WO2021153673A1 - 免疫関連副作用の予防および治療の少なくとも一方を行う薬剤、遺伝子改変非ヒト動物、および免疫関連副作用モデル非ヒト動物 - Google Patents

免疫関連副作用の予防および治療の少なくとも一方を行う薬剤、遺伝子改変非ヒト動物、および免疫関連副作用モデル非ヒト動物 Download PDF

Info

Publication number
WO2021153673A1
WO2021153673A1 PCT/JP2021/003050 JP2021003050W WO2021153673A1 WO 2021153673 A1 WO2021153673 A1 WO 2021153673A1 JP 2021003050 W JP2021003050 W JP 2021003050W WO 2021153673 A1 WO2021153673 A1 WO 2021153673A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
gene
human animal
immune
genetically modified
Prior art date
Application number
PCT/JP2021/003050
Other languages
English (en)
French (fr)
Inventor
奈緒子 井川
亮多 田中
Original Assignee
国立大学法人筑波大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人筑波大学 filed Critical 国立大学法人筑波大学
Priority to JP2021574109A priority Critical patent/JPWO2021153673A1/ja
Publication of WO2021153673A1 publication Critical patent/WO2021153673A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/12Drugs for disorders of the urinary system of the kidneys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • A61P17/06Antipsoriatics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • A61P19/02Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • A61P21/04Drugs for disorders of the muscular or neuromuscular system for myasthenia gravis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing

