of the length of the guide RNA is not particularly limited and may be appropriately selected depending on the intended purpose, but 15 nucleotides or more is preferable, 16 nucleotides or more is more preferable, 17 nucleotides or more is further preferable, and 18 Nucleotides and above are particularly preferred, 19 nucleotides and above are even more preferred, and 20 nucleotides and above are most preferred.
The upper limit of the length of the guide RNA is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 30 nucleotides or less, more preferably 25 nucleotides or less, further preferably 22 nucleotides or less, and 20 Nucleotides and below are particularly preferred.
The guide RNA may contain a guide sequence fused to the tracr sequence.
 前記Orange遺伝子を標的とするガイドRNAとしては、特に制限はなく、目的に応じて適宜選択することができる、例えば、StOr_t1(配列番号6)、STOr_t2(配列番号7)のいずれかで表される配列、及びこれらの配列に対して配列同一性を有する配列などが挙げられる。 The guide RNA that targets the Orange gene is not particularly limited and may be appropriately selected depending on the intended purpose. For example, it is represented by either StOr_t1 (SEQ ID NO: 6) or STOR_t2 (SEQ ID NO: 7). Examples thereof include sequences and sequences having sequence identity with respect to these sequences.
 前記配列同一性としては、特に制限はなく、目的に応じて適宜選択することができるが、80%以上の配列同一性が好ましく、85%以上の配列同一性がより好ましく、90%以上の配列同一性がさらに好ましく、95%以上の配列同一性が特に好ましい。 The sequence identity is not particularly limited and may be appropriately selected depending on the intended purpose, but 80% or more of sequence identity is preferable, 85% or more of sequence identity is more preferable, and 90% or more of sequences is preferable. Identity is even more preferred, with 95% or greater sequence identity being particularly preferred.
 前記Orange遺伝子は、切断した部位の間に、組換えによる外来DNA挿入又は置換することによる変異を導入してもよい。 The Orange gene may be mutated by inserting or substituting foreign DNA by recombination between the cleaved sites.
 前記核酸代謝酵素としては、特に制限はなく、目的に応じて適宜選択することができ、ヌクレアーゼ、又はデアミナーゼなどが挙げられる。前記核酸代謝酵素は、1つ以上の核局在化シグナル(NLS)を含んでいてもよい。 The nucleic acid-metabolizing enzyme is not particularly limited and may be appropriately selected depending on the intended purpose, and examples thereof include nuclease and deaminase. The nucleic acid metabolizing enzyme may contain one or more nuclear localization signals (NLS).
 前記ヌクレアーゼとしては、特に制限はなく、目的に応じて適宜選択することができ、CRISPR-CASシステムのCASヌクレアーゼ、ジンクフィンガーヌクレアーゼ、ジンクフィンガーヌクレアーゼ活性を発現するタンパク質、TAL effector nuclease(TALEN)、TARGET AID、メガヌクレアーゼなどが挙げられる。また、前記ヌクレアーゼは、由来する生物種が異なるものであってもよく、例えば、動物、植物、微生物、ウイルスなどの遺伝子や、人工合成遺伝子を用いることができる。 The nuclease is not particularly limited and may be appropriately selected depending on the intended purpose. CRISPR-CAS system CAS nuclease, zinc finger nuclease, protein expressing zinc finger nuclease activity, TAL effector nucleoase (TALEN), TARGET. Examples include AID and meganuclease. In addition, the nuclease may be derived from a different species, and for example, genes such as animals, plants, microorganisms, and viruses, or artificially synthesized genes can be used.
 前記CASヌクレアーゼとしては、特に制限はなく、目的に応じて適宜選択することができ、I型CRISPR系酵素、II型CRISPR系酵素、III型CRISPR系酵素などが挙げられるが、II型CRISPR系酵素であるCas9が好ましい。
 前記Casヌクレアーゼは、真核細胞中の発現のためにコドン最適化されていてもよい。前記Casヌクレアーゼは、標的配列の局在における1つ、又は2つの鎖の開裂を指向し得る。本発明の他の側面において、遺伝子産物の発現を減少させ、遺伝子産物はタンパク質である。
The CASnuclease is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include type I CRISPR enzyme, type II CRISPR enzyme, type III CRISPR enzyme, and type II CRISPR enzyme. Cas9 is preferable.
The Cas nuclease may be codon-optimized for expression in eukaryotic cells. The Cas nuclease can direct the cleavage of one or two strands in the localization of the target sequence. In another aspect of the invention, the expression of the gene product is reduced and the gene product is a protein.
 前記Cas9としては、特に制限はなく、目的に応じて適宜選択することができ、肺炎連鎖球菌(Streptococcus pneumoniae)のCas9、化膿性連鎖球菌(Streptococcus pyogenes)のCas9、S.サーモフィラス(Streptococcus thermophilus)のCas9、黄色ブドウ球菌(Staphylococcus aureus)のCas9などが挙げられるが、化膿性連鎖球菌(Streptococcus pyogenes)のCas9が好ましい。また、これらの生物に由来する突然変異Cas9であってもよく、ニッカーゼ(一方のDNA鎖のみにnickを入れるDNA切断酵素)として機能することが知られているCas9のD10A変異体であってもよく、Cas9ホモログ、又はオルソログであってもよい。 The Cas9 is not particularly limited and may be appropriately selected depending on the intended purpose. Cas9 of Streptococcus pneumoniae and Cas9 of Streptococcus pyogenes, S. cerevisiae. Examples thereof include Cas9 of Thermophilus (Streptococcus thermophilus) and Cas9 of Staphylococcus aureus, but Cas9 of Streptococcus pyogenes is preferable. Further, it may be a mutant Cas9 derived from these organisms, or even a D10A mutant of Cas9 known to function as a nickase (a DNA cleavage enzyme that inserts a nick into only one DNA strand). It may be Cas9 homolog or ortholog.
 前記デアミナーゼとしては、脱アミノ化酵素活性を有するものであれば、特に制限はなく、目的に応じて適宜選択することができ、CRISPR-CASシステムから、ヌクレアーゼ活性を除去したものに付加して使用することができる。 The deaminase is not particularly limited as long as it has deamination enzyme activity, and can be appropriately selected depending on the intended purpose. It is used by adding it to a CRISPR-CAS system from which nuclease activity has been removed. can do.
 前記ガイドRNAをコードする核酸、又は前記核酸代謝酵素をコードする核酸は、ベクターに組み込まれたものを使用することができる。 As the nucleic acid encoding the guide RNA or the nucleic acid encoding the nucleic acid metabolizing enzyme, one incorporated in a vector can be used.
 前記ベクターの種類としては、環状のプラスミドでも良く、プラスミドを制限酵素等で切断した線状DNA、線状プラスミド、導入するDNA断片のみを切り出した核酸カセット断片、又は、カセット断片の一方もしくは両方の端に0.8kb以上、1.2kb以下の核酸が付加されたDNA断片であってもよい。これらのDNA断片は、PCRによって増幅されたDNA断片であってもよい。この場合、付加される核酸としては、特に制限されず、ベクター由来の配列であってもよいが、導入の標的部位の配列がより好ましい。
 前記カセット断片の端に付加される核酸の長さの下限としては、0.5kb以上が好ましく、0.8kb以上がより好ましく、1.0kb以上がさらに好ましい。
 前記カセット断片の端に付加される核酸の長さの上限としては、3.0kb以下が好ましく、2.0kb以下がより好ましく、1.5kb以下がさらに好ましい。
The type of the vector may be a circular plasmid, and may be a linear DNA obtained by cutting the plasmid with a restriction enzyme or the like, a linear plasmid, a nucleic acid cassette fragment obtained by cutting out only the DNA fragment to be introduced, or one or both of the cassette fragments. It may be a DNA fragment to which a nucleic acid of 0.8 kb or more and 1.2 kb or less is added to the end. These DNA fragments may be DNA fragments amplified by PCR. In this case, the nucleic acid to be added is not particularly limited and may be a sequence derived from a vector, but the sequence of the target site for introduction is more preferable.
The lower limit of the length of the nucleic acid added to the end of the cassette fragment is preferably 0.5 kb or more, more preferably 0.8 kb or more, still more preferably 1.0 kb or more.
The upper limit of the length of the nucleic acid added to the end of the cassette fragment is preferably 3.0 kb or less, more preferably 2.0 kb or less, still more preferably 1.5 kb or less.
 前記ベクターとしては、例えば、pAL系(pAL51、pAL156など)、pUC系(pUC18、pUC19、pUC9など)、pBI系(pBI121、pBI101、pBI221、pBI2113、pBI101.2など)、pPZP系、pSMA系、中間ベクター系(pLGV23Neo、pNCATなど)、カリフラワーモザイクウイルス(CaMV)、インゲンマメモザイクウイルス(BGMV)、タバコモザイクウイルス(TMV)などが挙げられる。 Examples of the vector include pAL system (pAL51, pAL156, etc.), pUC system (pUC18, pUC19, pUC9, etc.), pBI system (pBI121, pBI101, pBI221, pBI2113, pBI101.2, etc.), pPZP system, pSMA system, etc. Examples include intermediate vector systems (pLGV23Neo, pNCAT, etc.), cauliflower mosaic virus (CaMV), green beans mosaic virus (BGMV), tobacco mosaic virus (TMV), and the like.
 前記ベクターに目的配列を挿入する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、精製された核酸を適当な制限酵素で切断し、適当なベクターDNAの制限酵素部位又はマルチクローニングサイトなどに挿入してベクターに連結する方法などが挙げられる。また、二重交叉組換え(double cross-over)により中間ベクターに目的配列を挿入してもよく、TAクローニング、In-Fusionクローニングなどを用いてもよい。 The method for inserting the target sequence into the vector is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a purified nucleic acid is cleaved with an appropriate restriction enzyme and an appropriate vector DNA restriction enzyme is used. Examples thereof include a method of inserting into a site or a multi-cloning site and linking to a vector. Further, the target sequence may be inserted into the intermediate vector by double cross-over, and TA cloning, In-Fusion cloning, or the like may be used.
 前記ベクターには、前記ガイドRNAをコードする核酸、又は前記核酸代謝酵素をコードする核酸のほかに、例えばプロモーター、エンハンサー、インシュレーター、イントロン、ターミネーター、ポリA付加シグナル、選抜マーカー遺伝子などを連結することができる。 In addition to the nucleic acid encoding the guide RNA or the nucleic acid encoding the nucleic acid metabolizing enzyme, for example, a promoter, an enhancer, an insulator, an intron, a terminator, a poly A addition signal, a selectable marker gene, or the like is ligated to the vector. Can be done.
