WO2021153587A1 - Filamentous fungus trichoderma mutant strain - Google Patents

Filamentous fungus trichoderma mutant strain Download PDF

Info

Publication number
WO2021153587A1
WO2021153587A1 PCT/JP2021/002759 JP2021002759W WO2021153587A1 WO 2021153587 A1 WO2021153587 A1 WO 2021153587A1 JP 2021002759 W JP2021002759 W JP 2021002759W WO 2021153587 A1 WO2021153587 A1 WO 2021153587A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
culture
trichoderma
protein
mutant strain
Prior art date
Application number
PCT/JP2021/002759
Other languages
French (fr)
Japanese (ja)
Inventor
拓也 野口
紳吾 平松
山田 勝成
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to CN202180009129.7A priority Critical patent/CN114981405A/en
Priority to JP2021504847A priority patent/JPWO2021153587A1/ja
Publication of WO2021153587A1 publication Critical patent/WO2021153587A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/44Preparation of O-glycosides, e.g. glucosides

Definitions

  • the present invention relates to a mutant strain of Trichoderma filamentous fungus that can keep the viscosity of the culture solution low.
  • Trichoderma filamentous fungi are known to have high protein production ability, and studies on protein production using Trichoderma filamentous fungi have been conducted. Trichoderma filamentous fungi use cellulose, lactose, cellobiose and the like as inducers to produce cellulase, which is classified as a saccharifying enzyme among proteins. In order to enhance the amount of cellulase produced, many studies have been conducted for a long time, such as overexpression of factors controlling cellulase production, modification of genes such as deficiency, and optimization of culture conditions.
  • Trichoderma filamentous fungi belong to aerobic filamentous fungi that require oxygen for growth and protein production. Further, when Trichoderma filamentous fungi are cultured in a liquid medium, the viscosity of the culture solution increases as the culture grows. As the viscosity of the culture solution increases, the distribution of oxygen and nutrients becomes non-uniform. It needs to be kept constant. When the culture tank becomes large, a huge amount of stirring power is required to keep the culture environment constant, and there is a problem that strong stirring causes a large shear damage to the cells.
  • Patent Documents 1 to 6 the culture environment is set at a lower stirring rate as compared with the parent strain by reducing the disruption or production of the proteins Sfb3, Mpg1, Gas1, Seb1, Crz1 and Tps1 of the viscous Trichoderma filamentous fungi, respectively. It is disclosed that it will be possible to maintain.
  • Patent Document 7 describes that disruption of the BXL1 gene of Trichoderma filamentous fungus can suppress a decrease in the dissolved oxygen saturation of the culture solution.
  • An object of the present invention is to obtain a mutant strain of Trichoderma filamentous fungus in which the viscosity of a culture solution is lowered and to provide a method for producing a protein using the mutant strain of Trichoderma filamentous fungus.
  • the present invention provides the following.
  • a Trichoderma filamentous fungus mutant strain in which the activity of ⁇ -glucosidase and ⁇ -xylosidase is lower than that of the parent strain before the introduction of the mutation keeps the viscosity of the culture solution lower than that of the parent strain having the activity of the enzyme. It becomes possible.
  • the trichoderma filamentous fungus in the present invention is not particularly limited as long as it belongs to the genus Trichoderma and has the ability to produce cellulase. It is preferably Trichoderma reesei.
  • a mutant strain derived from the genus Trichoderma, which has been subjected to mutation treatment with a mutant agent or ultraviolet irradiation, or which has improved cellulase productivity may be used as the parent strain.
  • mutant strain used as the parent strain include Trichoderma paralyse (ATCC MYA-4777), which is the ancestor of Trichoderma lysei, QM6a strain (NBRC31326), QM9123 strain (ATCC24449), and QM9414 strain, which are known mutant strains derived from Trichoderma lysei. (NBRC31329), PC-3-7 strain (ATCC66589), QM9123 strain (NBRC31327), RutC-30 strain (ATCC56765), CL-847 strain (Enzyme.Microbiol.Technol.10,341-346 (1988)), MCG77 Examples thereof include a strain (Biotechnol. Bioeng. Symp. 8, 89 (1978)), an MCG80 strain (Biotechnol. Bioeng. 12, 451-459 (1982)) and derivative strains thereof.
  • the Trichoderma filamentous fungus used in the present invention has the carbon catabolite repression released.
  • Strains from which carbon catabolite repression has been released can produce more proteins due to the increased production of proteins such as cellulase. More preferably, it is a strain in which the carbon catabolite repression formed via the carbon catabolite repressor I is released.
  • the carbon catabolite repressor I gene (cre1) is mutated, the carbon catabolite repression made via the carbon catabolite repressor I is released.
  • the CRE1 protein encoded by the cre1 gene is known to suppress the expression of the cellulase gene by catabolite suppression due to glucose (FEBS Lett., 376, 103-107, 1995). Therefore, when the cr1 gene is mutated, the suppression of cellulase gene expression is released and the amount of cellulase produced increases. Therefore, a strain in which the cre1 gene is mutated is more suitable for producing a protein or cellulase composition.
  • mutation of the cre1 gene in the cre1 gene of the PC-3-7 strain (ATCC66589), the 232nd A is replaced with C, and as a result, the 78th threonine of the amino acid sequence is replaced with proline. It can be mentioned that.
  • a strain containing a mutation in the cre1 gene is a frame shift due to deletion or insertion of a base in the cre1 gene region due to a gene mutation agent, ultraviolet irradiation, etc., or a stop codon mutation due to base substitution, or a base.
  • a strain containing a cleavage is included, and a strain in which all or part of the cre1 gene is removed or replaced with another gene by recombination or the like is also included.
  • a strain that inherits the characteristics of the PC-3-7 strain (ATCC66589), the RutC-30 strain (ATCC56765), the PC-3-7 strain (ATCC66589), and the RutC-30 strain (ATCC56765) is preferably used. More preferably, it is a strain that inherits the characteristics of the PC-3-7 strain (ATCC66589) or the PC-3-7 strain (ATCC66589).
  • the strain that inherited the characteristics of the PC-3-7 (ATCC66589) and RutC-30 strain (ATCC56765) includes the strain that inherited the characteristics of the PC-3-7 strain (ATCC66589) and the RutC-30 strain (ATCC56765). Includes strains that have been newly mutated and strains whose functions have been improved by recombination.
  • the QM6a strain, QM9414 strain, and QM9123 strain can be obtained from NBRC (NITE Biological Resource Center), and the PC-3-7 strain and RutC-30 strain can be obtained from ATCC (American Type Culture Collection).
  • a mutant strain of Trichoderma filamentous fungus in which the activity of ⁇ -glucosidase and ⁇ -xylocidase is lower than that of the parent strain before the introduction of the mutation is defined by introducing a mutation into the parent strain of Trichoderma filamentous fungus which is the above-mentioned parent strain.
  • ⁇ -Glucosidase and ⁇ -xylosidase are referred to as mutant strains in which the activity of ⁇ -glucosidase and ⁇ -xylosidase is lower than that of the parent strain before the introduction of the mutation, and may be referred to as “mutant strain of the present invention” in the present specification.
  • the decrease in the activity of ⁇ -glucosidase and ⁇ -xylosidase means that the specific activity of ⁇ -glucosidase and the specific activity of ⁇ -xylosidase are decreased as compared with the parent strain before the mutation was introduced. It also includes a state in which the function of ⁇ -glucosidase and / or ⁇ -xylosidase is deficient.
  • the ⁇ -glucosidase specific activity and the ⁇ -xylosidase specific activity are preferably reduced to 1/10 or less, more preferably 1/50 or less, respectively, as compared with the parent strain. It is preferably reduced to 1/100 or less, more preferably 1/200 or less, further preferably 1/500 or less, particularly preferably 1/800 or less, and most preferably 1/1000 or less.
  • the ⁇ -glucosidase specific activity and the ⁇ -xylocidase specific activity are preferably 0.02 U / mg-protein or less and 0.002 U / mg-protein or less, more preferably 0.01 U. / Mg-protein or less and 0.001 U / mg-protein or less, more preferably 0.005 U / mg-protein or less and 0.0005 U / mg-protein or less, still more preferably 0.0025 U / mg-protein or less and , 0.00025 U / mg-protein or less.
  • the method for introducing a mutation that reduces the specific activity of ⁇ -glucosidase and the specific activity of ⁇ -xylosidase into the parent strain of Trichoderma filamentous fungus is not particularly limited, but the gene mutation treatment by a gene mutagen, ultraviolet irradiation, or the like is not particularly limited. Examples thereof include a method and a site-specific mutation method.
  • the BGL1 gene or BXL1 gene possessed by the parent strain of Trichoderma filamentous fungus may be disrupted.
  • mutations such as mutations, insertions, and deletions are introduced into both of these genes, the promoter region, or the gene encoding the transcriptional regulatory factor of the gene to reduce ⁇ -glucosidase and ⁇ -xylosidase activities. You may let me. Furthermore, it can be performed by introducing a frame shift mutation into both of the above genes or by inserting a stop codon, and by gene recombination (homologous recombination with another gene, etc.), the gene or promoter region. Or, the BGL1 gene and / or the BXL1 gene can be disrupted by removing or replacing all or part of the gene encoding the transcriptional regulatory factor of the gene with another gene.
  • the expression of the BGL1 gene and / or the BXL1 gene is inhibited by removing all or part of the binding recognition sequence of the transcriptional regulatory factor located upstream of the BGL1 gene and / or the BXL1 gene or replacing it with another gene.
  • the BGL1 gene (Gene ID; 18488646) of Trichoderma filamentous fungus and the filamentous fungus BXL1 gene (Gene ID; 18483060) are known, disruption of these genes can be carried out by the above-mentioned gene mutation introduction treatment method, site-specific mutation method, or the like. It can be easily done by the conventional method of.
  • transcriptional regulators are present at 1 to 500 bases upstream of the BGL1 gene and the BGL1 gene of Trichoderma filamentous fungi.
  • Specific examples of transcriptional regulators include Xyr1, and the putative binding recognition sequence of Xyr1 in Trichoderma filamentous fungi is Borin, Carazzole. "Gene Co-expression Network Revels Potential New Genes Related to Sugarcane Bagasse Degradation in Trichoderma reesei RUT-30" Biogen. Biotechnol. , 2018, 6, doi. org / 10.3389 / fbioe. It is disclosed in 2018.00151.
  • each strain after the mutation treatment is cloned, ⁇ -glucosidase activity and ⁇ -xylosidase activity are measured by the method described later, and these activities are measured.
  • ⁇ -glucosidase activity and ⁇ -xylosidase activity are measured by the method described later, and these activities are measured.
  • ⁇ -glucosidase and ⁇ -xylosidase of Trichoderma filamentous fungi are measured by the following methods.
  • the culture solution obtained by culturing Trichoderma filamentous fungi is centrifuged at 20,000 xg for 10 minutes, and the supernatant is collected.
  • the recovered supernatant is diluted to an appropriate concentration to prepare an enzyme diluent, and the specific activity of the enzyme is measured by the following method.
  • the ⁇ -glucosidase specific activity is measured by the following method. First, 10 ⁇ L of an enzyme diluent is added to 90 ⁇ L of 50 mM acetate buffer containing 1 mM p-nitrophenyl- ⁇ -glucopyranoside (manufactured by Sigma-Aldrich Japan) and reacted at 30 ° C. for 10 minutes. Next, 10 ⁇ L of 2M sodium carbonate is added and mixed well to stop the reaction, and the increase in absorbance at 405 nm is measured. Finally, the specific activity is calculated assuming that the activity of liberating 1 ⁇ mol of p-nitrophenol per minute is 1 U.
  • the ⁇ -xylosidase specific activity is measured by the following method. First, 10 ⁇ L of an enzyme diluent is added to 90 ⁇ L of 50 mM acetate buffer containing 1 mM p-nitrophenyl- ⁇ -xylopyranoside (manufactured by Sigma-Aldrich Japan) and reacted at 30 ° C. for 30 minutes. Next, 10 ⁇ L of 2M sodium carbonate is added and mixed well to stop the reaction, and the increase in absorbance at 405 nm is measured. Finally, the specific activity is calculated assuming that the activity of liberating 1 ⁇ mol of p-nitrophenol per minute is 1 U.
  • the protein concentration required to calculate the specific activity is measured as follows. Add 5 ⁇ L of the enzyme diluent to 250 ⁇ L of the Quick Start Bloodford protein assay (manufactured by Bio-Rad), and measure the absorbance used at 595 nm after standing at room temperature for 15 minutes. Using bovine serum albumin solution as a standard solution, calculate the protein concentration contained in the saccharifying enzyme solution based on the calibration curve.
  • the "variant strain of Trichoderma filamentous fungus in which ⁇ -glucosidase and ⁇ -xylocidase activity is lower than that of the parent strain before the introduction of the mutation" of the present invention has a lower viscosity of the culture solution than the parent strain.
  • the energy required for aeration and agitation and the number of rotations can be reduced.
  • the rotation speed of stirring can be set low, shear damage to the hyphae can be reduced.
  • it is more effective because it leads to reduction of the capacity of the blower and the stirring motor required for ventilation and the stirring energy.
  • the culturing method is not particularly limited as long as it is a method capable of culturing Trichoderma filamentous fungi to produce a protein, and can be carried out by a well-known method using a well-known medium.
  • it can be cultured in a liquid culture using a centrifuge tube, a flask, a jar fermenter, a tank, or the like. Since Trichoderma lysei is an aerobic microorganism, among these culture methods, a jar fermenter or a deep culture in which the culture is carried out while aeration or stirring is performed in a tank is particularly preferable.
  • the air volume is preferably about 0.1 vvm to 2.0 vvm, more preferably 0.3 vvm to 1.5 vvm, and particularly preferably 0.5 vvm to 1.0 vvm.
  • the culture temperature is preferably about 25 ° C. to 35 ° C., more preferably 25 ° C. to 31 ° C.
  • the pH conditions in the culture are preferably pH 3.0 to 7.0, and more preferably pH 4.0 to 6.0. Incubation time is carried out under the condition that protein is produced until a recoverable amount of protein is accumulated. Usually, it is about 24 to 288 hours, more preferably 36 to 240 hours.
  • the viscosity of the culture solution uses the values measured under the following conditions, and the viscosity comparison is made by comparing the maximum values among the values measured under the following conditions.
  • a pre-culture medium 1.0 ⁇ 10 5 spores per 1mL spores
  • Trichoderma filamentous fungus to be evaluated pre-culture medium Inoculate to and incubate in a shaking incubator under the conditions of 28 ° C. and 120 rpm until the amount of bacterial cells reaches about 11 g / L.
  • Arbocel B800 trade name, cellulose fiber, manufactured by Rettenmeier
  • bagasse powder were added so as to be 100 g / L (w / v).
  • deep culture is performed under the culture conditions of 28 ° C., 700 rpm, and an aeration rate of 100 mL / min while controlling the pH to 5.0.
  • a digital rotational viscometer is used to measure the viscosity of the culture solution.
  • the digital rotational viscometer performs zero-point calibration in advance. About 20 ml of the culture solution from the start of the culture to the time when 96 hours have passed is collected over time. Immediately after collection, put the culture solution in the designated container, immerse the spindle in the culture solution, rotate it at a rotation speed of 0.3 rpm, and measure the torque, which is the viscous resistance acting on the spindle at this time, under room temperature conditions. By doing so, the viscosity of the culture solution is measured. The unit of viscosity is centipores (cP).
  • One centimeter pores is defined as the viscosity at which when there is a velocity gradient of 1 cm / sec per cm in a fluid, a stress of the magnitude of a force of 1 dyne per cm 2 of the direction of velocity occurs in a plane perpendicular to the direction of the velocity gradient.
  • NS. DV2T BROOKFIELD
  • ULA BROOKFIELD
  • spindle
  • the viscosity of the culture solution was lower than that in the case where the parent strain was cultured under the same conditions, and the culture solution was in culture.
