WO2007145267A1 - Promoter capable of being expressed in root of plant - Google Patents

Promoter capable of being expressed in root of plant Download PDF

Info

Publication number
WO2007145267A1
WO2007145267A1 PCT/JP2007/061968 JP2007061968W WO2007145267A1 WO 2007145267 A1 WO2007145267 A1 WO 2007145267A1 JP 2007061968 W JP2007061968 W JP 2007061968W WO 2007145267 A1 WO2007145267 A1 WO 2007145267A1
Authority
WO
WIPO (PCT)
Prior art keywords
plant
dna
gene
cell
promoter
Prior art date
Application number
PCT/JP2007/061968
Other languages
French (fr)
Japanese (ja)
Inventor
Hironori Mano
Kazuhito Sato
Hiromi Higo
Yuzo Minobe
Original Assignee
Plant Genome Center Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plant Genome Center Co., Ltd. filed Critical Plant Genome Center Co., Ltd.
Publication of WO2007145267A1 publication Critical patent/WO2007145267A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8222Developmentally regulated expression systems, tissue, organ specific, temporal or spatial regulation
    • C12N15/8223Vegetative tissue-specific promoters
    • C12N15/8227Root-specific

Definitions

  • the present invention relates to a gene having promoter activity that is specifically expressed in plant roots. More specifically, the present invention relates to a method for specifically expressing a foreign gene in a plant body using a promoter region of a gene (IT394) expressed in tuberous root of sweet potato or a part thereof.
  • Genetically modified plants can produce useful substances such as insulin, growth hormone, erythrocyte pouchin (EPO), granulocyte stimulating factor (G-CSF), interferons, vaccines, antibodies, etc. Expected as a place. Advantages of using genetically modified plants include production at a much lower cost than using animal cells, etc., no concern about contamination with viruses and BSE that infect humans, and low environmental impact It can be used as an eating medicine.
  • EPO erythrocyte pouchin
  • G-CSF granulocyte stimulating factor
  • interferons vaccines, antibodies, etc.
  • Advantages of using genetically modified plants include production at a much lower cost than using animal cells, etc., no concern about contamination with viruses and BSE that infect humans, and low environmental impact It can be used as an eating medicine.
  • Sweet potatoes are about five times as productive as rice, and can be grown loosely, grown under poor conditions, with low fertilizers, and with low pesticides. Therefore, it is considered promising as a place for material production. So far, raw materials for biodegradable plastics using sweet potato starch and pigment materials have been produced. However, there have been few reports on the use of recombinant sweet potato as a place for producing useful substances as described above.
  • Sweet potato is an important crop, but its production area is biased toward developing countries in Asia, and molecular genetics research is particularly delayed compared to other crops (for example, the number of ESTs registered in GenBank). As of February 2006, rice is 1.02 million, corn power is 680,000, and potato is 220,000, whereas sweet potato is less than 8,000.
  • Patent Document 2 reports that the sporamine promoter allowed high expression of recombinant protein in potato leaves, stems and tubers. No experiments have been conducted on plants that form tuberous roots or tubers, such as sweet potatoes, carrots, and onions. Wang, SJ. Et al. (See Non-Patent Document 1) confirm that the sporamin promoter responds to injury in transformed tobacco.
  • ⁇ -Amylase is a protein with abundant abundance of sporamine among sweet potato tuber proteins.
  • sucrose induction was observed as in the case of the sporamine promoter (see Non-Patent Document 2).
  • Non-Patent Document 3 It has been reported that the promoter of sweet potato peroxidase was strongly expressed in tobacco protoplasts. (See Non-Patent Document 3)
  • Patent Document 1 Patent No. 2833789
  • Patent Document 2 US20030177517
  • Patent Document 3 WO2006022467
  • Tokubori 1 Wang, SJ. Et al., “Wouna—response regulation of the sweet potato spo ramin gene promoter region”, Plant Mol. Biol., 2002, Vol. 48, p.223-231
  • Non-patent document 2 Maeo, K. et al., “Sugar- responsible elements in the promoter of a gene for ⁇ -amylase of sweet potato”, Plant Mol. Biol., 2001, Vol. 46, p.627-637
  • Patent Document 3 Kim, KY. Et al., “A novel oxidative stress—inducible peroxidase promoter from sweetpotato: molecular cloning and characterization in transgenic tobacco piants and cultured cells”, Plant Mol. Biol., 2003, Vol.51, p.831. — 838
  • the present invention provides a promoter that specifically controls gene expression in the roots of a plant, an expression vector containing the promoter, a transformed plant or plant containing the expression vector, a method for producing the same, and the promoter It is an object of the present invention to provide a method for causing a desired gene to be expressed in a plant body and to provide a drug that induces the expression of a foreign gene containing the promoter as an active ingredient.
  • the present inventors have conducted intensive research to solve the above problems. That is, the present inventors have isolated a gene and its promoter that are expressed in sweet potato tuberous roots, and have demonstrated that the promoter actually expresses a foreign gene in sweet potato tuberous root.
  • the present inventors first tuberous force Sammaimo also create a cDNA library to obtain the C DNA (IT394) with high expression frequency by cluster analysis to obtain its upstream region.
  • CDNA C DNA
  • the present inventors first tuberous force Sammaimo also create a cDNA library to obtain the C DNA (IT394) with high expression frequency by cluster analysis to obtain its upstream region.
  • GFP was connected to the upstream region of IT394 and introduced into Arabidopsis thaliana, fluorescence was observed at the root and hypocotyl.
  • When introduced into sweet potato strong fluorescence was observed in tuberous roots. This indicates that the upstream region of IT394 can be used as a promoter that functions in the roots of sweet potato.
  • IT394 cDNA has a homology in metamouthonein.
  • IT394 was analyzed by RT-PCR, it was confirmed that it was expressed in roots, leaves and calli of sweet potato. Forces using sequences derived from high system No. 14 There is almost the same sequence in Ayamurasaki.
  • the present inventors have found that the promoter of the present invention has a much stronger expression ability than the CaMV 35S promoter that is usually used as a strong promoter.
  • the inventors of the present invention when a gene is injected into a sweet potato leaf with a particle gun to cause transient expression, the gene of the present invention is expressed more continuously than the SCaMV 35S promoter. I found out that I can make it.
  • the present invention relates to a promoter that specifically controls gene expression in the roots of sweet potato, an expression vector containing the promoter, a transformed plant or plant containing the expression vector, a method for producing the same, and a method using the promoter More specifically, a method for expressing a desired gene in a plant body V, and provision of a drug that induces the expression of a foreign gene containing the promoter as an active ingredient, more specifically,
  • DNA having promoter activity according to any of the following (a) to (c), (a) DNA having the nucleotide sequence of SEQ ID NO: 8
  • a method for producing a transformed plant comprising the step of introducing the DNA according to [4] or the vector according to [5] into a plant cell and regenerating the plant from the plant cell,
  • a method for expressing a foreign gene in a plant comprising introducing the DNA according to [4] or the vector according to [5] into a cell of the plant,
  • a method for producing a plant containing a foreign protein comprising the step of introducing the DNA according to [4] or the vector according to [5] into a plant cell,
  • a method for producing a foreign protein-producing plant, wherein a foreign gene is expressed in the plant, wherein the DNA of [4] or the vector of [5] is used as a plant cell A method comprising a step of introducing into [16] The transformed cell according to any one of [6] to [8] is cultured, and the cell or a culture supernatant thereof is encoded by a foreign gene expressed by the vector according to [5].
  • a method for producing a foreign protein comprising the following steps (a) and (b):
  • a screening method for a compound that modulates the promoter activity of DNA comprising the following steps (a) to (c):
  • a DNA drug used as a promoter for expressing a foreign gene in a plant wherein the DNA according to any one of [1] to [4] or the vector according to [5] is effective.
  • the present invention provides a gene expression inducer as a component.
  • FIG. 1 is a diagram showing the procedure for creating a promoter activity test vector upstream of IT394. .
  • the procedure for constructing a vector PHM161 capable of verifying the promoter activity in the plant body upstream of IT394 (SEQ ID NO: 8) using the GFP gene as a reporter is shown.
  • FIG. 2 A photograph showing a recombinant Arabidopsis plant expressing GFP with the IT394 promoter. Arabidopsis thaliana on the 6th day after sowing was used. The top photo is taken with visible light, and the bottom photo is a fluorescent image of GFP. The roots and hypocotyls are strong and fluoresce.
  • FIG. 3 is a photograph showing a cross section of a tuberous root of a recombinant sweet potato expressing GFP with ⁇ 394 and CaMV35S promoter. The right end shows high line 14 of non-transformant.
  • FIG. 4 A photograph of a plasmid shot with a particle gun on a sweet potato leaf.
  • a and B are photographs of the 3rd day when a plasmid in which GFP or IbMYBl is linked to the IT394 promoter (A) or 35S promoter (B) is simultaneously inserted. Visible light on the left and fluorescent image on the right.
  • the vertical axis indicates the percentage of cells in which GFP fluorescence (NIBA) or anthocyanin accumulation (Light) is observed, and the horizontal axis indicates the number of days (days) when the plasmid is injected.
  • C is the result of using IT394 promoter and D is the result of using 35S promoter.
  • the present invention is described in detail below.
  • the present inventors have identified DNA having promoter activity in the roots of plants such as sweet potato.
  • Preferred examples of the above-described DNA V ⁇ of the present invention include DNA having a high expression frequency in the root of sweet potato and upstream of cDNA (IT394).
  • the nucleotide sequence of 730 bp upstream of IT394 is shown in SEQ ID NO: 8.
  • the present invention provides a DNA having promoter activity expressed in the roots of a plant.
  • a preferred embodiment of the DNA of the present invention is a DNA having the promoter activity described in any of the following (a) to (c).
  • DNA having promoter activity (in this specification, promoter DNA and V, in some cases) is necessary for initiation of mRNA synthesis (transcription) using DNA as a cage.
  • Promoter activity can be appropriately evaluated by those skilled in the art using a known method.
  • a method of measuring by using a reporter gene and using the expression of the gene as an index can be exemplified.
  • the DNA having the promoter activity of the present invention is composed of only the DNA consisting of the base sequence set forth in SEQ ID NO: 8.
  • the base sequence set forth in SEQ ID NO: 8 lacks one or more bases.
  • Also included are those that have been added and those that have been deleted at the 5 'end without losing promoter activity.
  • the number of bases into which mutations such as deletions and substitutions are introduced is not particularly limited as long as the DNA into which mutations are introduced has promoter activity, but is usually within 20 base pairs. Preferably, it is within 10 base pairs, more preferably within 5 base pairs, and most preferably within 3 base pairs.
  • the DNA having promoter activity of the present invention includes DNA that hybridizes under stringent conditions with the DNA comprising the nucleotide sequence set forth in SEQ ID NO: 8.
  • the stringent conditions are not particularly limited. For example, 42 ° C, 2 X SSC (3 00 mM NaCl, 30 mM citrate), 0.1% SDS, preferably 50 ° C, 2 X SSC, 0.1% SDS, more preferably 65 ° C, 0.1 X SSC and 0.1% It is a condition of SDS. Under these conditions, it can be expected that DNA having high homology can be efficiently obtained as the temperature is increased. Multiple factors such as temperature and salt concentration can be considered as factors affecting the stringency of a hybridization, and those skilled in the art will realize the same stringency by appropriately selecting these factors. It is possible.
  • endogenous DNA of other plants corresponding to the DNA consisting of the base sequence described in SEQ ID NO: 8 generally has high homology with the DNA described in SEQ ID NO: 8.
  • High homology is preferably 70% or higher, more preferably 80% or higher, more preferably 90% or higher (e.g. 95% or higher, even 96%, 97%, 98% or 99% or higher).
  • the DNA having promoter activity of the present invention is characterized by having promoter activity in the roots of plants.
  • the "plant" in which the DNA of the present invention exhibits promoter activity is not particularly limited, but is preferably a plant of the genus Convolvulaceae, preferably sweet potato.
  • the DNA having the promoter activity of the present invention may be DNA inherent in any cultivar.
  • varieties of Satsumaimo include high line 14 (Koukei), Ayamurasaki, Naruto Kintoki, Tosa Beni, Kotobuki, Murasaki Sakimasari, Purple Sweet Road, Koganesengan, Beni Tatsuma, Beni Ryo, Ben-Satsuma, Benino, , Beniotome, Benimasari, Benimase, Benikomachi, Satsuma Hikari, Satsuma Hikari, Sunny Red, Giei Red, Joy White, Aya Komachi, Hamakomachi, Yamakawa Murasaki, Tanegashima Gold, Tanegashima Roma, Annoimo, Anno Red, Anno Koney , Tama Yutaka, Shiro Yutaka, Minami Yutaka, White Satsuma, Kona Homare, Tamaotome, Da
  • the present invention provides a DNA having a structure in which a foreign gene is functionally linked under the control of the DNA having the promoter activity of the present invention.
  • the foreign gene is not particularly limited, and a desired gene can be used.
  • Examples of the "foreign gene” in the present invention include genes such as erythropoietin (EPO), granulocyte stimulating factor (G-CSF), insulin, interferon, growth hormone, antibody, or vaccine. . By producing these genes in plants, it is possible to produce cheap and large quantities of safe pharmaceutical raw materials.
  • examples of the foreign gene include genes involved in the nutritional value and functionality of plants such as anthocyanin activity factor, phytase, and sporamine.
  • Anthocyanins of sweet potato have been reported to have antioxidant, antimutagenic properties, liver dysfunction reducing effects, blood pressure lowering effects and the like. By expressing the anthocyanin activity factor, these functionalities can be imparted to the plant body.
  • the expression of a target gene for example, a sporamine gene
  • the expression level of the gene is significantly reduced. Etc. are included.
  • examples of the foreign gene include a stress tolerance gene, a nutrient transporter gene, and a heavy metal chelator gene.
  • a stress tolerance gene a gene that influences the production of a heavy metal chelator.
  • a nutrient transporter gene a gene that influences the production of a heavy metal chelator.
  • a heavy metal chelator gene By expressing these genes in plants, the plants can grow even in poor soil environments (under conditions such as dryness, flooding, poor nutrition, alkalinity, acidity, and heavy metals).
  • examples of the foreign gene include genes resistant to pests such as nematodes and viruses.
  • a resistance gene to nematodes By expressing a resistance gene to nematodes, the plant body can be protected from pests and the amount of pesticide used can be reduced.
  • the above DNA of the present invention is further linked to a terminator. It may be a structure.
  • the terminator generally refers to a plant-derived terminator (sometimes referred to as a plant terminator), which is a DNA sequence arranged in the vicinity of the promoter of the present invention.
  • a terminator derived from cauliflower mosaic virus Alternatively, a terminator derived from a non-synthesizing enzyme gene can be exemplified, but it is not particularly limited as long as it has a function as a terminator.
  • “functionally linked” means an exogenous gene force under the control of the DNA having the promoter activity of the present invention, so that the promoter activity is received so as to be transcribed from the DNA having the promoter activity of the present invention.
  • the DNA of the present invention includes natural or isolated / purified genomic DNA, and chemically synthesized DNA. Preparation of genomic DNA can be performed by those skilled in the art using conventional means.
  • the DNA of the present invention can be isolated by PCR by extracting and purifying genomic DNA from a target plant, for example, sweet potato tissue, and using the obtained DNA as a cocoon.
  • SEQ ID NO: 8 in order to isolate DNA having the nucleotide sequence ability described in SEQ ID NO: 8 and DNA having a promoter activity that is hybridized under stringent conditions therewith, for example, SEQ ID NO:
  • the primer set for amplifying the DNA having the nucleotide sequence ability according to 8 and having the promoter activity of the present invention can be used. Using this primer set, PCR can be performed using plant genomic DNA as a saddle, and then the obtained amplified DNA fragment can be used as a probe to screen the genomic library of the same plant.
  • PCR may be performed based on the manufacturer's guidelines for commercially available kits and devices, or may be performed by techniques known to those skilled in the art. Methods for preparing gene libraries and gene cloning methods are well known to those skilled in the art. For example, experiments such as “Cloning and Sequence” (supervised by Watanabe Katsu, edited by Masahiro Sugiura, Rural Bunkasha (1989)) and “Molecular Cloning (Sambrook et al. (1989), Cold Spring Harbor Laboratory Press)” You can refer to the book.
  • the base sequence of the obtained gene is a nucleotide sequence analysis method known in the art or is commercially available. It can be determined using an automatic sequencer.
  • the DNA of the present invention also includes a DNA that hybridizes with the DNA having the nucleotide sequence shown in SEQ ID NO: 8, which can be isolated by a PCR technique or a hybridization technique.
  • Promoter DNA isolated and identified by screening as described above that is, DNA having the promoter activity shown in SEQ ID NO: 8, or a homolog thereof
  • Force Gene expression specific to plant roots The inductivity can be analyzed as follows.
  • the above sequence is ligated upstream of a reporter gene such as, for example, ⁇ -darc mouth-dase (GUS).
  • a reporter gene such as, for example, ⁇ -darc mouth-dase (GUS).
  • GUS ⁇ -darc mouth-dase
  • CAT chloramphie-coal acetyltransferase
  • LOC luciferase
  • GFP GFP gene
  • S65T sGFP
  • the chimeric gene construct prepared as described above can be introduced into plants such as sweet potato through, for example, agrobacterium, and the function thereof can be analyzed.
  • pHM 161 is used as a vector
  • a recombinant plasmid containing a chimeric gene is introduced into, for example, EHA101 strain of Agrobacterium tumefaciens using the freeze-thaw method, and the resulting transformed bacterium is For example, plants such as Arabidopsis thaliana are infected by vacuum infiltration.
  • Seeds obtained from the infected plants are sown in a medium containing a drug suitable for the vector used, such as rhodium and idaromomycin, and analyzed for GFP using the obtained drug-resistant individuals.
  • a drug suitable for the vector used such as rhodium and idaromomycin
  • the gene (foreign gene) that can be controlled by the DNA having promoter activity of the present invention is not limited to the genes described above. It is possible to use a desired gene to be specifically expressed in a plant body (for example, a plant root).
  • the function of the DNA having promoter activity of the present invention by linking other expression control sequences to the DNA having promoter activity of the present invention.
  • expression control sequences include enhancer sequences, repressor sequences, and insulator sequences.
  • a chimeric promoter in which a repressor sequence that is derepressed in response to a drug is linked to the promoter DNA of the present invention is prepared, and the target promoter is downstream of it.
  • the present invention also provides a vector comprising the DNA having the promoter activity of the present invention, a vector comprising a DNA having a structure in which a foreign gene is functionally linked under the control of the DNA of the present invention, and Provided are a vector containing DNA having a structure having a gene insertion site downstream of the promoter, and a vector carrying a terminator on the vector.
  • the vector of the present invention is usually one in which the DNA having the promoter activity of the present invention is inserted into a vector capable of replicating in various cells.
  • a vector capable of replicating in various cells various known vectors can be used. Examples include vectors that can be amplified in E. coli such as pUC derivatives, shuttle vectors that can be amplified in both E. coli and agrobacterium such as pPZP2H-lac. Plant viruses such as cauliflower mosaic virus can also be used. A person skilled in the art can appropriately select a vector capable of replicating in a plant cell according to each host cell.
  • the method of inserting the DNA having the promoter activity of the present invention into a vector follows the usual method of inserting a normal gene into a vector.
  • the DNA having promoter activity of the present invention or an expression vector containing the same can be used as follows.
  • An expression vector is constructed in which a chimeric gene in which the gene of interest is linked downstream of the DNA having promoter activity of the present invention is inserted.
  • This vector is introduced into plants such as sweet potato.
  • the obtained transformant is expected to express the target gene specifically in the root and introduce the target trait by the action of the DNA having the promoter activity of the present invention. . In this case, it is not expressed even in an unnecessary tissue such as a 35S plug motor.
  • the present invention also provides a transformed cell comprising the promoter DNA of the present invention or a vector having the DNA.
  • the cells of the present invention are not particularly limited, but are preferred. Or microbial cells are plant cells.
  • the present invention also provides a method for producing a transformed plant comprising the steps of introducing the DNA or vector of the present invention into a plant cell and regenerating the plant from the plant cell.
  • a variety of techniques can be used to introduce the DNA or vector of the present invention into host plant cells. These methods include a method for transforming plant cells with T-DNA using Agrobacterium tumefaciens or Agrobacterium rhizogenes as a transforming factor, An electoresis method that introduces a plasmid into plant cells by applying an electric pulse to protoplasts, a fusion method of protoplasts with small cells, cells, lysosomes, microinjection method, polyethylene glycol method, particle gun method, etc. Other known methods are included.
  • the plant cell into which the DNA or vector of the present invention is introduced may be an explant cell, and a cultured cell is prepared from these plant cells and introduced into the obtained cultured cell. May be.
  • plant cells such as scutellum in leaves, roots, stems, flowers and seeds, protoplasts, callus, suspension culture cells and the like can be mentioned.
  • a simple plasmid such as a pUC derivative can be used.
  • other DNA sequences may be required.
  • ⁇ or Ri plasmids are used for transformation of plant cells, the sequences of at least the right end of the T-DNA region of the ⁇ and Ri plasmids, usually the sequences at both ends, are inserted into the gene to be introduced. It must be connected so that it is an adjacent area.
  • Agrobacterium it is necessary to clone the gene to be introduced into a special plasmid, that is, an intermediate vector or a binary vector.
  • Intermediate vectors are not replicated in Agrobacterium.
  • the intermediate vector is transferred into the genus Agrobataterium by a helper plasmid or electoral position.