 前記プロモーターとしては、植物体内、又は植物細胞において機能し、構成的に発現するか、植物の特定の組織内あるいは特定の発育段階において発現を導くことのできるDNAであれば、植物由来のものでなくてもよい。具体例としては、例えば、カリフラワーモザイクウイルス(CaMV)35Sプロモーター、El2―35Sオメガプロモーター、ノパリン合成酵素遺伝子のプロモーター(Pnos)、トウモロコシ由来ユビキチンプロモーター、イネ由来のアクチンプロモーター、タバコ由来PRタンパク質プロモーター、ADHプロモーター、RuBiscoプロモーターなどが挙げられる。翻訳活性を高める配列、例えば、タバコモザイクウイルスのオメガ配列を用いて翻訳効率を上げることができる。また、翻訳開始領域としてIRES(internal ribosomal entry site)をプロモーターの3’-下流側で、翻訳開始コドンの5’-上流側に挿入することで複数のコーディング領域からタンパク質を翻訳させることもできる。 The promoter may be derived from a plant as long as it is a DNA that functions in a plant or in a plant cell and is constitutively expressed, or can induce expression in a specific tissue of a plant or at a specific developmental stage. It does not have to be. Specific examples include, for example, cauliflower mosaic virus (CaMV) 35S promoter, El2-35S omega promoter, noparin synthase gene promoter (Pnos), corn-derived ubiquitin promoter, rice-derived actin promoter, tobacco-derived PR protein promoter, ADH. Promoters, RuBisco promoters and the like can be mentioned. Translation efficiency can be increased by using a sequence that enhances translation activity, for example, an omega sequence of tobacco mosaic virus. In addition, a protein can be translated from a plurality of coding regions by inserting an IRES (internal ribosome entry site) as a translation start region on the 3'-downstream side of the promoter and on the 5'-upstream side of the translation start codon.
 前記ターミネーターとしては、前記プロモーターにより転写された遺伝子の転写を終結でき、ポリA付加シグナルを有する配列であればよく、例えば、ノパリン合成酵素(NOS)遺伝子のターミネーター、オクトピン合成酵素(OCS)遺伝子のターミネーター、CaMV 35S ターミネーターなどが挙げられる。 The terminator may be any sequence that can terminate the transcription of the gene transcribed by the promoter and has a poly A addition signal. For example, the terminator of the nopaline synthase (NOS) gene and the octopine synthase (OCS) gene. Examples include a terminator and a CaMV 35S terminator.
 前記選抜マーカー遺伝子としては、例えば、除草剤耐性遺伝子(ビアラホス耐性遺伝子、グリフォセート耐性遺伝子(EPSPS)、スルホニル尿素系耐性遺伝子(ALS)など)、薬剤耐性遺伝子(テトラサイクリン耐性遺伝子、アンピシリン耐性遺伝子、カナマイシン耐性遺伝子、ハイグロマイシン耐性遺伝子、スペクチノマイシン耐性遺伝子、クロラムフェニコール耐性遺伝子、ネオマイシン耐性遺伝子など)、蛍光、又は発光レポーター遺伝子(ルシフェラーゼ、β-ガラクトシダーゼ、β-グルクロニターゼ(GUS)、グリーンフルオレッセンスプロテイン(GFP)など)、ネオマイシンホスホトランスフェラーゼII(NPT II)、ジヒドロ葉酸レダクターゼなどの酵素遺伝子が挙げられる。
 ただし、本発明によれば選抜マーカー遺伝子を導入しなくても形質転換体の作製は可能である。
Examples of the selection marker gene include a herbicide resistance gene (biaraphos resistance gene, glyphosate resistance gene (EPSPS), sulfonylurea resistance gene (ALS), etc.), drug resistance gene (tetracycline resistance gene, ampicillin resistance gene, canamycin). Resistance genes, hyglomycin resistance genes, spectinomycin resistance genes, chloramphenicol resistance genes, neomycin resistance genes, etc.), fluorescent or luminescent reporter genes (luciferase, β-galactosidase, β-glucuronidase (GUS), green fluorescence Examples include enzyme genes such as protein (GFP), neomycin phosphotransferase II (NPT II), and dihydrofolate reductase.
However, according to the present invention, it is possible to prepare a transformant without introducing a selectable marker gene.
 前記ベクターに挿入する目的配列は1ベクターあたり複数種であってもよい。また、前記ガイドRNAをコードする核酸、及び/又は前記核酸代謝酵素をコードする核酸を含む組換えベクターと、薬剤耐性遺伝子を含む組換えベクターとを別々に作製し、混合して微粒子を被覆してもよい。 The target sequence to be inserted into the vector may be a plurality of types per vector. Further, a recombinant vector containing a nucleic acid encoding the guide RNA and / or a nucleic acid encoding the nucleic acid metabolizing enzyme and a recombinant vector containing a drug resistance gene are separately prepared, mixed and coated with fine particles. You may.
 ゲノム編集の目的遺伝子は2以上であってもよく、2以上の目的遺伝子を切断できるようにベクターを構築してもよい。その場合、2種類以上のベクターを作製してもよく、1つのプラスミド上に複数のガイドRNAを発現するように挿入してもよい。 The target gene for genome editing may be two or more, or a vector may be constructed so that two or more target genes can be cleaved. In that case, two or more kinds of vectors may be prepared, or a plurality of guide RNAs may be inserted so as to be expressed on one plasmid.
 前記ガイドRNA、及び核酸代謝酵素は、天然に存在するもの(組合せ)であってもよく、天然には存在しない組合せであってもよい。 The guide RNA and the nucleic acid-metabolizing enzyme may be naturally occurring (combinations) or may be non-naturally occurring combinations.
--アグロバクテリウム法--
 前記エレクトロポレーション法により、ゲノム編集ベクターをアグロバクテリウムに導入する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、GelvinとSchilperoor編,Plant Molecular Biology Manual, C2,1-32(1994),Kluwer Academic Publishersに記載の方法などが挙げられる。
--Agrobacterium method ---
The method for introducing the genome editing vector into Agrobacterium by the electroporation method is not particularly limited and may be appropriately selected depending on the intended purpose. For example, Gelvin and Schilleror, Plant Molecular Biology Manual, C2 , 1-32 (1994), Klewer Academic Publicers, and the like.
 ジャガイモに前記アグロバクテリウムを感染させる方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、門馬(1990)植物組織培養7:57-63に記載の方法などが挙げられる。 The method for infecting potatoes with the Agrobacterium is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include the method described in Monma (1990) Plant Tissue Culture 7: 57-63. Be done.
--パーティクルボンバードメント法--
 前記ゲノム編集手段により被覆された微粒子をジャガイモの幼芽又は腋芽に撃ち込む方法における、前記微粒子としては、特に制限はなく、目的に応じて適宜選択することができるが、撃ち込み時における細胞内への貫通力を高める点から、高比重で、かつ、化学的に不活性であり生体に害を及ぼしにくいものが好ましく、例えば、金属微粒子、セラミック微粒子、ガラス微粒子などが挙げられる。
 前記金属微粒子としては、特に制限はなく、目的に応じて適宜選択することができ、金属単体微粒子、合金微粒子などが挙げられる。
 前記金属単体微粒子としては、金粒子、タングステン粒子などが好ましい。
--Particle bombardment method --
In the method of shooting the fine particles coated by the genome editing means into the buds or axillary buds of potatoes, the fine particles are not particularly limited and may be appropriately selected depending on the intended purpose. From the viewpoint of increasing the penetrating power, those having a high specific gravity, which are chemically inactive and do not easily cause harm to the living body are preferable, and examples thereof include metal fine particles, ceramic fine particles, and glass fine particles.
The metal fine particles are not particularly limited and may be appropriately selected depending on the intended purpose, and examples thereof include metal simple substance fine particles and alloy fine particles.
As the simple metal fine particles, gold particles, tungsten particles and the like are preferable.
 前記微粒子の平均粒径の下限値としては、特に制限はなく、目的に応じて適宜選択することができるが、0.3μm以上が好ましく、0.4μm以上がより好ましく、0.5μm以上がさらに好ましく、0.6μmが特に好ましい。
 前記微粒子の平均粒径の上限値としては、特に制限はなく、目的に応じて適宜選択することができるが、1.5μm以下が好ましく、1.4μm以下がより好ましく、1.3μm以下さらに好ましく、1.2μm以下が特に好ましく、1.1μmがさらに特に好ましく、1.0μm以下が最も好ましい。
 前記平均粒径としては、特に制限はなく、目的に応じて適宜選択することができ、個数平均粒径などが挙げられる。
The lower limit of the average particle size of the fine particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 0.3 μm or more, more preferably 0.4 μm or more, and further preferably 0.5 μm or more. Preferably, 0.6 μm is particularly preferable.
The upper limit of the average particle size of the fine particles is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1.5 μm or less, more preferably 1.4 μm or less, still more preferably 1.3 μm or less. , 1.2 μm or less is particularly preferable, 1.1 μm is even more preferable, and 1.0 μm or less is most preferable.
The average particle size is not particularly limited and may be appropriately selected depending on the intended purpose, and examples thereof include a number average particle size.
 前記微粒子の形状としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、球形、立方体、ロッド状、板状などが挙げられるが、これらの中でも球形が好ましい。 The shape of the fine particles is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a sphere, a cube, a rod and a plate, and among these, a sphere is preferable.
 前記被覆の方法としては、特に制限はなく、目的に応じて適宜選択することができるが、前記微粒子を、洗浄滅菌し、該微粒子、核酸(組換えベクター、直鎖状DNA、RNAなど)及び/又はタンパク質、CaCl、スペルミジン等をボルテックスミキサーなどで攪拌しながら加えて、核酸及び/又はタンパク質を微粒子にコーティング(被覆)し、エタノール、又はリン酸緩衝生理食塩水(PBSなど)で洗浄する方法などが挙げられる。 The coating method is not particularly limited and may be appropriately selected depending on the intended purpose. However, the fine particles are washed and sterilized, and the fine particles, nucleic acids (recombinant vector, linear DNA, RNA, etc.) and / Or add protein, CaCl 2 , spermidine, etc. with stirring with a vortex mixer or the like, coat (coat) the nucleic acid and / or protein with fine particles, and wash with ethanol or phosphate buffered saline (PBS, etc.). The method etc. can be mentioned.
 前記微粒子は、マイクロピペットなどを用いてマクロキャリアフィルムに可能な限り均一に塗布した後、クリーンベンチなどの無菌環境中で乾燥させることができる。タンパク質をコートした微粒子の場合は、親水性のマクロキャリアフィルムを用いるのが好ましい。 The fine particles can be applied to the macrocarrier film as uniformly as possible using a micropipette or the like, and then dried in a sterile environment such as a clean bench. In the case of protein-coated fine particles, it is preferable to use a hydrophilic macrocarrier film.
 前記親水性のマクロキャリアフィルムは、マクロキャリアフィルムに親水性フィルムを貼付しても良いし、親水性コーティングを施しても良い。
 フィルムを親水化する手法としては、界面活性剤や光触媒、親水性ポリマーを利用する手法などが挙げられる。
As the hydrophilic macrocarrier film, a hydrophilic film may be attached to the macrocarrier film, or a hydrophilic coating may be applied.
Examples of the method for making a film hydrophilic include a method using a surfactant, a photocatalyst, and a hydrophilic polymer.
 前記親水性ポリマーとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ポリエチレングリコール、ヒドロキシエチルメタクリレート、ヒドロキシプロピルメタクリレート、ジヒドロキシエチルメタクリレート、ジエチレングリコールメタクリレート、トリエチレングリコールメタクリレート、ポリエチレングリコールメタクリレート、ビニルピロリドン、アクリル酸、アクリルアミド、ジメチルアクリルアミド、グルコキシオキシエチルメタクリレート、3-スルホプロピルメタクリルオキシエチルジメチルアンモニウムベタイン、2-メタクリロイルオキシエチルホスホリルコリン、1-カルボキシジメチルメタクリロイルオキシエチルメタンアンモニウム等の親水性モノマーの重合体などが挙げられる。 The hydrophilic polymer is not particularly limited and may be appropriately selected depending on the intended purpose. For example, polyethylene glycol, hydroxyethyl methacrylate, hydroxypropyl methacrylate, dihydroxyethyl methacrylate, diethylene glycol methacrylate, triethylene glycol methacrylate, polyethylene glycol. Hydrophilicity such as methacrylate, vinylpyrrolidone, acrylic acid, acrylamide, dimethylacrylamide, glucoxyoxyethyl methacrylate, 3-sulfopropylmethacryloxyethyldimethylammonium betaine, 2-methacryloyloxyethylphosphorylcholine, 1-carboxydimethylmethacryloyloxyethylmethaneammonium, etc. Examples thereof include polymers of monomers.