  • the maximum value of the viscosity is preferably 70% or less of the parent strain, more preferably 60% or less, and further preferably 50% or less.
  • the maximum value of the viscosity of the mutant strain of the present invention in culture is preferably 50 cP or more, more preferably 100 cP or more, more preferably 150 cP or more, more preferably 200 cP or more, and further, as compared with the parent strain. It is preferably 250 cP or more, more preferably 300 cP or more, still more preferably 350 cP or more, still more preferably 400 cP or more, and particularly preferably 500 cP or more.
  • the protein produced in the present invention is not particularly limited, but a protein secreted outside the cells can be efficiently produced, and among them, an enzyme is preferable, and cellulase, amylase, invertase, chitinase, and pectinase are more preferable. Etc., and more preferably cellulase.
  • the cellulase produced in the present invention contains various hydrolases, such as enzymes having degrading activity against xylan, cellulose, and hemicellulose.
  • specific examples of the hydrolyzing enzyme generally contained in cellulase include cellobiose hydrase (EC 3.21.91), which produces cellobiose by hydrolyzing a cellulose chain, and hydrolyzes from the central portion of the cellulose chain.
  • Endoglucanase EC 3.2.1.4
  • ⁇ -glucosidase EC 3.2.1.21 that hydrolyzes cellooligosaccharides and cellobiose
  • xylanase characterized by acting on hemicellulose and especially xylan.
  • 3.21.8 ⁇ -xylossidase (EC 3.21.37) that hydrolyzes xylooligosaccharide, and the like.
  • the protein concentration of cellulase may be calculated by the method described above.
  • the culture method for culturing the mutant strain of the present invention is not particularly limited, and for example, it can be cultured in a liquid culture using a centrifuge tube, a flask, a jar fermenter, a tank, or the like. Since Trichoderma filamentous fungi are aerobic microorganisms, among these culture methods, a jar fermenter or a deep culture in which the cells are cultured while being aerated or stirred in a tank is particularly preferable.
  • the medium composition at the time of culturing is not particularly limited as long as the medium composition is such that Trichoderma filamentous fungi can produce proteins, and a well-known medium composition of Trichoderma filamentous fungi can be adopted.
  • the nitrogen source for example, polypeptone, gravy, corn steep liquor (CSL), soybean meal and the like can be used.
  • an inducer for producing a protein may be added to the medium.
  • carbon sources sugars such as glucose, sucrose, fructose, galactose, and lactose, starch saccharified liquid containing these sugars, molasses, sugar beet molasses, high test molasses, organic acids such as acetic acid, ethanol, etc. Alcohols, glycerin and the like can be used. In addition to these, especially when producing cellulase, it is preferable to use an inducer described later as a carbon source.
  • cellulase When cellulase is produced according to the present invention, it can be cultured in a medium containing at least one or two or more inducers selected from the group consisting of lactose, cellulose and xylan. Further, as the cellulose or xylan, biomass containing cellulose or xylan may be added as an inducer. Specific examples of the biomass containing cellulose and xylan include plants such as seed plants, fern plants, moss plants, algae, and aquatic plants, as well as waste building materials. Seed plants are classified into gymnosperms and angiosperms, both of which can be preferably used.
  • Angiosperms are further classified into monocotyledonous plants and dicotyledonous plants, and specific examples of monocotyledonous plants include bagus, switchgrass, napiergrass, elianthus, corn stover, corn cob, rice straw, and straw.
  • dicotyledonous plants beet pulp, eucalyptus, nara, white birch and the like are preferably used.
  • pretreated biomass may be used as the biomass containing cellulose and xylan.
  • the pretreatment method is not particularly limited, but known methods such as acid treatment, sulfuric acid treatment, dilute sulfuric acid treatment, alkali treatment, hydrothermal treatment, subcritical treatment, pulverization treatment, and steaming treatment can be used. Pulp containing xylan may be used as the biomass containing such pretreated cellulose and xylan.
  • mutant strain of the present invention when used as a protein lysate without removing the cells from the culture solution in which the mutant strain of the present invention is cultured, it is possible to treat the mutant strain of the present invention so that it cannot grow in the culture solution.
  • the method for treating the cells so that they cannot grow include heat treatment, chemical treatment, acid / alkali treatment, and UV treatment.
  • the culture solution treated as described above so that the cells are not removed or grown can be used as it is as the enzyme solution.
  • the method of using the cellulase composition produced in the present invention is not particularly limited, but it is preferably used for producing sugar. More preferably it is used in the production of xylobiose and / or cellobiose, and even more preferably it is used in the production of xylobiose and / or cellobiose.
  • the xylooligosaccharide in the present invention refers to a xylooligosaccharide in which at least two or more xyloses are linked by a ⁇ -glycosidic bond.
  • the degree of polymerization of the xylooligosaccharide is not particularly limited, but it is preferably a disaccharide (xylobiose) to a hexasaccharide (xylohexaose) having high water solubility. Most preferably, it contains xylobiose, xylobiose, and xylotetraose, which are easily assimilated as a carbon source by the intestinal bacteria.
  • the cellooligosaccharide in the present invention refers to a cellooligosaccharide in which at least two or more glucoses are linked by a ⁇ -glycosidic bond.
  • the degree of polymerization of the cellooligosaccharide is not particularly limited, but it is preferably a disaccharide (cellobiose) to a hexasaccharide (cellobiose) having high water solubility. Most preferably, it contains cellobiose, cellotriose, and cellotetraose, which are easily assimilated as a carbon source by the intestinal bacteria.
  • the cellulase composition is obtained by culturing Trichoderma filamentous fungi and is used for the saccharification reaction of biomass.
  • the method for preparing the cellulase composition is not particularly limited, but it is preferable that the cells of Trichoderma filamentous fungi contained in the culture solution are not removed or grown. This is to prevent glucose and xylooligosaccharides produced during the saccharification reaction between the cellulase composition and the biomass from being consumed by the cells.
  • Examples of the method for removing the bacterial cells include centrifugation and membrane separation.
  • the treatment method for preventing the growth of bacterial cells include heat treatment, chemical treatment, acid / alkali treatment, and UV treatment.
  • the method for producing sugar using the cellulase composition obtained by culturing Trichoderma filamentous fungi is not particularly limited, but the biomass can be saccharified with the cellulase composition. Biomass containing cellulose and / or xylan can be used as the biomass used for the saccharification reaction. Further, the cellulose and / or biomass used in the saccharification reaction may be pretreated in advance.
  • the pretreatment method is not particularly limited, but specifically, known methods such as acid treatment, sulfuric acid treatment, dilute sulfuric acid treatment, alkali treatment, hydrothermal treatment, subcritical treatment, pulverization treatment, and steaming treatment can be used. can.
  • the reaction pH is also not particularly limited, but the pH is preferably around 3 to 7, more preferably around 4 to 6, and even more preferably around 5.
  • the reaction temperature is also not particularly limited, but is preferably 40 to 70 degrees.
  • xylobiose from the biomass containing xylose preferably xylobiose
  • cellobiose from the biomass containing cellulose preferably cellobiose, xylobiose and cellooligosaccharide from the biomass containing cellulose and xylose, preferably xylobiose.
  • the sugars obtained by the above-mentioned saccharification reaction include monosaccharides such as mannose, arabinose, and galactose produced by hydrolases contained in the cellulase composition, and cellotriose and cellotetraose. Oligosaccharides such as mannose and galactose may be contained.
  • the post-reaction liquid produced from the saccharification reaction of the present invention may also contain inorganic salts, amino acids, proteins, lignin and the like as impurities, and in order to remove these impurities, a purification operation is performed. May be good.
  • a purification operation known methods such as ion exchange, membrane separation, crystallization, and desalting can be applied.
  • the monosaccharide fraction (glucose, xylose, etc.) and the oligosaccharide fraction (xylooligosaccharide, cellooligosaccharide, etc.) produced by the present invention are separated by a subsequent step.
  • Glucose is preferably used as a fermentation raw material in the production of chemical products
  • xylooligosaccharide is preferably used in feed, food and cosmetic applications.
  • xylose has a limited number of microorganisms that can be used as a fermentation raw material. Furthermore, when xylose is given to pigs as feed, about half of it is excreted as urine. Therefore, it is preferable to minimize the decomposition of xylan and xylooligosaccharides into xylose and improve the yield of xylooligosaccharides.
  • the method for separating the monosaccharide fraction and the oligosaccharide fraction is not particularly limited, and a known method can be used.
  • membrane separation as described in WO 2017/11975 is preferably used.
  • the spores of various trichodermarysei mutants were diluted with physiological saline to 1.0 ⁇ 10 7 / mL, and 2.5 mL of the diluted spore solution was placed in a flask with a 1 L baffle shown in Table 1 in 250 mL.
  • the culture medium was inoculated and cultured in a shaking incubator at 28 ° C. and 120 rpm for 72 hours.
  • Trichoderma lysei PC-3-7 strain was used, and the same experimental operation was performed.
  • Arbocel B800 (trade name, Rettenmeier Co., Ltd., powdered cellulose) was added to the main culture medium shown in Table 2, and a deep culture study was conducted using a 5 L jar fermenter (manufactured by Biot Co., Ltd.).
  • the culture conditions after inoculating the preculture medium into the main culture medium, deep culture was performed under the culture conditions of 28 ° C., 700 rpm, and an aeration rate of 100 mL / min while controlling the pH to 5.0.
  • Protein concentration measurement reagent used Quick Start Blade protein assay, Bio-Rad measurement conditions Measurement temperature: Room temperature Protein concentration measurement reagent: 250 ⁇ L Filamentous fungus culture: 5 ⁇ L Reaction time: 5 minutes Absorbance: 595 nm Standard product: BSA.
  • the xylooligosaccharide described in this example refers to a xylooligosaccharide in which 2 to 6 xylose units are bound by ⁇ -glycosidic bond.
  • the sero-oligosaccharide described in this example refers to a sero-oligosaccharide in which 2 to 6 glucose units are bound by ⁇ -glycosidic bond.
  • mutant spores collected and washed by centrifugation from this suspension were inoculated into a medium containing 2 wt% Arbocel B800 (trade name, Rettenmeier) and cultured at 28 ° C. for 120 hours at 125 rpm.
  • Arbocel B800 trade name, Rettenmeier
  • the ⁇ -glucosidase activity was evaluated by the method described in Reference Example 4 using the supernatant obtained by centrifuging the culture solution.
  • the enzyme activity (U) was calculated as the amount of enzyme liberating 1 mol of p-nitrophenol per minute.
  • ⁇ Comparative Example 2 Preparation of mutant strain (PC-3-7BGL / ⁇ BXL strain) having reduced BXL activity using Trichoderma Risei PC-3-7 as a parent strain 1.0 ⁇ 10 spores of Trichoderma Risei PC-3-7 Dilute with physiological saline to 7 / mL, inoculate 0.1 mL of the diluted spore solution into 10 mL of preculture medium in a flask with a 50 mL baffle shown in Table 1, and use a shaking incubator at 28 ° C. , 120 rpm for 4 hours. The culture medium was mutated with NTG (1-Methyl-3-nitro-1-nitrosoguanidine) for 90 minutes.
  • mutant spores collected and washed by centrifugation from this suspension were inoculated into a medium containing 2 wt% Arbocel B800 (trade name, Rettenmeier) and cultured at 28 ° C. for 120 hours at 125 rpm.
  • the ⁇ -xylosidase activity was evaluated by the method described in Reference Example 4 using the supernatant obtained by centrifuging the culture solution.
  • the enzyme activity (U) was calculated as the amount of enzyme liberating 1 mol of p-nitrophenol per minute.
  • Example 1 Preparation of mutant strain (PC-3-7 ⁇ BGL / ⁇ BXL) strain having reduced BGL and BXL activity using PC-3-7BGL / ⁇ BXL as a parent strain.
  • Dilute with physiological saline to 0 ⁇ 10 7 / mL inoculate 0.1 mL of the diluted spore solution into a 10 mL preculture medium in a flask with a 50 mL baffle shown in Table 1, and put it in a shaking incubator.
  • the cells were cultured at 28 ° C. and 120 rpm for 4 hours.
  • the culture medium was mutated with NTG (1-Methyl-3-nitro-1-nitrosoguanidine) for 90 minutes.
  • Mutant spores collected and washed by centrifugation from this suspension were cloned on PDA agar medium.
  • the obtained mutant spores were diluted with physiological saline to 1.0 ⁇ 10 7 / mL and inoculated with 1% (v / v) in a medium containing 2 wt% Arbocel B800 (trade name, Rettenmeier). Then, the cells were cultured at 28 ° C. for 120 hours at 125 rpm.
  • the mutant strain having decreased ⁇ -glucosidase activity was selected by evaluating the ⁇ -glucosidase activity of the supernatant obtained by centrifuging the culture solution by the method described in Reference Example 4.
  • the enzyme activity (U) was calculated as the amount of enzyme liberating 1 mol of p-nitrophenol per minute.
  • U The enzyme activity
  • Example 2 Preparation of mutant strain (PC-3-7 ⁇ BGL / ⁇ BXL-B) strain having reduced BGL and BXL activity using PC-3-7 ⁇ BGL / BXL as a parent strain.
  • Dilute with physiological saline to 1.0 ⁇ 10 7 / mL inoculate 0.1 mL of the diluted spore solution into a 10 mL preculture medium in a flask with a 50 mL baffle shown in Table 1, and shake culture.
  • the cells were cultured on the machine at 28 ° C. and 120 rpm for 4 hours.
  • the culture medium was mutated with NTG (1-Methyl-3-nitro-1-nitrosoguanidine) for 90 minutes.
  • Mutant spores collected and washed by centrifugation from this suspension were cloned on PDA agar medium.
  • the obtained mutant spores were diluted with physiological saline to 1.0 ⁇ 10 7 / mL and inoculated with 1% (v / v) in a medium containing 2 wt% Arbocel B800 (trade name, Rettenmeier). Then, the cells were cultured at 28 ° C. for 120 hours at 125 rpm.
  • the mutant strain having decreased ⁇ -xylosidase activity was selected by centrifuging the culture solution and evaluating the ⁇ -xylosidase activity of the supernatant obtained by the method described in Reference Example 4.
  • the enzyme activity (U) was calculated as the amount of enzyme liberating 1 mol of p-nitrophenol per minute. As a result, a mutant strain lacking ⁇ -xylosidase activity was obtained. The results are shown in Table 3. Further, as a result of analyzing the gene sequence of the PC-3-7- ⁇ BGL / ⁇ BXL-B strain, the 2018 A from the translation start point of the BXL gene was replaced with T, and the 2065 A was replaced with T. It turned out.
  • Example 3 Viscosity measurement of PC-3-7 ⁇ BGL / ⁇ BXL strain Using the method described in Reference Example 2, the viscosity of the PC-3-7 ⁇ BGL / ⁇ BXL strain prepared in Example 1 over time in the culture solution was determined. It was measured. As a result, the maximum viscosity during culturing was 117 cP, which was 48.2% lower than that of the Trichoderma Risei PC-3-7 strain (Table 4).
  • Example 4 Viscosity measurement of PC-3-7 ⁇ BGL / ⁇ BXL-B strain P prepared in Example 2 using the method described in Reference Example 2. The viscosity of the C-3-7 ⁇ BGL / ⁇ BXL strain in the culture solution over time was measured. As a result, the maximum viscosity during culturing was 131 cP, which was 42.0% lower than that of the Trichoderma Risei PC-3-7 strain (Table 4).
  • Example 5 Glycation test using cellulase composition of PC-3-7 ⁇ BGL / ⁇ BXL strain
  • Two types of biomass Arbocel B800 (Rettenmeier), bagasse powder) were used for 24 hours by the method described in Reference Example 5. It was subjected to a saccharification reaction at 50 ° C. The saccharification reaction solution was quantitatively analyzed by the method described in Reference Example 6.
  • the amount of xylobiose released was 3.45 g / L and 1.28 g / L, respectively, which was surprisingly compared with the results of the PC-3-7BGL / ⁇ BXL strain, respectively. It increased by 52% and 19.6%.
  • Table 5 The results are shown in Table 5.