  • the intermediate vector has a region that is homologous to the T-DNA sequence, and is incorporated into the Agrobacterium sputum or Ri plasmid by homologous recombination.
  • Agrobacterium used as a host must contain the vir region.
  • vir or Ri plasmid contains vir region, and T-DNA can be transferred to plant cells by its function.
  • the binary vector can be replicated and maintained in the genus Agrobacterium. Therefore, when the binary vector is incorporated into the genus Agrobacterium by the helper plasmid, the electroporation method or the freeze lysis method, By virtue of the vir region, T-DNA on a binary vector can be transferred to plant cells.
  • the vector contains a suitable selection marker gene or a plasmid containing a selection marker gene. It is preferable to introduce it into plant cells together with the vector.
  • Selectable marker genes used for this purpose include, for example, the hygromycin phosphotransferase gene resistant to the antibiotic hygromycin, the neomycin phosphotransferase resistant to kanamycin or gentamicin, and the acetyl transferase gene resistant to the herbicide phosphinothricin. Can be mentioned.
  • Plant cells into which the above-described vector has been introduced are placed on a selection medium containing a selection agent according to the introduced selection marker and cultured. As a result, transformed plant cells can be obtained.
  • the transformed plant of the present invention is a transformed plant regenerated (re-differentiated) from the transformed plant cell of the present invention.
  • Those skilled in the art can appropriately carry out the redifferentiation method using a known technique according to the type of plant cell. For example, in potatoes Visser et al. (Visser et al. (1989), Theor. Appl. Genet., Vol. 78: p589—).
  • Arabidopsis Akama et al. (Akama et al. (1992), Plant Cell Rep., Vol. 12: p7- ),
  • Fujimura et al. Fujimura et al. (Fujimura et al. (1995), PlantTissue Culture Lett., Vol. 2: p74-), in maize, Shillito et al. (Shillito et al. (1989), Bio / Technology, vol. 7: p581).
  • -) Redifferentiation method in potatoes Visser
  • a transformed object created by these methods is a subject of the present invention. Further, obtained from the above-mentioned transformation, body, or propagation material (for example, seed, fruit, tuber, cutting ear, tuberous root, strain, callus, protoplast, etc.) obtained (consisting) The transformed plant body is also an object of the present invention.
  • progeny can be obtained by vigorous or asexual reproduction of the plant.
  • the plant body, its progeny, or clonal power can also be obtained as a propagation material, and the plant body can be mass-produced based on them.
  • the DNA or vector of the present invention is introduced into a plant cell (host cell) to obtain a transformed plant cell, and the transformation is performed. It includes the process of transforming and regenerating objects from plant cells. Further, the silkworm may include a step of obtaining plant seeds from the thus obtained transformation and body, and producing a plant body from the plant seeds.
  • Plant regeneration can be performed by methods known to those skilled in the art depending on the type of plant cells (Toki. Et al., Plant Physiol, 1995, 100, 1503-1507.).
  • a method for producing transformed plants gene transfer to protoplasts using polyethylene glycol and regeneration of plants (Datta, S K. et al., In Gene Transfer To Plants (Potr ykus I and Spangenberg Eds.), 1995, 66-74.), A method of regenerating plants by introducing genes into protoplasts by electric pulses (Toki.
  • the process of obtaining plant seeds from the transformation and the body is, for example, collecting the transformation and the body from the rooting medium, transplanting it to a pot containing soil containing water, and growing it at a constant temperature.
  • the process of producing a plant from a seed is, for example, when a seed formed on a transformed plant matures, it is isolated and sown in water-containing soil, under a constant temperature and illuminance. This refers to the process of producing a plant by growing it.
  • the presence of foreign DNA or nucleic acid introduced into a transformed plant that has been regenerated and cultivated in this manner is determined by a known PCR method or Southern hybridization method, or the plant body. It can be confirmed by analyzing the base sequence of the nucleic acid therein.
  • the DNA or nucleic acid having a transformation strength can be extracted in accordance with the method of J. Sambrook et al. (Molecular and loning, 3 ⁇ 4f23 ⁇ 4x, Cold bpnngHarbor laboratory Press, 1989).
  • the present invention also provides a method for expressing a foreign gene in a plant.
  • a plant comprising a DNA having a structure in which an exogenous gene is operably linked under the control of a DNA having the promoter activity of the present invention, or a vector comprising the DNA having the promoter activity of the present invention. It is a method including the step of introducing into the cell. This method can also be carried out by introducing the DNA into plant cells and regenerating the cells into plants. The DNA can be introduced into a plant or plant cell by the method described above.
  • nucleic acid having a function of suppressing gene expression for example, antisense RNA or siRNA as shown below
  • suppressing gene expression for example, antisense RNA or siRNA as shown below
  • the “suppression” in the present invention includes the case where the expression of the endogenous gene is completely suppressed, and the above-described endogenous expression in the plant body. This includes cases where the expression level of the sex gene is significantly reduced compared to the expression level of the gene in other plants.
  • antisense nucleic acids inhibit the expression of target genes by inhibiting various processes such as transcription, splicing or translation (Hirashima and Inoue, Shinsei Kagaku Kenkyusho 2 Nucleic acid IV gene replication and expression, Japan Biochemical Society, Tokyo Chemical Doujin, 1993, 319-347.).
  • the antisense nucleic acid may inhibit the expression of the endogenous gene by the above-described action.
  • a complementary antisense sequence is designed in the untranslated region near the 5 ′ end of the mRNA of the endogenous gene, it is considered effective for inhibiting translation of the gene.
  • a sequence complementary to the coding region or the 3 ′ untranslated region can also be used.
  • the nucleic acid containing the antisense sequence of the sequence of the untranslated region as well as the translated region of the endogenous gene is also included in the antisense nucleic acid.
  • Such an antisense nucleic acid is linked downstream of the DNA having promoter activity of the present invention, and preferably a sequence containing a transcription termination signal is linked on the 3 ′ side.
  • the nucleic acid thus prepared can be transformed into a desired plant by using a known method.
  • the sequence of the antisense nucleic acid is preferably a sequence complementary to the endogenous gene or a part of the plant to be transformed. Preferably, it may not be completely complementary as long as gene expression can be effectively suppressed.
  • the transcribed RNA preferably has a complementarity of 90% or more, most preferably 95% or more, to the transcript of the target gene.
  • the length of the antisense nucleic acid is at least 15 bases and less than 25 bases! Not limited!
  • RNA interference RNA interference
  • siRNA RNA interference
  • RNAi introduces double-stranded RNA consisting of a sense RNA that has a sequence sequence homologous to the mRNA of the target gene and an antisense RNA that has a complementary sequence capacity into the cell, etc. It is a phenomenon that can induce destruction and suppress the expression of target genes.
  • RNAi can suppress the expression of target genes in this way, it can be used as a simple gene knockout method instead of the conventional complicated and low-efficiency gene disruption method by homologous recombination, or a method applicable to gene therapy. I have attracted attention as ⁇ .
  • the RNA used for RNAi need not be completely identical to the target gene or a partial region of the gene, but preferably has perfect homology.
  • RNAi double-stranded RNA
  • the RNA molecule also includes a molecule having one end closed structure, for example, a siRNA (shRNA) having a hairpin structure. That is, a single-stranded RNA molecule that can form a double-stranded RNA structure in the molecule is also included.
  • shRNA siRNA
  • double-stranded RNA having RNAi effect can be appropriately prepared by those skilled in the art based on the base sequence of the gene targeted by the double-stranded RNA. That is, it is normal for those skilled in the art to select an arbitrary continuous RNA region of mRNA that is a transcription product of an arbitrary base sequence and prepare a double-stranded RNA corresponding to this region. This can be done as appropriate within the scope of the trial. Moreover, those skilled in the art can appropriately select siRNA sequences having a stronger RNAi effect from mRNA sequences that are transcripts of the sequences by known methods.
  • siRNA as described above can be appropriately prepared by those skilled in the art using a commercially available nucleic acid synthesizer.
  • a general synthesis contract service can be used for synthesis of a desired RNA.
  • Nucleic acid in the present invention means RNA or DNA.
  • chemically synthesized nucleic acid analogs such as so-called PNA (peptide nucleic acid) are also included in the nucleic acid of the present invention.
  • PNA peptide nucleic acid
  • PNA has a three-dimensional structure very similar to nucleic acid, in which the pentasaccharide 'phosphate skeleton, which is the basic skeleton structure of nucleic acids, is replaced with a polyamide skeleton with glycine units.
  • So-called LNA Locked Nucleic Acid
  • the present invention also provides a method for producing a plant containing a foreign protein.
  • a plant having a DNA having a structure in which an exogenous gene is operably linked under the control of a DNA having a promoter activity of the present invention, or a vector containing a DNA having a promoter activity of the present invention is used. It is a method including the step of introducing into cells.
  • the present invention also provides a method for producing a foreign protein-producing plant characterized in that a foreign gene is expressed in a plant.
  • a plant cell comprising a DNA having a structure in which a foreign gene is operably linked under the control of a DNA having the promoter activity of the present invention, or a vector comprising the DNA having the promoter activity of the present invention. It is a method including the process of introducing into.
  • the present invention also provides a method for producing a foreign protein.
  • the transformed cell of the present invention is cultured, and encoded by a foreign gene expressed from the cell or its culture supernatant by a vector containing a DNA having the promoter activity of the present invention.
  • the production method is characterized in that the protein to be collected is recovered.
  • a preferred embodiment of the method for producing a foreign protein of the present invention is, for example, a method comprising the following steps (a) and (b).
  • the plant to be subjected to the method of the present invention is not particularly limited. A plant or a root vegetable plant is mentioned.
  • Examples of the "imo" include sweet potato, potato, cyssano, taro, yam, taro, nagaimo, yam, konnyakumo, and kikumo, but these are not limiting.
  • root vegetables include Japanese radish, Japanese radish, sugar beet (sugar beet), carrots, power, onions, shallots, burdock, lotus root, kwai, ginger, chorogi, garlic, Japanese sea bream, coral rust, and urine. Yes, but these are only examples and are not limited.
  • Examples of the plant in the present invention include plants having seeds, fruits, leaves, stems, tubers, roots, tuberous roots and the like.
  • a plant having a tuberous root or tuber is preferred, a plant having a tuberous root is more preferred, and a sweet potato having a tuberous root is most preferred.
  • the DNA having promoter activity of the present invention controls gene expression in the roots of sweet potato, but exhibits the same structure as the above-mentioned plant body, preferably the root of sweet potato tubers. Even in a plant body, the DNA having promoter activity of the present invention is considered to have a function as a promoter.
  • the present invention also provides a plant obtained by the method of the present invention. Also provided is an artificially produced plant characterized by having a DNA having the promoter activity of the present invention and expressing a protein encoded by a foreign gene.
  • Such a plant is not particularly limited, but is preferably sweet potato.
  • the present invention provides a method for screening a compound that modulates the promoter activity of a DNA having the promoter activity of the present invention, comprising the following steps (a) to (c).
  • test compound used in the screening method of the present invention is not particularly limited.
  • natural compounds, organic compounds, inorganic compounds, proteins, peptides, etc. are unified.
  • Compound, and compound library, gene library expression product, cell extract, cell culture supernatant, fermented microorganism product, marine organism extract, plant extract, prokaryotic cell extract, eukaryotic single cell extract Or an animal cell extract etc. can be mentioned.
  • a test compound is brought into contact with a cell or a cell extract containing DNA having a structure in which a reporter gene is functionally linked under the control of the promoter DNA of the present invention.
  • “functionally linked” means that the promoter of the present invention is such that expression of a reporter gene is induced by binding of a transcription factor to DNA having promoter activity of the present invention. It means that the active DNA and the reporter gene are bound.
  • “cells containing DNA having a structure in which a reporter gene is functionally linked under the control of DNA having promoter activity of the present invention” for example, a cell into which a vector containing the above DNA has been introduced.
  • the vector can be prepared by methods well known to those skilled in the art. Introduction of the vector into the cells can be carried out by a general method, for example, calcium phosphate precipitation method, electric pulse perforation method, ribofactoramine method, microinjection method and the like.
  • a cell containing DNA having a structure in which a reporter gene is functionally linked under the control of DNA having promoter activity of the present invention includes a cell into which the DNA is inserted into a chromosome.
  • DNA can be inserted into a chromosome by a method generally used by those skilled in the art, for example, a gene introduction method using homologous recombination.
  • the "cell extract containing DNA having a structure in which a reporter gene is functionally linked under the control of DNA having promoter activity of the present invention” in this method means, for example, commercially available in vitro transcription translation
  • the cell extract contained in the kit may include those containing a DNA having a structure in which the DNA having the promoter activity of the present invention and a reporter gene are functionally linked.
  • “contact” is performed by adding a test compound to a culture solution of cells containing DNA having a structure in which a reporter gene is functionally linked under the control of DNA having promoter activity of the present invention. Or by adding a test compound to the above-mentioned commercially available cell extract containing the DNA.
  • the test compound is protein
  • a vector containing DNA encoding the protein can be introduced into the cell, or the vector can be added to the cell extract.
  • the expression level of the reporter gene is then measured as follows.
  • the expression level of a reporter gene can be measured by those skilled in the art in consideration of the type of the reporter gene.
  • test compound when the test compound changes the expression level of the reporter gene as compared with the case where it is measured in the absence of the test compound (control), the test compound is the present invention. It is determined that the compound regulates the promoter activity of DNA.
  • the above screening method is used to evaluate whether or not the promoter activity of the DNA of the present invention is regulated for a plurality of test compounds, thereby regulating the promoter activity.
  • a compound that efficiently modulates promoter activity can be screened.
  • the compound obtained by the screening method is very useful because it can control the expression specific to the plant of the gene.
  • the "gene expression inducer" in the present invention is a substance containing the DNA or vector of the present invention as an active ingredient for the purpose of expressing a desired foreign gene in a plant. Refers to a composition (mixture).
  • the drug of the present invention requires, for example, sterile water, physiological saline, vegetable oil, surfactant, lipid, solubilizer, buffer, preservative, and the like. May be mixed accordingly.
  • the compound obtained by the screening method of the present invention is useful as a compound that modulates the promoter activity of a plant.
  • the compound obtained by the screening method of the present invention is useful as a compound that modulates the promoter activity of a plant.
  • the character and function of the plant body can be regulated at the cultivation site.
  • the tuberous strength of two varieties of sweet potato (high line 14 and Ayamurasaki) was also used to create a cDNA library.
  • RNA extraction using phenol from sweet potato tubers was performed in The NSF potato genome project ( ⁇ RNA isolation using phenol protocol in the URL of http://www.tigr.org/tdb/potato/microarray_SO Ps. shtml) method was basically followed.
  • cDNA synthesis was performed using Stratagene's cDNA Synthesis Kit !, and cDNA size fractionation was performed using Amersham Bioscience's Size Sep400 Spun Columns. This was incorporated into a vector pBluescriptll-SK + (Stratagene) cleaved with restriction enzymes Xhol and EcoRI using Toyobo's Ligation High to complete a cDNA library.
  • Clones were randomly isolated from the cDNA library, and the nucleotide sequences of 2804 clones derived from High Line 14 and 3783 clones derived from Ayamurasaki were determined.
  • nucleotide sequence was determined using PCR product Pre-Sequencing Kit (USB) and DYEnamic ET Dye Terminator Cycle Sequencing Kit for MegaBA, and E (amersham pharmacia biotech), and using MegaBACElOOO.
  • IT394 Cluster analysis of these clones was performed, and clone IT394 that appeared relatively frequently was selected. IT394 appeared 4 times from the library derived from the high line 14 and 7 times from the library derived from Ayamurasaki. In the case of IT948, which is homologous to actin, it appeared 3 times from the library derived from high line 14 and 6 times from the library derived from Ayamurasaki.
  • SEQ ID NO: 1 shows the cDNA sequence of IT394.
  • the upstream region of IT394 genomic DNA was isolated by Clontech's BD GenomeWalker Kits.
  • Takashi 14 and Ayamurasaki genomic DNA are used as the cage type, and two primers (394-R3; based on IT394 cDNA sequence (SEQ ID NO: 1)) are used as gene-specific primers.
  • SEQ ID NO: 2, 394-R4; SEQ ID NO: 3) was synthesized.
  • the amplified DNA fragment of about 0.9 kb was subjected to TA cloning with TOPO TA CIoning kit of invitrogen, and the base sequence of the isolated clone was determined.
  • SEQ ID NO: 1 shows the sequence obtained by using the No. 14 genomic DNA as a cocoon type
  • SEQ ID NO: 5 shows the sequence obtained as a genomic DNA cocoon from Ayamura Saki.
  • 394-F07S is a forward primer, has a restriction enzyme Sadl site (ccgcgg) on the 5 'end side, and introduces a mutation (gaCctc) into the Sad site (gaGctc) on the genome sequence.
  • 394-Rb is a reverse primer and has a restriction enzyme BamHI site (ggatcc) on the 5 ′ end side. Using this pair of primers, PCR was carried out using the type 14 genomic DNA as a saddle and an amplified DNA fragment of approximately 730 bp was obtained. The amplified DNA fragment was subjected to TA cloning with the in vitro TOPO TA Cloning kit (pSP53), and the base sequence of the isolated clone was determined (SEQ ID NO: 8).
  • the vector pBluescript SK (Stratagene) emits strong green light in plants.
  • Fluorescent protein mutant sGFP (S65T) (Yasuo Niwa: Plant Cell Engineering Series 4, Model Plant Experiment Protocol, PPH7-121, Shujunsha, 1996) and pblue-sGFP, a plasmid incorporating Nos terminator ( S65T) -NOS SK and plasmid pSP53 were digested with BamHI and SacII, respectively, and ligated using Toyobo's Ligation High to produce plasmid pHM160.
  • This plasmid was further cleaved with Sad and Kpnl, and a sequence of one upstream of IT394-GFP-Nos terminator was inserted into the multicloning site of binary vector pPZP2H-lac.
  • a vector PHM161 that can verify the promoter activity in the plant upstream of the GFP gene as a reporter was completed (Fig. 1).
  • the prepared vector PHM161 was introduced into Agrobacterium tumefaciens EHA101 by freeze-thawing. Freezing and thawing refers to a method in which a plasmid solution is placed in a frozen EHA101 competent cell and incubated at 37 ° C for 5 minutes.
  • Arabidopsis thaliana was introduced by the method described in “Transformation by reduced pressure infiltration method (Takashi Araki)” (Plant cytology series 4, Experimental protocol for model plants, ppl09-113, Shujunsha, 1996). Followed the basics. However, the described decompression process was omitted.
  • a blue LED spotlight (MeCan Imaging, MC-L12B) is equipped with an Ex filter for GFP (Asahi halo) and irradiated to the plant as excitation light.
  • the fluorescence emitted is stereo microscope (OLYMPU)
  • a plasmid in which GFP or IbMYBl was linked to the IT394 promoter or 35S promoter was simultaneously injected into the leaves of a sweet potato with a particle gun.
  • Plasmid construction and particle gun method Mano H, Ogasawara F, Sato K, Higo H, Minobe Y (2 007) Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato.Plant Physiol. 143: 1252-1268).
  • the percentage of cells in which GFP fluorescence was observed over a long period of time was greater when the IT394 promoter was used than when the 35S promoter was used.
  • the IT394 promoter fluorescence was observed in 80% of cells after 3 days and in half of the cells after 1 week, but in the 35S promoter, fluorescence was observed in only about 10% of cells after 3 days and after 1 week.
  • the transcription factor IbMYBl that controls anthocyanin synthesis is expressed, anthocyanin accumulation is observed in about 80% of cells when the IT3 94 promoter is used. About half of the cells are observed when the 35S promoter is used. Only anthocyanin accumulation was observed.
  • the need for long-term expression is not necessarily high when the introduced gene can be directly detected, such as reporter genes such as GFP, GUS, and LUC.
  • reporter genes such as GFP, GUS, and LUC.
  • a transcription factor manifests itself by inducing the expression of another gene, the need to continuously express the transgene for a longer period of time becomes higher.
  • anthocyanin synthesis system genes were introduced by introducing anthocyanin transcription factors and as a result the accumulation of anthocyanins was observed (Fig. 4) Coloring was observed in more than 20% of the transgenic cells, whereas in the case of 35S, about half of the cells were force-colored.
  • the present inventors have succeeded in isolating a promoter expressed in the roots of plants such as sweet potato tuberous roots.
  • the promoter By using the promoter, it is possible to efficiently produce useful substances such as pharmaceutical raw materials and industrial raw materials in plants containing sweet potato tuberous roots.
  • useful substances such as pharmaceutical raw materials and industrial raw materials in plants containing sweet potato tuberous roots.
  • by expressing appropriate genes in the roots of plants they can grow on nematode-resistant, disease-resistant, water-resistant, drought-tolerant plants, soils lacking specific nutrients, and excessive soils. New plants may be created. It can also be used for phytoremediation and soil purification by creating plants that can absorb harmful substances efficiently.
  • the range of applications by expressing foreign genes in plants, such as nutritional modification of the plants and production of raw materials such as pharmaceuticals and biodegradable plastics is wide and useful.