 前記微粒子の被覆率としては、特に制限はなく、目的に応じて適宜選択することができ、前記微粒子の全表面であってもよいし、一部であってもよい。 The coverage of the fine particles is not particularly limited and may be appropriately selected depending on the intended purpose, and may be the entire surface or a part of the fine particles.
 前記微粒子を撃ち込む手段としては、微粒子を植物細胞に撃ち込むことができるものであれば特に制限はなく、パーティクルガン法におけるパーティクルガン(遺伝子銃)などが挙げられる。導入効率の点から、パーティクルガン法を用いて幼芽又は腋芽に導入する方法が好ましい。 The means for shooting the fine particles is not particularly limited as long as the fine particles can be shot into plant cells, and examples thereof include a particle gun (gene gun) in the particle gun method. From the viewpoint of introduction efficiency, a method of introducing into young buds or axillary buds by using a particle gun method is preferable.
 前記パーティクルガン法を用いて幼芽又は腋芽に導入する方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、微粒子が塗布されたマクロキャリアフィルム、ターゲットの幼芽又は腋芽の茎頂を置床したプレートをパーティクルガン装置に設置し、ガス加速管から高圧ガスをマクロキャリアフィルムに向かって発射する方法などが挙げられる。マクロキャリアフィルムはストッピングプレートで止まるが、マクロキャリアフィルムに塗布されていた微粒子はストッピングプレートを通過して、ストッピングプレートの下に設置したターゲットに貫入し、目的遺伝子が導入される。 The method of introducing into the bud or axillary bud by using the particle gun method is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a macrocarrier film coated with fine particles, a target bud or a target bud or An example is a method in which a plate on which the axillary bud apex is placed is installed in a particle gun device, and high-pressure gas is emitted from a gas acceleration tube toward a macrocarrier film. The macrocarrier film stops at the stopping plate, but the fine particles coated on the macrocarrier film pass through the stopping plate and penetrate into the target placed under the stopping plate, and the target gene is introduced.
 前記高圧ガスとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ヘリウムなどが挙げられる。 The high-pressure gas is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include helium.
 前記パーティクルガン装置としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、Biolistic(登録商標) PDS-1000/He Particle Delivery System(BIO-RAD)などが挙げられる。 The particle gun device is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include Biolistic (registered trademark) PDS-1000 / He Particle Delivery System (BIO-RAD).
 前記ストッピングプレートとターゲットとなる茎頂との距離の上限値としては、特に制限はなく、目的に応じて適宜選択することができるが、9cm以下が好ましく、8cm以下がより好ましく、7cm以下がさらに好ましく、6cm以下が特に好ましい。
 前記ストッピングプレートとターゲットとなる茎頂との距離の下限値としては、特に制限はなく、目的に応じて適宜選択することができるが、2cm以上が好ましく、3cm以上がより好ましく、4cm以上がさらに好ましい。
The upper limit of the distance between the stopping plate and the target shoot apex is not particularly limited and may be appropriately selected depending on the intended purpose, but 9 cm or less is preferable, 8 cm or less is more preferable, and 7 cm or less is preferable. More preferably, 6 cm or less is particularly preferable.
The lower limit of the distance between the stopping plate and the target shoot apex is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 2 cm or more, more preferably 3 cm or more, and 4 cm or more. More preferred.
 前記パーティクルガン装置のガス圧としては、特に制限はなく、目的に応じて適宜選択することができるが、1,100~1,600psiが好ましく、1,200~1,500psiがより好ましい。 The gas pressure of the particle gun device is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 1,100 to 1,600 psi, more preferably 1,200 to 1,500 psi.
 前記茎頂に微粒子を撃ち込む回数の下限値としては、特に制限はなく、目的に応じて適宜選択することができるが、2回以上が好ましく、3回以上がより好ましく、4回以上がさらに好ましい。
 前記茎頂に微粒子を撃ち込む回数の上限値としては、特に制限はなく、目的に応じて適宜選択することができるが、20回以下が好ましく、15回以下がより好ましく、10回以下がさらに好ましい。
The lower limit of the number of times the fine particles are shot into the shoot apex is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 2 times or more, more preferably 3 times or more, still more preferably 4 times or more. ..
The upper limit of the number of times the fine particles are shot into the shoot apex is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 20 times or less, more preferably 15 times or less, still more preferably 10 times or less. ..
-RNAiを用いる方法-
 前記RNAiを用いる方法としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、エレクトロポレーション法により、RNAiベクターをアグロバクテリウムに導入し、ジャガイモのマイクロチューバーに前記アグロバクテリウムを感染させる方法などが挙げられる。
-Method using RNAi-
The method using the RNAi is not particularly limited and may be appropriately selected depending on the intended purpose. For example, the RNAi vector is introduced into Agrobacterium by an electroporation method, and the Agrobacterium is introduced into a potato microtuber. Examples include methods for infecting Um.
 前記RNAiベクターとしては、特に制限はなく、目的に応じて適宜選択することができ、例えば、バイナリーベクターを基本とするベクターなどが挙げられる。
 前記RNAiベクターに含まれる配列としては、ジャガイモのOrange遺伝子断片を含む限り、特に制限はなく、目的に応じて適宜選択することができ、その他の配列を含んでいてもよい。これらの中でも、ジャガイモのOrange遺伝子断片を順方向、及び逆方向に含むことが好ましい。
The RNAi vector is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a vector based on a binary vector.
The sequence contained in the RNAi vector is not particularly limited as long as it contains the Orange gene fragment of potato, and can be appropriately selected depending on the intended purpose, and may contain other sequences. Among these, it is preferable to contain the Orange gene fragment of potato in the forward direction and the reverse direction.
 前記ジャガイモのOrange遺伝子断片としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、配列番号3及び4の配列を有するプライマーで増幅される遺伝子断片、この遺伝子断片のホモログなどが挙げられる。 The Orange gene fragment of the potato is not particularly limited and may be appropriately selected depending on the intended purpose. For example, a gene fragment amplified by a primer having the sequences of SEQ ID NOs: 3 and 4, a homologue of this gene fragment, and the like. Can be mentioned.
 前記ホモログとしては、特に制限はなく、目的に応じて適宜選択することができるが、前記配列番号3及び4の配列を有するプライマーで増幅される遺伝子断片との配列同一性が、80%以上の配列同一性が好ましく、85%以上の配列同一性がより好ましく、90%以上の配列同一性がさらに好ましく、95%以上の配列同一性が特に好ましく、99%以上の配列同一性が最も好ましい。 The homolog is not particularly limited and may be appropriately selected depending on the intended purpose, but the sequence identity with the gene fragment amplified by the primers having the sequences of SEQ ID NOs: 3 and 4 is 80% or more. Sequence identity is preferred, 85% or higher sequence identity is more preferred, 90% or higher sequence identity is even more preferred, 95% or higher sequence identity is particularly preferred, and 99% or higher sequence identity is most preferred.
 前記その他の配列としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、プロモーター、エンハンサー、インシュレーター、イントロン、ターミネーター、ポリA付加シグナル、選抜マーカー遺伝子などが挙げられる。 The other sequence is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include promoters, enhancers, insulators, introns, terminators, poly-A addition signals, and selectable marker genes.
 前記プロモーターとしては、ジャガイモにおいて機能し、構成的に発現するか、ジャガイモの特定の組織内あるいは特定の発育段階において発現を導くことのできるDNAであれば、植物由来のものでなくてもよい。具体例としては、例えば、カリフラワーモザイクウイルス(CaMV)35Sプロモーター、El2-35Sオメガプロモーター、ノパリン合成酵素遺伝子のプロモーター(Pnos)、トウモロコシ由来ユビキチンプロモーター、イネ由来のアクチンプロモーター、タバコ由来PRタンパク質プロモーター、ADHプロモーター、RuBiscoプロモーターなどが挙げられる。翻訳活性を高める配列、例えば、タバコモザイクウイルスのオメガ配列を用いて翻訳効率を上げることができる。また、翻訳開始領域としてIRES(internal ribosomal entry site)をプロモーターの3’-下流側で、翻訳開始コドンの5’-上流側に挿入することで複数のコーディング領域からタンパク質を翻訳させることもできる。 The promoter does not have to be of plant origin as long as it is a DNA that functions in potato and can be constitutively expressed, or can induce expression in a specific tissue of potato or at a specific developmental stage. Specific examples include, for example, cauliflower mosaic virus (CaMV) 35S promoter, El2-35S omega promoter, noparin synthase gene promoter (Pnos), corn-derived ubiquitin promoter, rice-derived actin promoter, tobacco-derived PR protein promoter, ADH. Promoters, RuBisco promoters and the like can be mentioned. Translation efficiency can be increased by using a sequence that enhances translation activity, for example, an omega sequence of tobacco mosaic virus. In addition, a protein can be translated from a plurality of coding regions by inserting an IRES (internal ribosome entry site) as a translation start region on the 3'-downstream side of the promoter and on the 5'-upstream side of the translation start codon.
 前記ターミネーターとしては、前記プロモーターにより転写された遺伝子の転写を終結でき、ポリA付加シグナルを有する配列であればよく、例えば、ノパリン合成酵素(NOS)遺伝子のターミネーター、オクトピン合成酵素(OCS)遺伝子のターミネーター、CaMV 35Sターミネーターなどが挙げられる。 The terminator may be any sequence that can terminate the transcription of the gene transcribed by the promoter and has a poly A addition signal. For example, the terminator of the nopaline synthase (NOS) gene and the octopine synthase (OCS) gene. Examples include a terminator and a CaMV 35S terminator.
