WO2021153637A1 - Three-dimensional molding filament - Google Patents

Three-dimensional molding filament Download PDF

Info

Publication number
WO2021153637A1
WO2021153637A1 PCT/JP2021/002921 JP2021002921W WO2021153637A1 WO 2021153637 A1 WO2021153637 A1 WO 2021153637A1 JP 2021002921 W JP2021002921 W JP 2021002921W WO 2021153637 A1 WO2021153637 A1 WO 2021153637A1
Authority
WO
WIPO (PCT)
Prior art keywords
filament
thermoplastic resin
sea
dimensional modeling
resin
Prior art date
Application number
PCT/JP2021/002921
Other languages
French (fr)
Japanese (ja)
Inventor
亜希子 平野
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to JP2021574084A priority Critical patent/JPWO2021153637A1/ja
Publication of WO2021153637A1 publication Critical patent/WO2021153637A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/118Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using filamentary material being melted, e.g. fused deposition modelling [FDM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/20Apparatus for additive manufacturing; Details thereof or accessories therefor
    • B29C64/255Enclosures for the building material, e.g. powder containers
    • B29C64/259Interchangeable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing

Definitions

  • the present invention relates to a three-dimensional modeling material, particularly a three-dimensional modeling filament used in a material extrusion method (ME method).
  • the present invention also relates to a filament for three-dimensional modeling, a wound body, and a cartridge for three-dimensional modeling.
  • Additional modeling technology a system commonly referred to today as a three-dimensional printer (3D printer) (for example, a Fused Deposition Modeling (FDM) system manufactured by Stratasys Incorporated in the United States), is a computer. It is used to build three-dimensional objects in layers based on a CAD model.
  • the material extrusion method inserts the raw material into the extrusion head as a filament made of a thermoplastic resin, and continuously heats and melts the raw material from the nozzle portion provided in the extrusion head onto the XY plane substrate in the chamber.
  • the physical characteristics of the respective resins are the physical properties of the filament. It is expected that the expression will greatly depend on the volume fraction of each resin (that is, the volume ratio of the core and the sheath) in the entire filament. That is, when the volume fraction of the core is large (the diameter of the core is large with respect to the filament diameter), the physical characteristics of the filament itself are closer to the physical characteristics of the core, and conversely, the volume fraction of the core is small (the volume fraction of the core with respect to the filament diameter).
  • the filament is formed into a core-sheath structure, and the Tg of the resin constituting the sheath or the crystallization temperature (Tc) in the temperature lowering process is made lower than that of the resin constituting the core.
  • Tg the temperature of the resin constituting the sheath
  • Tc crystallization temperature
  • the adhesiveness between layers can be improved while maintaining the heat resistance of the resin.
  • the volume ratio of the sheath is increased in order to improve the adhesiveness between layers, the volume ratio of the core becomes smaller and the modeled product Heat resistance is low. That is, since the interlayer adhesiveness secured by the sheath layer and the heat resistance secured by the core layer have contradictory characteristics depending on the respective volume ratios, both the interlayer adhesiveness and the heat resistance are high as the core sheath filament as a whole. It is difficult to maintain at the level.
  • the present invention solves the above problems, and provides a three-dimensional modeling filament having a multi-layer structure, which can efficiently express and coexist with all the characteristics of each layer.
  • the purpose is to efficiently express and coexist with all the characteristics of each layer.
  • the present inventor has a sea-island structure in a cross section perpendicular to the longitudinal direction, the sea part of the sea-island structure contains a thermoplastic resin (A), and the island part of the sea-island structure is thermoplastic. It was considered that the above-mentioned problems could be solved by using a filament for three-dimensional modeling containing the resin (B).
  • the present invention relates to the following ⁇ 1> to ⁇ 14>.
  • ⁇ 1> It has a sea-island structure in a cross section perpendicular to the longitudinal direction,
  • the sea part of the sea island structure contains the thermoplastic resin (A),
  • the island portion of the sea island structure contains a thermoplastic resin (B),
  • a three-dimensional modeling filament in which the sea-island structure is continuous in the longitudinal direction of the filament.
  • thermoplastic resin (A) is lower than the glass transition temperature of the thermoplastic resin (B).
  • ⁇ 3> The three-dimensional modeling according to ⁇ 1> or ⁇ 2>, wherein the crystallization temperature of the thermoplastic resin (A) in the temperature lowering process is lower than the crystallization temperature of the thermoplastic resin (B) in the temperature lowering process.
  • the amount of heat of crystallization of the thermoplastic resin (A) in the process of lowering the temperature is lower than the amount of heat of crystallization of the thermoplastic resin (B) in the process of lowering the temperature, to any one of the above ⁇ 1> to ⁇ 3>.
  • thermoplastic resin (A) is composed of an acrylonitrile-butadiene-styrene copolymer resin, a methyl methacrylate-butadiene-styrene copolymer resin, a polycarbonate, a polyetherimide, a polyolefin, a polyamide, a polyetheretherketone, and a polyetherketoneketone.
  • the three-dimensional modeling filament according to any one of ⁇ 1> to ⁇ 4>, which comprises at least one selected from.
  • thermoplastic resin (B) is composed of an acrylonitrile-butadiene-styrene copolymer resin, a methyl methacrylate-butadiene-styrene copolymer resin, a polycarbonate, a polyetherimide, a polyolefin, a polyamide, a polyetheretherketone, and a polyetherketoneketone.
  • the three-dimensional modeling filament according to any one of ⁇ 1> to ⁇ 5>, which comprises at least one selected from.
  • ⁇ 7> The three-dimensional modeling filament according to any one of ⁇ 1> to ⁇ 6>, wherein the island portion of the sea-island structure is divided into two or more and ten or less in a cross section perpendicular to the longitudinal direction of the filament.
  • the area ratio of the island part in the circle with a diameter of 9 / 10D from the cross-sectional center of the cross section perpendicular to the longitudinal direction of the filament is 35% or more with respect to the area of the circle with a diameter of 9 / 10D.
  • the filament for three-dimensional modeling according to any one of ⁇ 1> to ⁇ 7> which is 99% or less.
  • the glass transition temperature (Tg) of the thermoplastic resin (A) in the sea portion of the sea island structure is 5 to 100 ° C. lower than the glass transition temperature (Tg) of the thermoplastic resin (B).
  • the filament for three-dimensional modeling according to any one of the above. ⁇ 11> The three-dimensional modeling filament according to any one of ⁇ 1> to ⁇ 10>, wherein the island portion has a diameter d of 50 ⁇ m or more and 1500 ⁇ m or less.
  • ⁇ 12> A resin molded body made of the three-dimensional modeling filament according to any one of ⁇ 1> to ⁇ 11>.
  • ⁇ 13> The wound body of the filament for three-dimensional modeling according to any one of ⁇ 1> to ⁇ 11>.
  • ⁇ 14> A three-dimensional modeling cartridge made of the three-dimensional modeling filament according to any one of ⁇ 1> to ⁇ 11>.
  • a three-dimensional modeling filament having a multi-layer structure it is possible to provide a three-dimensional modeling filament capable of efficiently expressing and coexisting all the characteristics of each layer.
  • FIG. 1 is a schematic view illustrating an example of a sea-island structure in a cross section of a filament for three-dimensional modeling of the present invention.
  • FIG. 2 is a schematic view illustrating an example of a sea-island structure in a cross section of a filament for three-dimensional modeling of the present invention.
  • FIG. 3 is a schematic view illustrating an example of a sea-island structure in a cross section of a filament for three-dimensional modeling of the present invention.
  • FIG. 4 is a schematic view illustrating an example of a sea-island structure in a cross section of a filament for three-dimensional modeling of the present invention.
  • FIG. 1 is a schematic view illustrating an example of a sea-island structure in a cross section of a filament for three-dimensional modeling of the present invention.
  • FIG. 2 is a schematic view illustrating an example of a sea-island structure in a cross section of a filament for three-dimensional modeling of the present invention.
  • FIG. 5 is a schematic view illustrating an example of a sea-island structure in a cross section of a filament for three-dimensional modeling of the present invention.
  • FIG. 6 is a schematic view illustrating an example of a sea-island structure in a cross section of a filament for three-dimensional modeling of the present invention.
  • FIG. 7 is a schematic view illustrating an example of a sea-island structure in a cross section of a filament for three-dimensional modeling of the present invention.
  • FIG. 8 is a schematic view illustrating an example of a core-sheath structure in a three-dimensional modeling filament cross section.
  • FIG. 9 is an overall perspective view of the dumbbell-shaped sample for explaining a state in which the dumbbell-shaped sample formed by using the three-dimensional modeling filament is erected with the tension direction vertical.
  • FIG. 10 is a schematic view illustrating a cross section in the tensile direction of a dumbbell-shaped sample formed by using a three-dimensional modeling filament.
  • FIG. 11 is a schematic diagram illustrating the degree of change in the shape of the dumbbell-shaped sample formed by using the three-dimensional modeling filament.
  • FIG. 12 is a photographic view showing a cross-sectional observation result of the three-dimensional modeling filament obtained in Example 1.
  • FIG. 13 is a photographic view showing a cross-sectional observation result of the three-dimensional modeling filament obtained in Example 2.
  • FIG. 14 is a photographic view showing a cross-sectional observation result of the three-dimensional modeling filament obtained in Example 3.
  • FIG. 15 is a photographic view showing a cross-sectional observation result of the three-dimensional modeling filament obtained in Comparative Example 1.
  • FIG. 16 is a photographic view showing a cross-sectional observation result of the three-dimensional modeling filament obtained in Comparative Example 2.
  • the present embodiment will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be implemented with various modifications within the scope of the gist thereof.
  • “mass” is synonymous with “weight”.
  • the present invention has a sea-island structure in a cross section perpendicular to the longitudinal direction, the sea portion of the sea-island structure contains a thermoplastic resin (A), and the island portion of the sea-island structure contains a thermoplastic resin (B).
  • the sea-island structure is a three-dimensional modeling filament that is continuous in the longitudinal direction of the filament.
  • the filament for three-dimensional modeling of the present invention has a sea-island structure including a sea part composed of a sea component and an island part composed of an island component.
  • the sea part and the island part are regions having different compositions in a cross section (diametrical cross section) perpendicular to the long axis of the filament. Further, in the sea-island structure, a plurality of island components (island parts) are scattered within the sea component (sea part).
  • 1 to 5 are cross-sectional views of the filament, and is a view obtained by cutting an arbitrary portion of the filament perpendicular to the longitudinal direction of the filament and observing the cross section.
  • the sea portion 1 containing the thermoplastic resin (A) is interspersed with the island portions 2 containing the thermoplastic resin (B).
  • the number of islands is not particularly limited in the cross section, but for example, FIG. 1 shows that the number of islands 2 is three, and FIG. 2 shows that the number of islands 2 is larger.
  • the shape of the island portion 2 does not have to be circular, and examples thereof include a fan shape as shown in FIG. 3, a star shape, a quadrangle, and a polygon.
  • the island portion may be composed of only the thermoplastic resin (B), but as shown by reference numeral 3 in FIGS. 4 and 5, a part of the island portion is formed of the thermoplastic resin (A) and the thermoplastic resin (A). It may be composed of a thermoplastic resin (C) having different physical properties from both of the thermoplastic resin (B).
  • the thermoplastic resin (C) the same thermoplastic resin (A) and the same as those exemplified below can be used as the thermoplastic resin (B).
  • the filament for 3D modeling of the present invention has a sea island in a vertical cross section from the viewpoint of efficiently expressing and coexisting all the characteristics of each layer and from the viewpoint of unifying the physical properties in the 3D model.
  • the structure is preferably continuous in the longitudinal direction without significantly changing its shape.
  • the filament for three-dimensional molding of the present invention prevents voids from being mixed into the resin molded body to be molded, and from the viewpoint of improving the strength and appearance of the resin molded body, a gap in a cross section perpendicular to the long axis of the filament.
  • the rate is preferably 5% or less, more preferably 3% or less, further preferably 1% or less, particularly preferably 0.1% or less, and 0.01% or less. Is most preferable.
  • thermoplastic resin (A) described in detail below as the sea component constituting the sea part and containing the thermoplastic resin (B) as the island component constituting the island part. Filament can be provided.
  • the reason why the three-dimensional modeling filament of the present invention exerts the effect of the present invention is not yet clear, but it is presumed as follows.
  • the three-dimensional modeling filament of the present invention has a sea-island structure including a sea part and an island part, so that even if the volume of the thermoplastic resin (A) constituting the sea part is increased, the thermoplastic resin constituting the island part is formed.
  • the characteristics of the thermoplastic resin (B) can be efficiently reflected in the entire filament. As a result, it is considered that the three-dimensional modeling filament of the present invention can efficiently express and coexist all the characteristics of each layer.
  • the area occupied by the island portion is 9 / 10D in diameter within a circle with a diameter of 9 / 10D from the center of the cross section. It is preferably 35% or more and 99% or less with respect to the area of the circle.
  • the proportion of the island portion containing the thermoplastic resin (B) is present in the filament in a certain amount, the characteristics of both the thermoplastic resin (A) and the thermoplastic resin (B) can be improved at a high level of 3 It is considered that this can be reflected in the filament for dimensional modeling.
  • the area ratio is preferably 40% or more, more preferably 43% or more, further preferably 45% or more, and 50%. % Or more is particularly preferable, and 54% or more is most preferable. Further, it is preferably 95% or less, more preferably 90% or less, further preferably 88% or less, particularly preferably 80% or less, and most preferably 75% or less.
  • all the islands may be covered with the sea as shown in FIGS. 1 to 5, and some of the islands may be exposed on the filament surface as shown in FIG. It may have a portion to be formed, or as shown in FIG. 7, all the island portions may have a portion exposed on the filament surface.
  • the sea area is to be provided with a function to improve the adhesiveness between layers and to modify the surface characteristics (surface smoothness, surface tactile sensation, etc.) of other shaped objects, all the island areas are as shown in FIGS. 1 to 5. It is preferable that the sea part is covered with the sea part because the retention rate of the functional sea part is increased.
  • the entire circle with a diameter of 98 / 100D from the cross-sectional center of the cross section perpendicular to the longitudinal direction of the filament is the sea portion. That is, it is preferable that the filament surface is covered with a sea component. Since the filament surface is covered with a sea component, when the sea part has an interlayer adhesiveness improving function and a surface property modifying function, the effect is likely to be exhibited. For example, interlayer adhesiveness, surface smoothness, surface tactile sensation, and the like can be improved.
  • the outside of the circle having a diameter of 95 / 100D is the sea part from the center of the cross section, and it is further preferable that the outside of the circle of 90 / 100D is the sea part. It is particularly preferable that all the outside of the circle of 85 / 100D is the sea part, and most preferably all the outside of the circle of 79 / 100D is the sea part.
  • the diameter (filament diameter D) of the filament for three-dimensional molding of the present invention depends on the specifications of the system used for molding the resin molded product by the material extrusion method (ME method), but is 1.0 mm or more. It is preferably 1.5 mm or more, more preferably 1.6 mm or more, particularly preferably 1.7 mm or more, while the upper limit is preferably 5.0 mm or less, more preferably 4 It is 0.0 mm or less, more preferably 3.5 mm or less, and particularly preferably 3.0 mm or less. Further, it is preferable that the accuracy of the filament diameter D is within ⁇ 5% with respect to an arbitrary measurement point of the filament from the viewpoint of stability of raw material supply. In particular, in the three-dimensional modeling filament of the present invention, the standard deviation of the filament diameter D is preferably 0.07 mm or less, and particularly preferably 0.06 mm or less.
  • the outer shape of the three-dimensional modeling filament of the present invention is not particularly specified, and shapes such as a quadrangle, a polygon, and a star shape can be mentioned even if the cross section perpendicular to the longitudinal direction is not circular, but from the viewpoint of formability. It is preferable that the cross section is circular with high roundness.
  • the roundness of the outer shape of the filament cross section is preferably 0.93 or more, and particularly preferably 0.95 or more.
  • the upper limit of roundness is 1.0.
  • the roundness is obtained by measuring the major axis and the minor axis in the filament cross section and calculating the minor axis / major axis ratio. The closer the ratio is to 1.0, the closer the cross-sectional shape of the filament is to a perfect circle.
  • the number of islands in the cross section perpendicular to the longitudinal direction of the three-dimensional modeling filament of the present invention is not particularly limited, but it is preferably divided into 2 or more and 10 or less.
  • the characteristics of the thermoplastic resin (B) constituting the islands can be more efficiently reflected in the three-dimensional modeling filament.
  • the number of islands is more preferably 3 or more.
  • the number of islands in the cross section of the filament is preferably 10 or less, more preferably 9 or less, further preferably 8 or less, particularly preferably 7 or less, and 6 or less. Is the most preferable.
  • the cross-sectional shape of the island part of the filament for three-dimensional modeling is not limited to a circular shape, but is called a so-called multi-lobal cross section such as a polygonal cross section, a flat cross section, a lens type cross section, a three-leaf cross section, and a six-leaf cross section.
  • a deformed cross section having the same number of concave portions as the number of convex portions at 8 places, a hollow cross section, or a known deformed cross section may be used.
  • the degree of deformation of the multi-roval cross section is preferably 1.2 or more and 6.0 or less.
  • the degree of deformation referred to here is the circumscribed circle diameter of the cross-sectional shape divided by the inscribed circle diameter of the cross-sectional shape.
  • the degree of deformation When the degree of deformation is 1.2 or more, the unevenness of the deformed cross section is large, so that the contact area between the island component and the sea component is large, and peeling is suppressed. On the other hand, when the degree of deformation is 6.0 or less, the strength is high.
  • the diameter d of the island portion is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, further preferably 200 ⁇ m or more, still more preferably 300 ⁇ m or more, particularly preferably 400 ⁇ m or more, and particularly preferably 500 ⁇ m or more. Is the most preferable.
  • the upper limit of the diameter d is preferably 1500 ⁇ m or less, more preferably 1200 ⁇ m or less, further preferably 1000 ⁇ m or less, still more preferably 900 ⁇ m or less, and particularly preferably 800 ⁇ m or less.
  • the diameter d of the island portion can be measured from the cross-sectional image by observing the cross section of the three-dimensional modeling filament with a microscope.
  • the longest diameter of each island is defined as the diameter of the island, and the average value of the number of islands is defined as the diameter d of the island.
  • thermoplastic resin (A) and thermoplastic resin (B) have one or more different physical characteristics.
  • the physical characteristics include resin composition, molecular weight, additive composition, color, thermal characteristics (melting point, glass transition temperature, crystallization temperature at temperature rise, crystallization temperature at temperature decrease, heat of crystal melting, heat of crystallization, etc.).
  • Melt characteristics Melt characteristics (MFR, melt viscosity, shear storage elasticity, etc.), mechanical properties (tensile storage elasticity, tensile strength, impact resistance, linear expansion coefficient, thermal conductivity, water absorption, surface hardness, etc.) And any one or more of these are different.
  • thermoplastic resin (A) and the thermoplastic resin (B) may be any material that can be extruded by thermal melting, and can be appropriately selected according to the function to be imparted to the molded product to be molded.
  • ABS resin acrylonitrile-butadiene-styrene copolymer resin
  • MVS resin methyl methacrylate-butadiene-styrene copolymer resin
  • polystyrene polyvinyl chloride, polymethyl methacrylate, polycarbonate, modified polyphenylene ether, polyetherimide, etc.
  • Crystalline resins such as amorphous resins, polyolefins, polyesters, polyamides, polyvinyl alcohols, polyetherketones, polyetheretherketones, polyetherketoneketones, olefin-based, styrene-based, polyester-based thermoplastic elastomers, and mixtures thereof. Is preferably used.
  • thermoplastic resin (A) is preferably an amorphous resin such as acrylonitrile-butadiene-styrene copolymer resin, methyl methacrylate-butadiene-styrene copolymer resin, polycarbonate, polyetherimide, or polyester.
  • amorphous resin such as acrylonitrile-butadiene-styrene copolymer resin, methyl methacrylate-butadiene-styrene copolymer resin, polycarbonate, polyetherimide, or polyester.
  • Polyethylene, Polyamide, Polyether Ether Ketone, Polyether Ketone Ketone and other crystalline resins preferably acrylonitrile-butadiene-styrene copolymer resin, methyl methacrylate-butadiene-styrene copolymer resin, polycarbonate and other amorphous resins.
  • a resin or a crystalline resin such as polyester, polyamide or polyolefin, and an amorphous resin such as acrylonitrile-butadiene-styrene copolymer resin, methyl methacrylate-butadiene-styrene copolymer resin, polycarbonate, polyester, etc.
  • crystalline resins such as polyamide and polyolefin, and amorphous resins such as acrylonitrile-butadiene-styrene copolymer resin and methyl methacrylate-butadiene-styrene copolymer resin, and crystalline resins such as polyester and polyamide are used.
  • amorphous resin such as an acrylonitrile-butadiene-styrene copolymer resin and a methyl methacrylate-butadiene-styrene copolymer resin. Two or more of these resins may be mixed and used as appropriate.
  • the thermoplastic resin (B) includes amorphous resins such as acrylonitrile-butadiene-styrene copolymer resin, methyl methacrylate-butadiene-styrene copolymer resin, polycarbonate and polyetherimide, and polyolefins, polyamides and polyether ether ketones.
  • amorphous resins such as acrylonitrile-butadiene-styrene copolymer resin, methyl methacrylate-butadiene-styrene copolymer resin, polycarbonate and polyetherimide, and polyolefins, polyamides and polyether ether ketones.
  • Polyether Ketone It is preferable to contain a crystalline resin such as ketone, and an amorphous resin such as acrylonitrile-butadiene-styrene copolymer resin, methyl methacrylate-butadiene-styrene copolymer resin, polycarbonate, etc
  • crystalline resins such as ketones and polyether ketone ketones
  • amorphous resins such as acrylonitrile-butadiene-styrene copolymer resins and methyl methacrylate-butadiene-styrene copolymer resins, polyamides and polyether ether ketones, Polyether Ketone