Landscapes

  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

A cDNA library is produced from a tuberous root of a sweet potato plant, and cDNA expressed at high frequency (IT394) is obtained by cluster analysis, and a region upstream to the cDNA is obtained. When GFP is linked to the region upstream to IT394 and the linked product is introduced into a plant Arabidopsis thaliana, the emission of fluorescence is observed in a root and an embryonic axis of the plant. When the linked product is introduced into a sweet potato plant, the strong emission of fluorescent is observed in a tuberous root of the plant. These results reveal that the region upstream to IT394 can be used as a promoter acting in a tuberous root of a sweet potato plant.

Description

植物の根で発現するプロモーター  Promoters expressed in plant roots
技術分野  Technical field
[0001] 本願発明は、植物の根で特異的に発現するプロモーター活性を有する遺伝子に 関する。さらに詳しくは、サツマィモの塊根で発現する遺伝子 (IT394)のプロモーター 領域、もしくはその一部を用いて、植物体で特異的に外来遺伝子を発現させる方法 に関する。  [0001] The present invention relates to a gene having promoter activity that is specifically expressed in plant roots. More specifically, the present invention relates to a method for specifically expressing a foreign gene in a plant body using a promoter region of a gene (IT394) expressed in tuberous root of sweet potato or a part thereof.
背景技術  Background art
[0002] 遺伝子組換え植物は有用物質 (例えばインシュリン、成長ホルモン、エリス口ポェチ ン(EPO)、顆粒球刺激因子(G- CSF)、インターフェロン、ワクチン、抗体などのタンパ ク製剤)などの生産の場として期待されて ヽる。遺伝子組換え植物を使うことの利点と して、動物細胞などを使うよりもはるかに低コストでの生産、人に感染するウィルスや B SEなどの汚染の心配がない、環境に与える負荷が小さい、食べる医薬品として利用 が可能などがあげられて 、る。  [0002] Genetically modified plants can produce useful substances such as insulin, growth hormone, erythrocyte pouchin (EPO), granulocyte stimulating factor (G-CSF), interferons, vaccines, antibodies, etc. Expected as a place. Advantages of using genetically modified plants include production at a much lower cost than using animal cells, etc., no concern about contamination with viruses and BSE that infect humans, and low environmental impact It can be used as an eating medicine.
有用物質を生産させる組換え植物としてはタバコ、ジャガイモ、トウモロコシなどの 研究が進んでおり、一部ではすでに実用化している。  Research on tobacco, potato, corn, etc. has progressed as recombinant plants that produce useful substances, and some have already been put into practical use.
[0003] サッマイモは、イネの約 5倍という高い生産性を有しており、粗放的栽培、不良環境 下での栽培、低肥料、低農薬での栽培が可能で、救荒作物とも言われており、物質 生産の場として有望であると考えられる。現在までに、サツマィモのデンプンを利用し た生分解性プラスチックの原料生産や、色素原料の生産が行われている。しかしな がら、組換えサッマイモを上記のような有用物質生産の場として利用した例はほとん ど報告されていない。  [0003] Sweet potatoes are about five times as productive as rice, and can be grown loosely, grown under poor conditions, with low fertilizers, and with low pesticides. Therefore, it is considered promising as a place for material production. So far, raw materials for biodegradable plastics using sweet potato starch and pigment materials have been produced. However, there have been few reports on the use of recombinant sweet potato as a place for producing useful substances as described above.
[0004] サツマィモは重要作物だが、生産地域がアジアの発展途上国に偏っており、特に 分子遺伝学研究は他の作物に比べて遅れて 、る(例えば GenBankに登録されて 、る ESTの数は 2006年 2月現在で、イネが 102万、トウモロコシ力 68万、ジャガイモが 22万 なのに対して、サツマィモはわず力 8千にも満たない。 ) o  [0004] Sweet potato is an important crop, but its production area is biased toward developing countries in Asia, and molecular genetics research is particularly delayed compared to other crops (for example, the number of ESTs registered in GenBank). As of February 2006, rice is 1.02 million, corn power is 680,000, and potato is 220,000, whereas sweet potato is less than 8,000.
[0005] なお、サツマィモ由来のプロモーターに関する情報は少なぐさらにサッマイモの塊 根で発現することが確かめられているプロモーターに関する報告は限られたものとな つている。 [0005] In addition, there is little information about the promoter derived from sweet potato. There are limited reports on promoters that are known to be expressed in roots.
[0006] 以下に挙げるプロモーターはサッマイモカ 単離したものだ力 サツマィモの形質 転換体で発現することを実験的に確かめたものではなぐ他の植物種や一過的発現 解析を行って ヽるだけである。  [0006] The promoters listed below are isolated from sweet potato, but it has not been experimentally confirmed to be expressed in a sweet potato transformant. is there.
[0007] 'スポラミンのプロモーター [0007] 'Sporamine promoter
スポラミンはサツマィモの塊根の可溶タンパクの 60〜80%を占め、他の組織からは ほとんど検出されないことから、プロモーターに関しても多くの研究が行われており、 ショ糖や傷害誘導性のプロモーターであることが報告されて 、る。中村研三ら (特許 文献 1参照)は、スポラミンプロモーターによってジャガイモの塊茎特異的に遺伝子を 発現させることができると主張して 、る。そしてサツマィモの塊根でも発現させることを 主張している力 実験は行っていない。  Since sporamine accounts for 60-80% of the soluble protein of sweet potato tuberous root and is rarely detected in other tissues, much research has been conducted on promoters, and it is a sucrose and injury-inducible promoter. It has been reported. Kenzo Nakamura et al. (See Patent Document 1) claim that the gene can be expressed specifically in potato tubers by the sporamine promoter. We have not conducted any force experiments that claim to be expressed even in the roots of sweet potato.
また Yu, SM. (特許文献 2参照)は、スポラミンプロモーターによってジャガイモの葉、 茎、塊茎で組換えタンパクを高発現させることができたと報告している。し力 サツマ ィモやにんじん、たまねぎなど塊根、塊茎を形成する植物で実験を行ってはいない。 また Wang, SJ.ら (非特許文献 1参照)は、スポラミンプロモーターが形質転換タバコ で傷害応答することを確認して ヽる。  Yu, SM. (See Patent Document 2) reports that the sporamine promoter allowed high expression of recombinant protein in potato leaves, stems and tubers. No experiments have been conducted on plants that form tuberous roots or tubers, such as sweet potatoes, carrots, and onions. Wang, SJ. Et al. (See Non-Patent Document 1) confirm that the sporamin promoter responds to injury in transformed tobacco.
[0008] · βアミラーゼのプロモーター [0008] · β-amylase promoter
βアミラーゼはサツマィモの塊根タンパク質の中ではスポラミンにつ!、で存在量の 多いタンパク質である。 13アミラーゼのプロモーターを GUSにつないでタバコの形質 転換体を作成したところ、スポラミンプロモーター同様にショ糖誘導性が認められたと の報告がある (非特許文献 2参照)。  β-Amylase is a protein with abundant abundance of sporamine among sweet potato tuber proteins. When a transformant of tobacco was produced by connecting the 13 amylase promoter to GUS, it was reported that sucrose induction was observed as in the case of the sporamine promoter (see Non-Patent Document 2).
[0009] 'パーォキシダーゼのプロモーター [0009] 'Peroxidase promoter
サッマイモのパーォキシダーゼのプロモーターは、タバコのプロトプラストで強 、発 現をしたという報告がある。 (非特許文献 3参照)  It has been reported that the promoter of sweet potato peroxidase was strongly expressed in tobacco protoplasts. (See Non-Patent Document 3)
[0010] -MADS-box遺伝子のプロモーター [0010] -MADS-box gene promoter
Myung BJ.らは、サツマィモの MADS-box遺伝子がサツマィモの塊根で高レベルに 発現しており、ニンジンとダイコン (small radishes)の塊根を使った一過的発現解析で 、 MADS-box遺伝子のプロモーターをつないだ GUSが発現していることを確認してい る。そしてこれらのことからサッマイモの MADS-box遺伝子のプロモーターは植物の 貯蔵根で高レベルの発現をする事が出来ると主張している(特許文献 3参照)。しか し、サツマィモでは発現解析を行っておらず、一過的発現解析と組換え体を用いた 解析では必ずしも結果は一致するものではな 、。 Myung BJ. Et al. Showed that the MADS-box gene of sweet potato is expressed at a high level in the root of sweet potato, and a transient expression analysis using carrot and radish (small radishes) tuber. It has been confirmed that GUS is expressed by connecting the promoter of the MADS-box gene. From these facts, it is claimed that the promoter of the MADS-box gene in sweet potato can be expressed at a high level in the storage root of plants (see Patent Document 3). However, we did not perform expression analysis in sweet potato, and the results of transient expression analysis and analysis using recombinants do not necessarily match.
[0011] サッマイモの組換え体を作成して、その塊根で実際に外来遺伝子が発現している ことを確認したと 、う報告は、一般に用いられて 、るウィルス由来の CaMV35Sプロモ 一ターを使ったもの以外には見つかっていない。しかし CaMV35Sプロモーターでは、 発現させる遺伝子によっては植物体の成長に悪影響を与える場合があるため、組織 特異的なプロモーターを利用することが望ましい。  [0011] When a recombinant sweet potato was created and a foreign gene was actually expressed in its tuberous root, a report using a CaMV35S promoter derived from a virus is commonly used. I haven't found anything else. However, since the CaMV35S promoter may adversely affect plant growth depending on the gene to be expressed, it is desirable to use a tissue-specific promoter.
[0012] 特許文献 1:特許番号第 2833789号  [0012] Patent Document 1: Patent No. 2833789
特許文献 2: US20030177517  Patent Document 2: US20030177517
特許文献 3: WO2006022467  Patent Document 3: WO2006022467
特干文献 1: Wang, SJ.ら奢、「Wouna— response regulation of the sweet potato spo ramin gene promoter region」、 Plant Mol. Biol.、 2002年、 Vol.48, p.223 - 231 非特許文献 2 : Maeo, K.ら著、「Sugar- responsible elements in the promoter of a gene for β -amylase of sweet potato」、 Plant Mol. Biol.、 2001年、 Vol.46, p.627- 637 特許文献 3 : Kim, KY.ら著、「A novel oxidative stress— inducible peroxidase promot er from sweetpotato: molecular cloning and characterization in transgenic tobacco pi ants and cultured cells」、 Plant Mol. Biol.、 2003年、 Vol.51, p.831— 838  Tokubori 1: Wang, SJ. Et al., “Wouna—response regulation of the sweet potato spo ramin gene promoter region”, Plant Mol. Biol., 2002, Vol. 48, p.223-231 Non-patent document 2 : Maeo, K. et al., “Sugar- responsible elements in the promoter of a gene for β-amylase of sweet potato”, Plant Mol. Biol., 2001, Vol. 46, p.627-637 Patent Document 3: Kim, KY. Et al., “A novel oxidative stress—inducible peroxidase promoter from sweetpotato: molecular cloning and characterization in transgenic tobacco piants and cultured cells”, Plant Mol. Biol., 2003, Vol.51, p.831. — 838
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0013] 本発明は、植物の根で特異的に遺伝子発現を制御するプロモーター、該プロモー ターを含有する発現ベクター、該発現ベクターを含む形質転換植物もしくは植物体、 およびその製造方法、該プロモーターを用いて所望の遺伝子を植物体にお!、て発 現させる方法、ならびに該プロモーターを有効成分とする外来遺伝子の発現を誘導 する薬剤の提供を課題とする。 [0013] The present invention provides a promoter that specifically controls gene expression in the roots of a plant, an expression vector containing the promoter, a transformed plant or plant containing the expression vector, a method for producing the same, and the promoter It is an object of the present invention to provide a method for causing a desired gene to be expressed in a plant body and to provide a drug that induces the expression of a foreign gene containing the promoter as an active ingredient.
課題を解決するための手段 [0014] 本発明者らは、上記課題を解決するため鋭意研究を行った。即ち、本発明者らは、 サツマィモの塊根で発現して 、る遺伝子とそのプロモーターを単離し、そのプロモー ターが実際にサツマィモの塊根で外来遺伝子を発現させることを示すに至った。 Means for solving the problem [0014] The present inventors have conducted intensive research to solve the above problems. That is, the present inventors have isolated a gene and its promoter that are expressed in sweet potato tuberous roots, and have demonstrated that the promoter actually expresses a foreign gene in sweet potato tuberous root.
[0015] 詳しくは、本発明者らは、まずサッマイモの塊根力も cDNAライブラリーを作成し、ク ラスター解析によって発現頻度の高い CDNA(IT394)を得て、その上流域を取得した 。そして IT394の上流域に GFPを接続してシロイヌナズナに導入したところ、根と胚軸 で蛍光が観察された。また、サツマィモに導入したところ、塊根で強い蛍光が観察さ れた。このこと力ら、 IT394の上流域はサツマィモの塊根で機能するプロモーターとし て利用できることが示された。 [0015] Specifically, the present inventors first tuberous force Sammaimo also create a cDNA library to obtain the C DNA (IT394) with high expression frequency by cluster analysis to obtain its upstream region. When GFP was connected to the upstream region of IT394 and introduced into Arabidopsis thaliana, fluorescence was observed at the root and hypocotyl. When introduced into sweet potato, strong fluorescence was observed in tuberous roots. This indicates that the upstream region of IT394 can be used as a promoter that functions in the roots of sweet potato.
[0016] なお、 IT394 cDNAはメタ口チォネインにホモロジ一がある。 IT394の発現を RT-PCR によって解析したところ、サツマィモの根、葉、カルスで発現していることが確認され た。高系 14号由来の配列を用いている力 アヤムラサキにもほぼ同じ配列が存在す る。  [0016] It should be noted that IT394 cDNA has a homology in metamouthonein. When the expression of IT394 was analyzed by RT-PCR, it was confirmed that it was expressed in roots, leaves and calli of sweet potato. Forces using sequences derived from high system No. 14 There is almost the same sequence in Ayamurasaki.
[0017] また本発明者らは、上記本発明のプロモーターが、通常強力なプロモーターとして 利用されている CaMV 35Sプロモーターと比較しても、はるかに強い発現能を有する ことを見出した。  [0017] Further, the present inventors have found that the promoter of the present invention has a much stronger expression ability than the CaMV 35S promoter that is usually used as a strong promoter.
[0018] さらに本発明者らは、サツマィモの葉にパーティクルガンで遺伝子を打ち込み一過 的発現をさせると、本発明のプロモーターのほう力 SCaMV 35Sプロモーターよりも長期 にわたつて持続的に遺伝子を発現させることができることを見出した。  [0018] Furthermore, the inventors of the present invention, when a gene is injected into a sweet potato leaf with a particle gun to cause transient expression, the gene of the present invention is expressed more continuously than the SCaMV 35S promoter. I found out that I can make it.
[0019] 上述のように、本発明者らは、サツマィモの塊根で発現するプロモーターを単離す ることに成功し、本発明を完成させた。これまでにサッマイモの塊根で機能することが 明らかになって 、るプロモーターはほとんど報告されて!、な!、。  [0019] As described above, the present inventors have succeeded in isolating a promoter expressed in the tuberous root of sweet potato and completed the present invention. So far it has been shown that it functions in tubers of sweet potatoes, and most promoters have been reported! ,.
[0020] 本発明は、サツマィモの塊根で特異的に遺伝子発現を制御するプロモーター、該 プロモーターを含有する発現ベクター、該発現ベクターを含む形質転換植物もしくは 植物体、およびその製造方法、該プロモーターを用いて所望の遺伝子を植物体にお V、て発現させる方法、ならびに該プロモーターを有効成分とする外来遺伝子の発現 を誘導する薬剤の提供に関し、より具体的には、  [0020] The present invention relates to a promoter that specifically controls gene expression in the roots of sweet potato, an expression vector containing the promoter, a transformed plant or plant containing the expression vector, a method for producing the same, and a method using the promoter More specifically, a method for expressing a desired gene in a plant body V, and provision of a drug that induces the expression of a foreign gene containing the promoter as an active ingredient, more specifically,
〔1〕 下記の(a)〜(c)のいずれかに記載のプロモーター活性を有する DNA、 (a)配列番号: 8に記載の塩基配列力 なる DNA [1] DNA having promoter activity according to any of the following (a) to (c), (a) DNA having the nucleotide sequence of SEQ ID NO: 8
(b)配列番号 : 8に記載の塩基配列において 1もしくは複数の塩基が欠失、置換もしく は付加された塩基配列カゝらなる DNA  (b) DNA comprising one or more bases deleted, substituted or added in the base sequence set forth in SEQ ID NO: 8
(c)配列番号: 8に記載の塩基配列力もなる DNAとストリンジェントな条件下でノ、イブリ ダイズする DNA  (c) DNA that hybridizes under stringent conditions with the DNA having the nucleotide sequence of SEQ ID NO: 8
〔2〕 植物の根においてプロモーター活性を有することを特徴とする、〔1〕に記載の D NA、  [2] The DNA according to [1], wherein the DNA has promoter activity in plant roots,
〔3〕 前記根がサッマイモの塊根である、〔2〕に記載の DNA、  [3] The DNA according to [2], wherein the root is a tuber of sweet potato,
〔4〕 〔1〕〜〔3〕のいずれかに記載の DNAの制御下に、外来遺伝子が機能的に連結 した構造を有する DNA、  [4] DNA having a structure in which a foreign gene is operably linked under the control of the DNA according to any one of [1] to [3],
〔5〕 〔1〕〜〔4〕の!、ずれかに記載の DNAを含むベクター、  [5] [1] to [4] !, a vector containing the DNA of any one of the above,
〔6〕 〔1〕〜〔4〕のいずれかに記載の DNA、または〔5〕に記載のベクターを含む、形 質転換細胞、  [6] Transformed cells comprising the DNA of any one of [1] to [4] or the vector of [5],
〔7〕 微生物である、〔6〕に記載の形質転換細胞、  [7] The transformed cell according to [6], which is a microorganism,
〔8〕 植物細胞である、〔6〕に記載の形質転換細胞、 [8] The transformed cell according to [6], which is a plant cell,
〔9〕 〔8〕に記載の細胞を含む、形質転換植物体、 [9] A transformed plant comprising the cell according to [8],
〔10〕 〔9〕に記載の形質転換植物体の子孫またはクローンである、形質転換植物体  [10] A transformed plant that is a descendant or clone of the transformed plant according to [9]
〔11〕 〔9〕または〔10〕に記載の形質転換植物体の繁殖材料、 [11] A propagation material for the transformed plant according to [9] or [10],
〔12〕 〔4〕に記載の DNA、または〔5〕に記載のベクターを植物細胞へ導入し、該植 物細胞から植物体を再生させる工程を含む、形質転換植物体の作製方法、 [12] A method for producing a transformed plant comprising the step of introducing the DNA according to [4] or the vector according to [5] into a plant cell and regenerating the plant from the plant cell,
〔13〕 植物体において外来遺伝子を発現させる方法であって、〔4〕に記載の DNA、 または〔5〕に記載のベクターを該植物の細胞へ導入する工程を含む方法、[13] A method for expressing a foreign gene in a plant, the method comprising introducing the DNA according to [4] or the vector according to [5] into a cell of the plant,
〔14〕 外来タンパク質が含まれる植物体の製造方法であって、〔4〕に記載の DNA、 または〔5〕に記載のベクターを植物の細胞へ導入する工程を含む方法、 [14] A method for producing a plant containing a foreign protein, the method comprising the step of introducing the DNA according to [4] or the vector according to [5] into a plant cell,
〔15〕 植物体において外来遺伝子を発現させることを特徴とする、外来タンパク質生 産植物体の製造方法であって、〔4〕に記載の DNA、または〔5〕に記載のベクターを 植物の細胞へ導入する工程を含む方法、 〔16〕 〔6〕〜〔8〕の 、ずれかに記載の形質転換細胞を培養し、該細胞またはその培 養上清から、〔5〕に記載のベクターにより発現された外来遺伝子によってコードされる タンパク質を回収することを特徴とする、外来タンパク質の製造方法、 [15] A method for producing a foreign protein-producing plant, wherein a foreign gene is expressed in the plant, wherein the DNA of [4] or the vector of [5] is used as a plant cell A method comprising a step of introducing into [16] The transformed cell according to any one of [6] to [8] is cultured, and the cell or a culture supernatant thereof is encoded by a foreign gene expressed by the vector according to [5]. A method for producing a foreign protein, characterized by recovering the protein,
〔17〕 以下の工程 (a)および (b)を含む、外来タンパク質の製造方法、 [17] A method for producing a foreign protein comprising the following steps (a) and (b):
(a)〔14〕または〔15〕に記載の方法によって、外来タンパク質が含まれる植物体を製 造する工程  (a) A step of producing a plant containing a foreign protein by the method according to [14] or [15]
(b)前記植物体から外来タンパク質を回収する工程  (b) recovering foreign protein from the plant
〔18〕 前記植物体力ィモ類または根菜類である、〔13〕〜〔15〕、〔17〕のいずれかに 記載の方法、  [18] The method according to any one of [13] to [15], [17], which is the plant physical strength potato or root vegetable
〔19〕 前記植物体が塊根または塊茎を有する植物体である、〔13〕〜〔15〕、 〔17〕の いずれかに記載の方法、  [19] The method according to any one of [13] to [15], [17], wherein the plant is a plant having a tuberous root or a tuber.
〔20〕 前記塊根力 サッマイモの塊根である、〔19〕に記載の方法、  [20] The tuber root sweet potato tuber, the method according to [19],
〔21〕 〔14〕または〔15〕に記載の方法によって取得される植物体、  [21] A plant obtained by the method according to [14] or [15],
[22] 人為的に作製された植物体であって、〔4〕に記載の DNAを有し、外来遺伝子 によってコードされるタンパク質が発現されることを特徴とする植物体、  [22] An artificially produced plant comprising the DNA according to [4], wherein a protein encoded by a foreign gene is expressed,
〔23〕 植物体がサッマイモである、〔21〕または〔22〕に記載の植物体、  [23] The plant according to [21] or [22], wherein the plant is sweet potato,
〔24〕 以下の工程(a)〜(c)を含む、〔1〕〜〔3〕のいずれかに記載の DNAのプロモ 一ター活性を調節する化合物のスクリーニング方法、  [24] A screening method for a compound that modulates the promoter activity of DNA according to any one of [1] to [3], comprising the following steps (a) to (c):
(a)〔1〕〜〔3〕のいずれかに記載の DNAの制御下に、レポーター遺伝子が機能的に 結合した構造を有する DNAを含む細胞または細胞抽出液と、被検化合物を接触させ る工程  (a) Under the control of the DNA according to any one of [1] to [3], a test compound is brought into contact with a cell or a cell extract containing DNA having a structure in which a reporter gene is functionally bound. Process
(b)該レポーター遺伝子の発現レベルを測定する工程  (b) measuring the expression level of the reporter gene
(c)該レポーター遺伝子の発現レベルを変化させる化合物を選択する工程 (c) selecting a compound that changes the expression level of the reporter gene
〔25〕 植物体において外来遺伝子を発現させるためのプロモーターとして利用され る DNA薬剤であって、〔1〕〜〔4〕のいずれかに記載の DNA、または〔5〕に記載のベタ ターを有効成分とする、遺伝子発現誘導剤、を提供するものである。 [25] A DNA drug used as a promoter for expressing a foreign gene in a plant, wherein the DNA according to any one of [1] to [4] or the vector according to [5] is effective. The present invention provides a gene expression inducer as a component.
図面の簡単な説明 Brief Description of Drawings
[図 1]IT394の上流域のプロモーター活性検定用ベクターの作成手順を示す図である 。 IT394の上流域 (配列番号: 8)の植物体におけるプロモーター活性を GFP遺伝子を レポーターとして検証することができるベクター PHM161の構築手順を示す。 FIG. 1 is a diagram showing the procedure for creating a promoter activity test vector upstream of IT394. . The procedure for constructing a vector PHM161 capable of verifying the promoter activity in the plant body upstream of IT394 (SEQ ID NO: 8) using the GFP gene as a reporter is shown.