 前記選抜マーカー遺伝子としては、例えば、除草剤耐性遺伝子(フィトエンデサチュラーゼ遺伝子(AT4g14210)の第3イントロン、ビアラホス耐性遺伝子、グリフォセート耐性遺伝子(EPSPS)、スルホニル尿素系耐性遺伝子(ALS)など)、薬剤耐性遺伝子(テトラサイクリン耐性遺伝子、アンピシリン耐性遺伝子、カナマイシン耐性遺伝子、ハイグロマイシン耐性遺伝子、スペクチノマイシン耐性遺伝子、クロラムフェニコール耐性遺伝子、ネオマイシン耐性遺伝子など)、蛍光、又は発光レポーター遺伝子(ルシフェラーゼ、β-ガラクトシダーゼ、β-グルクロニターゼ(GUS)、グリーンフルオレッセンスプロテイン(GFP)など)、ネオマイシンホスホトランスフェラーゼII(NPT II)、ジヒドロ葉酸レダクターゼなどの酵素遺伝子が挙げられる。 Examples of the selection marker gene include a herbicide resistance gene (the third intron of the phytoendesaturase gene (AT4g14210), bialaphos resistance gene, glyphosate resistance gene (EPSPS), sulfonylurea resistance gene (ALS), etc.), and drug resistance. Genes (tetracycline resistance gene, ampicillin resistance gene, canamycin resistance gene, hyglomycin resistance gene, spectinomycin resistance gene, chloramphenicol resistance gene, neomycin resistance gene, etc.), fluorescent or luminescent reporter gene (luciferase, β-galactosidase) , Β-Glucronidase (GUS), Green Fluorescence Protein (GFP), etc.), Neomycin Phosphortransferase II (NPT II), Dihydrofolate Reductase, and other enzyme genes.
<その他の工程>
 前記その他の工程としては、例えば、ジャガイモのOrange遺伝子に欠失、挿入、又は置換が導入された個体を選抜する工程などが挙げられる。
 前記選抜する工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、薬剤耐性遺伝子により選別する方法などが挙げられる。
<Other processes>
Examples of the other steps include a step of selecting an individual into which a deletion, insertion, or substitution has been introduced into the Orange gene of potato.
The selection step is not particularly limited and may be appropriately selected depending on the intended purpose. Examples thereof include a method of selection based on a drug resistance gene.
 (ジャガイモのゲノム編集方法)
 前記ジャガイモのゲノム編集方法は、ゲノム編集手段を用いて、ジャガイモのOrange遺伝子に欠失、挿入、又は置換を導入する工程を含み、さらにその他の工程を含むことができる。
 前記ゲノム編集手段を用いて、ジャガイモのOrange遺伝子に欠失、挿入、又は置換を導入する工程は、前述のゲノム編集手段を用いて、ジャガイモのOrange遺伝子に欠失、挿入、又は置換を導入する方法のとおりである。
(Potato genome editing method)
The potato genome editing method includes a step of introducing a deletion, insertion, or substitution into a potato Orange gene by using a genome editing means, and can further include other steps.
The step of introducing a deletion, insertion, or substitution into a potato Orange gene using the above-mentioned genome editing means introduces a deletion, insertion, or substitution into a potato Orange gene using the above-mentioned genome editing means. The method is as follows.
 (遺伝子改変ジャガイモ作製用組成物)
 前記遺伝子改変ジャガイモ作製用組成物は、Orange遺伝子を標的とするガイドRNA、又は前記Orange遺伝子を標的とするガイドRNAをコードする核酸のいずれかと、核酸代謝酵素、又は前記核酸代謝酵素をコードする核酸のいずれかと、を含み、さらにその他の成分を含んでもよい。
 前記Orange遺伝子を標的とするガイドRNA、又は前記Orange遺伝子を標的とするガイドRNAをコードする核酸のいずれかと、核酸代謝酵素、又は前記核酸代謝酵素をコードする核酸のいずれかとは、前述のとおりである。
(Composition for producing genetically modified potatoes)
The composition for producing a genetically modified potato comprises either a guide RNA targeting the Orange gene or a nucleic acid encoding a guide RNA targeting the Orange gene, a nucleic acid metabolizing enzyme, or a nucleic acid encoding the nucleic acid metabolizing enzyme. And any of the above, and may further contain other components.
Either the guide RNA targeting the Orange gene or the nucleic acid encoding the guide RNA targeting the Orange gene, and either the nucleic acid metabolizing enzyme or the nucleic acid encoding the nucleic acid metabolizing enzyme are as described above. be.
 (遺伝子改変ジャガイモの判定方法)
 前記遺伝子改変ジャガイモの判定方法は、ジャガイモのOrange遺伝子の欠失、挿入、又は置換の存否を指標に、遺伝子改変ジャガイモであるか否かを判定する工程を含み、さらにその他の工程を含むことができる。
 ジャガイモのOrange遺伝子の欠失、挿入、又は置換の存否を指標に、遺伝子改変ジャガイモであるか否かを判定する工程としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、ジャガイモのOrange遺伝子配列を解析し、配列番号5のDNA配列と比較する方法などが挙げられる。
 前記伝子改変ジャガイモの判定方法により、カロテノイドが蓄積しているジャガイモであるか否かが効率的に判定できる。
(Method of determining genetically modified potatoes)
The method for determining a genetically modified potato includes a step of determining whether or not the potato is a genetically modified potato, using the presence or absence of deletion, insertion, or substitution of the Orange gene of the potato as an index, and may further include other steps. can.
The step of determining whether or not the potato is a genetically modified potato using the presence or absence of deletion, insertion, or substitution of the Orange gene of the potato as an index is not particularly limited and can be appropriately selected depending on the purpose, for example. , A method of analyzing the Orange gene sequence of potato and comparing it with the DNA sequence of SEQ ID NO: 5 and the like.
According to the method for determining a potato modified potato, it can be efficiently determined whether or not the potato has accumulated carotenoids.
 一般的に、ある植物種のある遺伝子を遺伝子改変した場合に特定の表現型が現れるという知見を、そのまま他の作物種に適用することは困難と考えられる。これは、作物の生物分類(科、属、種、等)が異なる場合、保有する代謝経路や合成経路も異なることに起因している。
 例えば、オシロイバナやケイトウ等にアントシアニン(色素の1種)の合成酵素を発現させても、アントシアニンは合成されない。同様に、バラやカーネーションにベタレイン(色素の1種)の合成酵素を発現させても、ベタレインは合成されない(The Plant Journal 2008 54:733-749)。
 また、本願発明に関連すると、カリフラワーではOrange遺伝子の変異によって可食部である花蕾にカロテノイドが蓄積する一方で、イネではOrange遺伝子編集によりカルスでカロテノイド量が増加したものの、胚乳において有意なカロテノイド蓄積は認められていない(Rice 2019 12:81)。
 イネの胚乳ではカロテノイドの合成酵素の一部が不足しているため、外部より新たに合成酵素を補填しなければ胚乳にカロテノイドは蓄積されないことが報告されている(Nature Biotechnology 2005 23:482-487)。
In general, it is considered difficult to apply the finding that a specific phenotype appears when a gene of a certain plant species is genetically modified to another crop species as it is. This is due to the fact that different crop bioclasses (family, genus, species, etc.) have different metabolic and synthetic pathways.
For example, even if an anthocyanin (a type of pigment) synthase is expressed in marvel-of-peru or cockscomb, anthocyanins are not synthesized. Similarly, expressing betalain (a type of pigment) synthase in roses and carnations does not synthesize betalain (The Plant Journal 2008 54: 733-749).
Further, in relation to the present invention, carotenoids are accumulated in flower buds which are edible parts due to mutation of the Orange gene in potash flowers, while in rice, the amount of carotenoids is increased in curls by editing the Orange gene, but significant carotenoid accumulation in endosperm. Is not recognized (Rice 2019 12:81).
Since some of the carotenoid synthases are deficient in the endosperm of rice, it has been reported that carotenoids are not accumulated in the endosperm unless a new synthase is supplemented from the outside (Nature Biotechnology 2005 23: 482-487). ).
 以下、本発明の実施例を説明するが、本発明は、これらの実施例に何ら限定されるものではない。 Hereinafter, examples of the present invention will be described, but the present invention is not limited to these examples.
<実施例1:ジャガイモOrange候補遺伝子の取得>
 ジャガイモ(S.tuberosum)のゲノムデータベース(Spud DB:http://solanaceae.plantbiology.msu.edu/index.shtml)に含まれる配列を対象とした、tblast解析を行ったところ、2つの予想転写産物(PGSC0003DMT400022863とPGSC0003DMT400021454)に、カリフラワーのOrage遺伝子と相同性が認められた。
<Example 1: Acquisition of potato Orange candidate gene>
A tblast analysis was performed on the sequences contained in the potato (S. tuberosum) genome database (Spud DB: http: // solaraceae.plantcauliflower.mus.edu/index.shtml), and two expected transcripts were obtained. (PGSC0003DMT4000022863 and PGSC0003DMT400021454) were found to be homologous to the cauliflower genome gene.
 これら予想転写産物の発現解析を、NCBIのデータベースに登録されているNGSデータであるSRX3127474:Solanum tuberosum,Atlantic,leaf,RNA-SeqをTrinity(https://github.com/trinityrnaseq/trinityrnaseq/wiki)、Bowtie(http://bowtie-bio.sourceforge.net/index.shtml)、DEGseq(Original site)、eXpress(Original site)を用いて遺伝子発現量(fpkm:fragments per kilobase of exon per million reads mapped。発現量の一般的指標の1つ)を解析したところ、PGSC0003DMT400022863のfpkm値は59.66と算出でき、PGSC0003DMT400021454のfpkm値は算出できなかった。 For the expression analysis of these predicted transcripts, SRX3127474: Solanum tuberosum, Atlantic, leaf, RNA-Seq, which are NGS data registered in the NCBI database, were subjected to Trinity (https://ghub.com/trinityrinaseq/triny). , Bowtie (http://boutie-bio.sourceforge.net/index.shtmml), DEFsec (Original site), eXpress (Original site), gene expression level (fpkm) When one of the general indexes of the expression level) was analyzed, the fpkm value of PGSC0003DMT40022863 could be calculated as 59.66, and the fpkm value of PGSC0003DMT40021454 could not be calculated.
 同様にしてPhytoene synthase 1-PSY1、Phytoene synthase 2-PSY2、Phytoene desaturase-PDS、Licopene-β cyclase-LCYb、-carotene hydroxylase 1-CHY1、Zeaxanthin epoxidase-ZEPについてもfpkm値を算出したところ、各々34.89、61.10、68.06、38.98、16.02、184.13、であり、カロテノイド生合成遺伝子が発現している組織で発現していることが確かめられた。以上の結果より、PGSC0003DMT400022863がジャガイモにおけるOrange候補遺伝子であると考えられた。 Similarly, Phytoene synthase 1-PSY1, Phytoene synthase 2-PSY2, Phytoene desaturase-PDS, Lycopene-β cyclose-LCYb, and -carotenoid hydroxylase 1-CHARse 1-Chey1 It was 89, 61.10, 68.06, 38.98, 16.02, 184.13, and it was confirmed that it was expressed in the tissue expressing the carotenoid biosynthesis gene. From the above results, it was considered that PGSC0003DMT4000022863 is an Orange candidate gene in potatoes.
<実施例2:ジャガイモOrange候補遺伝子のゲノム配列の取得>
 実験に供するジャガイモ品種「サッシー」における、オレンジカリフラワーで変異が見つかっている第3エクソンから第5エクソンのゲノム配列を明らかにするため、上記PGSC0003DMT400022863を元に、「サッシー」のゲノムDNAに対し、合成したプライマー U1200:GTACGTAGGCTAAGAATACAACAAAG(配列番号:8)及びU1201: GGCAAGTAATCCACCGAAGA(配列番号:9)を用いて(図1)、アニール温度55℃にてPCR(30サイクル、タカラバイオ社製 PrimeSTARを使用)を行った。図1のboxは、各エクソンを示す。
 得られたPCR増幅産物をpENTR/D-TOPOベクター(Thermo Fisher社製)へクローニングして、遺伝子断片を取得し、2種類の全長配列(第3エクソンから第5エクソン)を決定した(配列番号:1、及び2)。
<Example 2: Acquisition of genome sequence of potato Orange candidate gene>