Definitions

  • the present invention relates to agents that prevent and treat at least one of immune-related side effects, genetically modified non-human animals, and immune-related side effect model non-human animals.
  • Anti-PD-1 (Prommed cell death 1) antibody or anti-PD-L1 (Prommed cell death 1-Ligand 1) antibody which are immune checkpoint inhibitors, are various, including malignant melanoma and flat epithelial non-small cell lung cancer. It is effective in the treatment of cancer and is frequently used clinically as cancer immunotherapy. However, along with the anti-cancer effect, an autoimmune reaction is evoked by its mechanism of action, and various immune-related side effects (immune-related advanced events: irAEs, also referred to as immune-related adverse events) occur. Immune-related side effects occur in about 70% of cases treated with anti-PD-1 antibody or anti-PD-L1 antibody.
  • Immune-related side effects can occur in systemic organs such as the lungs, intestines, and thyroid gland, but dermatitis accounts for about 40% of them, one of which is psoriasis-like dermatitis. It has been reported that patients who develop psoriasis-like dermatitis as an immune-related side effect have an increase in serum interleukin-6 (IL-6) compared to patients who do not develop immune-related side effects. (Non-Patent Document 1). However, since the pathophysiology and mechanism of onset of immune-related side effects are often unknown, non-specific immunosuppressive therapies such as steroids are currently selected as a coping method for immune-related side effects.
  • non-specific immunosuppressive therapies such as steroids are currently selected as a coping method for immune-related side effects.
  • the present inventors analyzed the pathophysiology and onset mechanism of immune-related side effects, especially psoriasis-like dermatitis, and considered that psoriasis-like dermatitis could be prevented and treated if a part of the mechanism could be inhibited. Therefore, the pathophysiology and onset mechanism of psoriasis-like dermatitis as an immune-related side effect are analyzed, and as the first aspect of the present invention, at least the prevention and treatment of the immune-related side effect by the anti-PD-1 antibody or the anti-PD-L1 antibody.
  • the challenge is to provide a drug that does one.
  • the state in which the anti-PD-1 antibody or anti-PD-L1 antibody was administered can be reproduced in the model animal, it is considered that the pathophysiology and the onset mechanism of immune-related side effects can be analyzed. Therefore, as a second aspect of the present invention, it is an object of the present invention to provide a genetically modified non-human animal in which PD-1 / PD-L1 and L2 signals are inhibited in a tissue-specific and time-specific manner. Furthermore, if there is a model animal that develops immune-related side effects, we thought that it would be possible to search for and develop effective drugs for the prevention and treatment of immune-related side effects.
  • the present inventors have diligently studied to solve the above problems. As a result, they have found that the above problems can be solved by having the following configuration, and have completed the present invention.
  • the present invention relates to, for example, the following [1] to [29].
  • a drug that comprises at least one of prevention and treatment of immune-related side effects caused by an anti-PD-1 antibody or an anti-PD-L1 antibody, which comprises a substance that inhibits an IL-6 signal, and the immune-related side effects are skin disorders.
  • the psoriasis-like dermatitis is one in which the infiltration of CD8-positive cells into the epidermis is enhanced as compared with psoriasis vulgaris.
  • a genetically modified non-human whose expression of all or part of the PD-1 gene is suppressed or lost by introducing a mutation into the PD-1 gene or the expression regulatory region of the PD-1 gene in the genome.
  • the genetically modified non-human animal is a genetically modified non-human animal in which the expression of all or part of the PD-1 gene is suppressed or lost specifically in at least one of the tissue and the time period.
  • Immune-related side effects model non-human animals described in.
  • a drug that prevents and treats immune-related side effects caused by an anti-PD-1 antibody or an anti-PD-L1 antibody. It is possible to provide a genetically modified non-human animal in which PD-1 / PD-L1 and L2 signals are inhibited in a tissue-specific and time-specific manner. In addition, non-human animals can be provided that model immunity-related side effects with anti-PD-1 or anti-PD-L1 antibodies. It is possible to provide a method for screening a drug that performs at least one of prevention and treatment of immune-related side effects caused by an anti-PD-1 antibody or an anti-PD-L1 antibody. It is possible to provide a method for evaluating a drug that performs at least one of prevention and treatment of immune-related side effects caused by an anti-PD-1 antibody or an anti-PD-L1 antibody.
  • FIG. 1 is a photograph of the skin of the back and lower legs of a patient with psoriasis vulgaris (left) and Anti-PD-1 antibody-induced psoriasis-like dermatitis (anti-PD-1 antibody-induced psoriasis-like dermatitis, right). be.
  • FIG. 2 shows tissue sections obtained from patients with psoriasis vulgaris (top) and Anti-PD-1 antibody-induced psoriasis-like dermatitis (anti-PD-1 antibody-induced psoriasis-like dermatitis, bottom) stained with hematoxyline eosin.
  • FIG. 3 shows CD8 / CD4 ratio (value obtained by dividing the number of CD8-positive T cells infiltrated into the epidermis by the number of CD4-positive T cells infiltrated into the epidermis) with psoriasis vulgaris and Anti-PD-1 antibody-induced. It is a graph which compared with the patient of psoriasis-like dermatitis (anti-PD-1 antibody-induced psoriasis-like dermatitis).
  • FIG. 4 shows changes in serum IL-6 concentration before and after administration of anti-PD-1 antibody-administered melanoma patients in patients with Psoriasis-like dermatitis (psoriasis-like dermatitis) and Other irAEs (psoriasis-like dermatitis). It is a graph comparing the patient with the onset of immune-related side effects other than) and the patient with No irAE (no immune-related side effects). Pre indicates before administration of anti-PD-1 antibody, and Post indicates after administration of anti-PD-1 antibody.
  • FIG. 5 shows the wild-type mice in the Vehicle group (left), the wild-type mice in the IMQ (imiquimod) group (center), and the PD-1 -/- mice (right) in the IMQ (imiquimod) group on the 7th day of application. It is a photograph of the back skin.
  • the left side of FIG. 6 is a graph showing changes in ear thickness between PD-1-/- mice (PD-1 -/- ) and wild-type mice (WT) coated with imiquimod.
  • the right side of FIG. 6 is a graph showing changes in the severity of inflammation in the back skin of PD-1-/- mice (PD-1 -/-) and wild-type mice (WT) coated with imiquimod.
  • FIG. 7 is a photograph of hematoxylin eosin-stained tissue sections of ear skin showing the appearance of imiquimod-induced psoriasis-like dermatitis in wild-type mice (WT) and PD-1 -/- mice (PD-1 -/-). Is.
  • the left side of FIG. 8 is a graph comparing the thickness of the ear epidermis of wild-type mice (WT) and PD-1 -/- mice (PD-1 -/-) between the imiquimod group and the vehicle group.
  • FIG. 8 is a graph showing the number of neutrophil microabscesses in the epidermis of the ears of wild-type mice (WT) and PD-1 -/- mice (PD-1 -/-).
  • FIG. 9 shows psoriasis-related cytokines (IL-6, IL-23a, IL-17a) in the ears of wild-type mice (WT) and PD-1 -/- mice (PD-1 -/-). It is a graph which analyzed the expression level of the mRNA of Ly6g which is a neutrophil surface marker by quantitative RT-PCR.
  • FIG. 9 shows psoriasis-related cytokines (IL-6, IL-23a, IL-17a) in the ears of wild-type mice (WT) and PD-1 -/- mice (PD-1 -/-). It is a graph which analyzed the expression level of the mRNA of Ly6g which is a neutrophil surface marker by quantitative RT-PCR.
  • FIG. 10 shows CD8-positive T cells stained by immunostaining tissue sections of ear skin of wild-type mice (WT) and PD-1 -/- mice (PD-1 -/-) on day 5 of imiquimod application. It is a photograph. CD8-positive T cells are indicated by arrowheads.
  • FIG. 11 shows the number of CD8-positive T cells infiltrated into the ear skin of wild-type mice (WT) and PD-1 -/- mice (PD-1 -/-) on the 5th day of imiquimod application in the epidermis and dermis. It is a comparison graph.
  • FIG. 12 is a conceptual diagram showing a procedure for separating Keratinocyte, Epidermal CD45 + cell and Dermal cell from the skin of the mouse ear.
  • FIG. 13 shows CD8a in Keratinocyte, Epidermal CD45 + cell and Dermal cell obtained from the skin of the ears of wild-type mice (WT) and PD-1 -/- mice (PD-1 -/-) on day 5 of imikimod application. , IFN- ⁇ and CXCL9 mRNA expression levels compared by quantitative RT-PCR.
  • FIG. 14 is a conceptual diagram of the genome of a floated mouse into which a 34 bp loxP sequence has been introduced upstream and downstream of the PD-1 gene region, respectively.
  • FIG. 15 shows the positions of exons of Pdcd1 (indicated by boxes, exons 1, 2, 3, 4, 5 from the right) in the genome of wild-type mice, left and right CRISPR and 3'arms (3'arm), central. It is a figure which shows the position of the arm (Carm), 5'arm (5'arm), and the left and right target arrangements (including PAM) of the CRISPR / Cas9 system.
  • FIG. 16-1 is a DNA sequence (part) of Pdcd1 in the genome of a wild-type mouse.
  • FIG. 16-2 is a continuation of FIG. 16-1.
  • FIG. 16-3 is a continuation of FIG. 16-2.
  • FIG. 16-4 is a continuation of FIG. 16-3.
  • FIG. 16-5 is a continuation of FIG. 16-4.
  • FIG. 16-6 is a continuation of FIG. 16-5.
  • FIG. 16-7 is a continuation of FIG. 16-6.
  • FIG. 16-8 is a continuation of FIG. 16-7.
  • FIG. 17-1 is a DNA sequence (part) of the pflop plateform.
  • FIG. 17-2 is a continuation of FIG. 17-1.
  • FIG. 18 is a conceptual diagram of Step 1 in the procedure for incorporating the genomic DNA of Pdcd1 into the pflop plateform.
  • FIG. 19 is a conceptual diagram of Step 2 in the procedure for incorporating the genomic DNA of Pdcd1 into the pflop plateform.
  • FIG. 20 is a conceptual diagram of Step 3 in the procedure for incorporating the genomic DNA of Pdcd1 into the pflop plateform.
  • FIG. 21 is a schematic diagram incorporating the target sequence of the CRISPR / Cas9 system into pX330.
  • FIG. 22 shows the position of the exon (indicated by box) of Pdcd1 in the genome of the PD-1 floated mouse, the position of the 3'arm (3'arm), the central arm (Carm), and the position of the 5'arm (5'arm). It is a figure which shows the cleavage site by a restriction enzyme, and the primer used for genotyping.
  • FIG. 23-1 is a DNA sequence (part) of Pdcd1 in the genome of PD-1 floated mouse.
  • FIG. 23-2 is a continuation of FIG. 23-1.
  • FIG. 23-3 is a continuation of FIG. 23-2.
  • FIG. 23-4 is a continuation of FIG. 23-3.
  • FIG. 23-5 is a continuation of FIG. 23-4.
  • FIG. 23-6 is a continuation of FIG. 23-5.
  • FIG. 23-7 is a continuation of FIG. 23-6.
  • FIG. 23-8 is a continuation of FIG. 23-7.
  • ORF open reading frame
  • It is an open reading frame (ORF) gene sequence and a corresponding amino acid sequence that are predicted after being dropped by the system (Mutation).
  • FIG. 25 shows a PD-1 conditional knockout in which a CD8-Cre mouse in which Cre was introduced downstream of the promoter of CD8 and a PD-1-floxed mouse were crossed and PD-1-deficient in a CD8-positive T cell-specific manner.
  • FIG. 26 is a photograph of the back skin of PD-1-cKO (CD8 Cre PD-1 fl / fl ) and its littermates (Littermate Ctrl (CD8 Cre PD-1 fl / + )) on the 7th day of imiquimod application. be.
  • FIG. 27 is a graph showing changes in ear thickness of PD-1-cKO (CD8 Cre PD-1 fl / fl) coated with imiquimod and its littermate Ctrl.
  • the right side of FIG. 27 is a graph showing changes in the severity of inflammation in the back skin of PD-1-cKO (CD8 Cre PD-1 fl / fl) coated with imiquimod and its littermate Ctrl.
  • the left side of FIG. 28 shows hematoxylin on the ear skin of PD-1-cKO (CD8 Cre PD-1 fl / fl ) and its littermates (Littermate Ctrl (CD8 Cre PD-1 fl / + )) on the 7th day of imiquimod application.
  • FIG. 28 shows the skin of the ear on the 7th day of imiquimod application of PD-1-cKO (CD8 Cre PD-1 fl / fl ) and its littermates (Littermate Ctrl (CD8 Cre PD-1 fl / +)). It is a graph comparing the thickness.
  • FIG. 29 shows PD-1-cKO (CD8 Cre PD-1 fl / fl ) and CD8a on the ear skin on the 7th day of imiquimod application of its littermate (Littermate Ctrl (CD8 Cre PD-1 fl / +)).
  • FIG. 30 shows the inflow region lymph nodes of PD-1-cKO (CD8 Cre PD-1 fl / fl ) and its litters (Littermate tll (CD8 Cre PD-1 fl / + )) on the 7th day of imikimod application. It is a graph which shows the number of infiltrated CD8 positive T cells.
  • FIG. 31 is a graph (right) showing a histogram of IFN- ⁇ (IFN ⁇ ) and GzmB produced by CD8-positive T cells in the influx region lymph node (left) and median fluorescence intensity (MFI).
  • MFI median fluorescence intensity
  • FIG. 32 shows the back skin of wild-type mice (WT) administered with IgG Ctrl and PD-1 -/- mice (PD-1 -/- ) administered with IgG Ctrl or MR16-1 on day 7 of imiquimod application. It is a photograph.
  • FIG. 33 Left shows the thickness of the ears of wild-type mice (WT) administered with IgG Ctrl and PD-1 -/- mice (PD-1 -/-) administered with IgG Ctrl or MR16-1 by imiquimod application. It is a graph which shows the change.
  • FIG. 33 Left shows the thickness of the ears of wild-type mice (WT) administered with IgG Ctrl and PD-1 -/- mice (PD-1 -/-) administered with IgG Ctrl or MR16-1 by imiquimod application. It is a graph which shows the change.
  • FIG. 33 shows inflammation in the back skin of wild-type mice (WT) administered with IgG Ctrl and PD-1 -/- mice (PD-1 -/-) administered with IgG Ctrl or MR16-1 due to imiquimod application. It is a graph which shows the change of severity.
  • FIG. 34 shows the ear skin of wild-type mice (WT) administered with IgG Ctrl and PD-1 -/- mice (PD-1 -/- ) administered with IgG Ctrl or MR16-1 on day 7 of imiquimod application. It is a photograph of a tissue section stained with hematoxylin eosin. The scale bar is 50 ⁇ m.
  • FIG. 34 shows the ear skin of wild-type mice (WT) administered with IgG Ctrl and PD-1 -/- mice (PD-1 -/- ) administered with IgG Ctrl or MR16-1 on day 7 of imiquimod application. It is a photograph of
  • FIG. 35 left shows the ears of wild-type mice (WT) administered with IgG Ctrl and PD-1 -/- mice (PD-1 -/- ) administered with IgG Ctrl or MR16-1 on day 7 of imiquimod application. It is the graph which compared the thickness of the epidermis.
  • FIG. 35 right shows neutrophils in the ear epidermis of wild-type mice (WT) administered with IgG Ctrl and PD-1-/-mice (PD-1-/-) administered with IgG Ctrl or MR16-1. It is a graph which shows the number of sex microabscess.
  • FIG. 36 shows the ear skin of wild-type mice (WT) administered with IgG Ctrl and PD-1 -/- mice (PD-1 -/- ) administered with IgG Ctrl or MR16-1 on day 7 of imiquimod application. It is a graph of the expression level of the mRNA of IL-6, IL-23a and IL-17a.
  • FIG. 37 shows IL-6 on day 7 of imiquimod application in wild-type mice (WT) administered with IgG Ctrl and PD-1 -/- mice (PD-1 -/-) administered with IgG Ctrl or MR16-1.
  • IL-23a and IL-17a are graphs of blood concentrations.
  • FIG. 39 left shows PD-1-cKO (CD8 Cre PD-1 fl / fl ) and its litter (Littermate Ctrl (CD8 Cre PD-1 fl / + )) to which IgG Ctrl or MR16-1 was administered. It is a graph which shows the change of the thickness of an ear by application of imiquimod.
  • FIG. 39 shows PD-1-cKO (CD8 Cre PD-1 fl / fl ) and its litter (Littermate Ctrl (CD8 Cre PD-1 fl / + )) to which IgG Ctrl or MR16-1 was administered. It is a graph which shows the change of the severity of inflammation by the application of imiquimod in the back skin.
  • FIG. 40 shows an imiquimod of PD-1-cKO (CD8 Cre PD-1 fl / fl ) and its litter (Littermate tll (CD8 Cre PD-1 fl / + )) to which IgG Ctrl or MR16-1 was administered.
  • FIG. 41 It is a photograph of a tissue section stained with hematoxylin eosin on the ear skin on the 7th day of application.
  • the scale bar is 50 ⁇ m.
  • the left side of FIG. 41 shows PD-1-cKO (CD8 Cre PD-1 fl / fl ) and its littermates (Littermate Ctrl (CD8 Cre PD-1 fl / + )) to which IgG Ctrl or MR16-1 was administered. It is a graph of the thickness of the epidermis of the ear on the 7th day of application of imiquimod.
  • FIG. 41 shows PD-1-cKO (CD8 Cre PD-1 fl / fl ) and its littermates (Littermate Ctrl (CD8 Cre PD-1 fl / + )) to which IgG Ctrl or MR16-1 was administered. It is a graph which shows the number of CD8 positive T cells which infiltrated the epidermis.
  • FIG. 42 shows the imikimod of PD-1-cKO (CD8 Cre PD-1 fl / fl ) and its littermates (Littermate tll (CD8 Cre PD-1 fl / + )) to which IgG Ctrl or MR16-1 was administered.
  • FIG. 43 shows the imikimod of PD-1-cKO (CD8 Cre PD-1 fl / fl ) and its litter (Littermate Ctrl (CD8 Cre PD-1 fl / + )) to which IgG Ctrl or MR16-1 was administered. It is a graph of the expression level of the mRNA of CD8a and IFN- ⁇ (IFN ⁇ ) in the ear skin on the 7th day of application.
  • IFN ⁇ IFN- ⁇
  • FIG. 44 is a conceptual diagram of the genome of a floated mouse in which a 34 bp loxP sequence is introduced upstream and downstream of the PD-L1 gene region, respectively.
  • FIG. 45 shows the positions of exons (indicated by boxes, exons 1, 2, 3, 4, 5, 6, and 7 from the right) of the PD-L1 gene (Cd274) in the genome of wild-type mice, and the left and right CRISPRs. It is a figure which shows the position of the 3'arm (3'arm), the central arm (Carm), and the 5'arm (5'arm), and the left and right target arrangements (including PAM) of a CRISPR / Cas9 system.
  • FIG. 45 shows the positions of exons (indicated by boxes, exons 1, 2, 3, 4, 5, 6, and 7 from the right) of the PD-L1 gene (Cd274) in the genome of wild-type mice, and the left and right CRISPRs. It is a figure which shows the position of the 3'arm (3'
  • FIG. 46-1 is a DNA sequence (part) of Cd274 in the genome of a wild-type mouse.
  • FIG. 46-2 is a continuation of FIG. 46-1.
  • FIG. 46-3 is a continuation of FIG. 46-2.
  • FIG. 46-4 is a continuation of FIG. 46-3.
  • FIG. 46-5 is a continuation of FIG. 46-4.
  • FIG. 46-6 is a continuation of FIG. 46-5.
  • FIG. 46-7 is a continuation of FIG. 46-6.
  • FIG. 47 is a conceptual diagram of Step 1 in the procedure for incorporating the genomic DNA of Cd274 into the pflox plotform.
  • FIG. 48 is a conceptual diagram of Step 2 in the procedure for incorporating the genomic DNA of Cd274 into the pflox plotform.
  • FIG. 49 is a conceptual diagram of Step 3 in the procedure for incorporating the genomic DNA of Cd274 into the pflox plotform.
  • FIG. 50 is a schematic diagram incorporating the target sequence of the CRISPR / Cas9 system into pX330.
  • FIG. 51 shows the positions of exons (indicated by boxes) of Cd274 in the genome of PD-L1 frozen mice, 3'arms (3'arms), central arms (Carms), and 5'arms (5'arms). It is a figure which shows the cleavage site by a restriction enzyme, and the primer used for genotyping.
  • FIG. 52-1 is a DNA sequence (part) of Cd274 in the genome of PD-L1 floated mouse.
  • FIG. 52-2 is a continuation of FIG.
  • FIG. 52-3 is a continuation of FIG. 52-2.
  • FIG. 52-4 is a continuation of FIG. 52-3.
  • FIG. 52-5 is a continuation of FIG. 52-4.
  • FIG. 52-6 is a continuation of FIG. 52-5.
  • ORF open reading frame
  • FIG. 53 the gene sequence of the open reading frame (ORF) of the wild type (WT) PD-L1 and the corresponding amino acid sequence, and the second and third exons of PD-L1 were dropped by the Cre / loxP system. It is an open reading frame (ORF) gene sequence and a corresponding amino acid sequence, which are predicted later (Mutation).
  • FIG. 53 the gene sequence of the open reading frame (ORF) of the wild type (WT) PD-L1 and the corresponding amino acid sequence, and the second and third exons of PD-L1 were dropped by the Cre / loxP system. It is an open reading frame (ORF) gene sequence and a corresponding amino acid sequence, which are predicted later (M
  • FIG. 54 shows a PD-L1 conditional knockout mouse in which a Langerhans cell-specifically deficient PD-L1 is obtained by mating a Langerin-Cre mouse in which Cre is introduced downstream of the Langerhan promoter and a PD-L1-floxed mouse. It is a conceptual diagram of the method of making.
  • FIG. 55 is a histogram examining the expression of PD-L1 in Langerhans cells and dendritic cells.
  • FIG. 56 is a photograph of the back skin of PD-L1-cKO (PD-L1 fl / fl Language cre mouse) and its litter (Ctrl (PD-L1 fl / + Language cre mouse)) on the 5th day of imiquimod application.
  • FIG. 57 changes in ear thickness of PD-L1-cKO (PD-L1 fl / fl Language cre mouse) coated with imiquimod and its littermates (Ctrl (PD-L1 fl / + Language cre mouse)). It is a graph which shows. The lower part of FIG. 57 shows severe inflammation in the back skin of PD-L1-cKO (PD-L1 fl / fl Language cre mouse) coated with imiquimod and its littermates (Ctrl (PD-L1 fl / + Language cre mouse)). It is a graph which shows the change of degree.
  • FIG. 58 shows hematoxylin on the ear skin of PD-L1-cKO (PD-L1 fl / fl Language cre mouse) and its litter (Ctrl (PD-L1 fl / + Language cre mouse)) on day 5 of imiquimod application. It is a photograph of a tissue section stained with eodin. The scale bar is 50 ⁇ m.
  • FIG. 59 shows the epidermis of the ear of PD-L1-cKO (PD-L1 fl / fl Language cre mouse) and its litter (Ctrl (PD-L1 fl / + Language cre mouse)) on day 5 of imiquimod application. It is a graph comparing the thickness.
  • FIG. 60 shows IL in the ear skin of PD-L1-cKO (PD-L1 fl / fl Language cre mouse) and its litter (Ctrl (PD-L1 fl / + Language cre mouse)) on day 4 of imiquimod application. It is a graph of the expression level of mRNA of -6, IL-17A, and IL-23A.
  • FIG. 61 shows ⁇ T cells in the ear skin of PD-L1-cKO (PD-L1 fl / fl Language cre mouse) and its litter (Ctrl (PD-L1 fl / + Language cre mouse)) on day 4 of imiquimod application. It is a dot plot and a graph which show the result of the analysis of.
  • FIG. 62 shows PD-L1-cKO (PD-L1 fl / fl Language cre mouse) and its littermates (Ctrl (PD-L1 fl / + Language cre mouse)) in the inflow region lymph node on day 4 of imiquimod application. It is a graph which shows the result of having analyzed ⁇ T cells.
  • FIG. 63 is a diagram showing the positions of exons (indicated by box) of the PD-L2 gene (CD273) in the genome of wild-type mice, the target sequence of the CRISPR-Cas system, and the PAM sequence.
  • FIG. 64 is a table showing PCR conditions for determining a wild-type mouse (WT) or a PD-L2 frozen mouse (PD-L2 frozen).
  • FIG. 65-1 is a (partial) DNA sequence of Pdcd1lg2 (PD-L2) in the genome of a wild-type mouse (WT).
  • FIG. 65-2 is a continuation of FIG. 65-1.
  • FIG. 65-3 is a continuation of FIG.
  • FIG. 65-4 is a continuation of FIG. 65-3.
  • FIG. 65-5 is a continuation of FIG. 65-4.
  • FIG. 65-6 is a continuation of FIG. 65-5.
  • FIG. 66-1 is a DNA sequence (part) of Pdcd1lg2 (PD-L2) in the genome of PD-L2 frozen mouse).
  • FIG. 66-2 is a continuation of FIG. 66-1.
  • FIG. 66-3 is a continuation of FIG. 66-2.
  • FIG. 66-4 is a continuation of FIG. 66-3.
  • FIG. 66-5 is a continuation of FIG. 66-4.
  • FIG. 66-6 is a continuation of FIG. 66-5.
  • the present invention is roughly divided into five aspects.
  • the first aspect is a drug that comprises at least one of the prevention and treatment of immune-related side effects by an anti-PD-1 antibody or an anti-PD-L1 antibody, which comprises a substance that inhibits an IL-6 signal, wherein the immune-related side effects.
  • the second aspect is a genetically modified non-human animal into which a recombinant target sequence that sandwiches a part or all of the PD-1 gene or the expression regulatory region of the PD-1 gene in the genome has been introduced.
  • a third aspect is the introduction of mutations into the PD-1 gene or the expression regulatory region of the PD-1 gene in the genome, thereby causing all or part of the PD-1 gene to be specific to at least one of tissue and time.
  • the fourth aspect is a gene in which the expression of all or part of the PD-1 gene is suppressed or lost by introducing a mutation into the expression-regulating region of the PD-1 gene or PD-1 gene in the genome.
  • the expression of all or part of the PD-L1 gene is suppressed or partially performed in a Langerhans cell-specific manner by introducing a mutation into the expression-regulating region of the PD-L1 gene or PD-L1 gene in the genome. It is a genetically modified non-human animal that has been lost.
  • the expression of all or part of the PD-L1 gene is suppressed or partially suppressed in a Langerhans cell-specific manner by introducing a mutation into the expression-regulating region of the PD-L1 gene or PD-L1 gene in the genome. It is an immune-related side effect model non-human animal by anti-PD-1 antibody or anti-PD-L1 antibody, which is prepared by administering an antigenic enhancer to a genetically modified non-human animal that has been lost.
  • the seventh aspect is the genetically modified non-human animal according to the third aspect, the immune-related side effect model non-human animal according to the fourth aspect, the genetically modified non-human animal according to the fifth aspect, or the sixth aspect.
  • An immune-related side effect model A method of screening a drug for preventing and treating an immune-related side effect by an anti-PD-1 antibody or an anti-PD-L1 antibody using a non-human animal.
  • the eighth aspect is the genetically modified non-human animal of the third aspect, the immune-related side effect model non-human animal of the fourth aspect, the genetically modified non-human animal of the fifth aspect, or the sixth aspect.
  • An immune-related side effect model A method for evaluating a drug that uses a non-human animal to prevent or treat an immune-related side effect by an anti-PD-1 antibody or an anti-PD-L1 antibody.
  • a ninth aspect is a genetically modified non-human animal into which a recombinant target sequence that sandwiches a part or all of the expression regulatory region of the PD-L2 gene or PD-L2 gene in the genome has been introduced. Next, the present invention will be specifically described.
  • antibody as used herein is used in the broadest sense, and includes a fragment of an antibody, an antibody-modified product, a modified antibody, and the like as long as it exhibits a desired antigen-binding activity.
  • the animal species from which the antibody is derived is not limited, and may be a polyclonal antibody or a monoclonal antibody.
  • a genetically modified antibody artificially modified for the purpose of reducing heterologous antigenicity for example, a chimeric antibody, a humanized antibody, or the like may be used. Further, it may be an antibody modified product bound to various molecules such as polyethylene glycol (PEG).
  • PEG polyethylene glycol
  • a recycling antibody may be a recycling antibody, a sweeping antibody, a bispecific antibody, a T cell redirecting antibody modified for the purpose of improving the blood retention of the antibody or antigen, or the like, enhancing or suppressing ADCC activity.
  • It may be an antibody that has undergone type Fc ⁇ receptor selective binding enhancement or the like. These modified antibodies can be produced using known methods.
  • a mammalian-derived monoclonal antibody is particularly preferable, and a mammalian-derived monoclonal antibody which is a chimeric antibody or a humanized antibody is more preferable.
  • a known antibody may be used, or a newly prepared antibody may be used.
  • the antibody can be prepared by a known method.
  • the antibody to be newly produced may be a polyclonal antibody or a monoclonal antibody obtained by immunizing an animal with an antigen, or may be produced by using a gene recombination technique known to those skilled in the art based on a known antibody sequence. It may be an antibody to be produced.
  • a recombinant antibody is produced by cloning the DNA encoding it from an antibody-producing cell such as a hybridoma or an antibody-producing sensitized lymphocyte, incorporating it into an appropriate vector, and introducing it into a host (host cell) to produce it. Can be obtained.
  • the substance that inhibits the interleukin-6 (IL-6) signal in the present invention is a substance that blocks the signal by IL-6 and inhibits the biological activity of IL-6.
  • the IL-6 receptor (IL-6R, also referred to as CD126) using IL-6 as a ligand includes the membrane-bound IL-6 receptor expressed on the cell membrane and the secretory soluble IL-6 receptor (IL-6 receptor).
  • IL-6 receptor There is a Solvel IL-6 Receptor (sIL-6R), and the secretory soluble IL-6 receptor is composed of a membrane-bound intracellular region and an extracellular region excluding the transmembrane region.
  • the IL-6 receptor binds to IL-6 to form a complex, and the complex associates with gp130 on the cell membrane to dimerize, thereby transmitting the IL-6 signal into the cell.
  • IL-6, IL-6R or gp130 in the present invention include those derived from primate mammals including mice, rats, hamsters, guinea pigs, dogs, pigs, monkeys or humans, respectively.
  • IL-6, IL-6R or gp130 is preferably human IL-6, human IL-6R or human gp130.
  • Substances that inhibit the IL-6 signal are selected from, for example, substances having an inhibitory effect on binding to at least one selected from IL-6, IL-6R and gp130, and IL-6, IL-6R and gp130. It is a substance that inhibits at least one expression.
  • a specific binding substance to at least one protein selected from IL-6, IL-6R and gp130 That is, a specific binding substance for IL-6, a specific binding substance for IL-6R, a specific binding substance for gp130, and the like can be mentioned.
  • Specific binding agents for IL-6R are preferred because they can effectively prevent or treat immune-related side effects.
  • the specific binding substance for at least one protein selected from IL-6, IL-6R and gp130 is not particularly limited, and is, for example, anti-IL-6 antibody, anti-IL-6R antibody, anti-gp130 antibody, and these.
  • the antibody fragment include F (ab') 2, Fab', Fab, Fv, scFv and the like.
  • an aptamer for example, a nucleic acid aptamer, a peptide aptamer and the like can be mentioned.
  • Anti-gp130 antibodies and fragments of these antibodies are preferred, with anti-IL-6R antibodies particularly preferred.
  • the anti-IL-6 antibody inhibits the binding of IL-6 to IL-6R and inhibits the IL-6 signal.
  • the anti-IL-6 antibody is not limited to these, but is limited to MH166 (Matsuda T. et al., Eur. J. Immunol. (1988) 18, 951-956) and SK2 antibody (Sato K. et.). Al., The 21st Annual Meeting of the Japan Society for Immunology, Academic Records (1991) 21, 166), Silkumab, which is a human anti-IL-6 monoclonal antibody, and the like.
  • one type of anti-IL-6 antibody may be used alone, or two or more types may be used in combination.
  • the anti-gp130 antibody By binding to gp130, the anti-gp130 antibody inhibits the binding of the IL-6 / IL-6R complex to gp130 and inhibits the IL-6 signal.
  • the anti-gp130 antibody is not limited to these, but AM64 antibody (Japanese Patent Laid-Open No. 3-2198994), 4B11 antibody and 2H4 antibody (US5551513), B-S12 antibody and BP8 antibody (Japanese Patent Laid-Open No. 8-291199). ) And so on. Further, the anti-gp130 antibody may be used alone or in combination of two or more.
  • the anti-IL-6R antibody inhibits the binding of IL-6 to IL-6R and inhibits the IL-6 signal.
  • the anti-IL-6R antibody may be an antibody that binds to both the membrane-bound IL-6 receptor and the soluble IL-6 receptor, or it binds only to the membrane-bound IL-6 receptor and is soluble. It may be an antibody that does not bind to the IL-6 receptor, or an antibody that binds only to the soluble IL-6 receptor and does not bind to the membrane-bound IL-6 receptor. Further, the anti-IL-6R antibody may be used alone or in combination of two or more.
  • anti-IL-6R antibodies are, but are not limited to, MR16-1 antibodies (Tamura T, et al., Proc Natl Acad Sci USA, 90 (24): 1124-1928, 1993),. PM-1 antibody (Hirata Y, et al. J Immunol, 143 (9): 2900-2906, 1989), AUK12-20 antibody, AUK64-7 antibody or AUK146-15 antibody (International Publication No. 92/19759), Examples thereof include tocilizumab, which is a humanized anti-IL-6 receptor monoclonal antibody, Sarilumab, which is an anti-human IL-6 receptor monoclonal antibody, and SA237.
  • a mammalian-derived monoclonal antibody is particularly preferable, and a mammalian-derived anti-IL-6R monoclonal antibody, which is a chimeric antibody or a humanized antibody, is more preferable.
  • Preferred monoclonal antibodies against human IL-6R include tocilizumab or sarilumab, and preferred monoclonal antibodies against mouse IL-6R include MR16-1 antibody. Further, a humanized antibody of MR16-1 antibody is also preferably used.
  • a substance that inhibits the expression of at least one selected from IL-6, IL-6R and gp130 a substance that can reduce the expression of IL-6, IL-6R or gp130 and, as a result, inhibit the IL-6 signal.
  • the present invention is not particularly limited, and examples thereof include siRNA, shRNA, miRNA, ribozyme, antisense nucleic acid, and low molecular weight compounds. SiRNA, shRNA, miRNA, ribozyme and antisense nucleic acids may contain various chemical modifications to improve stability and activity.
  • the phosphate residue may be replaced with a chemically modified phosphate residue such as phosphorothioate, methylphosphonate, or phosphorodithionate.
  • a chemically modified phosphate residue such as phosphorothioate, methylphosphonate, or phosphorodithionate.
  • at least a part thereof may be composed of nucleic acid analogs such as peptide nucleic acid (PNA).
  • PNA peptide nucleic acid
  • PD-1 Programmed cell death 1
  • PD-L1 Programmed cell death 1-Light 1
  • It is a protein present on the cell surface that has the function of activating.
  • PD-1 or PD-L1 in the present invention includes those derived from primate mammals including mice, rats, hamsters, guinea pigs, dogs, pigs, monkeys or humans, respectively.
  • PD-1 in the present invention is human PD-1 and PD-L1 is human PD-L1.
  • Anti-PD-1 antibody and anti-PD-L1 antibody inhibit the binding of PD-1 to PD-L1 and inhibit the PD-L1 / PD-1 signal.
  • Anti-PD-1 antibodies include, but are not limited to, nivolumab, pembrolizumab, cemiplimab, spartarizumab, pidilizumab, and the like.
  • One type of anti-PD-1 antibody may be used alone, or two or more types may be used in combination.
  • anti-PD-L1 antibody examples include, but are not limited to, atezolizumab, Avelumab, Durvalumab, BMS-936559 and the like.
  • One type of anti-PD-L1 antibody may be used alone, or two or more types may be used in combination.
  • the immune-related side effects of the anti-PD-1 antibody or anti-PD-L1 antibody in the present invention are anti-cancer effects caused by administration of anti-PD-1 antibody or anti-PD-L1 antibody as an immune checkpoint inhibitor.
  • Other effects include skin disorders, myasthenia gravis, myositis, myositis, rhabdomyolysis, type I diabetes, neuropathy, nephropathy, arthritis, liver disorders, pneumonia, pancreatitis, thyroiditis, adnephritis. , At least one selected from hypothalamic dysfunction, and pan-pituitary dysfunction.
  • the immune-related side effects caused by the anti-PD-1 antibody or anti-PD-L1 antibody are preferably at least one selected from skin disorders, liver disorders, pneumonia, and thyroiditis because they can be effectively prevented or treated according to the present invention. , More preferably a skin disorder.
  • the liver disorder is not particularly limited as long as it is a disorder caused in the liver by administration of anti-PD-1 antibody or anti-PD-L1 antibody, and is not particularly limited, for example, AST (GOT), ALT (GPT), ⁇ -GTP, AST. , ALT and other liver enzymes and elevated total bilirubin can be used for diagnosis.
  • AST GAT
  • ALT GTP
  • ⁇ -GTP ⁇ -GTP
  • AST. ALT and other liver enzymes and elevated total bilirubin
  • the pneumonia is not particularly limited as long as it is pneumonia caused by administration of an anti-PD-1 antibody or an anti-PD-L1 antibody. Can be diagnosed.
  • the thyroiditis is not particularly limited as long as it is thyroiditis caused by administration of an anti-PD-1 antibody or an anti-PD-L1 antibody, for example, hypothyroidism or hyperthyroidism, and TSH in blood. , Free T3, free T4 and thyroid ultrasound can be used for diagnosis.
  • Hypothalamic dysfunction, pan pituitary dysfunction, and adrenitis are not particularly limited as long as they are caused by administration of anti-PD-1 antibody or anti-PD-L1 antibody. Diagnosis can be made by measuring ACTH, LH, FSH, GH, prolactin, cortisol, aldosterone, androgen, adrenaline, noradrenaline, estrogen, progesterone and the like.
  • the skin disorder is not particularly limited as long as it is a disorder caused on the skin by administration of an anti-PD-1 antibody or an anti-PD-L1 antibody, for example, mucocutaneous ocular syndrome (Stevens-Johnson syndrome: SJS), addictive.
  • Epidermoid necrolysis Toxy Epidermal Necrolysis: TEN
  • psoriasis psoriasis psoriasis vulgaris, psoriasis arthropathy
  • the immune-related side effects of anti-PD-1 or anti-PD-L1 antibodies are preferably mucocutaneous ocular syndrome (Stevens-Johnson syndrome: SJS), toxic epidermal necrolysis, as can be effectively prevented or treated by the present invention.
  • SJS mucocutaneous ocular syndrome
  • toxic epidermal necrolysis As can be effectively prevented or treated by the present invention.
  • Toxic Epidermal Necrolysis: TEN Toxic Epidermal Necrolysis: TEN
  • psoriasis, psoriasis or psoriasis-like dermatitis more preferably psoriasis or psoriasis-like dermatitis, and even more preferably psoriasis-like dermatitis.
  • Psoriasis and psoriasis-like dermatitis usually have keratotic erythema with thick silvery white scales and pathologically psoriasis-like epidermal hyperplasia and granular layer. It can be diagnosed by the presence of parakeratosis and subepidermal neutrophil microabscess.
  • Mucocutaneous ocular syndrome toxic epidermal necrolysis
  • mucocutaneous ocular syndrome is characterized by erosive erythema of the mucous membrane and skin, mucocutaneous ocular syndrome is less than 10% of body surface area, and toxic epidermal necrolysis is more than 10%. You can see the erosion.
  • histopathologically it is diagnosed from the fact that lymphocytes infiltrate from the upper dermis into the epidermis with extensive epidermal keratinization cell death called keratinocyte reaction.
  • Lichen planus is a localized keratinized erythema and is diagnosed by histopathologically a lichen reaction. Vitiligo is diagnosed with well-defined depigmentation spots.
  • anti-PD-1 antibody or anti-PD-L1 antibody causes mucocutaneous ocular syndrome (Stevens-Johnson syndrome: SJS), toxic epidermal necrolysis (TEN), erythema, psoriasis, psoriasis-like It has been reported that various types of inflammatory skin diseases other than diseases such as dermatitis and white spots are caused, and show erythema, psoriasis, rash and the like.
  • the immune-related side effects of the anti-PD-1 antibody or anti-PD-L1 antibody are preferably psoriasis-like dermatitis in which the infiltration of CD8-positive cells into the epidermis is enhanced. More preferably, it is psoriasis-like dermatitis in which the infiltration of CD8-positive cells into the epidermis is higher than that of psoriasis vulgaris.
  • one of the preferred embodiments of the present invention is an agent that comprises at least one of prevention and treatment of immune-related side effects caused by an anti-PD-1 antibody or an anti-PD-L1 antibody, which comprises a substance that inhibits an IL-6 signal.
  • the drug is a psoriasis-like dermatitis in which the immune-related side effects are characterized by increased infiltration of CD8-positive cells into the epidermis.
  • Another preferred embodiment of the present invention is an agent that inhibits the infiltration of CD8-positive cells into the epidermis, which comprises a substance that inhibits the IL-6 signal.
  • the method for confirming that the infiltration of CD8-positive cells into the epidermis is not particularly limited, but for example, immunostaining for CD8 using a sample collected from the affected area is performed, and the number of stained cells per unit area. Is to confirm.
  • the method for confirming that the infiltration of CD8-positive cells into the epidermis is higher than that of psoriasis vulgaris is not particularly limited. This can be confirmed by the fact that the number per unit area is higher than that of psoriasis vulgaris specimens.
  • both the anti-PD-1 antibody and the anti-PD-L1 antibody may be used in combination, and only one of the anti-PD-1 antibody and the anti-PD-L1 antibody is administered. You may.
  • the anti-PD-1 antibody or anti-PD-L1 antibody may be administered in combination with other immune checkpoint inhibitors, and other immune checkpoint inhibitors include, for example, anti-CTLA-1 antibody and anti-LAG-. Examples thereof include 3 antibodies, anti-TIM-3 antibody, anti-TIGIT antibody, anti-KIR antibody, anti-B7 antibody, anti-C27 antibody, IDO inhibitor, anti-CD137 antibody and the like.
  • examples of the anti-CTLA-1 antibody include ipilimumab and tremelimumab.
  • the usage and dosage of the anti-PD-1 antibody or anti-PD-L1 antibody are not particularly limited, and are usually determined according to the characteristics of the antibody and the expected anti-cancer effect.
  • 3 mg / kg (body weight) is intravenously infused at 2-week intervals, or 240 mg is intravenously infused at 2-week intervals.
  • 240 mg is intravenously infused at 2-week intervals.
  • pembrolizumab 2 mg / kg (body weight) is intravenously infused over 30 minutes at 3-week intervals, or 200 mg is intravenously infused over 30 minutes at 3-week intervals.
  • diseases to which anti-PD-1 or anti-PD-L1 antibodies are administered are not particularly limited, but usually various cancers such as malignant melanoma, non-small cell lung cancer, renal cell cancer, classical Hodgkin lymphoma, head and neck. Part cancer, gastric cancer, non-flat epithelial cancer, squamous epithelial cancer, solid cancer with high frequency microsatellite instability (MSI-High), bladder cancer, renal pelvis cancer, urinary tract cancer, urinary tract cancer, breast cancer, hepatocellular carcinoma, Multiple myeloma, esophageal cancer, renal cell cancer, colon cancer, ovarian cancer, prostate cancer, etc.
  • the disease to which the anti-PD-1 antibody or the anti-PD-L1 antibody is administered is preferably malignant melanoma because a sufficient anti-cancer effect can be expected.
  • the agent according to the first aspect of the present invention is an agent that comprises at least one of prevention and treatment of immune-related side effects caused by an anti-PD-1 antibody or an anti-PD-L1 antibody, which comprises a substance that inhibits an IL-6 signal.
  • the immune-related side effects are skin disorder, myasthenia gravis, myositis, myositis, rhabdomyolysis, type I diabetes, neuropathy, nephropathy, arthritis, liver disorder, pneumonia, pancreatitis, thyroiditis, adrenitis. , At least one drug selected from hypothalamic dysfunction, and pan-pituitary dysfunction.
  • the dose of the drug is not particularly limited, and may be appropriately selected depending on the type and degree of symptom of immune-related side effects, the type of drug, the body weight of the administration target, and the like.
  • the substance that inhibits the IL-6 signal is an anti-IL-6R antibody
  • the amount of the anti-IL-6R antibody is intravenously infused at intervals of 1 to 8 weeks so that the amount of the anti-IL-6R antibody is 1 to 100 mg / kg at a time. be able to.
  • tocilizumab or sarilumab When tocilizumab or sarilumab is administered to humans, it is preferably administered by intravenous drip infusion at intervals of 1 to 8 weeks so as to be 2 to 12 mg / kg at a time, and 3 to 10 mg / kg at a time is more preferable.
  • the substance that inhibits the IL-6 signal may be administered to the living body as it is, but it is preferable to administer it as a drug in which an effective amount of the substance that inhibits the IL-6 signal is blended with a pharmaceutically acceptable carrier.
  • the administration method is not particularly limited and may be oral or parenteral, preferably parenteral, more preferably intravenous infusion, and even more preferably intravenous drip infusion.
  • the pharmaceutically acceptable carrier is not particularly limited, but is, for example, a buffer solution such as phosphate, citrate, and other organic acids; an antioxidant containing ascorbic acid and methionine; octadecyldimethylbenzyl chloride.
  • Preservatives such as ammonium, hexamethonium chloride, benzalkonium chloride, benzethonium chloride, benzyl alcohol, alkylparaben, catechol, resorcinol, cyclohexanol, 3-pentanol, m-cresol; low molecular weight polypeptides; serum albumin, gelatin , Or proteins such as immunoglobulins; hydrophilic polymers such as polyvinylpyrrolidone; amino acids such as glycine, glutamine, asparagine, histidine, arginine, or lysine; sugars such as glucose, mannose, sucrose, mannitol, trehalose, sorbitol, dextrin; EDTA Chelating agents such as; salt-forming counterions such as sodium; metal complexes; polyhydric alcohols such as polyethylene glycol (PEG), nonionic surfactants such as polysorbate 20, polysorbate 80 and the like.
  • the administration target of the drug is not particularly limited, but mammals are preferable, and humans are more preferable.
  • the target of administration of the drug is preferably a patient with psoriasis-like dermatitis caused by an anti-PD-1 antibody or an anti-PD-L1 antibody, and among them, a patient in which increased infiltration of CD8-positive cells into the epidermis is observed. More preferably, the patient is more preferably a patient in which the infiltration of CD8-positive cells into the epidermis is found to be higher than that of psoriasis vulgaris.
  • the genetically modified non-human animal in the present invention is not particularly limited as long as it is an animal other than human, but is preferably a mammal (for example, pig, dog, monkey, mouse, rat, guinea pig, rabbit), and more preferably. It is a rodent animal such as a mouse, a rat, a guinea pig, and a rabbit from the viewpoint of easiness of obtaining a next-generation animal by gene recombination and mating.
  • the genetically modified non-human animals include not only adults but also ES cells, fertilized eggs, embryos, eggs, sperms, tissue or organ cultures, chimeric animals, etc. from the 8-cell stage to blastocyst formation and just before birth. Includes aspects. These may be in a frozen state if necessary for storage.
  • a genetically modified non-human animal according to a third aspect of the present invention is specific to at least one of tissue and time by introducing a mutation into the expression regulatory region of the PD-1 gene or PD-1 gene in the genome.
  • the expression of all or part of the PD-1 gene is suppressed or lost. That is, it is characterized in that the expression of a part or all of the PD-1 gene is conditionally suppressed (knockdown) or lost (knockout).
  • the genetically modified non-human animal according to the third aspect of the present invention is also referred to as a conditional PD-1 genetically modified non-human animal, and is a conditional PD-1 knockout non-human animal and a conditional PD-1 knockdown non-human animal.
  • the conditional PD-1 genetically modified non-human animal is preferably a conditional PD-1 knockout non-human animal because it is easy to analyze the function of PD-1.
  • conditional PD-1 gene-modified non-human animal of the present invention is not particularly limited, but the same effect as when PD-L1 and L2 / PD-1 signals are inhibited can be obtained in a time-specific and tissue-specific manner. From, elucidation of the mechanism of PD-L1, L2 / PD-1 signal transduction system, analysis of pathological conditions caused by PD-L1, L2 / PD-1 signal inhibition, pathological conditions caused by PD-L1, L2 / PD-1 signal inhibition It can be used for the development of preventive and therapeutic agents.
  • analysis of pathological conditions caused by PD-L1, L2 / PD-1 signal inhibition, or prevention of pathological conditions caused by PD-L1, L2 / PD-1 signal inhibition It is preferably used for the development of therapeutic agents, analysis of pathological conditions caused by anti-PD-L1 antibody or anti-PD-1 antibody, prevention of pathological conditions caused by anti-PD-L1 antibody or anti-PD-1 antibody, development of therapeutic agents. It is more preferable to use it for analysis of immune-related side effects caused by anti-PD-L1 antibody or anti-PD-1 antibody, or prevention and therapeutic agents of immune-related side effects caused by anti-PD-L1 antibody or anti-PD-1 antibody. It is more preferable to use it for development and the like.
  • conditional PD-1 genetically modified non-human animal of the present invention may be bred without stimulation, but may be stimulated or loaded. Stimulation or loading makes it easier to observe the characteristics of conditional PD-1 genetically modified non-human animals more clearly.
  • the stimulus or load is not particularly limited, and may be, for example, a chemical, physical, or physiological stimulus or load, and may include a stimulus or load due to a drug, breeding density, exercise, radiation, ultraviolet rays, diet, or the like.