[図 2]IT394プロモーターで GFPを発現した組換えシロイヌナズナの植物体を示す写 真である。播種後 6日目のシロイヌナズナを用いた。上の写真は可視光による撮影、 下の写真は GFPの蛍光像である。根と胚軸が強 、蛍光を発して 、る。  [Fig. 2] A photograph showing a recombinant Arabidopsis plant expressing GFP with the IT394 promoter. Arabidopsis thaliana on the 6th day after sowing was used. The top photo is taken with visible light, and the bottom photo is a fluorescent image of GFP. The roots and hypocotyls are strong and fluoresce.
[図 3]ΙΤ394と CaMV35Sプロモーターでそれぞれ GFPを発現した組換えサツマィモの 塊根の断面を示す写真である。右端は非形質転換体の高系 14号を示す。 A:可視光 FIG. 3 is a photograph showing a cross section of a tuberous root of a recombinant sweet potato expressing GFP with ΙΤ394 and CaMV35S promoter. The right end shows high line 14 of non-transformant. A: Visible light
、 B :蛍光像。 IT394プロモーターで GFPを発現させると、 CaMV35Sプロモーターで発 現させた場合に比較してもはるかに強い蛍光が観察された。 , B: Fluorescent image. When GFP was expressed with the IT394 promoter, much stronger fluorescence was observed than when expressed with the CaMV35S promoter.
[図 4]サツマィモの葉にパーティクルガンでプラスミドを打ち込んだ写真である。 Aと B は IT394プロモーター(A)、または 35Sプロモーター(B)に GFPあるいは IbMYBlをつな いだプラスミドを同時に打ち込んで 3日目の写真を示す。左が可視光、右が蛍光像。 Cと Dは縦軸は GFPの蛍光(NIBA)、あるいはアントシァニンの蓄積 (Light)が観察さ れる細胞の割合(%)を示し、横軸はプラスミドを打ち込んで力もの日数(日)を示す。 Cが IT394プロモーター、 Dが 35Sプロモーターを用いた結果である。  [Fig. 4] A photograph of a plasmid shot with a particle gun on a sweet potato leaf. A and B are photographs of the 3rd day when a plasmid in which GFP or IbMYBl is linked to the IT394 promoter (A) or 35S promoter (B) is simultaneously inserted. Visible light on the left and fluorescent image on the right. For C and D, the vertical axis indicates the percentage of cells in which GFP fluorescence (NIBA) or anthocyanin accumulation (Light) is observed, and the horizontal axis indicates the number of days (days) when the plasmid is injected. C is the result of using IT394 promoter and D is the result of using 35S promoter.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0022] 以下本発明を詳細に説明する。本発明者らによって、サツマィモ等の植物の根に おいて、プロモーター活性を有する DNAが同定された。本発明の上記 DNAの好まし Vヽ態様としては、サツマィモの塊根で発現頻度の高 、cDNA(IT394)の上流域の DNA を挙げることができる。このような IT394の上流域 730 bpの塩基配列を配列番号: 8に 示す。 [0022] The present invention is described in detail below. The present inventors have identified DNA having promoter activity in the roots of plants such as sweet potato. Preferred examples of the above-described DNA V ヽ of the present invention include DNA having a high expression frequency in the root of sweet potato and upstream of cDNA (IT394). The nucleotide sequence of 730 bp upstream of IT394 is shown in SEQ ID NO: 8.
[0023] 本発明は、植物の根において発現するプロモーター活性を有する DNAを提供する 。本発明の DNAの好ましい態様としては、下記の(a)〜(c)のいずれかに記載のプロ モーター活性を有する DNAである。  [0023] The present invention provides a DNA having promoter activity expressed in the roots of a plant. A preferred embodiment of the DNA of the present invention is a DNA having the promoter activity described in any of the following (a) to (c).
(a)配列番号: 8に記載の塩基配列力 なる DNA  (a) DNA having the nucleotide sequence of SEQ ID NO: 8
(b)配列番号 : 8に記載の塩基配列において 1もしくは複数の塩基が欠失、置換もしく は付加された塩基配列カゝらなる DNA  (b) DNA comprising one or more bases deleted, substituted or added in the base sequence set forth in SEQ ID NO: 8
(c)配列番号: 8に記載の塩基配列力 なる DNAとストリンジェントな条件下でノ、イブリ ダイズする DNA (c) DNA having the nucleotide sequence described in SEQ ID NO: 8 Soy DNA
[0024] 本発明の「プロモーター活性を有する DNA (本明細書中では、プロモーター DNAと V、う場合もある)」とは、 DNAを铸型とした mRNAの合成 (転写)の開始に必要な特定の 塩基配列を含む DNAを意味し、自然界に存在する DNAだけでなぐ組換えなどの人 ェ的な改変操作により作成された DNAも含まれる。  [0024] The "DNA having promoter activity" (in this specification, promoter DNA and V, in some cases) is necessary for initiation of mRNA synthesis (transcription) using DNA as a cage. This means DNA containing a specific nucleotide sequence, including DNA created by human modification such as recombination using only DNA existing in nature.
[0025] プロモーター活性は、当業者においては公知の方法を用いることにより、適宜評価 することが可能である。公知の方法としては、後述するように、レポーター遺伝子を用 いて該遺伝子の発現を指標とすることにより測定する方法などを例示することができ る。  [0025] Promoter activity can be appropriately evaluated by those skilled in the art using a known method. As a known method, as described later, a method of measuring by using a reporter gene and using the expression of the gene as an index can be exemplified.
[0026] 本発明のプロモーター活性を有する DNAは、配列番号: 8に記載の塩基配列から なる DNAだけでなぐ配列番号: 8に記載の塩基配列にお!/、て 1もしくは複数の塩基 が欠失、置換もしくは付加された塩基配列力もなり、かつ植物におけるプロモーター として作用する能力を有する DNA、または、配列番号: 8に記載の塩基配列において 、その 3'末端に翻訳効率を上げる塩基配列などを付加したものや、プロモーター活 性を失うことなぐその 5'末端を欠失したものも含まれる。  [0026] The DNA having the promoter activity of the present invention is composed of only the DNA consisting of the base sequence set forth in SEQ ID NO: 8. The base sequence set forth in SEQ ID NO: 8 lacks one or more bases. DNA having the ability to act as a promoter in plants that has lost, substituted or added base sequence, or the base sequence described in SEQ ID NO: 8, such as a base sequence that increases translation efficiency at the 3 ′ end Also included are those that have been added and those that have been deleted at the 5 'end without losing promoter activity.
[0027] 上記 DNAを調製するために、当業者によりょく知られた方法としては、ハイブリダィ ゼーシヨン技術(Southern, EM., J Mol Biol, 1975, 98, 503.)やポリメラーゼ連鎖反応 (PCR)技術(Saiki, RK. et al, Science, 1985, 230, 1350.、 Saiki, RK. et al, Science, 1988, 239, 487.)の他に、例えば、該 DNAに対し、 site- directed mutagenesis法(Kram er, W. & Fritz, HJ" Methods Enzymol, 1987, 154, 350.)により変異を導入する方法 が挙げられる。  [0027] In order to prepare the above DNA, methods well known by those skilled in the art include the hybridization technique (Southern, EM., J Mol Biol, 1975, 98, 503.) and polymerase chain reaction (PCR). In addition to technology (Saiki, RK. Et al, Science, 1985, 230, 1350., Saiki, RK. Et al, Science, 1988, 239, 487.), for example, site-directed mutagenesis (Kramer, W. & Fritz, HJ "Methods Enzymol, 1987, 154, 350.).
[0028] 本発明にお ヽて欠失、置換等の変異が導入される塩基の数は、変異を導入された DNAがプロモーター活性を有する限り、特に制限されないが、通常では 20塩基対以 内、好ましくは 10塩基対以内、より好ましくは 5塩基対以内、最も好ましくは 3塩基対以 内である。  [0028] In the present invention, the number of bases into which mutations such as deletions and substitutions are introduced is not particularly limited as long as the DNA into which mutations are introduced has promoter activity, but is usually within 20 base pairs. Preferably, it is within 10 base pairs, more preferably within 5 base pairs, and most preferably within 3 base pairs.
[0029] さらに、本発明のプロモーター活性を有する DNAは、配列番号: 8に記載の塩基配 列からなる DNAとストリンジェントな条件下でハイブリダィズする DNAを含む。ここで、 ストリンジェントな条件とは、特に制限されるものではないが、例えば 42°C、 2 X SSC (3 00 mM NaCl、 30 mMクェン酸)、 0.1% SDSの条件であり、好ましくは 50°C、 2 X SSC、 0.1% SDSの条件であり、さらに好ましくは、 65°C、 0.1 X SSCおよび 0.1% SDSの条件 である。これらの条件では、温度を上げる程に高い相同性を有する DNAが効率的に 得られることが期待できる。ハイブリダィゼーシヨンのストリンジエンシーに影響する要 素としては温度や塩濃度など複数の要素が考えられ、当業者であればこれらの要素 を適宜選択することで同様のストリンジエンシーを実現することが可能である。 [0029] Furthermore, the DNA having promoter activity of the present invention includes DNA that hybridizes under stringent conditions with the DNA comprising the nucleotide sequence set forth in SEQ ID NO: 8. Here, the stringent conditions are not particularly limited. For example, 42 ° C, 2 X SSC (3 00 mM NaCl, 30 mM citrate), 0.1% SDS, preferably 50 ° C, 2 X SSC, 0.1% SDS, more preferably 65 ° C, 0.1 X SSC and 0.1% It is a condition of SDS. Under these conditions, it can be expected that DNA having high homology can be efficiently obtained as the temperature is increased. Multiple factors such as temperature and salt concentration can be considered as factors affecting the stringency of a hybridization, and those skilled in the art will realize the same stringency by appropriately selecting these factors. It is possible.
[0030] また、配列番号: 8に記載の塩基配列からなる DNAに対応する他の植物の内在性 の DNAは、一般的に、配列番号: 8に記載の DNAと高い相同性を有する。高い相同 性とは、好ましくは 70%以上、さらに好ましくは 80%以上、より好ましくは 90%以上 (例 えば、 95%以上、さらには 96%、 97%、 98%または 99%以上)の相同性を意味する。 この相同性は、 mBLASTアルゴリズム (Altschul et al. (1990) Proc. Natl. Acad. Sci. U SA 87: 2264-8; Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873-7) によって決定することができる。  [0030] In addition, endogenous DNA of other plants corresponding to the DNA consisting of the base sequence described in SEQ ID NO: 8 generally has high homology with the DNA described in SEQ ID NO: 8. High homology is preferably 70% or higher, more preferably 80% or higher, more preferably 90% or higher (e.g. 95% or higher, even 96%, 97%, 98% or 99% or higher). Means sex. This homology was determined by the mBLAST algorithm (Altschul et al. (1990) Proc. Natl. Acad. Sci. U SA 87: 2264-8; Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90: 5873- 7) can be determined by.
[0031] 本発明のプロモーター活性を有する DNAは、植物の根においてプロモーター活性 を有することを特徴とする DNAである。  [0031] The DNA having promoter activity of the present invention is characterized by having promoter activity in the roots of plants.
[0032] 本発明の DNAがプロモーター活性を示す「植物」とは、特に制限されないが、好ま しくはヒルガオ科サッマイモ属の植物であり、好ましくはサツマィモである。  [0032] The "plant" in which the DNA of the present invention exhibits promoter activity is not particularly limited, but is preferably a plant of the genus Convolvulaceae, preferably sweet potato.
[0033] サッマイモには種々の品種が知られている力 本発明のプロモーター活性を有す る DNAは、いずれの品種に内在する DNAであっても構わない。例えばサツマィモの 品種としては、高系(コゥケィ) 14号、アヤムラサキ、鳴門金時、土佐紅、ことぶき、ムラ サキマサリ、パープルスイートロード、コガネセンガン、ベニ了ズマ、ベニ了力、ベ-サ ツマ、ベニノ、ャト、ベニオトメ、ベニマサリ、ベニヮセ、ベニコマチ、サツマヒカリ、サッ マ了力、サニーレッド、ジエイレッド、ジョイホワイト、ァヤコマチ、ハマコマチ、山川紫、 種子島ゴールド、種子島ろまん、安納いも、安納紅、安納こがね、アリアケィモ、タマ ユタカ、シロユタカ、ミナミユタカ、シロサツマ、コナホマレ、タマオトメ、ダイチノュメ、 ォキコガネ、ァケムラサキ、サツマスターチ、農林 1号、クイックスイート等が挙げられる 力 これら以外の品種であっても構わない。  [0033] The ability of various varieties to be known for sweet potatoes The DNA having the promoter activity of the present invention may be DNA inherent in any cultivar. For example, varieties of Satsumaimo include high line 14 (Koukei), Ayamurasaki, Naruto Kintoki, Tosa Beni, Kotobuki, Murasaki Sakimasari, Purple Sweet Road, Koganesengan, Beni Tatsuma, Beni Ryo, Ben-Satsuma, Benino, , Beniotome, Benimasari, Benimase, Benikomachi, Satsuma Hikari, Satsuma Hikari, Sunny Red, Giei Red, Joy White, Aya Komachi, Hamakomachi, Yamakawa Murasaki, Tanegashima Gold, Tanegashima Roma, Annoimo, Anno Red, Anno Koney , Tama Yutaka, Shiro Yutaka, Minami Yutaka, White Satsuma, Kona Homare, Tamaotome, Daiichi Nome, Oki Kogane, Akemura Saki, Satsuma Musti, Agricultural Forest No. 1, Quick Sweet, etc. Other varieties may be used.
[0034] なお本発明の「植物の根」の好ま 、態様としては、サツマィモの塊根を挙げること ができる。 [0034] It is to be noted that, as a preferred embodiment of the "plant root" of the present invention, mention is made of sweet potato tuberous root. Can do.
[0035] さらに本発明は、本発明のプロモーター活性を有する DNAの制御下に、外来遺伝 子が機能的に結合した構造を有する DNAを提供する。本発明において外来遺伝子 とは、特に制限されず、所望の遺伝子を用いることができる。  [0035] Furthermore, the present invention provides a DNA having a structure in which a foreign gene is functionally linked under the control of the DNA having the promoter activity of the present invention. In the present invention, the foreign gene is not particularly limited, and a desired gene can be used.
[0036] 本発明における「外来遺伝子」としては、例えば、エリスロポエチン (EPO)、顆粒球 刺激因子(G- CSF)、インスリン、インターフェロン、成長ホルモン、抗体、あるいはワク チンなどの遺伝子を挙げることができる。これらの遺伝子を植物体で生産させることに より、安価で大量に、安全な医薬品原料の生産が可能になる。  [0036] Examples of the "foreign gene" in the present invention include genes such as erythropoietin (EPO), granulocyte stimulating factor (G-CSF), insulin, interferon, growth hormone, antibody, or vaccine. . By producing these genes in plants, it is possible to produce cheap and large quantities of safe pharmaceutical raw materials.
[0037] さらに、上記外来遺伝子として、アントシァニン活性ィ匕因子、フイターゼ、スポラミン などの、植物体の栄養価や機能性に関与する遺伝子も例示することができる。  [0037] Furthermore, examples of the foreign gene include genes involved in the nutritional value and functionality of plants such as anthocyanin activity factor, phytase, and sporamine.
[0038] サツマィモのアントシァニンには抗酸化、抗変異原性、肝機能障害軽減効果、血圧 降下作用などが報告されている。アントシァニン活性ィ匕因子を発現させることにより、 これらの機能性を植物体に付与することができる。  [0038] Anthocyanins of sweet potato have been reported to have antioxidant, antimutagenic properties, liver dysfunction reducing effects, blood pressure lowering effects and the like. By expressing the anthocyanin activity factor, these functionalities can be imparted to the plant body.
[0039] またフイターゼを発現させることで、植物体中に存在するリン酸の吸収効率を上げる ことができる。  [0039] By expressing phytase, the absorption efficiency of phosphate present in the plant can be increased.
[0040] またスポラミンは発現を抑制することで、トリプシンインヒビター活性が抑制され飼料 としての栄養価が改善される。  [0040] Further, by suppressing the expression of sporamine, the trypsin inhibitor activity is suppressed and the nutritional value of the feed is improved.
[0041] 本発明における「抑制」には、標的となる遺伝子 (例えば、スポラミン遺伝子等)の発 現が完全に抑制されている場合、および、該遺伝子の発現量が有意に低下している 場合等が含まれる。 [0041] In the "suppression" of the present invention, the expression of a target gene (for example, a sporamine gene) is completely suppressed, and the expression level of the gene is significantly reduced. Etc. are included.
[0042] さら〖こ、上記外来遺伝子として、ストレス耐性遺伝子、栄養素のトランスポーター遺 伝子、または重金属のキレーター遺伝子も例示することができる。これらの遺伝子を 植物で発現させることで、植物が不良土壌環境 (乾燥、冠水、貧栄養、アルカリ性、 酸性、重金属存在等の条件下)でも生育することができるようになる。  Further, examples of the foreign gene include a stress tolerance gene, a nutrient transporter gene, and a heavy metal chelator gene. By expressing these genes in plants, the plants can grow even in poor soil environments (under conditions such as dryness, flooding, poor nutrition, alkalinity, acidity, and heavy metals).
[0043] さらに、上記外来遺伝子として、線虫等の病害虫やウィルスへの抵抗性遺伝子も例 示することができる。線虫類への抵抗性遺伝子を発現させることで、植物体を害虫か ら保護することができ、農薬の使用量を控えることができる。  [0043] Further, examples of the foreign gene include genes resistant to pests such as nematodes and viruses. By expressing a resistance gene to nematodes, the plant body can be protected from pests and the amount of pesticide used can be reduced.
[0044] また、本発明の上記 DNAは、外来遺伝子に加えてさらにターミネータ一が連結した 構造であってもよい。該ターミネータ一は、通常、植物由来ターミネータ一 (植物ター ミネ一ターという場合もある)を指し、本発明のプロモーターの近傍に配置される DNA 配列であり、例えば、カリフラワーモザイクウィルス由来のターミネータ一、あるいはノ ノ^ン合成酵素遺伝子由来のターミネータ一等を例示することができるが、ターミネ 一ターとしての機能を有するものであれば、これらに特に制限されない。 [0044] In addition to the foreign gene, the above DNA of the present invention is further linked to a terminator. It may be a structure. The terminator generally refers to a plant-derived terminator (sometimes referred to as a plant terminator), which is a DNA sequence arranged in the vicinity of the promoter of the present invention. For example, a terminator derived from cauliflower mosaic virus, Alternatively, a terminator derived from a non-synthesizing enzyme gene can be exemplified, but it is not particularly limited as long as it has a function as a terminator.
[0045] 本発明において「機能的に連結」とは、本発明のプロモーター活性を有する DNAの 制御下にある外来遺伝子力 本発明のプロモーター活性を有する DNAからの転写を 受けるように、該プロモーター活性を有する DNAと結合している状態を指す。プロモ 一ター活性を有する DNAおよび外来遺伝子を「機能的に連結」させることは、当業者 にお 、ては一般的な遺伝子工学技術を用いて、簡便に行 、得ることである。  In the present invention, “functionally linked” means an exogenous gene force under the control of the DNA having the promoter activity of the present invention, so that the promoter activity is received so as to be transcribed from the DNA having the promoter activity of the present invention. Refers to the state of binding to DNA having “Functionally linking” a DNA having a promoter activity and a foreign gene is easily performed and obtained by those skilled in the art using general genetic engineering techniques.
[0046] 本発明の DNAには、天然あるいは単離 ·精製されたゲノム DNA、および化学合成 D NAが含まれる。ゲノム DNAの調製は、当業者にとって常套手段を利用して行うことが 可能である。  [0046] The DNA of the present invention includes natural or isolated / purified genomic DNA, and chemically synthesized DNA. Preparation of genomic DNA can be performed by those skilled in the art using conventional means.
[0047] 本発明の DNAは、 目的とする植物、例えば、サツマィモの組織よりゲノム DNAを抽 出し精製し、得られた DNAを铸型として PCRによって単離することができる。  [0047] The DNA of the present invention can be isolated by PCR by extracting and purifying genomic DNA from a target plant, for example, sweet potato tissue, and using the obtained DNA as a cocoon.
[0048] 本発明における、配列番号: 8に記載の塩基配列力もなる DNA、およびこれとストリ ンジェントな条件下でノヽイブリダィズするプロモーター活性を有する DNAを単離する ためには、例えば、配列番号: 8に記載の塩基配列力 なる DNA上の配列であって、 本発明のプロモーター活性を有する DNAを増幅するためのプライマーセットを用いる ことができる。このプライマーセットを用いて、植物のゲノム DNAを铸型として PCRを行 い、その後、得られた増幅 DNA断片をプローブとして用いて、同じ植物のゲノムライ ブラリーをスクリーニングすることができる。  [0048] In the present invention, in order to isolate DNA having the nucleotide sequence ability described in SEQ ID NO: 8 and DNA having a promoter activity that is hybridized under stringent conditions therewith, for example, SEQ ID NO: The primer set for amplifying the DNA having the nucleotide sequence ability according to 8 and having the promoter activity of the present invention can be used. Using this primer set, PCR can be performed using plant genomic DNA as a saddle, and then the obtained amplified DNA fragment can be used as a probe to screen the genomic library of the same plant.
[0049] PCRは、市販のキットおよび装置の製造者の指針に基づいて行うか、当業者に周 知の手法で行い得る。遺伝子ライブラリーの作製法、および遺伝子のクローユング法 なども当業者に周知である。例えば、「クロー-ングとシークェンス」(渡辺格監修、杉 浦昌弘編集、農村文化社(1989年))や、「Molecular Cloning (Sambrookら (1989), Col d Spring Harbor Laboratory Press)」などの実験書を参照することができる。得られた 遺伝子の塩基配列は、当該分野で公知のヌクレオチド配列解析法または市販されて いる自動シーケンサーを利用して決定し得る。 PCR技術ゃノヽイブリダィゼーシヨン技 術によって単離し得る、配列番号: 8に記載の塩基配列力もなる DNAとハイブリダィズ する DNAもまた、本発明の DNAに含まれる。 [0049] PCR may be performed based on the manufacturer's guidelines for commercially available kits and devices, or may be performed by techniques known to those skilled in the art. Methods for preparing gene libraries and gene cloning methods are well known to those skilled in the art. For example, experiments such as “Cloning and Sequence” (supervised by Watanabe Katsu, edited by Masahiro Sugiura, Rural Bunkasha (1989)) and “Molecular Cloning (Sambrook et al. (1989), Cold Spring Harbor Laboratory Press)” You can refer to the book. The base sequence of the obtained gene is a nucleotide sequence analysis method known in the art or is commercially available. It can be determined using an automatic sequencer. The DNA of the present invention also includes a DNA that hybridizes with the DNA having the nucleotide sequence shown in SEQ ID NO: 8, which can be isolated by a PCR technique or a hybridization technique.
[0050] 上記のようなスクリーニングによって単離および同定されたプロモーター DNA (すな わち、配列番号: 8に示されるプロモーター活性を有する DNA、またはそのホモログ) 力 植物の根に特異的な遺伝子発現誘導性を示すことは、以下のようにして解析が 可能である。 [0050] Promoter DNA isolated and identified by screening as described above (that is, DNA having the promoter activity shown in SEQ ID NO: 8, or a homolog thereof) Force Gene expression specific to plant roots The inductivity can be analyzed as follows.
[0051] 上記の配列を、例えば、 βダルク口-ダーゼ(GUS)などのレポーター遺伝子の上流 に連結する。レポーター遺伝子としては、 GUS遺伝子の他にクロラムフエ-コールァ セチルトランスフェラーゼ(CAT)遺伝子や、ルシフェラーゼ(LUC)遺伝子、 GFP遺伝 子、 sGFP(S65T)遺伝子なども利用が可能である。  [0051] The above sequence is ligated upstream of a reporter gene such as, for example, β-darc mouth-dase (GUS). As the reporter gene, in addition to the GUS gene, chloramphie-coal acetyltransferase (CAT) gene, luciferase (LUC) gene, GFP gene, sGFP (S65T) gene and the like can be used.
[0052] 上記のようにして作成されたキメラ遺伝子構築物は、例えば、ァグロバタテリゥムを 介してサッマイモなどの植物に導入してその機能を解析することが可能である。 pHM 161をベクターとして用いた場合は、キメラ遺伝子を含む組換えプラスミドを、例えば、 ァグロバタテリゥム.ッメファシエンスの EHA101株に凍結解凍法を用いて導入し、得ら れた形質転換菌を、例えば、減圧浸潤法によりシロイヌナズナなどの植物体に感染さ せる。感染処理した植物より得られた種子を、ノ、イダロマイシンなど用いたベクターに 適した薬剤を含む培地に播種し、得られた薬剤耐性個体を用いて GFPにつ ヽて解 析する。実体顕微鏡やデジタルカメラに GFP用フィルターを装着して観察すること〖こ より、 GFPが根で特異的に検出されることが期待される。  [0052] The chimeric gene construct prepared as described above can be introduced into plants such as sweet potato through, for example, agrobacterium, and the function thereof can be analyzed. When pHM 161 is used as a vector, a recombinant plasmid containing a chimeric gene is introduced into, for example, EHA101 strain of Agrobacterium tumefaciens using the freeze-thaw method, and the resulting transformed bacterium is For example, plants such as Arabidopsis thaliana are infected by vacuum infiltration. Seeds obtained from the infected plants are sown in a medium containing a drug suitable for the vector used, such as rhodium and idaromomycin, and analyzed for GFP using the obtained drug-resistant individuals. By attaching a GFP filter to a stereomicroscope or digital camera for observation, it is expected that GFP will be specifically detected in the roots.