In order to clarify the genomic sequences of the 3rd to 5th exons in which mutations have been found in orange cauliflower in the potato variety "Sassy" to be used in the experiment, synthesis was performed on the genomic DNA of "Sassy" based on the above PGSC0003DMT40022863. PCR (30 cycles, using Takara Bio's PrimeSTAR) was performed at an annealing temperature of 55 ° C. using the primers U1200: GTACGTAGCTAAGAATACAACAAAG (SEQ ID NO: 8) and U1201: GGCAAGTAATCCACCGAAGA (SEQ ID NO: 9). rice field. The box in FIG. 1 indicates each exon.
The obtained PCR amplification product was cloned into a pENTR / D-TOPO vector (manufactured by Thermo Fisher) to obtain a gene fragment, and two types of full-length sequences (3rd to 5th exons) were determined (SEQ ID NO:). : 1 and 2).
<実施例3:ジャガイモOrange候補遺伝子のゲノム編集ベクターの作製>
 実施例2にて同定したゲノムDNA配列を元にCas9のDNA切断により生じる挿入欠失変異がStOr転写産物のスプライシング異常を誘発することを想定し、第3エクソンと第3イントロンの境界部位付近に標的配列を2つ設計した(StOr_t1:配列番号6、STOr_t2:配列番号7)(図2)。図2の白抜き矢印は、各切断予想部位を示す。
 上記標的配列を含むpStOr_t1とpSTOr_t2の2つのベクターを作成した(図3)。図3において、導入する遺伝子部分のT-DNAのライトボーダー(RB)、レフトボーダー(LB)、それらボーダーの内部の構造を示す。
<Example 3: Preparation of genome editing vector for potato Orange candidate gene>
Based on the genomic DNA sequence identified in Example 2, it is assumed that the insertion deletion mutation caused by DNA cleavage of Cas9 induces splicing abnormality of the StOr transcript, near the boundary site between the 3rd exon and the 3rd intron. Two target sequences were designed (StOr_t1: SEQ ID NO: 6, STOR_t2: SEQ ID NO: 7) (FIG. 2). The white arrows in FIG. 2 indicate each expected cutting site.
Two vectors, pStOr_t1 and pSTor_t2, containing the target sequence were prepared (FIG. 3). FIG. 3 shows the right border (RB) and left border (LB) of the T-DNA of the gene portion to be introduced, and the internal structure of these borders.
<実施例4:ジャガイモOrange候補遺伝子の形質転換体の作製>
 実施例4で作製したベクターをエレクトロポレーション法(GelvinとSchilperoor編,Plant Molecular Biology Manual, C2,1-32(1994),Kluwer Academic Publishers)により、アグロバクテリウム・ツメファシエンスGV3101 mp90株に導入した。ベクターを含むアグロバクテリウム・ツメファシエンスGV3110株を、50ppmのカナマイシンを含むYEB液体培地[5g/Lビ-フエキス、1g/L酵母エキス、5g/Lペプトン、5g/Lスクロ-ス、2mM硫酸マグネシウム(pH7.2)]にて28℃、12時間振とう培養した。培養液1.5mLを10,000rpm、3分間遠心分離して集菌後、カナマイシンを除くために1mLのLB培地で洗浄した。更に10,000rpm、3分間遠心分離して集菌後、1.5mLの3%蔗糖を含むMS培地[Murashige&Skoog,Physiol.Plant.,15,473-497(1962)]に再懸濁し、感染用菌液とした。
<Example 4: Preparation of transformant of potato Orange candidate gene>
The vector prepared in Example 4 was introduced into Agrobacterium tumefaciens GV3101 by an electroporation method (Gelvin and Schilperor ed., Plant Molecular Biology Manual, C2, 1-32 (1994), Kruwer Academic Publicers). Agrobacterium tumefaciens GV3110 strain containing vector, YEB liquid medium containing 50 ppm kanamycin [5 g / L beef extract, 1 g / L yeast extract, 5 g / L peptone, 5 g / L scroll, 2 mM magnesium sulfate ( The culture was shaken at 28 ° C. for 12 hours at pH 7.2)]. 1.5 mL of the culture broth was centrifuged at 10,000 rpm for 3 minutes to collect the cells, and then washed with 1 mL of LB medium to remove kanamycin. After further centrifuging at 10,000 rpm for 3 minutes and collecting the bacteria, MS medium containing 1.5 mL of 3% sucrose [Murashige & Skoog, Physiol. Plant. , 15,473-497 (1962)] to prepare a bacterial solution for infection.
 ジャガイモの形質転換は[門馬(1990)植物組織培養7:57-63]に従い実施した。ジャガイモ品種「サッシー」から得られたマイクロチューバーを2~3mmにスライスし、アグロバクテリウム感染用の材料とした。これを上記のアグロバクテリウムの菌液に浸した後、滅菌済みの濾紙上に置いて過剰のアグロバクテリウムを除いた。シャーレ内のMS培地(Zeatin 1ppm,IAA 0.1ppm,アセトシリンゴン100μM、及び寒天0.8%を含む)上に置き、培養は3日間25℃、16時間照明(光量子束密度32μE/m2s)/8時間無照明の条件下で行った。ついで、アセトシリンゴンの代わりにカルベニシリン250ppmを含んだ培地で1週間培養した。その後、さらにカナマイシン50 ppmを含む培地上に移し、2週間ごとに継代した。この間に不定芽が形成し、シュートを生じた。伸張したシュートをカルベニシン250 ppm及びカナマイシン100 ppmを含み、植物生長調節物質を含まないMS培地に置床した。発根したシュートをカナマイシン耐性の生長した植物体の中から外来遺伝子としてカナマイシン耐性遺伝子を含有する個体を、PCR(条件:95℃5分間、(95℃30秒間、55℃30秒間、72℃1分間)を30回、72℃10分間)を行うことで検出し、該再分化植物体が形質転換植物体であることを確認した。ここで、カナマイシン耐性遺伝子の配列を特異的に増幅するプライマーとして、U1200(配列番号8)、及びU1225: CAGATGACTTTCCCGAAACAGA(配列番号10)を用いた。以上から、ベクターpStOr_t1とpSTOr_t2が導入されたジャガイモの形質転換植物体各pStOr_t1の#13、pSTOr_t2の#8系統を取得した。 Potato transformation was performed according to [Monma (1990) plant tissue culture 7: 57-63]. Microtubers obtained from the potato variety "Sassy" were sliced into 2-3 mm pieces and used as a material for Agrobacterium infection. After immersing this in the above-mentioned Agrobacterium solution, it was placed on a sterilized filter paper to remove excess Agrobacterium. Place on MS medium (including Zeatin 1 ppm, IAA 0.1 ppm, acetosyringone 100 μM, and agar 0.8%) in a petri dish, and culture for 3 days at 25 ° C. for 16 hours (photon bundle density 32 μE / m2s). / 8 hours under no lighting conditions. Then, the cells were cultured in a medium containing 250 ppm of carbenicillin instead of acetosyringone for 1 week. Then, it was further transferred onto a medium containing 50 ppm of kanamycin and subcultured every two weeks. During this time, adventitious shoots formed and shoots were produced. The elongated shoots were placed in MS medium containing 250 ppm of carbenicin and 100 ppm of kanamycin and not containing plant growth regulators. An individual containing a kanamycin resistance gene as a foreign gene from a plant in which rooted shoots are resistant to kanamycin is subjected to PCR (conditions: 95 ° C. for 5 minutes, (95 ° C. for 30 seconds, 55 ° C. for 30 seconds, 72 ° C. 1). (Min) was detected 30 times (at 72 ° C. for 10 minutes), and it was confirmed that the redifferentiated plant was a transformed plant. Here, U1200 (SEQ ID NO: 8) and U1225: CAGATGACTTTCCCGAAACAGA (SEQ ID NO: 10) were used as primers for specifically amplifying the sequence of the kanamycin resistance gene. From the above, # 13 of each pStOr_t1 and # 8 line of pSTor_t2 of each transformed plant of potato into which the vectors pStOr_t1 and pSTor_t2 were introduced were obtained.
<実施例5:ジャガイモOrange候補遺伝子のゲノム編集ジャガイモ系統の作製>
 得られた個体において、部位特異的にゲノムが編集されているか否かの評価には、ヘテロ二本鎖移動度分析(HMA:Heteroduplex Mobility Assay)を用いた。Orange候補遺伝子の標的配列を挟んだプライマーU1131:TCACATCTTTGGATTGTTCTCTG(配列番号:3)、及びU1017:TGGACCATAAATCATGCCTTC(配列番号:4)を用い、アニール温度55℃にてPCR(35サイクル、タカラバイオ社 TakaraTaqを使用)を行い、マイクロチップ電気泳動装置「MultiNA」(島津製作所)で解析を行った。
 実施例4で得られた形質転換体の葉についての、ヘテロ二本鎖移動度分析(HMA)の結果を図4に示した。
 HMAにおいては、対照と比較して複数のバンドが認められた場合、ゲノム編集が生じたことを示す。図4では、190bpのマーカーの下部に対照と比較して複数のバンドが認められた。
<Example 5: Genome editing of potato Orange candidate gene Preparation of potato strain>
Heteroduplex mobility assay (HMA) was used to evaluate whether or not the genome was edited site-specifically in the obtained individuals. PCR (35 cycles, Takara Bio Inc. TakaraTaq) was used at an annealing temperature of 55 ° C. using primers U1131: TCACATTTTTGGATTGTTCTCTG (SEQ ID NO: 3) and U1017: TGGACCATAAATCATGCCTTC (SEQ ID NO: 4) sandwiching the target sequence of the Orange candidate gene. ), And the analysis was performed with the microchip electrophoresis device "MultiNA" (Shimadzu Corporation).
The results of heteroduplex mobility analysis (HMA) on the transformant leaves obtained in Example 4 are shown in FIG.
In HMA, the presence of multiple bands compared to controls indicates that genome editing has occurred. In FIG. 4, multiple bands were observed at the bottom of the 190 bp marker as compared to the control.
 図4の結果より、サッシーからの形質転換体のうち、ゲノムに外来遺伝子が組み込まれていないがゲノム編集が起きている個体を得ることができた(図4)。 From the results shown in FIG. 4, among the transformants from Sassy, it was possible to obtain an individual in which a foreign gene was not integrated into the genome but genome editing occurred (Fig. 4).
 実施例4で得られたpStOr_t1の#13とpSTOr_t2の#8の形質転換体の葉の、ゲノムにおけるgRNAの増幅断片DNAをTOPO(R)TA Cloning(R)Kit for Sequencing(サーモフィッシャー社)へクローニングし、遺伝子断片を取得した。大腸菌にクローニングした下記の配列番号11から42の塩基配列を決定し、ゲノム編集が起きていることを確認した(図5)。図5の「-」は欠失を示し、下線は第3エクソンを示す。
 Orange遺伝子のゲノム編集の標的配列近傍の塩基配列(配列番号:5)
 pSOr_t1 #13#3(配列番号:11)
 pSOr_t1 #13#14(配列番号:12)
 pSOr_t1 #13#5(配列番号:13)
 pSOr_t1 #13#7(配列番号:14)
 pSOr_t1 #13#12(配列番号:15)
 pSOr_t1 #13#13(配列番号:16)
 pSOr_t1 #13#10(配列番号:17)
 pSOr_t1 #13#2(配列番号:18)
 pSOr_t1 #13#8(配列番号:19)
 pSOr_t1 #13#15(配列番号:20)
 pSOr_t1 #13#16(配列番号:21)
 pSOr_t1 #13#4(配列番号:22)
 pSOr_t1 #13#9(配列番号:23)
 pSOr_t1 #13#11(配列番号:24)
 pSOr_t1 #13#6(配列番号:25)
 pSOr_t1 #13#1(配列番号:26)
 pSOr_t2 #8#1(配列番号:27)
 pSOr_t2 #8#6(配列番号:28)
 pSOr_t2 #8#15(配列番号:29)
 pSOr_t2 #8#2(配列番号:30)
 pSOr_t2 #8#3(配列番号:31)
 pSOr_t2 #8#7(配列番号:32)
 pSOr_t2 #8#9(配列番号:33)
 pSOr_t2 #8#10(配列番号:34)
 pSOr_t2 #8#12(配列番号:35)
 pSOr_t2 #8#4(配列番号:36)
 pSOr_t2 #8#8(配列番号:37)
 pSOr_t2 #8#14(配列番号:38)
 pSOr_t2 #8#16(配列番号:39)
 pSOr_t2 #8#13(配列番号:40)
 pSOr_t2 #8#5(配列番号:41)
 pSOr_t2 #8#11(配列番号:42)
Amplified fragment DNA of gRNA in the genome of leaves of transformants # 13 of pStOr_t1 and # 8 of pSTor_t2 obtained in Example 4 was transferred to TOPO (R) TA Cloning (R) Kit for Sequencing (Thermofisher). It was cloned and a gene fragment was obtained. The nucleotide sequences of the following SEQ ID NOs: 11 to 42 cloned into Escherichia coli were determined, and it was confirmed that genome editing had occurred (Fig. 5). The "-" in FIG. 5 indicates the deletion, and the underline indicates the third exon.
Nucleotide sequence near the target sequence of genome editing of Orange gene (SEQ ID NO: 5)
pSOr_t1 # 13 # 3 (SEQ ID NO: 11)
pSOr_t1 # 13 # 14 (SEQ ID NO: 12)