Abstract

Disclosed are: the acquisition of a mutant strain of filamentous fungus Trichoderma with which culture solution viscosity is reduced; and a method for producing a protein using the mutant strain of filamentous fungus Trichoderma. In the present invention, a mutant strain of filamentous fungus Trichoderma in which the activities of β-glucosidase and of β-xylosidase have been reduced is acquired, and this mutant strain is cultured to produce a protein. The mutant strain of filamentous fungus Trichoderma in which the β-glucosidase and of β-xylosidase activities have been reduced is capable of maintaining the culture solution viscosity at a lower level compared to the parent strain thereof in which the activities of the enzymes are preserved.

Description

トリコデルマ属糸状菌変異株Trichoderma filamentous fungus mutant strain
 本発明は、培養液の粘度を低く保つことができるトリコデルマ属糸状菌の変異株に関する。 The present invention relates to a mutant strain of Trichoderma filamentous fungus that can keep the viscosity of the culture solution low.
 トリコデルマ属糸状菌は、高いタンパク質製造能を有していることが知られており、トリコデルマ属糸状菌を用いたタンパク質の製造の検討が行われてきた。トリコデルマ属糸状菌は、セルロース、ラクトース、セロビオースなどを誘導物質として、タンパク質の中でも特に糖化酵素に分類されるセルラーゼを製造する。セルラーゼ製造量を強化するため、古くよりセルラーゼ製造を制御する因子の過剰発現、欠損をはじめとする遺伝子の改変、培養条件の最適化などの検討が多々行われている。 Trichoderma filamentous fungi are known to have high protein production ability, and studies on protein production using Trichoderma filamentous fungi have been conducted. Trichoderma filamentous fungi use cellulose, lactose, cellobiose and the like as inducers to produce cellulase, which is classified as a saccharifying enzyme among proteins. In order to enhance the amount of cellulase produced, many studies have been conducted for a long time, such as overexpression of factors controlling cellulase production, modification of genes such as deficiency, and optimization of culture conditions.
 一方で、トリコデルマ属糸状菌は生育やタンパク質の製造に酸素を必須とする好気性糸状菌に属している。また、トリコデルマ属糸状菌は液体培地で培養すると、増殖に伴い培養液の粘度が高まるという特徴を有している。培養液の粘度が高まると、酸素や栄養素の分布が不均一になるため、トリコデルマ属糸状菌を培養する際には、撹拌数を増加させたり、通気量を増大させたりすることで培養環境を一定に維持する必要がある。培養槽が大型化すると、培養環境を一定にするために膨大な攪拌動力が必要となり、強い攪拌は菌体に大きなせん断ダメージを与えてしまうという課題がある。 On the other hand, Trichoderma filamentous fungi belong to aerobic filamentous fungi that require oxygen for growth and protein production. Further, when Trichoderma filamentous fungi are cultured in a liquid medium, the viscosity of the culture solution increases as the culture grows. As the viscosity of the culture solution increases, the distribution of oxygen and nutrients becomes non-uniform. It needs to be kept constant. When the culture tank becomes large, a huge amount of stirring power is required to keep the culture environment constant, and there is a problem that strong stirring causes a large shear damage to the cells.
 特許文献1から6では、それぞれ粘性のトリコデルマ属糸状菌のSfb3、Mpg1、Gas1、Seb1、Crz1およびTps1のタンパク質の破壊または生成を減少させることにより、親株と比較して低い撹拌数で培養環境を維持することが可能になると開示されている。 In Patent Documents 1 to 6, the culture environment is set at a lower stirring rate as compared with the parent strain by reducing the disruption or production of the proteins Sfb3, Mpg1, Gas1, Seb1, Crz1 and Tps1 of the viscous Trichoderma filamentous fungi, respectively. It is disclosed that it will be possible to maintain.
 また、特許文献7には、トリコデルマ属糸状菌のBXL1遺伝子を破壊すると、培養液の溶存酸素飽和度の低下を抑制することができると記載されている。 Further, Patent Document 7 describes that disruption of the BXL1 gene of Trichoderma filamentous fungus can suppress a decrease in the dissolved oxygen saturation of the culture solution.
特表2013-533751号公報Special Table 2013-533751 特表2014-513529号公報Japanese Patent Application Laid-Open No. 2014-513259 特表2014-513530号公報Japanese Patent Publication No. 2014-513530 特表2014-513531号公報Japanese Patent Application Laid-Open No. 2014-513331 特表2014-513532号公報Japanese Patent Application Laid-Open No. 2014-513532 特表2014-513533号公報Japanese Patent Publication No. 2014-513533 国際公開第2017/170917号International Publication No. 2017/170917
 上記のとおり、トリコデルマ属糸状菌を用いてタンパク質の製造をするにあたり、培養液中の溶存酸素濃度の低下を抑制し、一定以上に保つことは非常に重要である。本発明者らは、トリコデルマ属糸状菌を用いた液体培養によるタンパク質の製造の際に、培養液の粘度を低く保つことができれば、培養スケールを大型化した場合でも、攪拌に必要なエネルギーを低減することができると共に、培養液中の溶存酸素飽和度の低下を抑制することもできると考えた。本発明では、培養液の粘度が低下するトリコデルマ属糸状菌の変異株の取得および当該トリコデルマ属糸状菌の変異株を用いたタンパク質の製造方法を提供することを課題とする。 As mentioned above, when producing proteins using Trichoderma filamentous fungi, it is very important to suppress the decrease in dissolved oxygen concentration in the culture solution and keep it above a certain level. If the viscosity of the culture solution can be kept low during the production of protein by liquid culture using Trichoderma filamentous fungi, the present inventors can reduce the energy required for stirring even when the culture scale is increased. At the same time, it was considered that the decrease in dissolved oxygen saturation in the culture solution could be suppressed. An object of the present invention is to obtain a mutant strain of Trichoderma filamentous fungus in which the viscosity of a culture solution is lowered and to provide a method for producing a protein using the mutant strain of Trichoderma filamentous fungus.
 本発明者は、培養液の粘度を低く保つことが可能となるトリコデルマ属糸状菌の選抜を鋭意検討した結果、β-グルコシダーゼおよびβ-キシロシダーゼの活性が変異導入前の親株より低下したトリコデルマ属糸状菌の変異株を培養することにより、培養液の粘度が低く保たれることを見出し、本発明を完成するに至った。 As a result of diligent studies on the selection of Trichoderma filamentous fungi that can keep the viscosity of the culture solution low, the present inventor has reduced the activities of β-glucosidase and β-xylocidase from the parent strain before the introduction of the mutation. By culturing a mutant strain of the bacterium, it was found that the viscosity of the culture solution was kept low, and the present invention was completed.
 すなわち、本発明は以下のものを提供する。
(1) β-グルコシダーゼおよびβ-キシロシダーゼの活性が変異導入前の親株より低下したトリコデルマ属糸状菌の変異株。
(2) 前記β-グルコシダーゼの比活性が0.02U/mg-protein以下かつ、前記β-キシロシダーゼの比活性が0.002U/mg-protein以下である(1)に記載の変異株。
(3) 前記トリコデルマ属糸状菌がトリコデルマ リーセイである(1)または(2)に記載の変異株。
(4) (1)~(3)のいずれかに記載の変異株を培養してタンパク質を製造する方法。
(5) 前記タンパク質がセルラーゼである(4)に記載の製造方法。
(6) (5)に記載の方法で製造されたセルラーゼでキシランを含むバイオマスを加水分解する、キシロオリゴ糖の製造方法。
(7) トリコデルマ属糸状菌のβ-グルコシダーゼ活性およびβ-キシロシダーゼ活性を低下させることを含む、トリコデルマ属糸状菌の液体培養時の培養液の粘度を低下させる方法。
That is, the present invention provides the following.
(1) A mutant strain of Trichoderma filamentous fungus in which the activities of β-glucosidase and β-xylosidase were lower than those of the parent strain before the introduction of the mutation.
(2) The mutant strain according to (1), wherein the specific activity of β-glucosidase is 0.02 U / mg-protein or less, and the specific activity of β-xylosidase is 0.002 U / mg-protein or less.
(3) The mutant strain according to (1) or (2), wherein the Trichoderma filamentous fungus is Trichoderma lysei.
(4) A method for producing a protein by culturing the mutant strain according to any one of (1) to (3).
(5) The production method according to (4), wherein the protein is cellulase.
(6) A method for producing a xylooligosaccharide, which hydrolyzes biomass containing xylan with cellulase produced by the method according to (5).
(7) A method for reducing the viscosity of a culture solution during liquid culture of Trichoderma filamentous fungi, which comprises reducing the β-glucosidase activity and β-xylosidase activity of Trichoderma filamentous fungi.
 本発明によれば、β-グルコシダーゼおよびβ-キシロシダーゼの活性が変異導入前の親株より低下したトリコデルマ属糸状菌変異株は、当該酵素の活性を有する親株と比較して培養液の粘度を低く保つことが可能となる。 According to the present invention, a Trichoderma filamentous fungus mutant strain in which the activity of β-glucosidase and β-xylosidase is lower than that of the parent strain before the introduction of the mutation keeps the viscosity of the culture solution lower than that of the parent strain having the activity of the enzyme. It becomes possible.
 本発明におけるトリコデルマ属糸状菌は、Trichoderma属に属し、セルラーゼを生産する能力を有していれば特に制限はない。好ましくはトリコデルマ リーセイ(Trichoderma reesei)である。また、トリコデルマ属に由来し、変異剤あるいは紫外線照射などで変異処理を施し、セルラーゼの生産性が向上した変異株を親株として利用してもよい。 The trichoderma filamentous fungus in the present invention is not particularly limited as long as it belongs to the genus Trichoderma and has the ability to produce cellulase. It is preferably Trichoderma reesei. In addition, a mutant strain derived from the genus Trichoderma, which has been subjected to mutation treatment with a mutant agent or ultraviolet irradiation, or which has improved cellulase productivity, may be used as the parent strain.
 上記親株として用いる変異株の具体例は、トリコデルマ リーセイの先祖にあたるトリコデルマ パラリーセイ(ATCC MYA-4777)、トリコデルマ リーセイに由来する公知の変異株であるQM6a株(NBRC31326)、QM9123株(ATCC24449)、QM9414株(NBRC31329)、PC-3-7株(ATCC66589)、QM9123株(NBRC31327)、RutC-30株(ATCC56765)、CL-847株(Enzyme.Microbiol.Technol.10,341-346(1988))、MCG77株(Biotechnol.Bioeng.Symp.8, 89(1978))、MCG80株(Biotechnol.Bioeng.12,451-459(1982))およびこれらの派生株などが挙げられる。 Specific examples of the mutant strain used as the parent strain include Trichoderma paralyse (ATCC MYA-4777), which is the ancestor of Trichoderma lysei, QM6a strain (NBRC31326), QM9123 strain (ATCC24449), and QM9414 strain, which are known mutant strains derived from Trichoderma lysei. (NBRC31329), PC-3-7 strain (ATCC66589), QM9123 strain (NBRC31327), RutC-30 strain (ATCC56765), CL-847 strain (Enzyme.Microbiol.Technol.10,341-346 (1988)), MCG77 Examples thereof include a strain (Biotechnol. Bioeng. Symp. 8, 89 (1978)), an MCG80 strain (Biotechnol. Bioeng. 12, 451-459 (1982)) and derivative strains thereof.
 さらに、本発明で用いるトリコデルマ属糸状菌は、カーボン・カタボライト・リプレッションが解除されていることが好ましい。カーボン・カタボライト・リプレッションが解除されている株は、セルラーゼなどのタンパク質の生産量が向上しているため、より多くのタンパク質を生産することが可能になる。さらに好ましくは、カーボン・カタボライト・リプレッサーIを介してなされるカーボン・カタボライト・リプレッションが解除されている株であることが好ましい。例えばカーボン・カタボライト・リプレッサーI遺伝子(cre1)に変異が入って入ることによりカーボン・カタボライト・リプレッサーIを介してなされるカーボン・カタボライト・リプレッションが解除される。cre1遺伝子がコードするCRE1タンパク質はグルコースによるカタボライト・リプレッションにより、セルラーゼ遺伝子の発現を抑制することが知られている(FEBS Lett., 376, 103-107, 1995)。よってcre1遺伝子に変異が入るとセルラーゼ遺伝子の発現抑制が解除され、セルラーゼの生産量が高まる。そのため、cre1遺伝子に変異が入った株はよりタンパク質やセルラーゼ組成物の製造に適する。具体的なcre1遺伝子の変異の例としては、PC-3-7株(ATCC66589)のcre1遺伝子において、232番目のAがCに置換され、その結果アミノ酸配列の78番目のスレオニンがプロリンに置換されていることが挙げられる。この変異が入ることにより、セルラーゼの生産量が向上することが知られている(Biosci. Biotechnol.Biochem., 77 (3), 534-543,2013)。また、RutC-30株(ATCC56765)ではcre1遺伝子が部分的に切断され、カーボン・カタボライト・リプレッションが解除されていることが知られている(BMC Genomics.,9, 327, 2008)。ここでcre1遺伝子に変異が入っている株とは、遺伝子変異剤、紫外線照射、などによりcre1遺伝子領域内の塩基の欠失若しくは挿入によるフレームシフト、又は塩基の置換によるストップコドン変異、又は塩基の切断が入っている株を含み、さらに組換えなどによりcre1遺伝子の全部又は一部を除去又は他の遺伝子と置換している株も含まれる。具体的には、PC-3-7株(ATCC66589)やRutC-30株(ATCC56765)さらに、PC-3-7株(ATCC66589)やRutC-30株(ATCC56765)の特徴を引き継いだ株が好ましく用いられ、さらに好ましくは、PC-3-7株(ATCC66589)または、PC-3-7株(ATCC66589)の特徴を受け継いだ株である。ここでPC-3-7(ATCC66589)やRutC-30株(ATCC56765)の特徴を引き継いだ株には、PC-3-7株(ATCC66589)やRutC-30株(ATCC56765)の特徴を引き継いだ株に新たに変異を加えた株や組換えにより機能を向上させた株も含まれる。 Further, it is preferable that the Trichoderma filamentous fungus used in the present invention has the carbon catabolite repression released. Strains from which carbon catabolite repression has been released can produce more proteins due to the increased production of proteins such as cellulase. More preferably, it is a strain in which the carbon catabolite repression formed via the carbon catabolite repressor I is released. For example, when the carbon catabolite repressor I gene (cre1) is mutated, the carbon catabolite repression made via the carbon catabolite repressor I is released. The CRE1 protein encoded by the cre1 gene is known to suppress the expression of the cellulase gene by catabolite suppression due to glucose (FEBS Lett., 376, 103-107, 1995). Therefore, when the cr1 gene is mutated, the suppression of cellulase gene expression is released and the amount of cellulase produced increases. Therefore, a strain in which the cre1 gene is mutated is more suitable for producing a protein or cellulase composition. As a specific example of mutation of the cre1 gene, in the cre1 gene of the PC-3-7 strain (ATCC66589), the 232nd A is replaced with C, and as a result, the 78th threonine of the amino acid sequence is replaced with proline. It can be mentioned that. It is known that the inclusion of this mutation improves the production of cellulase (Bioscii. Biotechnol. Biochem., 77 (3), 534-543, 2013). Further, it is known that the cr1 gene is partially cleaved in the RutC-30 strain (ATCC56765) and the carbon catabolite repression is released (BMC Genomics., 9, 327, 2008). Here, a strain containing a mutation in the cre1 gene is a frame shift due to deletion or insertion of a base in the cre1 gene region due to a gene mutation agent, ultraviolet irradiation, etc., or a stop codon mutation due to base substitution, or a base. A strain containing a cleavage is included, and a strain in which all or part of the cre1 gene is removed or replaced with another gene by recombination or the like is also included. Specifically, a strain that inherits the characteristics of the PC-3-7 strain (ATCC66589), the RutC-30 strain (ATCC56765), the PC-3-7 strain (ATCC66589), and the RutC-30 strain (ATCC56765) is preferably used. More preferably, it is a strain that inherits the characteristics of the PC-3-7 strain (ATCC66589) or the PC-3-7 strain (ATCC66589). Here, the strain that inherited the characteristics of the PC-3-7 (ATCC66589) and RutC-30 strain (ATCC56765) includes the strain that inherited the characteristics of the PC-3-7 strain (ATCC66589) and the RutC-30 strain (ATCC56765). Includes strains that have been newly mutated and strains whose functions have been improved by recombination.
 なお、QM6a株、QM9414株、QM9123株はNBRC(NITE Biological Resource Center)より、PC-3-7株、RutC-30株はATCC(American Type Culture Collection)より入手することができる。 The QM6a strain, QM9414 strain, and QM9123 strain can be obtained from NBRC (NITE Biological Resource Center), and the PC-3-7 strain and RutC-30 strain can be obtained from ATCC (American Type Culture Collection).
 本発明で「β-グルコシダーゼおよびβ-キシロシダーゼの活性が変異導入前の親株より低下したトリコデルマ属糸状菌の変異株」とは、上記の親株となるトリコデルマ属糸状菌を親株に変異を導入して、β―グルコシダーゼおよびβ-キシロシダーゼの活性が変異導入前の親株より低下した変異株を指し、本明細書中において、「本発明の変異株」と記載する場合がある。 In the present invention, "a mutant strain of Trichoderma filamentous fungus in which the activity of β-glucosidase and β-xylocidase is lower than that of the parent strain before the introduction of the mutation" is defined by introducing a mutation into the parent strain of Trichoderma filamentous fungus which is the above-mentioned parent strain. , Β-Glucosidase and β-xylosidase are referred to as mutant strains in which the activity of β-glucosidase and β-xylosidase is lower than that of the parent strain before the introduction of the mutation, and may be referred to as “mutant strain of the present invention” in the present specification.
 本発明で、β-グルコシダーゼおよびβ―キシロシダーゼの活性が低下するとは、変異が導入される前の親株と比較して、β-グルコシダーゼの比活性およびβ―キシロシダーゼの比活性が低下していることを指し、β-グルコシダーゼおよび/またはβ―キシロシダーゼの機能が欠損した状態も含まれる。 In the present invention, the decrease in the activity of β-glucosidase and β-xylosidase means that the specific activity of β-glucosidase and the specific activity of β-xylosidase are decreased as compared with the parent strain before the mutation was introduced. It also includes a state in which the function of β-glucosidase and / or β-xylosidase is deficient.