  • a crystalline resin such as ketone
  • most preferably it contains an amorphous resin such as acrylonitrile-butadiene-styrene copolymer resin and polycarbonate. Two or more of these resins may be mixed and used as appropriate.
  • thermoplastic resin (A) and the thermoplastic resin (B) include fillers such as carbon black, carbon fiber, glass fiber, talc, mica, nanoclay and magnesium, and additives such as antioxidants, lubricants and colorants. Can be mixed as appropriate.
  • thermoplastic resin (A) and the thermoplastic resin (B) have different thermal characteristics.
  • the molded product formed by using the three-dimensional molding filament of the present invention has two functions, such as heat resistance and interlayer adhesiveness, and heat resistance and formability (suppression of warpage during molding). It is thought that it can be maintained at the level.
  • the glass transition temperature of the thermoplastic resin (A) is lower than the glass transition temperature of the thermoplastic resin (B).
  • the crystallization temperature of the thermoplastic resin (A) in the temperature lowering process is lower than the crystallization temperature of the thermoplastic resin (B) in the temperature lowering process. Further, it is preferable that the amount of heat of crystallization of the thermoplastic resin (A) in the process of lowering the temperature is lower than the amount of heat of crystallization of the thermoplastic resin (B) in the process of lowering the temperature.
  • the glass transition temperature (Tg) of the thermoplastic resin (A) is the glass transition temperature of the thermoplastic resin (B). It is preferably lower than (Tg).
  • the Tg of the thermoplastic resin (A) is preferably 5 ° C. or higher, more preferably 10 ° C. or higher, and 15 ° C. or higher lower than the Tg of the thermoplastic resin (B). More preferably, it is particularly preferably 20 ° C. or higher, and most preferably 25 ° C. or higher. From the viewpoint of productivity, the Tg of the thermoplastic resin (A) is preferably 100 ° C.
  • thermoplastic resin (B) preferably 80 ° C. or lower, and 60 ° C. or lower lower than the Tg of the thermoplastic resin (B). It is more preferable, and it is particularly preferable that the temperature is 50 ° C. or lower.
  • the glass transition temperature can be adjusted by adjusting the composition, molecular weight, blending with a plasticizer or a compatible resin, and the like. The glass transition temperature can be measured by the method described in Examples.
  • the crystallization of the thermoplastic resin (A) is measured at a cooling rate of 10 ° C./min in the differential scanning calorimetry. It is preferable that the temperature (Tc) is lower than the crystallization temperature (Tc) measured at a cooling rate of 10 ° C./min in the differential scanning calorimetry of the thermoplastic resin (B).
  • the Tc of the thermoplastic resin (A) is preferably 5 ° C. or higher, more preferably 10 ° C. or higher, and 20 ° C. or higher lower than the Tc of the thermoplastic resin (B).
  • the Tc of the thermoplastic resin (A) is preferably 150 ° C. or lower, more preferably 130 ° C. or lower, and 110 ° C. or lower lower than the Tc of the thermoplastic resin (B). Further preferably, it is particularly preferably 90 ° C. or lower, and most preferably 80 ° C. or lower.
  • the crystallization temperature (Tc) in the temperature lowering process can be adjusted by adjusting the composition, molecular weight, addition of a nucleating agent, blending with a compatible resin, and the like.
  • the crystallization temperature in the temperature lowering process is raised from room temperature to the crystal melting temperature (melting point Tm) + 20 ° C. at a heating rate of 10 ° C./min by using a differential scanning calorimeter according to JIS K7121. Then, after holding the temperature for 1 minute, the temperature can be measured from the temperature lowering process when the temperature is lowered to 30 ° C. at a cooling rate of 10 ° C./min.
  • the thermoplastic resin (A) can be used from the viewpoint of interlayer adhesion.
  • the glass transition temperature (Tg) and the crystallization temperature (Tc) in the temperature lowering process the one with the highest observable temperature is the glass transition temperature (Tg) and the temperature lowering process of the thermoplastic resin (B).
  • the crystallization temperature (Tc) in the above the temperature is preferably 1 ° C. or higher, more preferably 5 ° C. or higher, and even more preferably 10 ° C. or higher than the lowest observable temperature.
  • the temperature is as low as 15 ° C. or higher, and most preferably as low as 20 ° C. or higher. From the viewpoint of productivity, it is preferably 150 ° C. or lower, more preferably 130 ° C. or lower, further preferably 110 ° C. or lower, particularly preferably 90 ° C. or lower, and most preferably 80 ° C. or lower. preferable.
  • the crystallization calorie ( ⁇ Hc) measured at a cooling rate of 10 ° C./min in the differential scanning calorimetry of the thermoplastic resin (A) is the cooling rate of 10 ° C. in the differential scanning calorimetry of the thermoplastic resin (B). It is preferably lower than the amount of heat of crystallization ( ⁇ Hc) measured at / min.
  • the ⁇ Hc of the thermoplastic resin (A) is preferably 1 J / g or more lower than the ⁇ Hc of the thermoplastic resin (B), more preferably 5 J / g or more, and 10 J / g.
  • It is more preferably lower by g or more, particularly preferably lower by 15 J / g or more, and most preferably 20 J / g or more. Further, from the viewpoint of heat resistance of the resin molded product described later, it is preferably as low as 100 J / g or less, more preferably as low as 90 J / g or less, further preferably as low as 80 J / g or less, and as low as 70 J / g or less. It is particularly preferable, and most preferably it is as low as 60 J / g or less.
  • the heat resistance and the interlayer are that the crystallization heat quantity ( ⁇ Hc) measured at a cooling rate of 10 ° C./min in the differential scanning calorimetry of the thermoplastic resin (A) is 0 J / g or more and less than 60 J / g. It is preferable from the viewpoint of adhesiveness.
  • the amount of heat of crystallization ( ⁇ Hc) of the thermoplastic resin (A) is preferably 1 J / g or more, more preferably 5 J / g or more, and 10 J / g. It is more preferably g or more.
  • it is preferably 60 J / g or less, more preferably 50 J / g or less, and further preferably 45 J / g or less.
  • the calorific value for crystallization can be adjusted by adjusting the composition and molecular weight of the thermoplastic resin, the addition of a nucleating agent, blending with compatible and incompatible amorphous resins, and the like.
  • the amount of heat of crystallization ( ⁇ Hc) is measured by using a differential scanning calorimeter to raise the temperature of about 10 mg of the sample from room temperature to the crystal melting temperature (melting point Tm) + 20 ° C. at a heating rate of 10 ° C./min. It can be obtained from the thermogram measured in the temperature lowering process when the temperature is kept at the temperature for 1 minute and then lowered to 30 ° C. at a cooling rate of 10 ° C./min.
  • thermoplastic resin (A) and the thermoplastic resin (B) have different additive formulations.
  • the different formulations may mean that the type of additive to be added is different, the amount of the additive to be added may be different, or both of them may be different.
  • examples of the additive include fillers such as carbon black, carbon fiber, glass fiber, glass wool, cellulose nanofiber, talc, mica, nanoclay, and magnesium, antioxidants, lubricants, and colorants.
  • the amount of the filler compounded differs between the thermoplastic resin (A) and the thermoplastic resin (B).
  • the strength of the molded molded product is increased, but there is a problem that the interlayer adhesiveness is lowered.
  • the strength and interlayer adhesiveness are increased. It is considered that these two functions can be maintained at a high level.
  • the amount of the filler of the thermoplastic resin (A) is smaller than the amount of the filler of the thermoplastic resin (B).
  • the blending amount of the filler of the thermoplastic resin (A) is preferably 1% by weight or more lower than the blending amount of the filler of the thermoplastic resin (B), and is 5% by weight or more lower. Is more preferable, 10% by weight or more is more preferable, 15% by weight or more is particularly preferable, and 20% by weight or more is most preferable. Further, from the viewpoint of the strength of the modeled object and the difference in physical properties between the thermoplastic resin (A) and the thermoplastic resin (B), it is preferably 100% by weight or less, and more preferably 80% by weight or less. , 70% by weight or less is more preferable, 60% by weight or less is particularly preferable, and 50% by weight or less is most preferable.
  • the blending amount of the filler of the thermoplastic resin (A) is preferably 20% by weight or less, more preferably 10% by weight or less from the viewpoint of adhesiveness. Further, from the viewpoint of strength and physical properties of the thermoplastic resin (B) not being too wide, 0% by weight or more is preferable, and 1% by weight or more is more preferable.
  • the filler content of the thermoplastic resin (B) is preferably 5% by weight or more, more preferably 10% by weight or more, further preferably 20% by weight or more, and the viscosity at the time of melting is too high from the viewpoint of strength. 50% by weight or less is preferable, and 40% by weight or less is more preferable, from the viewpoint of not having a large difference in physical properties from the thermoplastic resin (A).
  • thermoplastic resin (A) and the thermoplastic resin (B) have different melting characteristics. As a result, it is possible to suppress the deformation due to stringing and heat during molding while improving the surface smoothness of the molded molded product.
  • the melt viscosity of the thermoplastic resin (A) is lower than the melt viscosity of the thermoplastic resin (B) under the molding temperature (nozzle temperature) at the time of molding, that is, the MFR is high. That is, the smoothness of the surface of the molded product is improved by the flow of the thermoplastic resin (A) during molding, while the difficulty of flowing the thermoplastic resin (B) suppresses stringing and deformation due to heat during molding.
  • the MFR of the thermoplastic resin (A) is preferably 0.5 g / 10 minutes or more higher than the MFR of the thermoplastic resin (B), and is preferably 1 g / 10 minutes or more higher. More preferably, it is more preferably 2 g / 10 minutes or more, and most preferably 5 g / 10 minutes or more. Further, from the viewpoint of formability and productivity, it is preferably 50 g / 10 minutes or less, more preferably 40 g / 10 minutes or less, and even more preferably 30 g / 10 minutes or less.
  • the MFR can be measured with a load of 2.16 kgf under the nozzle temperature at the time of modeling according to JIS K7210.
  • the filament for three-dimensional modeling of the present invention uses a thermoplastic resin (A) contained in the sea portion and a thermoplastic resin (B) (and, if necessary, a thermoplastic resin (C)) contained in the island portion. Manufactured.
  • the method for producing the three-dimensional modeling filament of the present invention is not particularly limited, but it is preferably produced by the melt extrusion method.
  • the sea-island structure of the three-dimensional modeling filament of the present invention may be formed by blending and melt-kneading the thermoplastic resin (A) and the thermoplastic resin (B) as a combination of incompatible resins. With this method, the size and number of islands can be easily adjusted according to the blend ratio and melt-kneading conditions.
  • the above-mentioned sea-island structure can be produced by melting the thermoplastic resin (A) and the thermoplastic resin (B) separately and performing melt deposition extrusion. In this case, the sea-island structure becomes a three-dimensional modeling filament that is continuous in the length direction of the filament.
  • the sea-island structure in the cross section mainly depends on the laminated shape of the co-extruded base and the nozzle, the influence of the resin type on the sea-island structure is relatively small, and there is an advantage that the selection range of the resin type is wide.
  • the above-mentioned thermoplastic resin (A), the thermoplastic resin (B), and the above-mentioned thermoplastic resin (C), if necessary, are melted by different extruders to form a laminated block having the above-mentioned sea-island structure.
  • a method of forming a filament by melt-laminating extrusion using a laminated base is preferable.
  • the 3D modeling filament should be stably stored, and the 3D modeling filament should be used in the 3D modeling printer. Is required to be stably supplied. Therefore, the filament for 3D modeling of the present invention is hermetically packaged as a winding body wound around a bobbin, or the winding body is a cartridge for mounting a printer for 3D modeling (hereinafter, simply "3D modeling”). It is preferable that it is stored in a "cartridge for use”) from the viewpoints of long-term storage, stable feeding, protection from environmental factors such as moisture, and prevention of twisting.
  • a cartridge for 3D modeling in addition to the winding body wound around the bobbin, a cartridge that uses a moisture-proof material or a moisture-absorbing material inside and has a structure in which at least the orifice part that feeds out the filament for 3D modeling is sealed.
  • a winding body in which a filament for 3D modeling is wound around a bobbin, or a cartridge for 3D modeling including the winding body is installed in or around a 3D modeling printer, and is always for 3D modeling during molding. From the cartridge, the 3D modeling filament continues to be introduced into the 3D modeling printer.
  • a resin molded product is obtained by molding with a three-dimensional molding printer using the three-dimensional molding filament of the present invention.
  • a modeling method using a three-dimensional modeling printer a material extrusion method (ME method), a powder bed melt bonding method (PBF method), a multi-jet fusion method, a material injection method (MJ method), and a liquid tank photopolymerization method (VP method) )
  • the three-dimensional modeling filament of the present invention can be suitably used for a material extrusion method (ME method).
  • ME method material extrusion method
  • the ME type three-dimensional modeling printer generally has a chamber, and in the chamber, a heatable substrate, an extrusion head installed in a gantry structure, a heating melter, a filament guide, a filament cartridge installation portion, etc. It is equipped with a raw material supply unit.
  • the extrusion head and the heating / melting device are integrated. By installing the extrusion head in the gantry structure, it can be arbitrarily moved on the XY plane of the base.
  • the base is a platform for constructing a target three-dimensional object, a support material, etc., and by heating and heat-retaining it, adhesiveness with a resin molded body can be obtained, and the obtained resin molded body can be used as a desired three-dimensional object for dimensional stability. It is preferable that the specifications can be improved. Further, in order to improve the adhesiveness between the base and the resin molded product, an adhesive glue may be applied onto the base, or a sheet or the like having good adhesiveness to the resin molded product may be attached.
  • the sheet having good adhesiveness to the resin molded body include a sheet having fine irregularities on the surface such as an inorganic fiber sheet, and a sheet made of the same type of resin as the resin molded body. Normally, at least one of the extrusion head and the substrate is movable in the Z-axis direction perpendicular to the XY plane.
  • the three-dimensional modeling filament is unwound from the raw material supply unit, fed to the extrusion head by a pair of opposing rollers or gears, heated and melted by the extrusion head, and extruded from the tip nozzle.
  • the extrusion head moves its position and supplies the raw material onto the substrate for stacking and deposition.
  • the laminated deposit can be taken out from the substrate, and if necessary, the support material or the like can be peeled off or the excess portion can be cut off to obtain a resin molded body as a desired three-dimensional object. ..
  • the means for continuously supplying the raw material to the extrusion head is a method of feeding out filaments or fibers, a method of supplying powder or liquid from a tank or the like via a quantitative feeder, and a method of plastically supplying pellets or granules with an extruder or the like.
  • An example is an example of a method of extruding and supplying the material.
  • the method of feeding and supplying the filament that is, the method of feeding and supplying the above-mentioned three-dimensional modeling filament of the present invention is the most preferable.
  • the resin molded product of the present invention is excellent in various properties such as strength, surface appearance, heat resistance, and durability.
  • the use is not particularly limited, but stationery; toys; covers for mobile phones and smartphones; parts such as grips; school teaching materials, home appliances, repair parts for OA equipment, various parts such as automobiles, motorcycles, and bicycles. It can be suitably used for applications such as electric / electronic equipment materials, agricultural materials, horticultural materials, fishery materials, civil engineering / building materials, and medical supplies.
  • Glass transition temperature (Tg) Using a differential scanning calorimeter manufactured by PerkinElmer Co., Ltd., trade name "Pyris1 DSC", about 10 mg of the resin raw material was heated from room temperature to 250 ° C. at a heating rate of 10 ° C./min according to JIS K7121. It was held at temperature for 1 minute. After that, the temperature was lowered to 30 ° C. at a cooling rate of 10 ° C./min, and the glass transition temperature (Tg) (° C.) (re-) was taken from each thermogram measured when the temperature was raised to 250 ° C. at a heating rate of 10 ° C./min again. The temperature rise process) was determined. In addition, each value is rounded down to the second place in the minority.
  • the molding was performed at a substrate temperature of 100 ° C. and a nozzle temperature of 265 ° C.
  • the chamber temperature at the time of modeling was carried out under two conditions of 75 ° C. and 85 ° C.
  • the molten resin was discharged from the extrusion nozzle in the form of a strand having a diameter of 0.4 mm.
  • a tensile test was performed on the above-mentioned dumbbell-shaped molded product at an initial chuck-to-chuck distance of 45 mm, a speed of 50 mm / min, and 23 ° C., and the interlayer adhesive strength was evaluated from the tensile elongation at break as follows. Good: Tensile breaking elongation is 6% or more OK: Tensile breaking elongation is 5% or more and less than 6% NG: Tensile breaking elongation is less than 5%
  • ABS resin Chi Mei Corp. Manufactured, trade name: PA757, Tg: 104 ° C PBS resin: manufactured by Mitsubishi Chemical Corporation, product name: Bio PBS FD92, Tg: less than 0 ° C, Tm: 86 ° C
  • Example 1 Preparation of raw materials for each layer
  • the above ABS resin is mixed at a ratio of 90 parts by mass and PBS resin at a ratio of 10 parts by mass, and melt-kneaded and extruded at 250 ° C. with a 25 mm ⁇ twin-screw extruder to prepare the raw material (A) for the sea part (or for the sheath layer). And said.
  • the raw material (A) had a Tg of about 80 ° C.
  • the raw material (B) for the island part (or for the core layer) the above ABS resin was used as it was.
  • the MFR of each temperature measured at each temperature with a load of 2.16 kgf was 2.2 (g / 10 min) at 220 ° C. and 5.4 (g / 10 min) at 240 ° C. It was 9.3 (g / 10min) at 260 ° C. (g / 10min).
  • the MFR of each temperature measured at each temperature with a load of 2.16 kgf was 1.7 (g / 10 min) at 220 ° C. and 5.0 (g / g) at 240 ° C. It was 7.4 (g / 10min) at 260 ° C. (/ 10min).
  • a filament having a diameter of 1.75 mm was obtained by co-extruding at a melting temperature of 230 to 250 ° C. and then cooling in cooling water at 40 ° C. with a ratio of extrusion amount to the raw material (B) of 1: 1.
  • the cross-sectional observation results of this filament are shown in FIG. 12, and the various evaluation results are shown in Table 1.
  • Example 2 The three-dimensional modeling filament having a sea-island structure having a sea-island structure similar to that in FIG. 1 was made in the same manner as in Example 1 except that the extrusion amount ratio of the raw material (A) and the raw material (B) was 1.7: 1. A filament having a diameter of 1.75 mm was obtained. The cross-sectional observation results of this filament are shown in FIG. 13, and the various evaluation results are shown in Table 1. In addition, as a result of cross-section inspection, it was observed that the entire 80 / 100D circle was the sea area.
  • Example 3 A filament for three-dimensional modeling having a sea-island structure having a sea-island structure similar to that in FIG. A filament having a diameter of 1.75 mm was obtained. The cross-sectional observation results of this filament are shown in FIG. 14, and the various evaluation results are shown in Table 1. In addition, as a result of cross-section inspection, it was observed that the entire outside of the circle of 78 / 100D was the sea area.
  • Comparative Example 1 A filament for three-dimensional modeling having a core-sheath structure whose cross section is shown in FIG.
  • the extrusion amount ratio was 1: 1 and the mixture was coextruded at a melting temperature of 230 to 250 ° C. and then cooled in cooling water at 40 ° C. to obtain a filament having a diameter of 1.75 mm.
  • the cross-sectional observation results of this filament are shown in FIG. 15, and the various evaluation results are shown in Table 1.
  • Comparative Example 2 A filament having a diameter of 1.75 mm was obtained by the same method as in Comparative Example 1 except that the extrusion amount ratio between the raw material (A) and the raw material (B) was changed to 2: 1. The cross-sectional observation results of this filament are shown in FIG. 16, and the various evaluation results are shown in Table 1.
  • the Tg of the raw material (A) used for the sea part or the sheath layer is lower than the Tg of the raw material (B) used for the island part or the core layer.
  • This is intended to impart interlayer adhesiveness to the three-dimensional modeling filament with the raw material (A) and heat resistance with the raw material (B).
  • Comparative Example 1 and Comparative Example 2 are compared, Comparative Example 2 has a larger sheath volume than Comparative Example 1, and Comparative Example 2 has higher interlayer adhesiveness than Comparative Example 1, but the heat resistance is higher. Comparative Example 2 is lower than Comparative Example 1. That is, the interlayer adhesiveness and heat resistance are contradictory characteristics when viewed as a filament as a whole.
  • the volume ratio of the raw material (A) in the filament is in the same range as in Comparative Examples 1 and 2, but compared with Comparative Example 1.
  • the interlayer adhesiveness is equal to or higher than that of Comparative Example 2, and the heat resistance is equal to or higher than that of Comparative Example 2.
  • Example 1 and Comparative Example 1 the content ratios of the raw material (A) and the raw material (B) are the same, but the tensile elongation at break on the Z axis is improved. It is considered that this is because the sea part fills the space between the laminated objects more efficiently than the core-sheath structure, thereby reducing the voids (defects) that trigger the fracture. Further, when Example 2 and Comparative Example 1 are compared, the heat resistance of Example 2 is equal to or higher than that of Comparative Example 1 even though the content ratio of the raw material (B) is smaller in Example 2. It is considered that this is because even if the total area of the island part is small, the island part efficiently suppresses the softening of the sea part at high temperature by efficiently arranging it in the filament.
  • the filament having the sea-island structure of the present invention can maintain both the interlayer adhesiveness of the raw material (A) and the heat resistance of the raw material (B) at a higher level than that of the core-sheath filament. It can be said that there is.
  • Examples 1 and 2 have slightly better heat resistance than Example 3. It is considered that this is because the island ratio within the 9 / 10D circle is higher than that in Example 3, and the island portion made of the raw material (B) is slightly more likely to exhibit heat resistance.
  • Examples 1 and 2 have slightly better interlayer adhesiveness at 75 ° C. as compared with Example 3. It is considered that this is because the heat resistance is good as described above, the modeled object is less likely to be deformed during modeling, and the modeled object is less likely to have a defect that triggers breakage.
  • the three-dimensional modeling filament having the sea-island structure of the present invention can efficiently express all the characteristics of each layer and can coexist, and in particular, the heat resistance of the modeled object in three-dimensional modeling can be obtained. It is preferably used to improve the interlayer adhesiveness.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Optics & Photonics (AREA)