pSOr_t1 # 13 # 5 (SEQ ID NO: 13)
pSOr_t1 # 13 # 7 (SEQ ID NO: 14)
pSOr_t1 # 13 # 12 (SEQ ID NO: 15)
pSOr_t1 # 13 # 13 (SEQ ID NO: 16)
pSOr_t1 # 13 # 10 (SEQ ID NO: 17)
pSOr_t1 # 13 # 2 (SEQ ID NO: 18)
pSOr_t1 # 13 # 8 (SEQ ID NO: 19)
pSOr_t1 # 13 # 15 (SEQ ID NO: 20)
pSOr_t1 # 13 # 16 (SEQ ID NO: 21)
pSOr_t1 # 13 # 4 (SEQ ID NO: 22)
pSOr_t1 # 13 # 9 (SEQ ID NO: 23)
pSOr_t1 # 13 # 11 (SEQ ID NO: 24)
pSOr_t1 # 13 # 6 (SEQ ID NO: 25)
pSOr_t1 # 13 # 1 (SEQ ID NO: 26)
pSOr_t2 # 8 # 1 (SEQ ID NO: 27)
pSOr_t2 # 8 # 6 (SEQ ID NO: 28)
pSOr_t2 # 8 # 15 (SEQ ID NO: 29)
pSOr_t2 # 8 # 2 (SEQ ID NO: 30)
pSOr_t2 # 8 # 3 (SEQ ID NO: 31)
pSOr_t2 # 8 # 7 (SEQ ID NO: 32)
pSOr_t2 # 8 # 9 (SEQ ID NO: 33)
pSOr_t2 # 8 # 10 (SEQ ID NO: 34)
pSOr_t2 # 8 # 12 (SEQ ID NO: 35)
pSOr_t2 # 8 # 4 (SEQ ID NO: 36)
pSOr_t2 # 8 # 8 (SEQ ID NO: 37)
pSOr_t2 # 8 # 14 (SEQ ID NO: 38)
pSOr_t2 # 8 # 16 (SEQ ID NO: 39)
pSOr_t2 # 8 # 13 (SEQ ID NO: 40)
pSOr_t2 # 8 # 5 (SEQ ID NO: 41)
pSOr_t2 # 8 # 11 (SEQ ID NO: 42)
<実施例6:ジャガイモOrange候補遺伝子のゲノム編集ジャガイモ系統からのマイクロチューバーの作製>
 試験管内で培養したジャガイモ(実施例4で得られた形質転換体)を茎葉増殖培地:MS+suc1%+BA 0.02ppm+KCl 1g/Lに移して23℃にて、16時間照明(光量子束密度32μE/m2s)/8時間無照明の条件下で4-5週間培養を行った。次いで、MT形成培地:MS+suc 10%+BA 2ppm+KCl 1g/Lに移して、23℃にて暗所で6週間培養を行いマイクロチューバーを作製した。作製したマイクロチューバーを約3週間保存後、塊茎を切断したところ、pStOr_t1の#13とpSTOr_t2の#8から得られた塊茎は、黄色が濃くなっていることが明らかとなった。
<Example 6: Genome editing of potato Orange candidate gene Preparation of microtuber from potato strain>
Potatoes cultured in vitro (transformant obtained in Example 4) were transferred to foliage growth medium: MS + suc 1% + BA 0.02 ppm + KCl 1 g / L and illuminated at 23 ° C. for 16 hours (photon bundle density 32 μE / m2 s). ) / 8 hours under unlit conditions for 4-5 weeks. Next, the medium was transferred to MT-forming medium: MS + suc 10% + BA 2 ppm + KCl 1 g / L, and cultured at 23 ° C. in the dark for 6 weeks to prepare a microtuber. When the produced microtubers were stored for about 3 weeks and then the tubers were cut, it became clear that the tubers obtained from # 13 of pStOr_t1 and # 8 of pSTor_t2 had a deep yellow color.
 この結果、ジャガイモのOrange候補遺伝子をゲノム編集することでカロテノイドが蓄積する系統が得られることが分かり、Orange候補遺伝子はOrange遺伝子であることが確定した。ゲノム編集によって高カロテノイドを達成することができることを示すことが明らかになった。 As a result, it was found that a strain in which carotenoids are accumulated can be obtained by genome editing of the potato Orange candidate gene, and it was confirmed that the Orange candidate gene is the Orange gene. It has been shown that genome editing can achieve high carotenoids.
<実施例7:ジャガイモOrange遺伝子のゲノム編集ジャガイモ系統のマイクロチューバーの解析>
 文献「速液体クロマトグラフィーによる市販野菜ジュース中カロテン類の同時定量」(北陸学院大学・北陸学院大学短期大学部研究紀要 第6号(2013年度))に記載の方法を一部改変し、実施例4で得られたpStOr_t1の#13とpSTOr_t2の#8の形質転換体から得られた塊茎のカロテノイド量を分析した。
 実施例4で得られたpStOr_t1の#13とpSTOr_t2の#8の形質転換体から得られた塊茎100mgに、ヘキサン/エタノール(80:20v/v)を900μL加え、1分間振とう後、遠心分離(6000回転、1分間)を行った。上層(ヘキサン層)から600μLを別のチューブに取り、残った下層にヘキサン/エタノール(80:20v/v)を400μL加え、再び1分間振とう後、遠心分離(6000回転、1分間)を行い、上層400μLを先の抽出液に加え、計1000μLの抽出液を得た。当抽出液の吸光度(OD445)を測定し、カロテノイド量を算出した。結果を表1に示す。
<Example 7: Genome editing of potato Orange gene Analysis of microtuber of potato strain>
Examples of the method described in the document "Simultaneous quantification of carotenes in commercial vegetable juice by high performance liquid chromatography" (Hokuriku Gakuin University / Hokuriku Gakuin University Junior College Research Bulletin No. 6 (2013)). The amount of carotenoids in the stalks obtained from the transformants of pStOr_t1 # 13 and pSTor_t2 # 8 obtained in No. 4 was analyzed.
900 μL of hexane / ethanol (80: 20v / v) was added to 100 mg of tubers obtained from the transformants of pStOr_t1 # 13 and pSTor_t2 # 8 obtained in Example 4, shaken for 1 minute, and then centrifuged. (6000 rotations, 1 minute) was performed. Take 600 μL from the upper layer (hexane layer) in another tube, add 400 μL of hexane / ethanol (80: 20v / v) to the remaining lower layer, shake again for 1 minute, and then centrifuge (6000 rpm, 1 minute). , 400 μL of the upper layer was added to the above extract to obtain a total of 1000 μL of extract. The absorbance (OD445) of this extract was measured, and the amount of carotenoid was calculated. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 pStOr_t1の#13とpSTOr_t2の#8では対照(野生株:遺伝子未改変ジャガイモ:サッシー)と比較して、カロテノイド量が蓄積していることが分かった。 It was found that the amount of carotenoids was accumulated in # 13 of pStOr_t1 and # 8 of pSTor_t2 as compared with the control (wild strain: gene-unmodified potato: sassy).
 pSTOr_t2の#8系統の塊茎よりゲノムを抽出、クローニングし、配列を解析した。下記のゲノム配列(配列番号43から57)を図6の上段に示し、予想されるアミノ酸配列(配列番号58から60)を図6の下段に示した。その結果、カロテノイド量が高くなると考えられる遺伝子型(図6 pSOr-t2 #8Y#10:欠失、挿入、又は置換が、連続した3塩基に導入(ただし、ストップコドンとなる導入は除く))が検出された。 The genome was extracted and cloned from the tubers of the # 8 strain of pSTor_t2, and the sequence was analyzed. The following genomic sequences (SEQ ID NOs: 43 to 57) are shown in the upper part of FIG. 6, and the expected amino acid sequences (SEQ ID NOs: 58 to 60) are shown in the lower part of FIG. As a result, a genotype in which the amount of carotenoid is considered to be high (Fig. 6 pSOr-t2 # 8Y # 10: Deletion, insertion, or substitution is introduced into 3 consecutive bases (excluding introduction that becomes a stop codon)) Was detected.
 pSOr-t2 #8Y#2(配列番号:43)
 pSOr-t2 #8Y#3(配列番号:44)
 pSOr-t2 #8Y#6(配列番号:45)
 pSOr-t2 #8Y#9(配列番号:46)
 pSOr-t2 #8Y#11(配列番号:47)
 pSOr-t2 #8Y#12(配列番号:48)
 pSOr-t2 #8Y#13(配列番号:49)
 pSOr-t2 #8Y#4(配列番号:50)
 pSOr-t2 #8Y#5(配列番号:51)
 pSOr-t2 #8Y#7(配列番号:52)
 pSOr-t2 #8Y#15(配列番号:53)
 pSOr-t2 #8Y#16(配列番号:54)
 pSOr-t2 #8Y#1(配列番号:55)
 pSOr-t2 #8Y#14(配列番号:56)
 pSOr-t2 #8Y#10(配列番号:57)
 pSOr-t2 #8Y#1(配列番号:58)
 pSOr-t2 #8Y#14(配列番号:59)
 pSOr-t2 #8Y#10(配列番号:60)
pSOr-t2 # 8Y # 2 (SEQ ID NO: 43)
pSOr-t2 # 8Y # 3 (SEQ ID NO: 44)
pSOr-t2 # 8Y # 6 (SEQ ID NO: 45)
pSOr-t2 # 8Y # 9 (SEQ ID NO: 46)
pSOr-t2 # 8Y # 11 (SEQ ID NO: 47)
pSOr-t2 # 8Y # 12 (SEQ ID NO: 48)
pSOr-t2 # 8Y # 13 (SEQ ID NO: 49)
pSOr-t2 # 8Y # 4 (SEQ ID NO: 50)
pSOr-t2 # 8Y # 5 (SEQ ID NO: 51)
pSOr-t2 # 8Y # 7 (SEQ ID NO: 52)
pSOr-t2 # 8Y # 15 (SEQ ID NO: 53)
pSOr-t2 # 8Y # 16 (SEQ ID NO: 54)
pSOr-t2 # 8Y # 1 (SEQ ID NO: 55)
pSOr-t2 # 8Y # 14 (SEQ ID NO: 56)
pSOr-t2 # 8Y # 10 (SEQ ID NO: 57)
pSOr-t2 # 8Y # 1 (SEQ ID NO: 58)
pSOr-t2 # 8Y # 14 (SEQ ID NO: 59)
pSOr-t2 # 8Y # 10 (SEQ ID NO: 60)
 本発明の態様としては、例えば、以下のものなどが挙げられる。
 <1> Orange遺伝子に欠失、挿入、又は置換が導入されていることを特徴とする、遺伝子改変ジャガイモである。
 <2> 前記欠失、挿入、又は置換が、連続した3塩基に導入(ただし、ストップコドンとなる導入は除く)されている、前記<1>に記載の遺伝子改変ジャガイモである。
 <3> 遺伝子未改変ジャガイモに対して、カロテノイドを1.3倍以上含有する、前記<1>から<2>のいずれかに記載の遺伝子改変ジャガイモである。
 <4> ジャガイモのOrange遺伝子に欠失、挿入、又は置換を導入する工程を含むことを特徴とする遺伝子改変ジャガイモの作製方法である。
 <5> ゲノム編集手段を用いて、ジャガイモのOrange遺伝子に欠失、挿入、又は置換を導入する工程を含むことを特徴とするジャガイモのゲノム編集方法である。
 <6> 前記ゲノム編集手段が、Orange遺伝子を標的とするガイドRNA、又は前記Orange遺伝子を標的とするガイドRNAをコードする核酸のいずれかと、核酸代謝酵素、又は前記核酸代謝酵素をコードする核酸のいずれかと、を含む、前記<5>に記載のジャガイモのゲノム編集方法である。
 <7> 前記核酸代謝酵素が、ヌクレアーゼ、又はデアミナーゼのいずれかを含む、前記<6>に記載のジャガイモのゲノム編集方法である。
 <8> Orange遺伝子を標的とするガイドRNA、又は前記Orange遺伝子を標的とするガイドRNAをコードする核酸のいずれかと、核酸代謝酵素、又は前記核酸代謝酵素をコードする核酸のいずれかと、を含むことを特徴とする、遺伝子改変ジャガイモ作製用組成物である。
 <9> ジャガイモのOrange遺伝子の欠失、挿入、又は置換の存否を指標に、遺伝子改変ジャガイモであるか否かを判定する工程を含むことを特徴とする、遺伝子改変ジャガイモの判定方法である。
Examples of aspects of the present invention include the following.
<1> A genetically modified potato characterized in that a deletion, insertion, or substitution has been introduced into the Orange gene.
<2> The genetically modified potato according to <1>, wherein the deletion, insertion, or substitution has been introduced into three consecutive bases (excluding the introduction that serves as a stop codon).
<3> The genetically modified potato according to any one of <1> to <2> above, which contains 1.3 times or more of carotenoids with respect to the genetically modified potato.
<4> A method for producing a genetically modified potato, which comprises a step of introducing a deletion, insertion, or substitution into the Orange gene of potato.
<5> A potato genome editing method comprising a step of introducing a deletion, insertion, or substitution into a potato Orange gene using a genome editing means.
<6> The genome editing means includes either a guide RNA targeting the Orange gene or a nucleic acid encoding a guide RNA targeting the Orange gene, and a nucleic acid metabolizing enzyme or a nucleic acid encoding the nucleic acid metabolizing enzyme. The method for editing a nucleic acid of a potato according to <5>, which comprises any of the above.
<7> The method for editing a potato genome according to <6>, wherein the nucleic acid-metabolizing enzyme contains either nuclease or deaminase.
<8> Containing either a guide RNA targeting the Orange gene or a nucleic acid encoding a guide RNA targeting the Orange gene, and either a nucleic acid metabolizing enzyme or a nucleic acid encoding the nucleic acid metabolizing enzyme. It is a composition for producing a genetically modified potato, which is characterized by the above.
<9> A method for determining a genetically modified potato, which comprises a step of determining whether or not the potato is a genetically modified potato, using the presence or absence of deletion, insertion, or substitution of the Orange gene of the potato as an index.