[0053] 本発明のプロモーター活性を有する DNAで制御可能な遺伝子 (外来遺伝子)として は、上述した遺伝子に限定されない。植物体 (例えば植物の根など)において特異的 に発現させたい所望の遺伝子を利用することが可能である。  [0053] The gene (foreign gene) that can be controlled by the DNA having promoter activity of the present invention is not limited to the genes described above. It is possible to use a desired gene to be specifically expressed in a plant body (for example, a plant root).
[0054] また、本発明のプロモーター活性を有する DNAに他の発現制御配列を連結して本 発明のプロモーター活性を有する DNAの機能を改変することが可能である。このよう な発現制御配列としては、ェンハンサー配列ゃリプレッサー配列、インスレーター配 列などが挙げられる。例えば薬剤に応答して抑制が解除されるリブレッサー配列を本 発明のプロモーター DNAと連結したキメラプロモーターを作成し、その下流に目的の 遺伝子を連結した構築物を植物に導入すると、得られた形質転換体では、薬剤が存 在しない条件下では目的遺伝子の発現が抑制されているが、薬剤を投与することに よって抑制が解除され、目的遺伝子が植物体 (例えば植物の根など)で発現するよう になることが期待される。 [0054] It is also possible to modify the function of the DNA having promoter activity of the present invention by linking other expression control sequences to the DNA having promoter activity of the present invention. Examples of such expression control sequences include enhancer sequences, repressor sequences, and insulator sequences. For example, a chimeric promoter in which a repressor sequence that is derepressed in response to a drug is linked to the promoter DNA of the present invention is prepared, and the target promoter is downstream of it. When a gene-linked construct is introduced into a plant, the resulting transformant suppresses the expression of the target gene under conditions where the drug is not present, but the suppression is released by administering the drug, It is expected that the target gene will be expressed in plant bodies (eg plant roots).
[0055] また本発明は、本発明のプロモーター活性を有する DNAを含むベクター、本発明 の DNAの制御下に外来遺伝子が機能的に結合した構造を有する DNAを含むベクタ 一、および、本発明のプロモーターの下流に遺伝子挿入部位を有する構造の DNAを 含むベクター、並びに、上記ベクターにさらにターミネータ一を担持するベクターを提 供する。 [0055] The present invention also provides a vector comprising the DNA having the promoter activity of the present invention, a vector comprising a DNA having a structure in which a foreign gene is functionally linked under the control of the DNA of the present invention, and Provided are a vector containing DNA having a structure having a gene insertion site downstream of the promoter, and a vector carrying a terminator on the vector.
[0056] 本発明のベクターは、通常、本発明のプロモーター活性を有する DNAを各種細胞 内で複製可能なベクターに挿入したものである。この複製可能なベクターとしては、 公知の種々のベクターを用いることができる。例えば、 pUC誘導体などの大腸菌で増 幅可能なベクター、 pPZP2H-lacなどの大腸菌とァグロバタテリゥムの双方で増幅可能 なシャトルベクターなどが挙げられる。また、植物ウィルス、例えば、カリフラワーモザ イクウィルスを利用することもできる。当業者においては、植物細胞内で複製可能な ベクターを、各々の宿主細胞に応じて適宜選択することができる。なお、本発明のプ 口モーター活性を有する DNAをベクターに挿入する方法は、通常の遺伝子をべクタ 一に挿入する常法に従う。  [0056] The vector of the present invention is usually one in which the DNA having the promoter activity of the present invention is inserted into a vector capable of replicating in various cells. As this replicable vector, various known vectors can be used. Examples include vectors that can be amplified in E. coli such as pUC derivatives, shuttle vectors that can be amplified in both E. coli and agrobacterium such as pPZP2H-lac. Plant viruses such as cauliflower mosaic virus can also be used. A person skilled in the art can appropriately select a vector capable of replicating in a plant cell according to each host cell. The method of inserting the DNA having the promoter activity of the present invention into a vector follows the usual method of inserting a normal gene into a vector.
[0057] 本発明のプロモーター活性を有する DNAまたはそれを含む発現ベクターは、以下 のようにして利用することが可能である。本発明のプロモーター活性を有する DNAの 下流に目的の遺伝子を連結したキメラ遺伝子を挿入した発現ベクターを構築する。こ のベクターをサツマィモなどの植物体に導入する。得られた形質転^ ¾物にぉ 、て は、本発明のプロモーター活性を有する DNAの働きにより、根において目的遺伝子 が特異的に発現し、目的とする形質が導入されることが期待される。この場合、 35Sプ 口モーター等のように不要な組織にぉ ヽても発現することがな 、ため、他の好ましくな [0057] The DNA having promoter activity of the present invention or an expression vector containing the same can be used as follows. An expression vector is constructed in which a chimeric gene in which the gene of interest is linked downstream of the DNA having promoter activity of the present invention is inserted. This vector is introduced into plants such as sweet potato. The obtained transformant is expected to express the target gene specifically in the root and introduce the target trait by the action of the DNA having the promoter activity of the present invention. . In this case, it is not expressed even in an unnecessary tissue such as a 35S plug motor.
Vヽ形質が現れな ヽことが期待される。 It is expected that V が traits will not appear.
[0058] また本発明は、本発明のプロモーター DNA、または該 DNAを有するベクターを含む 、形質転換細胞を提供する。本発明の細胞は特に制限されるものではないが、好ま しくは微生物細胞ある 、は植物細胞である。 [0058] The present invention also provides a transformed cell comprising the promoter DNA of the present invention or a vector having the DNA. The cells of the present invention are not particularly limited, but are preferred. Or microbial cells are plant cells.
[0059] 本発明の形質転換植物細胞は、本発明の DNAもしくはベクターを宿主細胞に導入 し、形質転換させた植物細胞である。宿主細胞としては、例えば葉、根、茎、花およ び種子中の胚盤等の植物細胞、カルス、懸濁培養細胞等が挙げられる。細胞の由 来する植物種としては、特に制限されるものではないが、例えば、ヒルガオ科の植物 を挙げることができる。ヒルガオ科の植物としては、例えば、サツマィモ、アサガオ、ヒ ルガオ、ユウガオ、アメリカィモ等が挙げられる。尚、本発明における最も好ましい例 として、サツマィモを挙げることができる。  [0059] The transformed plant cell of the present invention is a plant cell transformed by introducing the DNA or vector of the present invention into a host cell. Examples of host cells include plant cells such as scutellum in leaves, roots, stems, flowers and seeds, callus, suspension culture cells and the like. The plant species from which the cells originate is not particularly limited, and examples thereof include convolvulaceae plants. Examples of the convolvulaceae plant include sweet potato, morning glory, turkey, yuugao, and American potato. A most preferred example in the present invention is sweet potato.
[0060] また本発明は、本発明の DNAまたはベクターを植物細胞へ導入し、該植物細胞か ら植物体を再生させる工程を含む、形質転換植物体の作製方法を提供する。本発明 の DNAもしくはベクターを宿主植物細胞中に導入するために、さまざまな手法を用い ることができる。これらの手法には、形質転換因子としてァグロバタテリゥム'ッメファシ エンス (Agrobacterium tumefaciens)または、ァグロバタテリゥム ·リゾゲネス (Agrobacte rium rhizogenes)を用いた T- DNAによる植物細胞の形質転換方法、プロトプラストに 電気パルス処理してプラスミドを植物細胞へ導入するエレクト口ポレーシヨン法や、小 細胞、細胞、リソソームなどとプロトプラストとの融合法、マイクロインジェクション法、ポ リエチレングリコール法、あるいは、パーティクルガン法などや、その他の公知の方法 が含まれる。  [0060] The present invention also provides a method for producing a transformed plant comprising the steps of introducing the DNA or vector of the present invention into a plant cell and regenerating the plant from the plant cell. A variety of techniques can be used to introduce the DNA or vector of the present invention into host plant cells. These methods include a method for transforming plant cells with T-DNA using Agrobacterium tumefaciens or Agrobacterium rhizogenes as a transforming factor, An electoresis method that introduces a plasmid into plant cells by applying an electric pulse to protoplasts, a fusion method of protoplasts with small cells, cells, lysosomes, microinjection method, polyethylene glycol method, particle gun method, etc. Other known methods are included.
[0061] また、本発明の DNAまたはベクターを導入する植物細胞は、外植片の細胞であつ てもよく、これらの植物細胞カゝら培養細胞を調製し、得られた培養細胞に導入しても よい。例えば葉、根、茎、花および種子中の胚盤等の植物細胞、プロトプラスト、カル ス、懸濁培養細胞等が挙げられる。  [0061] The plant cell into which the DNA or vector of the present invention is introduced may be an explant cell, and a cultured cell is prepared from these plant cells and introduced into the obtained cultured cell. May be. For example, plant cells such as scutellum in leaves, roots, stems, flowers and seeds, protoplasts, callus, suspension culture cells and the like can be mentioned.
[0062] プロトプラストへ直接導入する場合、通常、特別に必要なベクターはな 、。例えば、 pUC誘導体のような単純なプラスミドなどを用いることができる。 目的の遺伝子を植物 細胞に導入する方法によっては、他の DNA配列が必要になることもある。例えば Ήま たは Riプラスミドを植物細胞の形質転換に用いる場合には、 Ήおよび Riプラスミドの T -DNA領域の少なくとも右端の配列、大抵は両側の端の配列を、導入されるべき遺伝 子の隣接領域となるように接続しなければならな 、。 [0063] ァグロバクテリウム属菌を形質転換に用いる場合には、導入すべき遺伝子を、特別 のプラスミド、すなわち中間ベクターまたはバイナリーベクターの中にクロー-ングす る必要がある。中間ベクターはァグロバクテリウム属菌の中では複製されない。中間 ベクターは、ヘルパープラスミドあるいはエレクト口ポレーシヨンによってァグロバタテリ ゥム属菌の中に移行される。中間ベクターは、 T-DNAの配列と相同な領域をもった め、相同的組換えによって、ァグロバクテリウム属菌の Ήまたは Riプラスミド中に取り込 まれる。宿主として使われるァグロバクテリウム属菌には、 vir領域が含まれている必要 がある。通常 Ήまたは Riプラスミドに vir領域が含まれており、その働きにより、 T-DNA を植物細胞に移行させることができる。 [0062] For direct introduction into protoplasts, there is usually no specially required vector. For example, a simple plasmid such as a pUC derivative can be used. Depending on how the gene of interest is introduced into the plant cell, other DNA sequences may be required. For example, when Ή or Ri plasmids are used for transformation of plant cells, the sequences of at least the right end of the T-DNA region of the Ή and Ri plasmids, usually the sequences at both ends, are inserted into the gene to be introduced. It must be connected so that it is an adjacent area. [0063] When Agrobacterium is used for transformation, it is necessary to clone the gene to be introduced into a special plasmid, that is, an intermediate vector or a binary vector. Intermediate vectors are not replicated in Agrobacterium. The intermediate vector is transferred into the genus Agrobataterium by a helper plasmid or electoral position. The intermediate vector has a region that is homologous to the T-DNA sequence, and is incorporated into the Agrobacterium sputum or Ri plasmid by homologous recombination. Agrobacterium used as a host must contain the vir region. Usually, vir or Ri plasmid contains vir region, and T-DNA can be transferred to plant cells by its function.
[0064] 一方、バイナリーベクターはァグロバクテリウム属菌の中で複製、維持され得るので 、ヘルパープラスミドあるいはエレクト口ポレーシヨン法あるいは凍結溶解法によって ァグロバクテリウム属菌中に取り込まれると、宿主の vir領域の働きによって、バイナリ 一ベクター上の T-DNAを植物細胞に移行させることができる。  [0064] On the other hand, the binary vector can be replicated and maintained in the genus Agrobacterium. Therefore, when the binary vector is incorporated into the genus Agrobacterium by the helper plasmid, the electroporation method or the freeze lysis method, By virtue of the vir region, T-DNA on a binary vector can be transferred to plant cells.
[0065] なお、このようにして得られた中間ベクターまたはバイナリーベクター、およびこれを 含む大腸菌ゃァグロバクテリウム属菌等の微生物についても、本発明の対象となる。  [0065] It should be noted that the intermediate vector or binary vector thus obtained and microorganisms such as Escherichia coli containing the same are also the subject of the present invention.
[0066] また、本発明の DNAもしくはベクターを導入して形質転換された植物細胞を効率的 に選択するために、上記ベクターは、適当な選抜マーカー遺伝子を含む、もしくは選 抜マーカー遺伝子を含むプラスミドベクターとともに植物細胞へ導入することが好まし い。この目的に使用される選抜マーカー遺伝子は、例えば、抗生物質ハイグロマイシ ン耐性であるハイグロマイシンホスホトランスフェラーゼ遺伝子、カナマイシンまたは ゲンタマイシン耐性であるネオマイシンホスホトランスフェラーゼ、および除草剤ホス フィノスリシン耐性であるァセチルトランスフェラーゼ遺伝子等を挙げることができる。  [0066] In order to efficiently select plant cells transformed by introducing the DNA or vector of the present invention, the vector contains a suitable selection marker gene or a plasmid containing a selection marker gene. It is preferable to introduce it into plant cells together with the vector. Selectable marker genes used for this purpose include, for example, the hygromycin phosphotransferase gene resistant to the antibiotic hygromycin, the neomycin phosphotransferase resistant to kanamycin or gentamicin, and the acetyl transferase gene resistant to the herbicide phosphinothricin. Can be mentioned.
[0067] 上記ベクターを導入した植物細胞は、導入した選抜マーカーに応じた選抜用薬剤 を含む選抜用培地に置床し培養する。これにより、形質転換された植物細胞を得るこ とがでさる。  [0067] Plant cells into which the above-described vector has been introduced are placed on a selection medium containing a selection agent according to the introduced selection marker and cultured. As a result, transformed plant cells can be obtained.
[0068] 本発明の形質転換植物体とは、本発明の形質転換植物細胞から再生された (再分 化された)形質転換植物体である。再分化の方法は、当業者であれば植物細胞の種 類に応じて公知の技術を用いて適宜実施することができる。例えばジャガイモでは、 Visserら(Visserら (1989), Theor. Appl. Genet., vol.78:p589— )の方法、シロイヌナズナ では Akamaらの方法(Akamaら (1992), Plant Cell Rep., vol.12:p7-)、イネでは Fujimur aら(Fujimuraら (1995), PlantTissue Culture Lett., vol.2:p74- )の方法、トウモロコシで は Shillitoら(Shillitoら (1989), Bio/Technology, vol.7:p581- )の再分化方法が挙げら れる。 [0068] The transformed plant of the present invention is a transformed plant regenerated (re-differentiated) from the transformed plant cell of the present invention. Those skilled in the art can appropriately carry out the redifferentiation method using a known technique according to the type of plant cell. For example, in potatoes Visser et al. (Visser et al. (1989), Theor. Appl. Genet., Vol. 78: p589—). In Arabidopsis, Akama et al. (Akama et al. (1992), Plant Cell Rep., Vol. 12: p7- ), In rice, Fujimura et al. (Fujimura et al. (1995), PlantTissue Culture Lett., Vol. 2: p74-), in maize, Shillito et al. (Shillito et al. (1989), Bio / Technology, vol. 7: p581). -) Redifferentiation method.
[0069] これらの方法により作出された形質転 ^¾物体の子孫またはクローンである形質転 ■物体も本発明の対象である。さらに上記のような形質転,物体または該形質 転^ ¾物体力 得られる(からなる)繁殖材料 (例えば種子、果実、塊茎、切穂、塊根 、株、カルス、プロトプラストなど)を元にして得た形質転換植物体も本発明の対象に なる。  [0069] A transformed object created by these methods is a subject of the present invention. Further, obtained from the above-mentioned transformation, body, or propagation material (for example, seed, fruit, tuber, cutting ear, tuberous root, strain, callus, protoplast, etc.) obtained (consisting) The transformed plant body is also an object of the present invention.
[0070] ー且、染色体内に本発明のプロモーター (DNA)が導入された形質転換植物体が得 られれば、該植物体力 有性生殖または無性生殖により子孫を得ることが可能である 。また、該植物体やその子孫あるいはクローン力も繁殖材料を得て、それらを基に該 植物体を量産することも可能である。  [0070]-If a transformed plant into which the promoter (DNA) of the present invention has been introduced into the chromosome is obtained, progeny can be obtained by vigorous or asexual reproduction of the plant. In addition, the plant body, its progeny, or clonal power can also be obtained as a propagation material, and the plant body can be mass-produced based on them.
[0071] 本発明の植物体を作製する方法の好ま 、態様にぉ ヽては、本発明の DNAまたは ベクターを植物細胞 (宿主細胞)に導入して形質転換植物細胞を得て、該形質転換 植物細胞から形質転,物体を再生する工程を含む。さら〖こは、このようにして得ら れた形質転,物体カゝら植物種子を得て、該植物種子から植物体を生産する工程 を含んでいてもよい。  [0071] In a preferred embodiment of the method for producing a plant of the present invention, the DNA or vector of the present invention is introduced into a plant cell (host cell) to obtain a transformed plant cell, and the transformation is performed. It includes the process of transforming and regenerating objects from plant cells. Further, the silkworm may include a step of obtaining plant seeds from the thus obtained transformation and body, and producing a plant body from the plant seeds.
[0072] 植物体の再生は植物細胞の種類に応じて当業者に公知の方法で行うことが可能で ある(Toki. et al., Plant Physiol, 1995, 100, 1503-1507.)。例えば、形質転換植物体 を作出する手法については、ポリエチレングリコールによりプロトプラストへ遺伝子導 入し、植物体を再生させる方法(Datta, S K. et al., In Gene Transfer To Plants (Potr ykus I and Spangenberg Eds.), 1995, 66-74.)、電気パルスによりプロトプラストへ遺伝 子導入し、植物体を再生させる方法(Toki. et al, Plant Physiol, 1992, 100, 1503-15 07.)、パーティクルガン法により細胞へ遺伝子を直接導入し、植物体を再生させる方 法(Christou, et al., Bio/technology, 1991, 9, 957- 962.)およびァグロバタテリゥムを 介して遺伝子を導入し、植物体を再生させる方法(Hiei. et al, Plant J, 1994, 6, 271 -282.)等、いくつかの技術が既に確立し、本願発明の技術分野において広く用いら れている。本発明においては、これらの方法を好適に用いることができる。形質転換 細胞力も再生させた植物体は、次いで順ィ匕用培地で培養する。その後、順ィ匕した再 生植物体を、通常の栽培条件で栽培すると、植物体が得られ、成熟して結実して種 子を得ることができる。 [0072] Plant regeneration can be performed by methods known to those skilled in the art depending on the type of plant cells (Toki. Et al., Plant Physiol, 1995, 100, 1503-1507.). For example, as a method for producing transformed plants, gene transfer to protoplasts using polyethylene glycol and regeneration of plants (Datta, S K. et al., In Gene Transfer To Plants (Potr ykus I and Spangenberg Eds.), 1995, 66-74.), A method of regenerating plants by introducing genes into protoplasts by electric pulses (Toki. Et al, Plant Physiol, 1992, 100, 1503-15 07.), particle gun The gene is directly introduced into cells by the method to regenerate plants (Christou, et al., Bio / technology, 1991, 9, 957-962.) And the gene is introduced via agrobacterium. , A method of regenerating a plant body (Hiei. Et al, Plant J, 1994, 6, 271 -282.) Etc. have already been established and widely used in the technical field of the present invention. In the present invention, these methods can be suitably used. Transformation Plants that have also been regenerated with cell strength are then cultivated in normal medium. Thereafter, when the ordered regenerated plant body is cultivated under normal cultivation conditions, the plant body can be obtained, and matured and fruited to obtain a seed.
[0073] 形質転,物体から植物種子を得る工程とは、例えば、形質転,物体を発根培 地から採取し、水を含んだ土を入れたポットに移植し、一定温度下で生育させて、花 を形成させ、最終的に種子を形成させる工程をいう。また、種子から植物体を生産す る工程とは、例えば、形質転換植物体上で形成された種子が成熟したところで、単離 して、水を含んだ土に播種し、一定温度、照度下で生育させることにより、植物体を 生産する工程をいう。  [0073] The process of obtaining plant seeds from the transformation and the body is, for example, collecting the transformation and the body from the rooting medium, transplanting it to a pot containing soil containing water, and growing it at a constant temperature. The process of forming flowers and finally forming seeds. In addition, the process of producing a plant from a seed is, for example, when a seed formed on a transformed plant matures, it is isolated and sown in water-containing soil, under a constant temperature and illuminance. This refers to the process of producing a plant by growing it.
[0074] なお、このように再生され、かつ栽培した形質転換植物体中に導入された外来 DNA または核酸の存在は、公知の PCR法やサザンハイブリダィゼーシヨン法によって、ま たは植物体中の核酸の塩基配列を解析することによって確認することができる。この 場合、形質転^ ¾物体力 の DNAまたは核酸の抽出は、公知の J.Sambrookらの方 法 (Molecularし loning, ¾f2¾x, Cold bpnngHarbor laboratory Press, 1989)に準し飞 実施することができる。  [0074] It should be noted that the presence of foreign DNA or nucleic acid introduced into a transformed plant that has been regenerated and cultivated in this manner is determined by a known PCR method or Southern hybridization method, or the plant body. It can be confirmed by analyzing the base sequence of the nucleic acid therein. In this case, the DNA or nucleic acid having a transformation strength can be extracted in accordance with the method of J. Sambrook et al. (Molecular and loning, ¾f2¾x, Cold bpnngHarbor laboratory Press, 1989).
[0075] また本発明は、植物体において外来遺伝子を発現させる方法を提供する。本発明 の好ましい態様においては、本発明のプロモーター活性を有する DNAの制御下に外 来遺伝子が機能的に結合した構造を有する DNA、または本発明のプロモーター活 性を有する DNAを含むベクターを該植物の細胞へ導入する工程を含む方法である。 本方法においては、該 DNAを、植物細胞へ導入し、該細胞を植物へ再生させること によっても行うことができる。該 DNAの植物もしくは植物細胞への導入は、上述の方 法によって実施することができる。  [0075] The present invention also provides a method for expressing a foreign gene in a plant. In a preferred embodiment of the present invention, a plant comprising a DNA having a structure in which an exogenous gene is operably linked under the control of a DNA having the promoter activity of the present invention, or a vector comprising the DNA having the promoter activity of the present invention. It is a method including the step of introducing into the cell. This method can also be carried out by introducing the DNA into plant cells and regenerating the cells into plants. The DNA can be introduced into a plant or plant cell by the method described above.
[0076] 外来遺伝子として、遺伝子の発現を抑制する機能を有する核酸 (例えば、以下に 示すようなアンチセンス RNAまたは siRNA等)を用いること〖こよって、内在性遺伝子の 発現を抑制することも本発明の方法に含まれる。本発明における「抑制」には、内在 性遺伝子の発現が完全に抑制されている場合、および、植物体における上記内在 性遺伝子の発現量が他の植物体における遺伝子の発現量と比較して有意に低下し ている場合等が含まれる。 [0076] By using a nucleic acid having a function of suppressing gene expression (for example, antisense RNA or siRNA as shown below) as a foreign gene, it is also possible to suppress the expression of an endogenous gene. Included in the method of the invention. The “suppression” in the present invention includes the case where the expression of the endogenous gene is completely suppressed, and the above-described endogenous expression in the plant body. This includes cases where the expression level of the sex gene is significantly reduced compared to the expression level of the gene in other plants.