Abstract

The present invention addresses the problem of obtaining a three-dimensional molding filament having a multilayer structure, with which all the properties of each layer can be expressed efficiently, and can coexist. A three-dimensional molding filament according to the present invention has a sea-island structure in a cross section perpendicular to the longitudinal direction, wherein the sea of the sea-island structure contains a thermoplastic resin (A), the islands of the sea-island structure contain a thermoplastic resin (B), and the sea-island structure is continuous in the longitudinal direction of the filament.

Description

3次元造形用フィラメントFilament for 3D modeling
 本発明は、3次元造形用材料、特に材料押出方式(ME方式)に用いる3次元造形用フィラメントに関する。
 また、本発明は、3次元造形用フィラメント、巻回体、3次元造形用カートリッジに関する。
The present invention relates to a three-dimensional modeling material, particularly a three-dimensional modeling filament used in a material extrusion method (ME method).
The present invention also relates to a filament for three-dimensional modeling, a wound body, and a cartridge for three-dimensional modeling.
 付加造形技術(アディティブ・マニュファクチュアリング)、即ち今日一般的に3次元プリンタ(3Dプリンター)と呼称されているシステム(例えば米国のストラタシス・インコーポレイテッド社製の熱積層堆積(FDM)システム)は、コンピュータ支援設計(CAD)モデルを基にして3次元物体を層状に構築するために用いられている。その中でも材料押出方式(ME方式)は、原料を熱可塑性樹脂からなるフィラメントとして押出ヘッドへ挿入し、加熱溶融しながら押出ヘッドに備えたノズル部位からチャンバー内のX-Y平面基盤上に連続的に押し出し、押し出した樹脂を既に堆積している樹脂積層体上に堆積させると共に融着させ、これが冷却するにつれ一体固化する、という簡単なシステムであるため、広く用いられるようになってきている。ME方式では、通常、基盤に対するノズル位置がX-Y平面に垂直方向なZ軸方向に上昇しつつ、前記押出工程が繰り返されることによりCADモデルに類似した3次元物体が構築される(例えば、特許文献1、2参照)。 Additional modeling technology (additive manufacturing), a system commonly referred to today as a three-dimensional printer (3D printer) (for example, a Fused Deposition Modeling (FDM) system manufactured by Stratasys Incorporated in the United States), is a computer. It is used to build three-dimensional objects in layers based on a CAD model. Among them, the material extrusion method (ME method) inserts the raw material into the extrusion head as a filament made of a thermoplastic resin, and continuously heats and melts the raw material from the nozzle portion provided in the extrusion head onto the XY plane substrate in the chamber. It has become widely used because it is a simple system in which the extruded resin is deposited on a resin laminate that has already been deposited and fused, and this is integrally solidified as it cools. In the ME method, a three-dimensional object similar to a CAD model is usually constructed by repeating the extrusion process while the nozzle position with respect to the substrate rises in the Z-axis direction perpendicular to the XY plane (for example,). See Patent Documents 1 and 2).
 近年、3次元プリンタに対して、単なるデザインの確認だけではなく、最終製品や製造ツールの造形といった産業用途への利用も期待されるようになってきており、そのため上記フィラメントも、さまざまな高機能化が求められている。そこで、上記フィラメントを多層構造とすることで、フィラメントに複数の機能を付与する技術が開示されている(例えば、特許文献3参照)。 In recent years, 3D printers are expected to be used not only for design confirmation but also for industrial applications such as modeling of final products and manufacturing tools. Therefore, the above filaments also have various high functions. Is required. Therefore, a technique for imparting a plurality of functions to the filament by forming the filament into a multilayer structure is disclosed (see, for example, Patent Document 3).
 例えば、多層構造化の1つとして、フィラメントを芯鞘構造とすることで、造形した成形体の層間の接着性を向上する方法も検討されている(例えば、特許文献4~5参照)。 For example, as one of the multi-layered structures, a method of improving the adhesiveness between the layers of the molded molded product by forming the filament into a core-sheath structure is also being studied (see, for example, Patent Documents 4 to 5).
日本国特表2003-502184号公報Japan Special Table 2003-502184 日本国特表2003-534159号公報Japan Special Table 2003-534159 日本国特開2016-193602号公報Japanese Patent Application Laid-Open No. 2016-193602 国際公開第2019/151235号International Publication No. 2019/151235 国際公開第2019/235104号International Publication No. 2019/235104
 ここで、特許文献3~5に記載のような芯鞘構造を持つフィラメントにおいて、芯と鞘を構成する樹脂に物性の異なる樹脂を用いた場合、それぞれの樹脂の物性がフィラメントの物性としてどの程度発現するかは、フィラメント全体における、それぞれの樹脂の体積分率(すなわち芯と鞘の体積比率)に大きく依存することが予想される。すなわち、芯の体積分率が大きい(フィラメント径に対する芯の径が大きい)と、フィラメント自体の物性は、より芯の物性に近くなり、逆に芯の体積分率が小さい(フィラメント径に対する芯の径が小さい)と、フィラメント自体の物性は、より鞘の物性に近くなると考えられる。これに対して本発明者が詳細に検討したところ、芯を構成する樹脂の機能と、鞘を構成する樹脂の機能は、芯鞘フィラメント全体においては背反特性となり、双方の機能をどちらも高いレベルで維持することは困難であることがわかった。 Here, in filaments having a core-sheath structure as described in Patent Documents 3 to 5, when resins having different physical properties are used as the resins constituting the core and the sheath, the physical characteristics of the respective resins are the physical properties of the filament. It is expected that the expression will greatly depend on the volume fraction of each resin (that is, the volume ratio of the core and the sheath) in the entire filament. That is, when the volume fraction of the core is large (the diameter of the core is large with respect to the filament diameter), the physical characteristics of the filament itself are closer to the physical characteristics of the core, and conversely, the volume fraction of the core is small (the volume fraction of the core with respect to the filament diameter). (Small diameter), the physical properties of the filament itself are considered to be closer to those of the sheath. On the other hand, as a result of detailed examination by the present inventor, the functions of the resin constituting the core and the functions of the resin constituting the sheath have contradictory characteristics in the entire core-sheath filament, and both functions are at a high level. It turned out to be difficult to maintain in.
 例えば、特許文献4~5では、フィラメントを芯鞘構造にし、鞘を構成する樹脂のTgあるいは降温過程での結晶化温度(Tc)を、芯を構成する樹脂よりも低くすることで、造形物の耐熱性を維持したまま、層間の接着性を向上できることが開示されているが、層間の接着性を向上しようと鞘の体積比率を大きくすると、芯の体積比率が小さくなることで造形物の耐熱性が低くなる。すなわち、鞘層で担保される層間接着性と、芯層で担保される耐熱性は、それぞれの体積比率によって背反特性となるため、層間接着性および耐熱性の双方を、芯鞘フィラメント全体として高いレベルで維持するのは困難である。 For example, in Patent Documents 4 to 5, the filament is formed into a core-sheath structure, and the Tg of the resin constituting the sheath or the crystallization temperature (Tc) in the temperature lowering process is made lower than that of the resin constituting the core. It is disclosed that the adhesiveness between layers can be improved while maintaining the heat resistance of the resin. However, if the volume ratio of the sheath is increased in order to improve the adhesiveness between layers, the volume ratio of the core becomes smaller and the modeled product Heat resistance is low. That is, since the interlayer adhesiveness secured by the sheath layer and the heat resistance secured by the core layer have contradictory characteristics depending on the respective volume ratios, both the interlayer adhesiveness and the heat resistance are high as the core sheath filament as a whole. It is difficult to maintain at the level.
 本発明は上記課題を解決するものであって、多層構造を有する3次元造形用フィラメントにおいて、それぞれの層がもつすべての特性を効率的に発現、併存できる3次元造形用フィラメントを提供することを目的とする。 The present invention solves the above problems, and provides a three-dimensional modeling filament having a multi-layer structure, which can efficiently express and coexist with all the characteristics of each layer. The purpose.
 本発明者は、鋭意検討を重ねた結果、長手方向に垂直な断面に海島構造を有し、該海島構造の海部が熱可塑性樹脂(A)を含有し、該海島構造の島部が熱可塑性樹脂(B)を含有する3次元造形用フィラメントとすることで、上記課題を解決できると考えた。 As a result of diligent studies, the present inventor has a sea-island structure in a cross section perpendicular to the longitudinal direction, the sea part of the sea-island structure contains a thermoplastic resin (A), and the island part of the sea-island structure is thermoplastic. It was considered that the above-mentioned problems could be solved by using a filament for three-dimensional modeling containing the resin (B).
 すなわち、本発明は下記<1>~<14>に関するものである。
 <1>
 長手方向に垂直な断面に海島構造を有し、
 該海島構造の海部が熱可塑性樹脂(A)を含有し、
 該海島構造の島部が熱可塑性樹脂(B)を含有し、
 該海島構造が、フィラメントの長手方向に連続している3次元造形用フィラメント。
That is, the present invention relates to the following <1> to <14>.
<1>
It has a sea-island structure in a cross section perpendicular to the longitudinal direction,
The sea part of the sea island structure contains the thermoplastic resin (A),
The island portion of the sea island structure contains a thermoplastic resin (B),
A three-dimensional modeling filament in which the sea-island structure is continuous in the longitudinal direction of the filament.
 <2>
 前記熱可塑性樹脂(A)のガラス転移温度が、前記熱可塑性樹脂(B)のガラス転移温度よりも低い、前記<1>に記載の3次元造形用フィラメント。
 <3>
 前記熱可塑性樹脂(A)の降温過程での結晶化温度が、前記熱可塑性樹脂(B)の降温過程での結晶化温度よりも低い、前記<1>又は<2>に記載の3次元造形用フィラメント。
 <4>
 前記熱可塑性樹脂(A)の降温過程での結晶化熱量が、前記熱可塑性樹脂(B)の降温過程での結晶化熱量よりも低い、前記<1>~<3>のいずれか1つに記載の3次元造形用フィラメント。
<2>
The three-dimensional modeling filament according to <1>, wherein the glass transition temperature of the thermoplastic resin (A) is lower than the glass transition temperature of the thermoplastic resin (B).
<3>
The three-dimensional modeling according to <1> or <2>, wherein the crystallization temperature of the thermoplastic resin (A) in the temperature lowering process is lower than the crystallization temperature of the thermoplastic resin (B) in the temperature lowering process. For filament.
<4>
The amount of heat of crystallization of the thermoplastic resin (A) in the process of lowering the temperature is lower than the amount of heat of crystallization of the thermoplastic resin (B) in the process of lowering the temperature, to any one of the above <1> to <3>. The described three-dimensional modeling filament.
 <5>
 前記熱可塑性樹脂(A)が、アクリロニトリル-ブタジエン-スチレン共重合樹脂、メチルメタクリレート-ブタジエン-スチレン共重合樹脂、ポリカーボネート、ポリエーテルイミド、ポリオレフィン、ポリアミド、ポリエーテルエーテルケトン及びポリエーテルケトンケトンからなる群から選択される少なくとも1つを含む、前記<1>~<4>のいずれか1つに記載の3次元造形用フィラメント。
 <6>
 前記熱可塑性樹脂(B)が、アクリロニトリル-ブタジエン-スチレン共重合樹脂、メチルメタクリレート-ブタジエン-スチレン共重合樹脂、ポリカーボネート、ポリエーテルイミド、ポリオレフィン、ポリアミド、ポリエーテルエーテルケトン及びポリエーテルケトンケトンからなる群から選択される少なくとも1つを含む、前記<1>~<5>のいずれか1つに記載の3次元造形用フィラメント。
<5>
The group in which the thermoplastic resin (A) is composed of an acrylonitrile-butadiene-styrene copolymer resin, a methyl methacrylate-butadiene-styrene copolymer resin, a polycarbonate, a polyetherimide, a polyolefin, a polyamide, a polyetheretherketone, and a polyetherketoneketone. The three-dimensional modeling filament according to any one of <1> to <4>, which comprises at least one selected from.
<6>
The group in which the thermoplastic resin (B) is composed of an acrylonitrile-butadiene-styrene copolymer resin, a methyl methacrylate-butadiene-styrene copolymer resin, a polycarbonate, a polyetherimide, a polyolefin, a polyamide, a polyetheretherketone, and a polyetherketoneketone. The three-dimensional modeling filament according to any one of <1> to <5>, which comprises at least one selected from.
 <7>
 前記海島構造の島部が、フィラメントの長手方向に垂直な断面において2個以上10個以下に分かれている、前記<1>~<6>のいずれか1つに記載の3次元造形用フィラメント。
 <8>
 フィラメント径をDとした場合に、フィラメントの長手方向に垂直な断面の断面中心から直径9/10Dの円内における島部の面積割合が、直径9/10Dの円の面積に対して35%以上99%以下である、前記<1>~<7>のいずれか1つに記載の3次元造形用フィラメント。
 <9>
 フィラメント径をDとした場合に、フィラメントの長手方向に垂直な断面の断面中心から直径98/100Dの円外が全て海部である、前記<1>~<8>のいずれか1つに記載の3次元造形用フィラメント。
<7>
The three-dimensional modeling filament according to any one of <1> to <6>, wherein the island portion of the sea-island structure is divided into two or more and ten or less in a cross section perpendicular to the longitudinal direction of the filament.
<8>
When the filament diameter is D, the area ratio of the island part in the circle with a diameter of 9 / 10D from the cross-sectional center of the cross section perpendicular to the longitudinal direction of the filament is 35% or more with respect to the area of the circle with a diameter of 9 / 10D. The filament for three-dimensional modeling according to any one of <1> to <7>, which is 99% or less.
<9>
The above-mentioned <1> to <8>, wherein when the filament diameter is D, the entire circle outside the circle having a diameter of 98 / 100D from the cross-sectional center of the cross section perpendicular to the longitudinal direction of the filament is the sea part. Filament for 3D modeling.
 <10>
 前記海島構造の前記海部の熱可塑性樹脂(A)のガラス転移温度(Tg)が、熱可塑性樹脂(B)のガラス転移温度(Tg)より5~100℃低い、前記<1>~<9>のいずれか1つに記載の3次元造形用フィラメント。
 <11>
 前記島部の径dが50μm以上1500μm以下である、前記<1>~<10>のいずれか1つに記載の3次元造形用フィラメント。
<10>
The glass transition temperature (Tg) of the thermoplastic resin (A) in the sea portion of the sea island structure is 5 to 100 ° C. lower than the glass transition temperature (Tg) of the thermoplastic resin (B). The filament for three-dimensional modeling according to any one of the above.
<11>
The three-dimensional modeling filament according to any one of <1> to <10>, wherein the island portion has a diameter d of 50 μm or more and 1500 μm or less.
 <12>
 前記<1>~<11>のいずれか1つに記載の3次元造形用フィラメントからなる樹脂成形体。
 <13>
 前記<1>~<11>のいずれか1つに記載の3次元造形用フィラメントの巻回体。
 <14>
 前記<1>~<11>のいずれか1つに記載の3次元造形用フィラメントからなる3次元造形用カートリッジ。
<12>
A resin molded body made of the three-dimensional modeling filament according to any one of <1> to <11>.
<13>
The wound body of the filament for three-dimensional modeling according to any one of <1> to <11>.
<14>
A three-dimensional modeling cartridge made of the three-dimensional modeling filament according to any one of <1> to <11>.
 本発明によれば、多層構造を有する3次元造形用フィラメントにおいて、それぞれの層がもつすべての特性を効率的に発現、併存できる3次元造形用フィラメントを提供することができる。 According to the present invention, in a three-dimensional modeling filament having a multi-layer structure, it is possible to provide a three-dimensional modeling filament capable of efficiently expressing and coexisting all the characteristics of each layer.
図1は、本発明の3次元造形用フィラメント断面における海島構造の一例を説明する模式図である。FIG. 1 is a schematic view illustrating an example of a sea-island structure in a cross section of a filament for three-dimensional modeling of the present invention. 図2は、本発明の3次元造形用フィラメント断面における海島構造の一例を説明する模式図である。FIG. 2 is a schematic view illustrating an example of a sea-island structure in a cross section of a filament for three-dimensional modeling of the present invention. 図3は、本発明の3次元造形用フィラメント断面における海島構造の一例を説明する模式図である。FIG. 3 is a schematic view illustrating an example of a sea-island structure in a cross section of a filament for three-dimensional modeling of the present invention. 図4は、本発明の3次元造形用フィラメント断面における海島構造の一例を説明する模式図である。FIG. 4 is a schematic view illustrating an example of a sea-island structure in a cross section of a filament for three-dimensional modeling of the present invention. 図5は、本発明の3次元造形用フィラメント断面における海島構造の一例を説明する模式図である。FIG. 5 is a schematic view illustrating an example of a sea-island structure in a cross section of a filament for three-dimensional modeling of the present invention. 図6は、本発明の3次元造形用フィラメント断面における海島構造の一例を説明する模式図である。FIG. 6 is a schematic view illustrating an example of a sea-island structure in a cross section of a filament for three-dimensional modeling of the present invention. 図7は、本発明の3次元造形用フィラメント断面における海島構造の一例を説明する模式図である。FIG. 7 is a schematic view illustrating an example of a sea-island structure in a cross section of a filament for three-dimensional modeling of the present invention. 図8は、3次元造形用フィラメント断面における芯鞘構造の一例を説明する模式図である。FIG. 8 is a schematic view illustrating an example of a core-sheath structure in a three-dimensional modeling filament cross section. 図9は、3次元造形用フィラメントを用いて造形されるダンベル状サンプルの引張方向を垂直にして立てた状態を説明するダンベル状サンプルの全体斜視図である。FIG. 9 is an overall perspective view of the dumbbell-shaped sample for explaining a state in which the dumbbell-shaped sample formed by using the three-dimensional modeling filament is erected with the tension direction vertical. 図10は、3次元造形用フィラメントを用いて造形されるダンベル状サンプルの引張方向の断面を説明する模式図である。FIG. 10 is a schematic view illustrating a cross section in the tensile direction of a dumbbell-shaped sample formed by using a three-dimensional modeling filament. 図11は、3次元造形用フィラメントを用いて造形されるダンベル状サンプル形状の変化の程度について説明する模式図である。FIG. 11 is a schematic diagram illustrating the degree of change in the shape of the dumbbell-shaped sample formed by using the three-dimensional modeling filament. 図12は、実施例1で得られた3次元造形用フィラメントの断面観察結果を示す写真図である。FIG. 12 is a photographic view showing a cross-sectional observation result of the three-dimensional modeling filament obtained in Example 1. 図13は、実施例2で得られた3次元造形用フィラメントの断面観察結果を示す写真図である。FIG. 13 is a photographic view showing a cross-sectional observation result of the three-dimensional modeling filament obtained in Example 2. 図14は、実施例3で得られた3次元造形用フィラメントの断面観察結果を示す写真図である。FIG. 14 is a photographic view showing a cross-sectional observation result of the three-dimensional modeling filament obtained in Example 3. 図15は、比較例1で得られた3次元造形用フィラメントの断面観察結果を示す写真図である。FIG. 15 is a photographic view showing a cross-sectional observation result of the three-dimensional modeling filament obtained in Comparative Example 1. 図16は、比較例2で得られた3次元造形用フィラメントの断面観察結果を示す写真図である。FIG. 16 is a photographic view showing a cross-sectional observation result of the three-dimensional modeling filament obtained in Comparative Example 2.
 以下、本発明を実施するための形態(以下、「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で種々変形して実施することができる。
 なお、本明細書において、「質量」は「重量」と同義である。
Hereinafter, embodiments for carrying out the present invention (hereinafter, referred to as “the present embodiment”) will be described in detail. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be implemented with various modifications within the scope of the gist thereof.
In addition, in this specification, "mass" is synonymous with "weight".
 本発明は、長手方向に垂直な断面に海島構造を有し、該海島構造の海部が熱可塑性樹脂(A)を含有し、該海島構造の島部が熱可塑性樹脂(B)を含有し、該海島構造が、フィラメントの長手方向に連続している3次元造形用フィラメントである。 The present invention has a sea-island structure in a cross section perpendicular to the longitudinal direction, the sea portion of the sea-island structure contains a thermoplastic resin (A), and the island portion of the sea-island structure contains a thermoplastic resin (B). The sea-island structure is a three-dimensional modeling filament that is continuous in the longitudinal direction of the filament.
 <3次元造形用フィラメント>
 1.海島構造の形状
 本発明の3次元造形用フィラメントは海成分からなる海部および島成分からなる島部を含む海島構造を有する。海部および島部とは、フィラメントの長軸に対して垂直な断面(径方向の断面)において、互いに異なる組成を有する領域である。また、海島構造においては、海成分(海部)内に複数の島成分(島部)が点在する。
<Filament for 3D modeling>
1. 1. Shape of sea-island structure The filament for three-dimensional modeling of the present invention has a sea-island structure including a sea part composed of a sea component and an island part composed of an island component. The sea part and the island part are regions having different compositions in a cross section (diametrical cross section) perpendicular to the long axis of the filament. Further, in the sea-island structure, a plurality of island components (island parts) are scattered within the sea component (sea part).
 ここで、本発明の3次元造形用フィラメントにおける海島構造を、図1~5を用いて説明する。図1~5はフィラメントの断面図であり、フィラメントの任意の箇所を、フィラメントの長手方向に対して垂直に切断して断面を観察した図である。
 図1~3に示す3次元造形用フィラメントは、熱可塑性樹脂(A)を含有する海部1に熱可塑性樹脂(B)を含有する島部2が点在している。断面において島部の数は特に制限されないが、たとえば図1では、島部2は3個であり、図2ではより多数の島部2を有する様子を図示している。また、島部2の形状は円形でなくてもよく、例えば図3に示すような扇形や、それ以外にも星型、四角形、多角形などが挙げられる。
Here, the sea-island structure in the three-dimensional modeling filament of the present invention will be described with reference to FIGS. 1 to 5. 1 to 5 are cross-sectional views of the filament, and is a view obtained by cutting an arbitrary portion of the filament perpendicular to the longitudinal direction of the filament and observing the cross section.
In the three-dimensional modeling filaments shown in FIGS. 1 to 3, the sea portion 1 containing the thermoplastic resin (A) is interspersed with the island portions 2 containing the thermoplastic resin (B). The number of islands is not particularly limited in the cross section, but for example, FIG. 1 shows that the number of islands 2 is three, and FIG. 2 shows that the number of islands 2 is larger. Further, the shape of the island portion 2 does not have to be circular, and examples thereof include a fan shape as shown in FIG. 3, a star shape, a quadrangle, and a polygon.
 また、島部は熱可塑性樹脂(B)のみを含んで構成されていてもよいが、図4や図5に符号3で示すように、島部の一部を、熱可塑性樹脂(A)および熱可塑性樹脂(B)の双方と物性が異なる、熱可塑性樹脂(C)で構成してもよい。熱可塑性樹脂(C)としては、上記熱可塑性樹脂(A)や熱可塑性樹脂(B)として以下に例示するものと同様のものが使用できる。 Further, the island portion may be composed of only the thermoplastic resin (B), but as shown by reference numeral 3 in FIGS. 4 and 5, a part of the island portion is formed of the thermoplastic resin (A) and the thermoplastic resin (A). It may be composed of a thermoplastic resin (C) having different physical properties from both of the thermoplastic resin (B). As the thermoplastic resin (C), the same thermoplastic resin (A) and the same as those exemplified below can be used as the thermoplastic resin (B).
 ここで、本発明の3次元造形用フィラメントは、それぞれの層がもつすべての特性を効率的に発現、併存させる観点及び3次元造形物内での物性を統一する観点から、垂直な断面における海島構造は形状が大きく変化することなく長手方向に連続していることが好ましい。 Here, the filament for 3D modeling of the present invention has a sea island in a vertical cross section from the viewpoint of efficiently expressing and coexisting all the characteristics of each layer and from the viewpoint of unifying the physical properties in the 3D model. The structure is preferably continuous in the longitudinal direction without significantly changing its shape.