  • the stimulation or loading is preferably chemical stimulation or loading, more preferably stimulation or loading with an antigenic reinforcing agent.
  • Mutations in the PD-1 gene or the expression regulatory region of the PD-1 gene are such that the expression of all or part of the PD-1 gene is suppressed or abolished, thereby substantially inactivating PD-1.
  • the mutation introduced can be any of insertion, deletion, modification, or substitution, and the number of bases to be mutated is not limited.
  • the mutation is preferably introduced into the PD-1 gene rather than the expression regulatory region of the PD-1 gene.
  • the PD-1 genome When a mutation is introduced into the PD-1 gene, the PD-1 genome consists of exons 1 to 5, preferably in the range exons 1 to 4, more preferably in the range exons 2 to 4. Introduce mutations.
  • a conditional knockout mouse in which PD-1 was specifically inactivated in at least one of tissues and time by introducing mutations into exons 2, 3, and 4 of the mouse PD-1 genome was obtained. I succeeded in getting it.
  • the PD-1 gene whose expression is suppressed or lost in non-human animals may be all or part of the PD-1 gene, but is preferably a part of the PD-1 gene. Is.
  • the PD-1 gene whose expression is suppressed or lost is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, and particularly preferably 80% or more of the ORF.
  • the PD-1 genome whose expression is suppressed or lost is preferably part of the range of exons 1 to 4, more preferably part of the range of exons 2 to 4, and even more preferably. Exons 2, 3, and 4.
  • the method for introducing a mutation into the PD-1 gene or the expression regulation region of the PD-1 gene in the genome is not particularly limited, and a known method can be used.
  • a gene recombination-inducing method using a recombinant protein / recombinant target sequence system can be mentioned.
  • the recombinant protein / recombinant target sequence system utilizes the fact that a specific recombinant protein recognizes the recombinant target sequence and causes DNA recombination in that portion.
  • the recombination target sequence does not undergo recombination unless a specific recombination is present. Therefore, a genetically modified non-human animal in which the recombinant protein is specifically expressed in at least one of the tissues and the time period is crossed with a genetically modified non-human animal of the same species into which the recombinant target sequence has been introduced, and recombination by the recombinant is performed.
  • Recombinase protein / recombine target sequence system includes, for example, Cre / loxP sequence system using Cre recombinase protein derived from bacteriophage P1 and loxP sequence of 34 base pairs recognized by Cre protein, FLP protein derived from yeast. / FRT sequence system, pSR1 recombinase of Zygosaccharomyces rouxii / pSR1 recombine target sequence system, Gin protein / gif sequence system derived from bacteriophage Mu, and the like.
  • Cre / loxP sequences FLP protein / FRT sequences, or pSR1 recombinase / pSR1 recombinase target sequences are preferred and Cre / loxP systems are more preferred because of their simplicity of operation.
  • the conditional PD-1 gene-modified non-human animal of the present invention is preferably a gene into which a recombinant target sequence that sandwiches a part or all of the expression-regulating region of the PD-1 gene or PD-1 gene in the genome has been introduced. It is a conditional PD-1 gene-modified non-human animal produced by crossing a modified non-human animal with a recombinant non-human animal that specifically expresses a recombease protein that is CD8-positive T cell, and more preferably.
  • tissue and timing at which expression of the PD-1 gene is suppressed or lost can be selected according to the tissue specificity and timing specificity of the recombinant non-human animal recombinant protein expression to be crossed.
  • tissue specificity and timing specificity of the recombinant non-human animal recombinant protein expression to be crossed.
  • Various recombinant non-human animals that express the recombinant protein in a time-specific or tissue-specific manner have been reported and can be selected according to the purpose of the experiment, and the genetically modified non-human animal described later can be selected. It may be newly prepared according to the method for producing an animal.
  • the expression of the recombinant protein in non-human animals is not particularly limited as long as it is specific to at least one of the tissue and the time.
  • Tissue-specific and time-specific means that it is tissue-only, time-only, or tissue-specific and time-specific, and is preferably tissue-specific.
  • the tissue is a concept including cells and organs in addition to tissues such as epithelial tissue and connective tissue, but is preferably cells.
  • the cells are not particularly limited, and are various somatic cells and germ cells mainly derived from endoderm, ectoderm, or mesoderm.
  • the cells are preferably inflammatory cells, more preferably eosinophils, mast cells (mast cells), neutrophils, basophils, T cells, NK (natural killer), macrophages, or dendritic cells, even more preferably.
  • T cells especially CD8 positive T cells.
  • the organ is not particularly limited, and includes, for example, the eyeball, cornea, lung, heart, liver, kidney, spleen, pancreas, gallbladder, esophagus, stomach, small intestine, large intestine, bladder, prostate, testis, ovary, blood vessel, skin and the like. can give.
  • Time-specific means that it is specific to a particular time point or time period in the life of a non-human animal from development to death.
  • the recombinant target sequence is preferably a loxP sequence.
  • the position at which the recombinant target sequence is introduced is usually determined by the type and position of the mutation to be introduced into the expression regulatory region of the PD-1 gene or PD-1 gene.
  • the portion of the expression loss is usually sandwiched between a plurality of recombination target sequences in the same direction.
  • the plurality of recombinant target sequences is preferably two recombinant target sequences.
  • the presence of the recombinant protein causes a part or all of the expression regulatory region of the PD-1 gene or PD-1 gene sandwiched between multiple recombinant target sequences. Will be deleted.
  • the recombinant target sequence is introduced by sandwiching a part or all of the PD-1 gene or the expression regulation region of the PD-1 gene in the genome. Since the PD-1 genome consists of exons 1 to 5, the recombinant target sequence is preferably introduced with a portion of the range of exons 1 to 5, more preferably within the range of exons 1 to 4. It is introduced with a part sandwiched between them, and more preferably with exons 2, 3 and 4 sandwiched between them. In the examples described later, we succeeded in obtaining a genetically modified non-human animal in which a recombinant target sequence was introduced across exons 2, 3 and 4 of the mouse PD-1 genome.
  • the loxP sequence is not limited to 5'-ATAACTTCGTATAGCATACATTATATACGAAGTTATA-3'(SEQ ID NO: 1), which is the sequence used in the examples described later.
  • the sequence may be mutated as long as it is a sequence recognized by Cre. For example, it is a sequence represented by 5'-ATAACTTCGTATATANNNTANNNTATACGAAGTTATA-3'(SEQ ID NO: 2).
  • conditional PD-1 gene-modified non-human animals can be obtained by multiplying these. Can be produced. These conditional PD-1 genetically modified non-human animals are useful for analyzing the function of PD-1 gene, PD-1 protein, PD-L1, L2 / PD-1 signal.
  • the genetically modified non-human animal into which the recombinant target sequence has been introduced can be produced by the following method for producing a genetically modified non-human animal.
  • Method for producing genetically modified non-human animals The method for producing a genetically modified non-human animal is not particularly limited, and a known genetically modified technique can be used.
  • Known gene modification techniques include, for example, a method of injecting an artificial foreign gene into a fertilized egg and modifying the gene by homologous recombination, a method of injecting a targeting vector into an ES cell and modifying the gene by homologous recombination, and an arbitrary genomic DNA sequence.
  • a genome editing technique that induces a mutation at a specific location on the genome by using an artificial restriction enzyme that specifically cleaves the gene can be mentioned.
  • Examples of the genome editing technology include a method using a CRISPR / Cas system, a method using a Transcriction Activator-Like Effector Nuclease (TALEN), a method using a zinc finger nuclease, and the like.
  • TALEN Transcriction Activator-Like Effector Nuclease
  • the genome editing technique it is preferable to use the genome editing technique, and it is more preferable to use the CRISPR / Cas system because the genetically modified non-human animal can be efficiently produced in a short period of time.
  • CRISPR / Cas system The production of genetically modified non-human animals using the CRISPR / Cas system can be performed by a known method, but usually, when CRISPR enzyme, guide RNA, or knock-in is performed, donor DNA is used in addition to these.
  • CRISPR enzyme is one of the Cas protein families that make up the adaptive immune system that provides acquired resistance to invasive alien nucleic acids in bacteria and archaea, recognizing the PAM sequence in exogenous DNA and two upstream of it. An endonuclease that cleaves main-stranded DNA so that it has a blunt end.
  • a CRISPR enzyme is meant to form a complex with a guide RNA and have DNA-cleaving activity.
  • the family of CRISPR enzymes includes, for example, Cas1, Cas1B, Cas2, Cas3, Cas4, Cas5, Cas6, Cas7, Cas8, Cas9 (also known as Csn1 and Csx12), Cas10, Csy1, Csy2, Csy3, Cse1, Cse2, Csc1. , Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx1 , Csf2, Csf3, Csf4, their homologues, or their modifications.
  • Cas9, its homologue, or a modified version thereof is preferably used.
  • the CRISPR enzyme may be used as a CRISPR enzyme protein or as a nucleic acid encoding a CRISPR enzyme.
  • the nucleic acid encoding the CRISPR enzyme may be introduced into an expression vector.
  • the CRISPR enzyme protein can be expressed in a non-human animal fertilized egg or the like after the introduction.
  • the CRISPR enzyme is preferably used in the form in which the nucleic acid encoding the CRISPR enzyme is introduced into the expression vector.
  • the expression vector known ones can be used, and examples thereof include a viral vector, a bacterial vector, a protozoan vector, a DNA vector, and a recombinant vector obtained by recombining them.
  • the viral vector include a lentivirus vector, a baculovirus vector, an adenovirus / adeno-associated virus vector, and the like.
  • the expression vector may contain a nucleic acid encoding a guide RNA and a nucleic acid encoding a CRISPR enzyme.
  • Examples of such an expression vector include pX330, PrecisionX Cas9 SmartNuclease All-in-one Vectors (manufactured by System Bioscience), CRISPR / CAS9 Knockout plasmid (manufactured by Santa Cruz Biotechnology), and the like. Since the expression efficiency is good, pX330 is preferable as the expression vector.
  • Guide RNA is a small RNA fragment (CRISPR-RNA: crRNA) containing a foreign sequence (guide sequence) that constitutes an adaptive immune system that provides acquired resistance to invading foreign nucleic acids in bacteria and archaea, and is partially complementary to the crRNA. It mimics the hairpin structure of a tracrRNA-crRNA chimera fused with a typical RNA (trans-activating crRNA: tracrRNA).
  • the guide RNA may be a tracrRNA-crRNA chimera synthesized in a state in which the crRNA containing the target sequence and the tracrRNA are fused.
  • the crRNA containing the guide sequence and the tracrRNA may be prepared separately and annealed before introduction to obtain a tracrRNA-crRNA chimera.
  • it may be a single-strand RNA (sgRNA) produced by fusing the essential portion of the tracrRNA and the crRNA.
  • the guide RNA is preferably a tracrRNA-crRNA chimera synthesized in a state in which the crRNA containing the target sequence and the tracrRNA are fused.
  • the guide RNA is a polynucleotide consisting of a base sequence complementary to a base sequence of, for example, 10 bases or more and 25 bases or less from 1 base upstream of the PAM sequence in the target gene (gene to be cleaved by the CRISPR enzyme) 5'. It can be included in the terminal region.
  • the polynucleotide contained in the guide RNA is preferably 12 bases or more and 22 bases or less, more preferably 20 bases, from 1 base upstream of the PAM sequence in the target gene.
  • the PAM sequence is a sequence that can be recognized by the CRISPR enzyme, and the length and base sequence of the PAM sequence vary depending on the bacterial species from which the CRISPR enzyme is derived. For example, S. In pyogenes, 3 bases of "NGG” (N represents an arbitrary base) are recognized. Streptococcus thermophilus (S. thermophilus) has two Cas9s, and recognizes 5 to 6 bases of "NGGNG” or "NNAGAA” (N represents an arbitrary base) as a PAM sequence, respectively.
  • the PAM sequence is preferably "NGG" because the PAM sequence to be recognized is short and the editable target gene is not easily restricted.
  • the guide RNA may be an isolated or synthesized RNA, or may be in the form of RNA incorporated into an expression vector. Further, it may be in the form of a nucleic acid encoding a guide RNA, or may be in a form in which a nucleic acid encoding a guide RNA is incorporated into an expression vector.
  • the guide RNA is preferably in the form in which the nucleic acid encoding the guide RNA is incorporated into the expression vector.
  • donor DNA When knocking in a specific gene into genomic DNA cleaved by the CRISPR / Cas system, donor DNA is used in addition to the guide RNA and CRISPR enzyme.
  • the donor DNA preferably contains DNA having a sequence homologous to the site of insertion on the target gene upstream and downstream of the gene to be knocked in.
  • the donor DNA may be a single-stranded oligo DNA or may be integrated into a plasmid, but is preferably integrated into a plasmid.
  • the method for introducing the CRISPR enzyme, guide RNA, or optionally donor DNA into a fertilized egg of a non-human animal is not particularly limited, and a known gene transfer method can be used.
  • a known gene transfer method can be used.
  • the calcium phosphate method, the electroporation method, the lipofection method, the aggregation method, the microinjection method, the particle gun method, the DEAE-dextran method and the like can be mentioned.
  • the microinjection method is preferable because of its high introduction efficiency.
  • the target of introduction is a fertilized egg
  • the fertilized egg is transplanted into the uterus or oviduct of the corresponding non-human animal and generated to generate a genetically modified non-human. Animals can be easily obtained.
  • a fourth aspect of the present invention is that the expression of all or part of the PD-1 gene is suppressed or lost by introducing a mutation into the expression-regulating region of the PD-1 gene or PD-1 gene in the genome.
  • This is a non-human animal model of immune-related side effects caused by an anti-PD-1 antibody or an anti-PD-L1 antibody, which is prepared by administering an antigenic enhancer to a genetically modified non-human animal.
  • the expression of all or part of the PD-1 gene may be suppressed or lost, and constitutive suppression or loss, tissue and timing. Includes inhibition or loss specific to at least one.
  • the genetically modified non-human animal used for the immune-related side effect model non-human animal according to the fourth aspect of the present invention is a conventional PD-1 gene-modified non-human animal (conventional PD-1 knockout non-human animal, and conventional PD-. 1 knockdown non-human animal) and the conditional PD-1 gene-modified non-human animal (conditional PD-1 knockout non-human animal, and conditional PD-1 knockdown non-human animal) according to the third aspect of the present invention. )including.
  • the genetically modified non-human animal expresses all or part of PD-1 gene specifically in at least one of tissue and time.
  • the genetically modified non-human animal is preferably a conditional PD-1 gene-modified non-human animal, and more preferably, the expression of all or part of the PD-1 gene is suppressed or lost in a CD8-positive T cell-specific manner. It is a genetically modified non-human animal that has been genetically modified.
  • Mutation of the expression regulatory region of the PD-1 gene or PD-1 gene in conventional PD-1 gene-modified non-human animals results in suppression or loss of expression of all or part of the PD-1 gene, resulting in PD-1.
  • the mutation introduced may be any of insertion, deletion, modification, and substitution as long as it is substantially inactivated, and the number of bases to be mutated is not limited.
  • the mutation is preferably introduced into the PD-1 gene.
  • the PD-1 genome consists of exons 1 to 5, but mutations are preferably introduced within the range of exons 2 to 5, more preferably within the range of exons 3 to 5.
  • the PD-1 gene whose expression is suppressed or lost in non-human animals may be all or part of the PD-1 gene, but is preferably a part of the PD-1 gene. be.
  • the PD-1 gene whose expression is suppressed or lost is, for example, 50% or more, 60% or more, 70% or more, 80% or more, 90% or more of the ORF.
  • the PD-1 genome whose expression is suppressed or lost is preferably part of the exon 2 to exon 5 range, more preferably part of the exon 3 to exon 5 range, and even more preferably part of the exon 3 to exon 5 range. Part of exon 3, part 4, and part of 5.
  • the conventional PD-1 genetically modified non-human animal can be produced according to the above-mentioned method for producing a genetically modified non-human animal, and is preferably a PD-1-deficient mouse described in the following literature. Tasuku Honjo, Immunological studies on PD-1-deficient meeting: conditional of PD-1 as a negative regulatory for B cell respons, International 1998. 10, NO. Pages 10,1563-1572
  • the use of the immune-related side effect model of the present invention in non-human animals is not particularly limited, and is used for mechanism analysis and prevention of immune-related side effects caused by anti-PD-L1 antibody or anti-PD-1 antibody, or development of therapeutic methods and drugs. be able to.
  • the immune-related side effect model of the present invention In non-human animals, the pathophysiology and symptoms of immune-related side effects caused by the anti-PD-1 antibody or anti-PD-L1 antibody are enhanced. It is preferably used for screening, evaluation, or development of drugs that prevent and treat immune-related side effects.
  • the immune-related side effect is preferably psoriasis-like dermatitis as an immune-related side effect.
  • the immune-related side effect model non-human animal of the present invention has a longer-lasting immune-related side effect than the immune-related side effect model non-human animal prepared by administering an anti-PD-1 antibody or an anti-PD-L1 antibody to a non-human animal.
  • the immune-related side effect model non-human animal is suitable for pathological analysis.
  • the expression of all or part of the PD-1 gene is suppressed or partially expressed by introducing a mutation into the expression regulatory region of the PD-1 gene or PD-1 gene in the genome.
  • an immune-related side effect model non-human animal by an anti-PD-1 antibody or an anti-PD-L1 antibody of a genetically modified non-human animal that has been lost and has been administered an antigenic enhancer Is the use of.
  • the expression of all or part of the PD-1 gene is suppressed or partially expressed by introducing a mutation into the expression regulatory region of the PD-1 gene or PD-1 gene in the genome.
  • a method for producing an immune-related side effect model non-human animal by an anti-PD-1 antibody or an anti-PD-L1 antibody which comprises a step of administering an antigenic enhancer to a genetically modified non-human animal that has been lost.
  • the antigenic enhancer in the present invention is a drug having an action of activating an immune response, and can be paraphrased as an immunostimulator or an adjuvant.
  • Antigenic enhancer is applied to genetically modified non-human animals in which mutations have been introduced into the PD-1 gene or the expression regulatory region of the PD-1 gene and the expression of all or part of the PD-1 gene is suppressed or lost.
  • the immune response of the genetically modified non-human animal is activated, and the pathophysiology and symptoms of immune-related side effects caused by the anti-PD-1 antibody or anti-PD-L1 antibody can be enhanced. Since the immune response activated by the administration of the antigenic reinforcing agent is diverse, it is impossible or impractical to directly identify the non-human animal to which the antigenic reinforcing agent has been administered by its structure or characteristics.
  • the antigenic enhancer is not particularly limited as long as it has an effect of activating an immune response, but preferably promotes inflammatory cytokine production, and more preferably has an agonist activity against Toll-like receptor (TLR). , And more preferably, it has an agonist activity against Toll-like receptor 7 (TLR7).
  • TLR Toll-like receptor
  • the antigenic reinforcing agent include aluminum compounds, complete Freund's adjuvant, incomplete Freund's adjuvant, imidazoquinoline, imidazoquinoline derivative and the like.
  • the imiquimod derivative include imiquimod, gardiquimod, and resiquimod. Aluminum compounds, complete Freund's adjuvant, or imidazoquinoline derivatives are preferred, imidazoquinoline derivatives are more preferred, and imiquimods are even more preferred, as they are easily available and have sufficient immunostimulatory activity.
  • the method of administering the antigenic reinforcing agent is not particularly limited, and may be selected depending on the type of the antigenic reinforcing agent.
  • Administration of the antigenic enhancer can be oral or parenteral.
  • the administration of the antigenic reinforcing agent is preferably parenteral, and since it can be administered only to a specific site, topical administration is more preferable, and external application to the skin is further preferable.
  • the antigenic reinforcing agent may be administered to a living body as it is, or may be administered as a preparation in which an effective amount thereof is blended with a pharmaceutically acceptable carrier.
  • the dose of the antigenic reinforcing agent is not particularly limited, and may be appropriately selected depending on the type of genetically modified non-human animal and the type and degree of immune-related side effects targeted by the model. For example, when imiquimod is applied externally to mice, 1 to 10% of imiquimod can be applied at 10 to 100 mg / dose / animal 1 to several times a day for 1 to 10 days.
  • the PD-L1 gene is specifically introduced into the Langerhans cell-specific by introducing a mutation into the expression-regulating region of the PD-L1 gene or PD-L1 gene in the genome.
  • the expression of all or part of is suppressed or lost. That is, it is characterized in that the expression of a part or all of the PD-L1 gene is suppressed (knocked down) or lost (knocked out) specifically in Langerhans cells.
  • the genetically modified non-human animal according to the fifth aspect of the present invention is also referred to as a Langerhans cell-specific PD-L1 gene-modified non-human animal, and is a Langerhans cell-specific PD-L1 knockout non-human animal and a Langerhans cell-specific PD-. Includes L1 knockdown non-human animals.
  • the Langerhans cell-specific PD-L1 genetically modified non-human animal is preferably a Langerhans cell-specific PD-L1 knockout non-human animal because it is easy to analyze the function of PD-L1.
  • the use of the Langerhans cell-specific PD-L1 gene-modified non-human animal of the present invention is not particularly limited, but the same effect as when the PD-L1 / PD-1 signal is inhibited can be obtained specifically for Langerhans cells.
  • the Langerhans cell-specific PD-L1 gene-modified non-human animal of the present invention can be used for analysis of pathological conditions caused by PD-L1 / PD-1 signal inhibition, or for prevention and therapeutic agents for pathological conditions caused by PD-L1 / PD-1 signal inhibition.
  • pathological conditions caused by anti-PD-L1 antibody or anti-PD-1 antibody prevention of pathological conditions caused by anti-PD-L1 antibody or anti-PD-1 antibody, development of therapeutic agents, etc. It is more preferable to use, analysis of immune-related side effects caused by anti-PD-L1 antibody or anti-PD-1 antibody, prevention of immune-related side effects caused by anti-PD-L1 antibody or anti-PD-1 antibody, development of therapeutic agents, etc. It is more preferable to use it in.
  • the Langerhans cell-specific PD-L1 genetically modified non-human animal of the present invention may be bred without stimulation, but may be stimulated or loaded. Stimulation or loading makes it easier to more clearly observe the characteristics of Langerhans cell-specific PD-L1 genetically modified non-human animals.
  • the stimulus or load is not particularly limited, and may be, for example, a chemical, physical, or physiological stimulus or load, and may include a stimulus or load due to a drug, breeding density, exercise, radiation, ultraviolet rays, diet, or the like.
  • the stimulation or loading is preferably chemical stimulation or loading, more preferably stimulation or loading with an antigenic reinforcing agent.
  • Mutations in the expression control region of the PD-L1 gene or PD-L1 gene are such that the expression of all or part of the PD-L1 gene is suppressed or lost, and PD-L1 is substantially inactivated.
  • the mutation introduced may be insertion, deletion, modification, or substitution, and the number of bases to be mutated is not limited.
  • the mutation is preferably introduced into the PD-L1 gene rather than the expression regulatory region of the PD-L1 gene.
  • the PD-L1 genome consists of exons 1 to 7, preferably in the range of exons 1 to 5, more preferably in the range of exons 2 and 3. Introduce mutations.
  • the PD-L1 genome consists of exons 1 to 7, preferably in the range of exons 1 to 5, more preferably in the range of exons 2 and 3. Introduce mutations.
  • by introducing mutations into exons 2 and 3 of the mouse PD-L1 genome we succeeded in obtaining a conditional knockout mouse in which PD-L1 was inactivated specifically in Langerhans cells.
  • the PD-L1 gene whose expression is suppressed or lost in non-human animals may be all or part of the PD-L1 gene, but is preferably the PD-L1 gene. It is a part.
  • the PD-L1 gene whose expression is suppressed or lost is preferably 30% or more, more preferably 40% or more, still more preferably 50% or more, and particularly preferably 60% or more of the ORF.
  • the PD-L1 genome whose expression is suppressed or lost is preferably part of the range of exons 1 to 7, more preferably part of the range of exons 1 to 5, and even more preferably. Exons 2 and 3.
  • the method for introducing a mutation into the expression-regulating region of the PD-L1 gene or PD-L1 gene in the genome is not particularly limited, and a known method can be used.
  • a gene recombination-inducing method using a recombinant protein / recombinant target sequence system can be mentioned.
  • Recombinase protein / recombine target sequence system includes, for example, Cre / loxP sequence system using Cre recombinase protein derived from bacteriophage P1 and loxP sequence of 34 base pairs recognized by Cre protein, FLP protein derived from yeast.
  • Cre / loxP sequences, FLP protein / FRT sequences, or pSR1 recombinase / pSR1 recombinase target sequences are preferred and Cre / loxP systems are more preferred because of their simplicity of operation.
  • the Langerhans cell-specific PD-L1 gene-modified non-human animal of the present invention preferably has a recombinant target sequence that sandwiches a part or all of the expression regulatory region of the PD-L1 gene or PD-L1 gene in the genome.
  • a Langerhans cell-specific PD-L1 gene-modified non-human animal prepared by crossing a genetically modified non-human animal with a recombinant non-human animal expressing a recombinase protein specifically expressing a Langerhans cell.
  • the Cre protein is expressed specifically in a Langerhans cell and a genetically modified non-human animal into which a loxP sequence sandwiching a part or all of the expression regulatory region of the PD-L1 gene or PD-L1 gene in the genome has been introduced. It is a Langerhans cell-specific PD-L1 gene-modified non-human animal produced by crossing with a recombinant non-human animal.
  • a genetically modified non-human animal into which a recombinant target sequence sandwiching a part or all of the expression regulation region of the PD-L1 gene or PD-L1 gene in the genome has been introduced is used.
  • the recombinant target sequence is preferably a loxP sequence.
  • the position at which the recombinant target sequence is introduced is usually determined by the type and position of the mutation to be introduced into the expression-regulating region of the PD-L1 gene or PD-L1 gene.
  • the portion of the expression loss is usually sandwiched between a plurality of recombinant target sequences in the same direction.
  • the plurality of recombinant target sequences is preferably two recombinant target sequences.
  • the presence of the recombinant protein causes a part or all of the expression regulatory region of the PD-L1 gene or PD-L1 gene sandwiched between the multiple recombinant target sequences. Will be deleted.
  • the recombinant target sequence is introduced by sandwiching a part or all of the expression regulation region of the PD-L1 gene or PD-L1 gene in the genome. Since the PD-L1 genome consists of exons 1 to 7, the recombinant target sequence is preferably introduced with a portion of the range of exons 1 to 7, more preferably within the range of exons 1 to 5. It is introduced with a part sandwiched between them, and more preferably with exons 2 and 3 sandwiched between them. In the examples described later, we succeeded in obtaining a genetically modified non-human animal in which a recombinant target sequence was introduced across exons 2 and 3 of the mouse PD-L1 genome.
  • the loxP sequence is not limited to 5'-ATAACTTCGTATAGCATACATTATATACGAAGTTATA-3'(SEQ ID NO: 1), which is the sequence used in the examples described later.
  • the sequence may be mutated as long as it is a sequence recognized by Cre. For example, it is a sequence represented by 5'-ATAACTTCGTATATANNNTANNNTATACGAAGTTATA-3'(SEQ ID NO: 2).
  • a genetically modified non-human animal into which a recombinant target sequence that sandwiches a part or all of the expression regulatory region of the PD-L1 gene or PD-L1 gene in the genome has been introduced has a specific recombination in at least one of the tissue and the time period.
  • mutations are introduced into the expression-regulating region of the PD-L1 gene or PD-L1 gene in the genome, thereby being specific to at least one of tissue and time.
  • a PD-L1 gene-modified non-human animal in which the expression of all or part of the PD-L1 gene is suppressed or lost, that is, a conditional PD-L1 gene-modified non-human animal.
  • a genetically modified non-human animal into which a recombinant target sequence sandwiching a part or all of the expression regulatory region of the PD-L1 gene or PD-L1 gene in the genome has been introduced, and a Langerhans cell-specific recombinant expression gene-modified non-human animal.
  • the expression of all or part of the PD-L1 gene is suppressed or lost in a Langerhans cell-specific manner by introducing a mutation into the expression-regulating region of the PD-L1 gene or PD-L1 gene in the genome. Langerhans cell-specific PD-L1 gene-modified non-human animals can be produced.
  • the genetically modified non-human animal into which the recombinant target sequence has been introduced can be produced by the above-mentioned method for producing a genetically modified non-human animal.
  • a sixth aspect of the present invention is the expression of all or part of the PD-L1 gene specifically in Langerhans cells by introducing a mutation into the expression-regulating region of the PD-L1 gene or PD-L1 gene in the genome.
  • This is a non-human animal model of immune-related side effects caused by an anti-PD-1 antibody or an anti-PD-L1 antibody, which is prepared by administering an antigenic enhancer to a genetically modified non-human animal in which is suppressed or lost.
  • the genetically modified non-human animal used for the immune-related side effect model non-human animal is a Langerhans cell-specific PD-L1 gene-modified non-human animal (Langerhans cell-specific PD-L1 knockout non-human animal, which is the fifth aspect of the present invention. , And Langerhans cell-specific PD-L1 knockdown non-human animals).
  • the use of the immune-related side effect model of the present invention in non-human animals is not particularly limited, and is used for mechanism analysis and prevention of immune-related side effects caused by anti-PD-L1 antibody or anti-PD-1 antibody, or development of therapeutic methods and drugs. be able to.
  • the immune-related side effect model of the present invention In non-human animals, the pathophysiology and symptoms of immune-related side effects caused by the anti-PD-1 antibody or anti-PD-L1 antibody are enhanced. It is preferably used for screening, evaluation, or development of drugs that prevent and treat immune-related side effects.
  • the immune-related side effect is preferably psoriasis-like dermatitis as an immune-related side effect.
  • One example of an embodiment of the present invention is a Langerhans cell-specific whole or part of the PD-L1 gene by introducing a mutation into the expression-regulating region of the PD-L1 gene or PD-L1 gene in the genome.
  • Side effect model Use as a non-human animal.
  • One example of an embodiment of the present invention is a Langerhans cell-specific whole or part of the PD-L1 gene by introducing a mutation into the expression-regulating region of the PD-L1 gene or PD-L1 gene in the genome.
  • a method for producing an immune-related side effect model non-human animal using an anti-PD-1 antibody or an anti-PD-L1 antibody which comprises a step of administering an antigenic enhancer to a genetically modified non-human animal whose expression is suppressed or lost. Is.
  • ⁇ Antigenic reinforcement> A gene in which the expression of all or part of the PD-L1 gene is suppressed or lost in a Langerhans cell-specific manner by introducing a mutation into the expression-regulating region of the PD-L1 gene or PD-L1 gene in the genome.
  • the method for screening a drug according to the seventh aspect of the present invention is a genetically modified non-human animal according to the third aspect, an immune-related side effect model non-human animal according to the fourth aspect, and a genetically modified non-human animal according to the fifth aspect.
  • a drug having an effect of inhibiting, suppressing, promoting, or enhancing immune-related side effects caused by an anti-PD-1 antibody or an anti-PD-L1 antibody can be screened.
  • the method for screening a drug of the present invention usually includes a step (A) of administering the drug to a non-human animal.
  • -A method for screening a drug for at least one of prevention and treatment of an anti-PD-1 antibody or an anti-PD-L1 antibody for immune-related side effects which comprises a step of evaluating immune-related side effects due to the L1 antibody.
  • the genetically modified non-human animal A is a genetically modified non-human animal according to the third aspect of the present invention.
  • Gene-modified non-human animal B By introducing a mutation into the expression-regulating region of the PD-L1 gene or PD-L1 gene in the genome, the expression of all or part of the PD-L1 gene is suppressed in a Langerhans cell-specific manner. Or lost, genetically modified non-human animals.
  • the genetically modified non-human animal B is a genetically modified non-human animal according to the fifth aspect of the present invention.
  • Immune-related side effect model Non-human animal C Expression of all or part of the PD-1 gene is suppressed or lost by introducing a mutation into the expression regulatory region of the PD-1 gene or PD-1 gene in the genome.
  • the immune-related side effect model non-human animal C is an immune-related side effect model non-human animal according to the fourth aspect of the present invention.
  • Immune-related side effect model Non-human animal D Expression of all or part of the PD-L1 gene in a Langerhans cell-specific manner by introducing a mutation into the expression-regulating region of the PD-L1 gene or PD-L1 gene in the genome.
  • the immune-related side effect model non-human animal D is an immune-related side effect model non-human animal according to the sixth aspect of the present invention.
  • the method of administering the drug to a genetically modified non-human animal or an immune-related side effect model non-human animal is not particularly limited and can be oral or parenteral.
  • the drug may be administered to a living body as it is, or may be administered as a preparation in which an effective amount thereof is blended with a pharmaceutically acceptable carrier.
  • the method for evaluating the immune-related side effects of the anti-PD-1 antibody or the anti-PD-L1 antibody is not particularly limited.
  • the evaluation of the immune-related side effects is preferably performed using an index indicating the severity.
  • the index indicating the severity of the immune-related side effects is not particularly limited.
  • the immune-related side effect is a skin disorder
  • the degree of vitiligo, erythema, pustule, rash, erosion and the like can be used as an index indicating the severity.
  • the indicators of severity include ear thickness, severity of inflammation, epidermis thickness, number of neutrophil microabscesses in the epidermis, and Cytokines, preferably IL-6, IL-17A, or IL-23A mRNA expression levels and the like can be used.
  • liver enzymes such as AST (GOT), ALT (GPT), ⁇ -GTP, AST, and ALT, or total bilirubin should be used as an index indicating the severity. Can be done.
  • the immune-related side effect is pneumonia
  • the degree of symptoms such as cough and dyspnea
  • the severity score obtained by examinations such as bronchoscopy and CT can be used as an index indicating the severity.
  • TSH thyroiditis
  • free T3, and free T4 in blood can be used as an index indicating the severity.
  • the indicators of severity include, for example, ADH, ACTH, LH, FSH, GH, prolactin, cortisol, aldosterone, and the like. Androgens, adrenaline, noradrenaline, estrogen, and progesterone can be used.
  • the immune-related side effects caused by the anti-PD-1 antibody or the anti-PD-L1 antibody in the presence of the drug can be caused by the drug.
  • the drug can be selected as a drug candidate for at least one of the prevention and treatment of the immune-related side effects when it is alleviated more than the immune-related side effects in the absence of.
  • the index indicating the severity of the immune-related side effect in the presence of the drug is 10%, 20%, 30%, 40%, 50%, 60%, 70%, or When it is 80% or less, the drug can be selected as a candidate drug for at least one of the prevention and treatment of the immune-related side effects.
  • the drug is used. It is preferably selected as a drug candidate for at least one of the prevention and treatment of the immune-related side effects.
  • drugs examples include small molecule compounds, proteins, polypeptides, polysaccharides, nucleic acids, etc., but are not particularly limited.
  • the drug (candidate substance) may be a novel substance or a known substance.
  • the immune-related side effects of the anti-PD-1 antibody or anti-PD-L1 antibody are preferably dermatitis, myasthenia gravis, myositis, myositis, thyroiditis, type I diabetes, neuropathy, nephropathy, arthritis. , Hepatic disorder, pneumonia, pancreatitis, thyroiditis, adrenitis, hypothalamic dysfunction, and panhypopituitarism, more preferably skin disorder, hepatic disorder, pneumonia, pancreatitis, and thyroid. At least one selected from inflammation, more preferably psoriasis-like dermatitis among skin disorders.
  • the method for screening the drug of the present invention preferably uses the immune-related side effect model non-human animal according to the fourth aspect or the immune-related side effect model non-human animal according to the sixth aspect, and more preferably the fourth aspect.
  • Immune-related side effect model Non-human animals are used.
  • the method for screening the drug of the present invention has persistent immune-related side effects as compared with the screening method using an immune-related side effect model prepared by administering an anti-PD-1 antibody or an anti-PD-L1 antibody to a wild-type non-human animal.
  • an immune-related side effect model prepared by administering an anti-PD-1 antibody or an anti-PD-L1 antibody to a wild-type non-human animal.
  • the experimental conditions are easy to stabilize and the sensitivity is high.
  • the method for evaluating a drug according to the eighth aspect of the present invention is the genetically modified non-human animal according to the third aspect, the immune-related side effect model non-human animal according to the fourth aspect, and the genetically modified non-human animal according to the fifth aspect.
  • the effect of the drug on inhibiting, suppressing, promoting, or enhancing the immune-related side effects of the anti-PD-1 antibody or anti-PD-L1 antibody can be evaluated.
  • the method for evaluating a drug of the present invention usually includes a step (A) of administering the drug to a non-human animal. Therefore, one example of an embodiment of the present invention is Step ( ⁇ ): Administering the drug to the genetically modified non-human animal A or B below, or the immune-related side effect model non-human animal C or D below, and step ( ⁇ ): anti-PD-1 antibody or anti-PD.
  • -A method for evaluating a drug that comprises a step of evaluating an immune-related side effect of an L1 antibody and at least one of prevention and treatment of an immune-related side effect of an anti-PD-1 antibody or an anti-PD-L1 antibody.
  • Genetically modified non-human animal A By introducing a mutation into the PD-1 gene or the expression regulatory region of the PD-1 gene in the genome, all or one of the PD-1 genes is specifically directed to at least one of the tissues and the time period. Genetically modified non-human animals in which the expression of the part is suppressed or lost.
  • the genetically modified non-human animal A is a genetically modified non-human animal according to the third aspect of the present invention.
  • Gene-modified non-human animal B By introducing a mutation into the expression-regulating region of the PD-L1 gene or PD-L1 gene in the genome, the expression of all or part of the PD-L1 gene is suppressed in a Langerhans cell-specific manner. Or lost, genetically modified non-human animals.
  • the genetically modified non-human animal B is a genetically modified non-human animal according to the fifth aspect of the present invention.
  • Immune-related side effect model Non-human animal C Expression of all or part of the PD-1 gene is suppressed or lost by introducing a mutation into the expression regulatory region of the PD-1 gene or PD-1 gene in the genome.
  • the immune-related side effect model non-human animal C is an immune-related side effect model non-human animal according to the fourth aspect of the present invention.
  • Immune-related side effect model Non-human animal D Expression of all or part of the PD-L1 gene in a Langerhans cell-specific manner by introducing a mutation into the expression-regulating region of the PD-L1 gene or PD-L1 gene in the genome.
  • the immune-related side effect model non-human animal D is an immune-related side effect model non-human animal according to the sixth aspect of the present invention.
  • the method for evaluating a drug (pharmaceutical candidate substance) of the present invention is carried out in the presence or absence of the drug, so that the anti-PD-1 antibody or the anti-PD-L1 antibody causes immune-related side effects of the drug in the presence of the drug.
  • the drug is effective for at least one of the prevention and treatment of immune-related side effects by anti-PD-1 antibody or anti-PD-L1 antibody. Can be judged.
  • the immune-related side effects of the anti-PD-1 antibody or anti-PD-L1 antibody are preferably dermatitis, myasthenia gravis, myositis, myositis, thyroiditis, type I diabetes, neuropathy, nephropathy, arthritis. , Hepatic disorder, pneumonia, pancreatitis, thyroiditis, adrenitis, hypothalamic dysfunction, and panhypopituitarism, more preferably skin disorder, hepatic disorder, pneumonia, pancreatitis, and thyroid. At least one selected from inflammation, more preferably psoriasis-like dermatitis among skin disorders.
  • the method for evaluating the drug of the present invention preferably uses the immune-related side effect model non-human animal according to the fourth aspect or the immune-related side effect model non-human animal according to the sixth aspect, and more preferably the fourth aspect.
  • Immune-related side effect model Non-human animals are used.
  • the method for evaluating a drug of the present invention has an immune-related side effect as compared with a method for evaluating a drug using an immune-related side effect model prepared by administering an anti-PD-1 antibody or an anti-PD-L1 antibody to a wild-type non-human animal.
  • an immune-related side effect model prepared by administering an anti-PD-1 antibody or an anti-PD-L1 antibody to a wild-type non-human animal.
  • the experimental conditions are easy to stabilize and the sensitivity is high.
  • the recombinant target sequence is introduced in the vicinity of the expression regulatory region of the PD-L2 gene or PD-L2 gene in the genome, or in the PD-L2 gene or the expression regulatory region of the PD-L2 gene.
  • the recombinant target sequence is preferably a loxP sequence.
  • the position at which the recombinant target sequence is introduced is usually determined by the type and position of the mutation to be introduced into the expression-regulating region of the PD-L2 gene or PD-L2 gene.
  • the plurality of recombinant target sequences is preferably two recombinant target sequences.
  • the presence of the recombinant protein causes a part or all of the expression regulatory region of the PD-L2 gene or PD-L2 gene sandwiched between the multiple recombinant target sequences. Will be deleted.
  • the recombinant target sequence is introduced across a part or all of the expression regulatory region of the PD-L2 gene or PD-L2 gene in the genome. Since the PD-L2 genome consists of exons 1 to 6, the recombinant target sequence is preferably introduced with a portion of the range of exons 1 to 6, more preferably within the range of exons 1 to 4. It is introduced with a part sandwiched between them, and more preferably with exons 3 and 4 sandwiched between them. In the examples described later, we succeeded in obtaining a genetically modified non-human animal in which a recombinant target sequence was introduced across exons 3 and 4 of the mouse PD-L2 genome.
  • the loxP sequence is not limited to 5'-ATAACTTCGTATAGCATACATTATATACGAAGTTATA-3'(SEQ ID NO: 1), which is the sequence used in the examples described later.
  • the sequence may be mutated as long as it is a sequence recognized by Cre. For example, it is a sequence represented by 5'-ATAACTTCGTATATANNNTANNNTATACGAAGTTATA-3'(SEQ ID NO: 2).
  • the genetically modified non-human animal into which the recombinant target sequence has been introduced can be produced by the above-mentioned method for producing a genetically modified non-human animal.
  • mutations are introduced into the expression-regulating region of the PD-L2 gene or PD-L2 gene in the genome, thereby being specific to at least one of the tissue and time.
  • Conditional PD-L2 gene-modified non-human animals in which the expression of all or part of the PD-L2 gene is suppressed or lost can be produced.
  • conditional PD-L2 gene-modified non-human animal a mutation is introduced into the expression-regulating region of the PD-L2 gene or PD-L2 gene in the genome, whereby PD- The expression of all or part of the L2 gene is suppressed or lost. That is, it is characterized in that the expression of a part or all of the PD-L2 gene is conditionally suppressed (knockdown) or lost (knockout).
  • the conditional PD-L2 genetically modified non-human animal includes a conditional PD-L2 knockout non-human animal and a conditional PD-L2 knockdown non-human animal.
  • the conditional PD-L2 genetically modified non-human animal is preferably a conditional PD-L2 knockout non-human animal because it is easy to analyze the function of PD-L2.