[0077] 特定の内在性遺伝子の発現を阻害する方法としては、アンチセンス技術を利用す る方法が当業者によく知られている。アンチセンス核酸が標的遺伝子の発現を阻害 する作用としては、以下のような複数の要因が存在する。即ち、三重鎖形成による転 写開始阻害、 RNAポリメラーゼによって局部的に開状ループ構造が作られた部位と のハイブリッド形成による転写阻害、合成の進みつつある RNAとのハイブリッド形成に よる転写阻害、イントロンとエタソンとの接合点におけるハイブリッド形成によるスプラ イシング阻害、スプライソソーム形成部位とのノ、イブリツド形成によるスプライシング阻 害、 mRNAとのハイブリッド形成による核力 細胞質への移行阻害、キヤッビング部位 やポリ (A)付加部位とのハイブリッド形成によるスプライシング阻害、翻訳開始因子結 合部位とのハイブリッド形成による翻訳開始阻害、開始コドン近傍のリボソーム結合 部位とのハイブリッド形成による翻訳阻害、 mRNAの翻訳領域やポリソーム結合部位 とのハイブリッド形成によるペプチド鎖の伸長阻害、および核酸とタンパク質との相互 作用部位とのハイブリッド形成による遺伝子発現阻害などである。このようにアンチセ ンス核酸は、転写、スプライシングまたは翻訳など様々な過程を阻害することで、標 的遺伝子の発現を阻害する (平島および井上,新生化学実験講座 2核酸 IV遺伝子 の複製と発現, 日本生化学会編,東京化学同人, 1993, 319-347.)。  [0077] As a method for inhibiting the expression of a specific endogenous gene, a method using an antisense technique is well known to those skilled in the art. There are a number of factors that cause the antisense nucleic acid to inhibit the expression of the target gene. Inhibition of transcription initiation due to triplex formation, transcription inhibition due to hybridization with a site where an open loop structure was locally created by RNA polymerase, transcription inhibition due to hybridization with RNA undergoing synthesis, intron Inhibition of splicing by hybridization at the junction of Etason and etason, inhibition of splicing by spliceosome formation site, inhibition of splicing by hybrid formation, inhibition of nuclear force by hybridization with mRNA, inhibition of migration to cytoplasm, capping site and poly (A) Splicing inhibition by hybridization with an additional site, translation initiation inhibition by hybridization with a translation initiation factor binding site, translation inhibition by hybridization with a ribosome binding site near the initiation codon, translation region of mRNA and polysome binding site By hybrid formation Outgrowth inhibitory peptide chain, and gene expression inhibition by hybrid formation at sites of interaction between nucleic acids and proteins, and the like. In this way, antisense nucleic acids inhibit the expression of target genes by inhibiting various processes such as transcription, splicing or translation (Hirashima and Inoue, Shinsei Kagaku Kenkyusho 2 Nucleic acid IV gene replication and expression, Japan Biochemical Society, Tokyo Chemical Doujin, 1993, 319-347.).
[0078] アンチセンス核酸は、上記の 、ずれの作用により内在性遺伝子の発現を阻害して もよい。一つの態様としては、内在性遺伝子の mRNAの 5'端近傍の非翻訳領域に相 補的なアンチセンス配列を設計すれば、遺伝子の翻訳阻害に効果的と考えられる。 また、コード領域もしくは 3'側の非翻訳領域に相補的な配列も使用することができる。 このように、内在性遺伝子の翻訳領域だけでなく非翻訳領域の配列のアンチセンス 配列を含む核酸もアンチセンス核酸に含まれる。このようなアンチセンス核酸は、本 発明のプロモーター活性を有する DNAの下流に連結され、好ましくは 3'側に転写終 結シグナルを含む配列が連結される。このようにして調製された核酸は、公知の方法 を用いることで、所望の植物へ形質転換できる。アンチセンス核酸の配列は、形質転 換される植物が持つ内在性の遺伝子またはその一部と相補的な配列であることが好 ましいが、遺伝子の発現を有効に抑制できる限り、完全に相補的でなくてもよい。転 写された RNAは、標的遺伝子の転写産物に対して好ましくは 90%以上、最も好ましく は 95%以上の相補性を有する。アンチセンス核酸を用いて標的遺伝子の発現を効 果的に抑制するには、アンチセンス核酸の長さは少なくとも 15塩基以上 25塩基未満 であることが好まし!/ヽが、必ずしもこの長さに限定されな!ヽ。 [0078] The antisense nucleic acid may inhibit the expression of the endogenous gene by the above-described action. In one embodiment, if a complementary antisense sequence is designed in the untranslated region near the 5 ′ end of the mRNA of the endogenous gene, it is considered effective for inhibiting translation of the gene. In addition, a sequence complementary to the coding region or the 3 ′ untranslated region can also be used. Thus, the nucleic acid containing the antisense sequence of the sequence of the untranslated region as well as the translated region of the endogenous gene is also included in the antisense nucleic acid. Such an antisense nucleic acid is linked downstream of the DNA having promoter activity of the present invention, and preferably a sequence containing a transcription termination signal is linked on the 3 ′ side. The nucleic acid thus prepared can be transformed into a desired plant by using a known method. The sequence of the antisense nucleic acid is preferably a sequence complementary to the endogenous gene or a part of the plant to be transformed. Preferably, it may not be completely complementary as long as gene expression can be effectively suppressed. The transcribed RNA preferably has a complementarity of 90% or more, most preferably 95% or more, to the transcript of the target gene. In order to effectively suppress the expression of the target gene using an antisense nucleic acid, it is preferred that the length of the antisense nucleic acid is at least 15 bases and less than 25 bases! Not limited!
[0079] さらに、内在性遺伝子の発現の阻害は、標的となる遺伝子配列と同一もしくは類似 した配列を有する二本鎖 RNAを用いた RNA干渉(RNA interferance; RNAi)によって も行うことができる。 RNAi効果による阻害作用を有する核酸は、一般的に siRNAとも言 われる。 RNAiは、標的遺伝子の mRNAと相同な配列カゝらなるセンス RNAとこれと相補 的な配列力もなるアンチセンス RNAとからなる二本鎖 RNAを細胞等に導入することに より、標的遺伝子 mRNAの破壊を誘導し、標的遺伝子の発現を抑制し得る現象である 。このように RNAiは、標的遺伝子の発現を抑制し得ることから、従来の煩雑で効率の 低い相同組換えによる遺伝子破壊方法に代わる簡易な遺伝子ノックアウト方法として 、または、遺伝子治療への応用可能な方法として注目^^めている。 RNAiに用いる R NAは、標的となる遺伝子もしくは該遺伝子の部分領域と必ずしも完全に同一である 必要はな 、が、完全な相同性を有することが好ま 、。  [0079] Furthermore, inhibition of endogenous gene expression can also be performed by RNA interference (RNAi) using double-stranded RNA having the same or similar sequence as the target gene sequence. A nucleic acid having an inhibitory action due to the RNAi effect is generally also referred to as siRNA. RNAi introduces double-stranded RNA consisting of a sense RNA that has a sequence sequence homologous to the mRNA of the target gene and an antisense RNA that has a complementary sequence capacity into the cell, etc. It is a phenomenon that can induce destruction and suppress the expression of target genes. Since RNAi can suppress the expression of target genes in this way, it can be used as a simple gene knockout method instead of the conventional complicated and low-efficiency gene disruption method by homologous recombination, or a method applicable to gene therapy. I have attracted attention as ^^. The RNA used for RNAi need not be completely identical to the target gene or a partial region of the gene, but preferably has perfect homology.
[0080] RNAi効果による阻害作用を有する核酸の一態様として、例えば標的遺伝子に対し て RNAi効果を有する二本鎖 RNA (RNAi)を挙げることができる。上記 RNA分子には、 一方の端が閉じた構造の分子、例えば、ヘアピン構造を有する siRNA(shRNA)も含ま れる。即ち、分子内において二本鎖 RNA構造を形成し得る一本鎖 RNA分子も含まれ る。  [0080] As one embodiment of the nucleic acid having an inhibitory action by the RNAi effect, for example, double-stranded RNA (RNAi) having an RNAi effect on a target gene can be mentioned. The RNA molecule also includes a molecule having one end closed structure, for example, a siRNA (shRNA) having a hairpin structure. That is, a single-stranded RNA molecule that can form a double-stranded RNA structure in the molecule is also included.
[0081] 上記「RNAi効果を有する二本鎖 RNA」は、当業者ならば該ニ本鎖 RNAの標的とな る遺伝子の塩基配列を基に、適宜作製することができる。即ち、任意の塩基配列をも とに該配列の転写産物である mRNAの任意の連続する RNA領域を選択し、この領域 に対応する二本鎖 RNAを作製することは、当業者ならば通常の試行の範囲内におい て適宜行い得る。また、該配列の転写産物である mRNA配列から、より強い RNAi効果 を有する siRNA配列を選択することも、当業者ならば公知の方法によって適宜実施す ることが可能である。また、一方の鎖 (一方の塩基配列)が判明していれば、当業者な らば容易に他方の鎖 (相補鎖)の塩基配列を知ることができる。上述のような siRNAは 、当業者であれば市販の核酸合成機を用いて適宜作製することが可能である。また 、所望の RNAの合成については、一般の合成受託サービスを利用することができる。 The above-mentioned “double-stranded RNA having RNAi effect” can be appropriately prepared by those skilled in the art based on the base sequence of the gene targeted by the double-stranded RNA. That is, it is normal for those skilled in the art to select an arbitrary continuous RNA region of mRNA that is a transcription product of an arbitrary base sequence and prepare a double-stranded RNA corresponding to this region. This can be done as appropriate within the scope of the trial. Moreover, those skilled in the art can appropriately select siRNA sequences having a stronger RNAi effect from mRNA sequences that are transcripts of the sequences by known methods. In addition, if one strand (one base sequence) is known, those skilled in the art It is easy to know the base sequence of the other strand (complementary strand). The siRNA as described above can be appropriately prepared by those skilled in the art using a commercially available nucleic acid synthesizer. In addition, a general synthesis contract service can be used for synthesis of a desired RNA.
[0082] 本発明における「核酸」とは RNAまたは DNAを意味する。また、所謂 PNA (peptide n ucleic acid)等の化学合成核酸アナログも、本発明の核酸に含まれる。 PNAは、核酸 の基本骨格構造である五単糖'リン酸骨格を、グリシンを単位とするポリアミド骨格に 置換したもので、核酸によく似た 3次元構造を有する。また所謂 LNA(Locked Nucleic Acid)も本発明の核酸に含まれる。  [0082] "Nucleic acid" in the present invention means RNA or DNA. Further, chemically synthesized nucleic acid analogs such as so-called PNA (peptide nucleic acid) are also included in the nucleic acid of the present invention. PNA has a three-dimensional structure very similar to nucleic acid, in which the pentasaccharide 'phosphate skeleton, which is the basic skeleton structure of nucleic acids, is replaced with a polyamide skeleton with glycine units. So-called LNA (Locked Nucleic Acid) is also included in the nucleic acid of the present invention.
[0083] また本発明は、外来タンパク質が含まれる植物体の製造方法を提供する。本発明 の好ましい態様においては、本発明のプロモーター活性を有する DNAの制御下に外 来遺伝子が機能的に結合した構造を有する DNA、または本発明のプロモーター活 性を有する DNAを含むベクターを植物の細胞へ導入する工程を含む方法である。  [0083] The present invention also provides a method for producing a plant containing a foreign protein. In a preferred embodiment of the present invention, a plant having a DNA having a structure in which an exogenous gene is operably linked under the control of a DNA having a promoter activity of the present invention, or a vector containing a DNA having a promoter activity of the present invention is used. It is a method including the step of introducing into cells.
[0084] また本発明は、植物体にぉ ヽて外来遺伝子を発現させることを特徴とする外来タン パク質生産植物体の製造方法を提供する。本発明の好ましい態様においては、本発 明のプロモーター活性を有する DNAの制御下に外来遺伝子が機能的に結合した構 造を有する DNA、または本発明のプロモーター活性を有する DNAを含むベクターを 植物細胞へ導入する工程を含む方法である。  [0084] The present invention also provides a method for producing a foreign protein-producing plant characterized in that a foreign gene is expressed in a plant. In a preferred embodiment of the present invention, a plant cell comprising a DNA having a structure in which a foreign gene is operably linked under the control of a DNA having the promoter activity of the present invention, or a vector comprising the DNA having the promoter activity of the present invention. It is a method including the process of introducing into.
[0085] また本発明は、外来タンパク質の製造方法を提供する。本発明の好ましい態様に おいては、本発明の形質転換細胞を培養し、該細胞またはその培養上清から、本発 明のプロモーター活性を有する DNAを含むベクターにより発現された外来遺伝子に よってコードされるタンパク質を回収することを特徴とする製造方法である。  [0085] The present invention also provides a method for producing a foreign protein. In a preferred embodiment of the present invention, the transformed cell of the present invention is cultured, and encoded by a foreign gene expressed from the cell or its culture supernatant by a vector containing a DNA having the promoter activity of the present invention. The production method is characterized in that the protein to be collected is recovered.
[0086] 上記本発明の外来タンパク質の製造方法の好ましい態様としては、例えば以下の 工程 (a)および (b)を含む製造方法である。  [0086] A preferred embodiment of the method for producing a foreign protein of the present invention is, for example, a method comprising the following steps (a) and (b).
(a)上記の本発明の外来タンパク質が含まれる植物体の製造方法または外来タンパ ク質生産植物体の製造方法によって、外来タンパク質が含まれる植物体を製造する 工程  (a) A step of producing a plant containing a foreign protein by the method for producing a plant containing the foreign protein of the present invention or the method for producing a foreign protein producing plant.
(b)前記植物体から外来タンパク質を回収する工程  (b) recovering foreign protein from the plant
[0087] 本発明の方法の対象となる植物体としては、特に制限されないが、例えば、ィモ類 植物または根菜類植物が挙げられる。 [0087] The plant to be subjected to the method of the present invention is not particularly limited. A plant or a root vegetable plant is mentioned.
[0088] 「ィモ類」としては、サツマィモ、ジャガイモ、キヤッサノ 、タロイモ、ャムィモ、サトイモ 、ナガィモ、ャマノィモ、コンニヤクイモ、キクイモ等を挙げることができるがこれらは一 例に過ぎず制限されない。  [0088] Examples of the "imo" include sweet potato, potato, cyssano, taro, yam, taro, nagaimo, yam, konnyakumo, and kikumo, but these are not limiting.
[0089] 根菜類としては、ダイコン、ハツカダイコン、サトウダイコン (テンサイ)、ニンジン、力 ブ、タマネギ、エシャロット、ゴボウ、レンコン、クワイ、ショウガ、チョロギ、ニンニク、ラッ キヨウ、ヮサビ、ユリネ等を挙げることができるがこれらは一例に過ぎず制限されない。  [0089] Examples of root vegetables include Japanese radish, Japanese radish, sugar beet (sugar beet), carrots, power, onions, shallots, burdock, lotus root, kwai, ginger, chorogi, garlic, Japanese sea bream, coral rust, and urine. Yes, but these are only examples and are not limited.
[0090] 本発明における植物体としては、例えば種子、果実、葉、茎、塊茎、根、塊根などを 有する植物体を挙げることができる。本発明においては、好ましくは塊根または塊茎 を有する植物体であり、より好ましくは塊根を有する植物体であり、最も好ましくは塊 根を有するサッマイモである。  [0090] Examples of the plant in the present invention include plants having seeds, fruits, leaves, stems, tubers, roots, tuberous roots and the like. In the present invention, a plant having a tuberous root or tuber is preferred, a plant having a tuberous root is more preferred, and a sweet potato having a tuberous root is most preferred.
[0091] 本発明のプロモーター活性を有する DNAはサツマィモの塊根での遺伝子発現を制 御するものであるが、上記したような植物体、好ましくはサツマィモの塊根と同様の構 造'発生様式を示す植物体でも、本発明のプロモーター活性を有する DNAがプロモ 一ターとしての機能を有するものと考えられる。  [0091] The DNA having promoter activity of the present invention controls gene expression in the roots of sweet potato, but exhibits the same structure as the above-mentioned plant body, preferably the root of sweet potato tubers. Even in a plant body, the DNA having promoter activity of the present invention is considered to have a function as a promoter.
[0092] また本発明は、上記本発明の方法によって取得される植物体を提供する。また、人 為的に作製された植物体であって、本発明のプロモーター活性を有する DNAを有し 、外来遺伝子によってコードされるタンパク質が発現されることを特徴とする植物体を 提供する。  [0092] The present invention also provides a plant obtained by the method of the present invention. Also provided is an artificially produced plant characterized by having a DNA having the promoter activity of the present invention and expressing a protein encoded by a foreign gene.
[0093] このような植物体としては、特に制限はないが、好ましくはサツマィモである。  [0093] Such a plant is not particularly limited, but is preferably sweet potato.
[0094] さらに本発明は、下記の工程 (a)〜(c)を含む、本発明のプロモーター活性を有す る DNAのプロモーター活性を調節する化合物のスクリーニング方法を提供する。[0094] Furthermore, the present invention provides a method for screening a compound that modulates the promoter activity of a DNA having the promoter activity of the present invention, comprising the following steps (a) to (c).
(a)本発明の DNAの制御下に、レポーター遺伝子が機能的に結合した構造を有する DNAを含む細胞または細胞抽出液と、被検化合物を接触させる工程 (a) a step of bringing a test compound into contact with a cell or cell extract containing DNA having a structure in which a reporter gene is functionally linked under the control of the DNA of the present invention
(b)該レポーター遺伝子の発現レベルを測定する工程  (b) measuring the expression level of the reporter gene
(c)該レポーター遺伝子の発現レベルを変化させる化合物を選択する工程  (c) selecting a compound that changes the expression level of the reporter gene
[0095] 本発明のスクリーニング方法に用いられる被検化合物としては、特に制限はなぐ 例えば、天然化合物、有機化合物、無機化合物、タンパク質、ペプチド等の単一化 合物、並びに、化合物ライブラリー、遺伝子ライブラリーの発現産物、細胞抽出物、細 胞培養上清、発酵微生物産生物、海洋生物抽出物、植物抽出物、原核細胞抽出物 、真核単細胞抽出物もしくは動物細胞抽出物等を挙げることができる。 [0095] The test compound used in the screening method of the present invention is not particularly limited. For example, natural compounds, organic compounds, inorganic compounds, proteins, peptides, etc. are unified. Compound, and compound library, gene library expression product, cell extract, cell culture supernatant, fermented microorganism product, marine organism extract, plant extract, prokaryotic cell extract, eukaryotic single cell extract Or an animal cell extract etc. can be mentioned.
[0096] 本スクリーニング方法においては、まず、本発明のプロモーター DNAの制御下に、 レポーター遺伝子が機能的に結合した構造を有する DNAを含む細胞または細胞抽 出液と、被検化合物を接触させる。  [0096] In this screening method, first, a test compound is brought into contact with a cell or a cell extract containing DNA having a structure in which a reporter gene is functionally linked under the control of the promoter DNA of the present invention.
[0097] 本発明において、「機能的に結合した」とは、本発明のプロモーター活性を有する D NAに転写因子が結合することにより、レポーター遺伝子の発現が誘導されるように、 本発明のプロモーター活性を有する DNAとレポーター遺伝子とが結合していることを いう。本スクリーニング方法における「本発明のプロモーター活性を有する DNAの制 御下に、レポーター遺伝子が機能的に結合した構造を有する DNAを含む細胞」とし て、例えば、上記 DNAを含むベクターを導入した細胞を挙げることができる。該ベクタ 一は、当業者に周知の方法により作製することができる。ベクターの細胞への導入は 、一般的な方法、例えば、リン酸カルシウム沈殿法、電気パルス穿孔法、リボフヱクタ ミン法、マイクロインジェクション法等によって実施することができる。  [0097] In the present invention, "functionally linked" means that the promoter of the present invention is such that expression of a reporter gene is induced by binding of a transcription factor to DNA having promoter activity of the present invention. It means that the active DNA and the reporter gene are bound. In the present screening method, “cells containing DNA having a structure in which a reporter gene is functionally linked under the control of DNA having promoter activity of the present invention”, for example, a cell into which a vector containing the above DNA has been introduced. Can be mentioned. The vector can be prepared by methods well known to those skilled in the art. Introduction of the vector into the cells can be carried out by a general method, for example, calcium phosphate precipitation method, electric pulse perforation method, ribofactoramine method, microinjection method and the like.
[0098] また、「本発明のプロモーター活性を有する DNAの制御下に、レポーター遺伝子が 機能的に結合した構造を有する DNAを含む細胞」には、染色体に該 DNAが挿入され た細胞も含まれる。染色体への DNAの挿入は、当業者に一般的に用いられる方法、 例えば、相同組み換えを利用した遺伝子導入法により行うことができる。  [0098] In addition, "a cell containing DNA having a structure in which a reporter gene is functionally linked under the control of DNA having promoter activity of the present invention" includes a cell into which the DNA is inserted into a chromosome. . DNA can be inserted into a chromosome by a method generally used by those skilled in the art, for example, a gene introduction method using homologous recombination.
[0099] 本方法における「本発明のプロモーター活性を有する DNAの制御下に、レポータ 一遺伝子が機能的に結合した構造を有する DNAを含む細胞抽出液」とは、例えば、 市販の試験管内転写翻訳キットに含まれる細胞抽出液に、本発明のプロモーター活 性を有する DNAとレポーター遺伝子とが機能的に結合した構造を有する DNAを添カロ したちのを挙げることができる。  [0099] The "cell extract containing DNA having a structure in which a reporter gene is functionally linked under the control of DNA having promoter activity of the present invention" in this method means, for example, commercially available in vitro transcription translation The cell extract contained in the kit may include those containing a DNA having a structure in which the DNA having the promoter activity of the present invention and a reporter gene are functionally linked.
[0100] 本スクリーニング方法における「接触」は、本発明のプロモーター活性を有する DNA の制御下に、レポーター遺伝子が機能的に結合した構造を有する DNAを含む細胞 の培養液に被検化合物を添加する、または該 DNAを含む上記の市販された細胞抽 出液に被検化合物を添加することにより行うことができる。被検化合物がタンパク質の 場合には、例えば、該タンパク質をコードする DNAを含むベクターを、該細胞へ導入 する、または該ベクターを該細胞抽出液に添加することによって実施することも可能 である。 [0100] In the present screening method, “contact” is performed by adding a test compound to a culture solution of cells containing DNA having a structure in which a reporter gene is functionally linked under the control of DNA having promoter activity of the present invention. Or by adding a test compound to the above-mentioned commercially available cell extract containing the DNA. The test compound is protein In some cases, for example, a vector containing DNA encoding the protein can be introduced into the cell, or the vector can be added to the cell extract.