 また、本発明の3次元造形用フィラメントは、造形される樹脂成形体へのボイド混入を防ぎ、樹脂成形体の強度や外観を向上させる観点から、フィラメントの長軸に対して垂直な断面における空隙率は5%以下であることが好ましく、3%以下であることがより好ましく、1%以下であることがさらに好ましく、0.1%以下であることが特に好ましく、0.01%以下であることが最も好ましい。 Further, the filament for three-dimensional molding of the present invention prevents voids from being mixed into the resin molded body to be molded, and from the viewpoint of improving the strength and appearance of the resin molded body, a gap in a cross section perpendicular to the long axis of the filament. The rate is preferably 5% or less, more preferably 3% or less, further preferably 1% or less, particularly preferably 0.1% or less, and 0.01% or less. Is most preferable.
 例えば、海部を構成する海成分として以下に詳述する熱可塑性樹脂(A)を用い、島部を構成する島成分として熱可塑性樹脂(B)をそれぞれ含有することで、高機能の3次元造形用フィラメントを提供することができる。
 本発明の3次元造形用フィラメントが本発明の効果を奏する理由は、未だ明らかではないが、以下のように推察される。
For example, by using the thermoplastic resin (A) described in detail below as the sea component constituting the sea part and containing the thermoplastic resin (B) as the island component constituting the island part, high-performance three-dimensional modeling is performed. Filament can be provided.
The reason why the three-dimensional modeling filament of the present invention exerts the effect of the present invention is not yet clear, but it is presumed as follows.
 つまり、本発明の3次元造形用フィラメントは海部および島部を含む海島構造とすることで、海部を構成する熱可塑性樹脂(A)の体積を増やした場合も、島部を構成する熱可塑性樹脂(B)がフィラメント断面中に平均的に配置されることで、熱可塑性樹脂(B)の特性も効率よくフィラメント全体に反映することができる。結果、本発明の3次元造形用フィラメントは、それぞれの層がもつすべての特性を効率的に発現、併存できると考えられる。 That is, the three-dimensional modeling filament of the present invention has a sea-island structure including a sea part and an island part, so that even if the volume of the thermoplastic resin (A) constituting the sea part is increased, the thermoplastic resin constituting the island part is formed. By arranging (B) evenly in the cross section of the filament, the characteristics of the thermoplastic resin (B) can be efficiently reflected in the entire filament. As a result, it is considered that the three-dimensional modeling filament of the present invention can efficiently express and coexist all the characteristics of each layer.
 その3次元造形用フィラメントの長軸方向に対して垂直な断面において、フィラメント径をDとした場合に、断面中心から直径9/10Dの円内において、島部の占める面積が直径9/10Dの円の面積に対して35%以上99%以下であることが好ましい。このように、熱可塑性樹脂(B)を含有する島部の割合が一定量フィラメント中に存在することで、熱可塑性樹脂(A)および熱可塑性樹脂(B)双方の特性を、高いレベルで3次元造形用フィラメントに反映することができると考えられる。また、双方の樹脂の特性を高いレベルで協奏させる観点から、この面積割合が40%以上であることが好ましく、43%以上であることがより好ましく、45%以上であることがさらに好ましく、50%以上が特に好ましく、54%以上が最も好ましい。また、95%以下であることが好ましく、90%以下であることがより好ましく、88%以下であることがさらに好ましく、80%以下が特に好ましく、75%以下が最も好ましい。 In a cross section perpendicular to the long axis direction of the three-dimensional modeling filament, when the filament diameter is D, the area occupied by the island portion is 9 / 10D in diameter within a circle with a diameter of 9 / 10D from the center of the cross section. It is preferably 35% or more and 99% or less with respect to the area of the circle. As described above, when the proportion of the island portion containing the thermoplastic resin (B) is present in the filament in a certain amount, the characteristics of both the thermoplastic resin (A) and the thermoplastic resin (B) can be improved at a high level of 3 It is considered that this can be reflected in the filament for dimensional modeling. Further, from the viewpoint of coordinating the characteristics of both resins at a high level, the area ratio is preferably 40% or more, more preferably 43% or more, further preferably 45% or more, and 50%. % Or more is particularly preferable, and 54% or more is most preferable. Further, it is preferably 95% or less, more preferably 90% or less, further preferably 88% or less, particularly preferably 80% or less, and most preferably 75% or less.
 本発明の海島構造の3次元造形用フィラメントは、図1~5のように全ての島部が海部で覆われていてもよいし、図6のように一部の島部がフィラメント表面に露出する部分を有していてもよいし、図7のようにすべての島部がフィラメント表面に露出する部分を有していてもよい。ただし、海部に、層間の接着性向上や、その他造形物の表面特性(表面平滑性、表面の触感など)の改質機能を持たせる場合は、図1~5のように全ての島部が海部で覆われていた方が、機能性を有する海部の保持率が高まることから好ましい形態となる。 In the three-dimensional modeling filament of the sea-island structure of the present invention, all the islands may be covered with the sea as shown in FIGS. 1 to 5, and some of the islands may be exposed on the filament surface as shown in FIG. It may have a portion to be formed, or as shown in FIG. 7, all the island portions may have a portion exposed on the filament surface. However, if the sea area is to be provided with a function to improve the adhesiveness between layers and to modify the surface characteristics (surface smoothness, surface tactile sensation, etc.) of other shaped objects, all the island areas are as shown in FIGS. 1 to 5. It is preferable that the sea part is covered with the sea part because the retention rate of the functional sea part is increased.
 本発明において、3次元造形用フィラメントの長軸方向に対して垂直な断面において、フィラメントの長手方向に垂直な断面の断面中心から直径98/100Dの円外が全て海部であることが好ましい。つまりフィラメント表面が海成分で覆われていることが好ましい。フィラメント表面が海成分で覆われていることで、海部が層間接着性向上機能や表面特性改質機能を有する場合、その効果を発揮しやすい。たとえば、層間接着性や、表面平滑性、表面の触感などを向上できる。また、上記海部の機能を最大限に発揮する観点から、断面の断面中心から直径95/100Dの円外が全て海部であることがより好ましく90/100Dの円外が全て海部であることがさらに好ましく、85/100Dの円外が全て海部であることが特に好ましく、79/100Dの円外が全て海部であることが最も好ましい。 In the present invention, in the cross section perpendicular to the long axis direction of the three-dimensional modeling filament, it is preferable that the entire circle with a diameter of 98 / 100D from the cross-sectional center of the cross section perpendicular to the longitudinal direction of the filament is the sea portion. That is, it is preferable that the filament surface is covered with a sea component. Since the filament surface is covered with a sea component, when the sea part has an interlayer adhesiveness improving function and a surface property modifying function, the effect is likely to be exhibited. For example, interlayer adhesiveness, surface smoothness, surface tactile sensation, and the like can be improved. Further, from the viewpoint of maximizing the function of the sea part, it is more preferable that the outside of the circle having a diameter of 95 / 100D is the sea part from the center of the cross section, and it is further preferable that the outside of the circle of 90 / 100D is the sea part. It is particularly preferable that all the outside of the circle of 85 / 100D is the sea part, and most preferably all the outside of the circle of 79 / 100D is the sea part.
 2.その他の物性等
 本発明の3次元造形用フィラメントの直径(フィラメント径D)は、材料押出方式(ME方式)による樹脂成形体の造形に使用するシステム等の仕様に依存するが、1.0mm以上であることが好ましく、より好ましくは1.5mm以上、さらに好ましくは1.6mm以上、特に好ましくは1.7mm以上であり、一方、上限は5.0mm以下であることが好ましく、より好ましくは4.0mm以下、さらに好ましくは3.5mm以下、特に好ましくは3.0mm以下である。更にフィラメント径Dの精度はフィラメントの任意の測定点に対して±5%以内の誤差に収めることが原料供給の安定性の観点から好ましい。特に、本発明の3次元造形用フィラメントは、フィラメント径Dの標準偏差が0.07mm以下であることが好ましく、0.06mm以下であることが特に好ましい。
2. Other Physical Properties, etc. The diameter (filament diameter D) of the filament for three-dimensional molding of the present invention depends on the specifications of the system used for molding the resin molded product by the material extrusion method (ME method), but is 1.0 mm or more. It is preferably 1.5 mm or more, more preferably 1.6 mm or more, particularly preferably 1.7 mm or more, while the upper limit is preferably 5.0 mm or less, more preferably 4 It is 0.0 mm or less, more preferably 3.5 mm or less, and particularly preferably 3.0 mm or less. Further, it is preferable that the accuracy of the filament diameter D is within ± 5% with respect to an arbitrary measurement point of the filament from the viewpoint of stability of raw material supply. In particular, in the three-dimensional modeling filament of the present invention, the standard deviation of the filament diameter D is preferably 0.07 mm or less, and particularly preferably 0.06 mm or less.
 また、本発明の3次元造形用フィラメントの外形は特に規定されず、その長手方向に垂直な断面が円形以外でも、四角形や多角形、星型などの形状が挙げられるが、造形性の観点から、断面が真円度の高い円形であることが好ましい。フィラメント断面の外形の真円度は、0.93以上であることが好ましく、0.95以上であることが特に好ましい。真円度の上限は1.0である。なお真円度は、フィラメント断面における長径と短径を計測し、短径/長径の比率から求められる。比率が1.0に近いほどフィラメントの断面形状が真円に近いことを意味する。 Further, the outer shape of the three-dimensional modeling filament of the present invention is not particularly specified, and shapes such as a quadrangle, a polygon, and a star shape can be mentioned even if the cross section perpendicular to the longitudinal direction is not circular, but from the viewpoint of formability. It is preferable that the cross section is circular with high roundness. The roundness of the outer shape of the filament cross section is preferably 0.93 or more, and particularly preferably 0.95 or more. The upper limit of roundness is 1.0. The roundness is obtained by measuring the major axis and the minor axis in the filament cross section and calculating the minor axis / major axis ratio. The closer the ratio is to 1.0, the closer the cross-sectional shape of the filament is to a perfect circle.
 本発明の3次元造形用フィラメントの長手方向に垂直な断面における島部の数は特に限定されないが、2個以上10個以下に分かれていることが好ましい。島部が2個以上であることによって、島部を構成する熱可塑性樹脂(B)の特性をより効率的に3次元造形用フィラメントに反映することができる。島部は、3個以上がより好ましい。一方、島部に対する海部の割合を高めるために、フィラメントの断面における島部は10個以下が好ましく、9個以下がより好ましく、8個以下がさらに好ましく、7個以下が特に好ましく、6個以下が最も好ましい。 The number of islands in the cross section perpendicular to the longitudinal direction of the three-dimensional modeling filament of the present invention is not particularly limited, but it is preferably divided into 2 or more and 10 or less. When the number of islands is two or more, the characteristics of the thermoplastic resin (B) constituting the islands can be more efficiently reflected in the three-dimensional modeling filament. The number of islands is more preferably 3 or more. On the other hand, in order to increase the ratio of the sea part to the island part, the number of islands in the cross section of the filament is preferably 10 or less, more preferably 9 or less, further preferably 8 or less, particularly preferably 7 or less, and 6 or less. Is the most preferable.
 3次元造形用フィラメントの島部は、その断面形状は、円状に限定されるものではなく、多角断面、偏平断面、レンズ型断面、三葉断面、六葉断面などいわゆるマルチローバル断面と呼ばれる3~8ヶ所の凸部と同数の凹部を有する異形断面、中空断面その他公知の異形断面などでも構わない。マルチローバル断面の異形度は1.2以上6.0以下が好ましい。ここでいう異形度とは、断面形状の外接円径を断面形状の内接円径で除したものである。異形度が1.2以上であると異形断面の凹凸が大きいので、島成分と海成分の接触面積が大きくなっており、剥離が抑制される。一方、異形度が6.0以下であると、強度が高くなる。 The cross-sectional shape of the island part of the filament for three-dimensional modeling is not limited to a circular shape, but is called a so-called multi-lobal cross section such as a polygonal cross section, a flat cross section, a lens type cross section, a three-leaf cross section, and a six-leaf cross section. A deformed cross section having the same number of concave portions as the number of convex portions at 8 places, a hollow cross section, or a known deformed cross section may be used. The degree of deformation of the multi-roval cross section is preferably 1.2 or more and 6.0 or less. The degree of deformation referred to here is the circumscribed circle diameter of the cross-sectional shape divided by the inscribed circle diameter of the cross-sectional shape. When the degree of deformation is 1.2 or more, the unevenness of the deformed cross section is large, so that the contact area between the island component and the sea component is large, and peeling is suppressed. On the other hand, when the degree of deformation is 6.0 or less, the strength is high.
 島部の径dは、生産性の観点から、50μm以上であることが好ましく、100μm以上であることがより好ましく、200μm以上がさらに好ましく、300μm以上が尚好ましく、400μm以上が特に好ましく、500μm以上が最も好ましい。径dの下限が上記範囲であることで3次元造形用フィラメント中の熱可塑性樹脂(B)の特性をより効率的に3次元造形用フィラメントに反映することができる。また、径dの上限は1500μm以下であることが好ましく、1200μm以下であることがより好ましく、1000μm以下であることがさらに好ましく、900μm以下であることが尚好ましく、800μm以下であることが特に好ましく、700μm以下であることが最も好ましい。径dの上限が上記範囲であることで樹脂と熱可塑性樹脂(A)の特性をより効率的に3次元造形用フィラメントに反映することができる。島部の径dは、3次元造形用フィラメントの断面をマイクロスコープにて観察し、断面画像から計測できる。本発明では、各島部の中で最も長くなる径を島部の径とし、島部の個数で平均した値を島部の径dとする。 From the viewpoint of productivity, the diameter d of the island portion is preferably 50 μm or more, more preferably 100 μm or more, further preferably 200 μm or more, still more preferably 300 μm or more, particularly preferably 400 μm or more, and particularly preferably 500 μm or more. Is the most preferable. When the lower limit of the diameter d is within the above range, the characteristics of the thermoplastic resin (B) in the three-dimensional modeling filament can be more efficiently reflected in the three-dimensional modeling filament. The upper limit of the diameter d is preferably 1500 μm or less, more preferably 1200 μm or less, further preferably 1000 μm or less, still more preferably 900 μm or less, and particularly preferably 800 μm or less. , 700 μm or less is most preferable. When the upper limit of the diameter d is within the above range, the characteristics of the resin and the thermoplastic resin (A) can be more efficiently reflected in the filament for three-dimensional modeling. The diameter d of the island portion can be measured from the cross-sectional image by observing the cross section of the three-dimensional modeling filament with a microscope. In the present invention, the longest diameter of each island is defined as the diameter of the island, and the average value of the number of islands is defined as the diameter d of the island.
 3.熱可塑性樹脂(A)および熱可塑性樹脂(B)
 本発明において、熱可塑性樹脂(A)と、熱可塑性樹脂(B)は、1つ以上の異なる物性を有する。ここで物性とは、樹脂組成、分子量、添加剤の配合、色味、熱特性(融点、ガラス転移温度、昇温における結晶化温度、降温における結晶化温度、結晶融解熱量、結晶化熱量など)、溶融特性(MFR、溶融粘度、せん断貯蔵弾性率など、)、機械特性(引張貯蔵弾性率、引張強度、耐衝撃強度、線膨張係数、熱伝導率、吸水率、表面硬度など)等が挙げられ、これらのうち、どれか1つあるいは2つ以上が異なる。
3. 3. Thermoplastic resin (A) and thermoplastic resin (B)
In the present invention, the thermoplastic resin (A) and the thermoplastic resin (B) have one or more different physical characteristics. Here, the physical characteristics include resin composition, molecular weight, additive composition, color, thermal characteristics (melting point, glass transition temperature, crystallization temperature at temperature rise, crystallization temperature at temperature decrease, heat of crystal melting, heat of crystallization, etc.). , Melt characteristics (MFR, melt viscosity, shear storage elasticity, etc.), mechanical properties (tensile storage elasticity, tensile strength, impact resistance, linear expansion coefficient, thermal conductivity, water absorption, surface hardness, etc.) And any one or more of these are different.
 熱可塑性樹脂(A)および熱可塑性樹脂(B)は、熱溶融により押し出しが可能な材質であればよく、造形する成形体に付与する機能に応じて適宜選択することができる。例えば、アクリロニトリル-ブタジエン-スチレン共重合樹脂(ABS樹脂)、メチルメタクリレート-ブタジエン-スチレン共重合樹脂(MBS樹脂)、ポリスチレン、ポリ塩化ビニル、ポリメチルメタクリレート、ポリカーボネート、変性ポリフェニレンエーテル、ポリエーテルイミドなどの非晶性樹脂、ポリオレフィン、ポリエステル、ポリアミド、ポリビニルアルコール、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルケトンケトンなどの結晶性樹脂、オレフィン系、スチレン系、ポリエステル系の熱可塑性エラストマー、及びそれらの混合物が好適に用いられる。 The thermoplastic resin (A) and the thermoplastic resin (B) may be any material that can be extruded by thermal melting, and can be appropriately selected according to the function to be imparted to the molded product to be molded. For example, acrylonitrile-butadiene-styrene copolymer resin (ABS resin), methyl methacrylate-butadiene-styrene copolymer resin (MBS resin), polystyrene, polyvinyl chloride, polymethyl methacrylate, polycarbonate, modified polyphenylene ether, polyetherimide, etc. Crystalline resins such as amorphous resins, polyolefins, polyesters, polyamides, polyvinyl alcohols, polyetherketones, polyetheretherketones, polyetherketoneketones, olefin-based, styrene-based, polyester-based thermoplastic elastomers, and mixtures thereof. Is preferably used.
 より具体的には、熱可塑性樹脂(A)は、好ましくは、アクリロニトリル-ブタジエン-スチレン共重合樹脂、メチルメタクリレート-ブタジエン-スチレン共重合樹脂、ポリカーボネート、ポリエーテルイミドなどの非晶性樹脂や、ポリエステル、ポリオレフィン、ポリアミド、ポリエーテルエーテルケトン、ポリエーテルケトンケトンなどの結晶性樹脂を含むことが好ましく、アクリロニトリル-ブタジエン-スチレン共重合樹脂、メチルメタクリレート-ブタジエン-スチレン共重合樹脂、ポリカーボネートなどの非晶性樹脂や、ポリエステル、ポリアミド、ポリオレフィンなどの結晶性樹脂を含むことがより好ましく、アクリロニトリル-ブタジエン-スチレン共重合樹脂、メチルメタクリレート-ブタジエン-スチレン共重合樹脂、ポリカーボネートなどの非晶性樹脂や、ポリエステル、ポリアミド、ポリオレフィンなどの結晶性樹脂を含むことがさらに好ましく、アクリロニトリル-ブタジエン-スチレン共重合樹脂、メチルメタクリレート-ブタジエン-スチレン共重合樹脂などの非晶性樹脂や、ポリエステル、ポリアミドなどの結晶性樹脂を含むことが特に好ましく、アクリロニトリル-ブタジエン-スチレン共重合樹脂、メチルメタクリレート-ブタジエン-スチレン共重合樹脂などの非晶性樹脂を含むことが最も好ましい。
 これらの樹脂は、適宜、二種以上を混合して用いてもよい。
More specifically, the thermoplastic resin (A) is preferably an amorphous resin such as acrylonitrile-butadiene-styrene copolymer resin, methyl methacrylate-butadiene-styrene copolymer resin, polycarbonate, polyetherimide, or polyester. , Polyethylene, Polyamide, Polyether Ether Ketone, Polyether Ketone Ketone and other crystalline resins, preferably acrylonitrile-butadiene-styrene copolymer resin, methyl methacrylate-butadiene-styrene copolymer resin, polycarbonate and other amorphous resins. It is more preferable to contain a resin or a crystalline resin such as polyester, polyamide or polyolefin, and an amorphous resin such as acrylonitrile-butadiene-styrene copolymer resin, methyl methacrylate-butadiene-styrene copolymer resin, polycarbonate, polyester, etc. It is more preferable to contain crystalline resins such as polyamide and polyolefin, and amorphous resins such as acrylonitrile-butadiene-styrene copolymer resin and methyl methacrylate-butadiene-styrene copolymer resin, and crystalline resins such as polyester and polyamide are used. It is particularly preferable to contain, and it is most preferable to contain an amorphous resin such as an acrylonitrile-butadiene-styrene copolymer resin and a methyl methacrylate-butadiene-styrene copolymer resin.
Two or more of these resins may be mixed and used as appropriate.
 また、熱可塑性樹脂(B)は、アクリロニトリル-ブタジエン-スチレン共重合樹脂、メチルメタクリレート-ブタジエン-スチレン共重合樹脂、ポリカーボネート、ポリエーテルイミドなどの非晶性樹脂や、ポリオレフィン、ポリアミド、ポリエーテルエーテルケトン、ポリエーテルケトンケトンなどの結晶性樹脂を含むことが好ましく、アクリロニトリル-ブタジエン-スチレン共重合樹脂、メチルメタクリレート-ブタジエン-スチレン共重合樹脂、ポリカーボネート、などの非晶性樹脂や、ポリアミド、ポリエーテルエーテルケトン、ポリエーテルケトンケトンなどの結晶性樹脂を含むことが好ましく、アクリロニトリル-ブタジエン-スチレン共重合樹脂、メチルメタクリレート-ブタジエン-スチレン共重合樹脂などの非晶性樹脂や、ポリアミド、ポリエーテルエーテルケトン、ポリエーテルケトンケトンなどの結晶性樹脂を含むことが好ましく、アクリロニトリル-ブタジエン-スチレン共重合樹脂、ポリカーボネートなどの非晶性樹脂を含むことが最も好ましい。
 これらの樹脂は、適宜、二種以上を混合して用いてもよい。
The thermoplastic resin (B) includes amorphous resins such as acrylonitrile-butadiene-styrene copolymer resin, methyl methacrylate-butadiene-styrene copolymer resin, polycarbonate and polyetherimide, and polyolefins, polyamides and polyether ether ketones. , Polyether Ketone It is preferable to contain a crystalline resin such as ketone, and an amorphous resin such as acrylonitrile-butadiene-styrene copolymer resin, methyl methacrylate-butadiene-styrene copolymer resin, polycarbonate, etc., polyamide, polyether ether, etc. It is preferable to contain crystalline resins such as ketones and polyether ketone ketones, and amorphous resins such as acrylonitrile-butadiene-styrene copolymer resins and methyl methacrylate-butadiene-styrene copolymer resins, polyamides and polyether ether ketones, Polyether Ketone It is preferable to contain a crystalline resin such as ketone, and most preferably it contains an amorphous resin such as acrylonitrile-butadiene-styrene copolymer resin and polycarbonate.
Two or more of these resins may be mixed and used as appropriate.
 さらに、熱可塑性樹脂(A)および熱可塑性樹脂(B)には、カーボンブラック、炭素繊維、ガラス繊維、タルク、マイカ、ナノクレイ、マグネシウムなどのフィラー、酸化防止剤、滑剤、着色剤などの添加剤を適宜混合することができる。 Further, the thermoplastic resin (A) and the thermoplastic resin (B) include fillers such as carbon black, carbon fiber, glass fiber, talc, mica, nanoclay and magnesium, and additives such as antioxidants, lubricants and colorants. Can be mixed as appropriate.
 <異なる物性の好ましい例>
 (熱特性が異なる)
 1つの実施形態では、熱可塑性樹脂(A)と熱可塑性樹脂(B)の熱特性が異なることが好ましい。これにより、本発明の3次元造形用フィラメントを用いて造形した成形体では、たとえば耐熱性と層間接着性や、あるいは耐熱性と造形性(造形時の反り抑制)などの、2つの機能を高いレベルで維持することができると考えられる。
 熱特性のなかでも、熱可塑性樹脂(A)のガラス転移温度が熱可塑性樹脂(B)のガラス転移温度よりも低いことが好ましい。
 また、熱可塑性樹脂(A)の降温過程での結晶化温度が熱可塑性樹脂(B)の降温過程での結晶化温度よりも低いことが好ましい。
 また、熱可塑性樹脂(A)の降温過程での結晶化熱量が熱可塑性樹脂(B)の降温過程での結晶化熱量よりも低いことが好ましい。
<Preferable examples of different physical characteristics>
(Different thermal characteristics)
In one embodiment, it is preferable that the thermoplastic resin (A) and the thermoplastic resin (B) have different thermal characteristics. As a result, the molded product formed by using the three-dimensional molding filament of the present invention has two functions, such as heat resistance and interlayer adhesiveness, and heat resistance and formability (suppression of warpage during molding). It is thought that it can be maintained at the level.
Among the thermal characteristics, it is preferable that the glass transition temperature of the thermoplastic resin (A) is lower than the glass transition temperature of the thermoplastic resin (B).
Further, it is preferable that the crystallization temperature of the thermoplastic resin (A) in the temperature lowering process is lower than the crystallization temperature of the thermoplastic resin (B) in the temperature lowering process.
Further, it is preferable that the amount of heat of crystallization of the thermoplastic resin (A) in the process of lowering the temperature is lower than the amount of heat of crystallization of the thermoplastic resin (B) in the process of lowering the temperature.