  • conditional PD-L2 genetically modified non-human animal is not particularly limited, but since the same effect as when the PD-L2 / PD-1 signal is inhibited can be obtained in a time-specific and tissue-specific manner, PD- Used for elucidation of the mechanism of L2 / PD-1 signal transduction system, analysis of pathological conditions caused by PD-L2 / PD-1 signal inhibition, prevention of pathological conditions caused by PD-L2 / PD-1 signal inhibition, development of therapeutic agents, etc. Can be done.
  • conditional PD-L2 gene-modified non-human animal of the present invention can be used for analysis of pathological conditions caused by PD-L2 / PD-1 signal inhibition, or for prevention and therapeutic agents for pathological conditions caused by PD-L2 / PD-1 signal inhibition. It is preferably used for development, etc., and is used for analysis of pathological conditions caused by anti-PD-L2 antibody or anti-PD-1 antibody, prevention of pathological conditions caused by anti-PD-L2 antibody or anti-PD-1 antibody, development of therapeutic agents, etc.
  • it is used for analysis of immune-related side effects caused by anti-PD-L2 antibody or anti-PD-1 antibody, prevention of immune-related side effects caused by anti-PD-L2 antibody or anti-PD-1 antibody, development of therapeutic agents, etc. It is more preferable to use it.
  • the conditional PD-L2 genetically modified non-human animal may be bred without stimulation, but may be stimulated or loaded. Stimulation or loading makes it easier to more clearly observe the characteristics of the conditional PD-L2 genetically modified non-human animal.
  • the stimulus or load is not particularly limited, and may be, for example, a chemical, physical, or physiological stimulus or load, and may include a stimulus or load due to a drug, breeding density, exercise, radiation, ultraviolet rays, diet, or the like.
  • a mutation in the expression regulatory region of the PD-L2 gene or PD-L2 gene results in suppression or loss of expression of all or part of the PD-L2 gene, resulting in substantial inactivation of PD-L2.
  • the mutation introduced may be an insertion, deletion, modification, or substitution, and the number of bases to be mutated is not limited.
  • the mutation is preferably introduced into the PD-L2 gene rather than the expression regulatory region of the PD-L2 gene.
  • the PD-L2 genome consists of exons 1 to 6, preferably in the range exons 1 to 4, more preferably in the range exons 3 and 4. Introduce.
  • a genetically modified non-human animal in which a recombinant target sequence was introduced across exons 3 and 4 of the mouse PD-L2 genome.
  • Multiplying this genetically modified non-human animal with a recombinant non-human animal that specifically expresses recombinants in at least one of the tissues and times results in mutations in exons 3 and 4 of the mouse PD-L2 genome.
  • the PD-L2 gene whose expression is suppressed or lost in non-human animals may be all or part of the PD-L2 gene, but is preferably a part of the PD-L2 gene. Is.
  • the PD-L2 gene whose expression is suppressed or lost is preferably 50% or more, more preferably 60% or more, still more preferably 70% or more, and particularly preferably 80% or more of the ORF.
  • the PD-L2 genome whose expression is suppressed or lost is preferably part of the exon 1 to exon 4 range, more preferably part of the exon 1 to exon 5 range, and even more preferably part of the exon 1 to exon 5 range. Exons 3 and 4.
  • the method for introducing a mutation into the expression-regulating region of the PD-L2 gene or PD-L2 gene in the genome is not particularly limited, and a known method can be used.
  • a gene recombination-inducing method using a recombinant protein / recombinant target sequence system can be mentioned.
  • Recombinase protein / recombine target sequence system includes, for example, Cre / loxP sequence system using Cre recombinase protein derived from bacteriophage P1 and loxP sequence of 34 base pairs recognized by Cre protein, FLP protein derived from yeast. / FRT sequence system, pSR1 recombinase of Zygosaccharomyces rouxii / pSR1 recombine target sequence system, Gin protein / gif sequence system derived from bacteriophage Mu, and the like.
  • Cre / loxP sequences FLP protein / FRT sequences, or pSR1 recombinase / pSR1 recombinase target sequences are preferred and Cre / loxP systems are more preferred because of their simplicity of operation.
  • conditional PD-L2 gene-modified non-human animal is preferably a non-gene-modified non-gene-modified animal into which a recombinant target sequence sandwiching a part or all of the expression-regulating region of the PD-L2 gene or PD-L2 gene in the genome has been introduced.
  • a conditional PD-L2 gene-modified non-human animal prepared by crossing a human animal with a recombinant non-human animal that expresses a recombinant protein specifically in a myeloid lineage, more preferably a genome.
  • myeloid cells include monocytes, granulocytes (neutrophils, eosinophils, neutrophils), monocytes, macrophages, erythrocytes, dendritic cells, Langerhans cells and hematopoietic stem cells.
  • progenitor cells myeloid progenitor cells that differentiate into dendritic cells, monocytes, macrophages, neutrophils, or Langerhans cells.
  • the tissue and time when the expression of the PD-L2 gene is suppressed or lost is the tissue specificity and time-specificity of the recombinant protein expression of the genetically modified non-human animal to be crossed. It can be selected according to gender.
  • Various types of recombinant non-human animals that express the recombinant protein in a time-specific or tissue-specific manner have been reported and can be selected according to the purpose of the experiment, and the above-mentioned genetically modified non-human animals can be selected. It may be newly prepared according to the method for producing an animal.
  • Recombinase-expressing gene-modified non-human animals are preferably myeloid cell-specific, more preferably dendritic cell-specific, monocytes, macrophages, and neutrophil-specific, or Langerhans cell-specific.
  • mice Is introduced from the group consisting of genetically modified non-human animals; conditional PD-1 genetically modified non-human animals; conditional PD-L1 genetically modified non-human animals; and conditional PD-L2 genetically modified non-human animals.
  • PD-L1 and PD-L2 There are two ligands that accept PD-1 as receptors, PD-L1 and PD-L2, but the only antibodies that are widely used as immune checkpoint inhibitors are anti-PD-1 antibody and anti-PD-L1 antibody. Is. Since the functions of PD-1, PD-L1 and PD-L2 are often unknown, whether the side effects of anti-PD-1 antibody are due to inhibition of the PD-1 / PD-L1 signaling system, PD- It may not be known whether it is due to inhibition of the 1 / PD-L1 and L2 signaling systems or due to inhibition of PD-1 / PD-L2.
  • the phenotype of the conditional PD-1 gene-modified non-human animal is the same as the phenotype of the conditional PD-L1 gene-modified non-human animal, but the phenotype of the conditional PD-L2 gene-modified non-human animal.
  • the phenotype of the conditional PD-1 gene-modified non-human animal is the sum of the phenotype of the conditional PD-L1 gene-modified non-human animal and the phenotype of the conditional PD-L2 gene-modified non-human animal. If so, the side effects of the anti-PD-1 antibody can be determined to be due to inhibition of the PD-1 / PD-L1 and L2 signaling systems.
  • the functions of PD-1, PD-L1 and PD-L2 are elucidated in this way, it becomes easier to select an antibody having fewer side effects as an immune checkpoint inhibitor.
  • the number of cells infiltrating the epidermis in one section was counted and used as the number of CD8-positive cells infiltrating the epidermis.
  • the immunostained images with the anti-human CD4 monoclonal antibody were also counted in the same manner to determine the number of CD4 positive cells infiltrating the epidermis.
  • the value obtained by dividing the number of intraepidermal infiltrating CD8-positive cells by the number of intraepithelial infiltrating CD4 positive cells was defined as CD8 / CD4 lattice.
  • the significance test was a nonparametric two-sided test using the Mann-Whitney U test, and was shown by **: P ⁇ 0.01.
  • Fig. 2 The results are shown in Fig. 2.
  • the HE-stained image of psoriasis vulgaris showed thickening, parakeratosis and hyperkeratosis of the epidermis, and microabscesses due to neutrophils under the stratum corneum. Moreover, the granular layer had disappeared. The stratum spinosum was thickened, and the epidermal protrusions regularly extended toward the dermis in a club shape. Similar histopathological findings were observed in anti-PD-1 antibody-induced psoriasis-like dermatitis. In addition, in anti-PD-1 antibody-induced psoriasis-like dermatitis, more CD8-positive cells were observed in the epidermis than in psoriasis vulgaris.
  • CD8 / CD4 ratio in anti-PD-1 antibody-induced psoriasis-like dermatitis was significantly higher than that in psoriasis vulgaris.
  • anti-PD-1 antibody-induced psoriasis-like dermatitis it was revealed that the intraepidermal infiltration of CD8-positive cells was enhanced.
  • Fig. 4 Patients with psoriasis-like dermatitis tended to have higher serum IL-6 levels after administration of the anti-PD-1 antibody than before administration. Similarly, in patients with immune-related side effects other than psoriasis-like dermatitis, the serum IL-6 concentration tended to increase after administration of the anti-PD-1 antibody as compared with that before administration. On the other hand, in patients without immune-related side effects, changes in serum IL-6 concentration tended to decrease after administration of anti-PD-1 antibody as compared with before administration.
  • Example 1 Psoriasis-like dermatitis model using PD-1 conventional knockout mouse ⁇ Induction of dermatitis>
  • PD-1 conventional knockout mouse Provided by Professor Tasuku Honjo of Kyoto University, PD-1 -/- mouse, or PD-1-KO mouse
  • wild-type mouse C57BL / 6J, Charles River Japan
  • WT mice wild-type mouse
  • IMQ imikimod
  • mice were divided into two groups, an imikimod (IMQ) group and a wild group.
  • IMQ imikimod
  • the 3.5% imiquimod cream was prepared by diluting 5% imiquimod cream (Beselna cream, manufactured by Mochida Pharmaceutical Co., Ltd.) with a control vehicle cream.
  • the application start date was set as the first day of application.
  • FIG. 5 shows photographs of the back of wild-type mice in the Vehicle group, WT mice in the imiquimod group, and PD-1 -/-mice in the imiquimod group on the 7th day of application. Mild erythema and scales were observed in WT mice in the imiquimod group. Severe erythema and scales were observed in PD-1 -/-mice in the imiquimod group.
  • ⁇ Severity of inflammation in the skin was assessed by an objective method that mimics PASI (Psoriasis Area and Severity Index), which is used in the diagnosis of human psoriasis. Specifically, the three items of erythema, scales, and thickening of the back were independently scored in five stages of 0: none, 1: mild, 2: moderate, 3: high, and 4: extremely high. The total score of the items (0 to 12) was calculated. The significance test for each group was performed by one-way ANOVA and indicated by **: P ⁇ 0.01, ***: P ⁇ 0.0001. Changes in the severity of inflammation (PASI Score) due to imiquimod application in WT and PD-1 -/-mice are shown on the right side of FIG. PD-1 -/- mice had significantly more severe skin inflammation than WT mice.
  • PASI Score Changes in the severity of inflammation due to imiquimod application in WT and PD-1 -/-mice are shown on the right side of FIG. PD-1
  • the skin tissue specimens of WT mice and PD-1-/- mice of the HE-stained Vehicle group and the imiquimod group are shown in FIG. No clear difference was observed between the WT mice in the Vehicle group and the PD-1 -/-mice.
  • the imiquimod group epidermal thickening, parakeratosis and hyperkeratosis were observed in both WT and PD-1 -/- mice, and microabscesses due to neutrophils were observed just below the stratum corneum.
  • the degree of epidermal thickening, parakeratosis and hyperkeratosis, and neutrophil microabscesses in PD-1 -/-mice was significantly worse than in WT.
  • the epidermis thickness was measured using the image of the above-mentioned HE-stained tissue specimen, and used as Epidermal sickness (thickness of epidermis, ⁇ m).
  • Epidermal sickness Thickness of epidermis, ⁇ m.
  • One sample was prepared from five mice in each group, and the thickness of five points per sample was measured and the average value was calculated.
  • the significance test was a nonparametric two-sided test using the Mann-Whitney U test, and was shown by **: P ⁇ 0.01. Independent experiments were performed three times and representative data were shown.
  • the thickness of the epidermis of WT mice and PD-1 -/- mice of the Vehicle group and the imiquimod group is shown on the left side of FIG.
  • the epidermis of the imiquimod group was significantly thicker than that of the vehicle group.
  • PD-1 -/- mice had a significantly thicker epidermis than WT mice.
  • ⁇ Micro abscess> The above-mentioned HE-stained tissue specimen was observed under a microscope and the number of microabscesses was counted. One sample was prepared from one ear of one mouse using five mice in each group, and the number of microabscesses was counted to obtain a Number of microabscess. The significance test was a nonparametric two-sided test using the Mann-Whitney U test, and was shown by **: P ⁇ 0.01. Independent experiments were performed three times and representative data were shown. The number of microabscesses in WT mice and PD-1 -/- mice in the imiquimod group is shown on the right side of FIG. PD-1 -/- mice had significantly more microabscesses than WT mice.
  • cDNA Complementary DNA
  • the mRNA expression level was determined by using Prime Time TM Gene Expression Master Mix and Prime Time TM qPCR Predesigned Primers (manufactured by Integrated DNA Technologies), and by QuantSTime Measured by PCR was performed by triplicate.
  • the amplified product was quantified by the comparative CT method and standardized by the expression level of GAPDH mRNA.
  • the significance test is a non-parametric two-sided test using the Mann-Whitney U test, and is indicated by *: P ⁇ 0.05, **: P ⁇ 0.01, ***: P ⁇ 0.001. rice field.
  • the Assay NO. Of the Prime Time TM qPCR pre-designated primers used is as follows.
  • IL-6 Mm. PT. 58.100005566 IL-23a: Mm. PT. 58.10594618.
  • g IL-17a Mm. PT. 58.6531092 Ly6g: Mm. PT. 58.30498043
  • GAPDH Mm. PT
  • FIG. 9 shows the quantification results of mRNAs of cytokines (IL-6, IL-23a, IL-17a) reported to be involved in psoriasis and Ly6g, which is a neutrophil surface marker.
  • the mRNA expression levels of IL-23a and IL-17a were significantly increased by imiquimod application in both WT and PD-1-/-mice.
  • the expression level of IL-6 mRNA was not changed by imiquimod application in WT mice, but was significantly increased by imiquimod application only in PD-1-/-mice.
  • IL-6 Since an increase in IL-6 was observed only in psoriasis-like dermatitis that developed in PD-1 -/- mice, PD-1 is strongly involved in the production of IL-6 in psoriasis-like dermatitis. It became clear.
  • the mRNA expression level of Ly6g was below the detection limit in the Vehicle group in both WT mice and PD-1-/- mice, but it was significantly increased by the application of imiquimod.
  • Alexa Fluor TM 488-labeled goat antibody-rabbit IgG (manufactured by Abcam) and Alexa Fluor TM 555-labeled goat antibody-rat IgG (manufactured by Abcam) as fluorescently labeled secondary antibodies, 4', 6- It was carried out by a conventional method using a diamidino-2-phenylindole (DAPI). Using a fluorescence microscope (BZ-X700, manufactured by Keyence), observe at a magnification of 400 times, CD8-positive and CD3-positive cells are designated as CD8-positive T cells, and the number of cells infiltrated into the skin is counted separately for the epidermis and dermis. did.
  • DAPI diamidino-2-phenylindole
  • the total number of CD8-positive T cells in the epidermis (Epidermis) and the number of CD8-positive T cells in the dermis (Dermis) was defined as Total.
  • the number of cells infiltrating the skin per section was counted and used as the number of CD8-positive T cells.
  • Two tissue sections were prepared from each of the five mice in each group. The significance test was a nonparametric two-sided test using the Mann-Whitney U test, and was shown by **: P ⁇ 0.01.
  • the number of CD8-positive T cells infiltrating the epidermis or dermis is shown in FIG.
  • the number of CD8-positive T cells infiltrating the epidermis of PD-1-/- mice was significantly higher than that of WT mice.
  • the number of CD8-positive T cells infiltrating the dermis was not different between WT mice and PD-1-/-mice.
  • PD-1 -/- mice had significantly more infiltrated CD8-positive T cells than WT mice.
  • the separated epidermis was washed twice with phosphate buffered saline containing no Ca 2+ and Mg 2+ , passed through a cell strainer having a mesh size of 70 ⁇ m, and then MACS using CD45 MicroBeads (manufactured by Miltenyi Biotec).
  • the cell populations were sorted by TM cell separation technology.
  • the obtained CD45-negative cell group was designated as "Keratinocyte”, and the CD45-negative cell group was designated as "Epidermal CD45 + cell”.
  • the CD45-positive cell content of keratinocyte was less than 1%, and the CD45-positive cell content of Epidermal CD45 + cell was higher than 95%.
  • the mRNA expression levels of CD8, IFN- ⁇ , and CXCL9 in the three cell groups of Keratinocyte, Epidermal CD45 + cell, and Dermal cell were quantified by quantitative RT-PCR. Quantitative RT-PCR was performed as described above, and the Assay NO. Of Prime Time TM qPCR predesigned primers used was as follows. IFN- ⁇ : Mm. PT. 58.41769240 CD8a: Mm. PT. 58.29971442 CXCL9: Mm. PT. 58.5726745
  • the results are shown in FIG.
  • the mRNA expression level of CD8a was not different between the WT mouse and the PD-1 -/- mouse in the dermal cell, but the PD-1 -/- mouse was more in the WT mouse in the Epidermal CD45 + cell. It was significantly more than.
  • the expression level of IFN- ⁇ mRNA was not different between WT mice and PD-1-/- mice in Dermal cell, but PD-1 -/- mouse was higher in Epidermal CD45 + cell. It was significantly more than WT mice.
  • the mRNA expression level of CXCL9 in keratinocyte was significantly higher in PD-1-/- mice than in WT mice. That is, it was revealed that in PD-1 -/- mice, the production of CD8a and IFN- ⁇ in Epidermal CD45 + cell and CXCL9 in Keratinocyte was enhanced.
  • FIG. 15 shows the search results of the exon (indicated by box) of the PD-1 gene (Pdcd1) in the genome of the wild-type mouse, the target sequence of the CRISPR-Cas system, and the PAM sequence.
  • Mouse Pdcd1 is located on chromosome 1 and is composed of 5 exons. Since the start codon of the PD-1 protein is present in the first exon, the complete PD-1 protein is removed by dropping the second, third, and fourth exons using the Cre / loxP system.
  • the loxP sequence was designed to be inserted at both ends of the region containing exons 2-4 using the CRISPR-Cas system to prevent the production of.
  • a pX330 vector CRISPR / Cas9 vector containing a guide RNA (gRNA) and a Cas9 expression cassette in one plasmid is introduced into a fertilized egg, and the target sgRNA and Cas9 mRNA are simultaneously expressed to mouse PD.
  • the genome was cleaved at a target position, and a pflop plasmid (donor vector) containing a loxP sequence was introduced into a fertilized egg together as a donor DNA so that the loxP sequence was inserted into the cleavage site.
  • the CRISPR target site on the 5'side of the region containing Exxon 2-4 is the Left CRISPR site
  • the CRISPR target site on the 3'side is the right CRISPR site
  • the area from the Left CRISPR prediction cleavage site to the upstream (5') side 1395 bp is 5 'Arm
  • 3'arm from the right CRISPR predictive cutting site to 1462bp downstream (3') is 5 'Arm
  • 2685bp between Left CRISPR predictive cutting site and light CRISPR predictive cutting site as the central arm.
  • the sequences of the Left CRISPR target site and the light CRISPR target site (L target sequence: SEQ ID NO: 3, R target sequence: SEQ ID NO: 4) are shown in FIG.
  • the left and right target sequences and PAMs were searched using CRISPR (https://crispr.dbcls.jp/) and a 20-base target sequence was found in the Pdcd-1 genome. I confirmed that there was only one place.
  • a donor vector containing the loxP sequence on the outside of the exon 2-4 and the sequence of the 5'arm, the central arm, and the 3'arm was prepared by the following procedure.
  • PCR was performed according to a conventional method using the genomic DNA of C57BL / 6J mice (FIG. 16, SEQ ID NO: 5) as a template and using the primers of Step1.
  • the 5'arm is the sequence of the B6J genome used as the template for the 5'arm
  • the Central arm coarse broken line
  • 3'arm ( Gothic) is the sequence of the B6J genome used as a template for the 3'arm.
  • Step 1 In-Fusion (Step 1, FIG. 18) of the obtained PCR product and a vector originally prepared based on pbluescrit (pflox primer (FIG. 17, SEQ ID NO: 6)).
  • pflox primer FOG. 17, SEQ ID NO: 6
  • the arrowhead pointing to the left indicates the loxP sequence.
  • PCR was performed using the primer of Step2, and the obtained PCR product and the product of Step1 were In-Fusioned (Step2, FIG. 19). Further, the primer of Step3 was used. PCR was performed, and the obtained PCR product and the product of Step 2 were in-fused (Step 3, FIG. 20). This product was designated as pflox-PD1.
  • the primers used are shown in Table 1.
  • FIG. 21 shows a schematic diagram.
  • pflox-PD1, pX330-PD-1-L and pX330-PD-1-R were microinjected into the pronucleus of C57BL / 6 fertilized eggs by a conventional method. Fertilized eggs were transplanted into the oviducts of pseudopregnant mice to give birth to founder mice. By mating this founder mouse with a C57BL6 mouse, a heterozygous PD-1 fl / + mouse was produced. Furthermore, homozygous PD-1 fl / fl mice were produced by mating these heterozygous PD-1 fl / + mice with each other.
  • Genotyping was performed on genomic DNA purified from a part of mouse tail tissue by PCR using the following primers (sequence is shown in FIG. 22) according to a conventional method.
  • PD1 Genotype RiF SEQ ID NO: 15
  • PD1 Genotype RiR SEQ ID NO: 16
  • PD1 Genotype LeF SEQ ID NO: 17
  • PD1 Genotype LeR SEQ ID NO: 18
  • the size of the PCR product obtained when the genomic DNA obtained from wild-type mice (WT) and PD-1 frozen mice (flox) was not treated with restriction enzymes (intact) and treated with restriction enzymes (EcoRV, AscI). It is shown in FIG. Based on the size of the obtained PCR product, it was judged to be a wild-type mouse (WT) or a PD-1 frozen mouse.
  • FIG. 23 The DNA sequence of Pdcd1 in the genome of PD-1 frozen mice is shown in FIG. 23 (SEQ ID NO: 19).
  • FIG. 24 shows the gene sequence (SEQ ID NO: 22) of the open reading frame (ORF) of the PD-1 frozen mouse predicted after the fourth exon is shed by the Cre / loxP system and the corresponding amino acid sequence (SEQ ID NO: 23). Shown in. The prepared PD-1 fl / fl mice developed normally, and it was shown that the regulation of the PD-1 gene was clearly not disturbed by the insertion of the loxP sequence.
  • PD-1 fl / + CD8 cre mice, PD-1 fl / fl mice, and CD8 cre mice were mated and conditional PD-1 homozygous mice (PD-1 fl / fl CD8 cre mice, PD-1 conditional). Knockout mice (also referred to as PD-1-cKO mice) were obtained. A conceptual diagram is shown in FIG. In addition, PD-1 heterozygous (PD-1 fl / + CD8 cre ) littermates were also obtained (Littermate Ctrl). Table 2 shows the primer sequences used for genotyping of CD8 cre , PD-1 -/- , and PD-1 fl.
  • Example 3 Psoriasis-like dermatitis model using CD8-positive T cell-specific PD-1 conditional knockout mouse ⁇ Induction of dermatitis>
  • imiquimod was applied to 5 PD-1 fl / fl CD8 cre mice (PD-1-cKO) and 5 PD-1 fl / + CD8 cre mice (Littermate Ctrl).
  • a photograph of the back on the 7th day of application is shown in FIG. Mild erythema and scales were observed on the Literate Ctrl coated with imiquimod. Severe erythema and scales were observed in PD-1-cKO coated with imiquimod.
  • HE-stained skin tissue specimens of Litermate Ctrl and PD-1-cKO are shown on the left side of FIG. 28.
  • ⁇ Thickness of epidermis> The evaluation was performed in the same manner as in Example 1. The thickness of the epidermis of Litermate Ctrl and PD-1-cKO is shown on the right side of FIG. 28. The epidermis of PD-1-cKO was significantly thicker than that of Literate Ctrl.
  • ⁇ CD8-positive cells in lymph nodes Inflow region lymph nodes collected from Litermate Ctrl and PD-1-cKO were ground on a mesh, individualized by pipetting, and filtered to prepare a single cell suspension. Staining was performed using a Zombie fixable viability kit (manufactured by BioLegend) to remove dead cells. Living cells were anti-CD45 antibody (30-F11, manufactured by BioLegend) diluted with FACS staining buffer (PBS containing 1% BSA, 5 mM EDTA), anti-CD8 antibody (53-6.7, manufactured by BioLegend), and Incubated with anti-CD3e antibody (145-2C11, manufactured by BioLegend).
  • ⁇ Expression level of IFN- ⁇ and GzmB in cells A suspension of lymph node cells prepared as described above from the influx region lymph nodes of Litermate Ctrl and PD-1-cKO was used. RPMI 1640 medium (10% fetal bovine serum, 2 mM L-glutamine, 100 U / ml penicillin, 100 ⁇ g / ml streptomycin, monensin) with a final concentration of 25 ng / ml PMA and a final concentration of 1 ⁇ g / ml ionomycin. The cells were stimulated with (addition).
  • Gallios manufactured by Beckman-Coulter was used as a flow cytometer, and data analysis was performed with FlowJo software (v7.6.5). Live CD45-positive, CD3e-positive and CD8-positive living cells were designated as CD8-positive T cells.
  • a histogram of cells expressing IFN- ⁇ or Gzm B is shown on the left side of FIG. 31.
  • IFN- ⁇ the peaks of CD8-positive T cells derived from PD-1-cKO are shifted to the right as compared with Litemate Ctrl and negative control, and cells with a large amount of IFN- ⁇ in the cells are PD-1-.
  • Gzm B the peaks of CD8-positive T cells derived from PD-1-cKO are shifted to the right as compared with Litermate Ctrl and negative control, and cells with a large amount of Gzm B in the cells are PD-1-.
  • FIG. 31 shows the median fluorescence intensity (MFI).
  • MFI median fluorescence intensity
  • Example 4 Administration of anti-IL-6R antibody to a psoriasis-like dermatitis model using conventional knockout mice ⁇ Induction of dermatitis and administration of anti-IL-6R antibody>
  • Ten PD-1 conventional knockout mice (PD-1 -/- ) and 10 wild-type mice (WT) were prepared. Imiquimod was applied to all mice in the same manner as in Example 1 to induce dermatitis.
  • 2 mg of anti-IL-6R antibody (MR16-1, manufactured by Chugai Pharmaceutical Co., Ltd.) was intravenously injected per mouse, and analysis was performed on mice that were confirmed to have been injected reliably. carried out.
  • This antibody is a rat IgG1 monoclonal antibody against the ⁇ chain of mouse IL-6R.
  • Isotype IgG control manufactured by MP Biomedicals
  • Control (IgG Ctrl) WT mice treated with control PD-1 was administered (IgG Ctrl) - / - mice, and anti-IL-6R antibody (MR16-1) administration of the PD-1 - / - coating of mice
  • FIG. Mild erythema and scales were observed in control WT mice. Severe erythema and scales were observed in control PD-1 -/-mice. On the other hand, erythema and scales of PD-1-/- mice administered with anti-IL-6R antibody were mild. It was revealed that the exacerbation of PD-1-dependent dermatitis was alleviated by administration of anti-IL-6R antibody.
  • ⁇ Thickness of epidermis> This was done in the same manner as in Example 1.
  • the thickness of the epidermis of the control WT mouse, the control PD-1 -/- mouse, and the PD-1-/- mouse administered with the anti-IL-6R antibody is shown on the left of FIG. 35.
  • the epidermis of the control PD-1 -/- mice was significantly thicker than that of the WT mouse, but when the anti-IL-6R antibody was administered, the thickness was similar to that of the control WT mouse. It was revealed that PD-1-dependent epidermal thickening was alleviated by administration of anti-IL-6R antibody.
  • Example 2 This was done in the same manner as in Example 1.
  • the number of microabscesses in the control WT mouse, the control PD-1 -/- mouse, and the PD-1-/- mouse administered with the anti-IL-6R antibody is shown on the right side of FIG. 35.
  • the control PD-1 -/- mice had significantly more microabscesses than the control WT mice, but when the anti-IL-6R antibody was administered, the number was about the same as that of the control WT mice.
  • the increase in PD-1-dependent microabscesses was found to be alleviated by administration of anti-IL-6R antibody.
  • FIG. 36 shows the quantification results of mRNA of cytokines (IL-6, IL-23a, IL-17a) that have been reported to be involved in psoriasis.
  • the expression level of IL-6 mRNA was significantly higher in the control PD-1-/- mice than in the WT mice, but when the anti-IL-6R antibody was administered, the amount was similar to that in the control WT mice. there were. It was revealed that the PD-1-dependent increase in IL-6 production was alleviated by the administration of anti-IL-6R antibody. Further, IL-23a had the same tendency as described above.
  • IL-17a there was no significant difference between PD-1-/- mice and WT mice in the control, but it was revealed that when anti-IL-6R antibody was administered, it was significantly decreased as compared with the control. rice field.
  • the quantitative results are shown in FIG. 37.
  • the amount of IL-6 was significantly higher in control PD-1-/- mice than in WT mice, but was significantly reduced when anti-IL-6R antibody was administered. It was revealed that the PD-1-dependent increase in IL-6 production was alleviated by the administration of anti-IL-6R antibody. Further, IL-23A and IL-17A had the same tendency as described above.
  • Example 5 Administration of anti-IL-6R antibody to a psoriasis-like dermatitis model using a CD8-positive T cell-specific PD-1 conditional knockout mouse ⁇ Induction of dermatitis and administration of anti-IL-6R antibody> Twelve PD-1 fl / fl CD8 cre mice (PD-1-cKO) and 10 PD-1 fl / + CD8 cre mice (Littermate Ctrl) were prepared and assigned to two groups. All mice were coated with imiquimod in the same manner as in Example 4 and administered with anti-IL-6R antibody (MR16-1, manufactured by Chugai Pharmaceutical Co., Ltd.) or control (Isotype IgG control).
  • MR16-1 manufactured by Chugai Pharmaceutical Co., Ltd.
  • FIG. 38 shows a photograph of the back of Littermate Ctrl mice and PD-1-cKO mice administered with control (IgG Ctrl) or anti-IL-6R antibody on the 7th day of application.
  • control IgG Ctrl
  • anti-IL-6R antibody a control that was administered with control or anti-IL-6R antibody.
  • severe erythema and scales were observed in control PD-1-cKO mice.
  • the erythema and scales of PD-1-cKO mice treated with anti-IL-6R antibody were mild. It was revealed that the exacerbation of PD-1-dependent dermatitis was alleviated by administration of anti-IL-6R antibody.
  • ⁇ Thickness of epidermis> This was done in the same manner as in Example 1.
  • the thickness of the epidermis of Littermate Ctrl and PD-1-cKO mice to which control (IgG Ctrl) or anti-IL-6R antibody was administered is shown on the left of FIG. 41.
  • the control PD-1-cKO mice had a significantly thicker epidermis than the Litermate Ctrl mice, but when the anti-IL-6R antibody was administered, the epidermis was as thick as the Litermate Ctrl mice. It was revealed that PD-1-dependent epidermal thickening was alleviated by administration of anti-IL-6R antibody.
  • ⁇ CD8-positive cells in lymph nodes> This was done in the same manner as in Example 3.
  • the number of CD8-positive cells in the lymph nodes of Litemate Ctrl and PD-1-cKO mice to which control (IgG Ctrl) or anti-IL-6R antibody was administered is shown in FIG. 42.
  • the control PD-1-cKO mice had significantly more CD8-positive cells in the lymph nodes than the Litermate Ctrl mice, but significantly decreased when anti-IL-6R antibody was administered. It was revealed that CD8-positive cell infiltration into PD-1-dependent lymph nodes was alleviated by administration of anti-IL-6R antibody.
  • Example 3 ⁇ Expression level of CD8a and IFN- ⁇ mRNA> This was done in the same manner as in Example 3.
  • the mRNA expression levels of CD8a and IFN- ⁇ in the ears of Litemate Ctrl and PD-1-cKO mice administered with control (IgG Ctrl) or anti-IL-6R antibody are shown in FIG. 43.
  • the mRNA expression level of CD8a was not different between the Littermate Ctrl mice and the administration of the control or anti-IL-6R antibody.
  • the control-administered PD-1-cKO mice had significantly higher levels of CD8a mRNA than the Litermate Ctrl mice, but significantly decreased when anti-IL-6R antibody was administered. It was revealed that PD-1 dependent increase in CD8a expression level was alleviated by administration of anti-IL-6R antibody.
  • the expression level of IFN- ⁇ mRNA was not different between the Littermate Ctrl mice and the administration of the control or anti-IL-6R antibody.
  • the control-administered PD-1-cKO mice had significantly higher IFN- ⁇ mRNA than the Litermate Ctrl mice, but tended to decrease when the anti-IL-6R antibody was administered.
  • FIG. 45 shows the search results of the exon (indicated by box) of the PD-L1 gene (CD274) in the genome of the wild-type mouse, the target sequence of the CRISPR-Cas system, and the PAM sequence.
  • Mouse CD274 is located on chromosome 19 and is composed of 7 exons. Since the start codon of PD-L1 protein is present in the first exon, dropping the second and third exons using the Cre / loxP system prevents the production of complete PD-L1 protein.
  • the loxP sequence was designed to be inserted at both ends of the region containing exons 2-3 using the CRISPR-Cas system.
  • a pX330 vector CRISPR / Cas9 vector containing a guide RNA (gRNA) and a Cas9 expression cassette in one plasmid is introduced into a fertilized egg, and the target sgRNA and Cas9 mRNA are simultaneously expressed to mouse PD.
  • the L1 genome was cleaved at the target position, and pflop-PD-L1 (donor vector) containing the loxP sequence was also introduced into the fertilized egg as donor DNA so that the loxP sequence was inserted into the cleavage site. ..
  • the CRISPR target site on the 5'side of the region containing Exxon 2-3 is the Left CRISPR site
  • the CRISPR target site on the 3'side is the right CRISPR site
  • the area from the Left CRISPR prediction cut site to the upstream (5') side 1382 bp is 5 'Arm
  • from the right CRISPR predictive cutting site to 1085bp downstream (3') was the 3'arm
  • 3197bp between the Left CRISPR predictive cutting site and the light CRISPR predictive cutting site was the central arm.
  • the sequences of the Left CRISPR target site and the light CRISPR target site (L target sequence: SEQ ID NO: 31, R target sequence: SEQ ID NO: 32) are shown in FIG. 45.
  • the left and right target sequences and PAMs were searched using CRISPR (https://crispr.dbcls.jp/) and the 20-base target sequence was one in the CD274 genome. I confirmed that there was only one place.
  • a donor vector containing the loxP sequence on the outside of the exon 2-3 and containing the 5'arm, central arm, and 3'arm sequences was prepared by the following procedure.
  • PCR was performed according to a conventional method using the genomic DNA of C57BL / 6J mice (FIG. 46, SEQ ID NO: 33) as a template and using the primers of Step1.
  • the 5'arm is the sequence of the B6J genome used as the template for the 5'arm
  • the Central arm coarse broken line
  • 3'arm ( Gothic) is the sequence of the B6J genome used as a template for the 3'arm.
  • Step 1 In-Fusion (Step 1, FIG. 47) of the obtained PCR product and a vector originally prepared based on pbluescrit (pflox primer (FIG. 17, SEQ ID NO: 6)).
  • pflox primer FOG. 17, SEQ ID NO: 6
  • the arrowhead pointing to the left indicates the loxP sequence.
  • PCR was performed using the primer of Step2, and the obtained PCR product and the product of Step1 were In-Fusioned (Step2, FIG. 48). Further, the primer of Step3 was used. PCR was performed, and the obtained PCR product and the product of Step 2 were In-Fusion (Step 3, FIG. 49). This product was designated as pflox-PD-L1.
  • the primers used are shown in Table 3.
  • L target sequence SEQ ID NO: 40
  • R target sequence SEQ ID NO: 41
  • pX330-PD-PD pX330-PD-PD. It was designated as L1-L and pX330-PD-L1-R.
  • FIG. 50 shows a schematic diagram.
  • pflox-PD1, pX330-PD-L1-L and pX330-PD-L1-R were microinjected into the pronucleus of C57BL / 6 fertilized eggs by a conventional method. Fertilized eggs were transplanted into the oviducts of pseudopregnant mice to give birth to founder mice. By mating this founder mouse with a C57BL6 mouse, a heterozygous PD-L1 fl / + mouse was produced. Furthermore, homozygous PD-L1 fl / fl mice were produced by mating these heterozygous PD-L1 fl / + mice with each other.
  • Genotyping was performed on genomic DNA purified from a part of mouse tail tissue by PCR using the following primers (sequence is shown in FIG. 51) according to a conventional method.
  • PDL1 Genotype RiF SEQ ID NO: 42
  • PDL1 Genotype RiR SEQ ID NO: 43
  • PDL1 Genotype LeF SEQ ID NO: 44
  • PDL1 Genotype LeR SEQ ID NO: 45
  • FIG. 52 The DNA sequence of CD274 in the genome of PD-L1 frozen mouse is shown in FIG. 52 (SEQ ID NO: 46).
  • FIG. 53 shows the gene sequence (SEQ ID NO: 49) of the open reading frame (ORF) of PD-L1 frozen mice and the corresponding amino acid sequence (SEQ ID NO: 50) predicted after shedding by the Cre / loxP system.
  • the prepared PD-L1 fl / fl mice developed normally, and it was shown that the regulation of the PD-L1 gene was not clearly disturbed by the insertion of the loxP sequence.
  • Langerin cre mice are characterized by not expressing Cre in dendritic cells but expressing Cre specifically in Langerhans cells, PD-L1 fl / + Langerin cre mice, PD-L1 fl / fl mice, and Langerin.
  • the cre mice were mated to obtain conditional PD-L1 homozygous mice (also referred to as PD-L1 fl / fl Langerin cre mice, PD-L1 conditional knockout mice, and PD-L1-cKO mice).
  • a conceptual diagram is shown in FIG. 54.
  • PD-L1 heterozygous (PD-L1 fl / + Language cre ) litters were also obtained (Littermate Ctrl).
  • Table 4 shows the primer sequences used for genotyping of Langerin cre , PD-L1 -/- , and PD-L1 fl.
  • An anti-PD-L1 antibody (10F.9G2, manufactured by BioLegend) was used to indicate that PD-L1 gene expression was completely abolished in the lymph nodes of PD-L1 fl / fl Language cre mice in a Langerhans cell population-specific manner. It was confirmed by the flow cytometry.
  • Example 7 Psoriasis-like dermatitis model using Langerhans cell-specific PD-L1 conditional knockout mouse ⁇ Induction of dermatitis>
  • imiquimod was applied to 5 PD-L1 fl / fl Language cre mice (PD-L1-cKO) and 5 littermates PD-L1 fl / + Language cre mice (Ctrl).
  • PD-L1 was not expressed in Langerhans cells of PD-L1-cKO and Ctrl that had not been coated with imiquimod (IMQ (-)), but Langerin-positive dendritic cells and Langerin-negative dendritic cells had no expression.
  • PD-L1 was expressed.
  • imiquimod was applied (IMQ (+))
  • PD-L1 remained absent in Langerhans cells of PD-L1-cKO, but PD-L1 was expressed in Langerhans cells of Ctrl.
  • FIG. 56 shows a photograph of the back on the 5th day of application. There was no noticeable difference in skin condition between Ctrl without imiquimod and PD-L1-cKO. Mild erythema and scales were observed on imiquimod-coated (IMQ) Ctrl. Severe erythema and scales were observed in PD-L1-cKO coated with imiquimod.
  • IMQ imiquimod-coated
  • the HE-stained skin tissue specimens of Ctrl and PD-L1-cKO are shown in FIG. 58. There was no noticeable difference in the morphology of the skin tissue between Ctrl without imiquimod (Vehicle) and PD-L1-cKO. In PD-L1-cKO coated with imiquimod (IMQ), thickening of the epidermis, parakeratosis and hyperkeratosis, and microabscesses due to neutrophils just below the stratum corneum were significantly observed as compared with Ctrl.
  • IMQ imiquimod
  • ⁇ Thickness of epidermis> The evaluation was performed in the same manner as in Example 1. The thickness of the epidermis of Ctrl and PD-L1-cKO is shown in FIG. 59. There was no difference in epidermis thickness between Ctrl without imiquimod (Vehicle) and PD-L1-cKO, but PD-L1-cKO was more than Ctrl with imiquimod (IMQ). The epidermis was significantly thicker.
  • ⁇ Cytokine mRNA expression level> The mRNA expression levels of IL-6, IL-17a and IL-23a in imiquimod-coated Ctrl and PD-L1-cKO were examined in the same manner as in Example 1 "cytokine mRNA expression level". The results are shown in FIG. The mRNA expression levels of IL-6, IL-17a and IL-23 were higher in PD-L1-cKO than in Ctrl. In particular, the mRNA expression level of IL-17a in PD-L1-cKO was significantly higher than that in Ctrl. From this result, it was suggested that PD-L1 expressed in Langerhans cells regulates cytokine production in Th17 cells. Therefore, next, analysis was performed on ⁇ T cells, which are one of Th17 cells.
  • ⁇ Activation of ⁇ T cells On the 4th day of application, ears collected from mice were ground on a mesh, individualized by pipetting, and a single cell suspension was prepared through a filter.
  • RPMI 1640 medium (10% fetal bovine serum, 2 mM L-glutamine, 100 U / ml penicillin, 100 ⁇ g / ml streptomycin, monensin) with a final concentration of 25 ng / ml PMA and a final concentration of 1 ⁇ g / ml ionomycin.
  • the cells were stimulated with (addition).
  • anti-CD45 antibody (30-F11, manufactured by BioLegend), anti-TCR ⁇ antibody (H57-597, manufactured by BioLegend), anti-TCR ⁇ antibody (GL3, manufactured by BioLegend), anti-CD3e antibody (145-2C11).
  • BioLegend anti-CD69 antibody (H1.2F3, BioLegend)) to stain the cell surface with CD45, TCR ⁇ , TCR ⁇ and CD69, and then use Fix / Perm Kit (BD).
  • Intracellular cytokines were stained with an anti-IL-17A antibody (TC11-18H10.1, manufactured by BioLegend). Fluorescence-Minus-One Control was used as a negative control.
  • Gallios manufactured by Beckman-Coulter was used as a flow cytometer, and data analysis was performed with FlowJo software (v7.6.5).
  • a histogram of cells expressing TCR ⁇ and TCR ⁇ when gated with live CD45-positive cells is shown on the left side of FIG. 61.
  • the number of CD45-positive living cells expressing TCR ⁇ at a low level was 0.79% in Ctrl and 2.03% in PD-L1-cKO, and PD-L1-cKO was more common.
  • a graph of the ratio (%) of cells expressing TCR ⁇ at a low level ( ⁇ low T cell) to CD45-positive live cells (CD45 + live cell) is shown in the center of FIG. 61.
  • the ratio (%) of ⁇ low T cell to CD45 + live cell was significantly higher in PD-L1-cKO than in Ctrl.
  • a graph of the ratio (%) of cells expressing CD69 at a high level to ⁇ low T cell (CD69 hi ) is shown second from the right in FIG. 61.
  • “CD69 hi ⁇ low Tcell” on the vertical axis of the graph indicates the ratio of cells expressing CD69 at a high level (CD69 hi ⁇ low Tcell) to cells expressing TCR ⁇ at a low level ( ⁇ low Tcell) (CD69 hi ⁇ low Tcell). %).
  • the ratio (%) of cells expressing high levels of CD69 (CD69 hi ⁇ low T cells) to cells expressing TCR ⁇ at low levels was significantly higher in PD-L1-cKO than in Ctrl. There were many.
  • a graph of the intracellular IL-17A amount in ⁇ low T cell is shown on the right side of FIG. 61.
  • the vertical axis of the graph is the median fluorescence intensity (MFI).
  • MFI median fluorescence intensity
  • the intracellular IL-17A amount in ⁇ low Tcell was significantly higher in PD-L1-cKO than in Ctrl. From these results, it was clarified that PD-L1 expressed on Langerhans cells activates ⁇ T cells that produce IL-17A in the skin.
  • ⁇ Expression level of IFN- ⁇ and GzmB in cells> A suspension of lymph node cells prepared as in Example 3 from the influx region lymph nodes of mice was used.
  • RPMI 1640 medium (10% fetal bovine serum, 2 mM L-glutamine, 100 U / ml penicillin, 100 ⁇ g / ml streptomycin, monensin) with a final concentration of 25 ng / ml PMA and a final concentration of 1 ⁇ g / ml ionomycin.
  • the cells were stimulated with (addition). After incubation for 4 hours, anti-TCR ⁇ antibody (GL3, manufactured by BioLegend), anti-CD3e antibody (145-2C11, manufactured by BioLegend), anti-CD69 antibody (H1.2F3, manufactured by BioLegend), and anti-CCR6 (Chemokine receptor6).
  • Anti-IL-17A antibody (TC11-18H10.) After staining the cell surface with TCR ⁇ and CD69 using an antibody (29-2L17, manufactured by BioLegend), and then using a Fix / Perm Kit (manufactured by BD). 1. Intracellular staining was performed with BioLegend (manufactured by BioLegend). Fluorescence-Minus-One Control was used as a negative control. Gallios (manufactured by Beckman-Coulter) was used as a flow cytometer, and data analysis was performed with FlowJo software (v7.6.5).
  • CD69 hi ⁇ low T cells The number of CD69 hi ⁇ low T cells is shown on the left side of FIG. 62. (In the figure, CD69 hi ⁇ Tcell) CD69 hi ⁇ low Tcell number of, if not imiquimod applied was no difference between the Ctrl and PD-L1-cKO. The number of CD69 hi ⁇ low T cells increased when imiquimod was applied, and PD-L1-cKO increased significantly compared to Ctrl. In addition, the expression level of IL-17A in CCR6-negative CD69 hi ⁇ low T cell was not different between Ctrl and PD-L1-cKO with or without imiquimod application.
  • the IL-17A expression level in CCR6-positive CD69 hi ⁇ low T cell was not different between Ctrl and PD-L1-cKO when imiquimod was not applied, but when imiquimod was applied, CD69 hi ⁇ was not applied.
  • the number of low T cells was significantly higher in PD-L1-cKO than in Ctrl due to imiquimod application.
  • Example 8 Preparation of PD-L2 fl / fl mouse Wild-type mouse (WT) C57BL / 6J was purchased from Charles River Japan. (design) Using the CRISPR / Cas9 system at the University of Tsukuba Experimental Animal Resources Center, two loxP sequences (5'-ATAACTTCGTATAGCATACATTATATACGAAGTTATA-3') were inserted before and after the PD-L2 gene to produce transgenic mice (PD-L2 frozen). Mouse, or PD-L2 fl / fl mouse). FIG.
  • 63 shows the position of exons (indicated by box) of the PD-L2 gene (CD273) in the genome of wild-type mice, the target sequence of the CRISPR-Cas system, and the PAM sequence.
  • Mouse CD273 is located on chromosome 19 and consists of 6 exons. Since the start codon of the PD-L2 protein is present in the first exon, a part of the PD-L2 protein is deleted by dropping the third and fourth exons using the Cre / loxP system.
  • loxP sequences were designed to create a flox mouse by inserting loxP sequences at two locations so as to sandwich the region containing exons 3-4 (Left CRISPR on the 5'side and Light CRISPR on the 3'side. ). Genome editing by the electroporation method was adopted for the insertion of the left and right loxP sequences.
  • a single-stranded donor containing a fertilized egg obtained by artificially fertilizing a male sperm from a female mouse subjected to hyperovulation treatment, SpCas9 protein, guide RNA (gRNA), and loxP sequence.
  • the loxP sequence was inserted into the cleavage site by mixing with DNA (ssODN) and electroporation to introduce it into the fertilized egg.
  • the left and right target sequences and ssODN are shown in Table 5.
  • Fertilized eggs were transplanted into the oviducts of pseudopregnant mice to give birth to founder mice.
  • a heterozygous PD-L2 fl / + mouse was produced.
  • homozygous PD-L2 fl / fl mice were produced by mating these heterozygous PD-L2 fl / + mice with each other.
  • Genotyping was performed by performing PCR on genomic DNA purified from a part of the tail tissue of mice according to a conventional method using the following primers.
  • PD-L2 Genotype LF ACTTCCCTTCAGGCTTTGGT (SEQ ID NO: 63)
  • PD-L2 Genotype LR TGGTCCAGGATTTCTCAAGG
  • PD-L2 Genotype RF TCTGCCCCTCGTTTTCATAC (SEQ ID NO: 65)
  • PD-L2 Genotype RR CGCAGAGTGGTTGTGGTATG (SEQ ID NO: 66)
  • the size is shown in FIG. Based on the size of the obtained PCR product, it was judged to be a wild-type mouse (WT) or a PD-L2 frozen mouse.
  • the DNA sequence (SEQ ID NO: 71) in the genome of a wild-type mouse is shown in FIG.
  • the DNA sequence (SEQ ID NO: 72) in the genome of PD-L2 frozen mouse is shown in FIG.
  • a drug that prevents and treats immune-related side effects caused by an anti-PD-1 antibody or an anti-PD-L1 antibody. It is possible to provide a genetically modified non-human animal in which PD-1 / PD-L1 and L2 signals are inhibited in a tissue-specific and time-specific manner. In addition, non-human animals can be provided that model immunity-related side effects with anti-PD-1 or anti-PD-L1 antibodies. It is possible to provide a method for screening a drug that performs at least one of prevention and treatment of immune-related side effects caused by an anti-PD-1 antibody or an anti-PD-L1 antibody. It is possible to provide a method for evaluating a drug that performs at least one of prevention and treatment of immune-related side effects caused by an anti-PD-1 antibody or an anti-PD-L1 antibody.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Diabetes (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Biochemistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Neurology (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Pathology (AREA)
  • Dermatology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Epidemiology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • General Physics & Mathematics (AREA)
  • Environmental Sciences (AREA)
  • Food Science & Technology (AREA)
  • Biophysics (AREA)
  • Endocrinology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Genetics & Genomics (AREA)