 具体的には、β―グルコシダーシダーゼ比活性およびβ―キシロシダーゼ比活性が、それぞれ親株と比較して10分の1以下に低下していることが好ましく、より好ましくは50分の1以下、より好ましくは100分の1以下に低下、より好ましくは200分の1以下、さらに好ましくは500分の1以下、特に好ましくは800分の1以下、最も好ましくは1000分の1以下である。 Specifically, the β-glucosidase specific activity and the β-xylosidase specific activity are preferably reduced to 1/10 or less, more preferably 1/50 or less, respectively, as compared with the parent strain. It is preferably reduced to 1/100 or less, more preferably 1/200 or less, further preferably 1/500 or less, particularly preferably 1/800 or less, and most preferably 1/1000 or less.
 比活性の絶対値としては、β-グルコシダーゼ比活性およびβ-キシロシダーゼ比活性が0.02U/mg-protein以下且つ、0.002U/mg-protein以下であることが好ましく、より好ましくは0.01U/mg-protein以下且つ、0.001U/mg-protein以下、より好ましくは0.005U/mg-protein以下且つ、0.0005U/mg-protein以下、さらに好ましくは0.0025U/mg-protein以下且つ、0.00025U/mg-protein以下である。 As the absolute value of the specific activity, the β-glucosidase specific activity and the β-xylocidase specific activity are preferably 0.02 U / mg-protein or less and 0.002 U / mg-protein or less, more preferably 0.01 U. / Mg-protein or less and 0.001 U / mg-protein or less, more preferably 0.005 U / mg-protein or less and 0.0005 U / mg-protein or less, still more preferably 0.0025 U / mg-protein or less and , 0.00025 U / mg-protein or less.
 トリコデルマ属糸状菌の親株に対して、β―グルコシダーゼの比活性およびβ―キシロシダーゼの比活性が低下する変異を導入する方法は、特に限定されないが、遺伝子変異剤、紫外線照射、などによる遺伝子変異処理方法や、部位特異的変異法等が挙げられる。また、トリコデルマ属糸状菌の親株が有するBGL1遺伝子やBXL1遺伝子を破壊してもよい。具体的には、これら両遺伝子内、あるいはプロモーター領域、あるいは遺伝子の転写調節因子をコードする遺伝子に、変異、挿入、欠失等の変異を導入して、β-グルコシダーゼおよびβ―キシロシダーゼ活性を低下させてもよい。さらに、上記両遺伝子にフレームシフト変異を導入したり、ストップコドンを挿入したりすることにより行うことができ、また、遺伝子組換え(他の遺伝子との相同組み換え等)により、遺伝子、あるいはプロモーター領域、あるいは遺伝子の転写調節因子をコードする遺伝子の全部又は一部を除去又は他の遺伝子と置換することにより、BGL1遺伝子および/またはBXL1遺伝子を破壊することができる。あるいは、BGL1遺伝子および/またはBXL1遺伝子の上流に位置する転写調節因子の結合認識配列の全部又は一部を除去又は他の遺伝子と置換することによって、BGL1遺伝子および/またはBXL1遺伝子の発現を阻害することができる。トリコデルマ属糸状菌のBGL1遺伝子(Gene ID;18488646)および糸状菌BXL1遺伝子(Gene ID;18483060)は公知であるので、これらの遺伝子の破壊は、上記した遺伝子変異導入処理法や部位特異変異法等の常法により容易に行うことができる。トリコデルマ属糸状菌のBGL1遺伝子およびBGL1遺伝子の上流1から500塩基には、転写調節因子の結合部位が存在する。転写調節因子の具体例としては、Xyr1が挙げられ、トリコデルマ属糸状菌におけるXyr1の推定結合認識配列はBorin, Carazzole.“Gene Co-expression Network Reveals Potential New Genes Related to Sugarcane Bagasse Degradation in Trichoderma reesei RUT-30” Bioeng. Biotechnol., 2018, 6, doi.org/10.3389/fbioe.2018.00151に開示されている。なお、遺伝子変異剤、紫外線照射等のランダムな変異導入方法による場合には、変異処理後の各菌株をクローニングし、後述する方法によりβ―グルコシダーゼ活性およびβ―キシロシダーゼ活性を測定し、これらの活性が変異導入前の親株より低下した菌株を選択することにより、β―グルコシダーゼの比活性およびβ―キシロシダーゼの比活性が変異導入前の親株より低下した菌株を得ることができる。 The method for introducing a mutation that reduces the specific activity of β-glucosidase and the specific activity of β-xylosidase into the parent strain of Trichoderma filamentous fungus is not particularly limited, but the gene mutation treatment by a gene mutagen, ultraviolet irradiation, or the like is not particularly limited. Examples thereof include a method and a site-specific mutation method. In addition, the BGL1 gene or BXL1 gene possessed by the parent strain of Trichoderma filamentous fungus may be disrupted. Specifically, mutations such as mutations, insertions, and deletions are introduced into both of these genes, the promoter region, or the gene encoding the transcriptional regulatory factor of the gene to reduce β-glucosidase and β-xylosidase activities. You may let me. Furthermore, it can be performed by introducing a frame shift mutation into both of the above genes or by inserting a stop codon, and by gene recombination (homologous recombination with another gene, etc.), the gene or promoter region. Or, the BGL1 gene and / or the BXL1 gene can be disrupted by removing or replacing all or part of the gene encoding the transcriptional regulatory factor of the gene with another gene. Alternatively, the expression of the BGL1 gene and / or the BXL1 gene is inhibited by removing all or part of the binding recognition sequence of the transcriptional regulatory factor located upstream of the BGL1 gene and / or the BXL1 gene or replacing it with another gene. be able to. Since the BGL1 gene (Gene ID; 18488646) of Trichoderma filamentous fungus and the filamentous fungus BXL1 gene (Gene ID; 18483060) are known, disruption of these genes can be carried out by the above-mentioned gene mutation introduction treatment method, site-specific mutation method, or the like. It can be easily done by the conventional method of. The binding sites of transcriptional regulators are present at 1 to 500 bases upstream of the BGL1 gene and the BGL1 gene of Trichoderma filamentous fungi. Specific examples of transcriptional regulators include Xyr1, and the putative binding recognition sequence of Xyr1 in Trichoderma filamentous fungi is Borin, Carazzole. "Gene Co-expression Network Revels Potential New Genes Related to Sugarcane Bagasse Degradation in Trichoderma reesei RUT-30" Biogen. Biotechnol. , 2018, 6, doi. org / 10.3389 / fbioe. It is disclosed in 2018.00151. In the case of a random mutation introduction method such as gene mutagenesis or ultraviolet irradiation, each strain after the mutation treatment is cloned, β-glucosidase activity and β-xylosidase activity are measured by the method described later, and these activities are measured. By selecting a strain in which the specific activity of β-glucosidase is lower than that of the parent strain before the introduction of the mutation, a strain in which the specific activity of β-glucosidase and the specific activity of β-xylosidase are lower than those of the parent strain before the introduction of the mutation can be obtained.
 トリコデルマ属糸状菌のβ-グルコシダーゼの比活性およびβ-キシロシダーゼの比活性は以下の方法で測定する。 The specific activity of β-glucosidase and β-xylosidase of Trichoderma filamentous fungi are measured by the following methods.
 まず、トリコデルマ属糸状菌を培養し得られた培養液を20,000×gで10分間遠心分離し、上清を回収する。回収した上清を適当な濃度に希釈して、酵素希釈液を調製し、以下の方法で酵素の比活性を測定する。 First, the culture solution obtained by culturing Trichoderma filamentous fungi is centrifuged at 20,000 xg for 10 minutes, and the supernatant is collected. The recovered supernatant is diluted to an appropriate concentration to prepare an enzyme diluent, and the specific activity of the enzyme is measured by the following method.
 β-グルコシダーゼ比活性は、以下の方法で測定する。まず、1mMのp-ニトロフェニル-β-グルコピラノシド(シグマアルドリッチジャパン社製)を含有する50mM酢酸バッファー90μLに酵素希釈液10μLを添加して30℃で10分間反応させる。次に2M炭酸ナトリウム10μLを加えてよく混合して反応を停止し、405nmの吸光度の増加を測定する。最後に1分間あたり1μmolのp-ニトロフェノールを遊離する活性を1Uとして比活性を算出する。 The β-glucosidase specific activity is measured by the following method. First, 10 μL of an enzyme diluent is added to 90 μL of 50 mM acetate buffer containing 1 mM p-nitrophenyl-β-glucopyranoside (manufactured by Sigma-Aldrich Japan) and reacted at 30 ° C. for 10 minutes. Next, 10 μL of 2M sodium carbonate is added and mixed well to stop the reaction, and the increase in absorbance at 405 nm is measured. Finally, the specific activity is calculated assuming that the activity of liberating 1 μmol of p-nitrophenol per minute is 1 U.
 β-キシロシダーゼ比活性は以下の方法で測定する。まず、1mMのp-ニトロフェニル-β-キシロピラノシド(シグマアルドリッチジャパン社製)を含有する50mM酢酸バッファー90μLに酵素希釈液10μLを添加し30℃で30分間反応させる。次に、2M炭酸ナトリウム10μLを加えてよく混合して反応を停止し、405nmの吸光度の増加を測定する。最後に1分間あたり1μmolのp-ニトロフェノールを遊離する活性を1Uとして比活性を算出する。 The β-xylosidase specific activity is measured by the following method. First, 10 μL of an enzyme diluent is added to 90 μL of 50 mM acetate buffer containing 1 mM p-nitrophenyl-β-xylopyranoside (manufactured by Sigma-Aldrich Japan) and reacted at 30 ° C. for 30 minutes. Next, 10 μL of 2M sodium carbonate is added and mixed well to stop the reaction, and the increase in absorbance at 405 nm is measured. Finally, the specific activity is calculated assuming that the activity of liberating 1 μmol of p-nitrophenol per minute is 1 U.
 比活性の算出に必要なタンパク質濃度は以下の通り測定を行う。Quick Start Bradford プロテインアッセイ(Bio-Rad社製)250μLに酵素希釈液を5μL添加し、室温で15分間静置後の595nmで用いる吸光度を測定する。牛血清アルブミン溶液を標準液とし、検量線に基づいて糖化酵素溶液に含まれるタンパク質濃度を算出する。 The protein concentration required to calculate the specific activity is measured as follows. Add 5 μL of the enzyme diluent to 250 μL of the Quick Start Bloodford protein assay (manufactured by Bio-Rad), and measure the absorbance used at 595 nm after standing at room temperature for 15 minutes. Using bovine serum albumin solution as a standard solution, calculate the protein concentration contained in the saccharifying enzyme solution based on the calibration curve.
 本発明の「β-グルコシダーゼおよびβ-キシロシダーゼ活性が変異導入前の親株より低下したトリコデルマ属糸状菌の変異株」は、親株と比較して、培養液の粘度が低下する。これにより、通気撹拌に必要なエネルギーや、回転数を低減させることができる。また、撹拌の回転数を低く設定できるため、菌糸への剪断ダメージを低減させることもできる。特に、大きなスケールでの培養の際には、通気に必要なブロワや撹拌モーターの容量、撹拌エネルギーの削減につながるためさらに効果的である。 The "variant strain of Trichoderma filamentous fungus in which β-glucosidase and β-xylocidase activity is lower than that of the parent strain before the introduction of the mutation" of the present invention has a lower viscosity of the culture solution than the parent strain. As a result, the energy required for aeration and agitation and the number of rotations can be reduced. Further, since the rotation speed of stirring can be set low, shear damage to the hyphae can be reduced. In particular, when culturing on a large scale, it is more effective because it leads to reduction of the capacity of the blower and the stirring motor required for ventilation and the stirring energy.
 培養方法は、トリコデルマ糸状菌を培養してタンパク質を製造することができる方法であれば特に限定されず、周知の培地を用いた周知の方法により行うことができる。例えば遠沈管、フラスコ、ジャーファーメンター、タンクなどを用いた液体培養で培養することができる。トリコデルマ リーセイは、好気微生物であるため、これらの培養方法の中でも、特にジャーファーメンターや、タンク内に通気や撹拌を行いながら培養する深部培養が好ましい。通気量は、0.1vvm~2.0vvm程度が好ましく、0.3vvm~1.5vvmがより好ましく0.5vvm~1.0vvmが特に好ましい。培養温度は、25℃~35℃程度が好ましく、25℃~31℃がより好ましい。培養におけるpHの条件は、pH3.0~7.0が好ましく、pH4.0~6.0がより好ましい。培養時間は、タンパク質が生産される条件で、回収可能な量のタンパク質が蓄積されるまで行う。通常、24~288時間程度であり、36~240時間がより好ましい。 The culturing method is not particularly limited as long as it is a method capable of culturing Trichoderma filamentous fungi to produce a protein, and can be carried out by a well-known method using a well-known medium. For example, it can be cultured in a liquid culture using a centrifuge tube, a flask, a jar fermenter, a tank, or the like. Since Trichoderma lysei is an aerobic microorganism, among these culture methods, a jar fermenter or a deep culture in which the culture is carried out while aeration or stirring is performed in a tank is particularly preferable. The air volume is preferably about 0.1 vvm to 2.0 vvm, more preferably 0.3 vvm to 1.5 vvm, and particularly preferably 0.5 vvm to 1.0 vvm. The culture temperature is preferably about 25 ° C. to 35 ° C., more preferably 25 ° C. to 31 ° C. The pH conditions in the culture are preferably pH 3.0 to 7.0, and more preferably pH 4.0 to 6.0. Incubation time is carried out under the condition that protein is produced until a recoverable amount of protein is accumulated. Usually, it is about 24 to 288 hours, more preferably 36 to 240 hours.
 本発明において、培養液の粘度は、以下の条件で測定した値を用い、粘度の比較は以下の条件で測定した値のうち最大値同士を比較する。まず、評価対象とするトリコデルマ属糸状菌の胞子を前培養培地1mLあたり1.0×10胞子となるよう前培養培地(具体的な培地組成の一例は、実施例中の表1のとおり)へ接種し、振盪培養機にて28℃、120rpmの条件にて菌体量が11g/L前後になるまで培養を行う。次に、100g/L(w/v)になるようArbocel B800(商品名、セルロース繊維、レッテンマイヤー社製)、バガス粉末を添加した表2で示した本培養培地に対し、10%(v/v)になるよう前培養培地を接種させ、5Lジャーファーメンターを用い、深部培養を行う。培養条件は、本培養培地に前培養培地を接種後、28℃、700rpm、通気量100mL/minの培養条件にて、pH5.0に制御しながら深部培養を行う。培養液の粘度の測定は、デジタル回転粘度計を用いる。デジタル回転粘度計は、予め0点校正を行う。培養開始から96時間経過時までの培養液を20ml程度経時的に採取する。採取直後の培養液をそれぞれ指定の容器に入れ、培養液にスピンドルを浸して0.3rpmの回転数にて回転させ、この時のスピンドルに働く粘性抵抗であるトルクを室温条件下にて測定することにより、培養液の粘度を測定する。粘度の単位は、センチポアズ(cP)とする。1センチポアズは、流体内に1cmにつき1cm/秒の速度勾配があるとき、その速度勾配の方向に垂直な面において速度の方向1cmにつき1ダインの力の大きさの応力が生ずる粘度と定義される。デジタル回転粘度計には、DV2T(BROOKFIELD社)、スピンドルには、ULA(BROOKFIELD社)などを用いることができる。 In the present invention, the viscosity of the culture solution uses the values measured under the following conditions, and the viscosity comparison is made by comparing the maximum values among the values measured under the following conditions. First, to be a pre-culture medium 1.0 × 10 5 spores per 1mL spores Trichoderma filamentous fungus to be evaluated pre-culture medium (an example of a specific medium composition, shown in Table 1 in the Examples) Inoculate to and incubate in a shaking incubator under the conditions of 28 ° C. and 120 rpm until the amount of bacterial cells reaches about 11 g / L. Next, 10% (v / v /) of the main culture medium shown in Table 2 to which Arbocel B800 (trade name, cellulose fiber, manufactured by Rettenmeier) and bagasse powder were added so as to be 100 g / L (w / v). Inoculate the pre-culture medium so that it becomes v), and perform deep culture using a 5 L jar fermenter. As for the culture conditions, after inoculating the preculture medium into the main culture medium, deep culture is performed under the culture conditions of 28 ° C., 700 rpm, and an aeration rate of 100 mL / min while controlling the pH to 5.0. A digital rotational viscometer is used to measure the viscosity of the culture solution. The digital rotational viscometer performs zero-point calibration in advance. About 20 ml of the culture solution from the start of the culture to the time when 96 hours have passed is collected over time. Immediately after collection, put the culture solution in the designated container, immerse the spindle in the culture solution, rotate it at a rotation speed of 0.3 rpm, and measure the torque, which is the viscous resistance acting on the spindle at this time, under room temperature conditions. By doing so, the viscosity of the culture solution is measured. The unit of viscosity is centipores (cP). One centimeter pores is defined as the viscosity at which when there is a velocity gradient of 1 cm / sec per cm in a fluid, a stress of the magnitude of a force of 1 dyne per cm 2 of the direction of velocity occurs in a plane perpendicular to the direction of the velocity gradient. NS. DV2T (BROOKFIELD) can be used for the digital rotational viscometer, ULA (BROOKFIELD) or the like can be used for the spindle.
 本発明の「β-グルコシダーゼおよびβ-キシロシダーゼ活性が変異導入前の親株より低下した変異株」は、親株を同様の条件で培養した場合と比較すると、培養液の粘度が低くなり、培養中の粘度の最大値が親株の70%以下が好ましく、より好ましくは60%以下、さらに好ましくは50%以下に低下する。また、絶対値では、本発明の変異株の培養中の粘度の最大値が、親株と比べて、好ましくは50cP以上、より好ましくは100cP以上、より好ましくは150cP以上、より好ましくは200cP以上、さらに好ましくは250cP以上、さらに好ましくは300cP以上、さらに好ましくは350cP以上、さらに好ましくは400cP以上、特に好ましくは500cP以上低くなる。 In the "mutant strain in which β-glucosidase and β-xylosidase activity was lower than that in the parent strain before the introduction of the mutation" of the present invention, the viscosity of the culture solution was lower than that in the case where the parent strain was cultured under the same conditions, and the culture solution was in culture. The maximum value of the viscosity is preferably 70% or less of the parent strain, more preferably 60% or less, and further preferably 50% or less. In terms of absolute value, the maximum value of the viscosity of the mutant strain of the present invention in culture is preferably 50 cP or more, more preferably 100 cP or more, more preferably 150 cP or more, more preferably 200 cP or more, and further, as compared with the parent strain. It is preferably 250 cP or more, more preferably 300 cP or more, still more preferably 350 cP or more, still more preferably 400 cP or more, and particularly preferably 500 cP or more.