[0101] 本スクリーニング方法にぉ 、ては、次 、で、該レポーター遺伝子の発現レベルを測 定する。レポーター遺伝子の発現レベルは、当業者においては、該レポーター遺伝 子の種類を考慮して、測定することができる。  [0101] In this screening method, the expression level of the reporter gene is then measured as follows. The expression level of a reporter gene can be measured by those skilled in the art in consideration of the type of the reporter gene.
[0102] 本スクリーニング方法においては、被検化合物の非存在下において測定した場合( 対照)と比較して、被検化合物がレポーター遺伝子の発現レベルを変化させた場合 に、被検化合物が本発明の DNAのプロモーター活性を調節する化合物であると判定 される。  [0102] In this screening method, when the test compound changes the expression level of the reporter gene as compared with the case where it is measured in the absence of the test compound (control), the test compound is the present invention. It is determined that the compound regulates the promoter activity of DNA.
[0103] さらに、本発明においては、上記スクリーニング方法を利用して、複数の被検化合 物について、本発明の DNAのプロモーター活性を調節するか否かを評価し、プロモ 一ター活性を調節する化合物を選択することにより、効率的にプロモーター活性を調 節する化合物をスクリーニングすることができる。該スクリーニング方法によって取得さ れる化合物は、遺伝子の植物体に特異的な発現を制御することが可能であり、非常 に有用である。  [0103] Furthermore, in the present invention, the above screening method is used to evaluate whether or not the promoter activity of the DNA of the present invention is regulated for a plurality of test compounds, thereby regulating the promoter activity. By selecting a compound, a compound that efficiently modulates promoter activity can be screened. The compound obtained by the screening method is very useful because it can control the expression specific to the plant of the gene.
[0104] また、本発明の DNAもしくはベクターを、所望の植物体へ導入することにより、植物 体において外来遺伝子の発現を誘導させることが可能である。  [0104] Furthermore, by introducing the DNA or vector of the present invention into a desired plant body, it is possible to induce the expression of a foreign gene in the plant body.
[0105] 本発明における「遺伝子発現誘導剤」は、所望の外来遺伝子を植物体にお!ヽて発 現させることを用途とする、本発明の DNAもしくはベクターを有効成分とする物質、ま たは組成物 (混合物)を指す。 [0105] The "gene expression inducer" in the present invention is a substance containing the DNA or vector of the present invention as an active ingredient for the purpose of expressing a desired foreign gene in a plant. Refers to a composition (mixture).
[0106] 本発明の薬剤においては、有効成分である DNAまたはベクター以外に、例えば、 滅菌水、生理食塩水、植物油、界面活性剤、脂質、溶解補助剤、緩衝剤、保存剤等 が必要に応じて混合されて ヽてもよ ヽ。 [0106] In addition to the active ingredient DNA or vector, the drug of the present invention requires, for example, sterile water, physiological saline, vegetable oil, surfactant, lipid, solubilizer, buffer, preservative, and the like. May be mixed accordingly.
[0107] 本発明の上記スクリーニング方法によって取得される化合物は、植物体のプロモー ター活性を調節する化合物として有用である。該化合物を植物に添加することによつ て、栽培現場において植物体の形質や機能の調節が可能になると考えられる。 [0107] The compound obtained by the screening method of the present invention is useful as a compound that modulates the promoter activity of a plant. By adding the compound to the plant, it is considered that the character and function of the plant body can be regulated at the cultivation site.
なお本明細書において引用された全ての先行技術文献は、参照として本明細書に 組み入れられる。 In addition, all prior art documents cited in this specification are incorporated herein by reference. Be incorporated.
実施例  Example
[0108] 以下に本発明を実施例によりさらに詳細に説明するが、本発明はこれら実施例に 制限されるものではない。なお、ゲノム DNAの調製、 mRNAの調整、 DNAの切断、連 結、大腸菌の形質転換、遺伝子の塩基配列決定等一般の遺伝子組換えに必要な方 法は、特に記載のない限り、各操作に使用する市販の試薬、機器装置等に添付され ている説明書や、実験書(例えば「Molecular Cloning (Sambrookら (1989), Cold Sprin g Harbor Laboratory Pressノ」 J【こ 本 【こ従つ 7こ。  [0108] The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. Unless otherwise stated, methods required for general gene recombination, such as genomic DNA preparation, mRNA adjustment, DNA cleavage, ligation, E. coli transformation, and gene sequencing, are described in each operation. Instructions attached to the commercially available reagents and equipment used, and experimental documents (for example, “Molecular Cloning (Sambrook et al. (1989), Cold Spring Harbor Laboratory Press”) J .
[0109] 〔実施例 1〕 サツマィモの塊根で発現する遺伝子の単離  [Example 1] Isolation of genes expressed in tuberous roots of sweet potato
サツマィモの 2つの品種(高系 14号とアヤムラサキ)の塊根力も cDNAライブラリーを 作成した。  The tuberous strength of two varieties of sweet potato (high line 14 and Ayamurasaki) was also used to create a cDNA library.
[0110] サツマィモの塊根からのフエノールを使った RNAの抽出は The NSF potato genome project (〃RNA isolation using phenol protocol in the URL of http://www.tigr.org/td b/potato/microarray_SO Ps . shtml)の方法に基本的に従って行った。  [0110] RNA extraction using phenol from sweet potato tubers was performed in The NSF potato genome project (〃RNA isolation using phenol protocol in the URL of http://www.tigr.org/tdb/potato/microarray_SO Ps. shtml) method was basically followed.
[0111] cDNAの合成は Stratageneの cDNA Synthesis Kitを用いて行!、、 cDNAのサイズ分 画を Amersham Bioscienceの Size Sep400 Spun Columnsを用いて行った。これを制限 酵素 Xholと EcoRIで切断したベクター pBluescriptll- SK+(Stratagene)に、 Toyoboの Lig ation Highを用いて組み込み、 cDNAライブラリーを完成した。  [0111] cDNA synthesis was performed using Stratagene's cDNA Synthesis Kit !, and cDNA size fractionation was performed using Amersham Bioscience's Size Sep400 Spun Columns. This was incorporated into a vector pBluescriptll-SK + (Stratagene) cleaved with restriction enzymes Xhol and EcoRI using Toyobo's Ligation High to complete a cDNA library.
[0112] cDNAライブラリーからクローンをランダムに単離し、高系 14号由来の 2804クローン、 およびアヤムラサキ由来の 3783クローンの塩基配列を決定した。  [0112] Clones were randomly isolated from the cDNA library, and the nucleotide sequences of 2804 clones derived from High Line 14 and 3783 clones derived from Ayamurasaki were determined.
[0113] 塩基配列の決定には、 PCR product Pre- Sequencing Kit (USB)と DYEnamic ET Dy e Terminator Cycle Sequencing Kit for MegaBAし E (amersham pharmacia biotech)で 反応を行い、 MegaBACElOOOを用いて行った。  [0113] The nucleotide sequence was determined using PCR product Pre-Sequencing Kit (USB) and DYEnamic ET Dye Terminator Cycle Sequencing Kit for MegaBA, and E (amersham pharmacia biotech), and using MegaBACElOOO.
[0114] これらのクローンのクラスター解析を行い、比較的高頻度に出現するクローン IT394 を選択した。 IT394は高系 14号由来のライブラリーから 4回、アヤムラサキ由来のライ ブラリーから 7回出現した。ァクチンと相同性のある IT948の場合は、高系 14号由来の ライブラリーから 3回、アヤムラサキ由来のライブラリーから 6回出現した。  [0114] Cluster analysis of these clones was performed, and clone IT394 that appeared relatively frequently was selected. IT394 appeared 4 times from the library derived from the high line 14 and 7 times from the library derived from Ayamurasaki. In the case of IT948, which is homologous to actin, it appeared 3 times from the library derived from high line 14 and 6 times from the library derived from Ayamurasaki.
[0115] 配列番号: 1に IT394の cDNA配列を示す。 IT394の相同性検索を行ったところ、メタ 口チォネインと相同'性があった。 [0115] SEQ ID NO: 1 shows the cDNA sequence of IT394. When a homology search of IT394 was performed, There was homology with mouth thionein.
[0116] 〔実施例 2〕 サツマィモの塊根で発現する遺伝子 IT394の上流域の取得  [012] [Example 2] Acquisition of upstream region of gene IT394 expressed in tuberous root of sweet potato
IT394のプロモーター領域を取得するために、 Clontechの BD GenomeWalker Kits によって IT394のゲノム DNAの上流域の単離を行った。この際に用いる铸型には高系 14号とアヤムラサキのゲノム DNAを用い、遺伝子特異的プライマーとして IT394の cDN A配列(配列番号: 1)に基づ 、て 2種類のプライマー(394-R3;配列番号: 2、 394-R4; 配列番号: 3)を合成した。増幅した約 0.9 kbの DNA断片は invitrogenの TOPO TA CI oning kitによって TAクローユングを行い、単離したクローンの塩基配列を決定した。  In order to obtain the promoter region of IT394, the upstream region of IT394 genomic DNA was isolated by Clontech's BD GenomeWalker Kits. In this case, Takashi 14 and Ayamurasaki genomic DNA are used as the cage type, and two primers (394-R3; based on IT394 cDNA sequence (SEQ ID NO: 1)) are used as gene-specific primers. SEQ ID NO: 2, 394-R4; SEQ ID NO: 3) was synthesized. The amplified DNA fragment of about 0.9 kb was subjected to TA cloning with TOPO TA CIoning kit of invitrogen, and the base sequence of the isolated clone was determined.
[0117] これにより、 IT394の cDNA配列(配列番号: 1)より上流の約 0.8 kbの塩基配列を取 得することに成功した。高系 14号のゲノム DNAを铸型として得られた配列を配列番号 :4、アヤムラサキのゲノム DNA铸型として得られた配列を配列番号: 5に示す。  [0117] As a result, a base sequence of about 0.8 kb upstream from the IT394 cDNA sequence (SEQ ID NO: 1) was successfully obtained. SEQ ID NO: 4 shows the sequence obtained by using the No. 14 genomic DNA as a cocoon type, and SEQ ID NO: 5 shows the sequence obtained as a genomic DNA cocoon from Ayamura Saki.
[0118] 〔実施例 3〕 IT394の上流域のプロモーター活性検定用ベクターの作成  [Example 3] Preparation of promoter activity assay vector upstream of IT394
IT394の cDNA配列(配列番号: 1)からは、長い ORFが検出されないが、 IT394の cD NA配列にホモロジ一のあるメタ口チォネイン遺伝子(例えば RCMIT ;ァクセッション番 号: L02306; IT394と RCMITの ORF領域には 43%のホモロジ一がある)の翻訳開始点 力 配列番号: 1の 54番目と一致するため、ここを翻訳開始点と予測し、ここより上流 の配列を IT394のプロモーター領域の候補として単離した。  From the IT394 cDNA sequence (SEQ ID NO: 1), a long ORF is not detected, but the metagene of thioneine homologous to the IT394 cDNA sequence (eg RCMIT; accession number: L02306; IT394 and RCMIT (The ORF region has 43% homology) The translation start point of SEQ ID NO: 1 matches with position 54 of the sequence, so this is predicted as the translation start point, and the sequence upstream from this is a candidate for the IT394 promoter region As isolated.
[0119] 高系 14号のゲノム DNAを铸型として得られた IT394の cDNAより上流の配列(配列番 号: 4)に基づ!/、て一対のプライマー(394-F07s;配列番号: 6、 394-Rb;配列番号: 7) を合成した。  [0119] Based on the upstream sequence (SEQ ID NO: 4) of IT394 cDNA obtained by using the genome DNA of high system No. 14 as a cage type! / And a pair of primers (394-F07s; SEQ ID NO: 6 , 394-Rb; SEQ ID NO: 7) was synthesized.
[0120] 394-F07Sは、正方向プライマーであり、 5'末端側に制限酵素 Sadl部位 (ccgcgg)を 有し、ゲノム配列上の Sad部位(gaGctc)に変異(gaCctc)を導入する。 394- Rbは、逆 方向プライマーであり、 5'末端側に制限酵素 BamHI部位 (ggatcc)を有する。このブラ イマ一対を用い、高系 14号のゲノム DNAを铸型として PCRを行い、約 730 bpの増幅 D NA断片を得た。増幅された DNA断片を、 invitrogenの TOPO TA Cloning kitによって TAクローユングを行 ヽ(pSP53)、単離したクローンの塩基配列を決定した(配列番号 : 8)。  [0120] 394-F07S is a forward primer, has a restriction enzyme Sadl site (ccgcgg) on the 5 'end side, and introduces a mutation (gaCctc) into the Sad site (gaGctc) on the genome sequence. 394-Rb is a reverse primer and has a restriction enzyme BamHI site (ggatcc) on the 5 ′ end side. Using this pair of primers, PCR was carried out using the type 14 genomic DNA as a saddle and an amplified DNA fragment of approximately 730 bp was obtained. The amplified DNA fragment was subjected to TA cloning with the in vitro TOPO TA Cloning kit (pSP53), and the base sequence of the isolated clone was determined (SEQ ID NO: 8).
[0121] 次に、ベクター pBluescript SK (Stratagene)に、植物体内で強い蛍光を発する緑色 蛍光タンパク質の変異型 sGFP(S65T) (丹羽康夫:植物細胞工学シリーズ 4、モデル植 物の実験プロトコール、 PPH7-121,秀潤社、 1996)と Nosターミネータ一を組み込ん だプラスミドである pblue- sGFP(S65T)- NOS SKと、プラスミド pSP53をそれぞれ BamHI と SacIIで切断し、 Toyoboの Ligation Highを用いてライゲーシヨンを行うことで、プラスミ ド pHM 160を作成した。 [0121] Next, the vector pBluescript SK (Stratagene) emits strong green light in plants. Fluorescent protein mutant sGFP (S65T) (Yasuo Niwa: Plant Cell Engineering Series 4, Model Plant Experiment Protocol, PPH7-121, Shujunsha, 1996) and pblue-sGFP, a plasmid incorporating Nos terminator ( S65T) -NOS SK and plasmid pSP53 were digested with BamHI and SacII, respectively, and ligated using Toyobo's Ligation High to produce plasmid pHM160.
[0122] さらにこのプラスミドを Sadと Kpnlで切断し、バイナリーベクターである pPZP2H-lacの マルチクロー-ングサイトに IT394の上流域- GFP-Nosターミネータ一のひとつながり の配列を挿入することで、 IT394の上流域の植物体におけるプロモーター活性を GFP 遺伝子をレポーターとして検証することができるベクター PHM161を完成させた(図 1)  [0122] This plasmid was further cleaved with Sad and Kpnl, and a sequence of one upstream of IT394-GFP-Nos terminator was inserted into the multicloning site of binary vector pPZP2H-lac. A vector PHM161 that can verify the promoter activity in the plant upstream of the GFP gene as a reporter was completed (Fig. 1).
[0123] 〔実施例 4〕 形質転換植物の作成と GFPの検出 [Example 4] Preparation of transformed plant and detection of GFP
作成したベクター PHM161は凍結解凍法によりァグロバタテリゥム'ッメファシエンス 菌 EHA101に導入した。凍結解凍法とは凍結した EHA101のコンビテントセルにプラス ミド溶液をカ卩え、 37°Cで 5分間保温する方法のことを ヽぅ。  The prepared vector PHM161 was introduced into Agrobacterium tumefaciens EHA101 by freeze-thawing. Freezing and thawing refers to a method in which a plasmid solution is placed in a frozen EHA101 competent cell and incubated at 37 ° C for 5 minutes.
[0124] ベクター pHM161が導入された菌株を用いてシロイヌナズナ(品種: Columbia)とサ ツマィモ(品種:高系 14号)に遺伝子を導入した。 [0124] Genes were introduced into Arabidopsis thaliana (variety: Columbia) and sweet potato (breed: high line 14) using a strain into which the vector pHM161 was introduced.
[0125] シロイヌナズナヘの導入は、「減圧浸潤法による形質転換 (荒木崇)」(植物細胞ェ 学シリーズ 4、モデル植物の実験プロトコール、 ppl09-113、秀潤社、 1996)に記載の 方法に基本的に従って行った。ただし、記載されている減圧の過程は省いて行った。 [0125] Arabidopsis thaliana was introduced by the method described in “Transformation by reduced pressure infiltration method (Takashi Araki)” (Plant cytology series 4, Experimental protocol for model plants, ppl09-113, Shujunsha, 1996). Followed the basics. However, the described decompression process was omitted.
[0126] サツマィモへの導入は、 Otani et al. Plant Biotechnology, 15:11-16, 1998に記載の 方法に基本的に従って行った。 [0126] Introduction into sweet potato was performed according to the method described in Otani et al. Plant Biotechnology, 15: 11-16, 1998.
[0127] 〔実施例 5〕 形質転換植物における GFPの検出 [Example 5] Detection of GFP in transformed plants
青色 LEDスポットライト(MeCan Imaging, MC- L12B)に GFP用 Exフィルター(朝日分 光)を装着して励起光として植物に照射し、発せられる蛍光を実体顕微鏡 (OLYMPU A blue LED spotlight (MeCan Imaging, MC-L12B) is equipped with an Ex filter for GFP (Asahi halo) and irradiated to the plant as excitation light. The fluorescence emitted is stereo microscope (OLYMPU)
S, SZX12)、またはデジタルカメラ(OLYMPUS, E-10)に GFP用 Baフィルター(朝日分 光)を装着して観察を行った。 S, SZX12), or a digital camera (OLYMPUS, E-10) with a GFP Ba filter (Asahi spectroscopy) was used for observation.
[0128] サツマィモの塊根では、通常、強力なプロモーターとして利用されている CaMV35S プロモーターに比較してもはるかに強い発現が検出されていることから、配列番号 : 8 に示した IT394の上流域 730 bpの塩基配列はサツマィモの塊根で外来遺伝子を多量 に発現させるプロモーターとして機能することが示された。また、シロイヌナズナでも 発現したことから、他の植物種における根のプロモーターとしても利用が可能であると 考えられる。 [0128] In sweet potato tuberous roots, a much stronger expression was detected than the CaMV35S promoter, which is normally used as a strong promoter. The base sequence of 730 bp upstream of IT394 was shown to function as a promoter to express a large amount of foreign genes in sweet potato tuberous roots. Moreover, since it was expressed in Arabidopsis thaliana, it could be used as a root promoter in other plant species.
[0129] 〔実施例 6〕 葉における一過的発現解析  [Example 6] Transient expression analysis in leaves
IT394プロモーター、または 35Sプロモーターに GFPあるいは IbMYBlをつないだプ ラスミドを、サツマィモの葉にパーティクルガンで同時に打ち込んだ。プラスミドの作 成、パーティクルガンの方法は (Mano H, Ogasawara F, Sato K, Higo H, Minobe Y (2 007) Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato. Plant Physiol. 143: 1252- 1268)に記載の方法に従って 行った。  A plasmid in which GFP or IbMYBl was linked to the IT394 promoter or 35S promoter was simultaneously injected into the leaves of a sweet potato with a particle gun. Plasmid construction and particle gun method (Mano H, Ogasawara F, Sato K, Higo H, Minobe Y (2 007) Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato.Plant Physiol. 143: 1252-1268).
[0130] 結果、 35Sプロモーターを用いた場合に比べて、 IT394プロモーターを用いた場合 は GFPの蛍光が長期間にわたって観察される細胞の割合が多力つた。例えば IT394 プロモーターでは 3日後で 8割、 1週間後でも半数の細胞で蛍光が観察されたが、 35S プロモーターでは 3日後で半数、 1週間後には 1割程度の細胞でしか蛍光が観察され なかった。また、アントシァニン合成を制御する転写因子 IbMYBlを発現させると、 IT3 94プロモーターを用いた場合には約 8割の細胞でアントシァニンの蓄積が観察された 力 35Sプロモーターを用いた場合には約半数の細胞でしかアントシァニンの蓄積が 観察されなかった。  [0130] As a result, the percentage of cells in which GFP fluorescence was observed over a long period of time was greater when the IT394 promoter was used than when the 35S promoter was used. For example, in the IT394 promoter, fluorescence was observed in 80% of cells after 3 days and in half of the cells after 1 week, but in the 35S promoter, fluorescence was observed in only about 10% of cells after 3 days and after 1 week. . In addition, when the transcription factor IbMYBl that controls anthocyanin synthesis is expressed, anthocyanin accumulation is observed in about 80% of cells when the IT3 94 promoter is used. About half of the cells are observed when the 35S promoter is used. Only anthocyanin accumulation was observed.
[0131] このことから、一過的発現解析において IT394プロモーターは 35Sプロモーターに比 ベて、より長期にわたって導入した遺伝子を持続的に発現させる能力を持つことが示 された。  [0131] From this, it was shown in the transient expression analysis that the IT394 promoter has the ability to continuously express the introduced gene over a longer period than the 35S promoter.
[0132] GFP、 GUS、 LUCなどのレポーター遺伝子のように、導入した遺伝子を直接検出で きる場合には長期にわたる発現の必要性は必ずしも高いとはいえない。しかし、例え ば、転写因子は他の遺伝子の発現を誘導することにより形質が現われてくることから 、導入遺伝子をより長期間にわたって持続的に発現させる必要性が高くなる。実際、 アントシァニンの転写因子を導入してアントシァニン合成系の遺伝子を誘導し、その 結果としてアントシァニンの蓄積を観察した実験(図 4)では IT394プロモーターでは 8 割以上の遺伝子導入細胞で着色が観察されたのに対し、 35Sの場合には半数程度 の細胞でし力着色は観察できな力つた。この他にも例えば、孔辺細胞や根毛形成な ど細胞の形態変化を誘導する遺伝子を解析する場合には、導入遺伝子の持続的な 発現の必要性がさらに高くなると考えられる。このことから一過的発現解析に IT394プ 口モーターを利用すれば、これまで 35Sプロモーターなどでは解析できなかった遺伝 子の解析も可能になると考えられる。 [0132] The need for long-term expression is not necessarily high when the introduced gene can be directly detected, such as reporter genes such as GFP, GUS, and LUC. However, for example, since a transcription factor manifests itself by inducing the expression of another gene, the need to continuously express the transgene for a longer period of time becomes higher. In fact, in an experiment in which anthocyanin synthesis system genes were introduced by introducing anthocyanin transcription factors and as a result the accumulation of anthocyanins was observed (Fig. 4) Coloring was observed in more than 20% of the transgenic cells, whereas in the case of 35S, about half of the cells were force-colored. In addition to this, for example, when analyzing genes that induce morphological changes of cells such as guard cells and root hair formation, it is considered that the need for continuous expression of the transgene is further increased. Therefore, if IT394 probe motor is used for transient expression analysis, it will be possible to analyze genes that could not be analyzed with 35S promoter.
産業上の利用可能性  Industrial applicability
[0133] 本発明者らによって、サツマィモの塊根等の植物の根で発現するプロモーターを単 離することに成功した。当該プロモーターを利用することによって、サツマィモの塊根 を含む植物体において効率的に医薬品原料、工業用原料などの有用物質を生産さ せることが可能になる。特に、植物の根において適切な遺伝子を発現させることで、 線虫抵抗性、耐病性、耐冠水性、耐乾燥性を有する植物、あるいは特定の栄養素が 欠乏した土壌、過剰な土壌などでも生育可能な植物を作出できる可能性がある。ま た、有害物質を効率的に吸収できる植物を作出することで、ファイトレメディエーショ ン、土壌浄化に利用することもできる。あるいは当該植物体の栄養改変や、医薬品や 生分解プラスチックなどの原料生産など、植物体にぉ 、て外来遺伝子を発現させる ことによる応用範囲は広ぐ有用性は高い。  [0133] The present inventors have succeeded in isolating a promoter expressed in the roots of plants such as sweet potato tuberous roots. By using the promoter, it is possible to efficiently produce useful substances such as pharmaceutical raw materials and industrial raw materials in plants containing sweet potato tuberous roots. In particular, by expressing appropriate genes in the roots of plants, they can grow on nematode-resistant, disease-resistant, water-resistant, drought-tolerant plants, soils lacking specific nutrients, and excessive soils. New plants may be created. It can also be used for phytoremediation and soil purification by creating plants that can absorb harmful substances efficiently. Alternatively, the range of applications by expressing foreign genes in plants, such as nutritional modification of the plants and production of raw materials such as pharmaceuticals and biodegradable plastics, is wide and useful.
[0134] また、植物体の成分を改変することで、食味の良い植物体、身体に良い成分を含 有する植物体の作出も可能になる。例えばサッマイモでは塊根の成分を改変するこ とで、おいしいサツマィモ、身体に良いサッマイモの作出が可能になる。  [0134] Further, by modifying the components of the plant body, it is possible to produce a plant body having a good taste and a plant body containing a component good for the body. For example, in sweet potatoes, it is possible to produce delicious sweet potatoes and healthy sweet potatoes by modifying the components of tuberous roots.