Abstract

抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤を提供することを課題とする。また、PD-1/PD-L1シグナルが組織特異的、時期特異的に阻害される、遺伝子改変非ヒト動物を提供することを課題とする。抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物、およびそれを用いた薬剤のスクリーニング方法ならびに評価方法を提供することを課題とする。 IL-6シグナルを阻害する物質を含む、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤であって、前記免疫関連副作用が皮膚障害、重症筋無力症、心筋炎、筋炎、横紋筋融解症、I型糖尿病、神経障害、腎障害、関節炎、肝障害、肺炎、膵炎、甲状腺炎、副腎炎、視床下部機能異常、および汎下垂体機能低下症から選ばれる少なくとも1つである、薬剤。ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入されることにより、組織および時期の少なくとも一方に特異的にPD-1遺伝子の全部または一部の発現が抑制または喪失されている、遺伝子改変非ヒト動物。ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入されることにより、PD-1遺伝子の全部または一部の発現が抑制または喪失されている遺伝子改変非ヒト動物に、抗原性補強剤を投与することにより作製する、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物。

Description

免疫関連副作用の予防および治療の少なくとも一方を行う薬剤、遺伝子改変非ヒト動物、および免疫関連副作用モデル非ヒト動物
 本発明は、免疫関連副作用の予防および治療の少なくとも一方を行う薬剤、遺伝子改変非ヒト動物、および免疫関連副作用モデル非ヒト動物に関する。
 免疫チェックポイント阻害薬である抗PD-1(Programmed cell death 1)抗体または抗PD-L1(Programmed cell death 1-Ligand 1)抗体は、悪性黒色腫および扁平上皮非小細胞肺癌を始めとする種々のガンの治療に有効であり、ガン免疫療法として臨床において頻繁に用いられている。しかし、抗ガン作用とともに、その作用機序より自己免疫反応が惹起され、様々な免疫関連副作用(immune-related adverse events:irAEs、免疫関連有害事象ともいう)が起きてしまう。免疫関連副作用は、抗PD-1抗体または抗PD-L1抗体を投与した症例の約7割で発症している。免疫関連副作用は、肺、腸管、甲状腺などを始めとした全身の臓器で起こり得るが、皮膚炎はその約4割を占め、そのうちの一つが乾癬様皮膚炎である。免疫関連副作用としての乾癬様皮膚炎を発症した患者では、免疫関連副作用を発症しなかった患者に比べて、血清中のインターロイキン-6(IL-6)の上昇がみられることが報告されている(非特許文献1)。しかし、免疫関連副作用の病態や発症のメカニズムについては未知のことが多いため、免疫関連副作用の対処法としては現在のところステロイドなどの非特異的免疫抑制療法が選択されている。しかし、これは抗PD-1抗体または抗PD-L1抗体によるガン免疫療法の抗ガン作用を打ち消すものであるので、抗ガン作用を打ち消さない特異的な治療法が求められていた。また、免疫関連副作用を発症するモデルが存在しないため、治療法や治療薬の開発が行えなかった。
Tanaka R、Serum level of interleukin-6 is increased in nivolumab-associated psoriasiform dermatitis and tumor necrosis factor-α is a biomarker of nivolumab recativity.、J Dermatol Sci.、2017、86(1)、71-73
 本発明者らは、免疫関連副作用、特に乾癬様皮膚炎の病態と発症メカニズムを解析し、そのメカニズムの一部を阻害できれば、乾癬様皮膚炎の予防および治療を行えると考えた。そこで、免疫関連副作用としての乾癬様皮膚炎の病態と発症メカニズムを解析し、本発明の第一の態様として、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤を提供することを課題とする。また、抗PD-1抗体または抗PD-L1抗体が投与された状態をモデル動物で再現できれば、免疫関連副作用の病態や発症メカニズムの解析が行えると考えた。そこで、本発明の第二の態様として、PD-1/PD-L1、L2シグナルが組織特異的、時期特異的に阻害される、遺伝子改変非ヒト動物を提供することを課題とする。さらに、免疫関連副作用を発症するモデル動物があれば、免疫関連副作用の予防や治療に有効な薬剤を探し、開発することができると考えた。そこで、本発明の第三の態様として、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物を提供することを課題とする。本発明の第四の態様として、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤のスクリーニング方法を提供することを課題とする。本発明の第五の態様として、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤の評価方法を提供することを課題とする。
 本発明者らは上記課題を解決すべく鋭意検討した。その結果、以下の構成を有することにより上記課題を解決できることを見出し、本発明を完成するに至った。
 本発明は、例えば以下の〔1〕~〔29〕に関する。
〔1〕 IL-6シグナルを阻害する物質を含む、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤であって、前記免疫関連副作用が皮膚障害、重症筋無力症、心筋炎、筋炎、横紋筋融解症、I型糖尿病、神経障害、腎障害、関節炎、肝障害、肺炎、膵炎、甲状腺炎、副腎炎、視床下部機能異常、および汎下垂体機能低下症から選ばれる少なくとも1つである、薬剤。
〔2〕 前記IL-6シグナルを阻害する物質が、IL-6とIL-6Rとの結合を阻害する物質である、〔1〕に記載の薬剤。
〔3〕 前記IL-6とIL-6Rとの結合を阻害する物質が、抗IL-6R抗体である、〔2〕に記載の薬剤。
〔4〕 前記免疫関連副作用が皮膚障害である、〔1〕~〔3〕のいずれかに記載の薬剤。
〔5〕 前記皮膚障害が乾癬様皮膚炎である、〔4〕に記載の薬剤。
〔6〕 前記乾癬様皮膚炎が、CD8陽性細胞の表皮への浸潤が尋常性乾癬よりも亢進しているものである、〔5〕に記載の薬剤。
〔7〕 ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域の一部または全部を挟むリコンビネース標的配列が導入された、遺伝子改変非ヒト動物。
〔8〕 前記リコンビネース標的配列がloxP配列である、〔7〕に記載の遺伝子改変非ヒト動物。
〔9〕 ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入されることにより、組織および時期の少なくとも一方に特異的にPD-1遺伝子の全部または一部の発現が抑制または喪失されている、遺伝子改変非ヒト動物。
〔10〕 Cre/loxP配列、FLPタンパク質/FRT配列、およびpSR1リコンビネース/pSR1リコンビネース標的配列からなる群から選ばれる、リコンビネース/リコンビネース標的配列システムの利用により、ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入される、〔9〕に記載の遺伝子改変非ヒト動物。
〔11〕 前記リコンビネース/リコンビネース標的配列システムがCre/loxP配列である、〔10〕に記載の遺伝子改変非ヒト動物。
〔12〕 CD8陽性T細胞特異的にPD-1遺伝子の全部または一部の発現が抑制または喪失されている、〔9〕~〔11〕のいずれかに記載の遺伝子改変非ヒト動物。
〔13〕 PD-1遺伝子のエクソン2、3、および4の発現が抑制または喪失されている、〔9〕~〔12〕のいずれかに記載の遺伝子改変非ヒト動物。
〔14〕 ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入されることにより、PD-1遺伝子の全部または一部の発現が抑制または喪失されている遺伝子改変非ヒト動物に、抗原性補強剤を投与することにより作製する、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物。
〔15〕 前記遺伝子改変非ヒト動物が、組織および時期の少なくとも一方に特異的にPD-1遺伝子の全部または一部の発現が抑制または喪失されている遺伝子改変非ヒト動物である、〔14〕に記載の、免疫関連副作用モデル非ヒト動物。
〔16〕 前記遺伝子改変非ヒト動物が、CD8陽性T細胞特異的にPD-1遺伝子の全部または一部の発現が抑制または喪失されている遺伝子改変非ヒト動物である、〔15〕に記載の、免疫関連副作用モデル非ヒト動物。
〔17〕 前記免疫関連副作用が、免疫関連副作用としての乾癬様皮膚炎である、〔14〕~〔16〕のいずれかに記載の免疫関連副作用モデル非ヒト動物。
〔18〕 前記抗原性補強剤がイミキモドである、〔14〕~〔17〕のいずれかに記載の免疫関連副作用モデル非ヒト動物。
〔19〕 ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域に変異が導入されることにより、ランゲルハンス細胞特異的にPD-L1遺伝子の全部または一部の発現が抑制または喪失されている、遺伝子改変非ヒト動物。
〔20〕 Cre/loxP配列、FLPタンパク質/FRT配列、およびpSR1リコンビネース/pSR1リコンビネース標的配列からなる群から選ばれる、リコンビネース/リコンビネース標的配列システムの利用により、ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域に変異が導入される、〔19〕に記載の遺伝子改変非ヒト動物。
〔21〕 前記リコンビネース/リコンビネース標的配列システムがCre/loxP配列である、〔20〕に記載の遺伝子改変非ヒト動物。
〔22〕 PD-L1遺伝子のエクソン2および3の発現が抑制または喪失されている、〔19〕~〔21〕のいずれかに記載の遺伝子改変非ヒト動物。
〔23〕 〔19〕~〔22〕のいずれかに記載の遺伝子改変非ヒト動物に、抗原性補強剤を投与することにより作製する、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物。
〔24〕 前記免疫関連副作用が、免疫関連副作用としての乾癬様皮膚炎である、〔23〕に記載の免疫関連副作用モデル非ヒト動物。
〔25〕 前記抗原性補強剤がイミキモドである、〔23〕または〔24〕に記載の免疫関連副作用モデル非ヒト動物。
〔26〕 〔9〕~〔13〕、〔19〕~〔22〕のいずれかに記載の遺伝子改変非ヒト動物、または〔14〕~〔18〕、〔23〕~〔25〕のいずれかに記載の免疫関連副作用モデル非ヒト動物を用いる、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤のスクリーニング方法。
〔27〕 〔9〕~〔13〕、〔19〕~〔22〕22のいずれかに記載の遺伝子改変非ヒト動物、または〔14〕~〔18〕、〔23〕~〔25〕のいずれかに記載の免疫関連副作用モデル非ヒト動物を用いる、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤の評価方法。
〔28〕 ゲノム中のPD-L2遺伝子またはPD-L2遺伝子の発現調節領域の一部または全部を挟むリコンビネース標的配列が導入された、遺伝子改変非ヒト動物。
〔29〕 前記リコンビネース標的配列がloxP配列である、〔28〕に記載の遺伝子改変非ヒト動物。
 本発明によれば、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤を提供することができる。PD-1/PD-L1、L2シグナルが組織特異的、時期特異的に阻害される、遺伝子改変非ヒト動物を提供することができる。さらに、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物を提供することができる。抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤のスクリーニング方法を提供することができる。抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤の評価方法を提供することができる。
図1は、尋常性乾癬(左)と、Anti-PD-1 antibody-induced psoriasis-like dermatitis(抗PD-1抗体誘導性乾癬様皮膚炎、右)の患者の背部と下腿の皮膚の写真である。 図2は、尋常性乾癬(上)と、Anti-PD-1 antibody-induced psoriasis-like dermatitis(抗PD-1抗体誘導性乾癬様皮膚炎、下)の患者から得た組織切片をヘマトキシリンエオジン染色した結果(HE)、抗CD8抗体により免疫染色した結果(CD8)および抗CD4抗体により免疫染色した結果(CD4)を示す写真である。写真中のスケールバーは50μmである。 図3は、CD8/CD4 ratio(表皮内に浸潤したCD8陽性T細胞数を表皮内に浸潤したCD4陽性T細胞数で除した値)を、尋常性乾癬と、Anti-PD-1 antibody-induced psoriasis-like dermatitis(抗PD-1抗体誘導性乾癬様皮膚炎)の患者とで比較したグラフである。 図4は、抗PD-1抗体投与を受けたメラノーマ患者の投与前後での血清中IL-6濃度の変化を、Psoriasis-like dermatitis(乾癬様皮膚炎)発症患者、Other irAEs(乾癬様皮膚炎以外の免疫関連副作用)発症患者、およびNo irAE(免疫関連副作用なし)の患者で比較したグラフである。Preは抗PD-1抗体投与前、Postは抗PD-1抗体投与後を示す。 図5は、Vehicle群の野生型マウス(左)、IMQ(イミキモド)群の野生型マウス(中央)、およびIMQ(イミキモド)群のPD-1-/-マウス(右)の塗布7日目の背部皮膚の写真である。 図6左は、イミキモドを塗布したPD-1-/-マウス(PD-1-/-)と野生型マウス(WT)の耳の厚さの変化を示すグラフである。図6右は、イミキモドを塗布したPD-1-/-マウス(PD-1-/-)と野生型マウス(WT)の背部皮膚における炎症の重症度の変化を示すグラフである。 図7は、野生型マウス(WT)とPD-1-/-マウス(PD-1-/-)におけるイミキモド誘導性乾癬様皮膚炎の様子を示す、耳皮膚のヘマトキシリンエオジン染色した組織切片の写真である。 図8左は、野生型マウス(WT)とPD-1-/-マウス(PD-1-/-)の耳の表皮の厚さをイミキモド群とVehicle群とで比較したグラフである。図8右は、野生型マウス(WT)とPD-1-/-マウス(PD-1-/-)の耳の表皮中の好中球性微小膿瘍の数を示すグラフである。 図9は、野生型マウス(WT)とPD-1-/-マウス(PD-1-/-)の耳における、乾癬に関連するサイトカイン(IL-6、IL-23a、IL-17a)と好中球表面マーカーであるLy6gのmRNAの発現量を定量RT-PCRにより解析したグラフである。 図10は、イミキモド塗布5日目の野生型マウス(WT)とPD-1-/-マウス(PD-1-/-)の耳皮膚の組織切片を免疫染色して、CD8陽性T細胞を染色した写真である。CD8陽性T細胞を矢頭で示す。 図11は、イミキモド塗布5日目の野生型マウス(WT)とPD-1-/-マウス(PD-1-/-)の耳皮膚へ浸潤したCD8陽性T細胞の数を、表皮と真皮で比較したグラフである。 図12は、マウス耳の皮膚から、Keratinocyte、Epidermal CD45+cellおよびDermal cellを分離する手順を示す概念図である。 図13は、イミキモド塗布5日目の野生型マウス(WT)とPD-1-/-マウス(PD-1-/-)の耳の皮膚から得たKeratinocyte、Epidermal CD45+cellおよびDermal cellにおけるCD8a、IFN-γおよびCXCL9のmRNAの発現量を定量RT-PCRにより比較したグラフである。 図14は、PD-1遺伝子領域の上流と下流に34bpのloxP配列がそれぞれ導入されたfloxedマウスのゲノムの概念図である。 図15は、野生型マウスのゲノムにおけるPdcd1のエクソン(boxで示す、右からエクソン1、2、3、4、5である)の位置、左右のCRISPRと3'アーム(3'arm)、セントラルアーム(C arm)、5'アーム(5'arm)の位置、およびCRISPR/Cas9システムの左右のターゲット配列(PAMを含む)を示す図である。 図16-1は、野生型マウスのゲノムにおけるPdcd1のDNA配列(一部)である。 図16-2は、図16-1の続きである。 図16-3は、図16-2の続きである。 図16-4は、図16-3の続きである。 図16-5は、図16-4の続きである。 図16-6は、図16-5の続きである。 図16-7は、図16-6の続きである。 図16-8は、図16-7の続きである。 図17-1は、pflox platformのDNA配列(一部)である。 図17-2は、図17-1の続きである。 図18は、Pdcd1のゲノムDNAをpflox platformに組み込む手順のうち、Step1の概念図である。 図19は、Pdcd1のゲノムDNAをpflox platformに組み込む手順のうち、Step2の概念図である。 図20は、Pdcd1のゲノムDNAをpflox platformに組み込む手順のうち、Step3の概念図である。 図21は、pX330にCRISPR/Cas9システムのターゲット配列を組み込む模式図である。 図22は、PD-1 floxedマウスのゲノムにおけるPdcd1のエクソン(boxで示す)の位置、3'アーム(3'arm)、セントラルアーム(C arm)、5'アーム(5'arm)の位置、制限酵素による切断部位、およびジェノタイピングに用いたプライマーを示す図である。 図23-1は、PD-1 floxedマウスのゲノムにおけるPdcd1のDNA配列(一部)である。 図23-2は、図23-1の続きである。 図23-3は、図23-2の続きである。 図23-4は、図23-3の続きである。 図23-5は、図23-4の続きである。 図23-6は、図23-5の続きである。 図23-7は、図23-6の続きである。 図23-8は、図23-7の続きである。 図24は、野生型(WT)のPD-1のオープンリーディングフレーム(ORF)の遺伝子配列とそれに対応するアミノ酸配列、およびPD-1の2番目、3番目、および4番目のエクソンがCre/loxPシステムにより脱落した後(Mutation)に予測される、オープンリーディングフレーム(ORF)の遺伝子配列とそれに対応するアミノ酸配列である。 図25は、CD8のプロモーターの下流にCreが導入されたCD8-Creマウスと、PD-1-floxedマウスを交配し、CD8陽性T細胞特異的にPD-1が欠損するPD-1コンディショナルノックアウトマウスを作製する方法の概念図である。 図26は、PD-1-cKO(CD8CrePD-1fl/fl)と、その同腹子(Littermate Ctrl(CD8CrePD-1fl/+))のイミキモド塗布7日目の背部皮膚の写真である。 図27左は、イミキモドを塗布したPD-1-cKO(CD8CrePD-1fl/fl)とその同腹子(Littermate Ctrl)の耳の厚さの変化を示すグラフである。図27右は、イミキモドを塗布したPD-1-cKO(CD8CrePD-1fl/fl)とその同腹子(Littermate Ctrl)の背部皮膚における炎症の重症度の変化を示すグラフである。 図28左は、PD-1-cKO(CD8CrePD-1fl/fl)と、その同腹子(Littermate Ctrl(CD8CrePD-1fl/+))のイミキモド塗布7日目の耳皮膚をヘマトキシリンエオジン染色した組織切片の写真である。スケールバーは100μmである。図28右は、PD-1-cKO(CD8CrePD-1fl/fl)と、その同腹子(Littermate Ctrl(CD8CrePD-1fl/+))のイミキモド塗布7日目の耳の表皮の厚さを比較したグラフである。 図29は、PD-1-cKO(CD8CrePD-1fl/fl)と、その同腹子(Littermate Ctrl(CD8CrePD-1fl/+))のイミキモド塗布7日目の耳皮膚におけるCD8aとIFN-γ(IFNγ)のmRNAの発現量のグラフである。 図30は、PD-1-cKO(CD8CrePD-1fl/fl)と、その同腹子(Littermate Ctrl(CD8CrePD-1fl/+))のイミキモド塗布7日目における流入領域リンパ節に浸潤したCD8陽性T細胞の数を示すグラフである。 図31は、流入領域リンパ節のCD8陽性T細胞により産生されたIFN-γ(IFNγ)とGzmBのヒストグラム(左)と蛍光強度の中央値(MFI)を示すグラフ(右)である。 図32は、IgG Ctrlを投与した野生型マウス(WT)およびIgG CtrlまたはMR16-1を投与したPD-1-/-マウス(PD-1-/-)のイミキモド塗布7日目の背部皮膚の写真である。 図33左は、IgG Ctrlを投与した野生型マウス(WT)およびIgG CtrlまたはMR16-1を投与したPD-1-/-マウス(PD-1-/-)のイミキモド塗布による耳の厚さの変化を示すグラフである。図33右は、IgG Ctrlを投与した野生型マウス(WT)およびIgG CtrlまたはMR16-1を投与したPD-1-/-マウス(PD-1-/-)のイミキモド塗布による背部皮膚における炎症の重症度の変化を示すグラフである。 図34は、IgG Ctrlを投与した野生型マウス(WT)およびIgG CtrlまたはMR16-1を投与したPD-1-/-マウス(PD-1-/-)のイミキモド塗布7日目の耳皮膚のヘマトキシリンエオジン染色した組織切片の写真である。スケールバーは50μmである。 図35左は、IgG Ctrlを投与した野生型マウス(WT)およびIgG CtrlまたはMR16-1を投与したPD-1-/-マウス(PD-1-/-)のイミキモド塗布7日目の耳の表皮の厚さを比較したグラフである。図35右は、IgG Ctrlを投与した野生型マウス(WT)およびIgG CtrlまたはMR16-1を投与したPD-1-/-マウス(PD-1-/-)の耳の表皮中の好中球性微小膿瘍の数を示すグラフである。 図36は、IgG Ctrlを投与した野生型マウス(WT)およびIgG CtrlまたはMR16-1を投与したPD-1-/-マウス(PD-1-/-)のイミキモド塗布7日目の耳皮膚におけるIL-6、IL-23aおよびIL-17aのmRNAの発現量のグラフである。 図37は、IgG Ctrlを投与した野生型マウス(WT)およびIgG CtrlまたはMR16-1を投与したPD-1-/-マウス(PD-1-/-)のイミキモド塗布7日目のIL-6、IL-23aおよびIL-17aの血中濃度のグラフである。 図38は、IgG CtrlまたはMR16-1を投与した、PD-1-cKO(CD8CrePD-1fl/fl)と、その同腹子(Littermate Ctrl(CD8CrePD-1fl/+))のイミキモド塗布7日目の背部皮膚の写真である。 図39左は、IgG CtrlまたはMR16-1を投与した、PD-1-cKO(CD8CrePD-1fl/fl)と、その同腹子(Littermate Ctrl(CD8CrePD-1fl/+))のイミキモド塗布による耳の厚さの変化を示すグラフである。図39右は、IgG CtrlまたはMR16-1を投与した、PD-1-cKO(CD8CrePD-1fl/fl)と、その同腹子(Littermate Ctrl(CD8CrePD-1fl/+))の背部皮膚におけるイミキモド塗布による炎症の重症度の変化を示すグラフである。 図40は、IgG CtrlまたはMR16-1を投与した、PD-1-cKO(CD8CrePD-1fl/fl)と、その同腹子(Littermate Ctrl(CD8CrePD-1fl/+))のイミキモド塗布7日目の耳皮膚のヘマトキシリンエオジン染色した組織切片の写真である。スケールバーは50μmである。 図41左は、IgG CtrlまたはMR16-1を投与した、PD-1-cKO(CD8CrePD-1fl/fl)と、その同腹子(Littermate Ctrl(CD8CrePD-1fl/+))のイミキモド塗布7日目の耳の表皮の厚さのグラフである。図41右は、IgG CtrlまたはMR16-1を投与した、PD-1-cKO(CD8CrePD-1fl/fl)と、その同腹子(Littermate Ctrl(CD8CrePD-1fl/+))の表皮に浸潤したCD8陽性T細胞の数を示すグラフである。 図42は、IgG CtrlまたはMR16-1を投与した、PD-1-cKO(CD8CrePD-1fl/fl)と、その同腹子(Littermate Ctrl(CD8CrePD-1fl/+))のイミキモド塗布7日目における流入領域リンパ節に浸潤したCD8陽性T細胞の数を示すグラフである。 図43は、IgG CtrlまたはMR16-1を投与した、PD-1-cKO(CD8CrePD-1fl/fl)と、その同腹子(Littermate Ctrl(CD8CrePD-1fl/+))のイミキモド塗布7日目の耳皮膚におけるCD8aおよびIFN-γ(IFNγ)のmRNAの発現量のグラフである。 図44は、PD-L1遺伝子領域の上流と下流に34bpのloxP配列がそれぞれ導入されたfloxedマウスのゲノムの概念図である。 図45は、野生型マウスのゲノムにおけるPD-L1遺伝子(Cd274)のエクソン(boxで示す、右からエクソン1、2、3、4、5、6、7である)の位置、左右のCRISPRと3'アーム(3'arm)、セントラルアーム(C arm)、5'アーム(5'arm)の位置、およびCRISPR/Cas9システムの左右のターゲット配列(PAMを含む)を示す図である。 図46-1は、野生型マウスのゲノムにおけるCd274のDNA配列(一部)である。 図46-2は、図46-1の続きである。 図46-3は、図46-2の続きである。 図46-4は、図46-3の続きである。 図46-5は、図46-4の続きである。 図46-6は、図46-5の続きである。 図46-7は、図46-6の続きである。 図47は、Cd274のゲノムDNAをpflox platformに組み込む手順のうち、Step1の概念図である。 図48は、Cd274のゲノムDNAをpflox platformに組み込む手順のうち、Step2の概念図である。 図49は、Cd274のゲノムDNAをpflox platformに組み込む手順のうち、Step3の概念図である。 図50は、pX330にCRISPR/Cas9システムのターゲット配列を組み込む模式図である。 図51は、PD-L1 floxedマウスのゲノムにおけるCd274のエクソン(boxで示す)の位置、3'アーム(3'arm)、セントラルアーム(C arm)、5'アーム(5'arm)の位置、制限酵素による切断部位、およびジェノタイピングに用いたプライマーを示す図である。 図52-1は、PD-L1 floxedマウスのゲノムにおけるCd274のDNA配列(一部)である。 図52-2は、図52-1の続きである。 図52-3は、図52-2の続きである。 図52-4は、図52-3の続きである。 図52-5は、図52-4の続きである。 図52-6は、図52-5の続きである。 図53は、野生型(WT)のPD-L1のオープンリーディングフレーム(ORF)の遺伝子配列とそれに対応するアミノ酸配列、およびPD-L1の2番目および3番目のエクソンがCre/loxPシステムにより脱落した後(Mutation)に予測される、オープンリーディングフレーム(ORF)の遺伝子配列とそれに対応するアミノ酸配列である。 図54は、Langerinのプロモーターの下流にCreが導入されたLangerin-Creマウスと、PD-L1-floxedマウスを交配し、ランゲルハンス細胞特異的にPD-L1が欠損するPD-L1コンディショナルノックアウトマウスを作成する方法の概念図である。 図55は、ランゲルハンス細胞および樹状細胞におけるPD-L1の発現を調べたヒストグラムである。 図56は、PD-L1-cKO(PD-L1fl/flLangerincreマウス)と、その同腹子(Ctrl(PD-L1fl/+Langerincreマウス))のイミキモド塗布5日目の背部皮膚の写真である。 図57上は、イミキモドを塗布したPD-L1-cKO(PD-L1fl/flLangerincreマウス)とその同腹子(Ctrl(PD-L1fl/+Langerincreマウス))の耳の厚さの変化を示すグラフである。図57下は、イミキモドを塗布したPD-L1-cKO(PD-L1fl/flLangerincreマウス)とその同腹子(Ctrl(PD-L1fl/+Langerincreマウス))の背部皮膚における炎症の重症度の変化を示すグラフである。イミキモドを塗布した場合を実線で、Vehicleを塗布した場合を点線で示す。 図58は、PD-L1-cKO(PD-L1fl/flLangerincreマウス)と、その同腹子(Ctrl(PD-L1fl/+Langerincreマウス))のイミキモド塗布5日目の耳皮膚をヘマトキシリンエオジン染色した組織切片の写真である。スケールバーは50μmである。 図59は、PD-L1-cKO(PD-L1fl/flLangerincreマウス)と、その同腹子(Ctrl(PD-L1fl/+Langerincreマウス))のイミキモド塗布5日目の耳の表皮の厚さを比較したグラフである。 図60は、PD-L1-cKO(PD-L1fl/flLangerincreマウス)と、その同腹子(Ctrl(PD-L1fl/+Langerincreマウス))のイミキモド塗布4日目の耳皮膚におけるIL-6、IL-17A、およびIL-23AのmRNAの発現量のグラフである。 図61は、PD-L1-cKO(PD-L1fl/flLangerincreマウス)、その同腹子(Ctrl(PD-L1fl/+Langerincreマウス))のイミキモド塗布4日目の耳皮膚におけるγδT細胞を解析した結果を示すドットプロットとグラフである。 図62は、PD-L1-cKO(PD-L1fl/flLangerincreマウス)、その同腹子(Ctrl(PD-L1fl/+Langerincreマウス))のイミキモド塗布4日目の流入領域リンパ節におけるγδT細胞を解析した結果を示すグラフである。右のグラフの縦軸は、蛍光強度の中央値(MFI)である。 図63は、野生型マウスのゲノムにおけるPD-L2遺伝子(CD273)のエクソン(boxで示す)の位置とCRISPR-Casシステムのターゲット配列、PAM配列を示す図である。 図64は、野生型マウス(WT)またはPD-L2 floxedマウス(PD-L2floxed)と判断するためのPCR条件を示す表である。 図65-1は、野生型マウス(WT)のゲノムにおけるPdcd1lg2(PD-L2)のDNA配列(一部)である。 図65-2は、図65-1の続きである。 図65-3は、図65-2の続きである。 図65-4は、図65-3の続きである。 図65-5は、図65-4の続きである。 図65-6は、図65-5の続きである。 図66-1は、PD-L2 floxedマウス)のゲノムにおけるPdcd1lg2(PD-L2)のDNA配列(一部)である。 図66-2は、図66-1の続きである。 図66-3は、図66-2の続きである。 図66-4は、図66-3の続きである。 図66-5は、図66-4の続きである。 図66-6は、図66-5の続きである。
 本発明は、大きく分けて五つの態様がある。
 第一の態様は、IL-6シグナルを阻害する物質を含む、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤であって、前記免疫関連副作用が皮膚障害、重症筋無力症、心筋炎、筋炎、横紋筋融解症、I型糖尿病、神経障害、腎障害、関節炎、肝障害、肺炎、膵炎、甲状腺炎、副腎炎、視床下部機能異常、および汎下垂体機能低下症から選ばれる少なくとも1つである、薬剤である。
 第二の態様は、ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域の一部または全部を挟むリコンビネース標的配列が導入された、遺伝子改変非ヒト動物である。
 第三の態様は、ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入されることにより、組織および時期の少なくとも一方に特異的にPD-1遺伝子の全部または一部の発現が抑制または喪失されている、遺伝子改変非ヒト動物である。
 第四の態様は、ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入されることにより、PD-1遺伝子の全部または一部の発現が抑制または喪失されている遺伝子改変非ヒト動物に、抗原性補強剤を投与することにより作製する、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物である。
 第五の態様は、ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域に変異が導入されることにより、ランゲルハンス細胞特異的にPD-L1遺伝子の全部または一部の発現が抑制または喪失されている、遺伝子改変非ヒト動物である。
 第六の態様は、ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域に変異が導入されることにより、ランゲルハンス細胞特異的にPD-L1遺伝子の全部または一部の発現が抑制または喪失されている、遺伝子改変非ヒト動物に、抗原性補強剤を投与することにより作製する、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物である。
 第七の態様は、第三の態様である遺伝子改変非ヒト動物、第四の態様である免疫関連副作用モデル非ヒト動物、第五の態様である遺伝子改変非ヒト動物、または第六の態様である免疫関連副作用モデル非ヒト動物を用いる、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤のスクリーニング方法である。
 第八の態様は、第三の態様である遺伝子改変非ヒト動物、第四の態様である免疫関連副作用モデル非ヒト動物、第五の態様である遺伝子改変非ヒト動物、または第六の態様である免疫関連副作用モデル非ヒト動物を用いる、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤の評価方法である。
 第九の態様は、ゲノム中のPD-L2遺伝子またはPD-L2遺伝子の発現調節領域の一部または全部を挟むリコンビネース標的配列が導入された、遺伝子改変非ヒト動物である。
 次に本発明について具体的に説明する。
〈抗体〉
 本明細書における抗体とは、最も広い意味で使用され、所望の抗原結合活性を示す限りは、抗体の断片や抗体修飾物、改変した抗体等も含む。抗体が由来する動物種は制限されず、ポリクローナル抗体であってもモノクローナル抗体であってもよい。また、異種抗原性を低下させること等を目的として人為的に改変した遺伝子組み換え型抗体、例えば、キメラ(Chimeric)抗体、ヒト化(Humanized)抗体等であってもよい。また、ポリエチレングリコール(PEG)等の各種分子と結合した抗体修飾物であってもよい。また、抗体や抗原の血中滞留性等を改良すること等を目的として改変した、リサイクリング抗体、スイーピング抗体、バイスペシフィック抗体、T細胞リダイレクティング抗体であってもよいし、ADCC活性増強、抑制型Fcγ受容体選択的結合増強等を行った抗体であってもよい。これらの改変抗体は、既知の方法を用いて製造することができる。本発明における抗体とは、特に哺乳動物由来のモノクローナル抗体が好ましく、キメラ抗体またはヒト化抗体である哺乳動物由来のモノクローナル抗体がより好ましい。
 本発明における抗体は、既知の抗体を用いてもよいし、新たに作製した抗体を用いてもよい。抗体の作製は、公知の方法により行うことができる。新たに作製する抗体は、抗原を動物に免疫することにより得られるポリクローナル抗体およびモノクローナル抗体であってもよいし、既知の抗体の配列を基に、当業者に公知の遺伝子組み換え技術を用いて作製される抗体であってもよい。組み換え型抗体は、それをコードするDNAをハイブリドーマ、または抗体を産生する感作リンパ球等の抗体産生細胞からクローニングし、適当なベクターに組み込んで、これを宿主(宿主細胞)に導入し産生させて得ることができる。
〈IL-6シグナルを阻害する物質〉
 本発明中におけるインターロイキン-6(IL-6)シグナルを阻害する物質は、IL-6によるシグナルを遮断し、IL-6の生物学的活性を阻害する物質である。IL-6をリガンドとするIL-6受容体(IL-6R、CD126ともいう)には、細胞膜上に発現している膜結合型IL-6受容体および分泌型の可溶性IL-6受容体(Soluble IL-6 Receptor、sIL-6R)があり、分泌型の可溶性IL-6受容体は、膜結合型の細胞内領域および膜貫通領域を除く細胞外領域から構成されている。IL-6受容体がIL-6と結合して複合体を形成し、複合体が細胞膜上のgp130と会合して二量体化することで、細胞内にIL-6シグナルが伝達される。
 本発明におけるIL-6、IL-6Rまたはgp130は、それぞれマウス、ラット、ハムスター、モルモット、イヌ、ブタ、サルまたはヒトを含む霊長類の哺乳動物を由来とするものを含む。IL-6、IL-6Rまたはgp130は、好ましくは、ヒトIL-6、ヒトIL-6Rまたはヒトgp130である。
 IL-6シグナルを阻害する物質は、例えばIL-6、IL-6Rおよびgp130から選択される少なくとも1つとの結合に対する阻害作用を有する物質、ならびにIL-6、IL-6Rおよびgp130から選択される少なくとも1つの発現を阻害する物質である。
 IL-6、IL-6Rおよびgp130から選択される少なくとも1つとの結合に対する阻害作用を有する物質としては、IL-6、IL-6Rおよびgp130から選択される少なくとも1つのタンパク質に対する特異的結合物質、すなわちIL-6に対する特異的結合物質、IL-6Rに対する特異的結合物質、gp130に対する特異的結合物質等が挙げられる。免疫関連副作用を効果的に予防または治療できることから、IL-6Rに対する特異的結合物質が好ましい。
 IL-6、IL-6Rおよびgp130から選択される少なくとも1つのタンパク質に対する特異的結合物質としては、特に制限されないが、例えば抗IL-6抗体、抗IL-6R抗体、抗gp130抗体、およびこれらの抗体断片、IL-6、IL-6R、またはgp130の改変体、IL-6、IL-6R、またはgp130の部分ペプチド、IL-6、IL-6R、またはgp130に対するアプタマー、およびこれらと同様の活性を示す低分子物質が挙げられる。抗体断片としては、F(ab')2、Fab'、Fab、Fv、scFv等が挙げられる。また、アプタマーとしては、例えば、核酸アプタマー、ペプチドアプタマー等が挙げられる。
 IL-6、IL-6Rおよびgp130から選択される少なくとも1つのタンパク質に対する特異的結合物質としては、免疫関連副作用を効果的に予防または治療できることから、抗IL-6抗体、抗IL-6R抗体、抗gp130抗体、およびこれらの抗体断片が好ましく、抗IL-6R抗体が特に好ましい。
 抗IL-6抗体は、IL-6と結合することにより、IL-6のIL-6Rへの結合を阻害して、IL-6シグナルを阻害する。抗IL-6抗体としては、これらに限定されるものではないが、MH166(Matsuda T.et al.、Eur.J.Immunol.(1988)18、951-956)やSK2抗体(Sato K.et al.、第21回日本免疫学会総会、学術記録(1991)21、166)、ヒト型抗IL-6モノクローナル抗体であるシルクマブ等が挙げられる。また、抗IL-6抗体は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 抗gp130抗体は、gp130と結合することにより、IL-6/IL-6R複合体のgp130への結合を阻害してIL-6シグナルを阻害する。抗gp130抗体としては、これらに限定されるものではないが、AM64抗体(特開平3-219894)、4B11抗体および2H4抗体(US5571513)、B-S12抗体およびB-P8抗体(特開平8-291199)などが挙げられる。また、抗gp130抗体は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 抗IL-6R抗体は、IL-6Rと結合することにより、IL-6のIL-6Rへの結合を阻害してIL-6シグナルを阻害する。抗IL-6R抗体は、膜結合型IL-6受容体および可溶性IL-6受容体のどちらにも結合する抗体であってもよいし、膜結合型IL-6受容体にのみ結合し、可溶性IL-6受容体には結合しない抗体、あるいは可溶性IL-6受容体にのみ結合し、膜結合型IL-6受容体には結合しない抗体であってもよい。また、抗IL-6R抗体は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。抗IL-6R抗体の例としては、これらに限定されるものではないが、MR16-1抗体(Tamura T、et al.、Proc Natl Acad Sci USA、90(24):11924-11928、1993)、PM-1抗体(Hirata Y、et al.J Immunol、143(9):2900-2906、1989)、AUK12-20抗体、AUK64-7抗体またはAUK146-15抗体(国際公開第92/19759号)、ヒト化抗IL-6受容体モノクローナル抗体であるトシリズマブ(tocilizumab)、抗ヒトIL-6受容体モノクローナル抗体であるサリルマブ(Sarilumab)、SA237などが挙げられる。抗IL-6R抗体は、免疫関連副作用を効果的に予防または治療できることから、特に哺乳動物由来のモノクローナル抗体が好ましく、キメラ抗体またはヒト化抗体である哺乳動物由来の抗IL-6Rモノクローナル抗体がより好ましい。ヒトIL-6Rに対する好ましいモノクローナル抗体としては、トシリズマブまたはサリルマブが挙げられ、マウスIL-6Rに対する好ましいモノクローナル抗体としては、MR16-1抗体が挙げられる。また、MR16-1抗体のヒト化抗体も好適に用いられる。
 IL-6、IL-6Rおよびgp130から選択される少なくとも1つの発現を阻害する物質としては、IL-6、IL-6Rまたはgp130の発現を低減させ、結果としてIL-6シグナルを阻害できる物質であれば特に限定されず、例えば、siRNA、shRNA、miRNA、リボザイム、アンチセンス核酸、低分子化合物等が挙げられる。siRNA、shRNA、miRNA、リボザイムおよびアンチセンス核酸は、安定性や活性を向上させるために、種々の化学修飾を含んでいてもよい。例えば、ヌクレアーゼ等の加水分解酵素による分解を防ぐために、リン酸残基を、例えば、ホスホロチオエート、メチルホスホネート、ホスホロジチオネート等の化学修飾リン酸残基に置換してもよい。また、少なくとも一部をペプチド核酸(PNA)等の核酸類似体により構成してもよい。
〈抗PD-1抗体または抗PD-L1抗体〉
 PD-1(Programmed cell death 1)は、活性化T細胞の表面に発現する受容体であり、PD-L1(Programmed cell death 1-Ligand 1)は、PD-1と結合し、PD-1を活性化させる働きを持つ、細胞表面に存在するタンパク質である。
 本発明におけるPD-1またはPD-L1は、それぞれマウス、ラット、ハムスター、モルモット、イヌ、ブタ、サルまたはヒトを含む霊長類の哺乳動物を由来とするものを含む。好ましくは、本発明におけるPD-1はヒトPD-1であり、PD-L1はヒトPD-L1である。
 抗PD-1抗体および抗PD-L1抗体は、PD-1とPD-L1との結合を阻害し、PD-L1/PD-1のシグナルを阻害する。
 抗PD-1抗体としては、これに限定されるものではないが、ニボルマブ(Nivolumab)、ペムブロリズマブ(Pembrolizumab)、セミプリマブ(cemiplimab)、スパリタリズマブ(spartalizumab)、ピディリズマブ(pidilizumab)等が挙げられる。抗PD-1抗体は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 抗PD-L1抗体としては、これに限定されるものではないが、アテゾリズマブ(Atezolizumab)、アベルマブ(Avelumab)、デュルバルマブ(Durvalumab)、BMS-936559等が挙げられる。抗PD-L1抗体は、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
〈抗PD-1抗体または抗PD-L1抗体による免疫関連副作用〉
 本発明における抗PD-1抗体または抗PD-L1抗体による免疫関連副作用とは、免疫チェックポイント阻害薬として抗PD-1抗体または抗PD-L1抗体が投与されることにより引き起こされる、抗ガン作用以外の作用であって、皮膚障害、重症筋無力症、心筋炎、筋炎、横紋筋融解症、I型糖尿病、神経障害、腎障害、関節炎、肝障害、肺炎、膵炎、甲状腺炎、副腎炎、視床下部機能異常、および汎下垂体機能低下症から選ばれる少なくとも1つであるものをいう。
 抗PD-1抗体または抗PD-L1抗体による免疫関連副作用は、本発明により効果的に予防または治療できることから、好ましくは皮膚障害、肝障害、肺炎、および甲状腺炎から選ばれる少なくとも1つであり、より好ましくは皮膚障害である。
 前記肝障害とは、抗PD-1抗体または抗PD-L1抗体の投与により肝臓に生じた障害であれば、特に制限されず、例えばAST(GOT)、ALT(GPT)、γ-GTP、AST、ALT等の肝酵素や総ビリルビンの上昇により診断することができる。
 前記肺炎とは、抗PD-1抗体または抗PD-L1抗体の投与により生じた肺炎であれば、特に制限されず、例えば咳嗽や呼吸困難等の症状、気管支内視鏡、CT等の検査により診断することができる。
 前記甲状腺炎とは、抗PD-1抗体または抗PD-L1抗体の投与により生じた甲状腺炎であれば、特に制限されず、例えば甲状腺機能低下症または甲状腺機能亢進症であり、血中のTSH、free T3、free T4の測定や甲状腺超音波検査により診断することが出来る。
 視床下部機能異常、汎下垂体機能低下症、副腎炎は、抗PD-1抗体または抗PD-L1抗体の投与により生じたものであれば特に制限されず、例えばホルモン分泌異常を生じ、ADH、ACTH、LH、FSH、GH、プロラクチン、コルチゾール、アルドステロン、アンドロゲン、アドレナリン、ノルアドレナリン、エストロゲン、プロゲステロン等の測定により診断することができる。
 前記皮膚障害とは、抗PD-1抗体または抗PD-L1抗体の投与により皮膚に生じた障害であれば、特に制限されず、例えば皮膚粘膜眼症候群(Stevens-Johnson症候群:SJS)、中毒性表皮壊死融解症(Toxic Epidermal Necrolysis:TEN)、扁平苔癬、尋常性乾癬(Psoriasis vulgaris)、関節症性乾癬(Psoriasis arthropica)、膿疱性乾癬(Psoriasis pustulosa)等の乾癬、乾癬様皮膚炎等の疾患、白斑、紅斑、膿疱、皮疹等の症候を示すその他の炎症性皮膚疾患である。本発明により効果的に予防または治療できることから、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用は、好ましくは皮膚粘膜眼症候群(Stevens-Johnson症候群:SJS)、中毒性表皮壊死融解症(Toxic Epidermal Necrolysis:TEN)、扁平苔癬、乾癬または乾癬様皮膚炎であり、より好ましくは乾癬または乾癬様皮膚炎であり、さらに好ましくは乾癬様皮膚炎である。
 乾癬および乾癬様皮膚炎(psoriasis-like dermatitis)は、通常、厚い銀白色の鱗屑を伴った角化性紅斑が認められ、病理学的にも乾癬様の表皮突起が延長した表皮肥厚と顆粒層を欠失した錯角化、角層下好中球性微小膿瘍が認められることにより診断することができる。
 皮膚粘膜眼症候群、中毒性表皮壊死融解症は、粘膜と皮膚のびらん化した紅斑で特徴づけられ、皮膚粘膜眼症候群は体表面積の10%未満のびらん、中毒性表皮壊死融解症は10%以上のびらんが見られる。また、病理組織学的には苔癬反応と呼ばれる、広範な表皮角化細胞死を伴い、リンパ球が真皮上層から表皮内へ浸潤する像が認められることから診断する。
 扁平苔癬は、限局した角化性紅斑であり、病理組織学的にはやはり苔癬反応が認められることから診断される。
 白斑は、境界明瞭な色素脱失斑にて診断される。
 抗PD-1抗体または抗PD-L1抗体の投与により、皮膚粘膜眼症候群(Stevens-Johnson症候群:SJS)、中毒性表皮壊死融解症(Toxic Epidermal Necrolysis:TEN)、扁平苔癬、乾癬、乾癬様皮膚炎等の疾患、白斑以外にもその他の様々なタイプの炎症性皮膚疾患が惹起されることが報告されており、紅斑、膿疱、皮疹等を示す。
 抗PD-1抗体または抗PD-L1抗体による免疫関連副作用としての乾癬様皮膚炎では、CD8陽性細胞の表皮への浸潤が尋常性乾癬よりも亢進していることが特徴である。したがって、本発明により効果的に予防または治療できることから、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用は、好ましくはCD8陽性細胞の表皮への浸潤が亢進している乾癬様皮膚炎であり、より好ましくは、CD8陽性細胞の表皮への浸潤が尋常性乾癬よりも亢進している乾癬様皮膚炎である。すなわち、本発明の好ましい態様の一つは、IL-6シグナルを阻害する物質を含む、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤であって、前記免疫関連副作用がCD8陽性細胞の表皮への浸潤亢進によって特徴づけられる乾癬様皮膚炎である、薬剤である。本発明の好ましい態様のもう一つは、IL-6シグナルを阻害する物質を含む、CD8陽性細胞の表皮への浸潤抑制剤である。
 CD8陽性細胞の表皮への浸潤が亢進していることを確認する方法は、特に制限されないが、例えば患部から採取した標本を用いてCD8に対する免疫染色を行い、染まった細胞の単位面積あたりの数を確認することである。CD8陽性細胞の表皮への浸潤が尋常性乾癬よりも亢進していることを確認する方法は、特に制限されないが、例えば患部から採取した標本を用いてCD8に対する免疫染色を行い、染まった細胞の単位面積あたりの数が尋常性乾癬の標本よりも多いことで確認することができる。
 抗PD-1抗体または抗PD-L1抗体は、抗PD-1抗体および抗PD-L1抗体の両方を併用してもよく、抗PD-1抗体および抗PD-L1抗体の一方のみを投与してもよい。抗PD-1抗体または抗PD-L1抗体は、他の免疫チェックポイント阻害薬と併用して投与されてもよく、他の免疫チェックポイント阻害薬としては、例えば抗CTLA-1抗体、抗LAG-3抗体、抗TIM-3抗体、抗TIGIT抗体、抗KIR抗体、抗B7抗体、抗C27抗体、IDO阻害薬、抗CD137抗体等をあげることができる。抗CTLA-1抗体としてはイピリムマブ(Ipilimumab)、トレメリムマブ(tremelimumab)等が挙げられる。
 抗PD-1抗体または抗PD-L1抗体の用法、用量は、特に制限されず、通常、その抗体の特性や期待する抗ガン作用に応じて決定する。例えば、ニボルマブであれば、1回3mg/kg(体重)を2週間間隔で点滴静注、あるいは1回240mgを2週間間隔で点滴静注する。例えば、ペムブロリズマブであれば、1回2mg/kg(体重)を3週間間隔で30分間かけて点滴静注、あるいは1回200mgを3週間間隔で30分間かけて点滴静注する。
 抗PD-1抗体または抗PD-L1抗体が投与される疾患は、特に制限されないが、通常、種々のガン、例えば悪性黒色腫、非小細胞肺ガン、腎細胞癌、古典的ホジキンリンパ腫、頭頸部ガン、胃ガン、非扁平上皮ガン、扁平上皮ガン、高頻度マイクロサテライト不安定性(MSI-High)を有する固形ガン、膀胱ガン、腎盂ガン、尿管ガン、尿道ガン、乳ガン、肝細胞ガン、多発性骨髄腫、食道ガン、腎細胞ガン、大腸ガン、卵巣ガン、前立腺ガン等である。抗PD-1抗体または抗PD-L1抗体が投与される疾患は、充分な抗ガン作用が期待できることから、好ましくは悪性黒色腫である。
〈本発明の第一の態様である薬剤〉
 本発明の第一の態様である薬剤は、IL-6シグナルを阻害する物質を含む、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤であって、前記免疫関連副作用が皮膚障害、重症筋無力症、心筋炎、筋炎、横紋筋融解症、I型糖尿病、神経障害、腎障害、関節炎、肝障害、肺炎、膵炎、甲状腺炎、副腎炎、視床下部機能異常、および汎下垂体機能低下症から選ばれる少なくとも1つである、薬剤である。
 前記薬剤の投与量は特に制限されず、免疫関連副作用の種類や症状の程度、薬剤の種類、投与対象の体重等によって適宜選択すればよい。例えば、IL-6シグナルを阻害する物質が、抗IL-6R抗体である場合、抗IL-6R抗体の量が1回1~100mg/kgとなるように1~8週間隔で点滴静注することができる。ヒトに対して、トシリズマブまたはサリルマブを投与する場合、1回2~12mg/kgとなるように1~8週間隔で点滴静注することが好ましく、1回3~10mg/kgがより好ましい。
 IL-6シグナルを阻害する物質は、そのまま生体に投与してもよいが、前記IL-6シグナルを阻害する物質の有効量を薬学的に許容する担体と共に配合した医薬品として投与することが好ましい。投与方法は特に制限されず、経口、または非経口とすることができ、好ましくは非経口であり、より好ましくは静注、さらに好ましくは点滴静注である。
 前記薬学的に許容される担体は、特に制限されないが、例えば、リン酸塩、クエン酸塩、および他の有機酸などの緩衝液;アスコルビン酸およびメチオニンを含む、抗酸化剤;オクタデシルジメチルベンジル塩化アンモニウム、塩化ヘキサメトニウム、塩化ベンザルコニウム、塩化ベンゼトニウム、ベンジルアルコール、アルキルパラベン、カテコール、レソルシノール、シクロヘキサノール、3-ペンタノール、m-クレゾールなどの保存料;低分子ポリペプチド;血清アルブミン、ゼラチン、または免疫グロブリンなどのタンパク質;ポリビニルピロリドンなどの親水性ポリマー;グリシン、グルタミン、アスパラギン、ヒスチジン、アルギニン、またはリジンなどのアミノ酸;グルコース、マンノース、スクロース、マンニトール、トレハロース、ソルビトール、デキストリンなどの糖類;EDTAなどのキレート剤;ナトリウムなどの塩形成対イオン類;金属錯体;ポリエチレングリコール(PEG)などの多価アルコール、ポリソルベート20、ポリソルベート80などの非イオン系表面活性剤等があげられる。
 前記薬剤の投与対象は特に制限されないが、哺乳動物が好ましく、ヒトがより好ましい。また、前記薬剤の投与対象は、抗PD-1抗体または抗PD-L1抗体による乾癬様皮膚炎の患者であることが好ましく、その中でもCD8陽性細胞の表皮への浸潤亢進が認められる患者であることがより好ましく、CD8陽性細胞の表皮への浸潤が尋常性乾癬よりも亢進していることが認められる患者であることがさらに好ましい。
〈遺伝子改変非ヒト動物〉
 本発明における遺伝子改変非ヒト動物は、ヒト以外の動物であれば特に限定されないが、好ましくは哺乳動物(例えば、ブタ、イヌ、サル、マウス、ラット、モルモット、ウサギ)であり、より好ましくは、遺伝子組み換えおよび交配による次世代動物取得の容易性の観点からマウス、ラット、モルモット、ウサギ等のげっ歯類動物である。前記遺伝子改変非ヒト動物は成体のみならず、ES細胞、受精卵、8細胞期から胚盤胞形成そして出生直前までの胚、卵、精子、組織または器官の培養物、キメラ動物等の全ての態様を含む。これらは、保存のため、必要に応じ冷凍されている状態であってもよい。
〈本発明の第三の態様である遺伝子改変非ヒト動物〉
 本発明の第三の態様である遺伝子改変非ヒト動物は、ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入されることにより、組織および時期の少なくとも一方に特異的にPD-1遺伝子の全部または一部の発現が抑制または喪失されているものである。すなわち、コンディショナルにPD-1遺伝子の一部または全部の発現が抑制(ノックダウン)または喪失(ノックアウト)されていることを特徴とする。本発明の第三の態様である遺伝子改変非ヒト動物は、コンディショナルPD-1遺伝子改変非ヒト動物とも称し、コンディショナルPD-1ノックアウト非ヒト動物、およびコンディショナルPD-1ノックダウン非ヒト動物を含む。PD-1の働きを解析しやすいことから、コンディショナルPD-1遺伝子改変非ヒト動物は、好ましくはコンディショナルPD-1ノックアウト非ヒト動物である。
 本発明のコンディショナルPD-1遺伝子改変非ヒト動物の用途は特に制限されないが、PD-L1、L2/PD-1シグナルを阻害した場合と同じ効果を時期特異的、組織特異的に得られることから、PD-L1、L2/PD-1シグナル伝達系のメカニズム解明、PD-L1、L2/PD-1シグナル阻害により生じる病態の解析、PD-L1、L2/PD-1シグナル阻害により生じる病態の予防、治療剤の開発等に用いることができる。本発明のコンディショナルPD-1遺伝子改変非ヒト動物は、PD-L1、L2/PD-1シグナル阻害により生じる病態の解析、またはPD-L1、L2/PD-1シグナル阻害により生じる病態の予防、治療剤の開発等に用いることが好ましく、抗PD-L1抗体または抗PD-1抗体により生じる病態の解析、または抗PD-L1抗体または抗PD-1抗体により生じる病態の予防、治療剤の開発等に用いることがより好ましく、抗PD-L1抗体または抗PD-1抗体により生じる免疫関連副作用の解析、または抗PD-L1抗体または抗PD-1抗体により生じる免疫関連副作用の予防、治療剤の開発等に用いることがさらに好ましい。
 本発明のコンディショナルPD-1遺伝子改変非ヒト動物は、無刺激下で飼育してもよいが、刺激または負荷を与えてもよい。刺激または負荷を与えることにより、コンディショナルPD-1遺伝子改変非ヒト動物の特徴をより明確に観察しやすくなる。刺激または負荷は、特に制限されないが、例えば化学的、物理的、または生理学的な刺激もしくは負荷であり、薬剤、飼育密度、運動、放射線、紫外線、食餌等による刺激または負荷を挙げることができる。刺激または負荷は、化学的な刺激または負荷が好ましく、抗原性補強剤による刺激または負荷がより好ましい。
 PD-1遺伝子またはPD-1遺伝子の発現調節領域の変異は、それによりPD-1遺伝子の全部または一部の発現が抑制または喪失され、PD-1が実質的に不活化するものであればよく、導入される変異は挿入、欠失、変更、置換のいずれであってもよく、変異する塩基数も制限されない。変異は、PD-1遺伝子の発現調節領域よりもPD-1遺伝子に導入されることが好ましい。
 PD-1遺伝子に変異が導入される場合、PD-1ゲノムはエクソン1~エクソン5からなるが、好ましくはエクソン1~エクソン4の範囲内において、より好ましくはエクソン2~エクソン4の範囲内において変異を導入する。後述する実施例においてはマウスPD-1ゲノムのエクソン2、3、および4に変異を導入することによって、組織および時期の少なくとも一方に特異的にPD-1を不活化した、コンディショナルノックアウトマウスを得ることに成功した。
 コンディショナルPD-1遺伝子改変非ヒト動物において発現が抑制または喪失されているPD-1遺伝子は、PD-1遺伝子の全部または一部であってもよいが、好ましくはPD-1遺伝子の一部である。発現が抑制または喪失されているPD-1遺伝子は、ORFのうち、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、特に好ましくは80%以上である。発現が抑制または喪失されているPD-1ゲノムは、好ましくはエクソン1~エクソン4の範囲内の一部であり、より好ましくはエクソン2~エクソン4の範囲内の一部であり、さらに好ましくはエクソン2、3、および4である。
 ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異を導入するための方法は、特に制限されず、公知の方法を用いることができる。例えば、リコンビネースタンパク質/リコンビネース標的配列システムを利用した遺伝子組み換え誘導型の方法などが挙げられる。
 リコンビネースタンパク質/リコンビネース標的配列システムは、特定のリコンビネースタンパク質がリコンビネース標的配列を認識し、その部分でDNAの組み換えを起こすことを利用するものである。リコンビネース標的配列は特定のリコンビネースが存在しない限り組み換えを起こさない。よって、リコンビネースタンパク質を組織および時期の少なくとも一方に特異的に発現させた遺伝子改変非ヒト動物と、リコンビネース標的配列が導入された同種の遺伝子改変非ヒト動物とを掛け合わせ、リコンビネースによる組み換えを組織および時期の少なくとも一方に特異的に生じさせ、所望の遺伝子を組織および時期の少なくとも一方に特異的に制御することを可能にする。リコンビネースタンパク質/リコンビネース標的配列システムとしては、例えばバクテリオファージP1由来のCreリコンビネースタンパク質とCreタンパク質によって認識される34塩基対のloxP配列を利用したCre/loxP配列システム、酵母由来のFLPタンパク質/FRT配列システム、Zygosaccharomyces rouxiiのpSR1リコンビネース/pSR1リコンビネース標的配列システム、バクテリオファージMu由来のGinタンパク質/gix配列システム等が挙げられる。操作が簡便であることから、Cre/loxP配列、FLPタンパク質/FRT配列、またはpSR1リコンビネース/pSR1リコンビネース標的配列が好ましく、Cre/loxPシステムがより好ましい。
 本発明のコンディショナルPD-1遺伝子改変非ヒト動物は、好ましくは、ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域の一部または全部を挟むリコンビネース標的配列が導入された、遺伝子改変非ヒト動物と、CD8陽性T細胞特異的にリコンビースタンパク質を発現するリコンビネース発現遺伝子改変非ヒト動物とを掛け合わせて作製した、コンディショナルPD-1遺伝子改変非ヒト動物であり、より好ましくは、ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域の一部または全部を挟むloxP配列が導入された、遺伝子改変非ヒト動物と、CD8陽性T細胞特異的にCreタンパク質を発現するリコンビネース発現遺伝子改変非ヒト動物とを掛け合わせて作製した、コンディショナルPD-1遺伝子改変非ヒト動物である。
(リコンビネース発現遺伝子改変非ヒト動物)
 リコンビネースタンパク質/リコンビネース標的配列システムを利用して、ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入される場合、コンディショナルPD-1遺伝子改変非ヒト動物において、PD-1遺伝子の発現が抑制または喪失される組織および時期は、掛け合わせる遺伝子改変非ヒト動物のリコンビネースタンパク質発現の組織特異性および時期特異性により選択することができる。時期特異的または組織特異的にリコンビネースタンパク質を発現するリコンビネース発現遺伝子改変非ヒト動物は、種々のものが報告され、実験の目的に応じて選択することができるし、後述する遺伝子改変非ヒト動物の作製方法により新たに作製してもよい。
 リコンビネース発現遺伝子改変非ヒト動物におけるリコンビネースタンパク質の発現は、組織および時期の少なくとも一方に特異的であれば、その特異性は特に制限されない。
 組織および時期の少なくとも一方に特異的であるとは、組織のみに特異的、時期のみに特異的、または組織特異的かつ時期特異的であることをいい、組織特異的であることが好ましい。
 前記組織とは上皮組織、結合組織等の組織に加えて、細胞、および臓器を含む概念であるが、好ましくは細胞である。
 前記細胞とは、特に制限されず、主に内胚葉、外胚葉、または中胚葉に由来する種々の体細胞や生殖細胞である。前記細胞は、好ましくは炎症細胞、より好ましくは好酸球、肥満細胞(マスト細胞)、好中球、好塩基球、T細胞、NK(ナチュラルキラー)、マクロファージ、または樹状細胞、さらに好ましくはT細胞、特に好ましくはCD8陽性T細胞である。
 前記臓器は、特に制限されず、例えば、眼球、角膜、肺、心臓、肝臓、腎臓、脾臓、膵臓、胆嚢、食道、胃、小腸、大腸、膀胱、前立腺、精巣、卵巣、血管、皮膚等があげられる。