 本発明で製造するタンパク質は特に制限はないが、菌体外に分泌されるタンパク質を効率的に製造することができ、中でも好ましくは酵素であり、より好ましくはセルラーゼ、アミラーゼ、インベルターゼ、キチナーゼ、ペクチナーゼ等の糖化酵素であり、さらに好ましくはセルラーゼである。 The protein produced in the present invention is not particularly limited, but a protein secreted outside the cells can be efficiently produced, and among them, an enzyme is preferable, and cellulase, amylase, invertase, chitinase, and pectinase are more preferable. Etc., and more preferably cellulase.
 本発明で製造されるセルラーゼには、様々な加水分解酵素が含まれており、キシラン、セルロース、ヘミセルロースに対する分解活性を持つ酵素などが含まれている。一般的にセルラーゼに含まれる加水分解酵素の具体例としては、セルロース鎖の加水分解によりセロビオースを製造するセロビオハイドラーゼ(EC 3.2.1.91)、セルロース鎖の中央部分から加水分解するエンドグルカナーゼ(EC 3.2.1.4)、セロオリゴ糖およびセロビオースを加水分解するβ-グルコシダーゼ(EC 3.2.1.21)、ヘミセルロースや特にキシランに作用することを特徴とするキシラナーゼ(EC 3.2.1.8)、キシロオリゴ糖を加水分解するβ-キシロシダーゼ(EC 3.2.1.37)などが挙げられる。セルラーゼのタンパク質濃度は、上述の方法で算出すればよい。 The cellulase produced in the present invention contains various hydrolases, such as enzymes having degrading activity against xylan, cellulose, and hemicellulose. Specific examples of the hydrolyzing enzyme generally contained in cellulase include cellobiose hydrase (EC 3.21.91), which produces cellobiose by hydrolyzing a cellulose chain, and hydrolyzes from the central portion of the cellulose chain. Endoglucanase (EC 3.2.1.4), β-glucosidase (EC 3.2.1.21) that hydrolyzes cellooligosaccharides and cellobiose, xylanase (EC) characterized by acting on hemicellulose and especially xylan. 3.21.8), β-xylossidase (EC 3.21.37) that hydrolyzes xylooligosaccharide, and the like. The protein concentration of cellulase may be calculated by the method described above.
 本発明の変異株を培養する培養方法は特に限定されず、例えば遠沈管、フラスコ、ジャーファーメンター、タンクなどを用いた液体培養で培養することができる。トリコデルマ属糸状菌は、好気微生物であるため、これらの培養方法の中でも、特にジャーファーメンターや、タンク内に通気や撹拌を行いながら培養する深部培養が好ましい。 The culture method for culturing the mutant strain of the present invention is not particularly limited, and for example, it can be cultured in a liquid culture using a centrifuge tube, a flask, a jar fermenter, a tank, or the like. Since Trichoderma filamentous fungi are aerobic microorganisms, among these culture methods, a jar fermenter or a deep culture in which the cells are cultured while being aerated or stirred in a tank is particularly preferable.
 培養時の培地組成は、トリコデルマ属糸状菌がタンパク質を製造できるような培地組成となっていれば特に制限はなく、トリコデルマ属糸状菌の周知の培地組成を採用することができる。窒素源としては、例えば、ポリペプトン、肉汁、コーンスティープリカー(CSL)、大豆かすなどを用いることができる。また、培地には、タンパク質を製造させるための誘導物質を添加してもよい。また、炭素源としては、グルコース、シュークロース、フラクトース、ガラクトース、ラクトース等の糖類、これら糖類を含有する澱粉糖化液、甘藷糖蜜、甜菜糖蜜、ハイテストモラセス、更には酢酸等の有機酸、エタノールなどのアルコール類、グリセリンなどを用いることができる。これらの他、特にセルラーゼを製造する場合、後述する誘導物質を炭素源として使用することが好ましい。 The medium composition at the time of culturing is not particularly limited as long as the medium composition is such that Trichoderma filamentous fungi can produce proteins, and a well-known medium composition of Trichoderma filamentous fungi can be adopted. As the nitrogen source, for example, polypeptone, gravy, corn steep liquor (CSL), soybean meal and the like can be used. In addition, an inducer for producing a protein may be added to the medium. As carbon sources, sugars such as glucose, sucrose, fructose, galactose, and lactose, starch saccharified liquid containing these sugars, molasses, sugar beet molasses, high test molasses, organic acids such as acetic acid, ethanol, etc. Alcohols, glycerin and the like can be used. In addition to these, especially when producing cellulase, it is preferable to use an inducer described later as a carbon source.
 本発明によりセルラーゼを製造する場合には、培地にラクトース、セルロースおよびキシランからなる群から選択される少なくとも1種類または2種類以上の誘導物質を含む培地で培養することができる。また、セルロースやキシランは、セルロースやキシランを含むバイオマスを誘導物質として添加してもよい。セルロースやキシランを含有するバイオマスの具体例としては、種子植物、シダ植物、コケ植物、藻類、水草などの植物の他、廃建材なども用いることができる。種子植物は、裸子植物と被子植物に分類されるが、どちらも好ましく用いることができる。被子植物はさらに単子葉植物と双子葉植物に分類されるが、単子葉植物の具体例としては、バガス、スイッチグラス、ネピアグラス、エリアンサス、コーンストーバー、コーンコブ、稲わら、麦わらなどが挙げられ、双子葉植物の具体例としては、ビートパルプ、ユーカリ、ナラ、シラカバなどが好ましく用いられる。 When cellulase is produced according to the present invention, it can be cultured in a medium containing at least one or two or more inducers selected from the group consisting of lactose, cellulose and xylan. Further, as the cellulose or xylan, biomass containing cellulose or xylan may be added as an inducer. Specific examples of the biomass containing cellulose and xylan include plants such as seed plants, fern plants, moss plants, algae, and aquatic plants, as well as waste building materials. Seed plants are classified into gymnosperms and angiosperms, both of which can be preferably used. Angiosperms are further classified into monocotyledonous plants and dicotyledonous plants, and specific examples of monocotyledonous plants include bagus, switchgrass, napiergrass, elianthus, corn stover, corn cob, rice straw, and straw. As specific examples of dicotyledonous plants, beet pulp, eucalyptus, nara, white birch and the like are preferably used.
 また、セルロースやキシランを含むバイオマスは、前処理されたものを用いてもよい。前処理方法は特に限定されないが、例えば、酸処理、硫酸処理、希硫酸処理、アルカリ処理、水熱処理、亜臨界処理、微粉砕処理、蒸煮処理、など公知の手法を用いることができる。このような前処理をされたセルロースやキシランを含むバイオマスとして、キシランを含むパルプを用いてもよい。 Further, as the biomass containing cellulose and xylan, pretreated biomass may be used. The pretreatment method is not particularly limited, but known methods such as acid treatment, sulfuric acid treatment, dilute sulfuric acid treatment, alkali treatment, hydrothermal treatment, subcritical treatment, pulverization treatment, and steaming treatment can be used. Pulp containing xylan may be used as the biomass containing such pretreated cellulose and xylan.
 また、本発明の変異株を培養した培養液から菌体を除去せずに、タンパク質の溶解液として利用する場合には、培養液中で本発明の変異株が生育できないように処理することが好ましい。菌体が生育できないように処理する方法としては、熱処理、薬剤処理、酸・アルカリ処理、UV処理などが挙げられる。 In addition, when the mutant strain of the present invention is used as a protein lysate without removing the cells from the culture solution in which the mutant strain of the present invention is cultured, it is possible to treat the mutant strain of the present invention so that it cannot grow in the culture solution. preferable. Examples of the method for treating the cells so that they cannot grow include heat treatment, chemical treatment, acid / alkali treatment, and UV treatment.
 タンパク質が酵素の場合には、上記のように菌体を除去又は生育していないように処理した培養液を、そのまま酵素液として利用することができる。 When the protein is an enzyme, the culture solution treated as described above so that the cells are not removed or grown can be used as it is as the enzyme solution.
 本発明で製造されたセルラーゼ組成物の使用方法は特に限定されないが、糖の製造に好ましく使用される。さらに好ましくはキシロオリゴ糖および/またはセロオリゴ糖の製造に使用され、さらに好ましくはキシロビオースおよび/またはセロビオースの製造に使用される。 The method of using the cellulase composition produced in the present invention is not particularly limited, but it is preferably used for producing sugar. More preferably it is used in the production of xylobiose and / or cellobiose, and even more preferably it is used in the production of xylobiose and / or cellobiose.
 本発明におけるキシロオリゴ糖とは、少なくともキシロースが2個以上β-グリコシド結合で連結したキシロオリゴ糖のことを指す。キシロオリゴ糖の重合度は、特に限定されないが、水溶性が高い2糖(キシロビオース)から6糖(キシロヘキサオース)であることが好ましい。最も好ましくは、腸内細菌が炭素源として資化しやすい、キシロビオース、キシロトリオース、キシロテトラオースを含むことが好ましい。 The xylooligosaccharide in the present invention refers to a xylooligosaccharide in which at least two or more xyloses are linked by a β-glycosidic bond. The degree of polymerization of the xylooligosaccharide is not particularly limited, but it is preferably a disaccharide (xylobiose) to a hexasaccharide (xylohexaose) having high water solubility. Most preferably, it contains xylobiose, xylobiose, and xylotetraose, which are easily assimilated as a carbon source by the intestinal bacteria.
 本発明におけるセロオリゴ糖とは、少なくともグルコースが2個以上β-グリコシド結合で連結したセロオリゴ糖のことを指す。セロオリゴ糖の重合度は、特に限定されないが、水溶性が高い2糖(セロビオース)から6糖(セロヘキサオース)であることが好ましい。最も好ましくは、腸内細菌が炭素源として資化しやすい、セロビオース、セロトリオース、セロテトラオースを含むことが好ましい。 The cellooligosaccharide in the present invention refers to a cellooligosaccharide in which at least two or more glucoses are linked by a β-glycosidic bond. The degree of polymerization of the cellooligosaccharide is not particularly limited, but it is preferably a disaccharide (cellobiose) to a hexasaccharide (cellobiose) having high water solubility. Most preferably, it contains cellobiose, cellotriose, and cellotetraose, which are easily assimilated as a carbon source by the intestinal bacteria.
 本発明においてセルラーゼ組成物はトリコデルマ属糸状菌を培養して得られ、バイオマスの糖化反応に使用される。セルラーゼ組成物の調整方法は特に限定はされないが、培養液に含まれるトリコデルマ属糸状菌の菌体が除去、もしくは生育していないことが好ましい。これはセルラーゼ組成物とバイオマスを糖化反応する際に生じるグルコースやキシロオリゴ糖が菌体により消費されるのを防ぐためである。菌体の除去方法としては、遠心分離、膜分離などが例として挙げられる。菌体が生育しないようにする処理方法としては、熱処理、薬剤処理、酸・アルカリ処理、UV処理などが挙げられる。 In the present invention, the cellulase composition is obtained by culturing Trichoderma filamentous fungi and is used for the saccharification reaction of biomass. The method for preparing the cellulase composition is not particularly limited, but it is preferable that the cells of Trichoderma filamentous fungi contained in the culture solution are not removed or grown. This is to prevent glucose and xylooligosaccharides produced during the saccharification reaction between the cellulase composition and the biomass from being consumed by the cells. Examples of the method for removing the bacterial cells include centrifugation and membrane separation. Examples of the treatment method for preventing the growth of bacterial cells include heat treatment, chemical treatment, acid / alkali treatment, and UV treatment.
 トリコデルマ属糸状菌を培養して得られたセルラーゼ組成物を用いて糖を製造する方法は特に限定されないが、セルラーゼ組成物でバイオマスを糖化することができる。糖化反応に使用するバイオマスはセルロースおよび/またはキシランを含むバイオマスが利用できる。また、糖化反応に使用するセルロースおよび/またはバイオマスはあらかじめ前処理を行っていても良い。前処理方法としては、特に限定されないが、具体的には、酸処理、硫酸処理、希硫酸処理、アルカリ処理、水熱処理、亜臨界処理、微粉砕処理、蒸煮処理など公知の手法を用いることができる。また、反応pHに関しても特に限定はされないが、pHが3から7付近が好ましく、より好ましくは4から6であり、より好ましくは5付近である。反応温度についても特に限定はされないが、40度から70度が好ましい。 The method for producing sugar using the cellulase composition obtained by culturing Trichoderma filamentous fungi is not particularly limited, but the biomass can be saccharified with the cellulase composition. Biomass containing cellulose and / or xylan can be used as the biomass used for the saccharification reaction. Further, the cellulose and / or biomass used in the saccharification reaction may be pretreated in advance. The pretreatment method is not particularly limited, but specifically, known methods such as acid treatment, sulfuric acid treatment, dilute sulfuric acid treatment, alkali treatment, hydrothermal treatment, subcritical treatment, pulverization treatment, and steaming treatment can be used. can. The reaction pH is also not particularly limited, but the pH is preferably around 3 to 7, more preferably around 4 to 6, and even more preferably around 5. The reaction temperature is also not particularly limited, but is preferably 40 to 70 degrees.
 上述の糖化反応によって、キシロースを含むバイオマスからはキシロオリゴ糖、好ましくはキシロビオース、セルロースを含むバイオマスからはセロオリゴ糖、好ましくはセロビオース、セルロースおよびキシロースを含むバイオマスからはキシロオリゴ糖とセロオリゴ糖、好ましくはキシロビオースとセロビオースを得ることができる。また、上述の糖化反応によって得られる糖には、キシロオリゴ糖やセロオリゴ糖以外に、セルラーゼ組成物に含まれる加水分解酵素によって生じたマンノース、アラビノース、ガラクトースなどの単糖や、セロトリオース、セロテトラオース、マンノビオース、ガラクトビオースなどのオリゴ糖などが含まれていてもよい。 By the above-mentioned saccharification reaction, xylobiose from the biomass containing xylose, preferably xylobiose, cellobiose from the biomass containing cellulose, preferably cellobiose, xylobiose and cellooligosaccharide from the biomass containing cellulose and xylose, preferably xylobiose. You can get cellobiose. In addition to xylooligosaccharides and cellooligosaccharides, the sugars obtained by the above-mentioned saccharification reaction include monosaccharides such as mannose, arabinose, and galactose produced by hydrolases contained in the cellulase composition, and cellotriose and cellotetraose. Oligosaccharides such as mannose and galactose may be contained.
 本発明の糖化反応から製造される反応後液には、不純物として、無機塩、アミノ酸、タンパク質、リグニンなども含まれていてもよく、またこれらの不純物を除去するために、精製操作を行ってもよい。精製操作としては、イオン交換、膜分離、晶析、脱塩など公知の手法が適用できる。 The post-reaction liquid produced from the saccharification reaction of the present invention may also contain inorganic salts, amino acids, proteins, lignin and the like as impurities, and in order to remove these impurities, a purification operation is performed. May be good. As the purification operation, known methods such as ion exchange, membrane separation, crystallization, and desalting can be applied.
 本発明により製造された単糖画分(グルコース、キシロース等)とオリゴ糖画分(キシロオリゴ糖、セロオリゴ糖等)は後工程により分離されることが好ましい。グルコースは発酵原料として化学品の製造に好ましく使用され、キシロオリゴ糖は飼料や食品、化粧品用途に好ましく使用される。化学品の具体例としては、エタノール、1,3-プロパンジオール、1,4-ブタンジオール、グリセロールなどのアルコール、酢酸、乳酸、ピルビン酸、コハク酸、リンゴ酸、イタコン酸、クエン酸などの有機酸、イノシン、グアノシンなどのヌクレオシド、イノシン酸、グアニル酸などのヌクレオチド、カダベリンなどのアミン化合物を挙げることができる。一方、キシロースは発酵原料として使用できる微生物が限られている。さらにキシロースは飼料として豚等に与えると半分程度が尿として排出されてしまう。このため、キシランおよびキシロオリゴ糖からキシロースへの分解を最小限に抑え、キシロオリゴ糖収率を向上させることが好ましい。 It is preferable that the monosaccharide fraction (glucose, xylose, etc.) and the oligosaccharide fraction (xylooligosaccharide, cellooligosaccharide, etc.) produced by the present invention are separated by a subsequent step. Glucose is preferably used as a fermentation raw material in the production of chemical products, and xylooligosaccharide is preferably used in feed, food and cosmetic applications. Specific examples of chemical products include alcohols such as ethanol, 1,3-propanediol, 1,4-butanediol and glycerol, and organic substances such as acetic acid, lactic acid, pyruvate, succinic acid, malic acid, itaconic acid and citric acid. Examples thereof include nucleosides such as acid, inosin and guanosine, nucleotides such as inosic acid and guanylate, and amine compounds such as cadaberin. On the other hand, xylose has a limited number of microorganisms that can be used as a fermentation raw material. Furthermore, when xylose is given to pigs as feed, about half of it is excreted as urine. Therefore, it is preferable to minimize the decomposition of xylan and xylooligosaccharides into xylose and improve the yield of xylooligosaccharides.
 本発明で単糖画分とオリゴ糖画分の分離方法は特に限定はされず、公知の方法を用いることができる。例えば、国際公開第2017/110975号に記載されるような膜分離が好ましく用いられる。この際にキシロースの割合が少ないほどオリゴ糖画分に混入するキシロースの量が低下するため、膜分離工程において有利に働く。 In the present invention, the method for separating the monosaccharide fraction and the oligosaccharide fraction is not particularly limited, and a known method can be used. For example, membrane separation as described in WO 2017/11975 is preferably used. At this time, the smaller the proportion of xylose, the lower the amount of xylose mixed in the oligosaccharide fraction, which is advantageous in the membrane separation step.
 以下に実施例を挙げて本発明を具体的に説明する。 The present invention will be specifically described below with reference to examples.
<参考例1>トリコデルマ属糸状菌の培養
(前培養)
 各種トリコデルマ リーセイの変異株の胞子を1.0×10/mLになるように生理食塩水で希釈し、その希釈胞子溶液2.5mLを表1に示した1Lバッフル付フラスコへ入れた250mLの前培養培地へ接種させ、振盪培養機にて28℃、120rpmの条件にて72時間培養を行った。コントロールとして、トリコデルマ リーセイ PCー3―7株を用い、同様の実験操作を行った。
<Reference example 1> Culturing of Trichoderma filamentous fungi (preculture)
The spores of various trichodermarysei mutants were diluted with physiological saline to 1.0 × 10 7 / mL, and 2.5 mL of the diluted spore solution was placed in a flask with a 1 L baffle shown in Table 1 in 250 mL. The culture medium was inoculated and cultured in a shaking incubator at 28 ° C. and 120 rpm for 72 hours. As a control, Trichoderma lysei PC-3-7 strain was used, and the same experimental operation was performed.
Figure JPOXMLDOC01-appb-T000001