Claims (9)

  1.  Orange遺伝子に欠失、挿入、又は置換が導入されていることを特徴とする、遺伝子改変ジャガイモ。 A genetically modified potato characterized in that a deletion, insertion, or substitution has been introduced into the Orange gene.
  2.  前記欠失、挿入、又は置換が、連続した3塩基に導入(ただし、ストップコドンとなる導入は除く)されている、請求項1に記載の遺伝子改変ジャガイモ。 The genetically modified potato according to claim 1, wherein the deletion, insertion, or substitution is introduced into three consecutive bases (excluding introduction that serves as a stop codon).
  3.  遺伝子未改変ジャガイモに対して、カロテノイドを1.3倍以上含有する、請求項1から2のいずれかに記載の遺伝子改変ジャガイモ。 The genetically modified potato according to any one of claims 1 to 2, which contains 1.3 times or more of carotenoids with respect to the genetically modified potato.
  4.  ジャガイモのOrange遺伝子に欠失、挿入、又は置換を導入する工程を含むことを特徴とする遺伝子改変ジャガイモの作製方法。 A method for producing a genetically modified potato, which comprises a step of introducing a deletion, insertion, or substitution into the Orange gene of potato.
  5.  ゲノム編集手段を用いて、ジャガイモのOrange遺伝子に欠失、挿入、又は置換を導入する工程を含むことを特徴とするジャガイモのゲノム編集方法。 A potato genome editing method comprising a step of introducing a deletion, insertion, or substitution into a potato Orange gene using a genome editing means.
  6.  前記ゲノム編集手段が、Orange遺伝子を標的とするガイドRNA、又は前記Orange遺伝子を標的とするガイドRNAをコードする核酸のいずれかと、核酸代謝酵素、又は前記核酸代謝酵素をコードする核酸のいずれかと、を含む、請求項5に記載のジャガイモのゲノム編集方法。 The genome editing means comprises either a guide RNA targeting the Orange gene or a nucleic acid encoding a guide RNA targeting the Orange gene, a nucleic acid metabolizing enzyme, or a nucleic acid encoding the nucleic acid metabolizing enzyme. The method for editing a genome of a potato according to claim 5, which comprises.
  7.  前記核酸代謝酵素が、ヌクレアーゼ、又はデアミナーゼのいずれかを含む、請求項6に記載のジャガイモのゲノム編集方法。 The method for editing a potato genome according to claim 6, wherein the nucleic acid-metabolizing enzyme contains either nuclease or deaminase.
  8.  Orange遺伝子を標的とするガイドRNA、又は前記Orange遺伝子を標的とするガイドRNAをコードする核酸のいずれかと、核酸代謝酵素、又は前記核酸代謝酵素をコードする核酸のいずれかと、を含むことを特徴とする、遺伝子改変ジャガイモ作製用組成物。 It is characterized by containing either a guide RNA targeting the Orange gene or a nucleic acid encoding a guide RNA targeting the Orange gene, and either a nucleic acid metabolizing enzyme or a nucleic acid encoding the nucleic acid metabolizing enzyme. Composition for producing genetically modified potatoes.
  9.  ジャガイモのOrange遺伝子の欠失、挿入、又は置換の存否を指標に、遺伝子改変ジャガイモであるか否かを判定する工程を含むことを特徴とする、遺伝子改変ジャガイモの判定方法。 A method for determining a genetically modified potato, which comprises a step of determining whether or not the potato is a genetically modified potato, using the presence or absence of deletion, insertion, or substitution of the Orange gene of the potato as an index.
PCT/JP2021/003139 2020-01-31 2021-01-29 Genetically modified potato, production method thereof, and method of editing potato genome WO2021153706A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021574131A JPWO2021153706A1 (en) 2020-01-31 2021-01-29