 時期特異的とは、非ヒト動物の発生から死までの一生における特定の時点または特定の期間に特異的であるとの意味である。
(リコンビネース標的配列が導入された遺伝子改変非ヒト動物)
 リコンビネースタンパク質/リコンビネース標的配列システムを利用して、ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入される場合、ゲノム中のPD-1遺伝子もしくはPD-1遺伝子の発現調節領域の近傍、またはPD-1遺伝子中またはPD-1遺伝子の発現調節領域中にリコンビネース標的配列が導入された遺伝子改変非ヒト動物を用いる。ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域の一部または全部を挟むリコンビネース標的配列が導入された、遺伝子改変非ヒト動物が本発明の第二の態様である。前記リコンビネース標的配列は、loxP配列であることが好ましい。
 リコンビネース標的配列を導入する位置は、通常、PD-1遺伝子またはPD-1遺伝子の発現調節領域に導入を予定する変異の種類や位置によって決定する。PD-1遺伝子またはPD-1遺伝子の発現調節領域の一部または全部の発現を喪失させる場合は、通常、発現を喪失させる部分を、同一方向の複数のリコンビネース標的配列で挟む。複数のリコンビネース標的配列とは、好ましくは2個のリコンビネース標的配列である。相同組み換えによって前記リコンビネース標的配列がゲノムに組み込まれると、リコンビネースタンパク質の存在により、複数のリコンビネース標的配列で挟まれたPD-1遺伝子またはPD-1遺伝子の発現調節領域の一部または全部が削除される。
 リコンビネース標的配列は、ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域の一部または全部を挟んで導入される。PD-1ゲノムはエクソン1~エクソン5からなるので、リコンビネース標的配列は、好ましくはエクソン1~エクソン5の範囲内の一部を挟んで導入され、より好ましくはエクソン1~エクソン4の範囲内の一部を挟んで導入され、さらに好ましくはエクソン2、3および4を挟んで導入される。後述する実施例においては、リコンビネース標的配列をマウスPD-1ゲノムのエクソン2、3および4を挟んで導入した、遺伝子改変非ヒト動物を得ることに成功した。
 Cre/loxP配列システムを用いる場合、loxP配列は後述する実施例で用いた配列である5'-ATAACTTCGTATAGCATACATTATACGAAGTTAT-3'(配列番号1)に限定されない。Creに認識される配列であれば配列に変異があってもよく、例えば、5'-ATAACTTCGTATANNNTANNNTATACGAAGTTAT-3'(配列番号2)等で示される配列である。
 ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域の一部または全部を挟むリコンビネース標的配列が導入された、遺伝子改変非ヒト動物と、リコンビネース発現遺伝子改変非ヒト動物とを掛け合わせると、ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入されることにより、組織および時期の少なくとも一方に特異的にPD-1遺伝子の全部または一部の発現が抑制または喪失されている、コンディショナルPD-1遺伝子改変非ヒト動物を作製することができる。リコンビネース発現遺伝子改変非ヒト動物は、リコンビネースタンパク質発現の組織特異性および時期特異性が異なるものが多数存在するので、これらと掛け合わせることにより、種々のコンディショナルPD-1遺伝子改変非ヒト動物を作製できる。これらのコンディショナルPD-1遺伝子改変非ヒト動物は、PD-1遺伝子、PD-1タンパク質、PD-L1、L2/PD-1シグナルの機能を解析するために有用である。
 リコンビネース標的配列が導入された遺伝子改変非ヒト動物は、以下の遺伝子改変非ヒト動物の作製方法により作製することができる。
(遺伝子改変非ヒト動物の作製方法)
 遺伝子改変非ヒト動物の作製方法は特に制限されず、公知の遺伝子改変技術を用いることができる。公知の遺伝子改変技術としては、例えば、人工外来遺伝子を受精卵にインジェクションし、相同組み換えにより遺伝子改変させる方法、ターゲティングベクターをES細胞にインジェクションし、相同組み換えにより遺伝子改変させる方法、任意のゲノムDNA配列を特異的に切断する人工制限酵素を使用することで、ゲノム上の特定の場所に変異を誘導するゲノム編集技術等が挙げられる。
 ゲノム編集技術としては、CRISPR/Casシステム、Transcription Activator-Like Effector  Nucleases(TALEN)を用いた方法、ジンクフィンガーヌクレアーゼを用いた方法等が挙げられる。
 本発明における遺伝子改変非ヒト動物の作製は、効率よく短期間で遺伝子改変非ヒト動物を作製できることから、ゲノム編集技術を用いることが好ましく、CRISPR/Casシステムを用いることがより好ましい。
[CRISPR/Casシステム]
 CRISPR/Casシステムを用いた遺伝子改変非ヒト動物の製造は、公知の方法で行うことができるが、通常、CRISPR酵素、ガイドRNA、ノックインを行う場合は、これらに加えてドナーDNAを用いる。
[CRISPR酵素]
 CRISPR酵素は、細菌および古細菌において侵入外来核酸に対する獲得耐性を提供する適応免疫系を構成するCasタンパク質ファミリーの一つであり、外来侵入性DNA中のPAM配列を認識して、その上流で二本鎖DNAを平滑末端になるように切断するエンドヌクレアーゼである。本明細書において、CRISPR酵素は、ガイドRNAと複合体を形成し、DNA切断活性を有するものを意味する。
 CRISPR酵素のファミリーとしては、例えば、Cas1、Cas1B、Cas2、Cas3、Cas4、Cas5、Cas6、Cas7、Cas8、Cas9(Csn1およびCsx12としても公知)、Cas10、Csy1、Csy2、Csy3、Cse1、Cse2、Csc1、Csc2、Csa5、Csn2、Csm2、Csm3、Csm4、Csm5、Csm6、Cmr1、Cmr3、Cmr4、Cmr5、Cmr6、Csb1、Csb2、Csb3、Csx17、Csx14、Csx10、Csx16、CsaX、Csx3、Csx1、Csx15、Csf1、Csf2、Csf3、Csf4、それらのホモログ、またはそれらの改変されたもの等が挙げられる。本発明における遺伝子改変非ヒト動物の製造においては、好ましくはCas9、そのホモログ、またはそれらの改変されたものを用いる。
 CRISPR酵素は、CRISPR酵素タンパク質として用いても、CRISPR酵素をコードする核酸として用いてもよい。CRISPR酵素をコードする核酸を用いる場合、CRISPR酵素をコードする核酸が発現ベクターに導入されている形であってもよい。CRISPR酵素タンパク質をコードする核酸が発現ベクターに導入されている形で非ヒト動物の受精卵等に導入すると、導入後、非ヒト動物の受精卵等においてCRISPR酵素タンパク質を発現させることができる。CRISPR酵素はCRISPR酵素をコードする核酸が発現ベクターに導入されている形で用いることが好ましい。
 発現ベクターは、公知のものを用いることができるが、例えば、ウイルスベクター、細菌ベクター、原生動物ベクター、DNAベクターおよびそれらを組み換え体である組み換えベクター等が挙げられる。ウイルスベクターとしては、例えば、レンチウイルスベクター、バキュロウイルスベクター、アデノウイルス/アデノ随伴ウイルスベクター等が挙げられる。
 発現ベクターは、ガイドRNAをコードする核酸と、CRISPR酵素をコードする核酸とを含んでもよい。このような発現ベクターとしては、pX330、PrecisionX Cas9 SmartNuclease All-in-one Vectors(システムバイオサイエンス社製)、CRISPR/CAS9 Knockout Plasmid(サンタクルーズバイオテクノロジー社製)等が挙げられる。発現効率が良いことから、発現ベクターとしては、pX330が好ましい。
[ガイドRNA(gRNA)]
 ガイドRNAとは細菌および古細菌において侵入外来核酸に対する獲得耐性を提供する適応免疫系を構成する、外来配列(ガイド配列)を含む小さなRNA断片(CRISPR-RNA:crRNA)と該crRNAと一部相補的なRNA(trans-activating crRNA:tracrRNA)とを融合させたtracrRNA-crRNAキメラのヘアピン構造を模倣したものである。
 ガイドRNAは、ターゲット配列を含むcrRNAとtracrRNAとが融合した状態で合成されたtracrRNA-crRNAキメラであってもよい。または、ガイド配列を含むcrRNAとtracrRNAとを別々に作製し、導入前にアニーリングしてtracrRNA-crRNAキメラとしたものであってもよい。または、tracrRNAの必須部分およびcrRNAの融合によって作製される一本鎖RNA(sgRNA)であってもよい。ガイドRNAは、ターゲット配列を含むcrRNAとtracrRNAとが融合した状態で合成されたtracrRNA-crRNAキメラとすることが好ましい。
 ガイドRNAは、標的遺伝子(CRISPR酵素により切断しようとする遺伝子)中のPAM配列の1塩基上流から、例えば10塩基以上25塩基以下までの塩基配列に相補的な塩基配列からなるポリヌクレオチドを5'末端領域に含むものとすることができる。オフターゲットでの切断を避けるために、ガイドRNAが含む前記ポリヌクレオチドは、好ましくは標的遺伝子中のPAM配列の1塩基上流から12塩基以上22塩基以下であり、より好ましくは20塩基である。
 PAM配列とはCRISPR酵素により認識され得る配列であって、PAM配列の長さや塩基配列はCRISPR酵素の由来となる細菌種によってさまざまである。例えば、S.pyogenesでは「NGG」(Nは任意の塩基を表す)の3塩基を認識する。Streptococcus  thermophilus(S.thermophilus)は2つのCas9を持っており、それぞれ「NGGNG」または「NNAGAA」(Nは任意の塩基を表す)の5~6塩基をPAM配列として認識する。認識するPAM配列が短く編集可能な標的遺伝子が制限されにくいことから、PAM配列は「NGG」であることが好ましい。
 ガイドRNAは、単離または合成されたRNAであってもよく、発現ベクター内に組み込まれたRNAの形であってもよい。また、ガイドRNAをコードする核酸の形であってもよく、ガイドRNAをコードする核酸が発現ベクターに組み込まれている形であってもよい。ガイドRNAは、ガイドRNAをコードする核酸が発現ベクターに組み込まれている形であることが好ましい。
[ドナーDNA]
 CRISPR/Casシステムにより切断されたゲノムDNAに、特定の遺伝子をノックインする場合は、ガイドRNAおよびCRISPR酵素に加えてドナーDNAを用いる。ドナーDNAは、ノックインする遺伝子の上流および下流に、標的遺伝子上の挿入を行う部位と相同な配列からなるDNAを含むことが好ましい。ドナーDNAは、一本鎖オリゴDNAであってもよいし、プラスミドに組み込んでもよいが、プラスミドに組み込むことが好ましい。
[受精卵等への導入]
 非ヒト動物の受精卵等にCRISPR酵素、ガイドRNA、任意でドナーDNAを導入する方法は、特に制限されず、公知の遺伝子導入の手法を用いることができる。例えば、リン酸カルシウム法、エレクトロポレーション法、リポフェクション法、凝集法、マイクロインジェクション法、パーティクルガン法、DEAE-デキストラン法等が挙げられる。導入効率が高いことから、マイクロインジェクション法が好ましい。
 導入対象が受精卵である場合、CRISPR酵素、ガイドRNA、任意でのドナーDNAの導入後、受精卵を対応する非ヒト動物の子宮または卵管へ移植し、発生させることで、遺伝子改変非ヒト動物を簡便に得ることができる。
〈抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物(PD-1遺伝子改変)〉
 本発明の第四の態様は、ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入されることにより、PD-1遺伝子の全部または一部の発現が抑制または喪失されている遺伝子改変非ヒト動物に、抗原性補強剤を投与することにより作製する、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物である。
 前記免疫関連副作用モデル非ヒト動物に用いる遺伝子改変非ヒト動物は、PD-1遺伝子の全部または一部の発現が抑制または喪失されていればよく、恒常的な抑制または喪失と、組織および時期の少なくとも一方に特異的な抑制または喪失を含む。すなわち、本発明の第四の態様である免疫関連副作用モデル非ヒト動物に用いる遺伝子改変非ヒト動物は、コンベンショナルPD-1遺伝子改変非ヒト動物(コンベンショナルPD-1ノックアウト非ヒト動物、およびコンベンショナルPD-1ノックダウン非ヒト動物)と、本発明の第三の態様であるコンディショナルPD-1遺伝子改変非ヒト動物(コンディショナルPD-1ノックアウト非ヒト動物、およびコンディショナルPD-1ノックダウン非ヒト動物)を含む。
 PD-1遺伝子の発現を組織および時期の少なくとも一方に特異的にコントロールできることから、前記遺伝子改変非ヒト動物は、組織および時期の少なくとも一方に特異的にPD-1遺伝子の全部または一部の発現が抑制または喪失されている遺伝子改変非ヒト動物であることが好ましい。すなわち、前記遺伝子改変非ヒト動物は、好ましくはコンディショナルPD-1遺伝子改変非ヒト動物であり、より好ましくはCD8陽性T細胞特異的にPD-1遺伝子の全部または一部の発現が抑制または喪失されている遺伝子改変非ヒト動物である。
 コンベンショナルPD-1遺伝子改変非ヒト動物におけるPD-1遺伝子またはPD-1遺伝子の発現調節領域の変異は、それによりPD-1遺伝子の全部または一部の発現が抑制または喪失され、PD-1が実質的に不活化するものであればよく、導入される変異は挿入、欠失、変更、置換のいずれであってもよく、変異する塩基数も制限されない。変異は、PD-1遺伝子に導入されることが好ましい。
 PD-1ゲノムはエクソン1~エクソン5からなるが、好ましくはエクソン2~エクソン5の範囲内において、より好ましくはエクソン3~エクソン5の範囲内において変異を導入する。
 コンベンショナルPD-1遺伝子改変非ヒト動物において発現が抑制または喪失されているPD-1遺伝子は、PD-1遺伝子の全部または一部であってもよいが、好ましくはPD-1遺伝子の一部である。発現が抑制または喪失されているPD-1遺伝子は、例えばORFのうち、50%以上、60%以上、70%以上、80%以上、90%以上である。発現が抑制または喪失されているPD-1ゲノムは、好ましくはエクソン2~エクソン5の範囲内の一部であり、より好ましくはエクソン3~エクソン5の範囲内の一部であり、さらに好ましくはエクソン3の一部、4、および5の一部である。
 コンベンショナルPD-1遺伝子改変非ヒト動物は、前述の遺伝子改変非ヒト動物の作製方法に従って作製することができるが、好ましくは以下の文献に記載のPD-1欠損マウスである。
 Tasuku Honjo、Immunologicalstudies on PD-1-deficient mice:implication of PD-1 as a negative regulator for B cell responses、International Immunology、1998年、vol.10、NO.10、1563-1572ページ
 本発明の免疫関連副作用モデル非ヒト動物の用途は特に制限されず、抗PD-L1抗体または抗PD-1抗体による免疫関連副作用のメカニズム解析や予防、または治療の方法および薬剤の開発等に用いることができる。本発明の免疫関連副作用モデル非ヒト動物は、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の病態や症状が増強されているので、抗PD-L1抗体または抗PD-1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤のスクリーニング、評価、または開発に用いることが好ましい。
 前記免疫関連副作用は、免疫関連副作用としての乾癬様皮膚炎であることが好ましい。
 本発明の免疫関連副作用モデル非ヒト動物は、抗PD-1抗体または抗PD-L1抗体を非ヒト動物に投与して作製する免疫関連副作用モデル非ヒト動物に比べて、免疫関連副作用が持続し、また、モデル作製に際して抗体投与等のブレを生じやすい工程がないことから、実験条件が安定しやすい。そのため、前記免疫関連副作用モデル非ヒト動物は、病態解析に好適である。
 本発明の実施形態の1つの例は、ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入されることにより、PD-1遺伝子の全部または一部の発現が抑制または喪失されている遺伝子改変非ヒト動物であって、抗原性補強剤が投与された、前記遺伝子改変非ヒト動物の、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物としての使用である。
 本発明の実施形態の1つの例は、ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入されることにより、PD-1遺伝子の全部または一部の発現が抑制または喪失されている遺伝子改変非ヒト動物に、抗原性補強剤を投与する工程を含む、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物の作製方法である。
〈抗原性補強剤〉
 本発明における抗原性補強剤は、免疫応答を賦活化する作用をもつ薬剤であり、免疫賦活剤、またはアジュバントと言い換えることができる。PD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入されており、PD-1遺伝子の全部または一部の発現が抑制または喪失されている遺伝子改変非ヒト動物に抗原性補強剤を投与することにより、前記遺伝子改変非ヒト動物の免疫応答が賦活化され、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の病態、症状を増強させることができる。抗原性補強剤の投与により賦活化される免疫応答は多種多様であるから、抗原性補強剤を投与された非ヒト動物を構造又は特性により直接特定することは不可能又は非実際的である。
 抗原性補強剤は、免疫応答を賦活する効果を有すれば特に制限されないが、好ましくは炎症性サイトカイン産生を促進するものであり、より好ましくはToll-like receptor(TLR)に対するアゴニスト活性を持つものであり、さらに好ましくはToll-like receptor 7(TLR7)に対するアゴニスト活性を持つものである。抗原性補強剤としては、例えばアルミニウム化合物、完全フロイントアジュバント、不完全フロイントアジュバント、イミダゾキノリン、イミダゾキノリン誘導体等が挙げられる。イミダゾキノリン誘導体としては、例えばイミキモド(imiquimod)、ガーディキモド(gardiquimod)、レシキモド(resiquimod)が挙げられる。入手が容易であり、免疫賦活作用が充分であることから、アルミニウム化合物、完全フロイントアジュバント、またはイミダゾキノリン誘導体が好ましく、イミダゾキノリン誘導体がより好ましく、イミキモドがさらに好ましい。
 抗原性補強剤の投与方法は特に制限されず、抗原性補強剤の種類によって選択すればよい。抗原性補強剤の投与は、経口、または非経口とすることができる。抗原性補強剤の投与は、非経口が好ましく、特定の部位にのみ投与することが可能であることから、局所投与がより好ましく、皮膚への外用がさらに好ましい。抗原性補強剤は、そのまま生体に投与してもよいし、その有効量を薬学的に許容する担体とともに配合した製剤として投与してもよい。
 抗原性補強剤の投与量は特に制限されず、遺伝子改変非ヒト動物の種類やモデルの対象とする免疫関連副作用の種類や程度によって適宜選択すればよい。例えばイミキモドをマウスに外用する場合、1~10%のイミキモドを10~100mg/回/匹で1日1~数回、1~10日間塗布することができる。
〈本発明の第五の態様である遺伝子改変非ヒト動物〉
 本発明の第五の態様である遺伝子改変非ヒト動物は、ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域に変異が導入されることにより、ランゲルハンス細胞特異的にPD-L1遺伝子の全部または一部の発現が抑制または喪失されているものである。すなわち、ランゲルハンス細胞特異的にPD-L1遺伝子の一部または全部の発現が抑制(ノックダウン)または喪失(ノックアウト)されていることを特徴とする。本発明の第五の態様である遺伝子改変非ヒト動物は、ランゲルハンス細胞特異的PD-L1遺伝子改変非ヒト動物とも称し、ランゲルハンス細胞特異的PD-L1ノックアウト非ヒト動物、およびランゲルハンス細胞特異的PD-L1ノックダウン非ヒト動物を含む。PD-L1の働きを解析しやすいことから、ランゲルハンス細胞特異的PD-L1遺伝子改変非ヒト動物は、好ましくはランゲルハンス細胞特異的PD-L1ノックアウト非ヒト動物である。
 本発明のランゲルハンス細胞特異的PD-L1遺伝子改変非ヒト動物の用途は特に制限されないが、PD-L1/PD-1シグナルを阻害した場合と同じ効果をランゲルハンス細胞特異的に得られることから、PD-L1/PD-1シグナル伝達系のメカニズム解明、PD-L1/PD-1シグナル阻害により生じる病態の解析、PD-L1/PD-1シグナル阻害により生じる病態の予防、治療剤の開発等に用いることができる。本発明のランゲルハンス細胞特異的PD-L1遺伝子改変非ヒト動物は、PD-L1/PD-1シグナル阻害により生じる病態の解析、またはPD-L1/PD-1シグナル阻害により生じる病態の予防、治療剤の開発等に用いることが好ましく、抗PD-L1抗体または抗PD-1抗体により生じる病態の解析、または抗PD-L1抗体または抗PD-1抗体により生じる病態の予防、治療剤の開発等に用いることがより好ましく、抗PD-L1抗体または抗PD-1抗体により生じる免疫関連副作用の解析、または抗PD-L1抗体または抗PD-1抗体により生じる免疫関連副作用の予防、治療剤の開発等に用いることがさらに好ましい。
 本発明のランゲルハンス細胞特異的PD-L1遺伝子改変非ヒト動物は、無刺激下で飼育してもよいが、刺激または負荷を与えてもよい。刺激または負荷を与えることにより、ランゲルハンス細胞特異的PD-L1遺伝子改変非ヒト動物の特徴をより明確に観察しやすくなる。刺激または負荷は、特に制限されないが、例えば化学的、物理的、または生理学的な刺激もしくは負荷であり、薬剤、飼育密度、運動、放射線、紫外線、食餌等による刺激または負荷を挙げることができる。刺激または負荷は、化学的な刺激または負荷が好ましく、抗原性補強剤による刺激または負荷がより好ましい。
 PD-L1遺伝子またはPD-L1遺伝子の発現調節領域の変異は、それによりPD-L1遺伝子の全部または一部の発現が抑制または喪失され、PD-L1が実質的に不活化するものであればよく、導入される変異は挿入、欠失、変更、置換のいずれであってもよく、変異する塩基数も制限されない。変異は、PD-L1遺伝子の発現調節領域よりもPD-L1遺伝子に導入されることが好ましい。
 PD-L1遺伝子に変異が導入される場合、PD-L1ゲノムはエクソン1~エクソン7からなるが、好ましくはエクソン1~エクソン5の範囲内において、より好ましくはエクソン2およびエクソン3の範囲内において変異を導入する。後述する実施例においてはマウスPD-L1ゲノムのエクソン2および3に変異を導入することによって、ランゲルハンス細胞特異的にPD-L1を不活化した、コンディショナルノックアウトマウスを得ることに成功した。
 ランゲルハンス細胞特異的PD-L1遺伝子改変非ヒト動物において発現が抑制または喪失されているPD-L1遺伝子は、PD-L1遺伝子の全部または一部であってもよいが、好ましくはPD-L1遺伝子の一部である。発現が抑制または喪失されているPD-L1遺伝子は、ORFのうち、好ましくは30%以上、より好ましくは40%以上、さらに好ましくは50%以上、特に好ましくは60%以上である。発現が抑制または喪失されているPD-L1ゲノムは、好ましくはエクソン1~エクソン7の範囲内の一部であり、より好ましくはエクソン1~エクソン5の範囲内の一部であり、さらに好ましくはエクソン2および3である。
 ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域に変異を導入するための方法は、特に制限されず、公知の方法を用いることができる。例えば、リコンビネースタンパク質/リコンビネース標的配列システムを利用した遺伝子組み換え誘導型の方法などが挙げられる。
 リコンビネースタンパク質をランゲルハンス細胞特異的に発現させた遺伝子改変非ヒト動物と、リコンビネース標的配列が導入された同種の遺伝子改変非ヒト動物とを掛け合わせ、リコンビネースによる組み換えをランゲルハンス細胞特異的に生じさせ、所望の遺伝子をランゲルハンス細胞特異的に制御することを可能にする。リコンビネースタンパク質/リコンビネース標的配列システムとしては、例えばバクテリオファージP1由来のCreリコンビネースタンパク質とCreタンパク質によって認識される34塩基対のloxP配列を利用したCre/loxP配列システム、酵母由来のFLPタンパク質/FRT配列システム、Zygosaccharomyces rouxiiのpSR1リコンビネース/pSR1リコンビネース標的配列システム、バクテリオファージMu由来のGinタンパク質/gix配列システム等が挙げられる。操作が簡便であることから、Cre/loxP配列、FLPタンパク質/FRT配列、またはpSR1リコンビネース/pSR1リコンビネース標的配列が好ましく、Cre/loxPシステムがより好ましい。
 本発明のランゲルハンス細胞特異的PD-L1遺伝子改変非ヒト動物は、好ましくは、ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域の一部または全部を挟むリコンビネース標的配列が導入された、遺伝子改変非ヒト動物と、ランゲルハンス細胞特異的にリコンビースタンパク質を発現するリコンビネース発現遺伝子改変非ヒト動物とを掛け合わせて作製した、ランゲルハンス細胞特異的PD-L1遺伝子改変非ヒト動物であり、より好ましくは、ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域の一部または全部を挟むloxP配列が導入された、遺伝子改変非ヒト動物と、ランゲルハンス細胞特異的にCreタンパク質を発現するリコンビネース発現遺伝子改変非ヒト動物とを掛け合わせて作製した、ランゲルハンス細胞特異的PD-L1遺伝子改変非ヒト動物である。
(リコンビネース発現遺伝子改変非ヒト動物)
 ランゲルハンス細胞特異的にリコンビネースタンパク質を発現するリコンビネース発現遺伝子改変非ヒト動物は、種々のものが報告されているので、実験の目的に応じて選択することができるし、前述した遺伝子改変非ヒト動物の作製方法により新たに作製してもよい。
 既知のランゲルハンス細胞特異的にリコンビネースタンパク質を発現するリコンビネース発現遺伝子改変非ヒト動物としては、例えばLaura S. Bursch et. al. "Identification of a novel population of Langerin+ dendritic cells" J Exp Med. 2007 Dec 24; 204(13): 3147?3156に記載のLangerincreマウスが挙げられる。このLangerincreマウスは、樹状細胞にはCreが発現せず、ランゲルハンス細胞特異的にCreが発現する。
(リコンビネース標的配列が導入された遺伝子改変非ヒト動物)
 リコンビネースタンパク質/リコンビネース標的配列システムを利用して、ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域に変異が導入される場合、ゲノム中のPD-L1遺伝子もしくはPD-L1遺伝子の発現調節領域の近傍、またはPD-L1遺伝子中またはPD-L1遺伝子の発現調節領域中にリコンビネース標的配列が導入された遺伝子改変非ヒト動物を用いる。すなわち、ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域の一部または全部を挟むリコンビネース標的配列が導入された、遺伝子改変非ヒト動物を用いる。前記リコンビネース標的配列は、loxP配列であることが好ましい。
 リコンビネース標的配列を導入する位置は、通常、PD-L1遺伝子またはPD-L1遺伝子の発現調節領域に導入を予定する変異の種類や位置によって決定する。PD-L1遺伝子またはPD-L1遺伝子の発現調節領域の一部または全部の発現を喪失させる場合は、通常、発現を喪失させる部分を、同一方向の複数のリコンビネース標的配列で挟む。複数のリコンビネース標的配列とは、好ましくは2個のリコンビネース標的配列である。相同組み換えによって前記リコンビネース標的配列がゲノムに組み込まれると、リコンビネースタンパク質の存在により、複数のリコンビネース標的配列で挟まれたPD-L1遺伝子またはPD-L1遺伝子の発現調節領域の一部または全部が削除される。
 リコンビネース標的配列は、ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域の一部または全部を挟んで導入される。PD-L1ゲノムはエクソン1~エクソン7からなるので、リコンビネース標的配列は、好ましくはエクソン1~エクソン7の範囲内の一部を挟んで導入され、より好ましくはエクソン1~エクソン5の範囲内の一部を挟んで導入され、さらに好ましくはエクソン2および3を挟んで導入される。後述する実施例においては、リコンビネース標的配列をマウスPD-L1ゲノムのエクソン2および3を挟んで導入した、遺伝子改変非ヒト動物を得ることに成功した。
 Cre/loxP配列システムを用いる場合、loxP配列は後述する実施例で用いた配列である5'-ATAACTTCGTATAGCATACATTATACGAAGTTAT-3'(配列番号1)に限定されない。Creに認識される配列であれば配列に変異があってもよく、例えば、5'-ATAACTTCGTATANNNTANNNTATACGAAGTTAT-3'(配列番号2)等で示される配列である。
 ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域の一部または全部を挟むリコンビネース標的配列が導入された、遺伝子改変非ヒト動物は、組織および時期の少なくとも一方に特異的にリコンビネースが発現しているリコンビネース発現遺伝子改変非ヒト動物と掛け合わせると、ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域に変異が導入されることにより、組織および時期の少なくとも一方に特異的にPD-L1遺伝子の全部または一部の発現が抑制または喪失されている、PD-L1遺伝子改変非ヒト動物、すなわち、コンディショナルPD-L1遺伝子改変非ヒト動物を作製することができる。
 ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域の一部または全部を挟むリコンビネース標的配列が導入された、遺伝子改変非ヒト動物と、ランゲルハンス細胞特異的リコンビネース発現遺伝子改変非ヒト動物とを掛け合わせると、ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域に変異が導入されることにより、ランゲルハンス細胞特異的にPD-L1遺伝子の全部または一部の発現が抑制または喪失されている、ランゲルハンス細胞特異的PD-L1遺伝子改変非ヒト動物を作製することができる。
 リコンビネース標的配列が導入された遺伝子改変非ヒト動物は、上述の遺伝子改変非ヒト動物の作製方法により作製することができる。
〈抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物(PD-L1遺伝子改変)〉
 本発明の第六の態様は、ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域に変異が導入されることにより、ランゲルハンス細胞特異的にPD-L1遺伝子の全部または一部の発現が抑制または喪失されている、遺伝子改変非ヒト動物に、抗原性補強剤を投与することにより作製する、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物である。
 前記免疫関連副作用モデル非ヒト動物に用いる遺伝子改変非ヒト動物は、本発明の第五の態様であるランゲルハンス細胞特異的PD-L1遺伝子改変非ヒト動物(ランゲルハンス細胞特異的PD-L1ノックアウト非ヒト動物、およびランゲルハンス細胞特異的PD-L1ノックダウン非ヒト動物)である。
 本発明の免疫関連副作用モデル非ヒト動物の用途は特に制限されず、抗PD-L1抗体または抗PD-1抗体による免疫関連副作用のメカニズム解析や予防、または治療の方法および薬剤の開発等に用いることができる。本発明の免疫関連副作用モデル非ヒト動物は、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の病態や症状が増強されているので、抗PD-L1抗体または抗PD-1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤のスクリーニング、評価、または開発に用いることが好ましい。
 前記免疫関連副作用は、免疫関連副作用としての乾癬様皮膚炎であることが好ましい。
 本発明の実施形態の1つの例は、ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域に変異が導入されることにより、ランゲルハンス細胞特異的にPD-L1遺伝子の全部または一部の発現が抑制または喪失されている、遺伝子改変非ヒト動物であって、抗原性補強剤が投与された、前記遺伝子改変非ヒト動物の、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物としての使用である。
 本発明の実施形態の1つの例は、ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域に変異が導入されることにより、ランゲルハンス細胞特異的にPD-L1遺伝子の全部または一部の発現が抑制または喪失されている、遺伝子改変非ヒト動物に、抗原性補強剤を投与する工程を含む、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物の作製方法である。
〈抗原性補強剤〉
 ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域に変異が導入されることにより、ランゲルハンス細胞特異的にPD-L1遺伝子の全部または一部の発現が抑制または喪失されている、遺伝子改変非ヒト動物に抗原性補強剤を投与することにより、前記遺伝子改変非ヒト動物の免疫応答が賦活化され、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の病態、症状を増強させることができる。
〈薬剤のスクリーニング方法〉
 本発明の第七の態様である薬剤のスクリーニング方法は、第三の態様である遺伝子改変非ヒト動物、第四の態様である免疫関連副作用モデル非ヒト動物、第五の態様である遺伝子改変非ヒト動物、または第六の態様である免疫関連副作用モデル非ヒト動物を用いる、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤のスクリーニング方法である。 
 本発明の薬剤のスクリーニング方法により、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用を阻害、抑制、促進、または増強する効果を有する薬剤をスクリーニングすることができる。
 本発明の薬剤のスクリーニング方法は、通常、非ヒト動物に薬剤を投与する工程(A)を有する。
 したがって、本発明の実施形態の1つの例は、
工程(α):下記の遺伝子改変非ヒト動物AもしくはB、または下記の免疫関連副作用モデル非ヒト動物CもしくはDに薬剤を投与する工程、および
工程(β):抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の評価を行う工程
を有する、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤のスクリーニング方法である。
遺伝子改変非ヒト動物A:ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入されることにより、組織および時期の少なくとも一方に特異的にPD-1遺伝子の全部または一部の発現が抑制または喪失されている、遺伝子改変非ヒト動物。遺伝子改変非ヒト動物Aは、本発明の第三の態様の遺伝子改変非ヒト動物である。
遺伝子改変非ヒト動物B:ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域に変異が導入されることにより、ランゲルハンス細胞特異的にPD-L1遺伝子の全部または一部の発現が抑制または喪失されている、遺伝子改変非ヒト動物。遺伝子改変非ヒト動物Bは、本発明の第五の態様の遺伝子改変非ヒト動物である。
免疫関連副作用モデル非ヒト動物C:ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入されることにより、PD-1遺伝子の全部または一部の発現が抑制または喪失されている遺伝子改変非ヒト動物に、抗原性補強剤を投与することにより作製する、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物。免疫関連副作用モデル非ヒト動物Cは、本発明の第四の態様の免疫関連副作用モデル非ヒト動物である。
免疫関連副作用モデル非ヒト動物D:ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域に変異が導入されることにより、ランゲルハンス細胞特異的にPD-L1遺伝子の全部または一部の発現が抑制または喪失されている、遺伝子改変非ヒト動物に、抗原性補強剤を投与することにより作製する、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物。免疫関連副作用モデル非ヒト動物Dは、本発明の第六の態様の免疫関連副作用モデル非ヒト動物である。
 遺伝子改変非ヒト動物、または免疫関連副作用モデル非ヒト動物に薬剤を投与する方法は、特に制限されず、経口、または非経口とすることができる。薬剤は、そのまま生体に投与してもよいし、その有効量を薬学的に許容する担体とともに配合した製剤として投与してもよい。
 抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の評価を行う方法は、特に制限されない。前記免疫関連副作用の評価は、重症度を示す指標を用いて行うことが好ましい。前記免疫関連副作用の重症度を示す指標は、特に制限されない。
 前記免疫関連副作用が皮膚障害である場合は、重症度を示す指標としては、例えば、白斑、紅斑、膿疱、皮疹、びらん等の程度を用いることができる。前記免疫関連副作用が乾癬様皮膚炎である場合は、重症度を示す指標としては、耳の厚さ、炎症の重症度、表皮の厚さ、表皮中の好中球性微小膿瘍の数、およびサイトカイン、好ましくはIL-6、IL-17A、またはIL-23AのmRNAの発現量等を用いることができる。
 前記免疫関連副作用が肝障害である場合は、重症度を示す指標としては、例えば、AST(GOT)、ALT(GPT)、γ-GTP、AST、ALT等の肝酵素、または総ビリルビンを用いることができる。
 前記免疫関連副作用が肺炎である場合は、重症度を示す指標としては、例えば、咳嗽や呼吸困難等の症状の程度、気管支内視鏡、CT等の検査による重症スコアを用いることができる。
 前記免疫関連副作用が甲状腺炎である場合は、重症度を示す指標としては、例えば、血中のTSH、free T3、free T4を用いることができる。
 前記免疫関連副作用が視床下部機能異常、汎下垂体機能低下症、副腎炎である場合は、重症度を示す指標としては、例えば、ADH、ACTH、LH、FSH、GH、プロラクチン、コルチゾール、アルドステロン、アンドロゲン、アドレナリン、ノルアドレナリン、エストロゲン、プロゲステロンを用いることができる。
 本発明の薬剤(医薬品候補物質)のスクリーニング方法は、薬剤の存在下および非存在下において行うことにより、薬剤の存在下における抗PD-1抗体または抗PD-L1抗体による免疫関連副作用が、薬剤の非存在下における該免疫関連副作用よりも軽減されている場合に、該薬剤を該免疫関連副作用の予防および治療の少なくとも一方を行うための薬剤の候補として選択することができる。例えば、薬剤の存在下における前記免疫関連副作用の重症度を示す指標が、薬剤の非存在下における前記指標の10%、20%、30%、40%、50%、60%、70%、または80%以下である場合に、該薬剤を前記免疫関連副作用の予防および治療の少なくとも一方を行うための薬剤の候補として選択することができる。薬剤の存在下における前記免疫関連副作用の重症度を示す指標が、薬剤の非存在下における前記指標の10%、20%、30%、40%、または50%以下である場合に、該薬剤を該免疫関連副作用の予防および治療の少なくとも一方を行うための医薬品の候補として選択することが好ましい。
 薬剤(医薬品候補物質)としては、低分子化合物、タンパク質、ポリペプチド、多糖類、核酸等があげられるが、特に制限されない。医薬品(候補物質)は、新規な物質でも公知の物質でもよい。
 前記抗PD-1抗体または抗PD-L1抗体による免疫関連副作用は、好ましくは皮膚障害、重症筋無力症、心筋炎、筋炎、横紋筋融解症、I型糖尿病、神経障害、腎障害、関節炎、肝障害、肺炎、膵炎、甲状腺炎、副腎炎、視床下部機能異常、および汎下垂体機能低下症から選ばれる少なくとも1つであり、より好ましくは皮膚障害、肝障害、肺炎、膵炎、および甲状腺炎から選ばれる少なくとも1つであり、さらに好ましくは皮膚障害の中でも乾癬様皮膚炎である。
 本発明の薬剤のスクリーニング方法は、好ましくは第四の態様である免疫関連副作用モデル非ヒト動物または第六の態様である免疫関連副作用モデル非ヒト動物を用い、より好ましくは第四の態様である免疫関連副作用モデル非ヒト動物を用いる。
 本発明の薬剤のスクリーニング方法は、抗PD-1抗体または抗PD-L1抗体を野生型の非ヒト動物に投与して作製する免疫関連副作用モデルを用いるスクリーニング方法に比べて、免疫関連副作用が持続し、また、モデル作製に際して抗体投与等のブレを生じやすい工程がないことから、実験条件が安定しやすく、感度が高い。
〈薬剤の評価方法〉
 本発明の第八の態様である薬剤の評価方法は、第三の態様である遺伝子改変非ヒト動物、第四の態様である免疫関連副作用モデル非ヒト動物、第五の態様である遺伝子改変非ヒト動物、または第六の態様である免疫関連副作用モデル非ヒト動物を用いる、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤の評価方法である。
 本発明の薬剤の評価方法により、薬剤が有する、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用を阻害、抑制、促進、または増強する効果を評価することができる。
 本発明の薬剤の評価方法は、通常、非ヒト動物に薬剤を投与する工程(A)を有する。
 したがって、本発明の実施形態の1つの例は、
工程(α):下記の遺伝子改変非ヒト動物AもしくはB、または下記の免疫関連副作用モデル非ヒト動物CもしくはDに薬剤を投与する工程、および
工程(β):抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の評価を行う工程
を有する、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤の評価方法である。
遺伝子改変非ヒト動物A:ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入されることにより、組織および時期の少なくとも一方に特異的にPD-1遺伝子の全部または一部の発現が抑制または喪失されている、遺伝子改変非ヒト動物。遺伝子改変非ヒト動物Aは、本発明の第三の態様の遺伝子改変非ヒト動物である。
遺伝子改変非ヒト動物B:ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域に変異が導入されることにより、ランゲルハンス細胞特異的にPD-L1遺伝子の全部または一部の発現が抑制または喪失されている、遺伝子改変非ヒト動物。遺伝子改変非ヒト動物Bは、本発明の第五の態様の遺伝子改変非ヒト動物である。
免疫関連副作用モデル非ヒト動物C:ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入されることにより、PD-1遺伝子の全部または一部の発現が抑制または喪失されている遺伝子改変非ヒト動物に、抗原性補強剤を投与することにより作製する、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物。免疫関連副作用モデル非ヒト動物Cは、本発明の第四の態様の免疫関連副作用モデル非ヒト動物である。
免疫関連副作用モデル非ヒト動物D:ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域に変異が導入されることにより、ランゲルハンス細胞特異的にPD-L1遺伝子の全部または一部の発現が抑制または喪失されている、遺伝子改変非ヒト動物に、抗原性補強剤を投与することにより作製する、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物。免疫関連副作用モデル非ヒト動物Dは、本発明の第六の態様の免疫関連副作用モデル非ヒト動物である。
 本発明の薬剤(医薬品候補物質)の評価方法は、薬剤の存在下および非存在下において行うことにより、薬剤の存在下における抗PD-1抗体または抗PD-L1抗体による免疫関連副作用が薬剤の非存在下における該免疫関連副作用よりも軽減されている場合に、該候薬剤を抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行うために有効であると判断することができる。
 前記抗PD-1抗体または抗PD-L1抗体による免疫関連副作用は、好ましくは皮膚障害、重症筋無力症、心筋炎、筋炎、横紋筋融解症、I型糖尿病、神経障害、腎障害、関節炎、肝障害、肺炎、膵炎、甲状腺炎、副腎炎、視床下部機能異常、および汎下垂体機能低下症から選ばれる少なくとも1つであり、より好ましくは皮膚障害、肝障害、肺炎、膵炎、および甲状腺炎から選ばれる少なくとも1つであり、さらに好ましくは皮膚障害の中でも乾癬様皮膚炎である。
 本発明の薬剤の評価方法は、好ましくは第四の態様である免疫関連副作用モデル非ヒト動物または第六の態様である免疫関連副作用モデル非ヒト動物を用い、より好ましくは第四の態様である免疫関連副作用モデル非ヒト動物を用いる。
 本発明の薬剤の評価方法は、抗PD-1抗体または抗PD-L1抗体を野生型の非ヒト動物に投与して作製する免疫関連副作用モデルを用いる薬剤の評価方法に比べて、免疫関連副作用が持続し、また、モデル作製に際して抗体投与等のブレを生じやすい工程がないことから、実験条件が安定しやすく、感度が高い。
〈本発明の第九の態様である遺伝子改変非ヒト動物〉
 本発明の第九の態様である遺伝子改変非ヒト動物は、ゲノム中のPD-L2遺伝子またはPD-L2遺伝子の発現調節領域の一部または全部を挟むリコンビネース標的配列が導入されている。
 リコンビネース標的配列は、ゲノム中のPD-L2遺伝子もしくはPD-L2遺伝子の発現調節領域の近傍、またはPD-L2遺伝子中またはPD-L2遺伝子の発現調節領域中に導入される。前記リコンビネース標的配列は、loxP配列であることが好ましい。
 リコンビネース標的配列を導入する位置は、通常、PD-L2遺伝子またはPD-L2遺伝子の発現調節領域に導入を予定する変異の種類や位置によって決定する。PD-L2遺伝子またはPD-L2遺伝子の発現調節領域の一部または全部の発現を喪失させる場合は、通常、発現を喪失させる部分を、同一方向の複数のリコンビネース標的配列で挟む。複数のリコンビネース標的配列とは、好ましくは2個のリコンビネース標的配列である。相同組み換えによって前記リコンビネース標的配列がゲノムに組み込まれると、リコンビネースタンパク質の存在により、複数のリコンビネース標的配列で挟まれたPD-L2遺伝子またはPD-L2遺伝子の発現調節領域の一部または全部が削除される。
 リコンビネース標的配列は、ゲノム中のPD-L2遺伝子またはPD-L2遺伝子の発現調節領域の一部または全部を挟んで導入される。PD-L2ゲノムはエクソン1~エクソン6からなるので、リコンビネース標的配列は、好ましくはエクソン1~エクソン6の範囲内の一部を挟んで導入され、より好ましくはエクソン1~エクソン4の範囲内の一部を挟んで導入され、さらに好ましくはエクソン3および4を挟んで導入される。後述する実施例においては、リコンビネース標的配列をマウスPD-L2ゲノムのエクソン3および4を挟んで導入した、遺伝子改変非ヒト動物を得ることに成功した。
 Cre/loxP配列システムを用いる場合、loxP配列は後述する実施例で用いた配列である5'-ATAACTTCGTATAGCATACATTATACGAAGTTAT-3'(配列番号1)に限定されない。Creに認識される配列であれば配列に変異があってもよく、例えば、5'-ATAACTTCGTATANNNTANNNTATACGAAGTTAT-3'(配列番号2)等で示される配列である。
 リコンビネース標的配列が導入された遺伝子改変非ヒト動物は、上述の遺伝子改変非ヒト動物の作製方法により作製することができる。
 ゲノム中のPD-L2遺伝子またはPD-L2遺伝子の発現調節領域の一部または全部を挟むリコンビネース標的配列が導入された、遺伝子改変非ヒト動物と、組織および時期の少なくとも一方に特異的にリコンビネースが発現しているリコンビネース発現遺伝子改変非ヒト動物とを掛け合わせると、ゲノム中のPD-L2遺伝子またはPD-L2遺伝子の発現調節領域に変異が導入されることにより、組織および時期の少なくとも一方に特異的にPD-L2遺伝子の全部または一部の発現が抑制または喪失されている、コンディショナルPD-L2遺伝子改変非ヒト動物を作製することができる。
 前記コンディショナルPD-L2遺伝子改変非ヒト動物は、ゲノム中のPD-L2遺伝子またはPD-L2遺伝子の発現調節領域に変異が導入されることにより、組織および時期の少なくとも一方に特異的にPD-L2遺伝子の全部または一部の発現が抑制または喪失されているものである。すなわち、コンディショナルにPD-L2遺伝子の一部または全部の発現が抑制(ノックダウン)または喪失(ノックアウト)されていることを特徴とする。前記コンディショナルPD-L2遺伝子改変非ヒト動物は、コンディショナルPD-L2ノックアウト非ヒト動物、およびコンディショナルPD-L2ノックダウン非ヒト動物を含む。PD-L2の働きを解析しやすいことから、コンディショナルPD-L2遺伝子改変非ヒト動物は、好ましくはコンディショナルPD-L2ノックアウト非ヒト動物である。
 前記コンディショナルPD-L2遺伝子改変非ヒト動物の用途は特に制限されないが、PD-L2/PD-1シグナルを阻害した場合と同じ効果を時期特異的、組織特異的に得られることから、PD-L2/PD-1シグナル伝達系のメカニズム解明、PD-L2/PD-1シグナル阻害により生じる病態の解析、PD-L2/PD-1シグナル阻害により生じる病態の予防、治療剤の開発等に用いることができる。本発明の前記コンディショナルPD-L2遺伝子改変非ヒト動物は、PD-L2/PD-1シグナル阻害により生じる病態の解析、またはPD-L2/PD-1シグナル阻害により生じる病態の予防、治療剤の開発等に用いることが好ましく、抗PD-L2抗体または抗PD-1抗体により生じる病態の解析、または抗PD-L2抗体または抗PD-1抗体により生じる病態の予防、治療剤の開発等に用いることがより好ましく、抗PD-L2抗体または抗PD-1抗体により生じる免疫関連副作用の解析、または抗PD-L2抗体または抗PD-1抗体により生じる免疫関連副作用の予防、治療剤の開発等に用いることがさらに好ましい。
 前記コンディショナルPD-L2遺伝子改変非ヒト動物は、無刺激下で飼育してもよいが、刺激または負荷を与えてもよい。刺激または負荷を与えることにより、前記コンディショナルPD-L2遺伝子改変非ヒト動物の特徴をより明確に観察しやすくなる。刺激または負荷は、特に制限されないが、例えば化学的、物理的、または生理学的な刺激もしくは負荷であり、薬剤、飼育密度、運動、放射線、紫外線、食餌等による刺激または負荷を挙げることができる。
 PD-L2遺伝子またはPD-L2遺伝子の発現調節領域の変異は、それによりPD-L2遺伝子の全部または一部の発現が抑制または喪失され、PD-L2が実質的に不活化するものであればよく、導入される変異は挿入、欠失、変更、置換のいずれであってもよく、変異する塩基数も制限されない。変異は、PD-L2遺伝子の発現調節領域よりもPD-L2遺伝子に導入されることが好ましい。
 PD-L2遺伝子に変異が導入される場合、PD-L2ゲノムはエクソン1~エクソン6からなるが、好ましくはエクソン1~エクソン4の範囲内において、より好ましくはエクソン3および4の範囲内において変異を導入する。後述する実施例においては、リコンビネース標的配列をマウスPD-L2ゲノムのエクソン3および4を挟んで導入した、遺伝子改変非ヒト動物を得ることに成功した。この遺伝子改変非ヒト動物と、組織および時期の少なくとも一方に特異的にリコンビネースが発現しているリコンビネース発現遺伝子改変非ヒト動物とを掛け合わせると、マウスPD-L2ゲノムのエクソン3および4に変異を導入することによって、組織および時期の少なくとも一方に特異的にPD-L2を不活化した、コンディショナルノックアウトマウスを得ることができる。
 コンディショナルPD-L2遺伝子改変非ヒト動物において発現が抑制または喪失されているPD-L2遺伝子は、PD-L2遺伝子の全部または一部であってもよいが、好ましくはPD-L2遺伝子の一部である。発現が抑制または喪失されているPD-L2遺伝子は、ORFのうち、好ましくは50%以上、より好ましくは60%以上、さらに好ましくは70%以上、特に好ましくは80%以上である。発現が抑制または喪失されているPD-L2ゲノムは、好ましくはエクソン1~エクソン4の範囲内の一部であり、より好ましくはエクソン1~エクソン5の範囲内の一部であり、さらに好ましくはエクソン3および4である。
 ゲノム中のPD-L2遺伝子またはPD-L2遺伝子の発現調節領域に変異を導入するための方法は、特に制限されず、公知の方法を用いることができる。例えば、リコンビネースタンパク質/リコンビネース標的配列システムを利用した遺伝子組み換え誘導型の方法などが挙げられる。
 リコンビネースタンパク質/リコンビネース標的配列システムとしては、例えばバクテリオファージP1由来のCreリコンビネースタンパク質とCreタンパク質によって認識される34塩基対のloxP配列を利用したCre/loxP配列システム、酵母由来のFLPタンパク質/FRT配列システム、Zygosaccharomyces rouxiiのpSR1リコンビネース/pSR1リコンビネース標的配列システム、バクテリオファージMu由来のGinタンパク質/gix配列システム等が挙げられる。操作が簡便であることから、Cre/loxP配列、FLPタンパク質/FRT配列、またはpSR1リコンビネース/pSR1リコンビネース標的配列が好ましく、Cre/loxPシステムがより好ましい。
 前記コンディショナルPD-L2遺伝子改変非ヒト動物は、好ましくは、ゲノム中のPD-L2遺伝子またはPD-L2遺伝子の発現調節領域の一部または全部を挟むリコンビネース標的配列が導入された、遺伝子改変非ヒト動物と、骨髄系細胞特異的にリコンビネースタンパク質を発現するリコンビネース発現遺伝子改変非ヒト動物とを掛け合わせて作製した、コンディショナルPD-L2遺伝子改変非ヒト動物であり、より好ましくは、ゲノム中のPD-L2遺伝子またはPD-L2遺伝子の発現調節領域の一部または全部を挟むloxP配列が導入された、遺伝子改変非ヒト動物と、骨髄系細胞特異的にCreタンパク質を発現するリコンビネース発現遺伝子改変非ヒト動物とを掛け合わせて作製した、コンディショナルPD-L2遺伝子改変非ヒト動物である。
 前記骨髄系細胞としては、例えば、巨核球、顆粒球(好中球、好酸球、好塩基球)、単球、マクロファージ、赤血球、樹状細胞、ランゲルハンス細胞および造血幹細胞から生まれてこれらの細胞に分化する前駆細胞(骨髄系前駆細胞)が挙げられるが、樹状細胞、単球、マクロファージ、好中球、またはランゲルハンス細胞が好ましい。
(リコンビネース発現遺伝子改変非ヒト動物)
 前記コンディショナルPD-L2遺伝子改変非ヒト動物において、PD-L2遺伝子の発現が抑制または喪失される組織および時期は、掛け合わせる遺伝子改変非ヒト動物のリコンビネースタンパク質発現の組織特異性および時期特異性により選択することができる。時期特異的または組織特異的にリコンビネースタンパク質を発現するリコンビネース発現遺伝子改変非ヒト動物は、種々のものが報告され、実験の目的に応じて選択することができるし、前述した遺伝子改変非ヒト動物の作製方法により新たに作製してもよい。
 リコンビネース発現遺伝子改変非ヒト動物は、好ましくは骨髄系細胞特異的であり、より好ましくは、樹状細胞特異的、単球、マクロファージ、および好中球特異的、またはランゲルハンス細胞特異的である。
(遺伝子改変非ヒト動物の掛け合わせ)
 ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域の一部または全部を挟むリコンビネース標的配列が導入された、遺伝子改変非ヒト動物;ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域の一部または全部を挟むリコンビネース標的配列が導入された、遺伝子改変非ヒト動物;ゲノム中のPD-L2遺伝子またはPD-L2遺伝子の発現調節領域の一部または全部を挟むリコンビネース標的配列が導入された、遺伝子改変非ヒト動物;コンディショナルPD-1遺伝子改変非ヒト動物;コンディショナルPD-L1遺伝子改変非ヒト動物;およびコンディショナルPD-L2遺伝子改変非ヒト動物からなる群から選ばれる少なくとも2つを掛け合わせることにより、PD-L1、PD-L2およびPD-1の発現を、組織特異的、時期特異的に抑制または喪失させたマウスを作製することができる。これらのマウスはPD-L1、PD-L2/PD-1シグナル伝達系の解析に非常に有用である。
 PD-1を受容体とするリガンドは、PD-L1およびPD-L2の2つであるが、免疫チェックポイント阻害薬として汎用されている抗体は、抗PD-1抗体と抗PD-L1抗体のみである。PD-1、PD-L1、およびPD-L2の機能は不明なことも多いため、抗PD-1抗体による副作用がPD-1/PD-L1シグナル伝達系の阻害によるものであるのか、PD-1/PD-L1およびL2シグナル伝達系の阻害によるものであるのか、PD-1/PD-L2の阻害によるものであるのかはわからない場合がある。
 本明細書に開示されたコンディショナルPD-1遺伝子改変非ヒト動物、コンディショナルPD-L1遺伝子改変非ヒト動物、およびコンディショナルPD-L2遺伝子改変非ヒト動物からなる群から選ばれる少なくとも2つの表現型を比較すると、PD-1、PD-L1、またはPD-L2の機能解明に有用である。例えば、コンディショナルPD-1遺伝子改変非ヒト動物の表現型が、コンディショナルPD-L1遺伝子改変非ヒト動物の表現型と同じであるが、コンディショナルPD-L2遺伝子改変非ヒト動物の表現型とは異なる場合、抗PD-1抗体による副作用は、PD-1/PD-L1シグナル伝達系の阻害によるものであると判断することができる。また、コンディショナルPD-1遺伝子改変非ヒト動物の表現型が、コンディショナルPD-L1遺伝子改変非ヒト動物の表現型と、コンディショナルPD-L2遺伝子改変非ヒト動物の表現型とを合計したものである場合、抗PD-1抗体による副作用は、PD-1/PD-L1およびL2シグナル伝達系の阻害によるものであると判断することができる。このようにPD-1、PD-L1、およびPD-L2の機能が解明されると、副作用がより少ない抗体を免疫チェックポイント阻害薬として選択しやすくなる。
 次に本発明について実施例を示してさらに詳細に説明するが、本発明はこれらによって限定されるものではない。
 ヒトに関する試験は、筑波大学付属病院内倫理委員会の承認に従い、全ての患者から書面によるインフォームドコンセントを得た上で行われた。患者の臨床データは、病歴を後ろ向きにレビューした。また、動物実験は、筑波大学動物実験委員会によって承認され、筑波大学の実験動物の管理と使用に関するガイドに従って実施した。マウスは、特定病原体不在下で飼育した。
〔参考例〕尋常性乾癬と抗PD-1抗体誘導性乾癬様皮膚炎の比較
 2012年から2018年の間に筑波大学病院および水戸済生会総合病院を受診した患者のうち、抗PD-1抗体誘導性乾癬様皮膚炎(Anti-PD-1 antibody-induced psoriasis-like dermatitis)を発症したメラノーマ患者7名と尋常性乾癬(Psoriasis vulgaris)の患者6名を対象とした。
<外観による所見>
 代表的な患者の背部と下腿の写真を撮影した。結果を図1に示す。抗PD-1抗体誘導性乾癬様皮膚炎(Anti-PD-1 antibody-induced psoriasis-like dermatitis)、および尋常性乾癬(Psoriasis
 vulgaris)のどちらの患者にも、厚い銀白色の鱗屑を伴った角化性紅斑が認められる。
<病理組織学的所見>
 患者の紅斑から皮膚生検を行い、ホルマリン固定したパラフィン切片を作製した。2μm厚の組織切片を作製し、HE(ヘマトキシリン、エオジン)染色を行なった。また、免疫組織染色は、抗ヒトCD8モノクローナル抗体(C8/144B、ニチレイバイオサイエンス社製)、または抗ヒトCD4モノクローナル抗体(4B12、ニチレイバイオサイエンス社製)を用い、自動免疫染色装置(ニチレイバイオサイエンス社製)により、製品プロトコルに従って行った。染色した標本は顕微鏡(オリンパス社製)を用いて観察、および写真撮影を行った。抗ヒトCD8モノクローナル抗体による免疫染色画像において、一切片中の表皮に浸潤している細胞の数をカウントし、表皮内浸潤CD8陽性細胞数とした。抗ヒトCD4モノクローナル抗体による免疫染色画像においても同様にカウントし、表皮内浸潤CD4陽性細胞数とした。表皮内浸潤CD8陽性細胞数を表皮内浸潤CD4陽性細胞数で除した値をCD8/CD4 ratioとした。有意差検定は、マン・ホイットニーのU検定を用いてノンパラメトリックな両側検定を行い、**:P<0.01で示した。
 結果を図2に示す。尋常性乾癬のHE染色像には、表皮の肥厚、錯角化および過角化が認められ、角層下には好中球による微小膿瘍が認められた。また、顆粒層は消失していた。有棘層は肥厚し、表皮突起は真皮に向かって規則的に棍棒状に延長していた。抗PD-1抗体誘導性乾癬様皮膚炎でも同様の病理組織学的所見が認められた。また、抗PD-1抗体誘導性乾癬様皮膚炎においては、尋常性乾癬に比べて、CD8陽性細胞が表皮内に多く観察された。
 図3より、抗PD-1抗体誘導性乾癬様皮膚炎でのCD8/CD4 ratioは尋常性乾癬に比べて有意に多かった。抗PD-1抗体誘導性乾癬様皮膚炎では、CD8陽性細胞の表皮内浸潤が亢進していることが明らかになった。
<血清中のIL-6濃度>
 2012年から2019年の間に筑波大学病院において、抗PD-1抗体投与の治療を受けたメラノーマ患者19名から、抗PD-1抗体投与前後において血清を採取し、測定まで-20℃にて保存した。血清中IL-6濃度は、製品プロトコルに従い、MILLIPLEX MAP Kit(Merck Millipore社製)を用い、Bio-Plex Luminex 200 multiplex assay system(Bio-Rad社製)で測定した。抗PD-1抗体投与12ヶ月後または抗PD-1抗体投与中止時までに発症した免疫関連副作用の有無によって、患者を3群に分類した。すなわち、乾癬様皮膚炎を発症した患者5名をPsoriasis-like dermatitis、乾癬様皮膚炎以外の免疫関連副作用を発症した患者7名をOther irAEs、免疫関連副作用が観察されなかった患者7名をNo irAEとした。乾癬様皮膚炎以外の免疫関連副作用を発症した患者7名の内訳は、白斑2例、神経障害1例、肝障害1例、甲状腺炎1例、下垂体機能低下症1例、腸炎1例であった。