*1 マンデルスは、7g/L (NHSO、10g/L KHPO、3g/
L CaCl、3g/L MgSO・7HOを含む(以下同じ)。
*2 微量元素溶液は、0.3g/L HBO、1.3g/L (NHMo24・4HO、5g/L FeCl・6HO、2g/L CuSO・5HO、0.4g/L MnCl・4HO、10g/L ZnClを含む(以下同じ)。
Figure JPOXMLDOC01-appb-T000001

* 1 Mandels is 7g / L (NH 4 ) 2 SO 4 , 10g / L KH 2 PO 4 , 3g /
L containing CaCl 2, 3g / L MgSO 4 · 7H 2 O ( hereinafter the same).
* 2 trace element solution, 0.3g / L H 3 BO 3 , 1.3g / L (NH 4) 6 Mo 7 O 24 · 4H 2 O, 5g / L FeCl 3 · 6H 2 O, 2g / L CuSO 4 · 5H 2 O, 0.4g / L MnCl 2 · 4H 2 O, 10g / L containing ZnCl 2 (hereinafter the same).
(本培養)
 Arbocel B800(商品名、レッテンマイヤー社、粉末セルロース)を表2で示した本培養培地に添加し、5Lジャーファーメンター(バイオット社製)を用い、深部培養検討を行った。
(Main culture)
Arbocel B800 (trade name, Rettenmeier Co., Ltd., powdered cellulose) was added to the main culture medium shown in Table 2, and a deep culture study was conducted using a 5 L jar fermenter (manufactured by Biot Co., Ltd.).
 トリコデルマ リーセイ PC-3-7株および各種トリコデルマ リーセイの変異株の前培養液250mLをArbocel B800(商品名)が添加された本培養培地2.5Lに接種した。 250 mL of pre-culture solution of Trichoderma Risei PC-3-7 strain and various Trichoderma Risei mutant strains was inoculated into 2.5 L of the main culture medium to which Arbocel B800 (trade name) was added.
 培養条件は、本培養培地に前培養培地を接種後、28℃、700rpm、通気量100mL/minの培養条件にて、pH5.0に制御しながら深部培養を行った。 As for the culture conditions, after inoculating the preculture medium into the main culture medium, deep culture was performed under the culture conditions of 28 ° C., 700 rpm, and an aeration rate of 100 mL / min while controlling the pH to 5.0.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
(培養液の採取)
 培養開始から、培養終了時の74時間経過後まで経時的に培養液を20mLずつ採取した。採取した培養液のうち、16mLは、後述する粘度の測定に使用した。残りの培養液は、20,000×g、4℃の条件下で10分間遠心分離を行い、上清を得た。その上清を0.22μmのフィルターでろ過し、そのろ液をセルラーゼ溶液として、以降の糖化試験に用いた。
(Collecting culture medium)
From the start of the culture to 74 hours after the end of the culture, 20 mL of the culture solution was collected over time. Of the collected culture broth, 16 mL was used for measuring the viscosity described later. The remaining culture broth was centrifuged under the conditions of 20,000 × g and 4 ° C. for 10 minutes to obtain a supernatant. The supernatant was filtered through a 0.22 μm filter, and the filtrate was used as a cellulase solution for the subsequent saccharification test.
<参考例2>培養液の粘度の測定
 培養開始0、24、48、74時間経過後の培養液16mLをデジタル回転粘度計 DV2Tとスピンドル ULA(BROOKFIELD社製)を使用し、回転数を0.3rpmに設定した際の粘度(cP)を求めた。
<Reference Example 2> Measurement of Viscosity of Culture Solution 16 mL of the culture solution after 0, 24, 48, and 74 hours from the start of culture was used with a digital rotational viscometer DV2T and a spindle ULA (manufactured by BROOKFIELD) to set the rotation speed to 0. The viscosity (cP) when set to 3 rpm was determined.
<参考例3>タンパク質濃度測定条件
 使用するタンパク質濃度測定試薬:Quick Start Bradfordプロテインアッセイ、Bio-Rad製
測定条件
測定温度:室温
タンパク質濃度測定試薬:250μL
糸状菌の培養液:5μL
反応時間:5分間
吸光度:595nm
標準品:BSA。
<Reference Example 3> Protein concentration measurement conditions Protein concentration measurement reagent used: Quick Start Blade protein assay, Bio-Rad measurement conditions Measurement temperature: Room temperature Protein concentration measurement reagent: 250 μL
Filamentous fungus culture: 5 μL
Reaction time: 5 minutes Absorbance: 595 nm
Standard product: BSA.
<参考例4>セルラーゼの比活性の測定条件
 (β-グルコシダーゼ比活性の測定条件)
基質:p-ニトロフェニル-β-グルコピラノシド(シグマアルドリッチジャパン社製)
反応液:1mMのp-ニトロフェニル-β-グルコピラノシドを含有する50mM酢酸バッファー90μL
酵素希釈液:10μL
反応温度:30℃
反応時間:10分間
反応停止剤:2M炭酸ナトリウム10μL
吸収度:405nm。
<Reference Example 4> Measurement conditions for cellulase specific activity (Measurement conditions for β-glucosidase specific activity)
Substrate: p-nitrophenyl-β-glucopyranoside (manufactured by Sigma-Aldrich Japan)
Reaction: 90 μL of 50 mM acetate buffer containing 1 mM p-nitrophenyl-β-glucopyranoside
Enzyme diluent: 10 μL
Reaction temperature: 30 ° C
Reaction time: 10 minutes Reaction terminator: 2M sodium carbonate 10 μL
Absorption: 405 nm.
 (β-キシロシダーゼ比活性の測定条件)
基質:p-ニトロフェニル-β-キシロピラノシド(シグマアルドリッチジャパン社製)
反応液:1mMのp-ニトロフェニル-β-キシロピラノシドを含有する50mM酢酸バッファー90μL
酵素希釈液:10μL
反応温度:30℃
反応時間:30分間
反応停止剤:2M炭酸ナトリウム10μL
吸収度:405nm。
(Measurement conditions for β-xylosidase specific activity)
Substrate: p-nitrophenyl-β-xylopyranoside (manufactured by Sigma-Aldrich Japan)
Reaction: 90 μL of 50 mM acetate buffer containing 1 mM p-nitrophenyl-β-xylopyranoside
Enzyme diluent: 10 μL
Reaction temperature: 30 ° C
Reaction time: 30 minutes Reaction terminator: 2M sodium carbonate 10 μL
Absorption: 405 nm.
<参考例5>糖化試験
酵素液使用量:8mg/g(バイオマス1gあたりの酵素使用量)
バイオマス:Arbocel B800(商品名、レッテンマイヤー社)、バガス粉末
バイオマス仕込み量:5%(w/v)
反応温度:50℃
反応時間:24時間
反応pH:5.0
反応液は8,000×gの条件下で5分間遠心分離を行い、上清を得た。その上清を0.22μmのフィルターでろ過し、そのろ液を参考例6に示す方法で各種糖の分析に供した。
<Reference Example 5> Amount of saccharification test enzyme solution used: 8 mg / g (amount of enzyme used per 1 g of biomass)
Biomass: Arbocel B800 (trade name, Rettenmeier), bagasse powder biomass charge: 5% (w / v)
Reaction temperature: 50 ° C
Reaction time: 24 hours Reaction pH: 5.0
The reaction solution was centrifuged under the condition of 8,000 × g for 5 minutes to obtain a supernatant. The supernatant was filtered through a 0.22 μm filter, and the filtrate was subjected to analysis of various sugars by the method shown in Reference Example 6.
<参考例6> 糖濃度の測定
 キシロオリゴ糖、グルコース、キシロースは、日立高速液体クロマトグラフ LaChrom Eite(HITACHI)を用いて、以下の条件で定量分析した。
<Reference Example 6> Measurement of sugar concentration Xylooligosaccharide, glucose, and xylose were quantitatively analyzed under the following conditions using Hitachi High Performance Liquid Chromatograph LaChrom Eite (HITACHI).
 キシロオリゴ糖であるキシロビオース、キシロトリオース、キシロテトラオース、キシロペンタオース、キシロヘキサオース、セロオリゴ糖であるセロビオース、セロトリオース、および単糖であるグルコース、キシロースの標品で作製した検量線をもとに、定量分析した。なお、本実施例で記すキシロオリゴ糖とは、キシロース単位がβ-グリコシド結合により2~6個結合したキシロオリゴ糖を指す。また、本実施例で記すセロオリゴ糖とは、グルコース単位がβ-グリコシド結合により2~6個結合したセロオリゴ糖を指す。 Based on the calibration curve prepared from the xylobiose, xylotiose, xylotetraose, xylopentaose, xylhexaose, cellobiose and cellotriose monosaccharides, and glucose and xylose monosaccharides. , Quantitative analysis. The xylooligosaccharide described in this example refers to a xylooligosaccharide in which 2 to 6 xylose units are bound by β-glycosidic bond. Further, the sero-oligosaccharide described in this example refers to a sero-oligosaccharide in which 2 to 6 glucose units are bound by β-glycosidic bond.
カラム:KS802、KS803(Shodex)
移動相:水
検出方法:RI
流速:0.5mL/min
温度:75℃
Column: KS802, KS803 (Shodex)
Mobile phase: Water detection method: RI
Flow velocity: 0.5 mL / min
Temperature: 75 ° C
<比較例1>トリコデルマ リーセイ PC-3-7を親株としたBGL活性が低下した変異株(PC-3-7-ΔBGL/BXL株)の作製
 トリコデルマ リーセイPC-3-7の胞子を1.0×10/mLになるように生理食塩水で希釈し、その希釈胞子溶液0.1mLを表1に示した50mLバッフル付フラスコへ入れた10mLの前培養培地へ接種し、振盪培養機にて28℃、120rpmの条件にて4時間培養した。培養液にNTG(1-Methyl-3-nitro-1-nitrosoguanidine)で90分変異処理を施した。この懸濁液から遠心分離により集菌、洗浄した変異胞子を、2重量%Arbocel B800(商品名、レッテンマイヤー社)を含む培地に接種し、28℃、120時間、125rpmで培養した。βーグルコシダーゼ活性が低下した変異株の選択は、培養液を遠心分離して得られた上清を参考例4に記載の方法でβーグルコシダーゼ活性を評価した。酵素活性(U)は、1分間に1molのp-ニトロフェノールを遊離した酵素量として算出した。その結果、βーグルコシダーゼ活性が親株であるPC-3-7と比較して約1/25まで低下した株を獲得した。結果を表3に示す。また、PC-3-7-ΔBGL/BXL株の遺伝子配列を解析した結果、BGL1遺伝子の1226番目のチミン(T)が欠失した結果、フレームシフト変異が生じていることが明らかとなった。
<Comparative Example 1> Preparation of mutant strain (PC-3-7-ΔBGL / BXL strain) having reduced BGL activity using Trichoderma Risei PC-3-7 as a parent strain 1.0 spores of Trichoderma Risei PC-3-7 diluted with physiological saline to × become 10 7 / mL, were inoculated with the diluted spore solution 0.1mL previous culture medium 10mL was placed into 50mL baffled flask shown in Table 1, in shaker The cells were cultured at 28 ° C. and 120 rpm for 4 hours. The culture medium was mutated with NTG (1-Methyl-3-nitro-1-nitrosoguanidine) for 90 minutes. The mutant spores collected and washed by centrifugation from this suspension were inoculated into a medium containing 2 wt% Arbocel B800 (trade name, Rettenmeier) and cultured at 28 ° C. for 120 hours at 125 rpm. For the selection of mutant strains having decreased β-glucosidase activity, the β-glucosidase activity was evaluated by the method described in Reference Example 4 using the supernatant obtained by centrifuging the culture solution. The enzyme activity (U) was calculated as the amount of enzyme liberating 1 mol of p-nitrophenol per minute. As a result, a strain in which the β-glucosidase activity was reduced to about 1/25 as compared with the parent strain PC-3-7 was obtained. The results are shown in Table 3. In addition, as a result of analyzing the gene sequence of the PC-3-7-ΔBGL / BXL strain, it was clarified that a frameshift mutation occurred as a result of deletion of thymine (T) at position 1226 of the BGL1 gene.
<比較例2>トリコデルマ リーセイ PC-3-7を親株としたBXL活性が低下した変異株(PC-3-7BGL/ΔBXL株)の作製
トリコデルマ リーセイPC-3-7の胞子を1.0×10/mLになるように生理食塩水で希釈し、その希釈胞子溶液0.1mLを表1に示した50mLバッフル付フラスコへ入れた10mLの前培養培地へ接種し、振盪培養機にて28℃、120rpmの条件にて4時間培養した。培養液にNTG(1-Methyl-3-nitro-1-nitrosoguanidine)で90分変異処理を施した。この懸濁液から遠心分離により集菌、洗浄した変異胞子を、2重量%Arbocel B800(商品名、レッテンマイヤー社)を含む培地に接種し、28℃、120時間、125rpmで培養した。βーキシロシダーゼ活性が低下した変異株の選択は、培養液を遠心分離して得られた上清を参考例4に記載の方法でβーキシロシダーゼ活性を評価した。酵素活性(U)は、1分間に1molのp-ニトロフェノールを遊離した酵素量として算出した。その結果、β―キシロシダーゼ活性が親株であるPC-3-7と比較して約1/210まで低下した株を獲得した。結果を表3に示す。また、PC-3-7-BGL/ΔBXL株の遺伝子配列を解析した結果、BXL遺伝子の1640番目のグリシン(G)がアデニン(A)に変異していることが明らかとなった。
<Comparative Example 2> Preparation of mutant strain (PC-3-7BGL / ΔBXL strain) having reduced BXL activity using Trichoderma Risei PC-3-7 as a parent strain 1.0 × 10 spores of Trichoderma Risei PC-3-7 Dilute with physiological saline to 7 / mL, inoculate 0.1 mL of the diluted spore solution into 10 mL of preculture medium in a flask with a 50 mL baffle shown in Table 1, and use a shaking incubator at 28 ° C. , 120 rpm for 4 hours. The culture medium was mutated with NTG (1-Methyl-3-nitro-1-nitrosoguanidine) for 90 minutes. The mutant spores collected and washed by centrifugation from this suspension were inoculated into a medium containing 2 wt% Arbocel B800 (trade name, Rettenmeier) and cultured at 28 ° C. for 120 hours at 125 rpm. For the selection of mutant strains having decreased β-xylosidase activity, the β-xylosidase activity was evaluated by the method described in Reference Example 4 using the supernatant obtained by centrifuging the culture solution. The enzyme activity (U) was calculated as the amount of enzyme liberating 1 mol of p-nitrophenol per minute. As a result, a strain in which β-xylosidase activity was reduced to about 1/210 as compared with the parent strain PC-3-7 was obtained. The results are shown in Table 3. In addition, as a result of analyzing the gene sequence of the PC-3-7-BGL / ΔBXL strain, it was clarified that the 1640th glycine (G) of the BXL gene was mutated to adenine (A).
<実施例1>PC-3-7BGL/ΔBXLを親株としたBGLおよびBXL活性が低下した変異株(PC-3-7ΔBGL/ΔBXL)株の作製
 PC-3-7BGL/ΔBXL株の胞子を1.0×10/mLになるように生理食塩水で希釈し、その希釈胞子溶液0.1mLを表1に示した50mLバッフル付フラスコへ入れた10mLの前培養培地へ接種し、振盪培養機にて28℃、120rpmの条件にて4時間培養した。培養液にNTG(1-Methyl-3-nitro-1-nitrosoguanidine)で90分変異処理を施した。この懸濁液から遠心分離により集菌、洗浄した変異胞子を、PDA寒天培地でクローン化した。得られた変異胞子を1.0×10/mLになるように生理食塩水で希釈し、2重量%Arbocel B800(商品名、レッテンマイヤー社)を含む培地に1%(v/v)接種し、28℃、120時間、125rpmで培養した。β-グルコシダーゼ活性が低下した変異株の選択は、培養液を遠心分離して得られた上清を参考例4に記載の方法でβーグルコシダーゼ活性を評価することにより行った。酵素活性(U)は、1分間に1molのp-ニトロフェノールを遊離した酵素量として算出した。その結果、βーグルコシダーゼ活性が低下していない親株であるPC-3-7BGL/ΔBXLと比較してそれぞれ約1/22まで低下した株を獲得した。結果を表3に示す。また、PC-3-7-ΔBGL/ΔBXL株の遺伝子配列を解析した結果、BGL遺伝子の翻訳開始地点から198塩基上流のXyr1結合部位と推測されるアデニン(A)が欠失していることが分かった。
<Example 1> Preparation of mutant strain (PC-3-7ΔBGL / ΔBXL) strain having reduced BGL and BXL activity using PC-3-7BGL / ΔBXL as a parent strain. Dilute with physiological saline to 0 × 10 7 / mL, inoculate 0.1 mL of the diluted spore solution into a 10 mL preculture medium in a flask with a 50 mL baffle shown in Table 1, and put it in a shaking incubator. The cells were cultured at 28 ° C. and 120 rpm for 4 hours. The culture medium was mutated with NTG (1-Methyl-3-nitro-1-nitrosoguanidine) for 90 minutes. Mutant spores collected and washed by centrifugation from this suspension were cloned on PDA agar medium. The obtained mutant spores were diluted with physiological saline to 1.0 × 10 7 / mL and inoculated with 1% (v / v) in a medium containing 2 wt% Arbocel B800 (trade name, Rettenmeier). Then, the cells were cultured at 28 ° C. for 120 hours at 125 rpm. The mutant strain having decreased β-glucosidase activity was selected by evaluating the β-glucosidase activity of the supernatant obtained by centrifuging the culture solution by the method described in Reference Example 4. The enzyme activity (U) was calculated as the amount of enzyme liberating 1 mol of p-nitrophenol per minute. As a result, we obtained a strain in which the β-glucosidase activity was reduced to about 1/22, respectively, as compared with the parent strain PC-3-7BGL / ΔBXL in which the β-glucosidase activity was not reduced. The results are shown in Table 3. In addition, as a result of analyzing the gene sequence of the PC-3-7-ΔBGL / ΔBXL strain, it was found that adenine (A), which is presumed to be the Xyr1 binding site 198 bases upstream from the translation initiation site of the BGL gene, was deleted. Do you get it.
 <実施例2>PC-3-7ΔBGL/BXLを親株としたBGLおよびBXL活性が低下した変異株(PC-3-7ΔBGL/ΔBXL-B)株の作製
 PC-3-7ΔBGL/BXL株の胞子を1.0×10/mLになるように生理食塩水で希釈し、その希釈胞子溶液0.1mLを表1に示した50mLバッフル付フラスコへ入れた10mLの前培養培地へ接種し、振盪培養機にて28℃、120rpmの条件にて4時間培養した。培養液にNTG(1-Methyl-3-nitro-1-nitrosoguanidine)で90分変異処理を施した。この懸濁液から遠心分離により集菌、洗浄した変異胞子を、PDA寒天培地でクローン化した。得られた変異胞子を1.0×10/mLになるように生理食塩水で希釈し、2重量%Arbocel B800(商品名、レッテンマイヤー社)を含む培地に1%(v/v)接種し、28℃、120時間、125rpmで培養した。β-キシロシダーゼ活性が低下した変異株の選択は、培養液を遠心分離して得られた上清を参考例4に記載の方法でβーキシロシダーゼ活性を評価することにより行った。酵素活性(U)は、1分間に1molのp-ニトロフェノールを遊離した酵素量として算出した。その結果、βーキシロシダーゼ活性が欠失した変異株を獲得した。結果を表3に示す。また、PC-3-7-ΔBGL/ΔBXL-B株の遺伝子配列を解析した結果、BXL遺伝子の翻訳開始地点から2018番目のAがTに置換し、2065番目のAがTに置換していることが分かった。
<Example 2> Preparation of mutant strain (PC-3-7ΔBGL / ΔBXL-B) strain having reduced BGL and BXL activity using PC-3-7ΔBGL / BXL as a parent strain. Dilute with physiological saline to 1.0 × 10 7 / mL, inoculate 0.1 mL of the diluted spore solution into a 10 mL preculture medium in a flask with a 50 mL baffle shown in Table 1, and shake culture. The cells were cultured on the machine at 28 ° C. and 120 rpm for 4 hours. The culture medium was mutated with NTG (1-Methyl-3-nitro-1-nitrosoguanidine) for 90 minutes. Mutant spores collected and washed by centrifugation from this suspension were cloned on PDA agar medium. The obtained mutant spores were diluted with physiological saline to 1.0 × 10 7 / mL and inoculated with 1% (v / v) in a medium containing 2 wt% Arbocel B800 (trade name, Rettenmeier). Then, the cells were cultured at 28 ° C. for 120 hours at 125 rpm. The mutant strain having decreased β-xylosidase activity was selected by centrifuging the culture solution and evaluating the β-xylosidase activity of the supernatant obtained by the method described in Reference Example 4. The enzyme activity (U) was calculated as the amount of enzyme liberating 1 mol of p-nitrophenol per minute. As a result, a mutant strain lacking β-xylosidase activity was obtained. The results are shown in Table 3. Further, as a result of analyzing the gene sequence of the PC-3-7-ΔBGL / ΔBXL-B strain, the 2018 A from the translation start point of the BXL gene was replaced with T, and the 2065 A was replaced with T. It turned out.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
<比較例3>トリコデルマ リーセイPC―3―7株の粘度測定
 参考例2で記載した手法を用い、トリコデルマ リーセイPC―3―7の培養液中の経時的な粘度を測定した。その結果、培養中の最大粘度は、226cPを示した。結果を表4に示す。この値を100%として、変異株の培養液の粘度と比較した。
<Comparative Example 3> Viscosity measurement of Trichoderma Risei PC-3-7 strain Using the method described in Reference Example 2, the viscosity of Trichoderma Risei PC-3-7 in the culture solution over time was measured. As a result, the maximum viscosity during culturing was 226 cP. The results are shown in Table 4. This value was set to 100% and compared with the viscosity of the culture solution of the mutant strain.
<比較例4>PC-3-7ΔBGL/BXL株の粘度測定
 参考例2で記載した手法を用い、比較例1で作製したPC―3―7ΔBGL/BXL株の培養液中の経時的な粘度を測定した。その結果、培養中の最大粘度は、230cPを示した。結果を表4に示す。トリコデルマ リーセイPCー3―7株と比較して変化がないことが分かった。
<Comparative Example 4> Viscosity measurement of PC-3-7ΔBGL / BXL strain Using the method described in Reference Example 2, the viscosity of the PC-3-7ΔBGL / BXL strain prepared in Comparative Example 1 over time in the culture solution was determined. It was measured. As a result, the maximum viscosity during culturing was 230 cP. The results are shown in Table 4. It was found that there was no change compared to the Trichoderma Risei PC-3-7 strain.
<比較例5>PC-3-7BGL/ΔBXL株の粘度測定
 参考例2で記載した手法を用い、比較例2で作製したPC―3―7BGL/ΔBXL株の培養液中の経時的な粘度を測定した。その結果、培養中の最大粘度は、164cPを示した。結果を表4に示す。トリコデルマ リーセイPCー3―7株と比較して27.4%低下した。
<Comparative Example 5> Viscosity measurement of PC-3-7BGL / ΔBXL strain Using the method described in Reference Example 2, the viscosity of the PC-3-7BGL / ΔBXL strain prepared in Comparative Example 2 over time in the culture solution was determined. It was measured. As a result, the maximum viscosity during culturing was 164 cP. The results are shown in Table 4. It decreased by 27.4% compared to Trichoderma Risei PC-3-7 strain.
<実施例3>PC-3-7ΔBGL/ΔBXL株の粘度測定
 参考例2で記載した手法を用い、実施例1で作製したPC―3―7ΔBGL/ΔBXL株の培養液中の経時的な粘度を測定した。その結果、培養中の最大粘度は、117cPを示し、トリコデルマ リーセイPC―3―7株と比較して48.2%低下した(表4)。
<Example 3> Viscosity measurement of PC-3-7ΔBGL / ΔBXL strain Using the method described in Reference Example 2, the viscosity of the PC-3-7ΔBGL / ΔBXL strain prepared in Example 1 over time in the culture solution was determined. It was measured. As a result, the maximum viscosity during culturing was 117 cP, which was 48.2% lower than that of the Trichoderma Risei PC-3-7 strain (Table 4).
<実施例4>PC-3-7ΔBGL/ΔBXL-B株の粘度測定
 参考例2で記載した手法を用い、実施例2で作製したP
C―3―7ΔBGL/ΔBXL株の培養液中の経時的な粘度を測定した。その結果、培養中の最大粘度は、131cPを示し、トリコデルマ リーセイPC―3―7株と比較して42.0%低下した(表4)。
<Example 4> Viscosity measurement of PC-3-7ΔBGL / ΔBXL-B strain P prepared in Example 2 using the method described in Reference Example 2.
The viscosity of the C-3-7ΔBGL / ΔBXL strain in the culture solution over time was measured. As a result, the maximum viscosity during culturing was 131 cP, which was 42.0% lower than that of the Trichoderma Risei PC-3-7 strain (Table 4).
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
<比較例6>トリコデルマ リーセイPC―3―7株のセルラーゼ組成物を使用した糖化試験
 参考例5で記載した手法で二種類のバイオマス(Arbocel B800(商品名、レッテンマイヤー社)、バガス粉末を24時間、50℃で糖化反応に供した。糖化反応液を参考例6に記載の手法で定量分析した。キシロビオースの濃度に着目すると、PC-3-7株ではArbocel B800(商品名)、バガス粉末、いずれのバイオマスでも生成が認められなかった。結果を表5に示す。
<Comparative Example 6> Glycation test using a cellulase composition of Trichoderma Risei PC-3-7 strain Two types of biomass (Arbocel B800 (trade name, Rettenmeier) and bagasse powder are used by the method described in Reference Example 5). The saccharification reaction was carried out at 50 ° C. for a period of time. The saccharification reaction solution was quantitatively analyzed by the method described in Reference Example 6. Focusing on the concentration of xylobiose, Arbocel B800 (trade name) and bagasse powder were found in the PC-3-7 strain. No production was observed in any of the biomasses. The results are shown in Table 5.
<比較例7>PC-3-7BGL/ΔBXL株のセルラーゼ組成物を使用した糖化試験
 参考例5で記載した手法で二種類のバイオマス(Arbocel B800(レッテンマイヤー社)、バガス粉末)を24時間、50℃で糖化反応に供した。糖化反応液を参考例6に記載の手法で定量分析した。その結果、PC―3―7BGL/ΔBXL株ではそれぞれ3.15g/L、1.07g/Lのキシロビオースが遊離した。結果を表5に示す。
<Comparative Example 7> Glycation test using cellulase composition of PC-3-7BGL / ΔBXL strain Two types of biomass (Arbocel B800 (Rettenmeier), bagasse powder) were used for 24 hours by the method described in Reference Example 5. It was subjected to a saccharification reaction at 50 ° C. The saccharification reaction solution was quantitatively analyzed by the method described in Reference Example 6. As a result, 3.15 g / L and 1.07 g / L of xylobiose were released in the PC-3-7BGL / ΔBXL strain, respectively. The results are shown in Table 5.
<実施例5>PC-3-7ΔBGL/ΔBXL株のセルラーゼ組成物を使用した糖化試験
 参考例5で記載した手法で二種類のバイオマス(Arbocel B800(レッテンマイヤー社)、バガス粉末)を24時間、50℃で糖化反応に供した。糖化反応液を参考例6に記載の手法で定量分析した。PC―3―7ΔBGL/ΔBXL株では、キシロビオースの遊離量がそれぞれ3.45g/L、1.28g/Lを示し、意外にもPC―3―7BGL/ΔBXL株の結果と比較してそれぞれ9.52%、19.6%増加した。結果を表5に示す。
<Example 5> Glycation test using cellulase composition of PC-3-7ΔBGL / ΔBXL strain Two types of biomass (Arbocel B800 (Rettenmeier), bagasse powder) were used for 24 hours by the method described in Reference Example 5. It was subjected to a saccharification reaction at 50 ° C. The saccharification reaction solution was quantitatively analyzed by the method described in Reference Example 6. In the PC-3-7ΔBGL / ΔBXL strain, the amount of xylobiose released was 3.45 g / L and 1.28 g / L, respectively, which was surprisingly compared with the results of the PC-3-7BGL / ΔBXL strain, respectively. It increased by 52% and 19.6%. The results are shown in Table 5.
<実施例6>PC-3-7ΔBGL/ΔBXL株のセルラーゼ組成物を使用した糖化試験
 参考例5で記載した手法で二種類のバイオマス(Arbocel B800(レッテンマイヤー社)、バガス粉末)を24時間、50℃で糖化反応に供した。糖化反応液を参考例6に記載の手法で定量分析した。PC―3―7ΔBGL/ΔBXL-B株では、キシロビオースの遊離量がそれぞれ3.45g/L、1.28g/Lを示し、意外にもPC―3―7BGL/ΔBXL株の結果と比較してそれぞれ44.1%、61.2%増加した。結果を表5に示す。
<Example 6> Glycation test using cellulase composition of PC-3-7ΔBGL / ΔBXL strain Two types of biomass (Arbocel B800 (Rettenmeier), bagasse powder) were used for 24 hours by the method described in Reference Example 5. It was subjected to a saccharification reaction at 50 ° C. The saccharification reaction solution was quantitatively analyzed by the method described in Reference Example 6. In the PC-3-7ΔBGL / ΔBXL-B strain, the free amounts of xylobiose were 3.45 g / L and 1.28 g / L, respectively, which were surprisingly compared with the results of the PC-3-7BGL / ΔBXL strain, respectively. It increased by 44.1% and 61.2%. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (7)