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-015044 2020-01-31
JP2020015044 2020-01-31

Publications (1)

Publication Number Publication Date
WO2021153706A1 true WO2021153706A1 (en) 2021-08-05

Family

ID=77079362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003139 WO2021153706A1 (en) 2020-01-31 2021-01-29 Genetically modified potato, production method thereof, and method of editing potato genome

Country Status (2)

Country Link
JP (1) JPWO2021153706A1 (en)
WO (1) WO2021153706A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071841B2 (en) * 2005-12-07 2011-12-06 The United States Of America As Represented By The Secretary Of Agriculture Or gene and its use in manipulating carotenoid content and composition in plants and other organisms

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8071841B2 (en) * 2005-12-07 2011-12-06 The United States Of America As Represented By The Secretary Of Agriculture Or gene and its use in manipulating carotenoid content and composition in plants and other organisms

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ECK, J. V. ET AL.: "Modulation of carotenoid accumulation in transgenic potato by inducing chromoplast formation with enhanced sink strength", METHODS IN MOLECULAR BIOLOGY, vol. 643, 2010, pages 77 - 93 *

Also Published As

Publication number Publication date
JPWO2021153706A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
US10047370B2 (en) Tobacco enzymes for regulating content of plant metabolites, and use thereof
EP3456181A1 (en) Method for creating transformed plant
WO2019038417A1 (en) Methods for increasing grain yield
US11155827B2 (en) Methods for generating transgenic plants
AU2014337463B2 (en) Zea mays regulatory elements and uses thereof
WO2021153706A1 (en) Genetically modified potato, production method thereof, and method of editing potato genome
EP3052633B1 (en) Zea mays metallothionein-like regulatory elements and uses thereof
EP4086353A1 (en) Plant modification method
JP6696806B2 (en) Method for producing plastid transformant
KR102348638B1 (en) Antibody produced by using afucosylated n.benthamiana and uses thereof
AU2014337465A1 (en) Zea mays regulatory elements and uses thereof
CN108977414B (en) Artificially synthesized mutant of beta-carotene ketolase and coding sequence and application thereof
JP5186683B2 (en) Method for producing transformed plant body and use thereof
WO2023008076A1 (en) Genetically modified potato with reduced glycoalkaloid and method for producing same
KR102110870B1 (en) IbOr-R96H mutant from Ipomoea batatas and uses thereof
US20220298518A1 (en) Plant modification method using axillary bud meristem
EP3011036B1 (en) Transgenic plants
US11034969B2 (en) Plant comprising recombinant polynucleotides encoding a pigment regulatory transcription factor with a tissue-preferred promoter
WO2021070549A1 (en) Method for genome editing in wheat and use thereof
US8143478B2 (en) Peptide transporting to chromoplasts in petals and method of constructing plant having yellowish petals by using the same
JP2021121183A (en) Genetically modified potato, and method for making the same, and genome editing method for potato
Abadi Development and application of novel genetic transformation technologies in maize (Zea mays L.)
WO2007145267A1 (en) Promoter capable of being expressed in root of plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21747036

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574131

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21747036

Country of ref document: EP

Kind code of ref document: A1