 結果を図4に示す。乾癬様皮膚炎発症患者は、抗PD-1抗体投与後に投与前よりも血清中IL-6濃度が上昇する傾向にあった。乾癬様皮膚炎以外の免疫関連副作用発症患者でも同様に、抗PD-1抗体投与後に投与前よりも血清中IL-6濃度が上昇する傾向にあった。一方、免疫関連副作用なしの患者では、抗PD-1抗体投与後に投与前よりも血清中IL-6濃度変化が減少する傾向にあった。
〔実施例1〕PD-1コンベンショナルノックアウトマウスを用いた乾癬様皮膚炎モデル
<皮膚炎の惹起>
 PD-1コンベンショナルノックアウトマウス(京都大学の本庶佑教授より供与、PD-1-/-マウス、またはPD-1-KOマウスともいう)と、野生型マウス(C57BL/6J、Charles River Japan社より購入、WTマウスともいう)とを10匹ずつ用意し、それぞれ5匹ずつイミキモド(IMQ)群とVehicle群の2群に分けた。マウスの背部を剃毛し、イミキモド群のマウスにはイミキモド62.5mg相当量の3.5%イミキモドクリーム、Vehicle群のマウスにはコントロールVehicleクリーム(Vanicream、Pharmaceutical Specialties社製)を1日1回連続5日間または7日間背部および両耳に塗布した。3.5%イミキモドクリームは、5%イミキモドクリーム(ベセルナクリーム、持田製薬株式会社製)をコントロールVehicleクリームで希釈して調製した。塗布開始日を塗布1日目とした。
 Vehicle群の野生型マウス、イミキモド群のWTマウス、イミキモド群のPD-1-/-マウスの塗布7日目の背部の写真を図5に示す。イミキモド群のWTマウスでは、軽度の紅斑および鱗屑が観察された。イミキモド群のPD-1-/-マウスでは高度の紅斑および鱗屑が観察された。
<Ear Swelling>
 塗布開始7日目にマイクロメーター(株式会社ミツトヨ製)を用いてマウス耳の厚さを測定し、Ear Swelling(μm)とした。各群の有意差検定は、2元配置分散分析で行い、**:P<0.01、****:P<0.0001で示した。
 WTマウスとPD-1-/-マウスのイミキモド塗布による耳の厚さの変化を図6左に示した。PD-1-/-マウスの方がWTマウスよりも有意に耳が厚くなった。
<皮膚における炎症の重症度>
 背部皮膚における炎症の重症度は、ヒト乾癬の診断に利用されているPASI(Psoriasis Area and Severity Index)を模した客観的な方法で評価した。具体的には、背部の紅斑、鱗屑および肥厚の3項目をそれぞれ独立して、0:なし、1:軽度、2:中等度、3:高度、4:きわめて高度の5段階でスコア化し、3項目の合計スコア(0~12まで)を算出した。各群の有意差検定は、2元配置分散分析で行い、**:P<0.01、****:P<0.0001で示した。
 WTマウスとPD-1-/-マウスのイミキモド塗布による炎症の重症度(PASI Score)の変化を図6右に示した。PD-1-/-マウスの方がWTマウスよりも有意に皮膚における炎症が重症であった。
<病理組織学的所見>
 塗布開始7日目にマウス耳の皮膚を採取し、ホルマリン固定後、パラフィン包埋した。4μm厚の組織切片を作製し、HE(ヘマトキシリン、エオジン)染色を行なって、組織標本を作製した。染色した組織標本は顕微鏡(ニコン社製)を用いて観察、および写真撮影を行った。
 HE染色したVehicle群およびイミキモド群のWTマウスとPD-1-/-マウスの皮膚組織標本を図7に示す。Vehicle群のWTマウスとPD-1-/-マウスとでは、明確な差は見られなかった。イミキモド群では、WTマウス、PD-1-/-マウス共に表皮の肥厚、不全角化および過角化が認められ、角層直下には好中球による微小膿瘍が認められた。PD-1-/-マウスにおける表皮の肥厚、不全角化および過角化、好中球による微小膿瘍の程度は、WTに比べて顕著に悪かった。
<表皮の厚さ>
 上述のHE染色した組織標本の画像を用いて表皮厚を測定し、Epidermal thickness(表皮の厚さ、μm)とした。各群5匹ずつのマウスから、1匹あたり1標本作製し、1標本あたり5点の厚さを測定し平均値を算出した。有意差検定は、マン・ホイットニーのU検定を用いてノンパラメトリックな両側検定を行い、**:P<0.01で示した。独立した実験を3度行い、代表的なデータを示した。
 Vehicle群およびイミキモド群のWTマウスとPD-1-/-マウスの表皮の厚さを図8左に示す。WTマウス、PD-1-/-マウス共に、イミキモド群の方がVehicle群よりも表皮が有意に厚かった。また、イミキモド群においては、PD-1-/-マウスの方がWTマウスよりも表皮が有意に厚かった。
<微小膿瘍>
 上述のHE染色した組織標本を顕微鏡で観察して、微小膿瘍の数をカウントした。各群5匹ずつのマウスを用いてマウス1匹の片耳から1標本作製して微小膿瘍の数をカウントし、Number of microabscessとした。有意差検定は、マン・ホイットニーのU検定を用いてノンパラメトリックな両側検定を行い、**:P<0.01で示した。独立した実験を3度行い、代表的なデータを示した。
 イミキモド群のWTマウスとPD-1-/-マウスの微小膿瘍の数を図8右に示す。PD-1-/-マウスの方がWTマウスよりも有意に微小膿瘍の数が多かった。
<サイトカインのmRNA発現量>
 サイトカインのmRNAの発現量を定量RT-PCRにより定量した。Vehicle群およびイミキモド群のWTマウスとPD-1-/-マウス(各8匹ずつ)から耳を採取し、Trizol Reagent(Invitrogen社製)を用いて、total RNAを抽出した。NanoDrop ND-1000(peqLab Biotechnologie GmbH社製)を用いて、RNAサンプルを定量し、またOD260/230とOD260/280がそれぞれ1.8、1.6を超えていることを確認した。Complementary DNA(cDNA)は、High-Capacity cDNA Reverse Transcription Kit(Thermo Fisher社製)を用いて合成した。mRNA発現量は、PrimeTimeTM Gene Expression Master Mixと、Prime TimeTM qPCR predesigned primers(Integrated DNA Technologies社製)を用いて、QuantStudio 5 Real-Time PCR Systems(Applied Biosystems社製)により、cDNAをPCRで増幅することにより測定した。PCRは、triplicateで行った。増幅産物は、比較CT法により定量し、GAPDH mRNAの発現量で標準化した。有意差検定は、マン・ホイットニーのU検定を用いてノンパラメトリックな両側検定を行い、*:P<0.05、**:P<0.01、***:P<0.001で示した。用いたPrime TimeTM qPCR predesigned primersのAssay NO.は、以下の通りである。
IL-6:Mm.PT.58.10005566
IL-23a:Mm.PT.58.10594618.g
IL-17a:Mm.PT.58.6531092
Ly6g:Mm.PT.58.30498043
GAPDH:Mm.PT.39a.1
 乾癬への関与が報告されているサイトカイン(IL-6、IL-23a、IL-17a)および好中球表面マーカーであるLy6gのmRNAの定量結果を図9に示す。IL-23aおよびIL-17aのmRNA発現量は、WTマウス、PD-1-/-マウスのどちらでもイミキモド塗布によって顕著に増加した。一方、IL-6のmRNA発現量は、WTマウスではイミキモド塗布によっては変化せず、PD-1-/-マウスにおいてのみイミキモド塗布によって顕著に増加していた。PD-1-/-マウスにおいて発症した乾癬様皮膚炎においてのみ、IL-6の上昇が観察されたことから、乾癬様皮膚炎におけるIL-6の産生にはPD-1が強く関与していることが明らかになった。Ly6gのmRNA発現量はWTマウス、PD-1-/-マウスのどちらでもVehicle群では検出限界以下であったが、イミキモド塗布により有意に増加した。
<免疫染色>
 塗布開始7日目にマウス耳の皮膚を採取し、ホルマリン固定後、パラフィン包埋し、4μm厚の組織切片を作製した。免疫組織染色は、一次抗体として抗CD8a ratモノクローナル抗体(clone:4SM15、eBioscience社製、1:400で希釈)、蛍光標識二次抗体としてAlexa FluorTM 555-labeled goat anti-rat IgG(Abcam社製)、核の検出は4',6-diamidino-2-phenylindole(DAPI)を用いて常法により行った。蛍光顕微鏡(BZ-X700、Keyence社製)を用い、倍率400倍にて観察した。
 イミキモド群のWTマウスおよびPD-1-/-マウスでの免疫染色結果を図10に示す。CD8陽性T細胞を矢頭で示す。WTマウスに比べ、PD-1-/-マウスではCD8陽性T細胞が表皮内に多く観察された。
<皮膚に浸潤したCD8陽性T細胞数>
 塗布開始7日目にマウス耳の皮膚を採取し、ホルマリン固定後、パラフィン包埋し、4μm厚の組織切片を作製した。免疫組織染色は、一次抗体として、抗CD3 rabbitモノクローナル抗体(clone:SP7、Abcam社製、1:100で希釈)および抗CD8a ratモノクローナル抗体(clone:4SM15、eBioscience社製、1:400で希釈)、蛍光標識二次抗体としてAlexa FluorTM 488-labeled goat anti-rabbit IgG(Abcam社製)およびAlexa FluorTM 555-labeled goat anti-rat IgG(Abcam社製)、核の検出は4',6-diamidino-2-phenylindole(DAPI)を用いて常法により行った。蛍光顕微鏡(BZ-X700、Keyence社製)を用い、倍率400倍にて観察し、CD8陽性かつCD3陽性である細胞をCD8陽性T細胞とし、皮膚に浸潤した数を表皮、真皮にわけてカウントした。表皮(Epidermis)中のCD8陽性T細胞数と真皮(Dermis)中のCD8陽性T細胞数を合計した数をTotalとした。免疫染色画像において、一切片あたりの、皮膚に浸潤している細胞の数をカウントし、CD8陽性T細胞数とした。各群5匹のマウスから、一匹あたり2枚の組織切片を作製した。有意差検定は、マン・ホイットニーのU検定を用いてノンパラメトリックな両側検定を行い、**:P<0.01で示した。
 表皮または真皮に浸潤したCD8陽性T細胞の数を図11に示す。PD-1-/-マウスの表皮に浸潤したCD8陽性T細胞は、WTマウスよりも有意に多かった。一方、真皮に浸潤したCD8陽性T細胞数は、WTマウスとPD-1-/-マウスとで差がなかった。Totalでは、PD-1-/-マウスの浸潤CD8陽性T細胞は、WTマウスよりも有意に多かった。
<表皮と真皮におけるCD8、IFN-γ、CXCL9のmRNA発現量>
 塗布5日目のマウス(各群5匹ずつ)の耳の皮膚を0.25%トリプシン溶液(富士フイルム和光純薬株式会社製)で37℃にて40分間処理し、表皮と真皮とに分離した。分離した真皮は、コラジェナーゼ(Liberase TL Research Grade、ロシュ・ダイアグノスティックス社製)で37℃にて30分間処理し、得られた細胞群をDermal cellとした。分離した表皮は、Ca2+およびMg2+を含まないリン酸緩衝生理食塩水で2回洗浄し、メッシュサイズ70μmのセルストレイナーを通した後、CD45 MicroBeads(Miltenyi Biotec社製)を用いたMACSTM cell separation technologyにより細胞群をソートした。得られたCD45陰性の細胞群を「Keratinocyte」とし、CD45陰性の細胞群を「Epidermal CD45+cell」とした。フローサイトメトリーで解析した結果、KeratinocyteのCD45陽性細胞含有率は1%未満であり、Epidermal CD45+cellのCD45陽性細胞含有率は95%より多かった。上記の手順の概念図を図12に示す。
 Keratinocyte、Epidermal CD45+cell、Dermal cellの3つの細胞群におけるCD8、IFN-γ、CXCL9のmRNA発現量を定量RT-PCRにより定量した。定量RT-PCRは前述のように行い、用いたPrime TimeTM qPCR predesigned primersのAssay NO.は、以下の通りである。
IFN-γ:Mm.PT.58.41769240
CD8a:Mm.PT.58.29971442
CXCL9:Mm.PT.58.5726745
 結果を図13に示した。CD8aのmRNA発現量は、Dermal cellにおいては、WTマウスとPD-1-/-マウスとの間で差はなかったが、Epidermal CD45+cellにおいてはPD-1-/-マウスの方がWTマウスよりも有意に多かった。IFN-γのmRNA発現量は、Dermal cellにおいては、WTマウスとPD-1-/-マウスとの間で差はなかったが、Epidermal CD45+cellにおいてはPD-1-/-マウスの方がWTマウスよりも有意に多かった。KeratinocyteにおけるCXCL9のmRNA発現量は、PD-1-/-マウスの方がWTマウスよりも有意に多かった。すなわち、PD-1-/-マウスでは、Epidermal CD45+cellにおけるCD8aおよびIFN-γ、KeratinocyteにおけるCXCL9の産生が亢進していることが明らかになった。
 〔実施例2〕CD8陽性T細胞特異的PD-1コンディショナルノックアウトマウスの作製
<PD-1fl/flマウスの作製>
 野生型マウス(WT)C57BL/6Jは、Charles River Japanより購入した。
(デザイン)
 筑波大学実験動物資源センターのCRISPR/Cas9システムを用いて、PD-1遺伝子の前後に二つのloxP配列(5'-ATAACTTCGTATAGCATACATTATACGAAGTTAT-3':配列番号1)を挿入し、遺伝子組み換えマウスを作製した(PD-1 floxedマウス、またはPD-1fl/flマウスという)。概念図を図14に示す。
 図15に野生型マウスのゲノムにおけるPD-1遺伝子(Pdcd1)のエクソン(boxで示す)の位置とCRISPR-Casシステムのターゲット配列、PAM配列の検索結果を示す。マウスPdcd1は1番染色体上にあり、5個のエクソンから構成される。1番目のエクソンにPD-1タンパク質の開始コドンが存在しているので、2番目、3番目、および4番目のエクソンをCre/loxPシステムを利用して脱落させることにより、完全なPD-1タンパク質が産生されないようにするため、エクソン2-4を含む領域の両端にCRISPR-Casシステムを用いてloxP配列を挿入するように設計した。具体的には、ガイドRNA(gRNA)とCas9発現カセットを1つのプラスミド内に含むpX330ベクター(CRISPR/Cas9ベクター)を受精卵に導入して、目的のsgRNAとCas9 mRNAを同時に発現させてマウスPD-1ゲノムを目的の位置で切断し、さらにloxP配列を含むpflox platform(ドナーベクター)をドナーDNAとして併せて受精卵に導入することで切断部位にloxP配列が挿入されるようにした。
(ドナーベクターの作製)
 エクソン2-4を含む領域の5'側のCRISPR標的サイトをLeft CRISPRサイト、3'側のCRISPR標的サイトをright CRISPRサイトとし、Left CRISPR予測切断部位からその上流(5’)側1395bpまでを5'アーム、right CRISPR予測切断部位からその下流(3’)側1462bpまでを3'アーム、Left CRISPR予測切断部位とright CRISPR予測切断部位の間2685bpをセントラルアームとした。Left CRISPR標的サイトとright CRISPR標的サイトの配列(L target sequence:配列番号3、R target sequence:配列番号4)を図15に示す。オフターゲットを切断するリスクを低減するため、左右のターゲット配列およびPAMは、CRISPRdirect(https://crispr.dbcls.jp/)を用いて検索し、20塩基のターゲット配列がPdcd-1ゲノム内に一か所しかないことを確認した。
 まず、以下の手順により、エクソン2-4の外側にloxP配列を含み、5'アーム、セントラルアーム、3'アームの配列を含むドナーベクターを作製した。まず、C57BL/6JマウスのゲノムDNA(図16、配列番号5)をテンプレートとし、Step1のプライマーを用いて常法に従いPCRを行った。図16中の5'arm(細破線)が5'アームのテンプレートとして使用されたB6Jゲノムの配列、Central arm(粗破線)がセントラルアームのテンプレートとしてB6Jゲノムの使用された配列、3'arm(ゴシック体)が3'アームのテンプレートとして使用されたB6Jゲノムの配列である。
 得られたPCR産物とpbluescriptを基盤に独自に作製したベクター(pflox platform(図17、配列番号6)とをIn-Fusionした(Step1、図18)。なお、図18、図19、図20における左向きの矢頭はloxP配列を示す。次に、Step2のプライマーを用いてPCRを行い、得られたPCR産物とStep1の産物とをIn-Fusionした(Step2、図19)。さらにStep3のプライマーを用いてPCRを行い、得られたPCR産物とStep2の産物とをIn-Fusionした(Step3、図20)。この産物をpflox-PD1とする。用いたプライマーを表1に示す。
Figure JPOXMLDOC01-appb-T000001
(CRISPR/Cas9ベクターの作製)
 pX330-U6-Chimeric_BB-CBh-hSpCas9ベクター(pX330ともいう。Addgene社製)に、左右のターゲット配列(PAMを含まない20mer、図15、L target sequence:配列番号13、R target sequence:配列番号14)をそれぞれ組み込み、pX330-PD-1-LとpX330-PD-1-Rとした。
 具体的には、ターゲット配列にBbsIで切断される配列を付加したオリゴDNAとそれに相補的なオリゴDNAを合成した。この2種のオリゴDNAをアニーリングさせた後、二本鎖DNAとしてBbsIを用いてpX330に挿入した。図21に模式図を示す。
(マウス受精卵へのプラスミドの導入)
 pflox-PD1、pX330-PD-1-LおよびpX330-PD-1-RをC57BL/6受精卵前核に常法によりマイクロインジェクションした。受精卵を偽妊娠マウスの卵管内へ移植し、ファウンダーマウスを誕生させた。このファウンダーマウスをC57BL6マウスと交配することにより、ヘテロ接合型PD-1fl/+マウスを作製した。さらにこのヘテロ接合型PD-1fl/+マウス同士の交配により、ホモ接合型PD-1fl/flマウスを作製した。
 マウスの尾部組織の一部より精製したゲノムDNAに対して以下のプライマー(配列は図22に記載)を用いて常法に従いPCRを行うことにより、ジェノタイピングを行った。
PD1 Genotype RiF:配列番号15
PD1 Genotype RiR:配列番号16
PD1 Genotype LeF:配列番号17
PD1 Genotype LeR:配列番号18
 野生型マウス(WT)およびPD-1 floxedマウス(flox)から得られたゲノムDNAを制限酵素処理なしの場合(intact)および制限酵素処理した場合(EcoRV、AscI)に得られるPCR産物のサイズを図22に示す。得られたPCR産物のサイズによって、野生型マウス(WT)またはPD-1 floxedマウスと判断した。
 PD-1 floxedマウスのゲノムにおけるPdcd1のDNA配列を図23に示す(配列番号19)。また、野生型(WT)のPD-1のオープンリーディングフレーム(ORF)の遺伝子配列(配列番号20)とそれに対応するアミノ酸配列(配列番号21)、およびPD-1の2番目、3番目、および4番目のエクソンがCre/loxPシステムにより脱落した後に予測されるPD-1 floxedマウスのオープンリーディングフレーム(ORF)の遺伝子配列(配列番号22)とそれに対応するアミノ酸配列(配列番号23)を図24に示す。
 作製したPD-1fl/flマウスは正常に発育し、loxP配列の挿入によりPD-1遺伝子の調節は明らかに妨害されないことが示された。
<PD-1fl/flCD8creマウスの作製>
 野生型マウスと戻し交配させたヘテロ接合型PD-1fl/+マウスおよびヘテロ接合型CD8creマウス(C57BL/6-Tg(Cd8a-cre)1tan/J、Jackson Laboratoriesより入手)を交配して、二重ヘテロ接合型PD-1fl/+CD8creマウスを作製した。CD8creマウスは、遺伝子改変により、CD8のプロモーターの下流にCreが導入されている。PD-1fl/+CD8creマウスとPD-1fl/flマウス、およびCD8creマウスを交配し、コンディショナルPD-1ホモ接合マウス(PD-1fl/flCD8creマウス、PD-1コンディショナルノックアウトマウス、PD-1-cKOマウスとも言う)を得た。概念図を図25に示す。また、PD-1ヘテロ接合型(PD-1fl/+CD8cre)同腹子も得た(Littermate Ctrl)。
 CD8cre、PD-1-/-、およびPD-1flのジェノタイピングに使用したプライマー配列を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 PD-1fl/flCD8creマウスのリンパ節において、PD-1遺伝子発現がCD8陽性T細胞集団(CD45+CD3+CD8+細胞)特異的に完全に消失していることを抗PD-1抗体(29F.1A12、BioLegend社製)を用いたフローサイトメトリーにより確認した。
〔実施例3〕CD8陽性T細胞特異的PD-1コンディショナルノックアウトマウスを用いた乾癬様皮膚炎モデル
<皮膚炎の惹起>
 実施例1と同様にして、PD-1fl/flCD8creマウス(PD-1-cKO)5匹およびPD-1fl/+CD8creマウス(Littermate Ctrl)5匹にイミキモドを塗布した。
 塗布7日目の背部の写真を図26に示す。イミキモドを塗布したLittermate Ctrlでは、軽度の紅斑および鱗屑が観察された。イミキモドを塗布したPD-1-cKOでは高度の紅斑および鱗屑が観察された。
<Ear Swelling>
 実施例1と同様にして評価を行った。
 Littermate CtrlとのPD-1-cKOのイミキモド塗布による耳の厚さの変化を図27左に示した。PD-1-cKOの方がLittermate Ctrlよりも有意に耳が厚くなった。
<皮膚における炎症の重症度>
 実施例1と同様にして評価を行った。
 Littermate CtrlとPD-1-cKOのイミキモド塗布による炎症の重症度(PASI Score)の変化を図27右に示した。PD-1-cKOの方がLittermate Ctrlよりも有意に皮膚における炎症が重症であった。
<病理組織学的所見>
 実施例1と同様にして評価を行った。
 Littermate CtrlとPD-1-cKOのHE染色した皮膚組織標本を図28左に示す。PD-1-cKOで認められた表皮の肥厚、不全角化および過角化、角層直下の好中球による微小膿瘍は、Littermate Ctrlに比べて顕著であった。
<表皮の厚さ>
 実施例1と同様にして評価を行った。
 Littermate CtrlとPD-1-cKOの表皮の厚さを図28右に示す。PD-1-cKOの方がLittermate Ctrlよりも表皮が有意に厚かった
<CD8aおよびIFN-γのmRNA発現量>
 Littermate CtrlとPD-1-cKOの耳を用い、実施例1の「サイトカインのmRNA発現量」と同様にしてCD8aおよびIFN-γのmRNA発現量を調べた。用いたPrime TimeTM qPCR predesigned primersのAssay NO.は、実施例1の「表皮と真皮におけるCD8、IFN-γ、CXCL9のmRNA発現量」の項に記載した通りである。
 結果を図29に示す。CD8aおよびIFN-γのmRNA発現量は、PD-1-cKOの方がLittermate Ctrlよりも有意に多かった。
<リンパ節中のCD8陽性細胞>
 Littermate CtrlとPD-1-cKOから採取した流入領域リンパ節をメッシュ上ですり潰し、ピペッティングで個細胞化し、フィルターを通して単一細胞の懸濁液を調製した。Zombie fixable viability kit(BioLegend社製)を用いて染色を行い、死細胞を除いた。生細胞は、FACS staining buffer(1% BSA、5mM EDTAを含むPBS)で希釈した抗CD45抗体(30-F11、BioLegend社製)、抗CD8抗体(53-6.7、BioLegend社製)、および抗CD3e抗体(145-2C11、BioLegend社製)と共にインキュベーションした。フローサイトメーターとしてGallios(Beckman-Coulter社製)を用い、データ解析はFlowJo software(v7.6.5)で行い、CD45陽性、CD3陽性、かつCD8陽性の細胞集団をCD8陽性T細胞として細胞数をカウントし、分離した。なお、抗FcγIII/II receptor抗体(BD社製)、抗CD4抗体(Gk1.5、BioLegend社製)、抗B220抗体(RA3-6B2、eBioscience社製)を用いて同様にインキュベーションし、FcγIII/II receptor陽性、CD4陽性、またはB220陽性である細胞は除外した。また、抗PD-1抗体(29F.1A12、BioLegend社製)を用いてLittermate CtrlのCD8陽性T細胞上におけるPD-1発現を確認した。
 リンパ節中のCD8陽性細胞数を図30に示す。リンパ節中のCD8陽性細胞数は、PD-1-cKOの方がLittermate Ctrlよりも有意に多かった。
<細胞内のIFN-γとGzmBの発現量>
 Littermate CtrlとPD-1-cKOの流入領域リンパ節から前述の通りに調製したリンパ節細胞の懸濁液を用いた。終濃度25ng/mlPMA、終濃度1μg/ml Ionomycinを加えたRPMI 1640培地(10%fetal bovine serum、2mM L-glutamine、100U/ml penicillin、100μg/ml streptomycin、monensin(Golgi Stop、BD社製)を添加)で細胞を刺激した。5時間インキュベーションした後、抗CD8抗体(53-6.7、BioLegend社製)、抗CD3e抗体(145-2C11、BioLegend社製)、抗CD45抗体(30-F11、BioLegend社製)を用いて細胞表面のCD8、CD3e、およびCD45の染色を行った後、Fix/Perm Kit(BD社製)を用いて抗IFN-γ抗体(XMG1.2、BD社製)、抗Gzm B抗体(NGZB、eBioscience社製)により、細胞内サイトカインの染色を行った。Fluorescence-Minus-One Controlをネガティブコントロールとして用いた。フローサイトメーターとしてGallios(Beckman-Coulter社製)を用い、データ解析はFlowJo software(v7.6.5)で行った。CD45陽性、CD3e陽性かつCD8陽性の生細胞をCD8陽性T細胞とした。
 CD8陽性T細胞のうち、IFN-γまたはGzm Bを発現している細胞のヒストグラムを図31左に示す。IFN-γの場合、PD-1-cKO由来のCD8陽性T細胞は、Littermate Ctrlおよびネガティブコントロールに比べてピークが右にずれており、細胞内のIFN-γ量が多い細胞がPD-1-cKOに多いことが明らかになった。また、Gzm Bについても、PD-1-cKO由来のCD8陽性T細胞は、Littermate Ctrlおよびネガティブコントロールに比べてピークが右にずれており、細胞内のGzm B量の多い細胞がPD-1-cKOに多いことが明らかになった。図31右は、蛍光強度の中央値(MFI)を示す。IFN-γについて、MFIはPD-1-cKOの方がLittermate Ctrlよりも有意に大きかった。すなわち、細胞内のIFN-γ量は、PD-1-cKOの方がLittermate Ctrlよりも有意に多いことが明らかになった。また、Gzm Bについても、MFIはPD-1-cKOの方がLittermate Ctrlよりも有意に大きく、細胞内のGzm Bは、PD-1-cKOの方がLittermate Ctrlよりも有意に多いことが明らかになった。
 〔実施例4〕コンベンショナルノックアウトマウスを用いた乾癬様皮膚炎モデルへの抗IL-6R抗体の投与
<皮膚炎の惹起と抗IL-6R抗体の投与>
 PD-1コンベンショナルノックアウトマウス(PD-1-/-)と、野生型マウス(WT)を10匹ずつ準備した。実施例1と同様にして全てのマウスにイミキモドを塗布し、皮膚炎を惹起した。イミキモド塗布開始の前日である塗布0日目に抗IL-6R抗体(MR16-1、中外製薬株式会社製)をマウス一匹あたり2mg静脈注射し、確実に注射されたと確認できたマウスで解析を実施した。この抗体は、マウスIL-6Rのα鎖に対するラットIgG1モノクローナル抗体である。コントロールとしてはIsotype IgG control(MP Biomedicals社製)を投与した。
 コントロール(IgG Ctrl)を投与したWTマウス、コントロール(IgG Ctrl)を投与したPD-1-/-マウス、および抗IL-6R抗体(MR16-1)を投与したPD-1-/-マウスの塗布7日目の背部の写真を図32に示す。コントロールのWTマウスでは、軽度の紅斑および鱗屑が観察された。コントロールのPD-1-/-マウスでは高度の紅斑および鱗屑が観察された。一方、抗IL-6R抗体投与のPD-1-/-マウスの紅斑および鱗屑は軽度なものであった。PD-1依存的な皮膚炎の悪化は抗IL-6R抗体投与により軽減されることが明らかになった。
<Ear Swelling>
 実施例1と同様にして、測定した。
 コントロールのWTマウス、コントロールのPD-1-/-マウス、抗IL-6R抗体投与のPD-1-/-マウスのイミキモド塗布による耳の厚さの変化を図33左に示す。コントロールのPD-1-/-マウスでは有意に耳が厚くなったが、抗IL-6R抗体投与した場合は、コントロールのWTマウスと同程度の耳の厚さであった。PD-1依存的な耳の肥厚は、抗IL-6R抗体投与により軽減されることが明らかになった。
<皮膚における炎症の重症度>
 実施例1と同様にして、測定した。
 コントロールのWTマウス、コントロールのPD-1-/-マウス、抗IL-6R抗体投与のPD-1-/-マウスのイミキモド塗布による炎症の重症度(PASI Score)の変化を図33右に示した。コントロールのPD-1-/-マウスでは有意に炎症が重症であったが、抗IL-6R抗体投与した場合は、コントロールのWTマウスと同程度の重症度であった。PD-1依存的な皮膚の炎症の悪化は、抗IL-6R抗体投与により軽減されることが明らかになった。
<病理組織学的所見>
 実施例1と同様にして行った。
 コントロールのWTマウス、コントロールのPD-1-/-マウス、抗IL-6R抗体投与のPD-1-/-マウスのHE染色した皮膚組織標本を図34に示す。コントロールのPD-1-/-マウスでは表皮の肥厚、不全角化および過角化が認められ、角層直下には好中球による微小膿瘍が認められたが、抗IL-6R抗体投与した場合のこれらの所見は、コントロールのWTマウスと同程度に軽減していた。PD-1依存的な表皮の肥厚、不全角化および過角化、好中球による微小膿瘍等は、抗IL-6R抗体投与により軽減されることが明らかになった。
<表皮の厚さ>
 実施例1と同様にして行った。コントロールのWTマウス、コントロールのPD-1-/-マウス、抗IL-6R抗体投与のPD-1-/-マウスの表皮の厚さを図35左に示す。コントロールのPD-1-/-マウスではWTマウスに比べて有意に表皮が厚かったが、抗IL-6R抗体投与した場合は、コントロールのWTマウスと同程度の厚さであった。PD-1依存的な表皮の肥厚は、抗IL-6R抗体投与により軽減されることが明らかになった。
<微小膿瘍>
 実施例1と同様にして行った。
 コントロールのWTマウス、コントロールのPD-1-/-マウス、抗IL-6R抗体投与のPD-1-/-マウスの微小膿瘍の数を図35右に示す。コントロールのPD-1-/-マウスではWTマウスに比べて有意に微小膿瘍が多かったが、抗IL-6R抗体投与した場合は、コントロールのWTマウスと同程度の数であった。PD-1依存的な微小膿瘍の増加は、抗IL-6R抗体投与により軽減されることがわかった。
<サイトカインのmRNA発現量>
 実施例1と同様にして行った。
 乾癬への関与が報告されているサイトカイン(IL-6、IL-23a、IL-17a)のmRNAの定量結果を図36に示す。IL-6のmRNA発現量は、コントロールのPD-1-/-マウスではWTマウスに比べて有意に多かったが、抗IL-6R抗体投与した場合は、コントロールのWTマウスと同程度の量であった。PD-1依存的なIL-6産生量の増加は、抗IL-6R抗体投与により軽減されることが明らかになった。また、IL-23aについても上述と同様の傾向であった。IL-17aについては、コントロールのPD-1-/-マウスとWTマウスとに有意差は見られないが、抗IL-6R抗体投与した場合は、コントロールよりも有意に減少することが明らかになった。
<血清中サイトカイン量>
 マウスの顎下静脈から出血させて血液を採取し、血清を分離し、使用するまで-20℃で保存した。血清中サイトカイン(IL-6、IL-23A、IL-17A)量の測定は、MILLIPLEXTM MAP Kit(Merck Millipore社製)、Bio-PlexTM Luminex 200 multiplex assay system(Bio-Rad社製)を用いて、製品プロトコルに従って行った。
 定量結果を図37に示す。IL-6量は、コントロールのPD-1-/-マウスではWTマウスに比べて有意に多かったが、抗IL-6R抗体投与した場合は、顕著に減少した。PD-1依存的なIL-6産生量の増加は、抗IL-6R抗体投与により軽減されることが明らかになった。また、IL-23A、IL-17Aについても上述と同様の傾向であった。
 〔実施例5〕CD8陽性T細胞特異的PD-1コンディショナルノックアウトマウスを用いた乾癬様皮膚炎モデルへの抗IL-6R抗体の投与
<皮膚炎の惹起と抗IL-6R抗体の投与>
 PD-1fl/flCD8creマウス(PD-1-cKO)12匹とPD-1fl/+CD8creマウス(Littermate Ctrl)10匹を準備し、それぞれを2群に割付した。実施例4と同様にして全てのマウスにイミキモドを塗布し、抗IL-6R抗体(MR16-1、中外製薬株式会社製)またはコントロール(Isotype IgG control)を投与した。
 コントロール(IgG Ctrl)または抗IL-6R抗体を投与した、Littermate CtrlマウスとPD-1-cKOマウスの塗布7日目の背部の写真を図38に示す。Littermate Ctrlマウスでは、軽度の紅斑および鱗屑が観察され、コントロールまたは抗IL-6R抗体投与による差は見られなかった。一方、コントロールのPD-1-cKOマウスでは高度の紅斑および鱗屑が観察された。抗IL-6R抗体投与のPD-1-cKOマウスの紅斑および鱗屑は軽度なものであった。PD-1依存的な皮膚炎の悪化は抗IL-6R抗体投与により軽減されることが明らかになった。
<Ear Swelling>
 実施例1と同様にして、測定した。
 コントロール(IgG Ctrl)または抗IL-6R抗体を投与した、Littermate CtrlマウスとPD-1-cKOマウスのイミキモド塗布による耳の厚さの変化を図39左に示す。Littermate Ctrlマウスでは、コントロールまたは抗IL-6R抗体投与による差は見られなかった。コントロールのPD-1-cKOマウスでは有意に耳が厚くなったが、抗IL-6R抗体投与した場合は、Littermate Ctrlマウスと同程度の耳の厚さであった。PD-1依存的な耳の肥厚は、抗IL-6R抗体投与により軽減されることが明らかになった。
<皮膚における炎症の重症度>
 実施例1と同様にして、測定した。
 コントロール(IgG Ctrl)または抗IL-6R抗体を投与した、Littermate CtrlマウスとPD-1-cKOマウスのイミキモド塗布による炎症の重症度(PASI Score)の変化を図39右に示した。Littermate Ctrlマウスでは、コントロールまたは抗IL-6R抗体投与による差は見られなかった。コントロールのPD-1-cKOマウスでは有意に炎症が重症であったが、抗IL-6R抗体投与した場合は、Littermate Ctrlマウスと同程度の重症度であった。PD-1依存的な皮膚の炎症の悪化は、抗IL-6R抗体投与により軽減されることが明らかになった
<病理組織学的所見>
 実施例1と同様にして行った。
 コントロール(IgG Ctrl)または抗IL-6R抗体を投与した、Littermate CtrlマウスとPD-1-cKOマウスのHE染色した皮膚組織標本を図40に示す。Littermate Ctrlマウスでは、コントロールまたは抗IL-6R抗体投与による差は見られなかった。コントロールのPD-1-cKOマウスでは表皮の肥厚、不全角化および過角化が認められ、角層直下には好中球による微小膿瘍が認められたが、抗IL-6R抗体投与した場合のこれらの所見は、Littermate Ctrlマウスと同程度に軽減していた。PD-1依存的な表皮の肥厚、不全角化および過角化、好中球による微小膿瘍等は、抗IL-6R抗体投与により軽減されることが明らかになった。
<表皮の厚さ>
 実施例1と同様にして行った。
 コントロール(IgG Ctrl)または抗IL-6R抗体を投与した、Littermate CtrlマウスとPD-1-cKOマウスの表皮の厚さを図41左に示す。Littermate Ctrlマウスでは、コントロールまたは抗IL-6R抗体投与による差は見られなかった。コントロールのPD-1-cKOマウスではLittermate Ctrlマウスに比べて有意に表皮が厚かったが、抗IL-6R抗体投与した場合は、Littermate Ctrlマウスと同程度の厚さであった。PD-1依存的な表皮の肥厚は、抗IL-6R抗体投与により軽減されることが明らかになった。
<免疫染色>
 実施例1と同様にして行った。
 コントロール(IgG Ctrl)または抗IL-6R抗体を投与した、Littermate CtrlマウスとPD-1-cKOマウスの表皮中のCD8陽性T細胞の数を図41右に示す。Littermate Ctrlマウスでは、コントロールまたは抗IL-6R抗体投与による差は見られなかった。コントロールのPD-1-cKOマウスではLittermate Ctrlマウスに比べて有意に表皮中にCD8陽性T細胞が多かったが、抗IL-6R抗体投与した場合は、有意に減少した。PD-1依存的な表皮へCD8陽性T細胞浸潤は、抗IL-6R抗体投与により軽減されることが明らかになった。
 <リンパ節中のCD8陽性細胞>
 実施例3と同様にして行った。
 コントロール(IgG Ctrl)または抗IL-6R抗体を投与した、Littermate CtrlマウスとPD-1-cKOマウスのリンパ節中のCD8陽性細胞数を図42に示す。Littermate Ctrlマウスでは、コントロールまたは抗IL-6R抗体投与による差は見られなかった。コントロールのPD-1-cKOマウスではLittermate Ctrlマウスに比べて有意にリンパ節中のCD8陽性細胞が多かったが、抗IL-6R抗体投与した場合は、有意に減少した。PD-1依存的なリンパ節へのCD8陽性細胞浸潤は、抗IL-6R抗体投与により軽減されることが明らかになった。
<CD8aおよびIFN-γのmRNA発現量>
 実施例3と同様にして行った。
 コントロール(IgG Ctrl)または抗IL-6R抗体を投与した、Littermate CtrlマウスとPD-1-cKOマウスの耳におけるCD8aおよびIFN-γのmRNA発現量を図43に示す。CD8aのmRNA発現量はLittermate Ctrlマウスでは、コントロールまたは抗IL-6R抗体投与による差は見られなかった。コントロール投与のPD-1-cKOマウスではLittermate Ctrlマウスに比べて有意にCD8aのmRNAが多かったが、抗IL-6R抗体投与した場合は有意に減少した。PD-1依存的なCD8a発現量増加は、抗IL-6R抗体投与により軽減されることが明らかになった
 IFN-γのmRNA発現量は、Littermate Ctrlマウスでは、コントロールまたは抗IL-6R抗体投与による差は見られなかった。コントロール投与のPD-1-cKOマウスではLittermate Ctrlマウスに比べて有意にIFN-γのmRNAが多かったが、抗IL-6R抗体投与した場合は減少する傾向にあった。
 〔実施例6〕ランゲルハンス細胞特異的PD-L1コンディショナルノックアウトマウスの作製
<PD-L1fl/flマウスの作製>
 野生型マウス(WT)C57BL/6Jは、Charles River Japanより購入した。
(デザイン)
 筑波大学実験動物資源センターのCRISPR/Cas9システムを用いて、PD-L1遺伝子の前後に二つのloxP配列(5’-ATAACTTCGTATAGCATACATTATACGAAGTTAT-3':配列番号1)を挿入し、遺伝子組み換えマウスを作製した(PD-L1 floxedマウス、またはPD-L1fl/flマウスという)。概念図を図44に示す。
 図45に野生型マウスのゲノムにおけるPD-L1遺伝子(CD274)のエクソン(boxで示す)の位置とCRISPR-Casシステムのターゲット配列、PAM配列の検索結果を示す。マウスCD274は19番染色体上にあり、7個のエクソンから構成される。1番目のエクソンにPD-L1タンパク質の開始コドンが存在しているので、2番目および3番目のエクソンをCre/loxPシステムを利用して脱落させることにより、完全なPD-L1タンパク質が産出されないようにするため、エクソン2-3を含む領域の両端にCRISPR-Casシステムを用いてloxP配列を挿入するように設計した。具体的には、ガイドRNA(gRNA)とCas9発現カセットを1つのプラスミド内に含むpX330ベクター(CRISPR/Cas9ベクター)を受精卵に導入して、目的のsgRNAとCas9 mRNAを同時に発現させてマウスPD-L1ゲノムを目的の位置で切断し、さらにloxP配列を含むpflox-PD-L1(ドナーベクター)をドナーDNAとして併せて受精卵に導入することで切断部位にloxP配列が挿入されるようにした。
(ドナーベクターの作製)
 エクソン2-3を含む領域の5’側のCRISPR標的サイトをLeft CRISPRサイト、3’側のCRISPR標的サイトをright CRISPRサイトとし、Left CRISPR予測切断部位からその上流(5’)側1382bpまでを5’アーム、right CRISPR予測切断部位からその下流(3’)側1085bpまでを3'アーム、Left CRISPR予測切断部位とright CRISPR予測切断部位の間3197bpをセントラルアームとした。Left CRISPR標的サイトとright CRISPR標的サイトの配列(L target sequence:配列番号31、R target sequence:配列番号32)を図45に示す。オフターゲットを切断するリスクを低減するため、左右のターゲット配列およびPAMは、CRISPRdirect(https://crispr.dbcls.jp/)を用いて検索し、20塩基のターゲット配列がCD274ゲノム内に一か所しかないことを確認した。
 まず、以下の手順により、エクソン2-3の外側にloxP配列を含み、5’アーム、セントラルアーム、3’アームの配列を含むドナーベクターを作製した。まず、C57BL/6JマウスのゲノムDNA(図46、配列番号33)をテンプレートとし、Step1のプライマーを用いて常法に従いPCRを行った。図C中の5’arm(細破線)が5’アームのテンプレートとして使用されたB6Jゲノムの配列、Central arm(粗破線)がセントラルアームのテンプレートとしてB6Jゲノムの使用された配列、3’arm(ゴシック体)が3’アームのテンプレートとして使用されたB6Jゲノムの配列である。
 得られたPCR産物とpbluescriptを基盤に独自に作製したベクター(pflox platform(図17、配列番号6)とをIn-Fusionした(Step1、図47)。なお、図47、図48、図49における左向きの矢頭はloxP配列を示す。次に、Step2のプライマーを用いてPCRを行い、得られたPCR産物とStep1の産物とをIn-Fusionした(Step2、図48)。さらにStep3のプライマーを用いてPCRを行い、得られたPCR産物とStep2の産物とをIn-Fusionした(Step3、図49)。この産物をpflox-PD-L1とする。用いたプライマーを表3に示す。
Figure JPOXMLDOC01-appb-T000003
(CRISPR/Cas9ベクターの作製)
 pX330-U6-Chimeric_BB-CBh-hSpCas9ベクター(pX330ともいう。Addgene社製)に、左右のターゲット配列(L target sequence:配列番号40、R target sequence:配列番号41)をそれぞれ組み込み、pX330-PD-L1-LとpX330-PD-L1-Rとした。
 具体的には、ターゲット配列にBbsIで切断される配列を付加したオリゴDNAとそれに相補的なオリゴDNAを合成した。この2種のオリゴDNAをアニーリングさせた後、二本鎖DNAとしてBbsIを用いてpX330に挿入した。図50に模式図を示す。
(マウス受精卵へのプラスミドの導入)
 pflox-PD1、pX330-PD-L1-LおよびpX330-PD-L1-RをC57BL/6受精卵前核に常法によりマイクロインジェクションした。受精卵を偽妊娠マウスの卵管内へ移植し、ファウンダーマウスを誕生させた。このファウンダーマウスをC57BL6マウスと交配することにより、ヘテロ接合型PD-L1fl/+マウスを作製した。さらにこのヘテロ接合型PD-L1fl/+マウス同士の交配により、ホモ接合型PD-L1fl/flマウスを作製した。
 マウスの尾部組織の一部より精製したゲノムDNAに対して以下のプライマー(配列は図51に記載)を用いて常法に従いPCRを行うことにより、ジェノタイピングを行った。
PDL1 Genotype RiF:配列番号42
PDL1 Genotype RiR:配列番号43
PDL1 Genotype LeF:配列番号44
PDL1 Genotype LeR:配列番号45
 野生型マウス(WT)およびPD-L1 floxedマウス(PD-L1 floxed)から得られたゲノムDNAを制限酵素処理なしの場合(intact)および制限酵素処理した場合(EcoRV、AscI)に得られるPCR産物のサイズを図51に示す。得られたPCR産物のサイズによって、野生型マウス(WT)またはPD-L1 floxedマウスと判断した。
 PD-L1 floxedマウスのゲノムにおけるCD274のDNA配列を図52に示す(配列番号46)。また、野生型(WT)のPD-L1のオープンリーディングフレーム(ORF)の遺伝子配列(配列番号47)とそれに対応するアミノ酸配列(配列番号48)、およびPD-L1の2番目および3番目のエクソンがCre/loxPシステムにより脱落した後に予測される、PD-L1 floxedマウスのオープンリーディングフレーム(ORF)の遺伝子配列(配列番号49)とそれに対応するアミノ酸配列(配列番号50)を図53に示す。
 作製したPD-L1fl/flマウスは正常に発育し、loxP配列の挿入によりPD-L1遺伝子の調節は明らかに妨害されないことが示された。
<PD-L1fl/flLangerincreマウスの作製>
 野生型マウスと戻し交配させたヘテロ接合型PD-L1fl/+マウスおよびヘテロ接合型Langerincreマウス(Daniel H Kaplan,et. al. ”Autocrine/paracrine TGFbeta1 is required for the development of epidermal Langerhans cells“ J Exp Med. 2007 Oct 27;204(11):2545-2552記載。Kaplan博士より入手)を交配して、二重ヘテロ接合型PD-L1fl/+Langerincreマウスを作製した。Langerincreマウスは、遺伝子改変により、Langerinのプロモーターの下流にCreが導入されている。Langerincreマウスは、樹状細胞にはCreが発現せず、ランゲルハンス細胞特異的にCreが発現することが特徴であるPD-L1fl/+LangerincreマウスとPD-L1fl/flマウス、およびLangerincreマウスを交配し、コンディショナルPD-L1ホモ接合マウス(PD-L1fl/flLangerincreマウス、PD-L1コンディショナルノックアウトマウス、PD-L1-cKOマウスとも言う)を得た。概念図を図54に示す。また、PD-L1ヘテロ接合型(PD-L1fl/+Langerincre)同腹子も得た(Littermate Ctrl)。
 Langerincre、PD-L1-/-、およびPD-L1flのジェノタイピングに使用したプライマー配列を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 PD-L1fl/flLangerincreマウスのリンパ節において、PD-L1遺伝子発現がランゲルハンス細胞集団特異的に完全に消失していることを抗PD-L1抗体(10F.9G2、BioLegend社製)を用いたフローサイトメトリーにより確認した。
〔実施例7〕ランゲルハンス細胞特異的PD-L1コンディショナルノックアウトマウスを用いた乾癬様皮膚炎モデル
<皮膚炎の惹起>
 実施例1と同様にして、PD-L1fl/flLangerincreマウス(PD-L1-cKO)5匹およびその同腹子PD-L1fl/+Langerincreマウス(Ctrl)5匹にイミキモドを塗布した。
<ランゲルハンス細胞および樹状細胞におけるPD-L1の発現>
 塗布5日目に、マウスから採取した耳をメッシュ上ですり潰し、ピペッティングで個細胞化し、フィルターを通して単一細胞の懸濁液を調製した。Zombie fixable viability kit(BioLegend社製)を用いて染色を行い、死細胞を除いた。生細胞は、FACS staining buffer(1% BSA、5mM EDTAを含むPBS)で希釈した抗PD-L1抗体(10F.9G2、BioLegend社製)、抗I-A/I-E抗体(M5/114.15.2、BD Biosciences社製)、抗Langerin抗体(4C7、BioLegend社製)、CD11b抗体(M1/70、BioLegend社製)、CD11c抗体(N418、BioLegend社製)と共にインキュベーションした。フローサイトメーターとしてGallios(Beckman-Coulter社製)を用い、データ解析はFlowJo software(v7.6.5)で行い、CD45陽性、I-A/I-E陽性、CD11c陽性生細胞のうち、Langerin陽性、CD11b陽性の細胞集団をランゲルハンス細胞(LCs)として、Langerin陽性、CD103陽性の細胞集団をLangerin陽性樹状細胞(Langerin+dDCs)として、また、Langerin陰性の細胞集団をLangerin陰性樹状細胞(Langerin-dDCs)として、細胞数をカウントした。Fluorescence-Minus-One Control(FMO Ctrl)をネガティブコントロールとした。
 結果を図55に示す。イミキモドを塗布していない(IMQ(-))PD-L1-cKOおよびCtrlのランゲルハンス細胞には、PD-L1は発現していなかったが、Langerin陽性樹状細胞およびLangerin陰性樹状細胞には、PD-L1が発現していた。イミキモドを塗布すると(IMQ(+))、PD-L1-cKOのランゲルハンス細胞にはPD-L1は発現しないままであったが、Ctrlのランゲルハンス細胞にはPD-L1が発現していた。PD-L1-cKOおよびCtrlのLangerin陽性樹状細胞およびLangerin陰性樹状細胞におけるPD-L1の発現は、イミキモドを塗布してもほとんど変化しなかった。Ctrlにおいては、イミキモド塗布により、ランゲルハンス細胞のPD-L1の発現が誘導されることが明らかになった。
 塗布5日目の背部の写真を図56に示す。イミキモドを塗布していない(Vehicle)CtrlとPD-L1-cKOとでは、皮膚の状態に目立った差はなかった。イミキモドを塗布した(IMQ)Ctrlでは、軽度の紅斑および鱗屑が観察された。イミキモドを塗布したPD-L1-cKOでは高度の紅斑および鱗屑が観察された。
<Ear Swelling>
 実施例1と同様にして評価を行った。
 CtrlとPD-L1-cKOのイミキモド塗布による耳の厚さの変化を図57上に示した。イミキモドを塗布していない(Vehicle)CtrlとPD-L1-cKOとでは、耳の厚さに目立った差はなかった。イミキモドを塗布した場合、PD-L1-cKOの方がCtrlよりも耳が厚くなった。
<皮膚における炎症の重症度>
 実施例1と同様にして評価を行った。
 CtrlとPD-L1-cKOのイミキモド塗布による炎症の重症度(PASI Score)の変化を図57下に示した。イミキモドを塗布していない(Vehicle)CtrlとPD-L1-cKOとでは、炎症の重症度に目立った差はなかった。イミキモドを塗布した場合、PD-L1-cKOの方がCtrlよりも皮膚における炎症が有意に重症であった。
<病理組織学的所見>
 実施例1と同様にして評価を行った。
 CtrlとPD-L1-cKOのHE染色した皮膚組織標本を図58に示す。イミキモドを塗布していない(Vehicle)CtrlとPD-L1-cKOとでは、皮膚組織の形態に目立った差はなかった。イミキモドを塗布した(IMQ)PD-L1-cKOでは、Ctrlに比べて、表皮の肥厚、不全角化および過角化、角層直下の好中球による微小膿瘍が顕著に認められた。
<表皮の厚さ>
 実施例1と同様にして評価を行った。
 CtrlとPD-L1-cKOの表皮の厚さを図59に示す。イミキモドを塗布していない(Vehicle)CtrlとPD-L1-cKOとでは、表皮の厚さに差はなかったが、イミキモドを塗布した(IMQ)場合、PD-L1-cKOの方がCtrlよりも表皮が有意に厚かった。
<サイトカインのmRNA発現量>
 実施例1の「サイトカインのmRNA発現量」と同様にして、イミキモドを塗布したCtrlとPD-L1-cKOにおける、IL-6、IL-17aおよびIL-23aのmRNA発現量を調べた。
 結果を図60に示す。IL-6、IL-17aおよびIL-23のmRNA発現量は、PD-L1-cKOの方がCtrlよりも多かった。特に、PD-L1-cKOにおけるIL-17aのmRNA発現量は、Ctrlに比べて有意に多かった。この結果から、ランゲルハンス細胞に発現しているPD-L1が、Th17細胞のサイトカイン産生を制御していることが示唆された。そこで、次に、Th17細胞の1つであるγδT細胞について解析を行った。
<γδT細胞の活性化>
 塗布4日目に、マウスから採取した耳をメッシュ上ですり潰し、ピペッティングで個細胞化し、フィルターを通して単一細胞の懸濁液を調製した。終濃度25ng/mlPMA、終濃度1μg/ml Ionomycinを加えたRPMI 1640培地(10%fetal bovine serum、2mM L-glutamine、100U/ml penicillin、100μg/ml streptomycin、monensin(Golgi Stop、BD社製)を添加)で細胞を刺激した。5時間インキュベーションした後、抗CD45抗体(30-F11、BioLegend社製)、抗TCRβ抗体(H57-597、BioLegend社製)、抗TCRγδ抗体(GL3、BioLegend社製)、抗CD3e抗体(145-2C11、BioLegend社製)、抗CD69抗体(H1.2F3、BioLegend社製))を用いて細胞表面のCD45、TCRβ、TCRγδおよびCD69の染色を行った後、Fix/Perm Kit(BD社製)を用いて抗IL-17A抗体(TC11-18H10.1、BioLegend社製)により、細胞内サイトカインの染色を行った。Fluorescence-Minus-One Controlをネガティブコントロールとして用いた。フローサイトメーターとしてGallios(Beckman-Coulter社製)を用い、データ解析はFlowJo software(v7.6.5)で行った。
 CD45陽性生細胞でゲートをかけた場合の(Gated CD45+ live cells)、TCRβとTCRγδを発現している細胞のヒストグラムを図61左に示す。TCRγδを低いレベルで発現しているCD45陽性生細胞は、Ctrlでは0.79%、PD-L1-cKOでは2.03%であり、PD-L1-cKOの方が多かった。また、CD45陽性生細胞(CD45+ live cell)に対する、TCRγδを低いレベルで発現している細胞(γδlowTcell)の割合(%)のグラフを図61中央に示す。CD45+ live cellに対する、γδlowTcellの割合(%)は、Ctrlに比べてPD-L1-cKOの方が有意に多かった。さらに、γδlowTcellに対する、CD69を高いレベルで発現している細胞(CD69hi)の割合(%)のグラフを図61右から2番目に示す。グラフ縦軸の「CD69hiγδlowTcell」は、TCRγδを低いレベルで発現している細胞(γδlowTcell)に対する、CD69を高いレベルで発現している細胞(CD69hiγδlowTcell)の割合(%)である。TCRγδを低いレベルで発現している細胞に対する、CD69を高いレベルで発現している細胞(CD69hiγδlowTcell)の割合(%)は、Ctrlに比べてPD-L1-cKOの方が有意に多かった。また、γδlowTcellにおける細胞内のIL-17A量のグラフを図61右に示す。グラフの縦軸は、蛍光強度の中央値(MFI)である。γδlowTcellにおける細胞内のIL-17A量は、Ctrlに比べてPD-L1-cKOの方が有意に多かった。
 これらの結果から、ランゲルハンス細胞上に発現しているPD-L1が、皮膚におけるIL-17Aを産生するγδT細胞を活性化していることが明らかになった。
<細胞内のIFN-γとGzmBの発現量>
 マウスの流入領域リンパ節から実施例3の通りに調製したリンパ節細胞の懸濁液を用いた。終濃度25ng/mlPMA、終濃度1μg/ml Ionomycinを加えたRPMI 1640培地(10%fetal bovine serum、2mM L-glutamine、100U/ml penicillin、100μg/ml streptomycin、monensin(Golgi Stop、BD社製)を添加)で細胞を刺激した。4時間インキュベーションした後、抗TCRγδ抗体(GL3、BioLegend社製)、抗CD3e抗体(145-2C11、BioLegend社製)、抗CD69抗体(H1.2F3、BioLegend社製)、および抗CCR6(Chemokine receptor 6)抗体(29-2L17、BioLegend社製)を用いて細胞表面のTCRγδ、およびCD69の染色を行った後、Fix/Perm Kit(BD社製)を用いて抗IL-17A抗体(TC11-18H10.1、BioLegend社製)により、細胞内の染色を行った。Fluorescence-Minus-One Controlをネガティブコントロールとして用いた。フローサイトメーターとしてGallios(Beckman-Coulter社製)を用い、データ解析はFlowJo software(v7.6.5)で行った。
 CD69hiγδlowTcellの数を図62左に示す。CD69hiγδlowTcell(図中では、CD69hiγδTcell)の数は、イミキモド塗布していない場合はCtrlとPD-L1-cKOとの間に差はなかった。CD69hiγδlowTcellの数はイミキモドを塗布すると増加し、Ctrlに比べてPD-L1-cKOの方が顕著に増加した。また、CCR6陰性のCD69hiγδlowTcellにおけるIL-17A発現量は、イミキモド塗布してもしていなくてもCtrlとPD-L1-cKOとの間に差はなかった。CCR6陽性のCD69hiγδlowTcellにおけるIL-17A発現量は、イミキモド塗布していない場合は、CtrlとPD-L1-cKOとの間に差はなかったが、イミキモド塗布した場合は、CD69hiγδlowTcellの数はイミキモド塗布により、Ctrlに比べてPD-L1-cKOの方が有意に多かった。
〔実施例8〕PDーL2fl/flマウスの作製
 野生型マウス(WT)C57BL/6Jは、Charles River Japanより購入した。
(デザイン)
 筑波大学実験動物資源センターでCRISPR/Cas9システムを用いて、PD-L2遺伝子の前後に二つのloxP配列(5’-ATAACTTCGTATAGCATACATTATACGAAGTTAT -3’)を挿入し、遺伝子組み換えマウスを作製した(PD-L2 floxedマウス、またはPD-L2fl/flマウスという)。
 図63に野生型マウスのゲノムにおけるPD-L2遺伝子(CD273)のエクソン(boxで示す)の位置とCRISPR-Casシステムのターゲット配列、PAM配列を示す。マウスCD273は19番染色体上にあり、6個のエクソンから構成される。1番目のエクソンにPD-L2タンパク質の開始コドンが存在しているので、3番目および4番目のエクソンをCre/loxPシステムを利用して脱落させることにより、PD-L2タンパク質の一部が欠損するようにするため、エクソン3-4を含む領域をはさむようにloxP配列を2箇所に挿入してfloxマウスを作成するように設計した(5’側をLeft CRISPR、3’側をRight CRISPRとした)。左右それぞれのloxP配列の挿入には、エレクトロポレーション法によるゲノム編集を採用した。具体的には、過排卵処置をしたメスのマウスから採卵し、オスの精子と人工受精をすることによって得た受精卵と、SpCas9タンパク、ガイドRNA(gRNA)、loxP配列を含む一本鎖ドナーDNA(ssODN)とを併せて混合し、エレクトロポレーションを実施し受精卵に導入することで切断部位にloxP配列が挿入されるようにした。左右のターゲット配列およびssODNを表5に示す。
Figure JPOXMLDOC01-appb-T000005
 受精卵を偽妊娠マウスの卵管内へ移植し、ファウンダーマウスを誕生させた。このファウンダーマウスをC57BL6マウスと交配することにより、ヘテロ接合型PD-L2fl/+マウスを作製した。さらにこのヘテロ接合型PD-L2fl/+マウス同士の交配により、ホモ接合型PD-L2fl/flマウスを作製した。
 マウスの尾部組織の一部より精製したゲノムDNAに対して以下のプライマーを用いて常法に従いPCRを行うことにより、ジェノタイピングを行った。
PD-L2 Genotype LF:ACTTCCCTTCAGGCTTTGGT(配列番号63)
PD-L2 Genotype LR:TGGTCCAGGATTTCTCAAGG(配列番号64)
PD-L2 Genotype RF:TCTGCCCCTCGTTTTCATAC(配列番号65)
PD-L2 Genotype RR:CGCAGAGTGGTTGTGGTATG(配列番号66)
 野生型マウス(WT)およびPD-L2 floxedマウス(PD-L2floxed)から得られたゲノムDNAを制限酵素処理なしの場合(intact)および制限酵素処理した場合(Xhol、EcoRV)に得られるPCR産物のサイズを図64に示す。得られたPCR産物のサイズによって、野生型マウス(WT)またはPD-L2 floxedマウスと判断した。
野生型マウスのゲノムにおけるDNA配列(配列番号71)を図65に示す。
PD-L2 floxedマウスのゲノムにおけるDNA配列(配列番号72)を図66に示す。
産業上の利用の可能性
 本発明によれば、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤を提供することができる。PD-1/PD-L1、L2シグナルが組織特異的、時期特異的に阻害される、遺伝子改変非ヒト動物を提供することができる。さらに、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物を提供することができる。抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤のスクリーニング方法を提供することができる。抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤の評価方法を提供することができる。

Claims (29)

  1.  IL-6シグナルを阻害する物質を含む、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤であって、前記免疫関連副作用が皮膚障害、重症筋無力症、心筋炎、筋炎、横紋筋融解症、I型糖尿病、神経障害、腎障害、関節炎、肝障害、肺炎、膵炎、甲状腺炎、副腎炎、視床下部機能異常、および汎下垂体機能低下症から選ばれる少なくとも1つである、薬剤。
  2.  前記IL-6シグナルを阻害する物質が、IL-6とIL-6Rとの結合を阻害する物質である、請求項1に記載の薬剤。
  3.  前記IL-6とIL-6Rとの結合を阻害する物質が、抗IL-6R抗体である、請求項2に記載の薬剤。
  4.  前記免疫関連副作用が皮膚障害である、請求項1~3のいずれか1項に記載の薬剤。
  5.  前記皮膚障害が乾癬様皮膚炎である、請求項4に記載の薬剤。
  6.  前記乾癬様皮膚炎が、CD8陽性細胞の表皮への浸潤が尋常性乾癬よりも亢進しているものである、請求項5に記載の薬剤。
  7.  ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域の一部または全部を挟むリコンビネース標的配列が導入された、遺伝子改変非ヒト動物。
  8.  前記リコンビネース標的配列がloxP配列である、請求項7に記載の遺伝子改変非ヒト動物。
  9.  ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入されることにより、組織および時期の少なくとも一方に特異的にPD-1遺伝子の全部または一部の発現が抑制または喪失されている、遺伝子改変非ヒト動物。
  10.  Cre/loxP配列、FLPタンパク質/FRT配列、およびpSR1リコンビネース/pSR1リコンビネース標的配列からなる群から選ばれる、リコンビネース/リコンビネース標的配列システムの利用により、ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入される、請求項9に記載の遺伝子改変非ヒト動物。
  11.  前記リコンビネース/リコンビネース標的配列システムがCre/loxP配列である、請求項10に記載の遺伝子改変非ヒト動物。
  12.  CD8陽性T細胞特異的にPD-1遺伝子の全部または一部の発現が抑制または喪失されている、請求項9~11のいずれか1項に記載の遺伝子改変非ヒト動物。
  13.  PD-1遺伝子のエクソン2、3、および4の発現が抑制または喪失されている、請求項9~12のいずれか1項に記載の遺伝子改変非ヒト動物。
  14.  ゲノム中のPD-1遺伝子またはPD-1遺伝子の発現調節領域に変異が導入されることにより、PD-1遺伝子の全部または一部の発現が抑制または喪失されている遺伝子改変非ヒト動物に、抗原性補強剤を投与することにより作製する、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物。
  15.  前記遺伝子改変非ヒト動物が、組織および時期の少なくとも一方に特異的にPD-1遺伝子の全部または一部の発現が抑制または喪失されている遺伝子改変非ヒト動物である、請求項14に記載の、免疫関連副作用モデル非ヒト動物。
  16.  前記遺伝子改変非ヒト動物が、CD8陽性T細胞特異的にPD-1遺伝子の全部または一部の発現が抑制または喪失されている遺伝子改変非ヒト動物である、請求項15に記載の、免疫関連副作用モデル非ヒト動物。
  17.  前記免疫関連副作用が、免疫関連副作用としての乾癬様皮膚炎である、請求項14~16のいずれか1項に記載の免疫関連副作用モデル非ヒト動物。
  18.  前記抗原性補強剤がイミキモドである、請求項14~17のいずれか1項に記載の免疫関連副作用モデル非ヒト動物。
  19.  ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域に変異が導入されることにより、ランゲルハンス細胞特異的にPD-L1遺伝子の全部または一部の発現が抑制または喪失されている、遺伝子改変非ヒト動物。
  20.  Cre/loxP配列、FLPタンパク質/FRT配列、およびpSR1リコンビネース/pSR1リコンビネース標的配列からなる群から選ばれる、リコンビネース/リコンビネース標的配列システムの利用により、ゲノム中のPD-L1遺伝子またはPD-L1遺伝子の発現調節領域に変異が導入される、請求項19に記載の遺伝子改変非ヒト動物。
  21.  前記リコンビネース/リコンビネース標的配列システムがCre/loxP配列である、請求項20に記載の遺伝子改変非ヒト動物。
  22.  PD-L1遺伝子のエクソン2および3の発現が抑制または喪失されている、請求項19~21のいずれか1項に記載の遺伝子改変非ヒト動物。
  23.  請求項19~22のいずれか1項に記載の遺伝子改変非ヒト動物に、抗原性補強剤を投与することにより作製する、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用モデル非ヒト動物。
  24.  前記免疫関連副作用が、免疫関連副作用としての乾癬様皮膚炎である、請求項23に記載の免疫関連副作用モデル非ヒト動物。
  25.  前記抗原性補強剤がイミキモドである、請求項23または24に記載の免疫関連副作用モデル非ヒト動物。
  26.  請求項9~13、19~22のいずれか1項に記載の遺伝子改変非ヒト動物、または請求項14~18、23~25のいずれか1項に記載の免疫関連副作用モデル非ヒト動物を用いる、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤のスクリーニング方法。
  27.  請求項9~13、19~22のいずれか1項に記載の遺伝子改変非ヒト動物、または請求項14~18、23~25のいずれか1項に記載の免疫関連副作用モデル非ヒト動物を用いる、抗PD-1抗体または抗PD-L1抗体による免疫関連副作用の予防および治療の少なくとも一方を行う薬剤の評価方法。
  28.  ゲノム中のPD-L2遺伝子またはPD-L2遺伝子の発現調節領域の一部または全部を挟むリコンビネース標的配列が導入された、遺伝子改変非ヒト動物。
  29.  前記リコンビネース標的配列がloxP配列である、請求項28に記載の遺伝子改変非ヒト動物。
PCT/JP2021/003050 2020-01-31 2021-01-28 免疫関連副作用の予防および治療の少なくとも一方を行う薬剤、遺伝子改変非ヒト動物、および免疫関連副作用モデル非ヒト動物 WO2021153673A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021574109A JPWO2021153673A1 (ja) 2020-01-31 2021-01-28

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-014945 2020-01-31
JP2020014945 2020-01-31

Publications (1)

Publication Number Publication Date
WO2021153673A1 true WO2021153673A1 (ja) 2021-08-05

Family

ID=77079135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/003050 WO2021153673A1 (ja) 2020-01-31 2021-01-28 免疫関連副作用の予防および治療の少なくとも一方を行う薬剤、遺伝子改変非ヒト動物、および免疫関連副作用モデル非ヒト動物

Country Status (2)

Country Link
JP (1) JPWO2021153673A1 (ja)
WO (1) WO2021153673A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180303922A1 (en) * 2015-10-16 2018-10-25 President and Fellows of Harvard Coolege Regulatory t cell pd-1 modulation for regulating t cell effector immune responses
CN110402892A (zh) * 2019-04-30 2019-11-05 梁廷波 选择性敲除胰腺上皮细胞程序性死亡配体1分子的自发胰腺癌小鼠模型的建立方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180303922A1 (en) * 2015-10-16 2018-10-25 President and Fellows of Harvard Coolege Regulatory t cell pd-1 modulation for regulating t cell effector immune responses
CN110402892A (zh) * 2019-04-30 2019-11-05 梁廷波 选择性敲除胰腺上皮细胞程序性死亡配体1分子的自发胰腺癌小鼠模型的建立方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
DULGERIAN, L. R. ET AL.: "Programmed death ligand 2 regulates arginase induction and modifies Trypanosoma cruzi survival in macrophages during murine experimental infection", IMMUNOLOGY, vol. 133, 2011, pages 29 - 40, XP055494975, DOI: 10.1111/j.1365-2567.2011.03406.x *
HORII, T. ET AL.: "Efficient generation of conditional knockout mice via sequential introduction of lox site s", SCIENTIFIC REPORTS, vol. 7, no. 7891, 11 August 2017 (2017-08-11), pages 1 - 8, XP055516908 *
HORISBERGER, A. ET AL.: "A severe case of refractory esophageal stenosis induced by nivolumab and responding to tocilizumab therapy", JOURNAL FOR IMMUNOTHERAPY OF CANCER, 2018, pages 1 - 7, XP021265992, DOI: 10.1186/s40425-018-0481-0 *
IMAI, Y. ET AL.: "Cutting Edge: PD-1 regulates imiquimod-induced psoriasiform dermatitis through inhibition of IL -17A expression by innate gamma delta-Low T cells", J IMMUNOL., vol. 195, 2015, pages 421 - 425, XP055845697 *
OKIYAMA, NAOKO ET AL.: "Varied immuno- related adverse events induced by immune-check point inhibitors -Nivolumab-associated psoriasiform dermatitis related with increased serum level of interleukin-6", JPN J CLIN IMMUNOL., vol. 40, no. 2, 2017, pages 95 - 101 *
PAUKEN, K. E. ET AL.: "Abstract PR9: Loss of PD-1 promotes antitumor immunity by improving functions of both PD-1+ and PD-1- CD 8+ T cells in the tumor microenvironment", CANCER IMMUNOLOGY RESEARCH, March 2020 (2020-03-01), DOI: 10.1158/2326- 6074.TUMIMM19-PR9 *
SAGE, P. T. ET AL.: "Dendritic cell PD-L1 limits autoimmunity and follicular T cell differentiation and function", J IMMUNOL., vol. 200, 2018, pages 2592 - 2602, XP055845700 *
STROUD, C. RG. ET AL.: "Tocilizumab for the management of immune mediated adverse events secondary to PD-1 blockade", J ONCOL PHARM PRACTICE, vol. 25, no. 3, 2019, pages 551 - 557, XP055596700, DOI: 10.1177/1078155217745144 *

Also Published As

Publication number Publication date
JPWO2021153673A1 (ja) 2021-08-05

Similar Documents

Publication Publication Date Title
Weber et al. TREM-1 deficiency can attenuate disease severity without affecting pathogen clearance
CN107529739B (zh) 表达人特定分子和人Fcγ受体家族的转基因非人动物
US10765762B2 (en) Humanized model of kidney and liver disorders
Renaud et al. Natural killer-cell deficiency alters placental development in rats
JP5172670B2 (ja) 非アルコール性脂肪性肝炎モデル動物及び脂肪肝モデル動物
CA2610709A1 (en) Transgenic models for different genes and their use for gene characterization
JP6282591B2 (ja) 遺伝子ノックイン非ヒト動物
Das et al. Knockout of MDA-9/Syntenin (SDCBP) expression in the microenvironment dampens tumor-supporting inflammation and inhibits melanoma metastasis
US20230148575A1 (en) Genetically modified non-human animal with human or chimeric il1b and/or il1a
US11785923B2 (en) Genetically modified non-human animals and methods relating to complement dependent cytotoxicity
US20230340100A1 (en) Ligands to gm-csf or gm-csf-receptor for use in leukemia in a patient having undergone allo-hct
Lin et al. TOB1 blocks intestinal mucosal inflammation through inducing ID2-mediated suppression of Th1/Th17 cell immune responses in IBD
WO2021153673A1 (ja) 免疫関連副作用の予防および治療の少なくとも一方を行う薬剤、遺伝子改変非ヒト動物、および免疫関連副作用モデル非ヒト動物
Ruseva et al. Crry deficiency in complement sufficient mice: C3 consumption occurs without associated renal injury
WO2020067199A1 (ja) 免疫不全マウス
Michaelis et al. Modulating T cell functions does not alleviate chronic inflammatory skin lesions in K5. TGFβ1 transgenic mice
Freeley et al. VISTA deficiency protects from immune complex-mediated glomerulonephritis by inhibiting neutrophil activation
Yip et al. Targeting the human βc receptor inhibits contact dermatitis in a transgenic mouse model
JP6890834B2 (ja) アトピー性皮膚炎モデル非ヒト動物及びその使用
WO2024002259A1 (zh) 一种osm、osmr、il31ra和/或il31基因修饰的非人动物
EP2242847B1 (fr) Souris transgeniques pour le gene cgamma des immunoglobulines humaines de classe g
RU2772583C2 (ru) Гуманизированная модель нарушений со стороны почек и печени
WO2023111322A2 (en) Glyco-engineered car-t cells
Wang Pathomechanisms underlying the psoriasiform skin disease in CD18 hypomorphic PL/J mice
Forman Functional analysis of the role of interferon gamma through the characterisation of conditional interferon gamma receptor two mouse mutants

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21748228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574109

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21748228

Country of ref document: EP

Kind code of ref document: A1