 例えば、熱可塑性樹脂(A)および熱可塑性樹脂(B)双方が非晶性樹脂の場合は、熱可塑性樹脂(A)のガラス転移温度(Tg)が、熱可塑性樹脂(B)のガラス転移温度(Tg)よりも低いことが好ましい。ここで、層間接着性の観点から、熱可塑性樹脂(A)のTgは、熱可塑性樹脂(B)のTgより5℃以上低いことが好ましく、10℃以上低いことがより好ましく、15℃以上低いことがさらに好ましく、20℃以上低いことが特に好ましく、25℃以上低いことが最も好ましい。また、生産性の観点から、熱可塑性樹脂(A)のTgは、熱可塑性樹脂(B)のTgより100℃以下低いことが好ましく、80℃以下低いことがより好ましく、60℃以下低いことがさらに好ましく、50℃以下低いことが特に好ましい。ガラス転移温度は、組成や分子量、可塑剤や相溶系樹脂とのブレンドなどによって調整できる。ガラス転移温度は、実施例に記載の手法で測定できる。 For example, when both the thermoplastic resin (A) and the thermoplastic resin (B) are amorphous resins, the glass transition temperature (Tg) of the thermoplastic resin (A) is the glass transition temperature of the thermoplastic resin (B). It is preferably lower than (Tg). Here, from the viewpoint of interlayer adhesion, the Tg of the thermoplastic resin (A) is preferably 5 ° C. or higher, more preferably 10 ° C. or higher, and 15 ° C. or higher lower than the Tg of the thermoplastic resin (B). More preferably, it is particularly preferably 20 ° C. or higher, and most preferably 25 ° C. or higher. From the viewpoint of productivity, the Tg of the thermoplastic resin (A) is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and 60 ° C. or lower lower than the Tg of the thermoplastic resin (B). It is more preferable, and it is particularly preferable that the temperature is 50 ° C. or lower. The glass transition temperature can be adjusted by adjusting the composition, molecular weight, blending with a plasticizer or a compatible resin, and the like. The glass transition temperature can be measured by the method described in Examples.
 また例えば、熱可塑性樹脂(A)および熱可塑性樹脂(B)双方が結晶性樹脂の場合は、熱可塑性樹脂(A)の、示差走査熱量測定における冷却速度10℃/分で測定される結晶化温度(Tc)が、熱可塑性樹脂(B)の示差走査熱量測定における冷却速度10℃/分で測定される結晶化温度(Tc)よりも低いことが好ましい。ここで、層間接着性の観点から、熱可塑性樹脂(A)のTcは、熱可塑性樹脂(B)のTcより5℃以上低いことが好ましく、10℃以上低いことがより好ましく、20℃以上低いことがさらに好ましく、40℃以上低いことが特に好ましく、50℃以上低いことが最も好ましい。また、生産性の観点から、熱可塑性樹脂(A)のTcは、熱可塑性樹脂(B)のTcより150℃以下低いことが好ましく、130℃以下低いことがより好ましく、110℃以下低いことがさらに好ましく、90℃以下低いことが特に好ましく、80℃以下低いことが最も好ましい。降温過程での結晶化温度(Tc)は、組成や分子量、核剤の添加や、相溶系樹脂とのブレンドなどによって調整できる。また、降温過程での結晶化温度は、示差走査熱量計を用いて、JIS K7121に準じて、試料約10mgを加熱速度10℃/分で室温から結晶融解温度(融点Tm)+20℃まで昇温し、該温度で1分間保持した後、冷却速度10℃/分で30℃まで降温した際の降温過程から測定することができる。 Further, for example, when both the thermoplastic resin (A) and the thermoplastic resin (B) are crystalline resins, the crystallization of the thermoplastic resin (A) is measured at a cooling rate of 10 ° C./min in the differential scanning calorimetry. It is preferable that the temperature (Tc) is lower than the crystallization temperature (Tc) measured at a cooling rate of 10 ° C./min in the differential scanning calorimetry of the thermoplastic resin (B). Here, from the viewpoint of interlayer adhesiveness, the Tc of the thermoplastic resin (A) is preferably 5 ° C. or higher, more preferably 10 ° C. or higher, and 20 ° C. or higher lower than the Tc of the thermoplastic resin (B). More preferably, it is particularly preferably 40 ° C. or higher, and most preferably 50 ° C. or higher. From the viewpoint of productivity, the Tc of the thermoplastic resin (A) is preferably 150 ° C. or lower, more preferably 130 ° C. or lower, and 110 ° C. or lower lower than the Tc of the thermoplastic resin (B). Further preferably, it is particularly preferably 90 ° C. or lower, and most preferably 80 ° C. or lower. The crystallization temperature (Tc) in the temperature lowering process can be adjusted by adjusting the composition, molecular weight, addition of a nucleating agent, blending with a compatible resin, and the like. The crystallization temperature in the temperature lowering process is raised from room temperature to the crystal melting temperature (melting point Tm) + 20 ° C. at a heating rate of 10 ° C./min by using a differential scanning calorimeter according to JIS K7121. Then, after holding the temperature for 1 minute, the temperature can be measured from the temperature lowering process when the temperature is lowered to 30 ° C. at a cooling rate of 10 ° C./min.
 また例えば、熱可塑性樹脂(A)と熱可塑性樹脂(B)のどちらかが結晶性樹脂で、どちらかが非晶性樹脂の場合は、層間接着性の観点から、熱可塑性樹脂(A)の、ガラス転移温度(Tg)と降温過程での結晶化温度(Tc)のうち、観測できるものの中で一番温度が高いものが、熱可塑性樹脂(B)のガラス転移温度(Tg)と降温過程での結晶化温度(Tc)のうち、観測できるものの中で一番温度が低いものより、1℃以上低いことが好ましく、5℃以上低いことがより好ましく、10℃以上低いことがさらに好ましく、15℃以上低いことが特に好ましく、20℃以上低いことが最も好ましい。また、生産性の観点から、150℃以下低いことが好ましく、130℃以下低いことがより好ましく、110℃以下低いことがさらに好ましく、90℃以下低いことが特に好ましく、80℃以下低いことが最も好ましい。 Further, for example, when either the thermoplastic resin (A) or the thermoplastic resin (B) is a crystalline resin and one of them is an amorphous resin, the thermoplastic resin (A) can be used from the viewpoint of interlayer adhesion. Of the glass transition temperature (Tg) and the crystallization temperature (Tc) in the temperature lowering process, the one with the highest observable temperature is the glass transition temperature (Tg) and the temperature lowering process of the thermoplastic resin (B). Of the crystallization temperature (Tc) in the above, the temperature is preferably 1 ° C. or higher, more preferably 5 ° C. or higher, and even more preferably 10 ° C. or higher than the lowest observable temperature. It is particularly preferable that the temperature is as low as 15 ° C. or higher, and most preferably as low as 20 ° C. or higher. From the viewpoint of productivity, it is preferably 150 ° C. or lower, more preferably 130 ° C. or lower, further preferably 110 ° C. or lower, particularly preferably 90 ° C. or lower, and most preferably 80 ° C. or lower. preferable.
 また例えば、熱可塑性樹脂(A)の示差走査熱量測定における冷却速度10℃/分で測定される結晶化熱量(ΔHc)は、熱可塑性樹脂(B)の、示差走査熱量測定における冷却速度10℃/分で測定される結晶化熱量(ΔHc)よりも低いことが好ましい。ここで、層間接着性の観点から、熱可塑性樹脂(A)のΔHcは、熱可塑性樹脂(B)のΔHcより1J/g以上低いことが好ましく、5J/g以上低いことがより好ましく、10J/g以上低いことがさらに好ましく、15J/g以上低いことが特に好ましく、20J/g以上低いことが最も好ましい。また、後述する樹脂成形体の耐熱性の観点から、100J/g以下低いことが好ましく、90J/g以下低いことがより好ましく、80J/g以下低いことがさらに好ましく、70J/g以下低いことが特に好ましく、60J/g以下低いことが最も好ましい。 Further, for example, the crystallization calorie (ΔHc) measured at a cooling rate of 10 ° C./min in the differential scanning calorimetry of the thermoplastic resin (A) is the cooling rate of 10 ° C. in the differential scanning calorimetry of the thermoplastic resin (B). It is preferably lower than the amount of heat of crystallization (ΔHc) measured at / min. Here, from the viewpoint of interlayer adhesion, the ΔHc of the thermoplastic resin (A) is preferably 1 J / g or more lower than the ΔHc of the thermoplastic resin (B), more preferably 5 J / g or more, and 10 J / g. It is more preferably lower by g or more, particularly preferably lower by 15 J / g or more, and most preferably 20 J / g or more. Further, from the viewpoint of heat resistance of the resin molded product described later, it is preferably as low as 100 J / g or less, more preferably as low as 90 J / g or less, further preferably as low as 80 J / g or less, and as low as 70 J / g or less. It is particularly preferable, and most preferably it is as low as 60 J / g or less.
 またさらに、熱可塑性樹脂(A)の示差走査熱量測定における冷却速度10℃/分で測定される結晶化熱量(ΔHc)は、0J/g以上60J/g未満であることが、耐熱性および層間接着性の観点から好ましい。後述する樹脂成形体の耐熱性の観点から、熱可塑性樹脂(A)の結晶化熱量(ΔHc)は、1J/g以上であることが好ましく、5J/g以上であることがより好ましく、10J/g以上であることが更に好ましい。また、後述する樹脂成形体の層間の接着性の観点から、60J/g以下であることが好ましく、50J/g以下であることがより好ましく、45J/g以下であることがさらに好ましい。 Furthermore, the heat resistance and the interlayer are that the crystallization heat quantity (ΔHc) measured at a cooling rate of 10 ° C./min in the differential scanning calorimetry of the thermoplastic resin (A) is 0 J / g or more and less than 60 J / g. It is preferable from the viewpoint of adhesiveness. From the viewpoint of heat resistance of the resin molded product described later, the amount of heat of crystallization (ΔHc) of the thermoplastic resin (A) is preferably 1 J / g or more, more preferably 5 J / g or more, and 10 J / g. It is more preferably g or more. Further, from the viewpoint of adhesiveness between layers of the resin molded product described later, it is preferably 60 J / g or less, more preferably 50 J / g or less, and further preferably 45 J / g or less.
 ここで、上記結晶化熱量(ΔHc)は、熱可塑性樹脂の組成や分子量、核剤の添加や、相溶系及び非相溶系非晶性樹脂とのブレンドなどによって調整できる。上記結晶化熱量(ΔHc)は、示差走査熱量計を用いて、JIS K7121に準じて、試料約10mgを加熱速度10℃/分で室温から結晶融解温度(融点Tm)+20℃まで昇温し、該温度で1分間保持した後、冷却速度10℃/分で30℃まで降温した際の降温過程で測定されたサーモグラムから求めることができる。 Here, the calorific value for crystallization (ΔHc) can be adjusted by adjusting the composition and molecular weight of the thermoplastic resin, the addition of a nucleating agent, blending with compatible and incompatible amorphous resins, and the like. The amount of heat of crystallization (ΔHc) is measured by using a differential scanning calorimeter to raise the temperature of about 10 mg of the sample from room temperature to the crystal melting temperature (melting point Tm) + 20 ° C. at a heating rate of 10 ° C./min. It can be obtained from the thermogram measured in the temperature lowering process when the temperature is kept at the temperature for 1 minute and then lowered to 30 ° C. at a cooling rate of 10 ° C./min.
 (添加剤の配合が異なる)
 1つの実施形態では、熱可塑性樹脂(A)と熱可塑性樹脂(B)の、添加剤の配合が異なることが好ましい。配合が異なるとは、添加される添加剤の種類が異なっていてもよいし、添加量が異なっていてもよいし、そのどちらともが異なっていてもよい。ここで添加剤とは、カーボンブラック、炭素繊維、ガラス繊維、ガラスウール、セルロースナノファイバー、タルク、マイカ、ナノクレイ、マグネシウムなどのフィラーや、酸化防止剤、滑剤、着色剤などが挙げられる。
(The formulation of additives is different)
In one embodiment, it is preferable that the thermoplastic resin (A) and the thermoplastic resin (B) have different additive formulations. The different formulations may mean that the type of additive to be added is different, the amount of the additive to be added may be different, or both of them may be different. Here, examples of the additive include fillers such as carbon black, carbon fiber, glass fiber, glass wool, cellulose nanofiber, talc, mica, nanoclay, and magnesium, antioxidants, lubricants, and colorants.
 特に、熱可塑性樹脂(A)と熱可塑性樹脂(B)で、上記フィラーの配合量が異なることが好ましい。一般的にフィラーを添加することで、造形した成形体の強度は高くなる一方で、層間接着性が低下するという課題があるが、本発明の実施形態とすることで、高強度と層間接着性の2つの機能を高いレベルで維持することができると考えられる。ここで、熱可塑性樹脂(A)のフィラーの配合量が、熱可塑性樹脂(B)のフィラー配合量より少ないことが好ましい。ここで、層間接着性の観点から、熱可塑性樹脂(A)のフィラーの配合量が、熱可塑性樹脂(B)のフィラー配合量より、1重量%以上低いことが好ましく、5重量%以上低いことがより好ましく、10重量%以上低いことがさらに好ましく、15重量%以上低いことが特に好ましく、20重量%以上低いことが最も好ましい。また、造形物の強度や、熱可塑性樹脂(A)と熱可塑性樹脂(B)との物性差が開きすぎない観点から、100重量%以下低いことが好ましく、80重量%以下低いことがより好ましく、70重量%以下低いことがさらに好ましく、60重量%以下低いことが特に好ましく、50重量%以下低いことが最も好ましい。 In particular, it is preferable that the amount of the filler compounded differs between the thermoplastic resin (A) and the thermoplastic resin (B). Generally, by adding a filler, the strength of the molded molded product is increased, but there is a problem that the interlayer adhesiveness is lowered. However, according to the embodiment of the present invention, the strength and interlayer adhesiveness are increased. It is considered that these two functions can be maintained at a high level. Here, it is preferable that the amount of the filler of the thermoplastic resin (A) is smaller than the amount of the filler of the thermoplastic resin (B). Here, from the viewpoint of interlayer adhesion, the blending amount of the filler of the thermoplastic resin (A) is preferably 1% by weight or more lower than the blending amount of the filler of the thermoplastic resin (B), and is 5% by weight or more lower. Is more preferable, 10% by weight or more is more preferable, 15% by weight or more is particularly preferable, and 20% by weight or more is most preferable. Further, from the viewpoint of the strength of the modeled object and the difference in physical properties between the thermoplastic resin (A) and the thermoplastic resin (B), it is preferably 100% by weight or less, and more preferably 80% by weight or less. , 70% by weight or less is more preferable, 60% by weight or less is particularly preferable, and 50% by weight or less is most preferable.
 さらに、熱可塑性樹脂(A)のフィラーの配合量は、接着性の観点から20重量%以下が好ましく、10重量%以下がより好ましい。また、強度や熱可塑性樹脂(B)との物性差が開きすぎない観点から、0重量%以上が好ましく、1重量%以上がより好ましい。また、熱可塑性樹脂(B)のフィラー配合量は、強度の観点から5重量%以上が好ましく、10重量%以上がより好ましく、20重量%以上がさらに好ましい、また、溶融時の粘度が上がりすぎない観点や、熱可塑性樹脂(A)との物性差が開きすぎない観点から、50重量%以下が好ましく、40重量%以下がより好ましい。 Further, the blending amount of the filler of the thermoplastic resin (A) is preferably 20% by weight or less, more preferably 10% by weight or less from the viewpoint of adhesiveness. Further, from the viewpoint of strength and physical properties of the thermoplastic resin (B) not being too wide, 0% by weight or more is preferable, and 1% by weight or more is more preferable. The filler content of the thermoplastic resin (B) is preferably 5% by weight or more, more preferably 10% by weight or more, further preferably 20% by weight or more, and the viscosity at the time of melting is too high from the viewpoint of strength. 50% by weight or less is preferable, and 40% by weight or less is more preferable, from the viewpoint of not having a large difference in physical properties from the thermoplastic resin (A).
 (溶融特性が異なる)
 1つの実施形態では、熱可塑性樹脂(A)と熱可塑性樹脂(B)の、溶融特性が異なることが好ましい。これにより、造形した成形体の表面平滑性を向上させながら、造形時の糸引きや熱による変形を抑制することができる。このとき、造形時の成形温度(ノズル温度)下において、熱可塑性樹脂(A)の溶融粘度が、熱可塑性樹脂の(B)の溶融粘度より低い、すなわちMFRが高いことが好ましい。すなわち、造形時に熱可塑性樹脂(A)の流動によって成形体の表面の平滑性が向上する一方で、熱可塑性樹脂の(B)が流動しにくいことで造形時の糸引きや熱による変形が抑制できると考えられ、かつ本発明の実施形態とすることで、表面平滑性と造形性を高いレベルで維持することができると考えられる。ここで、表面平滑性の観点から、熱可塑性樹脂(A)のMFRは、熱可塑性樹脂(B)のMFRより、0.5g/10分以上高いことが好ましく、1g/10分以上高いことがより好ましく、2g/10分以上高いことがさらに好ましく、5g/10分以上高いことが最も好ましい。また、造形性や生産性の観点から、50g/10分以下高いことが好ましく、40g/10分以下高いことがより好ましく、30g/10分以下高いことがさらに好ましい。ここで、MFRは、JIS K7210に準じて、造形時のノズル温度下で2.16kgf荷重で測定することができる。
(Different melting characteristics)
In one embodiment, it is preferable that the thermoplastic resin (A) and the thermoplastic resin (B) have different melting characteristics. As a result, it is possible to suppress the deformation due to stringing and heat during molding while improving the surface smoothness of the molded molded product. At this time, it is preferable that the melt viscosity of the thermoplastic resin (A) is lower than the melt viscosity of the thermoplastic resin (B) under the molding temperature (nozzle temperature) at the time of molding, that is, the MFR is high. That is, the smoothness of the surface of the molded product is improved by the flow of the thermoplastic resin (A) during molding, while the difficulty of flowing the thermoplastic resin (B) suppresses stringing and deformation due to heat during molding. It is considered that the surface smoothness and the formability can be maintained at a high level by adopting the embodiment of the present invention. Here, from the viewpoint of surface smoothness, the MFR of the thermoplastic resin (A) is preferably 0.5 g / 10 minutes or more higher than the MFR of the thermoplastic resin (B), and is preferably 1 g / 10 minutes or more higher. More preferably, it is more preferably 2 g / 10 minutes or more, and most preferably 5 g / 10 minutes or more. Further, from the viewpoint of formability and productivity, it is preferably 50 g / 10 minutes or less, more preferably 40 g / 10 minutes or less, and even more preferably 30 g / 10 minutes or less. Here, the MFR can be measured with a load of 2.16 kgf under the nozzle temperature at the time of modeling according to JIS K7210.
 (3次元造形用フィラメントの製造方法)
 本発明の3次元造形用フィラメントは、海部が含有する熱可塑性樹脂(A)と、島部が含有する熱可塑性樹脂(B)(および必要に応じて熱可塑性樹脂(C))とを用いて製造される。本発明の3次元造形用フィラメントの製造方法は特に制限されるものではないが、好ましくは溶融押出法によって製造される。
(Manufacturing method of filament for 3D modeling)
The filament for three-dimensional modeling of the present invention uses a thermoplastic resin (A) contained in the sea portion and a thermoplastic resin (B) (and, if necessary, a thermoplastic resin (C)) contained in the island portion. Manufactured. The method for producing the three-dimensional modeling filament of the present invention is not particularly limited, but it is preferably produced by the melt extrusion method.
 たとえば、本発明の3次元造形用フィラメントの海島構造は、熱可塑性樹脂(A)と熱可塑性樹脂(B)を、非相溶の樹脂の組み合わせとし、ブレンドおよび溶融混練によって構成してもよい。この方法であれば、島部の大きさや数を、ブレンド比率や溶融混練条件によって容易に調整することができる。
 また、例えば熱可塑性樹脂(A)と熱可塑性樹脂(B)をそれぞれ別に溶融し、溶融積層押出することで上記海島構造を作製することもできる。この場合は、上記海島構造が、フィラメントの長さ方向に連続した3次元造形用フィラメントとなる。この方法では、断面の海島構造は、主として共押出する口金やノズルの積層形状によるため、樹脂種の海島構造への影響は比較的小さく、樹脂種の選択範囲が広いという利点がある。
 なかでも、上述の熱可塑性樹脂(A)、熱可塑性樹脂(B)、および必要に応じて熱可塑性樹脂(C)を、それぞれ別の押出機で溶融し、上述した海島構造を持つ積層ブロックや積層口金を用いて溶融積層押出することによりフィラメントとする方法が好ましい。
For example, the sea-island structure of the three-dimensional modeling filament of the present invention may be formed by blending and melt-kneading the thermoplastic resin (A) and the thermoplastic resin (B) as a combination of incompatible resins. With this method, the size and number of islands can be easily adjusted according to the blend ratio and melt-kneading conditions.
Further, for example, the above-mentioned sea-island structure can be produced by melting the thermoplastic resin (A) and the thermoplastic resin (B) separately and performing melt deposition extrusion. In this case, the sea-island structure becomes a three-dimensional modeling filament that is continuous in the length direction of the filament. In this method, since the sea-island structure in the cross section mainly depends on the laminated shape of the co-extruded base and the nozzle, the influence of the resin type on the sea-island structure is relatively small, and there is an advantage that the selection range of the resin type is wide.
Among them, the above-mentioned thermoplastic resin (A), the thermoplastic resin (B), and the above-mentioned thermoplastic resin (C), if necessary, are melted by different extruders to form a laminated block having the above-mentioned sea-island structure. A method of forming a filament by melt-laminating extrusion using a laminated base is preferable.
 <3次元造形用フィラメントの巻回体及び3次元造形用カートリッジ>
 本発明の3次元造形用フィラメントを用いて3次元造形用プリンタにより樹脂成形体を造形するにあたり、3次元造形用フィラメントを安定に保存すること、及び、3次元造形用プリンタに3次元造形用フィラメントを安定供給することが求められる。そのために、本発明の3次元造形用フィラメントは、ボビンに巻きとった巻回体として密閉包装されている、又は、巻回体が3次元造形用プリンタ装着用カートリッジ(以下、単に「3次元造形用カートリッジ」と称することがある。)に収納されていることが、長期保存、安定した繰り出し、湿気等の環境要因からの保護、捩れ防止等の観点から好ましい。3次元造形用カートリッジとしては、ボビンに巻き取った巻回体の他、内部に防湿材または吸湿材を使用し、少なくとも3次元造形用フィラメントを繰り出すオリフィス部以外が密閉されている構造のものが挙げられる。
 通常、3次元造形用フィラメントをボビンに巻きとった巻回体、又は、巻回体を含む3次元造形用カートリッジは3次元造形用プリンタ内又は周囲に設置され、成形中は常に3次元造形用カートリッジから3次元造形用フィラメントが3次元造形用プリンタに導入され続ける。
<Filament winding body for 3D modeling and cartridge for 3D modeling>
When modeling a resin molded body with a 3D modeling printer using the 3D modeling filament of the present invention, the 3D modeling filament should be stably stored, and the 3D modeling filament should be used in the 3D modeling printer. Is required to be stably supplied. Therefore, the filament for 3D modeling of the present invention is hermetically packaged as a winding body wound around a bobbin, or the winding body is a cartridge for mounting a printer for 3D modeling (hereinafter, simply "3D modeling"). It is preferable that it is stored in a "cartridge for use") from the viewpoints of long-term storage, stable feeding, protection from environmental factors such as moisture, and prevention of twisting. As the cartridge for 3D modeling, in addition to the winding body wound around the bobbin, a cartridge that uses a moisture-proof material or a moisture-absorbing material inside and has a structure in which at least the orifice part that feeds out the filament for 3D modeling is sealed. Can be mentioned.
Usually, a winding body in which a filament for 3D modeling is wound around a bobbin, or a cartridge for 3D modeling including the winding body is installed in or around a 3D modeling printer, and is always for 3D modeling during molding. From the cartridge, the 3D modeling filament continues to be introduced into the 3D modeling printer.
 <樹脂成形体>
 (樹脂成形体の造形方法)
 本発明の樹脂成形体の造形方法においては、本発明の3次元造形用フィラメントを用い、3次元造形用プリンタにより造形することにより樹脂成形体を得る。3次元造形用プリンタによる造形方法としては、材料押出方式(ME方式)、粉末床溶融結合方式(PBF方式)、マルチジェットフュージョン方式、材料噴射方式(MJ方式)、液槽光重合方式(VP方式)などが挙げられる。本発明の3次元造形用フィラメントは、材料押出方式(ME方式)に好適に用いることができる。以下、材料押出方式(ME方式)の場合を例示して説明する。
<Resin molded product>
(Molding method of resin molded body)
In the method for molding a resin molded product of the present invention, a resin molded product is obtained by molding with a three-dimensional molding printer using the three-dimensional molding filament of the present invention. As a modeling method using a three-dimensional modeling printer, a material extrusion method (ME method), a powder bed melt bonding method (PBF method), a multi-jet fusion method, a material injection method (MJ method), and a liquid tank photopolymerization method (VP method) ) And so on. The three-dimensional modeling filament of the present invention can be suitably used for a material extrusion method (ME method). Hereinafter, the case of the material extrusion method (ME method) will be described as an example.
 ME方式の3次元造形用プリンタは一般に、チャンバーを有しており、該チャンバー内に、加熱可能な基盤、ガントリー構造に設置された押出ヘッド、加熱溶融器、フィラメントのガイド、フィラメントカートリッジ設置部等の原料供給部を備えている。3次元造形用プリンタの中には押出ヘッドと加熱溶融器とが一体化されているものもある。
 押出ヘッドはガントリー構造に設置されることにより、基盤のX-Y平面上に任意に移動させることができる。基盤は目的の3次元物体や支持材等を構築するプラットフォームであり、加熱保温することで樹脂成形体との接着性を得たり、得られる樹脂成形体を所望の3次元物体として寸法安定性を改善したりできる仕様であることが好ましい。また、基盤と樹脂成形体との接着性を向上させるため、基盤上に粘着性のある糊を塗布したり、樹脂成形体との接着性が良好なシート等を貼りつけたりしてもよい。ここで樹脂成形体との接着性が良好なシートとしては、無機繊維のシートなど表面に細かな凹凸を有するシートや、樹脂成形体と同種の樹脂からなるシートなどが挙げられる。なお、押出ヘッドと基盤とは、通常、少なくとも一方がX-Y平面に垂直なZ軸方向に可動となっている。
The ME type three-dimensional modeling printer generally has a chamber, and in the chamber, a heatable substrate, an extrusion head installed in a gantry structure, a heating melter, a filament guide, a filament cartridge installation portion, etc. It is equipped with a raw material supply unit. In some 3D modeling printers, the extrusion head and the heating / melting device are integrated.
By installing the extrusion head in the gantry structure, it can be arbitrarily moved on the XY plane of the base. The base is a platform for constructing a target three-dimensional object, a support material, etc., and by heating and heat-retaining it, adhesiveness with a resin molded body can be obtained, and the obtained resin molded body can be used as a desired three-dimensional object for dimensional stability. It is preferable that the specifications can be improved. Further, in order to improve the adhesiveness between the base and the resin molded product, an adhesive glue may be applied onto the base, or a sheet or the like having good adhesiveness to the resin molded product may be attached. Here, examples of the sheet having good adhesiveness to the resin molded body include a sheet having fine irregularities on the surface such as an inorganic fiber sheet, and a sheet made of the same type of resin as the resin molded body. Normally, at least one of the extrusion head and the substrate is movable in the Z-axis direction perpendicular to the XY plane.
 3次元造形用フィラメントは原料供給部から繰り出され、対向する1組のローラー又はギアーにより押出ヘッドへ送り込まれ、押出ヘッドにて加熱溶融され、先端ノズルより押し出される。CADモデルを基にして発信される信号により、押出ヘッドはその位置を移動しながら原料を基盤上に供給して積層堆積させていく。この工程が完了した後、基盤から積層堆積物を取り出し、必要に応じて支持材等を剥離したり、余分な部分を切除したりして所望の3次元物体として樹脂成形体を得ることができる。 The three-dimensional modeling filament is unwound from the raw material supply unit, fed to the extrusion head by a pair of opposing rollers or gears, heated and melted by the extrusion head, and extruded from the tip nozzle. According to the signal transmitted based on the CAD model, the extrusion head moves its position and supplies the raw material onto the substrate for stacking and deposition. After this step is completed, the laminated deposit can be taken out from the substrate, and if necessary, the support material or the like can be peeled off or the excess portion can be cut off to obtain a resin molded body as a desired three-dimensional object. ..
 押出ヘッドへ連続的に原料を供給する手段は、フィラメント又はファイバーを繰り出て供給する方法、粉体又は液体をタンク等から定量フィーダを介して供給する方法、ペレット又は顆粒を押出機等で可塑化したものを押し出して供給する方法等が例示できる。これらの中でも、工程の簡便さと供給安定性の観点から、フィラメントを繰り出して供給する方法、即ち、前述の本発明の3次元造形用フィラメントを繰り出して供給する方法が最も好ましい。 The means for continuously supplying the raw material to the extrusion head is a method of feeding out filaments or fibers, a method of supplying powder or liquid from a tank or the like via a quantitative feeder, and a method of plastically supplying pellets or granules with an extruder or the like. An example is an example of a method of extruding and supplying the material. Among these, from the viewpoint of simplicity of the process and supply stability, the method of feeding and supplying the filament, that is, the method of feeding and supplying the above-mentioned three-dimensional modeling filament of the present invention is the most preferable.
 3次元造形用プリンタにフィラメントを供給する場合、ニップロールやギアロール等の駆動ロールにフィラメントを係合させて、引き取りながら押出ヘッドへ供給することが一般的である。ここでフィラメントと駆動ロールとの係合による把持をより強固にすることで原料供給を安定化させるために、フィラメントの表面に微小凹凸形状を転写させておいたり、係合部との摩擦抵抗を大きくするための無機添加剤、展着剤、粘着剤、ゴム等を、熱可塑性樹脂(A)に配合したりすることも好ましい。フィラメントに太さムラがある場合、フィラメントと駆動ロールとの係合による把持が行えず、駆動ロールが空転しフィラメントを押出ヘッドに供給出来なくなる場合がある。 When supplying filaments to a 3D modeling printer, it is common to engage the filaments with drive rolls such as nip rolls and gear rolls and supply them to the extrusion head while taking them back. Here, in order to stabilize the raw material supply by strengthening the grip by the engagement between the filament and the drive roll, the minute uneven shape is transferred to the surface of the filament, and the frictional resistance with the engaging portion is increased. It is also preferable to add an inorganic additive, a spreading agent, an adhesive, rubber, or the like for increasing the size to the thermoplastic resin (A). If the filament has uneven thickness, gripping may not be possible due to engagement between the filament and the drive roll, and the drive roll may idle and the filament may not be supplied to the extrusion head.
 (樹脂成形体の用途)
 本発明の樹脂成形体は、種々特性、たとえば強度や表面外観、耐熱性、耐久性などに優れたものである。用途については特に制限されるものではないが、文房具;玩具;携帯電話やスマートフォン等のカバー;グリップ等の部品;学校教材、家電製品、OA機器の補修部品、自動車、オートバイ、自転車等の各種パーツ;電機・電子機器用資材、農業用資材、園芸用資材、漁業用資材、土木・建築用資材、医療用品等の用途に好適に用いることができる。
(Use of resin molded product)
The resin molded product of the present invention is excellent in various properties such as strength, surface appearance, heat resistance, and durability. The use is not particularly limited, but stationery; toys; covers for mobile phones and smartphones; parts such as grips; school teaching materials, home appliances, repair parts for OA equipment, various parts such as automobiles, motorcycles, and bicycles. It can be suitably used for applications such as electric / electronic equipment materials, agricultural materials, horticultural materials, fishery materials, civil engineering / building materials, and medical supplies.
 以下に実施例でさらに詳しく説明するが、これらにより本発明は何ら制限を受けるものではない。なお、本実施例中に表示される種々の測定値および評価は次のようにして行った。 Although the following will be described in more detail in Examples, the present invention is not limited by these. The various measured values and evaluations displayed in this example were performed as follows.
 (1)ガラス転移温度(Tg)
 (株)パーキンエルマー製の示差走査熱量計、商品名「Pyris1 DSC」を用いて、JIS K7121に準じて、樹脂原料約10mgを加熱速度10℃/分で室温から250℃まで昇温し、該温度で1分間保持した。その後、冷却速度10℃/分で30℃まで降温し、再度、加熱速度10℃/分で250℃まで昇温した時に測定された各サーモグラムから、ガラス転移温度(Tg)(℃)(再昇温過程)を求めた。なお、各値は、少数第二位を四捨五入して記載した。
(1) Glass transition temperature (Tg)
Using a differential scanning calorimeter manufactured by PerkinElmer Co., Ltd., trade name "Pyris1 DSC", about 10 mg of the resin raw material was heated from room temperature to 250 ° C. at a heating rate of 10 ° C./min according to JIS K7121. It was held at temperature for 1 minute. After that, the temperature was lowered to 30 ° C. at a cooling rate of 10 ° C./min, and the glass transition temperature (Tg) (° C.) (re-) was taken from each thermogram measured when the temperature was raised to 250 ° C. at a heating rate of 10 ° C./min again. The temperature rise process) was determined. In addition, each value is rounded down to the second place in the minority.
 (2)断面における各層の面積比、島部の径、9/10D円内の島面積比率および特定粒径円外の海部の観測
 実施例および比較例にて得られた3次元造形用フィラメントの断面を、マイクロスコープにて観察し、断面画像から計測した。なお、島部の径は、各島部の中で、最も長くなる径を島部の径とし、島部の個数で平均した値を求めた。
(2) Observation of the area ratio of each layer in the cross section, the diameter of the island part, the island area ratio within the 9 / 10D circle, and the sea part outside the specific particle size circle. The cross section was observed with a microscope and measured from the cross section image. The diameter of the islands was calculated by averaging the number of islands, with the longest diameter of each island as the diameter of the islands.
 (3)層間接着強度
 JIS K 7161に準拠して、実施例および比較例にて得られた3次元造形用フィラメントを用いて造形した成形体の、引張強度を測定することにより評価した。引張試験用サンプルとして、サンプル長さ75mm、幅10mm、厚み5mmのダンベル状サンプルを造形した。ダンベル状サンプルの軸方向(引張方向)をZ軸方向(積層方向)として、3次元プリンタ(3Dgence社製、製品名INDUSTRY F340)を用いて、プリント速度60mm/秒、内部充填率を100%とし、基盤温度を100℃、ノズル温度265℃で造形を行った。また、造形時のチャンバー温度は、75℃および85℃の2条件で実施した。溶融樹脂は、押出ノズルから直径0.4mmのストランド状に吐出された。
 上記したダンベル状の成形体にて、初期のチャック間距離45mm、速度50mm/min、23℃で引張試験を行い、引張破断伸びから、層間接着強度を以下のように評価した。
Good:引張破断伸びが6%以上
OK:引張破断伸びが5%以上6%未満
NG:引張破断伸びが5%未満
(3) Interlayer Adhesive Strength It was evaluated by measuring the tensile strength of a molded product formed by using the three-dimensional modeling filaments obtained in Examples and Comparative Examples in accordance with JIS K 7161. As a sample for the tensile test, a dumbbell-shaped sample having a sample length of 75 mm, a width of 10 mm, and a thickness of 5 mm was formed. The axial direction (tensile direction) of the dumbbell-shaped sample is the Z-axis direction (stacking direction), and a three-dimensional printer (manufactured by 3Dgene, product name INDUSTRY F340) is used, the printing speed is 60 mm / sec, and the internal filling rate is 100%. The molding was performed at a substrate temperature of 100 ° C. and a nozzle temperature of 265 ° C. The chamber temperature at the time of modeling was carried out under two conditions of 75 ° C. and 85 ° C. The molten resin was discharged from the extrusion nozzle in the form of a strand having a diameter of 0.4 mm.
A tensile test was performed on the above-mentioned dumbbell-shaped molded product at an initial chuck-to-chuck distance of 45 mm, a speed of 50 mm / min, and 23 ° C., and the interlayer adhesive strength was evaluated from the tensile elongation at break as follows.
Good: Tensile breaking elongation is 6% or more OK: Tensile breaking elongation is 5% or more and less than 6% NG: Tensile breaking elongation is less than 5%
 (4)耐熱性
 実施例および比較例にて得られた3次元造形用フィラメントを用いて、図9、10に示すように、サンプル長さ75mm、幅10mm、厚み5mmのダンベルの両側に5mmのリブ5を付けたダンベル状サンプル4を造形した。なお、造形条件は、チャンバー温度を40℃にした以外は、上記層間接着性評価と同じ条件で行った。こうして得られた造形物を、ダンベル状サンプル4の引張方向を垂直にして立てた状態で、100℃のオーブン内に6時間静置し、形状の変化を観察した。形状の変化の程度について、図11に示すように、初期のダンベル状サンプル4の中心軸(a)と、100℃で6時間静置後の、ダンベル状サンプル4の上部の持ち手部分4aの中心軸(b)とのなす角度αから、以下の基準で耐熱性を評価した。
 OK:高温下での変形が小さい(角度αが5°以下)
 NG:高温下での変形が大きい(角度5αが°より大きい)
(4) Heat resistance Using the three-dimensional modeling filaments obtained in Examples and Comparative Examples, as shown in FIGS. 9 and 10, 5 mm on both sides of a dumbbell having a sample length of 75 mm, a width of 10 mm, and a thickness of 5 mm. A dumbbell-shaped sample 4 having a rib 5 was formed. The molding conditions were the same as those for the interlayer adhesion evaluation except that the chamber temperature was set to 40 ° C. The modeled product thus obtained was allowed to stand in an oven at 100 ° C. for 6 hours in a state where the dumbbell-shaped sample 4 was erected with the tensile direction perpendicular to it, and the change in shape was observed. Regarding the degree of change in shape, as shown in FIG. 11, the central axis (a) of the initial dumbbell-shaped sample 4 and the upper handle portion 4a of the dumbbell-shaped sample 4 after standing at 100 ° C. for 6 hours. The heat resistance was evaluated according to the following criteria from the angle α formed by the central axis (b).
OK: Deformation at high temperature is small (angle α is 5 ° or less)
NG: Large deformation at high temperature (angle 5α is larger than °)
 <使用原料>
ABS樹脂:Chi Mei Corp.製、商品名:PA757、Tg:104℃
PBS樹脂:三菱ケミカル社製、製品名:バイオPBS FD92、Tg:0℃未満、Tm:86℃
<Raw materials used>
ABS resin: Chi Mei Corp. Manufactured, trade name: PA757, Tg: 104 ° C
PBS resin: manufactured by Mitsubishi Chemical Corporation, product name: Bio PBS FD92, Tg: less than 0 ° C, Tm: 86 ° C
 <実施例および比較例>
 [実施例1]
(各層の原料準備)
 上記のABS樹脂を90質量部、PBS樹脂を10質量部の割合で混合し、25mmφの2軸押し出し機にて250℃で溶融混練押出して、海部用(あるいは鞘層用)の原料(A)とした。なお、この原料(A)は、Tgが80℃程度であった。また、島部用(あるいは芯層用)の原料(B)としては、上記のABS樹脂をそのまま用いた。
 この際、原料(A)のJIS K7210に準じて、各温度下で2.16kgf荷重で測定した各温度のMFRは、220℃で2.2(g/10min)、240℃で5.4(g/10min)、260℃で9.3(g/10min)であった。
 また、原料(B)のJIS K7210に準じて、各温度下で2.16kgf荷重で測定した各温度のMFRは、220℃で1.7(g/10min)、240℃で5.0(g/10min)、260℃で7.4(g/10min)であった。
(フィラメント作製)
 断面が図3に類似する海島構造を持つ3次元造形用フィラメントを、上記原料(A)を海島構造の海部、上記原料(B)を海島構造の島部となるように、原料(A)と原料(B)との押出量比率を1:1として溶融温度230~250℃にて共押出後、40℃の冷却水中で冷却し、直径1.75mmのフィラメントを得た。
 このフィラメントの断面観察結果を図12に、各種評価結果を表1に示す。また、断面監察の結果、97/100Dの円外が全て海部であることが観測された。
<Examples and Comparative Examples>
[Example 1]
(Preparation of raw materials for each layer)
The above ABS resin is mixed at a ratio of 90 parts by mass and PBS resin at a ratio of 10 parts by mass, and melt-kneaded and extruded at 250 ° C. with a 25 mmφ twin-screw extruder to prepare the raw material (A) for the sea part (or for the sheath layer). And said. The raw material (A) had a Tg of about 80 ° C. Further, as the raw material (B) for the island part (or for the core layer), the above ABS resin was used as it was.
At this time, according to JIS K7210 of the raw material (A), the MFR of each temperature measured at each temperature with a load of 2.16 kgf was 2.2 (g / 10 min) at 220 ° C. and 5.4 (g / 10 min) at 240 ° C. It was 9.3 (g / 10min) at 260 ° C. (g / 10min).
Further, according to JIS K7210 of the raw material (B), the MFR of each temperature measured at each temperature with a load of 2.16 kgf was 1.7 (g / 10 min) at 220 ° C. and 5.0 (g / g) at 240 ° C. It was 7.4 (g / 10min) at 260 ° C. (/ 10min).
(Filament production)
A filament for three-dimensional modeling having a sea-island structure having a cross section similar to that of FIG. A filament having a diameter of 1.75 mm was obtained by co-extruding at a melting temperature of 230 to 250 ° C. and then cooling in cooling water at 40 ° C. with a ratio of extrusion amount to the raw material (B) of 1: 1.
The cross-sectional observation results of this filament are shown in FIG. 12, and the various evaluation results are shown in Table 1. In addition, as a result of cross-section inspection, it was observed that the entire area outside the circle of 97 / 100D was the sea area.
 [実施例2]
 断面が図1に類似する海島構造を持つ3次元造形用フィラメントを、原料(A)と原料(B)との押出量比率を1.7:1とした以外は実施例1と同様にして、直径1.75mmのフィラメントを得た。
 このフィラメントの断面観察結果を図13に、各種評価結果を表1に示す。また、断面監察の結果、80/100Dの円外が全て海部であることが観測された。
[Example 2]
The three-dimensional modeling filament having a sea-island structure having a sea-island structure similar to that in FIG. 1 was made in the same manner as in Example 1 except that the extrusion amount ratio of the raw material (A) and the raw material (B) was 1.7: 1. A filament having a diameter of 1.75 mm was obtained.
The cross-sectional observation results of this filament are shown in FIG. 13, and the various evaluation results are shown in Table 1. In addition, as a result of cross-section inspection, it was observed that the entire 80 / 100D circle was the sea area.
 [実施例3]
 断面が図1に類似する海島構造を持つ3次元造形用フィラメントを、原料(A)と原料(B)との押出量比率を2.1:1とした以外は実施例1と同様にして、直径1.75mmのフィラメントを得た。
 このフィラメントの断面観察結果を図14に、各種評価結果を表1に示す。また、断面監察の結果、78/100Dの円外が全て海部であることが観測された。
[Example 3]
A filament for three-dimensional modeling having a sea-island structure having a sea-island structure similar to that in FIG. A filament having a diameter of 1.75 mm was obtained.
The cross-sectional observation results of this filament are shown in FIG. 14, and the various evaluation results are shown in Table 1. In addition, as a result of cross-section inspection, it was observed that the entire outside of the circle of 78 / 100D was the sea area.
 [比較例1]
 断面が図8の芯鞘構造を持つ3次元造形用フィラメントを、上記原料(A)を鞘部、上記原料(B)を芯部となるように、原料(A)と原料(B)との押出量比率を1:1として、溶融温度230~250℃にて共押出後、40℃の冷却水中で冷却し、直径1.75mmのフィラメントを得た。
 このフィラメントの断面観察結果を図15に、各種評価結果を表1に示す。
[Comparative Example 1]
A filament for three-dimensional modeling having a core-sheath structure whose cross section is shown in FIG. The extrusion amount ratio was 1: 1 and the mixture was coextruded at a melting temperature of 230 to 250 ° C. and then cooled in cooling water at 40 ° C. to obtain a filament having a diameter of 1.75 mm.
The cross-sectional observation results of this filament are shown in FIG. 15, and the various evaluation results are shown in Table 1.
 [比較例2]
 原料(A)と原料(B)との押出量比率を2:1に変更した以外は、比較例1と同じ方法で、直径1.75mmのフィラメントを得た。
 このフィラメントの断面観察結果を図16に、各種評価結果を表1に示す。
[Comparative Example 2]
A filament having a diameter of 1.75 mm was obtained by the same method as in Comparative Example 1 except that the extrusion amount ratio between the raw material (A) and the raw material (B) was changed to 2: 1.
The cross-sectional observation results of this filament are shown in FIG. 16, and the various evaluation results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記実施例および比較例では、海部あるいは鞘層に用いた原料(A)のTgが、島部あるいは芯層に用いた原料(B)のTgよりも低い。これは、3次元造形用フィラメントに、原料(A)で層間接着性を、原料(B)で耐熱性を付与することを意図している。
 ここで、比較例1と比較例2を比較すると、比較例2は比較例1より鞘の体積が大きく、層間接着性は比較例2の方が比較例1よりも高いが、耐熱性は、比較例2は比較例1よりも低い。すなわち、層間接着性と耐熱性は、フィラメント全体としてみると背反特性となっている。
 一方で実施例では、断面を本発明の海島構造とすることで、フィラメント中の原料(A)の体積比率は、比較例1および2と同等の範囲でありながら、比較例1と比較して層間接着性が同等以上かつ、比較例2と比較して耐熱性が同等以上となっている。
In the above Examples and Comparative Examples, the Tg of the raw material (A) used for the sea part or the sheath layer is lower than the Tg of the raw material (B) used for the island part or the core layer. This is intended to impart interlayer adhesiveness to the three-dimensional modeling filament with the raw material (A) and heat resistance with the raw material (B).
Here, when Comparative Example 1 and Comparative Example 2 are compared, Comparative Example 2 has a larger sheath volume than Comparative Example 1, and Comparative Example 2 has higher interlayer adhesiveness than Comparative Example 1, but the heat resistance is higher. Comparative Example 2 is lower than Comparative Example 1. That is, the interlayer adhesiveness and heat resistance are contradictory characteristics when viewed as a filament as a whole.
On the other hand, in the examples, by adopting the sea-island structure of the present invention in the cross section, the volume ratio of the raw material (A) in the filament is in the same range as in Comparative Examples 1 and 2, but compared with Comparative Example 1. The interlayer adhesiveness is equal to or higher than that of Comparative Example 2, and the heat resistance is equal to or higher than that of Comparative Example 2.
 さらに詳細に説明すると、実施例1と比較例1は、原料(A)と原料(B)の含有比率が同じでありながら、Z軸の引張破断伸びが向上している。これは、海部が、造形物の積層間を、芯鞘構造よりも効率的に埋めることで、破断のきっかけとなるボイド(欠陥)が低減したためと考えられる。
 また、実施例2と比較例1を比較すると、実施例2の方が原料(B)の含有比率が少ないにも関わらず、比較例1と同等以上の耐熱性が得られている。これは、島部の総面積量が少なくても、フィラメント内に効率的に配置されることで、島部が、海部の高温時の軟化を効率的に抑制しているためと考えられる。
More specifically, in Example 1 and Comparative Example 1, the content ratios of the raw material (A) and the raw material (B) are the same, but the tensile elongation at break on the Z axis is improved. It is considered that this is because the sea part fills the space between the laminated objects more efficiently than the core-sheath structure, thereby reducing the voids (defects) that trigger the fracture.
Further, when Example 2 and Comparative Example 1 are compared, the heat resistance of Example 2 is equal to or higher than that of Comparative Example 1 even though the content ratio of the raw material (B) is smaller in Example 2. It is considered that this is because even if the total area of the island part is small, the island part efficiently suppresses the softening of the sea part at high temperature by efficiently arranging it in the filament.
 以上より、本発明の海島構造を持つフィラメントは、原料(A)の有する層間接着性と、原料(B)が有する耐熱性の双方の特性が、芯鞘フィラメントよりも高度なレベルで維持できているといえる。
 なお、実施例1および2は、実施例3と比較してやや耐熱性が良好となっている。これは9/10D円内の島比率が実施例3よりも高く、原料(B)からなる島部が、耐熱性をやや発揮しやすくなったためであると考えられる。また、実施例1および2は実施例3と比較して、75℃での層間接着性もやや良好となっている。これは上記のように耐熱性が良好となり、造形時に造形物が変形しにくく、造形物に破断のきっかけとなる欠陥が発生しづらかったためと考えられる。
From the above, the filament having the sea-island structure of the present invention can maintain both the interlayer adhesiveness of the raw material (A) and the heat resistance of the raw material (B) at a higher level than that of the core-sheath filament. It can be said that there is.
It should be noted that Examples 1 and 2 have slightly better heat resistance than Example 3. It is considered that this is because the island ratio within the 9 / 10D circle is higher than that in Example 3, and the island portion made of the raw material (B) is slightly more likely to exhibit heat resistance. Further, Examples 1 and 2 have slightly better interlayer adhesiveness at 75 ° C. as compared with Example 3. It is considered that this is because the heat resistance is good as described above, the modeled object is less likely to be deformed during modeling, and the modeled object is less likely to have a defect that triggers breakage.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は、2020年1月28日出願の日本特許出願(特願2020-011790)に基づくものであり、その内容はここに参照として取り込まれる。 Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. This application is based on a Japanese patent application filed on January 28, 2020 (Japanese Patent Application No. 2020-011790), the contents of which are incorporated herein by reference.
 本発明の海島構造を持つ3次元造形用フィラメントは、それぞれの層がもつすべての特性を効率的に発現、併存できる3次元造形用フィラメントが得られ、特に3次元造形における造形物の耐熱性や層間接着性の向上に好適に用いられる。 The three-dimensional modeling filament having the sea-island structure of the present invention can efficiently express all the characteristics of each layer and can coexist, and in particular, the heat resistance of the modeled object in three-dimensional modeling can be obtained. It is preferably used to improve the interlayer adhesiveness.
1:海部(熱可塑性樹脂(A)からなる海部)
2:島部(熱可塑性樹脂(B)からなる島部)
3:島部(熱可塑性樹脂(C)からなる島部)
4:ダンベル状サンプル
4a:持ち手部分
5:リブ
1: Sea part (sea part made of thermoplastic resin (A))
2: Island part (island part made of thermoplastic resin (B))
3: Island part (island part made of thermoplastic resin (C))
4: Dumbbell-shaped sample 4a: Handle part 5: Rib

Claims (14)

  1.  長手方向に垂直な断面に海島構造を有し、
     該海島構造の海部が熱可塑性樹脂(A)を含有し、
     該海島構造の島部が熱可塑性樹脂(B)を含有し、
     該海島構造が、フィラメントの長手方向に連続している3次元造形用フィラメント。
    It has a sea-island structure in a cross section perpendicular to the longitudinal direction,
    The sea part of the sea island structure contains the thermoplastic resin (A),
    The island portion of the sea island structure contains a thermoplastic resin (B),
    A three-dimensional modeling filament in which the sea-island structure is continuous in the longitudinal direction of the filament.
  2.  前記熱可塑性樹脂(A)のガラス転移温度が、前記熱可塑性樹脂(B)のガラス転移温度よりも低い請求項1に記載の3次元造形用フィラメント。 The three-dimensional modeling filament according to claim 1, wherein the glass transition temperature of the thermoplastic resin (A) is lower than the glass transition temperature of the thermoplastic resin (B).
  3.  前記熱可塑性樹脂(A)の降温過程での結晶化温度が、前記熱可塑性樹脂(B)の降温過程での結晶化温度よりも低い請求項1又は2に記載の3次元造形用フィラメント。 The three-dimensional modeling filament according to claim 1 or 2, wherein the crystallization temperature of the thermoplastic resin (A) in the temperature lowering process is lower than the crystallization temperature of the thermoplastic resin (B) in the temperature lowering process.
  4.  前記熱可塑性樹脂(A)の降温過程での結晶化熱量が、前記熱可塑性樹脂(B)の降温過程での結晶化熱量よりも低い請求項1~3のいずれか1項に記載の3次元造形用フィラメント。 The three-dimensional according to any one of claims 1 to 3, wherein the amount of heat of crystallization of the thermoplastic resin (A) in the process of lowering the temperature is lower than the amount of heat of crystallization of the thermoplastic resin (B) in the process of lowering the temperature. Filament for modeling.
  5.  前記熱可塑性樹脂(A)が、アクリロニトリル-ブタジエン-スチレン共重合樹脂、メチルメタクリレート-ブタジエン-スチレン共重合樹脂、ポリカーボネート、ポリエーテルイミド、ポリオレフィン、ポリアミド、ポリエーテルエーテルケトン及びポリエーテルケトンケトンからなる群から選択される少なくとも1つを含む、請求項1~4のいずれか1項に記載の3次元造形用フィラメント。 The group in which the thermoplastic resin (A) is composed of an acrylonitrile-butadiene-styrene copolymer resin, a methyl methacrylate-butadiene-styrene copolymer resin, a polycarbonate, a polyetherimide, a polyolefin, a polyamide, a polyetheretherketone, and a polyetherketoneketone. The three-dimensional modeling filament according to any one of claims 1 to 4, which comprises at least one selected from.
  6.  前記熱可塑性樹脂(B)が、アクリロニトリル-ブタジエン-スチレン共重合樹脂、メチルメタクリレート-ブタジエン-スチレン共重合樹脂、ポリカーボネート、ポリエーテルイミド、ポリオレフィン、ポリアミド、ポリエーテルエーテルケトン及びポリエーテルケトンケトンからなる群から選択される少なくとも1つを含む、請求項1~5のいずれか1項に記載の3次元造形用フィラメント。 The group in which the thermoplastic resin (B) is composed of an acrylonitrile-butadiene-styrene copolymer resin, a methyl methacrylate-butadiene-styrene copolymer resin, a polycarbonate, a polyetherimide, a polyolefin, a polyamide, a polyetheretherketone, and a polyetherketoneketone. The three-dimensional modeling filament according to any one of claims 1 to 5, which comprises at least one selected from.
  7.  前記海島構造の島部が、フィラメントの長手方向に垂直な断面において2個以上10個以下に分かれている請求項1~6のいずれか1項に記載の3次元造形用フィラメント。 The three-dimensional modeling filament according to any one of claims 1 to 6, wherein the island portion of the sea-island structure is divided into 2 or more and 10 or less in a cross section perpendicular to the longitudinal direction of the filament.
  8.  フィラメント径をDとした場合に、フィラメントの長手方向に垂直な断面の断面中心から直径9/10Dの円内における島部の面積割合が、直径9/10Dの円の面積に対して35%以上99%以下である、請求項1~7のいずれか1項に記載の3次元造形用フィラメント。 When the filament diameter is D, the area ratio of the island part in the circle with a diameter of 9 / 10D from the cross-sectional center of the cross section perpendicular to the longitudinal direction of the filament is 35% or more with respect to the area of the circle with a diameter of 9 / 10D. The three-dimensional modeling filament according to any one of claims 1 to 7, which is 99% or less.
  9.  フィラメント径をDとした場合に、フィラメントの長手方向に垂直な断面の断面中心から直径98/100Dの円外が全て海部である、請求項1~8のいずれか1項に記載の3次元造形用フィラメント。 The three-dimensional modeling according to any one of claims 1 to 8, wherein when the filament diameter is D, the entire circle outside the circle having a diameter of 98 / 100D from the cross-sectional center of the cross section perpendicular to the longitudinal direction of the filament is the sea portion. Filament for.
  10.  前記海島構造の前記海部の熱可塑性樹脂(A)のガラス転移温度(Tg)が、熱可塑性樹脂(B)のガラス転移温度(Tg)より5~100℃低い、請求項1~9のいずれか1項に記載の3次元造形用フィラメント。 Any of claims 1 to 9, wherein the glass transition temperature (Tg) of the thermoplastic resin (A) in the sea portion of the sea island structure is 5 to 100 ° C. lower than the glass transition temperature (Tg) of the thermoplastic resin (B). The filament for three-dimensional modeling according to item 1.
  11.  前記島部の径dが50μm以上1500μm以下である、請求項1~10のいずれか1項に記載の3次元造形用フィラメント。 The three-dimensional modeling filament according to any one of claims 1 to 10, wherein the diameter d of the island portion is 50 μm or more and 1500 μm or less.
  12.  請求項1~11のいずれか1項に記載の3次元造形用フィラメントからなる樹脂成形体。 A resin molded body made of the three-dimensional molding filament according to any one of claims 1 to 11.
  13.  請求項1~11のいずれか1項に記載の3次元造形用フィラメントの巻回体。 The wound body of the filament for three-dimensional modeling according to any one of claims 1 to 11.
  14.  請求項1~11のいずれか1項に記載の3次元造形用フィラメントからなる3次元造形用カートリッジ。 A three-dimensional modeling cartridge made of the three-dimensional modeling filament according to any one of claims 1 to 11.
PCT/JP2021/002921 2020-01-28 2021-01-27 Three-dimensional molding filament WO2021153637A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021574084A JPWO2021153637A1 (en) 2020-01-28 2021-01-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-011790 2020-01-28
JP2020011790 2020-01-28

Publications (1)

Publication Number Publication Date
WO2021153637A1 true WO2021153637A1 (en) 2021-08-05

Family

ID=77079503

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002921 WO2021153637A1 (en) 2020-01-28 2021-01-27 Three-dimensional molding filament

Country Status (2)

Country Link
JP (1) JPWO2021153637A1 (en)
WO (1) WO2021153637A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177497A (en) * 2016-03-30 2017-10-05 キョーラク株式会社 Linear resin formed product, configuration generating method of 3-dimensional object and producing method of linear resin formed product
WO2019151235A1 (en) * 2018-02-02 2019-08-08 三菱ケミカル株式会社 Material for three-dimensional modeling, filament for three-dimensional modeling, roll of said filament, and cartridge for three-dimensional printer
JP3222768U (en) * 2019-06-13 2019-08-22 ユニチカ株式会社 Modeling material
WO2019235104A1 (en) * 2018-06-06 2019-12-12 三菱ケミカル株式会社 Material for three-dimensional printer
JP2020029091A (en) * 2018-08-17 2020-02-27 ユニチカ株式会社 Fused deposition modeling-based filament for three-dimensional molding, and molded body obtained by molding the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017177497A (en) * 2016-03-30 2017-10-05 キョーラク株式会社 Linear resin formed product, configuration generating method of 3-dimensional object and producing method of linear resin formed product
WO2019151235A1 (en) * 2018-02-02 2019-08-08 三菱ケミカル株式会社 Material for three-dimensional modeling, filament for three-dimensional modeling, roll of said filament, and cartridge for three-dimensional printer
WO2019235104A1 (en) * 2018-06-06 2019-12-12 三菱ケミカル株式会社 Material for three-dimensional printer
JP2020029091A (en) * 2018-08-17 2020-02-27 ユニチカ株式会社 Fused deposition modeling-based filament for three-dimensional molding, and molded body obtained by molding the same
JP3222768U (en) * 2019-06-13 2019-08-22 ユニチカ株式会社 Modeling material

Also Published As

Publication number Publication date
JPWO2021153637A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
JP6761568B2 (en) Manufacturing method of linear resin molded body and modeling method of 3D object
WO2016159259A1 (en) Filament resin molding, three-dimensional object fabrication method, and filament resin molding manufacturing method
JP6761567B2 (en) Manufacturing method of linear resin molded product
JP7004941B2 (en) Linear resin molded body
JP6647749B2 (en) Method for producing filament for molding three-dimensional printer and molded article of crystalline soft resin
JP6481496B2 (en) Resin for filament for material extrusion type 3D printer
JP7184079B2 (en) Materials for polyamide-based 3D printers
JP7136132B2 (en) Material for three-dimensional modeling, filament for three-dimensional modeling, wound body of the filament, and cartridge for three-dimensional printer
JP6820500B2 (en) Wire resin molded body
JP6424474B2 (en) Reflective film, liquid crystal display device comprising the same, lighting device, decorative article
US20210086492A1 (en) 3d printer material
WO2021153637A1 (en) Three-dimensional molding filament
JP2023143185A (en) Three-dimensional molding filament
EP3747630A1 (en) Material for three-dimensional modeling, filament for three-dimensional modeling, roll of said filament, and cartridge for three-dimensional printer
JP6960721B2 (en) Cleaning filaments and 3D printer cleaning methods
US20220267593A1 (en) Filament for three-dimensional printing
JP2016200795A (en) Reflection film, liquid crystal display including the same, illumination device, and ornament article
WO2021025161A1 (en) Filament for material extrusion (me) 3-d printer, resin molded body, wound body, and cartridge for mounting on 3-d printer
JP2022080968A (en) Three-dimensional modeled object using crystalline resin filament and method for modeling the same
JP2024070634A (en) Material for 3D printer and method for manufacturing resin molded body using the same
WO2023149561A1 (en) Material for three-dimensional modeling, and resin molded body using same
JP2023053430A (en) Three-dimensional molding material, and resin molding using the same
JP2024037465A (en) Material for 3D printer, filament for 3D printer and its wound body, cartridge for mounting on 3D printer, and method for producing resin molded body
JP2024043226A (en) Modeling materials for 3D printers, 3D printed products, and manufacturing methods thereof
JP2015178546A (en) Film roll, optical film obtained from the roll and production methods of the roll and film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21746974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574084

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21746974

Country of ref document: EP

Kind code of ref document: A1