  1.  β-グルコシダーゼおよびβ-キシロシダーゼの活性が変異導入前の親株より低下したトリコデルマ属糸状菌の変異株。 A mutant strain of Trichoderma filamentous fungus in which the activities of β-glucosidase and β-xylosidase were lower than those of the parent strain before the introduction of the mutation.
  2.  前記β-グルコシダーゼの比活性が0.02U/mg-protein以下かつ、前記β-キシロシダーゼの比活性が0.002U/mg-protein以下である請求項1に記載の変異株。 The mutant strain according to claim 1, wherein the specific activity of the β-glucosidase is 0.02 U / mg-protein or less, and the specific activity of the β-xylosidase is 0.002 U / mg-protein or less.
  3.  前記トリコデルマ属糸状菌がトリコデルマ リーセイである請求項1または2に記載の変異株。 The mutant strain according to claim 1 or 2, wherein the Trichoderma filamentous fungus is Trichoderma lysei.
  4.   請求項1~3のいずれか1項に記載の変異株を培養してタンパク質を製造する方法。 A method for producing a protein by culturing the mutant strain according to any one of claims 1 to 3.
  5.  前記タンパク質がセルラーゼである請求項4に記載の製造方法。 The production method according to claim 4, wherein the protein is cellulase.
  6.   請求項5に記載の方法で製造されたセルラーゼでキシランを含むバイオマスを加水分解する、キシロオリゴ糖の製造方法。 A method for producing a xylooligosaccharide, which hydrolyzes biomass containing xylan with cellulase produced by the method according to claim 5.
  7.  トリコデルマ属糸状菌のβ-グルコシダーゼ活性およびβ-キシロシダーゼ活性を低下させることを含む、トリコデルマ属糸状菌の液体培養時の培養液の粘度を低下させる方法。 A method for reducing the viscosity of a culture solution during liquid culture of Trichoderma filamentous fungi, which comprises reducing the β-glucosidase activity and β-xylosidase activity of Trichoderma filamentous fungi.
PCT/JP2021/002759 2020-01-28 2021-01-27 Filamentous fungus trichoderma mutant strain WO2021153587A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180009129.7A CN114981405A (en) 2020-01-28 2021-01-27 Mutant strain of Trichoderma filamentous fungus
JP2021504847A JPWO2021153587A1 (en) 2020-01-28 2021-01-27

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-011465 2020-01-28
JP2020011465 2020-01-28

Publications (1)

Publication Number Publication Date
WO2021153587A1 true WO2021153587A1 (en) 2021-08-05

Family

ID=77078155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002759 WO2021153587A1 (en) 2020-01-28 2021-01-27 Filamentous fungus trichoderma mutant strain

Country Status (3)

Country Link
JP (1) JPWO2021153587A1 (en)
CN (1) CN114981405A (en)
WO (1) WO2021153587A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110072540A1 (en) * 2009-09-18 2011-03-24 Novozymes, Inc. Polypeptides having beta-glucosidase activity and polynucleotides encoding same
WO2014142325A1 (en) * 2013-03-15 2014-09-18 国立大学法人長岡技術科学大学 Variant of cellulase-producing fungus, cellulase manufacturing method, and cello-oligosaccharide manufacturing method
WO2017170917A1 (en) * 2016-03-31 2017-10-05 東レ株式会社 Method for producing protein
WO2018159573A1 (en) * 2017-02-28 2018-09-07 東レ株式会社 Method for producing saccharifying enzyme and method for oligosaccharide production

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103602647B (en) * 2013-12-03 2015-05-20 广西大学 Beta-xylosidase mutant and use thereof
US9920346B2 (en) * 2014-09-26 2018-03-20 Toray Industries, Inc. Method of preparing sugar solution
JP6597311B2 (en) * 2014-10-31 2019-10-30 東レ株式会社 Production method of sugar solution and xylooligosaccharide
WO2017170918A1 (en) * 2016-03-31 2017-10-05 東レ株式会社 Trichoderma fungus having mutant-type bxl1 gene and method for producing xylooligosaccharide and glucose by using same
WO2017170919A1 (en) * 2016-03-31 2017-10-05 東レ株式会社 Method for producing xylo-oligosaccharide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110072540A1 (en) * 2009-09-18 2011-03-24 Novozymes, Inc. Polypeptides having beta-glucosidase activity and polynucleotides encoding same
WO2014142325A1 (en) * 2013-03-15 2014-09-18 国立大学法人長岡技術科学大学 Variant of cellulase-producing fungus, cellulase manufacturing method, and cello-oligosaccharide manufacturing method
WO2017170917A1 (en) * 2016-03-31 2017-10-05 東レ株式会社 Method for producing protein
WO2018159573A1 (en) * 2017-02-28 2018-09-07 東レ株式会社 Method for producing saccharifying enzyme and method for oligosaccharide production

Also Published As

Publication number Publication date
CN114981405A (en) 2022-08-30
JPWO2021153587A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
JP6319515B2 (en) Protein production method
Wang et al. Efficient L-lactic acid production from sweet sorghum bagasse by open simultaneous saccharification and fermentation
JP2013545491A (en) Enhancement of ethanol production by xylose-utilizing zymomonas mobilis in biomass hydrolyzate medium
JPWO2017170918A1 (en) Trichoderma fungus having mutant BXL1 gene and method for producing xylooligosaccharide and glucose using the same
US10550376B2 (en) Xylanase
US11732284B2 (en) Trichoderma reesei mutant strain, and method of producing protein
CN111770996A (en) Mutant beta-glucosidase
WO2021153587A1 (en) Filamentous fungus trichoderma mutant strain
JP4494399B2 (en) Method for producing L-lactic acid
JPWO2020075787A1 (en) Trichoderma Risei mutant strain and protein production method
US20210388410A1 (en) Mutant strain of trichoderma reesei, and protein manufacturing method
JP2021083414A (en) Methods for producing cellulase and methods for producing glucose using cellulase
CN112639073A (en) Mutant strain of trichoderma reesei and method for producing protein using the same
JP6518107B2 (en) Transcription factor mutant
JP6849749B2 (en) New xylanase
WO2017221765A1 (en) Microorganism, composition for degrading lignocellulose-based biomass, method for producing saccharified liquid and method for producing compound derived from lignocellulose-based biomass
US11492603B2 (en) Trichoderma reesei mutant and protein production method
WO2023171644A1 (en) Filter aid, filtering processing method, and cellulase production method
JP2017035001A (en) Heat resistant xylanase

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021504847

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21748476

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21748476

Country of ref document: EP

Kind code of ref document: A1