Claims

請求の範囲 The scope of the claims
[I] 下記の(a)〜(c)の!、ずれかに記載のプロモーター活性を有する DNA。  [I] A DNA having promoter activity described in any one of (a) to (c) below.
(a)配列番号: 8に記載の塩基配列力 なる DNA  (a) DNA having the nucleotide sequence of SEQ ID NO: 8
(b)配列番号 : 8に記載の塩基配列において 1もしくは複数の塩基が欠失、置換もしく は付加された塩基配列カゝらなる DNA  (b) DNA comprising one or more bases deleted, substituted or added in the base sequence set forth in SEQ ID NO: 8
(c)配列番号: 8に記載の塩基配列力 なる DNAとストリンジェントな条件下でノ、イブリ ダイズする DNA  (c) DNA that hybridizes under stringent conditions with DNA having the nucleotide sequence of SEQ ID NO: 8
[2] 植物の根においてプロモーター活性を有することを特徴とする、請求項 1に記載の DNA0 [2] The DNA 0 according to claim 1, which has promoter activity in the roots of the plant.
[3] 前記根がサッマイモの塊根である、請求項 2に記載の DNA。  3. The DNA according to claim 2, wherein the root is a tuber root of sweet potato.
[4] 請求項 1〜3のいずれかに記載の DNAの制御下に、外来遺伝子が機能的に連結し た構造を有する DNA。  [4] A DNA having a structure in which a foreign gene is operably linked under the control of the DNA according to any one of claims 1 to 3.
[5] 請求項 1〜4の!、ずれかに記載の DNAを含むベクター。 [5] A vector comprising the DNA according to any one of claims 1 to 4!
[6] 請求項 1〜4のいずれかに記載の DNA、または請求項 5に記載のベクターを含む、 形質転換細胞。  [6] A transformed cell comprising the DNA according to any one of claims 1 to 4 or the vector according to claim 5.
[7] 微生物である、請求項 6に記載の形質転換細胞。 [7] The transformed cell according to claim 6, which is a microorganism.
[8] 植物細胞である、請求項 6に記載の形質転換細胞。 [8] The transformed cell according to claim 6, which is a plant cell.
[9] 請求項 8に記載の細胞を含む、形質転換植物体。 [9] A transformed plant comprising the cell according to claim 8.
[10] 請求項 9に記載の形質転 ^¾物体の子孫またはクローンである、形質転 ^¾物体  [10] The transformed ^ ¾ object which is a descendant or clone of the transformed ^ ¾ object according to claim 9.
[II] 請求項 9または 10に記載の形質転換植物体の繁殖材料。 [II] The propagation material for the transformed plant according to claim 9 or 10.
[12] 請求項 4に記載の DNA、または請求項 5に記載のベクターを植物細胞へ導入し、該 植物細胞から植物体を再生させる工程を含む、形質転換植物体の作製方法。  [12] A method for producing a transformed plant comprising the steps of introducing the DNA according to claim 4 or the vector according to claim 5 into a plant cell and regenerating the plant from the plant cell.
[13] 植物体において外来遺伝子を発現させる方法であって、請求項 4に記載の DNA、 または請求項 5に記載のベクターを該植物の細胞へ導入する工程を含む方法。  [13] A method for expressing a foreign gene in a plant, comprising the step of introducing the DNA according to claim 4 or the vector according to claim 5 into cells of the plant.
[14] 外来タンパク質が含まれる植物体の製造方法であって、請求項 4に記載の DNA、ま たは請求項 5に記載のベクターを植物の細胞へ導入する工程を含む方法。  [14] A method for producing a plant containing a foreign protein, comprising the step of introducing the DNA of claim 4 or the vector of claim 5 into a plant cell.
[15] 植物体にぉ ヽて外来遺伝子を発現させることを特徴とする、外来タンパク質生産植 物体の製造方法であって、請求項 4に記載の DNA、または請求項 5に記載のベクタ 一を植物の細胞へ導入する工程を含む方法。 [15] A foreign protein-producing plant characterized in that a foreign gene is expressed in a plant. A method for producing an object, the method comprising introducing the DNA according to claim 4 or the vector according to claim 5 into a plant cell.
[16] 請求項 6〜8のいずれかに記載の形質転換細胞を培養し、該細胞またはその培養 上清から、請求項 5に記載のベクターにより発現された外来遺伝子によってコードさ れるタンパク質を回収することを特徴とする、外来タンパク質の製造方法。 [16] The transformed cell according to any one of claims 6 to 8 is cultured, and the protein encoded by the foreign gene expressed by the vector according to claim 5 is recovered from the cell or a culture supernatant thereof. A method for producing a foreign protein, characterized by comprising:
[17] 以下の工程 (a)および (b)を含む、外来タンパク質の製造方法。 [17] A method for producing a foreign protein, comprising the following steps (a) and (b):
(a)請求項 14または 15に記載の方法によって、外来タンパク質が含まれる植物体を 製造する工程  (a) A step of producing a plant containing a foreign protein by the method according to claim 14 or 15.
(b)前記植物体から外来タンパク質を回収する工程  (b) recovering foreign protein from the plant
[18] 前記植物体力ィモ類または根菜類である、請求項 13〜15、 17のいずれかに記載 の方法。  [18] The method according to any one of [13] to [15] and [17], which is the plant strength potato or root vegetable.
[19] 前記植物体が塊根または塊茎を有する植物体である、請求項 13〜15、 17のいず れかに記載の方法。  [19] The method according to any one of claims 13 to 15 and 17, wherein the plant is a plant having tuberous roots or tubers.
[20] 前記塊根が、サツマィモの塊根である、請求項 19に記載の方法。 20. The method according to claim 19, wherein the tuberous root is a sweet potato tuber.
[21] 請求項 14または 15に記載の方法によって取得される植物体。 [21] A plant obtained by the method according to claim 14 or 15.
[22] 人為的に作製された植物体であって、請求項 4に記載の DNAを有し、外来遺伝子 によってコードされるタンパク質が発現されることを特徴とする植物体。 [22] An artificially produced plant comprising the DNA of claim 4 and expressing a protein encoded by a foreign gene.
[23] 植物体がサッマイモである、請求項 21または 22に記載の植物体。 [23] The plant according to claim 21 or 22, wherein the plant is sweet potato.
[24] 以下の工程(a)〜(c)を含む、請求項 1〜3のいずれかに記載の DNAのプロモータ 一活性を調節する化合物のスクリーニング方法。 [24] The method for screening a compound that modulates one activity of the promoter of DNA according to any one of claims 1 to 3, comprising the following steps (a) to (c):
(a)請求項 1〜3のいずれかに記載の DNAの制御下に、レポーター遺伝子が機能的 に結合した構造を有する DNAを含む細胞または細胞抽出液と、被検化合物を接触さ せる工程  (a) a step of bringing a test compound into contact with a cell or cell extract containing DNA having a structure in which a reporter gene is functionally bound under the control of the DNA according to any one of claims 1 to 3;
(b)該レポーター遺伝子の発現レベルを測定する工程  (b) measuring the expression level of the reporter gene
(c)該レポーター遺伝子の発現レベルを変化させる化合物を選択する工程  (c) selecting a compound that changes the expression level of the reporter gene
[25] 植物体において外来遺伝子を発現させるためのプロモーターとして利用される DN A薬剤であって、請求項 1〜4のいずれかに記載の DNA、または請求項 5に記載のベ クタ一を有効成分とする、遺伝子発現誘導剤。  [25] A DNA agent used as a promoter for expressing a foreign gene in a plant, wherein the DNA according to any one of claims 1 to 4 or the vector according to claim 5 is effective. Gene expression inducer as a component.
PCT/JP2007/061968 2006-06-15 2007-06-14 Promoter capable of being expressed in root of plant WO2007145267A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-166053 2006-06-15
JP2006166053A JP2009201357A (en) 2006-06-15 2006-06-15 Promoter expressed in root of plant

Publications (1)

Publication Number Publication Date
WO2007145267A1 true WO2007145267A1 (en) 2007-12-21

Family

ID=38831781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/061968 WO2007145267A1 (en) 2006-06-15 2007-06-14 Promoter capable of being expressed in root of plant

Country Status (2)

Country Link
JP (1) JP2009201357A (en)
WO (1) WO2007145267A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022467A1 (en) * 2004-08-25 2006-03-02 Korea University Industry and Academy Cooperation Foundation Sweetpotato mads-box promoter directing high level expression in plant storage root

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006022467A1 (en) * 2004-08-25 2006-03-02 Korea University Industry and Academy Cooperation Foundation Sweetpotato mads-box promoter directing high level expression in plant storage root

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
KIM K.-Y. ET AL.: "A novel oxidative stress-inducible peroxidase promoter from sweet potato: molecular cloning and characterization in transgenic tobacco plants and cultured cells", PLANT MOL. BIOL., vol. 51, no. 6, 2003, pages 831 - 838, XP003020529 *
KWAK M.S. ET AL.: "Two sweetpotato ADP-glucose pyrophosphorylase isoforms are regulated antagonistically in response to sucrose content in storage roots", GENE, vol. 366, no. 1, 17 January 2006 (2006-01-17), pages 87 - 96, XP005282082 *
MAEO K. ET AL.: "Sugar-responsible elements in the promoter of a gene for beta-aymlase of sweet potato", PLANT MOL. BIOL., vol. 46, no. 5, 2001, pages 627 - 637, XP002208640 *
OHTA S. ET AL.: "High-level expression of a sweet potato sporamin gene promoter: beta-glucuroidase (GUS) fusion gene in the stems of transgenic tobacco plants is conferred by multiple cell type-specific regulatory elements", MOL. GEN. GENET., vol. 225, 1991, pages 369 - 378, XP002135160 *
WANG S.-J. ET AL.: "Wound-response regulation of the sweet potato sporamin gene promoter region", PLANT MOL. BIOL., vol. 48, no. 3, 2002, pages 223 - 231, XP009014750 *

Also Published As

Publication number Publication date
JP2009201357A (en) 2009-09-10

Similar Documents

Publication Publication Date Title
US7235710B2 (en) Regulatory sequence
Ning et al. Shortening tobacco life cycle accelerates functional gene identification in genomic research
US7034138B2 (en) Identification and characterization of an anthocyanin mutant (ANT1) in tomato
CA3022345A1 (en) Construct and vector for intragenic plant transformation
CN112457380A (en) Protein for regulating and controlling content of fruit shape and/or fruit juice of plant, related biological material and application thereof
CN103172716B (en) Heat-resistant plant gene and application thereof
JP5787413B2 (en) A method for producing a toothpick-forming plant in which the ability to produce tubers or the ability to form a toothpick is improved compared to a wild strain, and a toothpick-forming plant produced by the method
CN102373217A (en) Paddy DREBs (dehydration-responsive element binding) transcription factor and application thereof
WO2007142258A1 (en) Anthocyanin synthesis regulatory gene, and use thereof
ES2344877B1 (en) PLANT WITH STRESS RESISTANCE FOR LOW TEMPERATURES AND PRODUCTION METHOD OF THE SAME.
CN103288941A (en) Related protein capable of adjusting translation efficiency of chloroplast protein and improving heat resistance of plants, and application thereof
JP2013051911A (en) Method for increasing root knot nematode resistance of plant
JP6202832B2 (en) Environmental stress-tolerant plant having high seed yield and its production method
JP4059897B2 (en) Rice nicotianamine synthase gene promoter and use thereof
CN114230649B (en) Tn1 protein related to rice tillering force, related biological material and application thereof
WO2007145267A1 (en) Promoter capable of being expressed in root of plant
CN104561040A (en) Plant heat-resistant gene HTT3 and application thereof
AU2018253628B2 (en) Construct and vector for intragenic plant transformation
KR102110870B1 (en) IbOr-R96H mutant from Ipomoea batatas and uses thereof
JP2004329210A (en) Gene imparting resistance to salt stress
JP4097227B2 (en) Ubiquitin fusion gene promoter and use thereof
KR101263838B1 (en) A preparation method of freezing―tolerant plant by a recombinant DNA technology
AU2002245189B8 (en) Identification and characterization of an anthocyanin mutant (ANT1) in tomato
AU2002245189B2 (en) Identification and characterization of an anthocyanin mutant (ANT1) in tomato
CN116200421A (en) Gene for improving lycopene content of tomato fruits and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07745225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07745225

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP