WO2017221765A1 - Microorganism, composition for degrading lignocellulose-based biomass, method for producing saccharified liquid and method for producing compound derived from lignocellulose-based biomass - Google Patents

Microorganism, composition for degrading lignocellulose-based biomass, method for producing saccharified liquid and method for producing compound derived from lignocellulose-based biomass Download PDF

Info

Publication number
WO2017221765A1
WO2017221765A1 PCT/JP2017/021784 JP2017021784W WO2017221765A1 WO 2017221765 A1 WO2017221765 A1 WO 2017221765A1 JP 2017021784 W JP2017021784 W JP 2017021784W WO 2017221765 A1 WO2017221765 A1 WO 2017221765A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
base sequence
biomass
microorganism
lignocellulose
Prior art date
Application number
PCT/JP2017/021784
Other languages
French (fr)
Japanese (ja)
Inventor
昭彦 小杉
ジュンジャラス サムサタナワディ
ワラポーン アピワタナピワット
Original Assignee
国立研究開発法人国際農林水産業研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人国際農林水産業研究センター filed Critical 国立研究開発法人国際農林水産業研究センター
Priority to CN201780023991.7A priority Critical patent/CN109153987A/en
Priority to JP2018523926A priority patent/JP6599006B2/en
Publication of WO2017221765A1 publication Critical patent/WO2017221765A1/en
Priority to PH12018502608A priority patent/PH12018502608A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/22Processes using, or culture media containing, cellulose or hydrolysates thereof
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P1/00Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes
    • C12P1/04Preparation of compounds or compositions, not provided for in groups C12P3/00 - C12P39/00, by using microorganisms or enzymes by using bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/12Disaccharides
    • CCHEMISTRY; METALLURGY
    • C13SUGAR INDUSTRY
    • C13BPRODUCTION OF SUCROSE; APPARATUS SPECIALLY ADAPTED THEREFOR
    • C13B10/00Production of sugar juices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention relates to a microorganism, a composition for decomposing lignocellulosic biomass, a method for producing a saccharified solution, and a method for producing a compound derived from lignocellulosic biomass.
  • the present application claims priority based on Japanese Patent Application No. 2016-123065 filed in Japan on June 21, 2016, the contents of which are incorporated herein by reference.
  • Lignocellulose-based biomass contains lignocellulose as a main component. Lignocellulose has a structure in which cellulose, hemicellulose, and lignin are tightly bound, and it is not easy to decompose into pentose or hexose monosaccharides or oligosaccharides that can be used for fermentation.
  • lignocellulose which is the main component
  • the enzyme can come into contact with polysaccharides contained in lignocellulosic biomass.
  • pre-processing is performed. Examples of the pretreatment method include pulverization, explosion, steaming, microwave irradiation, gamma ray irradiation, electron beam irradiation, dilute sulfuric acid treatment, alkali treatment, and solvolysis treatment.
  • pretreatment methods have problems such as a large amount of energy input, a large loss of sugar due to pretreatment, a large environmental load due to harmful substances, and a fermentation inhibitory substance produced as a by-product.
  • a pretreatment method a method using a white rot fungus which is a microorganism capable of decomposing lignin in lignocellulose is known.
  • Patent Document 1 discloses a method for pretreating a saccharification step with an enzyme and a fermentation step with a microorganism using a white rot fungus (FERM AP-20591) having a lignocellulose-degrading action or a mutant thereof.
  • FERM AP-20591 white rot fungus having a lignocellulose-degrading action or a mutant thereof.
  • the present invention has been made in view of the above circumstances, and provides a novel microorganism excellent in lignocellulose resolution.
  • the inventors of the present invention have an excellent resolution with respect to lignocellulose among the strains collected from humus, and the types of lignocellulosic biomass to be decomposed. A strain having no restriction was found and the present invention was completed.
  • the microorganism according to the first aspect of the present invention has a 16S rRNA gene containing any one of the following nucleic acids (a) to (c) and has the resolution of lignocellulosic biomass.
  • A a nucleic acid comprising the base sequence shown in SEQ ID NO: 1 or 2
  • B a nucleic acid having 95% or more identity with the base sequence shown in SEQ ID NO: 1 or 2
  • C a nucleic acid comprising a base sequence in which one or several bases are deleted, substituted or added in the base sequence shown in SEQ ID NO: 1 or 2
  • the microorganism according to the second aspect of the present invention is Clostridium sp. A7 strain (NITE BP-02216).
  • the microorganism according to the third aspect of the present invention is Cellulosibacter alkaline thermophilus W21-10 strain (NITE BP-02265).
  • the composition for decomposing lignocellulosic biomass according to the fourth aspect of the present invention includes at least one microorganism according to the first aspect, or an enzyme or gene product derived from the microorganism.
  • the composition for degrading lignocellulosic biomass according to the fourth aspect further has a 16S rRNA gene containing any one of the following nucleic acids (d) to (f), and the resolution of lignocellulosic biomass, or You may contain at least 1 sort (s) among the microorganisms which have the metabolic capacity of the degradation product of lignocellulosic biomass.
  • the manufacturing method of the saccharified liquid which concerns on the 5th aspect of this invention is a method provided with the saccharification process of producing
  • the method for producing a lignocellulosic biomass-derived compound according to the sixth aspect of the present invention produces a lignocellulosic biomass-derived compound from the saccharified liquid after producing the saccharified liquid using the production method according to the fifth aspect.
  • This is a method including a production process.
  • a novel microorganism having an excellent lignocellulose resolution can be provided.
  • FIG. 2 is an image showing a state of decomposition in each biomass on the fifth day of culture after inoculation with ISI-3 in Example 1.
  • FIG. 2 is a graph showing the degradation rate of each biomass on the fifth day of culture after inoculation with ISI-3 in Example 1.
  • FIG. It is a graph which shows the decomposition
  • the microorganism according to one embodiment of the present invention has a 16S rRNA gene containing any of the following nucleic acids (a) to (c), and has the resolution of lignocellulosic biomass.
  • A a nucleic acid comprising the base sequence shown in SEQ ID NO: 1 or 2
  • B a nucleic acid having 95% or more identity with the base sequence shown in SEQ ID NO: 1 or 2
  • C a nucleic acid comprising a base sequence in which one or several bases are deleted, substituted or added in the base sequence shown in SEQ ID NO: 1 or 2
  • a microorganism having a 16S rRNA gene comprising a nucleic acid having the base sequence shown in SEQ ID NO: 1 or a functionally equivalent nucleic acid is a Neisseria gonorrhoeae belonging to the genus Clostridium, and is an excellent ligno Has cellulose resolution.
  • Clostridium is a genus of Gram-positive endospore-forming rods.
  • a microorganism having a 16S rRNA gene containing a nucleic acid having the base sequence shown in SEQ ID NO: 2 or a nucleic acid functionally equivalent to the nucleic acid is classified as a Cellulosibacter alkaline thermophilus species. It is a koji mold to which it belongs and has excellent lignocellulose resolution. Cellulosibacter alkaline thermophilus is a thermophilic thermophilic anaerobic cellulose-degrading bacterium.
  • “nucleic acid” includes RNA and DNA.
  • the “16S rRNA gene” includes RNA of a small subunit of ribosome and DNA encoding the RNA.
  • lignocellulose resolution means an activity of mainly decomposing polysaccharides such as cellulose and hemicellulose into monosaccharides, oligosaccharides, or organic acids contained in lignocellulose.
  • A7 strain The base sequence shown in SEQ ID NO: 1 in the above (a) is the base sequence of 16S rRNA gene of Clostridium sp. A7 strain (NITE BP-02216).
  • A7 strain can be separated and purified by the method described in the Examples below. Further, the obtained strain was identified as a Clostridium bacterium from morphological observation and others, and named A7 strain.
  • Clostridium species A7 strain The microbiological properties of Clostridium species A7 strain are as follows. The photomicrographs of Clostridium sp. Strain A7 taken using a scanning electron microscope (SEM) are shown in FIGS.
  • the shape of the cell is an elongated rod or cylinder.
  • the length of the cell is about 2.0 to 6.0 ⁇ m, and the width is about 0.3 to 0.4 ⁇ m.
  • Gram-positive bacteria and colonies are orange.
  • the cell grows in a form in which the long axis direction is constant and only the length increases, and when it grows to a certain size, it divides in a form that is almost equally divided at its center.
  • Culture solution Can be grown on a common medium used for culturing bacteria of the genus Clostridial.
  • Growth temperature range 37 ° C to 60 ° C (optimum temperature 55 ° C).
  • Growth pH range pH 6.0 to 10.0 (optimum pH 9.0).
  • Nutrient source As a carbon source, it can grow on cellulose, cellobiose, or lignocellulose. Further, as a nitrogen source, not only inorganic nitrogen such as sulfuric acid and ammonium nitrate but also organic nitrogen such as yeast extract, peptone and beef extract can be used.
  • Product Acetic acid, ethanol, fumaric acid, lactic acid, and succinic acid are produced.
  • FIG. 3 is a histogram prepared by comparing the base sequence of the 16S rDNA gene of Clostridium sp. A7 strain and Cellulosibacter alkaline thermophilus strain W21-10 with the base sequence of the 16S rDNA gene of closely related bacterial species. It is. As a result, Clostridium species A7 strain was judged as a novel strain.
  • Clostridium sp. A7 strain was established by the National Institute for Product Evaluation and Technology Patent Microorganisms Depositary Center (NPMD) (2-5-8, Kazusa-Kamazu, Kisarazu-shi, Chiba) on March 8, 2016. Deposited internationally under the deposit number NITE BP-02216.
  • NPMD National Institute for Product Evaluation and Technology Patent Microorganisms Depositary Center
  • a medium when culturing Clostridium sp it is preferable to use a medium when culturing Clostridium sp.
  • the medium to be used is not limited as long as bacteria belonging to the genus Clostridium grow, and for example, a BMN medium having the composition shown in Table 1 below can be preferably used as such a medium.
  • examples of other media that can be used include NB (Nutrient Broth) medium (for example, “Nutrient Broth, Bacto” manufactured by Difco (containing 3 g / L of beef extract and 5 g / L of peptone)), etc. Can be mentioned.
  • NB Nutrient Broth
  • a BMN medium having the composition shown in Table 1 is particularly preferable because it decomposes lignocellulose with high efficiency.
  • the culturing method for Clostridium species A7 can be performed by a known and commonly used method.
  • the above medium can be used.
  • examples of the culture method include a stationary culture method, a shaking culture method, a deep aeration-agitation culture method, and the like.
  • the pH in the culture can be neutral to basic at 6.0 to 10.0, and is preferably pH 9.0.
  • the culture temperature can be 37 ° C or higher and 60 ° C or lower, preferably 55 ° C.
  • the saccharification process and fermentation process using general lignocellulosic biomass are in the same temperature range, so Clostridium species A7 strain efficiently decomposes lignocellulose and saccharifies.
  • a liquid or lignocellulosic biomass-derived compound can be obtained.
  • the Clostridium species A7 strain when the Clostridium species A7 strain is cultured by the above-described culture method, the Clostridium species A7 strain having not only stable growth but also improved lignocellulose resolution is obtained.
  • lignocellulose is a component of a plant cell wall, and is mainly composed of cellulose, hemicellulose, and lignin.
  • the cellulose in lignocellulose has a strong crystal structure in which linear polymers composed of ⁇ -1,4 glucose are bundled by hydrogen bonds.
  • lignocellulose-based biomass includes lignocellulose as a main component.
  • lignocellulosic biomass examples include conifers (e.g., cedar, spruce, larch, black pine, todomatsu, himekomatsu, yew, nezuko, spruce fir, irakimi, inakiki, fir, sawara, togasawara, asunaro, hiba, tsuga, kotsutsuga, hinoki.
  • conifers e.g., cedar, spruce, larch, black pine, todomatsu, himekomatsu, yew, nezuko, spruce fir, irakimi, inakiki, fir, sawara, togasawara, asunaro, hiba, tsuga, kotsutsuga, hinoki.
  • the shape of the lignocellulosic biomass to be decomposed by microorganisms of the present embodiment includes, but is not limited to, for example, powder, chip, square, log, flake, and fiber. Especially, it is preferable that it is a powder form, a chip form, flake form, or a fiber form from a viewpoint of performing the decomposition
  • hemicellulose includes a so-called pentose having 5 carbons as a structural unit, such as xylose, and a hexose having 6 carbons as a structural unit, such as mannose, arabinose, galacturonic acid, and the like. What is called, and complex polysaccharides such as glucomannan and glucuronoxylan are included.
  • a pentose monosaccharide consisting of 5 carbons a pentose oligosaccharide composed of a plurality of such monosaccharides, a hexose monosaccharide consisting of 6 carbons, A hexose oligosaccharide in which a plurality of the monosaccharides are linked, and an oligosaccharide in which a plurality of pentose monosaccharides and a hexose monosaccharide are linked.
  • Cellulose includes hexose containing 6 carbons as a structural unit.
  • cellulose when cellulose is hydrolyzed, it produces a six-carbon monosaccharide consisting of six carbons and a hexose oligosaccharide in which a plurality of such monosaccharides are linked.
  • the composition ratio and the amount of monosaccharide or oligosaccharide produced from hemicellulose or cellulose vary depending on the pretreatment method and the type of lignocellulosic biomass used as a raw material.
  • a compound derived from lignocellulosic biomass means a compound produced by ingesting monosaccharides and oligosaccharides obtained by decomposing lignocellulosic biomass by microorganisms such as yeast. .
  • the lignocellulosic biomass-derived compound examples include alcohols such as ethanol, butanol, 1,3-propanediol, 1,4-butanediol, and glycerol; pyruvic acid, fumaric acid, succinic acid, malic acid, itacone Examples thereof include organic acids such as acid, citric acid, acetic acid, and lactic acid; nucleosides such as inosine and guanosine; nucleotides such as inosine acid and guanylic acid; and diamine compounds such as cadaverine.
  • the obtained lignocellulose-based biomass-derived compound is a monomer such as lactic acid, it may be converted into a polymer by polymerization.
  • ⁇ Cellulosibacter alkaline thermophilus W21-10 strain> The base sequence shown in SEQ ID NO: 2 in (a) above is the base sequence of the 16S rRNA gene of Cellulosibacter alkaline thermophilus W21-10 strain (NITE BP-02265).
  • the microbiological properties of Cellulosibacter / alkaline thermophilus W21-10 are as follows. 2A and 2B show micrographs of Cellulosiacter alkaline thermophilus W21-10 photographed using a scanning electron microscope (SEM).
  • the shape of the cell is an elongated rod or cylinder.
  • the cell length is about 2.0-3.0 ⁇ m and the width is about 0.2-0.3 ⁇ m.
  • Gram-positive bacteria and colonies are yellow.
  • the cell grows in a form in which the long axis direction is constant and only the length increases, and when it grows to a certain size, it divides in a form that is almost equally divided at its center.
  • Culture solution It can be grown on a medium for culturing common cellulobacter bacteria.
  • Growth temperature range 37 ° C. or more and 65 ° C. or less (optimum temperature 60 ° C.).
  • Growth pH range pH 8.0 to 10.0 (optimum pH 9.5).
  • Nutrient source As a carbon source, it can grow on cellulose, cellobiose, lignocellulose, starch, pectin, sorbitol, mannitol, or glycerol.
  • nitrogen source not only inorganic nitrogen such as sulfuric acid and ammonium nitrate but also organic nitrogen such as yeast extract, peptone and beef extract can be used.
  • Product Acetic acid, ethanol, fumaric acid, lactic acid, and succinic acid are produced.
  • FIG. 3 is a histogram prepared by comparing the base sequence of the 16S rDNA gene of Clostridium sp. A7 strain and Cellulosibacter alkaline thermophilus strain W21-10 with the base sequence of the 16S rDNA gene of closely related bacterial species. It is. As a result, cellulosibacter alkaline thermophilus W21-10 was determined to be a novel strain.
  • a medium for culturing the Cellulosibacter alkaline thermophilus W21-10 strain is not limited as long as the cellulobacter bacterium grows.
  • a BMN medium having the composition shown in Table 1 can be preferably used as such a medium.
  • examples of other media that can be used include NB (Nutrient Broth) medium (for example, “Nutrient Broth, Bacto” manufactured by Difco (containing 3 g / L of beef extract and 5 g / L of peptone)), etc.
  • NB Nutrient Broth
  • a BMN medium having the composition shown in Table 1 is particularly preferable because it decomposes lignocellulose with high efficiency.
  • the method for culturing the Cellulosibacter alkaline thermophilus W21-10 strain can be carried out by a known and commonly used method.
  • the above medium can be used.
  • examples of the culture method include a stationary culture method, a shaking culture method, a deep aeration-agitation culture method, and the like.
  • the culture can be performed at a basic pH of 8.0 to 10.0, preferably pH 9.5.
  • the culture temperature can be 37 ° C or higher and 65 ° C or lower, preferably 60 ° C.
  • the cellulosibacter alkaline thermophilus strain W21-10 is efficiently used because it is in the same temperature range as the saccharification process and fermentation process using general lignocellulosic biomass.
  • Lignocellulose can be decomposed to obtain a saccharified solution or a lignocellulose-based biomass-derived compound.
  • the cellulosibacter alkaline thermophilus W21-10 strain when the Cellulosibacter alkaline thermophilus W21-10 strain is cultured by the above-described culture method, the cellulosibacter alkaline thermophila not only shows stable growth but also has improved lignocellulose resolution. S21-10 strain is obtained.
  • the microorganism of this embodiment may have a 16S rRNA gene containing a nucleic acid of the following (b) as a 16S rRNA gene containing a nucleic acid functionally equivalent to the above (a).
  • the 16S rRNA gene containing the nucleic acid (a) has 95% or more identity. Such identity is preferably 95% or more, more preferably 96% or more, still more preferably 97% or more, particularly preferably 98% or more, and most preferably 99% or more. Furthermore, the 16S rRNA gene containing the nucleic acid of (b) has lignocellulose resolution.
  • the microorganism of this embodiment may have a 16S rRNA gene containing a nucleic acid of the following (c) as a 16S rRNA gene containing a nucleic acid functionally equivalent to the above (a).
  • the number of bases that may be deleted, substituted, or added is preferably 1 or more, 15 or less, more preferably 1 or more and 10 or less, and particularly preferably 1 or more and 5 or less.
  • the 16S rRNA gene containing the nucleic acid of (c) has lignocellulose resolution.
  • the composition for decomposing lignocellulosic biomass according to one embodiment of the present invention comprises at least one kind of the above-mentioned microorganisms, or an enzyme or gene product derived from the microorganisms.
  • lignocellulose can be decomposed with high efficiency, and a saccharified solution or lignocellulose-based biomass-derived compound can be obtained in high yield.
  • microorganisms contained in the lignocellulosic biomass decomposing composition of the present embodiment include the same microorganisms as those described in the above-mentioned ⁇ microorganism >>.
  • the microorganism is preferably Clostridium sp. A7 strain or Cellulosiacter alkaline thermophilus W21-10 strain.
  • the lignocellulosic biomass decomposing composition of the present embodiment may contain an enzyme or gene product derived from the microorganism instead of the microorganism described above.
  • the microorganism-derived enzyme include exo-1,4- ⁇ -glucanase, endo-1,4- ⁇ -glucanase, cellulase (eg, endoglucanase (EG), cellobiohydrolase (CBH) and ⁇ -).
  • Polysaccharide degrading enzymes such as glucosidase (BGL), hemicellulase (eg, xylanase, xylosidase, mannanase, pectinase, galactosidase, glucuronidase, arabinofuranosidase, etc.).
  • BGL glucosidase
  • hemicellulase eg, xylanase, xylosidase, mannanase, pectinase, galactosidase, glucuronidase, arabinofuranosidase, etc.
  • Examples of the gene product derived from the microorganism include DNA or RNA encoding the above-described enzyme.
  • the gene product may be in a form incorporated into an expression vector.
  • Examples of expression vectors include plasmids derived from E. coli such as pBR322, pBR325, pUC12, and pUC13; plasmids derived from Bacillus subtilis such as pUB110, pTP5, and pC194; plasmids derived from yeast such as pSH19 and pSH15; bacteriophages such as ⁇ phage; Examples include, but are not limited to, viruses such as adenovirus, adeno-associated virus, lentivirus, vaccinia virus, baculovirus, and vectors modified from these.
  • the lignocellulosic biomass decomposing composition of the present embodiment may contain one type of microorganism, or an enzyme or gene product derived from the microorganism, or may contain two or more types. Especially, since the composition for lignocellulose-type biomass decomposition
  • composition for degrading lignocellulosic biomass of the present embodiment may further contain at least one of microorganisms having a 16S rRNA gene containing the following nucleic acid (d).
  • D a nucleic acid comprising the base sequence shown in any one of SEQ ID NOs: 3 to 11.
  • the base sequence shown in SEQ ID NO: 3 in (d) above is the base of the 16S rRNA gene of a bacterial species having 88% identity to the base sequence of the 16S rRNA gene of the Mororella glycerini JW / AS-Y6 strain. Is an array.
  • the base sequence shown in SEQ ID NO: 4 in the above (d) is the base sequence of a 16S rRNA gene of a bacterial species having 87% identity to the base sequence of the 16S rRNA gene of the Mororella humiferella 64-FGQ strain. is there.
  • the base sequence shown in SEQ ID NO: 5 in (d) above is the base sequence of a 16S rRNA gene of a bacterial species having 88% identity to the base sequence of the 16S rRNA gene of Tepidanaerobacteracetoxydans Re1 strain It is.
  • the base sequence shown in SEQ ID NO: 6 in the above (d) is the base sequence of the 16S rRNA gene of a bacterial species having 91% identity to the base sequence of the 16S rRNA gene of the Tepidanaerobacteracetoxydans Re1 strain It is.
  • the base sequence shown in SEQ ID NO: 7 in the above (d) is the base sequence of the 16S rRNA gene of a bacterial species having 95% identity to the base sequence of the 16S rRNA gene of the Tepidanaerobacteracetoxydans Re1 strain It is.
  • the base sequence shown in SEQ ID NO: 8 in the above (d) is the base of the 16S rRNA gene of a bacterial species having 96% identity to the base sequence of the 16S rRNA gene of Tepidimicrobium ferriphyllum DSM 16624 strain Is an array.
  • the base sequence shown in SEQ ID NO: 9 in (d) above is a 16S rRNA of a bacterial species having 99% identity to the base sequence of the 16S rRNA gene of Clostridium thermocellum DSM1313 strain or Clostridium thermocellum ATCC27406 strain It is the base sequence of a gene.
  • the base sequence shown in SEQ ID NO: 10 in (d) above is the base sequence of a 16S rRNA gene of a bacterial species having 99% identity to the base sequence of the 16S rRNA gene of Thermoanaerobacter mastranii strain A3. is there.
  • the base sequence shown in SEQ ID NO: 11 in the above (d) is a 16S rRNA of a bacterial species having 94% identity to the base sequence of the 16S rRNA gene of the uncultured microorganism ATB-CK-1492-11 strain. It is the base sequence of a gene. Morella glycerini is a thermophilic, anaerobic, spore-forming bacterium. Morella Humiferella is a thermophilic, anaerobic bacterium that can grow through reciprocating electrons between humic acid and iron (III). Tepidanaerobacter acetatoxidane is an acetic acid oxidation symbiotic microorganism.
  • Tepididimicrobium ferriphyllum is an anaerobic moderate thermophile.
  • Clostridium thermocellum is a thermophilic bacterium that has a characteristic enzyme complex called cellulosome and efficiently decomposes cellulose.
  • Thermoanaerobacter masalani is a thermophilic ethanol-producing bacterium.
  • difficult-to-cultivate microorganisms mean microorganisms that have been systematically different from microorganisms that could not be separated and cultured and known microorganism species.
  • the lignocellulose-based biomass decomposing composition of the present embodiment preferably contains all nine types of microorganisms having a 16s rRNA gene containing a nucleic acid having the base sequence shown in any of SEQ ID NOs: 3 to 11.
  • lignocellulose can be decomposed
  • the lignocellulose-based biomass decomposing composition of the present embodiment comprises a microorganism having a 16s rRNA gene containing the following nucleic acid (e) as a 16S rRNA gene containing a nucleic acid functionally equivalent to the above (d): May be included. (E) a nucleic acid having 90% or more identity with the base sequence shown in any of SEQ ID NOs: 3 to 11.
  • the 16S rRNA gene containing the nucleic acid of (d) has 95% or more identity. Such identity is preferably 95% or more, more preferably 96% or more, still more preferably 97% or more, particularly preferably 98% or more, and most preferably 99% or more.
  • the 16S rRNA gene containing the nucleic acid (e) has lignocellulose resolution or the ability to metabolize lignocellulosic biomass degradation products.
  • the ability to metabolize the degradation products of lignocellulosic biomass means the ability to metabolize the degradation products of lignocellulosic biomass.
  • the metabolic capacity of the degradation product of lignocellulosic biomass for example, metabolizes monosaccharides, oligosaccharides, or organic acids that are degradation products of lignocellulosic biomass to produce the above-mentioned lignocellulosic biomass-derived compounds Ability to do so.
  • composition for degrading lignocellulosic biomass of the present embodiment includes a microorganism having a 16s rRNA gene containing a nucleic acid of the following (f) as a 16S rRNA gene containing a nucleic acid functionally equivalent to the above (d). May be.
  • F A nucleic acid comprising a base sequence in which one or several bases are deleted, substituted or added in the base sequence shown in any of SEQ ID NOs: 3 to 11.
  • the number of bases that may be deleted, substituted, or added is preferably 1 or more, 15 or less, more preferably 1 or more and 10 or less, and particularly preferably 1 or more and 5 or less.
  • the 16S rRNA gene containing the nucleic acid (f) has lignocellulose resolution or the ability to metabolize lignocellulosic biomass degradation products.
  • composition for degrading lignocellulosic biomass of this embodiment an enzyme or gene product derived from the microorganism is included instead of the microorganism having the 16S rRNA gene containing any one of the nucleic acids (d) to (f). May be.
  • microorganism-derived enzyme examples include exo-1,4- ⁇ -glucanase, endo-1,4- ⁇ -glucanase, cellulase (eg, endoglucanase (EG), cellobiohydrolase (CBH) and ⁇ -).
  • Glucosidase (BGL), etc.) hemicellulases (eg, xylanase, xylosidase, mannanase, pectinase, galactosidase, glucuronidase, arabinofuranosidase, etc.) and the like, and further, proteolytic enzymes, organic acid degrading enzymes Etc. may be included.
  • Examples of the gene product derived from the microorganism include DNA or RNA encoding the above-described enzyme.
  • the gene product may be in a form incorporated into an expression vector.
  • Examples of expression vectors include those similar to those exemplified above.
  • the lignocellulosic biomass decomposing composition of the present embodiment may have any shape as long as the lignocellulose-decomposing ability of the contained microorganism, or the enzyme or gene product derived from the microorganism is not impaired. It may be in a dry state or in a state of being stirred in a liquid medium or the like.
  • the manufacturing method of the saccharified liquid which concerns on one Embodiment of this invention is a method provided with the saccharification process of producing
  • a saccharified solution can be obtained from lignocellulosic biomass with high efficiency and high yield.
  • a saccharified solution is produced from lignocellulosic biomass using the above-described composition for decomposing lignocellulosic biomass.
  • Examples of lignocellulosic biomass used in the production method of the present embodiment include those similar to those exemplified in the above-mentioned ⁇ microorganism >>.
  • the water content is added by adding about 5 to 500 parts by weight, preferably about 50 to 400 parts by weight, more preferably about 50 to 300 parts by weight with respect to 100 parts by weight of lignocellulosic biomass. Can be adjusted.
  • the lignocellulosic biomass when the above-mentioned composition for decomposing lignocellulosic biomass is a microorganism, salts and nutrients (for example, bran, peptone, corn) required for the growth of the microorganism are included. Steep liquor, yeast extract, meat extract, malt extract, potato extract, rice bran, synthetic inorganic salts, etc.) may be added.
  • a medium that can be used for the growth of the microorganism may be added instead of moisture, salt, and nutrients.
  • the medium include the same media as those exemplified above in ⁇ Clostridium sp. Strain A7>.
  • the lignocellulosic biomass may be subjected to a sterilization treatment such as heat sterilization in order to prevent propagation of various bacteria before mixing with the above-described composition for decomposing lignocellulose biomass.
  • the saccharification temperature is preferably 45 ° C or higher and 70 ° C or lower, more preferably 45 ° C or higher and 65 ° C or lower, and particularly preferably 50 ° C or higher and 60 ° C or lower.
  • the saccharification time is preferably 12 hours to 120 hours, more preferably 24 hours to 96 hours, and even more preferably 24 hours to 72 hours.
  • the above-described saccharification reaction conditions are appropriately set based on the type of microorganism, enzyme, or gene product contained in the above-described lignocellulosic biomass decomposition composition, the target saccharification degree, and the like.
  • a pretreatment step may be provided before the saccharification step.
  • the pretreatment process include pulverization, microwave irradiation, blasting, steaming, irradiation, chemical treatment (for example, solvolysis, ozone, alkali, acid, oxidant, reducing agent, etc. ), Fungus treatment, oxidase treatment, or combined treatment thereof.
  • the lignocellulosic biomass is reduced in molecular weight to produce a monosaccharide or oligosaccharide, and a saccharified solution containing the monosaccharide or oligosaccharide can be obtained.
  • various fermentation treatments using the monosaccharide or oligosaccharide having a reduced molecular weight as a carbon source, various lignocelluloses as described in ⁇ Method for producing lignocellulosic biomass-derived compound >> described below.
  • a biomass-derived compound can be produced.
  • the method for producing a lignocellulosic biomass-derived compound produces a lignocellulosic biomass-derived compound from the saccharified solution after producing the saccharified solution using the above-described saccharified solution producing method.
  • a lignocellulosic biomass-derived compound can be obtained from a saccharified solution with high efficiency and high yield.
  • the lignocellulosic biomass-derived compound is produced using the saccharified solution obtained by the above-mentioned ⁇ saccharified solution production method >>.
  • the production process may be any treatment method capable of obtaining a lignocellulosic biomass-derived compound, and examples thereof include fermentation treatment and chemical synthesis treatment.
  • fermentation include ethanol fermentation, methane fermentation, hydrogen fermentation, acetone-butanol fermentation, lactic acid fermentation, succinic acid fermentation, itaconic acid fermentation, and amino acid fermentation.
  • Known microorganisms and fermentation treatment conditions may be used for these fermentation treatments.
  • the fermentation treatment may be performed after the saccharification step or may be performed simultaneously with the saccharification step.
  • the latter fermentation treatment and the saccharification step are performed simultaneously, the above-mentioned lignocellulosic biomass decomposing composition required for the saccharification step and the microorganisms required for the fermentation treatment (for example, yeast, etc.) are allowed to coexist, What is necessary is just to set and incubate on the conditions which both the composition for lignocellulose type
  • the microorganism used for the fermentation treatment is not particularly limited as long as the target lignocellulose-based biomass-derived compound can be produced.
  • Specific examples of the microorganism used for the fermentation treatment include yeast and bacteria, and may be a genetically modified microorganism.
  • a genetically modified microorganism refers to a microorganism that does not have an enzyme gene required for conversion to a target lignocellulosic biomass-derived compound, such as alcohol, by introducing these genes using genetic engineering technology. This enables generation of a cellulosic biomass-derived compound.
  • Examples of the genetically modified microorganism include genetically modified Escherichia coli having alcohol fermentability.
  • Examples of the lignocellulosic biomass-derived compound obtained in the production process include the same compounds as those exemplified in the above-mentioned ⁇ microorganism >>.
  • purification process may be provided after the production
  • purification process is a process for refine
  • a purification method when the lignocellulosic biomass compound is an alcohol, for example, a distillation method and the like can be mentioned.
  • the lignocellulose-based biomass compound is an amino acid, for example, an ion exchange method, a foreign matter adsorption removal method using activated carbon, and the like can be mentioned.
  • Example 1 Selection of biomass-degrading bacteria First, a wet weight of about 2 to 5 g of compost sample containing sugarcane foliage, rice husks, and cow manure, and fiber or corn foliage after squeezing oil palm trunk are ground in a coffee mill. The fiber material was suspended in 20-25 mL of BMN medium. Next, the obtained suspension was sufficiently bubbled with nitrogen (industrial grade), the gas phase was replaced with nitrogen gas, sealed with a butyl rubber stopper, and cultured at 60 ° C. for 3 days to 1 week. went.
  • nitrogen industrial grade
  • the composition of the BMN medium was 1.5 g / L potassium dihydrogen phosphate, 2.9 g / L dipotassium hydrogen phosphate, 2.1 g / L urea, 2 g / L yeast extract (manufactured by Difco). ) 4 g / L sodium carbonate, 0.5 g / L cysteine hydrochloride, 0.2 mL mineral solution (MgCl 2 .6H 2 O 5 g; CaCl 2 .2H 2 O 0.75 g; FeSO 4 .6H 2 O 0.0063 g dissolved in 4 mL of water).
  • a culture solution capable of visually reducing the volume of 1% biomass fiber by half or less was selected.
  • a part of the culture solution is inoculated at an appropriate dilution rate into a BMN agar medium containing 1% biomass fiber and 1.5% agar (Difco), and cultured at 60 ° C. for 120 to 144 hours. went. Only colonies that appeared after 120 hours to 144 hours were selected and again inoculated into BMN liquid medium containing 1% of the biomass fiber, and the resolution was confirmed. Further, this colony separation operation was repeated twice in order to purify the separated cellulose-degrading bacteria.
  • the biomass resolution of ISI-3 was measured using the following six types of biomass fiber. i) Dried cassava pulp discharged from the starch factory (hereinafter sometimes referred to as “cassava pulp”) ii) A pulverized product of sugarcane fiber (sugarcane bagasse) which is a sugarcane juice residue (hereinafter, sometimes referred to as “sugarcane bagasse”).
  • the method for measuring biomass resolution is to reduce the volume of appearance by inoculating ISI-3 using a BMN liquid medium containing 1% of the biomass, and finally dry the decomposed product from the weight of each input biomass.
  • the difference in weight was calculated, and the amount of biomass that could be decomposed was calculated by expressing it in a ratio. More specifically, as a method of calculating the amount of biomass that can be decomposed, first, the BMN liquid medium containing the biomass and each culture solution of ISI-3 were mixed well so that the remaining solids became uniform. . Next, 3 mL of each 3 mL was collected from the culture solution and transferred to a 15 mL Falcon tube whose empty weight was measured in advance.
  • the falcon tube was separated into a supernatant and a precipitate at 8,000 rpm at 4 ° C.
  • the precipitate was suspended in 5 mL of distilled water, centrifuged again, and the supernatant was removed. Subsequently, in order to dry the obtained precipitate, it was dried for 3 days in an incubator at 80 ° C.
  • the weight of the falcon tube containing the dried precipitate was measured, and the dry weight of the precipitate was calculated by subtracting the weight of the empty falcon tube. The resulting dry weight was then divided by 3 to give the biomass dry weight in 1 mL.
  • the biomass degradation rate ratio of the amount of biomass saccharified and solubilized
  • Biomass decomposition rate (%) [ ⁇ (Biomass dry weight before decomposition [g / mL])-(Dry weight of residue contained in culture broth after decomposition [g / mL]) ⁇ / Biomass dry weight before decomposition [g / mL ]] ⁇ 100
  • FIG. 4 is an image showing the state of degradation in each biomass on the fifth day of culture after inoculation with ISI-3.
  • the left culture tube is a control without inoculation with ISI-3
  • the right culture tube is a culture with ISI-3 inoculation.
  • FIG. 5 is a graph showing the degradation rate of each biomass on the fifth day of culture after ISI-3 inoculation.
  • the biomass decomposition efficiency by ISI-3 was about 40 to 60% for 6 types of biomass.
  • ISI-3 (3-1) Extraction of genomic DNA
  • a base sequence analysis of 16S rRNA was performed.
  • ISI-3 genomic DNA was extracted by the following procedure. First, ISI-3 was cultured for 4 days using a BMN liquid medium containing the biomass fiber as a carbon source. Subsequently, the culture was centrifuged at 10,000 rpm for 5 minutes at 4 ° C., and the cells cultured with each biomass were collected.
  • centrifugation was performed at 15,000 rpm for 5 minutes to obtain an aqueous layer.
  • an equivalent amount of the phenol-chloroform-isoamyl alcohol mixed solution was added to the aqueous layer again and stirred.
  • centrifugation was performed at 15,000 rpm for 5 minutes to obtain an aqueous layer.
  • 0.6-fold volume of isopropanol was added to the obtained aqueous layer to precipitate genomic DNA.
  • centrifugation was performed to prepare genomic DNA.
  • the prepared genomic DNA was washed with 70% ethanol and dried.
  • the microorganism consortium included in ISI-3 is the following 11 microorganisms.
  • Uncultured Clostridium sp It was a bacterial species having 99% homology to the base sequence of the 16S rRNA gene of Clone De3176 and a bacterial species having 99% homology to the base sequence of the 16S rRNA gene of Cellulosibacterium alkalythermophilus A6.
  • Clostridium thermocellum DSM 1313 was present in the culture using various types of biomass (cassava pulp, sugarcane bagasse, corn stover, palm stem fiber, and Eliansus).
  • cassava pulp, sugarcane bagasse, corn stover, and palm stem fiber existed in the Tepidanaerobacteracetoxydan strain Re1, 88%, or 91% homology of 96% in the Epidimicrobium ferrifilum 96 strain DS24 It was a bacterial species having 99% homology to Thermoanaerobacter mastranii A3.
  • the bacterial species having 99% homology to the base sequence of the 16S rRNA gene of clone De3176, and the bacterial species having 99% homology to the base sequence of the 16S rRNA gene of Cellulosibacter alkalythermophilus A6 are respectively SEQ ID NO: 1 and SEQ ID NO: 2 was consistent with the nucleotide sequence shown in FIG. Unclosed Clostridium sp.
  • An isolated strain having 96% homology to Clone De3176 was identified as Clostridium sp. It was named A7 strain (hereinafter sometimes referred to as “A7 strain”) and was deposited at the International Depositary of Patent Microorganisms Depositary (NPMD) as deposit number NITE BP-02216 on March 8, 2016. ing.
  • FIG. Phylogenetic tree analysis revealed that the A7 strain is highly likely to be a new species closely related to Clostridium alkalicumum Z-7026T.
  • a thermophilic anaerobic cellulolytic bacterium having 99% homology to Cellulosibacterium alkalythermophilus strain A6 is Cellulosibacterium sp. It was named W21-10 strain (hereinafter sometimes referred to as “W21-10 strain”), and was deposited with the International Depositary of Incorporated Administrative Agency Patent Microorganisms Depositary (NPMD) as of May 24, 2016 with the accession number NITE BP- Deposited as 02265.
  • NPMD International Depositary of Incorporated Administrative Agency Patent Microorganisms Depositary
  • the A7 strain had the following morphological characteristics. (Morphological features of A7 strain) -Optimum culture temperature: 55 ° C -Cell morphology: Neisseria gonorrhoeae (width 0.3-0.4 ⁇ m x length 2.0-6.0 ⁇ m) -Gram staining: positive-Spore formation: None-Colony color: Orange
  • the W21-10 strain had the following morphological characteristics. (Morphological features of W21-10 strain) -Optimum culture temperature: 60 ° C -Cell morphology: Neisseria gonorrhoeae (width 0.2-0.3 ⁇ m x length 2.0-3.0 ⁇ m) -Gram staining: Positive-Spore formation: None-Colony color: Yellow
  • a BMN liquid medium containing 0.5% cellobiose was used to adjust pH from 4.0 to pH 10.0. After adjusting the pH of the medium with hydrochloric acid every pH 1.0, growth was measured using the increase in turbidity due to 600 nm as an indicator. For pH 8.0, Tris-HCl buffer was added to the medium to adjust the pH, and for pH 9.0 to 10.0, pH was adjusted using a sodium carbonate buffer. The liquid medium adjusted to each pH was autoclaved, and after confirming whether it had a specified pH using a pH meter, the bacteria were cultured and tested.
  • Carbon source assimilation test of A7 strain and W21-10 strain In order to clarify the physiological characteristics of the A7 strain and W21-10 strain, a carbon source assimilation test was conducted. The assimilation of sugar was measured using a BM7 liquid medium containing 0.5% each of cellulose, xylan, starch, ⁇ -glucan, cellobiose, glucose, fructose, arabinose, mannose, and maltose. Cellulose, which is an insoluble substrate, was determined for assimilation by the disappearance of cellulose, and xylan was measured by gas generation accompanying growth. When other soluble substrates were used, the increase in turbidity at 600 nm was measured as described above. Culture was performed for 4 days, and then the presence or absence of growth was measured.
  • the A7 strain and the W21-10 strain showed good growth when cellulose, xylan, and cellobiose were used as the carbon source. Further, when glucose, fructose, arabinose, mannose, maltose, and ⁇ -glucan were used as the carbon source, growth was observed although it was slow. On the other hand, when starch was used as the carbon source, no assimilation was observed in the A7 strain, but assimilation was observed in the W21-10 strain. Furthermore, the W21-10 strain also had different carbohydrate utilization capabilities such as pectin, sorbitol, mannitol, and glycerol.
  • Example 2 (1) Cultivation of various strains in each biomass It was tested whether the degradation of biomass was promoted in known strains such as clostridium thermocellum ATCC27405 strain, A7 strain, W21-10 strain, or combinations thereof. In the case of culturing only the clostridium thermocellum ATCC27405 strain, culturing at 60 ° C. for 4 days using BM7 medium instead of the BMN medium (for the composition of the BM7 medium, see Reference: “JP 2010-51295 A”). Went. As typical biomass, cassava pulp, bagasse, and corn stover were used as examples.
  • the A7 and W21-10 strains are the center, and lignocellulosic biomass is efficiently decomposed in a coordinated and collaborative manner, and crystals with high crystal parts are obtained through the joint work of clostridium thermocellum. It is considered that the cellulose part is completely decomposed.
  • the microorganism of the present embodiment is a novel microorganism excellent in lignocellulose resolution. Moreover, according to the composition for decomposing lignocellulosic biomass containing the microorganism, lignocellulose can be decomposed with high efficiency, and a saccharified solution or lignocellulosic biomass-derived compound can be obtained in high yield.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • Plant Pathology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Processing Of Solid Wastes (AREA)

Abstract

A microorganism that has 16S rRNA gene containing any of nucleic acids (a)-(c) and is capable of degrading a lignocellulose-based biomass: (a) a nucleic acid having a base sequence represented by SEQ ID NO: 1 or 2; (b) a nucleic acid having an identity of 95% or more to a base sequence represented by SEQ ID NO: 1 or 2; and (c) a nucleic acid having a base sequence derived from a base sequence represented by SEQ ID NO: 1 or 2 by deletion, substitution or addition of one to several bases. The microorganism is Clostridium sp. A7 strain (NITE BP-02216). The microorganism is Cellulosibacter alkalithermophilus W21-10 strain (NITE BP-02265).

Description

微生物、リグノセルロース系バイオマス分解用組成物、糖化液の製造方法及びリグノセルロース系バイオマス由来化合物の製造方法Microorganism, composition for decomposing lignocellulosic biomass, method for producing saccharified liquid, and method for producing compound derived from lignocellulosic biomass
 本発明は、微生物、リグノセルロース系バイオマス分解用組成物、糖化液の製造方法及びリグノセルロース系バイオマス由来化合物の製造方法に関する。
 本願は、2016年6月21日に、日本に出願された特願2016-123065号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a microorganism, a composition for decomposing lignocellulosic biomass, a method for producing a saccharified solution, and a method for producing a compound derived from lignocellulosic biomass.
The present application claims priority based on Japanese Patent Application No. 2016-123065 filed in Japan on June 21, 2016, the contents of which are incorporated herein by reference.
 近年、地球温暖化対策や、廃棄物の有効活用の観点から、植物資源を原料とするバイオマスの利用が注目されている。一般に、バイオマスからエタノール等の化合物を製造するための原料としては、サトウキビ等の糖質やトウモロコシ等の可食のデンプンに加え、非食用デンプンとして、リグノセルロース系バイオマスを用いることが検討されている。リグノセルロース系バイオマスは、リグノセルロースを主成分として含む。リグノセルロースはセルロース、ヘミセルロース、リグニンが強固に結合した構造をしており、発酵に使用可能である五炭糖又は六炭糖の単糖やオリゴ糖に分解するのは容易ではない。 In recent years, the use of biomass using plant resources as a raw material has attracted attention from the viewpoint of global warming countermeasures and effective utilization of waste. In general, the use of lignocellulosic biomass as non-edible starch in addition to sugars such as sugar cane and edible starches such as corn as raw materials for producing compounds such as ethanol from biomass has been studied. . Lignocellulose-based biomass contains lignocellulose as a main component. Lignocellulose has a structure in which cellulose, hemicellulose, and lignin are tightly bound, and it is not easy to decompose into pentose or hexose monosaccharides or oligosaccharides that can be used for fermentation.
 通常、リグノセルロース系バイオマスからエタノール等の化合物を製造する場合には、酵素による糖化が行うために、主成分であるリグノセルロースを分解し、酵素がリグノセルロース系バイオマスに含まれる多糖に接触可能にするために、前処理を行う。前処理方法としては、例えば、粉砕、爆砕、蒸煮、マイクロ波照射、ガンマ線照射、電子線照射、希硫酸処理、アルカリ処理、ソルボリシス処理等が挙げられる。これらの前処理方法は、エネルギーの投入量が大きい、前処理による糖の損失が大きい、有害物質による環境負荷が大きい、発酵阻害物質が副産物として生成される等の問題点がある。
 一方、前処理方法として、リグノセルロース中のリグニンを分解できる微生物である白色腐朽菌を用いる方法が知られている。
Normally, when compounds such as ethanol are produced from lignocellulosic biomass, saccharification by enzymes is performed, so that lignocellulose, which is the main component, is decomposed so that the enzyme can come into contact with polysaccharides contained in lignocellulosic biomass. In order to do this, pre-processing is performed. Examples of the pretreatment method include pulverization, explosion, steaming, microwave irradiation, gamma ray irradiation, electron beam irradiation, dilute sulfuric acid treatment, alkali treatment, and solvolysis treatment. These pretreatment methods have problems such as a large amount of energy input, a large loss of sugar due to pretreatment, a large environmental load due to harmful substances, and a fermentation inhibitory substance produced as a by-product.
On the other hand, as a pretreatment method, a method using a white rot fungus which is a microorganism capable of decomposing lignin in lignocellulose is known.
 特許文献1には、リグノセルロース分解作用を有する白色腐朽菌(FERM AP-20591)又はその変異株を用いて、酵素による糖化工程及び微生物による発酵工程の前処理を行う方法が開示されている。 Patent Document 1 discloses a method for pretreating a saccharification step with an enzyme and a fermentation step with a microorganism using a white rot fungus (FERM AP-20591) having a lignocellulose-degrading action or a mutant thereof.
特開2007-37469号公報JP 2007-37469 A
 しかしながら、従来よりもリグノセルロース分解能の高い微生物が求められていた。 However, microorganisms having higher lignocellulose resolution than before have been demanded.
 本発明は上記事情を鑑みてなされたものであり、リグノセルロース分解能の優れた新規微生物を提供する。 The present invention has been made in view of the above circumstances, and provides a novel microorganism excellent in lignocellulose resolution.
 本発明者らは、上記課題を解決すべく鋭意研究した結果、腐葉土から採集された菌株の中から、リグノセルロースに対し優れた分解能を有し、且つ分解対象となるリグノセルロース系バイオマスの種類に制限がない菌株を見出し、本発明を完成させるに至った。 As a result of diligent research to solve the above-mentioned problems, the inventors of the present invention have an excellent resolution with respect to lignocellulose among the strains collected from humus, and the types of lignocellulosic biomass to be decomposed. A strain having no restriction was found and the present invention was completed.
 すなわち、本発明は以下の態様を含む。
 本発明の第1態様に係る微生物は、以下の(a)~(c)のいずれかの核酸を含む16S rRNA遺伝子を有し、且つリグノセルロース系バイオマスの分解能を有する。
 (a)配列番号1又は2に示す塩基配列からなる核酸、
 (b)配列番号1又は2に示す塩基配列と95%以上の同一性を有する核酸、
 (c)配列番号1又は2に示す塩基配列において、1若しくは数個の塩基が欠損、置換若しくは付加された塩基配列からなる核酸
That is, the present invention includes the following aspects.
The microorganism according to the first aspect of the present invention has a 16S rRNA gene containing any one of the following nucleic acids (a) to (c) and has the resolution of lignocellulosic biomass.
(A) a nucleic acid comprising the base sequence shown in SEQ ID NO: 1 or 2,
(B) a nucleic acid having 95% or more identity with the base sequence shown in SEQ ID NO: 1 or 2,
(C) a nucleic acid comprising a base sequence in which one or several bases are deleted, substituted or added in the base sequence shown in SEQ ID NO: 1 or 2
 本発明の第2態様に係る微生物は、クロストリジウム・スピーシーズ(Clostridium sp.)A7株(NITE BP-02216)である。 The microorganism according to the second aspect of the present invention is Clostridium sp. A7 strain (NITE BP-02216).
 本発明の第3態様に係る微生物は、セルロシバクター・アルカリサーモフィラス(Cellulosibacter alkalithermophilus)W21-10株(NITE BP-02265)である。 The microorganism according to the third aspect of the present invention is Cellulosibacter alkaline thermophilus W21-10 strain (NITE BP-02265).
 本発明の第4態様に係るリグノセルロース系バイオマス分解用組成物は、少なくとも1種の上記第1態様に係る微生物、又は前記微生物由来の酵素若しくは遺伝子産物を含む。
 上記第4態様に係るリグノセルロース系バイオマス分解用組成物は、さらに、以下の(d)~(f)のいずれかの核酸を含む16S rRNA遺伝子を有し、且つリグノセルロース系バイオマスの分解能、又はリグノセルロース系バイオマスの分解産物の代謝能を有する微生物のうち少なくとも1種を含んでもよい。
 (d)配列番号3~11のいずれかに示す塩基配列からなる核酸、
(e)配列番号3~11のいずれかに示す塩基配列と90%以上の同一性を有する核酸、
 (f)配列番号3~11のいずれかに示す塩基配列において、1若しくは数個の塩基が欠損、置換若しくは付加された塩基配列からなる核酸
The composition for decomposing lignocellulosic biomass according to the fourth aspect of the present invention includes at least one microorganism according to the first aspect, or an enzyme or gene product derived from the microorganism.
The composition for degrading lignocellulosic biomass according to the fourth aspect further has a 16S rRNA gene containing any one of the following nucleic acids (d) to (f), and the resolution of lignocellulosic biomass, or You may contain at least 1 sort (s) among the microorganisms which have the metabolic capacity of the degradation product of lignocellulosic biomass.
(D) a nucleic acid comprising the base sequence shown in any of SEQ ID NOs: 3 to 11,
(E) a nucleic acid having 90% or more identity with the base sequence shown in any of SEQ ID NOs: 3 to 11,
(F) a nucleic acid comprising a base sequence in which one or several bases are deleted, substituted or added in the base sequence shown in any of SEQ ID NOs: 3 to 11
 本発明の第5態様に係る糖化液の製造方法は、上記第4態様に係るリグノセルロース系バイオマス分解用組成物を用いて、リグノセルロース系バイオマスから糖化液を生成させる糖化工程を備える方法である。 The manufacturing method of the saccharified liquid which concerns on the 5th aspect of this invention is a method provided with the saccharification process of producing | generating a saccharified liquid from lignocellulosic biomass using the composition for lignocellulosic biomass decomposition | disassembly which concerns on the said 4th aspect. .
 本発明の第6態様に係るリグノセルロース系バイオマス由来化合物の製造方法は、上記第5態様に係る製造方法を用いて、糖化液を製造した後、前記糖化液からリグノセルロース系バイオマス由来化合物を生産させる生産工程を備える方法である。 The method for producing a lignocellulosic biomass-derived compound according to the sixth aspect of the present invention produces a lignocellulosic biomass-derived compound from the saccharified liquid after producing the saccharified liquid using the production method according to the fifth aspect. This is a method including a production process.
 上記態様によれば、リグノセルロース分解能の優れた新規微生物を提供することができる。 According to the above aspect, a novel microorganism having an excellent lignocellulose resolution can be provided.
(A)~(C)は、クロストリジウム・スピーシーズ(Clostridium sp.)A7株の顕微鏡写真である。(A)-(C) are photomicrographs of Clostridium sp. Strain A7. (A)及び(B)は、セルロシバクター・アルカリサーモフィラス(Cellulosibacter alkalithermophilus)W21-10株の顕微鏡写真である。(A) and (B) are photomicrographs of Cellulosibacter alkaline thermophilus W21-10 strain. クロストリジウム・スピーシーズA7株及びセルロシバクター・アルカリサーモフィラスW21-10株の16S rDNA遺伝子の塩基配列と近縁桿菌種の16S rDNA遺伝子の塩基配列とを比較し、作成したヒストグラムである。This is a histogram prepared by comparing the base sequence of the 16S rDNA gene of Clostridium sp. A7 strain and Cellulosibacter alkaline thermophilus W21-10 with the base sequence of the 16S rDNA gene of closely related Bacillus species. 実施例1におけるISI-3接種後の培養5日目の各バイオマスでの分解の様子を示す画像である。2 is an image showing a state of decomposition in each biomass on the fifth day of culture after inoculation with ISI-3 in Example 1. FIG. 実施例1におけるISI-3接種後の培養5日目の各バイオマスでの分解率を示すグラフである。2 is a graph showing the degradation rate of each biomass on the fifth day of culture after inoculation with ISI-3 in Example 1. FIG. 実施例2におけるクロストリジウム・サーモセラムATCC27405株、A7株、W21-10株、又はそれらの組み合わせ接種後の培養5日目の各バイオマスでの分解率を示すグラフである。It is a graph which shows the decomposition | disassembly rate in each biomass of the culture | cultivation 5th day after inoculating clostridium thermocellum ATCC27405 strain, A7 strain, W21-10 strain, or those combinations in Example 2.
≪微生物≫
 本発明の一実施形態に係る微生物は、以下の(a)~(c)のいずれかの核酸を含む16S rRNA遺伝子を有し、且つリグノセルロース系バイオマスの分解能を有する。
 (a)配列番号1又は2に示す塩基配列からなる核酸、
 (b)配列番号1又は2に示す塩基配列と95%以上の同一性を有する核酸、
 (c)配列番号1又は2に示す塩基配列において、1若しくは数個の塩基が欠損、置換若しくは付加された塩基配列からなる核酸
≪Microorganism≫
The microorganism according to one embodiment of the present invention has a 16S rRNA gene containing any of the following nucleic acids (a) to (c), and has the resolution of lignocellulosic biomass.
(A) a nucleic acid comprising the base sequence shown in SEQ ID NO: 1 or 2,
(B) a nucleic acid having 95% or more identity with the base sequence shown in SEQ ID NO: 1 or 2,
(C) a nucleic acid comprising a base sequence in which one or several bases are deleted, substituted or added in the base sequence shown in SEQ ID NO: 1 or 2
 本実施形態の微生物のうち、配列番号1に示す塩基配列からなる核酸、又は該核酸と機能的に同等な核酸を含む16S rRNA遺伝子を有する微生物はクロストリジウム属に属する桿菌であって、優れたリグノセルロース分解能を有する。
 クロストリジウムは、グラム陽性内生胞子形成桿菌の一属である。
 また、本実施形態の微生物のうち、配列番号2に示す塩基配列からなる核酸、又は該核酸と機能的に同等な核酸を含む16S rRNA遺伝子を有する微生物はセルロシバクター属アルカリサーモフィラス種に属する桿菌であって、優れたリグノセルロース分解能を有する。
 セルロシバクター・アルカリサーモフィラスは、好アルカリ好熱嫌気性セルロース分解菌である。
 なお、本明細書において、「核酸」はRNA及びDNAを含む。
また、本明細書において、「16S rRNA遺伝子」は、リボソームの小サブユニットのRNA、及び該RNAをコードするDNAを含む。
Among the microorganisms of this embodiment, a microorganism having a 16S rRNA gene comprising a nucleic acid having the base sequence shown in SEQ ID NO: 1 or a functionally equivalent nucleic acid is a Neisseria gonorrhoeae belonging to the genus Clostridium, and is an excellent ligno Has cellulose resolution.
Clostridium is a genus of Gram-positive endospore-forming rods.
In addition, among the microorganisms of this embodiment, a microorganism having a 16S rRNA gene containing a nucleic acid having the base sequence shown in SEQ ID NO: 2 or a nucleic acid functionally equivalent to the nucleic acid is classified as a Cellulosibacter alkaline thermophilus species. It is a koji mold to which it belongs and has excellent lignocellulose resolution.
Cellulosibacter alkaline thermophilus is a thermophilic thermophilic anaerobic cellulose-degrading bacterium.
In the present specification, “nucleic acid” includes RNA and DNA.
In the present specification, the “16S rRNA gene” includes RNA of a small subunit of ribosome and DNA encoding the RNA.
 本明細書において、「リグノセルロース分解能」とは、リグノセルロースに含まれる主に、セルロース、ヘミセルロース等の多糖を単糖、オリゴ糖、又は有機酸に分解する活性を意味する。 In the present specification, the term “lignocellulose resolution” means an activity of mainly decomposing polysaccharides such as cellulose and hemicellulose into monosaccharides, oligosaccharides, or organic acids contained in lignocellulose.
<クロストリジウム・スピーシーズ(Clostridium sp.)A7株>
 上記(a)における配列番号1に示す塩基配列は、クロストリジウム・スピーシーズ(Clostridium sp.)A7株(NITE BP-02216)の16S rRNA遺伝子の塩基配列である。
<Clostridium sp. A7 strain>
The base sequence shown in SEQ ID NO: 1 in the above (a) is the base sequence of 16S rRNA gene of Clostridium sp. A7 strain (NITE BP-02216).
 クロストリジウム・スピーシーズA7株の分離精製は、後述の実施例において示す方法により分離精製することができる。また、得られた菌株について、形態観察その他からクロストリジウム属の菌と同定し、A7株と名付けた。 Separation and purification of Clostridium sp. A7 strain can be separated and purified by the method described in the Examples below. Further, the obtained strain was identified as a Clostridium bacterium from morphological observation and others, and named A7 strain.
 クロストリジウム・スピーシーズA7株の微生物学的性質は以下の通りである。走査型電子顕微鏡(SEM)を用いて撮影したクロストリジウム・スピーシーズA7株の顕微鏡写真を図1の(A)~(C)に示す。 The microbiological properties of Clostridium species A7 strain are as follows. The photomicrographs of Clostridium sp. Strain A7 taken using a scanning electron microscope (SEM) are shown in FIGS.
(科学的性質)
 リグノセルロース分解能を有する。
(Scientific nature)
Has lignocellulose resolution.
(形態的性質)
(1)細胞の形状が細長い棒状又は円筒状を示す。細胞の長さは約2.0~6.0μm、幅が約0.3~0.4μmである。
(2)グラム陽性菌であり、コロニーは橙色である。
(Morphological properties)
(1) The shape of the cell is an elongated rod or cylinder. The length of the cell is about 2.0 to 6.0 μm, and the width is about 0.3 to 0.4 μm.
(2) Gram-positive bacteria and colonies are orange.
(生殖様式)
(1)菌体の長軸方向が一定で長さだけが長くなるかたちで成長し、ある程度の大きさまで成長すると、その中心でほぼ均等に二分される形で分裂する。
(Reproductive style)
(1) The cell grows in a form in which the long axis direction is constant and only the length increases, and when it grows to a certain size, it divides in a form that is almost equally divided at its center.
(生理学・生化学性状)
(1)培養液:クラストリジウム属の菌を培養するために用いられる一般的な培地で生育できる。
(2)生育温度域:37℃以上60℃以下(至適温度55℃)。
(3)生育pH域:pH6.0~10.0(至適pH9.0)。
(4)栄養源:炭素源として、セルロース、セロビオース、又はリグノセルロースで生育できる。また、窒素源として、硫酸や硝酸アンモニウムのような無機態窒素だけでなく、イーストエキスやペプトン、牛肉エキスのような有機態窒素でも利用できる。
(5)生成物質:酢酸、エタノール、フマル酸、乳酸、コハク酸を生成する。
(Physiological and biochemical properties)
(1) Culture solution: Can be grown on a common medium used for culturing bacteria of the genus Clostridial.
(2) Growth temperature range: 37 ° C to 60 ° C (optimum temperature 55 ° C).
(3) Growth pH range: pH 6.0 to 10.0 (optimum pH 9.0).
(4) Nutrient source: As a carbon source, it can grow on cellulose, cellobiose, or lignocellulose. Further, as a nitrogen source, not only inorganic nitrogen such as sulfuric acid and ammonium nitrate but also organic nitrogen such as yeast extract, peptone and beef extract can be used.
(5) Product: Acetic acid, ethanol, fumaric acid, lactic acid, and succinic acid are produced.
(分類学的性質)
 クロストリジウム・スピーシーズA7株の16S rDNA遺伝子の塩基配列は、配列表の配列番号1に示したとおりである。図3は、クロストリジウム・スピーシーズA7株及びセルロシバクター・アルカリサーモフィラスW21-10株の16S rDNA遺伝子の塩基配列と、近縁菌種の16S rDNA遺伝子の塩基配列とを比較し、作成したヒストグラムである。
 この結果、クロストリジウム・スピーシーズA7株は新規の菌株と判断した。
(Taxonomic properties)
The base sequence of the 16S rDNA gene of Clostridium species A7 strain is as shown in SEQ ID NO: 1 in the sequence listing. FIG. 3 is a histogram prepared by comparing the base sequence of the 16S rDNA gene of Clostridium sp. A7 strain and Cellulosibacter alkaline thermophilus strain W21-10 with the base sequence of the 16S rDNA gene of closely related bacterial species. It is.
As a result, Clostridium species A7 strain was judged as a novel strain.
 クロストリジウム・スピーシーズA7株は、2016年3月8日付で独立行政法人製品評価技術基盤機構特許微生物寄託センター(NPMD)(千葉県木更津市かずさ鎌足2-5-8)にプタベスト条約の規定化で受託番号NITE BP-02216として国際寄託されている。 Clostridium sp. A7 strain was established by the National Institute for Product Evaluation and Technology Patent Microorganisms Depositary Center (NPMD) (2-5-8, Kazusa-Kamazu, Kisarazu-shi, Chiba) on March 8, 2016. Deposited internationally under the deposit number NITE BP-02216.
(培地)
 本実施形態において、クロストリジウム・スピーシーズA7株を培養するにあたり、培地を用いることが好ましい。
用いられる培地は、クロストリジウム属に属する菌が生育する条件であれば制限はなく、例えば、このような培地として、下記表1に示す組成のBMN培地を好ましく用いることができる。
 その他用いることができる培地として、一般的な栄養培地であるNB(Nutrient Broth)培地(例えば、Difco社製の「Nutrient Broth, Bacto」(牛肉エキス3g/L、ペプトン5g/L含有)等)等を挙げることができる。中でも、培地としては、高効率でリグノセルロースを分解することから、上記表1に示した組成のBMN培地が特に好ましい。
(Culture medium)
In the present embodiment, it is preferable to use a medium when culturing Clostridium sp.
The medium to be used is not limited as long as bacteria belonging to the genus Clostridium grow, and for example, a BMN medium having the composition shown in Table 1 below can be preferably used as such a medium.
Examples of other media that can be used include NB (Nutrient Broth) medium (for example, “Nutrient Broth, Bacto” manufactured by Difco (containing 3 g / L of beef extract and 5 g / L of peptone)), etc. Can be mentioned. Among them, a BMN medium having the composition shown in Table 1 is particularly preferable because it decomposes lignocellulose with high efficiency.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(培養方法)
 本実施形態において、クロストリジウム・スピーシーズA7株の培養方法は、公知慣用の方法で行うことができる。培養において、上記の培地を用いることができる。
本実施形態において、培養方法としては、例えば、静置培養法、振盪培養法、深部通気撹拌培養法等が挙げられる。
(Culture method)
In the present embodiment, the culturing method for Clostridium species A7 can be performed by a known and commonly used method. In the culture, the above medium can be used.
In the present embodiment, examples of the culture method include a stationary culture method, a shaking culture method, a deep aeration-agitation culture method, and the like.
 培養におけるpHは、6.0~10.0の中性~塩基性で行うことができ、pH9.0であることが好ましい。 The pH in the culture can be neutral to basic at 6.0 to 10.0, and is preferably pH 9.0.
 培養温度としては、37℃以上60℃以下で行うことができ、55℃で行うことが好ましい。培養温度が上記範囲内である場合、一般的なリグノセルロース系バイオマスを用いた糖化工程及び発酵工程と同様の温度範囲であるため、クロストリジウム・スピーシーズA7株は効率的にリグノセルロースを分解し、糖化液又はリグノセルロース系バイオマス由来化合物を得ることができる。 The culture temperature can be 37 ° C or higher and 60 ° C or lower, preferably 55 ° C. When the culture temperature is within the above range, the saccharification process and fermentation process using general lignocellulosic biomass are in the same temperature range, so Clostridium species A7 strain efficiently decomposes lignocellulose and saccharifies. A liquid or lignocellulosic biomass-derived compound can be obtained.
本実施形態において、上述の培養方法により、クロストリジウム・スピーシーズA7株を培養すると、安定した増殖を示すばかりでなく、リグノセルロースの分解能が向上したクロストリジウム・スピーシーズA7株が得られる。 In the present embodiment, when the Clostridium species A7 strain is cultured by the above-described culture method, the Clostridium species A7 strain having not only stable growth but also improved lignocellulose resolution is obtained.
 一般的に、「リグノセルロース」とは、植物細胞壁の成分であり、主にセルロース、ヘミセルロース、及びリグニンからなる。リグノセルロース中のセルロースはβ-1,4グルコースからなる直鎖状のポリマーが水素結合で束になった強固な結晶構造をとっている。
 また、本明細書において、「リグノセルロース系バイオマス」とは、主成分として、リグノセルロースを含むものである。リグノセルロース系バイオマスとしては、例えば、針葉樹(例えば、スギ、エゾマツ、カラマツ、クロマツ、トドマツ、ヒメコマツ、イチイ、ネズコ、ハリモミ、イラモミ、イヌマキ、モミ、サワラ、トガサワラ、アスナロ、ヒバ、ツガ、コメツガ、ヒノキ、イチイ、イヌガヤ、トウヒ、イエローシーダー(ベイヒバ)、ロウソンヒノキ(ベイヒ)、ダグラスファー(ベイマツ)、シトカスプルース(ベイトウヒ)、ラジアータマツ、イースタンスプルース、イースタンホワイトパイン、ウェスタンラーチ、ウェスタンファー、ウェスタンヘムロック、タマラック及びこれらの関連樹種等)、広葉樹(例えば、アスベン、アメリカンブラックチェリー、イエローポプラ、ウォールナット、カバザクラ、ケヤキ、シカモア、シルバーチェリー、タモ、チーク、チャイニーズエルム、チャイニーズメープル、ナラ、ハードメイプル、ヒッコリー、ピーカン、ホワイトアッシュ、ホワイトオーク、ホワイトバーチ、レッドオーク及びこれらの関連樹種等)、イネ、ムギ、トウモロコシ(特に、コーンストーバー(とうもろこしの非食部である芯、茎、葉))、パイナップル、オイルパーム、キャッサバ、サトウキビ(特に、サトウキビバガス、サトウキビ茎葉)等の農産物及びその廃棄物;ケナフ、綿等の工業植物及びその廃棄物; アルファルファ、チモシー等の飼料作物; エリエンサス、タケ、ササ等が挙げられ、これらに限定されない。これらのリグノセルロース系バイオマスは単独であってもよく、混合物であってもよい。
In general, “lignocellulose” is a component of a plant cell wall, and is mainly composed of cellulose, hemicellulose, and lignin. The cellulose in lignocellulose has a strong crystal structure in which linear polymers composed of β-1,4 glucose are bundled by hydrogen bonds.
Further, in this specification, “lignocellulose-based biomass” includes lignocellulose as a main component. Examples of lignocellulosic biomass include conifers (e.g., cedar, spruce, larch, black pine, todomatsu, himekomatsu, yew, nezuko, spruce fir, irakimi, inakiki, fir, sawara, togasawara, asunaro, hiba, tsuga, kotsutsuga, hinoki. , Yew, Inugaya, Spruce, Yellow Cedar (Beihiba), Lawson Cypress (Beihi), Douglas Fir (Beimatsu), Sitka Spruce (Beisuhi), Radiata Pine, Eastern Spruce, Eastern White Pine, Western Larch, Western Fur, Western Hemlock, Tamarac and related tree species, etc.), broad-leaved trees (for example, asben, American black cherry, yellow poplar, walnut, cabbage cherry, zelkova, sycamore, silver cherry, Peach, teak, chinese elm, chinese maple, oak, hard maple, hickory, pecan, white ash, white oak, white birch, red oak and related tree species), rice, wheat, corn (especially corn stover) Cores, stems, leaves)), pineapples, oil palm, cassava, sugar cane (especially sugar cane bagasse, sugar cane stems and leaves) and other agricultural products and wastes; kenaf, cotton and other industrial plants and wastes ; Forage crops such as alfalfa and timothy; and include, but are not limited to, Eliensus, bamboo, and Sasa. These lignocellulosic biomasses may be used alone or as a mixture.
 本実施形態の微生物の分解対象となるリグノセルロース系バイオマスについて、形状は、例えば、粉末状、チップ状、角材状、丸太状、フレーク状、繊維状等が挙げられ、これらに限定されない。中でも、効率的に本実施形態の微生物による分解を行うという観点から、粉末状、チップ状、フレーク状、又は繊維状であることが好ましい。 The shape of the lignocellulosic biomass to be decomposed by microorganisms of the present embodiment includes, but is not limited to, for example, powder, chip, square, log, flake, and fiber. Especially, it is preferable that it is a powder form, a chip form, flake form, or a fiber form from a viewpoint of performing the decomposition | disassembly by the microorganisms of this embodiment efficiently.
 本明細書において、「ヘミセルロース」には、キシロース等の5つの炭素を構成単位とする五炭糖とよばれるものやマンノース、アラビノース、ガラクツロン酸等の6つの炭素を構成単位とする六炭糖とよばれるもの、さらにグルコマンナンやグルクロノキシラン等のような複合多糖等が含まれる。よって、ヘミセルロースは加水分解を受けると、炭素5つからなる五炭糖の単糖やその単糖が複数個連結された五炭糖のオリゴ糖、炭素6つからなる六炭糖の単糖やその単糖が複数個連結された六炭糖のオリゴ糖、五炭糖の単糖と六炭糖の単糖が複数個連結されたオリゴ糖を生ずる。
「セルロース」には、6つの炭素を構成単位とする六炭糖が含まれる。よって、セルロースは加水分解を受けると、炭素6つからなる六炭糖の単糖やその単糖が複数個連結された六炭糖のオリゴ糖を生ずる。
一般に、ヘミセルロース又はセルロースから生ずる単糖又はオリゴ糖の構成比率や生成量は、前処理方法や原料として用いたリグノセルロース系バイオマスの種類によって異なる。
In the present specification, “hemicellulose” includes a so-called pentose having 5 carbons as a structural unit, such as xylose, and a hexose having 6 carbons as a structural unit, such as mannose, arabinose, galacturonic acid, and the like. What is called, and complex polysaccharides such as glucomannan and glucuronoxylan are included. Therefore, when hemicellulose is hydrolyzed, a pentose monosaccharide consisting of 5 carbons, a pentose oligosaccharide composed of a plurality of such monosaccharides, a hexose monosaccharide consisting of 6 carbons, A hexose oligosaccharide in which a plurality of the monosaccharides are linked, and an oligosaccharide in which a plurality of pentose monosaccharides and a hexose monosaccharide are linked.
“Cellulose” includes hexose containing 6 carbons as a structural unit. Thus, when cellulose is hydrolyzed, it produces a six-carbon monosaccharide consisting of six carbons and a hexose oligosaccharide in which a plurality of such monosaccharides are linked.
In general, the composition ratio and the amount of monosaccharide or oligosaccharide produced from hemicellulose or cellulose vary depending on the pretreatment method and the type of lignocellulosic biomass used as a raw material.
 本明細書において、「リグノセルロース系バイオマス由来化合物」とは、リグノセルロース系バイオマスを分解して得られた単糖及びオリゴ糖を、酵母等の微生物が摂取することにより生成された化合物を意味する。リグノセルロース系バイオマス由来化合物として具体的には、例えば、エタノール、ブタノール、1,3-プロパンジオール、1,4-ブタンジオール、グリセロール等のアルコール;ピルビン酸、フマル酸、コハク酸、リンゴ酸、イタコン酸、クエン酸、酢酸、乳酸等の有機酸;イノシン、グアノシン等のヌクレオシド;イノシン酸、グアニル酸等のヌクレオチド;カダベリン等のジアミン化合物等が挙げられる。得られたリグノセルロース系バイオマス由来化合物が乳酸等のモノマーである場合は、重合によりポリマーに変換することもある。 In the present specification, “a compound derived from lignocellulosic biomass” means a compound produced by ingesting monosaccharides and oligosaccharides obtained by decomposing lignocellulosic biomass by microorganisms such as yeast. . Specific examples of the lignocellulosic biomass-derived compound include alcohols such as ethanol, butanol, 1,3-propanediol, 1,4-butanediol, and glycerol; pyruvic acid, fumaric acid, succinic acid, malic acid, itacone Examples thereof include organic acids such as acid, citric acid, acetic acid, and lactic acid; nucleosides such as inosine and guanosine; nucleotides such as inosine acid and guanylic acid; and diamine compounds such as cadaverine. When the obtained lignocellulose-based biomass-derived compound is a monomer such as lactic acid, it may be converted into a polymer by polymerization.
<セルロシバクター・アルカリサーモフィラス(Cellulosibacter alkalithermophilus)W21-10株>
 上記(a)における配列番号2に示す塩基配列は、セルロシバクター・アルカリサーモフィラス(Cellulosibacter alkalithermophilus)W21-10株(NITE BP-02265)の16S rRNA遺伝子の塩基配列である。
<Cellulosibacter alkaline thermophilus W21-10 strain>
The base sequence shown in SEQ ID NO: 2 in (a) above is the base sequence of the 16S rRNA gene of Cellulosibacter alkaline thermophilus W21-10 strain (NITE BP-02265).
 セルロシバクター・アルカリサーモフィラスW21-10株の分離精製は、後述の実施例において示す方法により分離精製することができる。得られた菌株は、形態観察その他からセルロシバクター属のアルカリサーモフィラス種と同定し、W21-10株と名付けた。 Separation and purification of Cellulosibacter / alkaline thermophilus W21-10 can be separated and purified by the method shown in the Examples below. The obtained strain was identified as an alkaline thermophilus species belonging to the genus Cerulosibacter from morphological observation and others, and was named W21-10 strain.
 セルロシバクター・アルカリサーモフィラスW21-10株の微生物学的性質は以下の通りである。走査型電子顕微鏡(SEM)を用いて撮影したセルロシバクター・アルカリサーモフィラスW21-10株の顕微鏡写真を図2の(A)及び(B)に示す。 The microbiological properties of Cellulosibacter / alkaline thermophilus W21-10 are as follows. 2A and 2B show micrographs of Cellulosiacter alkaline thermophilus W21-10 photographed using a scanning electron microscope (SEM).
(科学的性質)
 リグノセルロース分解能を有する。
(Scientific nature)
Has lignocellulose resolution.
(形態的性質)
(1)細胞の形状が細長い棒状又は円筒状を示す。細胞の長さは約2.0~3.0μm、幅が約0.2~0.3μmである。
(2)グラム陽性菌であり、コロニーは黄色である。
(Morphological properties)
(1) The shape of the cell is an elongated rod or cylinder. The cell length is about 2.0-3.0 μm and the width is about 0.2-0.3 μm.
(2) Gram-positive bacteria and colonies are yellow.
(生殖様式)
(1)菌体の長軸方向が一定で長さだけが長くなるかたちで成長し、ある程度の大きさまで成長すると、その中心でほぼ均等に二分される形で分裂する。
(Reproductive style)
(1) The cell grows in a form in which the long axis direction is constant and only the length increases, and when it grows to a certain size, it divides in a form that is almost equally divided at its center.
(生理学・生化学性状)
(1)培養液:一般的なセルロシバクター属の菌を培養するための培地で生育できる。
(2)生育温度域:37℃以上65℃以下(至適温度60℃)。
(3)生育pH域:pH8.0~10.0(至適pH9.5)。
(4)栄養源:炭素源として、セルロース、セロビオース、リグノセルロース、澱粉、ペクチン、ソルビトール、マンニトール、又はグリセロールで生育できる。また、窒素源として、硫酸や硝酸アンモニウムのような無機態窒素だけでなく、イーストエキスやペプトン、牛肉エキスのような有機態窒素でも利用できる。
(5)生成物質:酢酸、エタノール、フマル酸、乳酸、コハク酸を生成する。
(Physiological and biochemical properties)
(1) Culture solution: It can be grown on a medium for culturing common cellulobacter bacteria.
(2) Growth temperature range: 37 ° C. or more and 65 ° C. or less (optimum temperature 60 ° C.).
(3) Growth pH range: pH 8.0 to 10.0 (optimum pH 9.5).
(4) Nutrient source: As a carbon source, it can grow on cellulose, cellobiose, lignocellulose, starch, pectin, sorbitol, mannitol, or glycerol. Further, as a nitrogen source, not only inorganic nitrogen such as sulfuric acid and ammonium nitrate but also organic nitrogen such as yeast extract, peptone and beef extract can be used.
(5) Product: Acetic acid, ethanol, fumaric acid, lactic acid, and succinic acid are produced.
(分類学的性質)
 セルロシバクター・アルカリサーモフィラスW21-10株の16S rRNA遺伝子の塩基配列は、配列表の配列番号2に示したとおりである。図3は、クロストリジウム・スピーシーズA7株及びセルロシバクター・アルカリサーモフィラスW21-10株の16S rDNA遺伝子の塩基配列と、近縁菌種の16S rDNA遺伝子の塩基配列とを比較し、作成したヒストグラムである。
 この結果、セルロシバクター・アルカリサーモフィラスW21-10株は新規の菌株と判断した。
(Taxonomic properties)
The base sequence of the 16S rRNA gene of Cellulosibacter alkaline thermophilus strain W21-10 is as shown in SEQ ID NO: 2 in the sequence listing. FIG. 3 is a histogram prepared by comparing the base sequence of the 16S rDNA gene of Clostridium sp. A7 strain and Cellulosibacter alkaline thermophilus strain W21-10 with the base sequence of the 16S rDNA gene of closely related bacterial species. It is.
As a result, cellulosibacter alkaline thermophilus W21-10 was determined to be a novel strain.
 セルロシバクター・アルカリサーモフィラスW21-10株は、2016年5月24日付で独立行政法人製品評価技術基盤機構特許微生物寄託センター(NPMD)(千葉県木更津市かずさ鎌足2-5-8)にプタベスト条約の規定化で受託番号NITE BP-02265として国際寄託されている。 Cellulosibacter Alkaline Thermophilus W21-10 was established on May 24, 2016, by the National Institute of Technology and Evaluation for Microorganisms (NPMD) (2-5-8 Kazusa Kamashitsu, Kisarazu City, Chiba Prefecture). Has been deposited internationally under the accession number NITE BP-02265 under the regulations of the Putabest Convention.
(培地)
 本実施形態において、セルロシバクター・アルカリサーモフィラスW21-10株を培養するにあたり、培地を用いることが好ましい。
用いられる培地は、セルロシバクター属の菌が生育する条件であれば制限はなく、例えば、このような培地として、上記表1に示した組成のBMN培地を好ましく用いることができる。
 その他用いることができる培地として、一般的な栄養培地であるNB(Nutrient Broth)培地(例えば、Difco社製の「Nutrient Broth, Bacto」(牛肉エキス3g/L、ペプトン5g/L含有)等)等を挙げることができる。中でも、培地としては、高効率でリグノセルロースを分解することから、上記表1に示した組成のBMN培地が特に好ましい。
(Culture medium)
In the present embodiment, it is preferable to use a medium for culturing the Cellulosibacter alkaline thermophilus W21-10 strain.
The medium to be used is not limited as long as the cellulobacter bacterium grows. For example, a BMN medium having the composition shown in Table 1 can be preferably used as such a medium.
Examples of other media that can be used include NB (Nutrient Broth) medium (for example, “Nutrient Broth, Bacto” manufactured by Difco (containing 3 g / L of beef extract and 5 g / L of peptone)), etc. Can be mentioned. Among them, a BMN medium having the composition shown in Table 1 is particularly preferable because it decomposes lignocellulose with high efficiency.
(培養方法)
 本実施形態において、セルロシバクター・アルカリサーモフィラスW21-10株の培養方法は、公知慣用の方法で行うことができる。培養において、上記の培地を用いることができる。
本実施形態において、培養方法としては、例えば、静置培養法、振盪培養法、深部通気撹拌培養法等が挙げられる。
(Culture method)
In the present embodiment, the method for culturing the Cellulosibacter alkaline thermophilus W21-10 strain can be carried out by a known and commonly used method. In the culture, the above medium can be used.
In the present embodiment, examples of the culture method include a stationary culture method, a shaking culture method, a deep aeration-agitation culture method, and the like.
 培養におけるpHは、8.0~10.0の塩基性で行うことができ、pH9.5であることが好ましい。 The culture can be performed at a basic pH of 8.0 to 10.0, preferably pH 9.5.
 培養温度としては、37℃以上65℃以下で行うことができ、60℃で行うことが好ましい。培養温度が上記範囲内である場合、一般的なリグノセルロース系バイオマスを用いた糖化工程及び発酵工程と同様の温度範囲であるため、セルロシバクター・アルカリサーモフィラスW21-10株は効率的にリグノセルロースを分解し、糖化液又はリグノセルロース系バイオマス由来化合物を得ることができる。 The culture temperature can be 37 ° C or higher and 65 ° C or lower, preferably 60 ° C. When the culture temperature is within the above range, the cellulosibacter alkaline thermophilus strain W21-10 is efficiently used because it is in the same temperature range as the saccharification process and fermentation process using general lignocellulosic biomass. Lignocellulose can be decomposed to obtain a saccharified solution or a lignocellulose-based biomass-derived compound.
本実施形態において、上述の培養方法により、セルロシバクター・アルカリサーモフィラスW21-10株を培養すると、安定した増殖を示すばかりでなく、リグノセルロースの分解能が向上したセルロシバクター・アルカリサーモフィラスW21-10株が得られる。 In the present embodiment, when the Cellulosibacter alkaline thermophilus W21-10 strain is cultured by the above-described culture method, the cellulosibacter alkaline thermophila not only shows stable growth but also has improved lignocellulose resolution. S21-10 strain is obtained.
 本実施形態の微生物は、前記(a)と機能的に同等な核酸を含む16S rRNA遺伝子として、下記(b)の核酸を含む16S rRNA遺伝子を有するものであってもよい。
 (b)配列番号1又は2に示す塩基配列と95%以上の同一性を有する核酸。
The microorganism of this embodiment may have a 16S rRNA gene containing a nucleic acid of the following (b) as a 16S rRNA gene containing a nucleic acid functionally equivalent to the above (a).
(B) a nucleic acid having 95% or more identity with the base sequence shown in SEQ ID NO: 1 or 2.
 前記(a)の核酸を含む16S rRNA遺伝子と機能的に同等であるためには95%以上の同一性を有する。係る同一性としては、95%以上が好ましく、96%以上がより好ましく、97%以上がさらに好ましく、98%以上が特に好ましく、99%以上が最も好ましい。
さらに、前記(b)の核酸を含む16S rRNA遺伝子は、リグノセルロース分解能を有する。
In order to be functionally equivalent to the 16S rRNA gene containing the nucleic acid (a), it has 95% or more identity. Such identity is preferably 95% or more, more preferably 96% or more, still more preferably 97% or more, particularly preferably 98% or more, and most preferably 99% or more.
Furthermore, the 16S rRNA gene containing the nucleic acid of (b) has lignocellulose resolution.
 本実施形態の微生物は、前記(a)と機能的に同等な核酸を含む16S rRNA遺伝子として、下記(c)の核酸を含む16S rRNA遺伝子を有するものであってもよい。
 (c)配列番号1又は2に示す塩基配列において、1若しくは数個の塩基が欠損、置換若しくは付加された塩基配列からなる核酸。
The microorganism of this embodiment may have a 16S rRNA gene containing a nucleic acid of the following (c) as a 16S rRNA gene containing a nucleic acid functionally equivalent to the above (a).
(C) A nucleic acid comprising a base sequence in which one or several bases are deleted, substituted or added in the base sequence shown in SEQ ID NO: 1 or 2.
ここで、欠失、置換、若しくは付加されてもよい塩基の数としては、1個以上15個以下が好ましく、1個以上10個以下がより好ましく、1個以上5個以下が特に好ましい。
さらに、前記(c)の核酸を含む16S rRNA遺伝子は、リグノセルロース分解能を有する。
Here, the number of bases that may be deleted, substituted, or added is preferably 1 or more, 15 or less, more preferably 1 or more and 10 or less, and particularly preferably 1 or more and 5 or less.
Furthermore, the 16S rRNA gene containing the nucleic acid of (c) has lignocellulose resolution.
≪リグノセルロース系バイオマス分解用組成物≫
 本発明の一実施形態に係るリグノセルロース系バイオマス分解用組成物は、少なくとも1種の上述の微生物、又は前記微生物由来の酵素若しくは遺伝子産物を含む。
≪Lignocellulosic biomass decomposition composition≫
The composition for decomposing lignocellulosic biomass according to one embodiment of the present invention comprises at least one kind of the above-mentioned microorganisms, or an enzyme or gene product derived from the microorganisms.
本実施形態のリグノセルロース系バイオマス分解用組成物によれば、リグノセルロースを高効率で分解し、糖化液又はリグノセルロース系バイオマス由来化合物を高収率で得ることができる。 According to the composition for lignocellulose-based biomass decomposition of the present embodiment, lignocellulose can be decomposed with high efficiency, and a saccharified solution or lignocellulose-based biomass-derived compound can be obtained in high yield.
 本実施形態のリグノセルロース系バイオマス分解用組成物に含まれる微生物としては、上述の≪微生物≫に記載のものと同様のものが挙げられる。中でも、前記微生物としては、クロストリジウム・スピーシーズA7株、又はセルロシバクター・アルカリサーモフィラスW21-10株であることが好ましい。 Examples of the microorganisms contained in the lignocellulosic biomass decomposing composition of the present embodiment include the same microorganisms as those described in the above-mentioned << microorganism >>. Among them, the microorganism is preferably Clostridium sp. A7 strain or Cellulosiacter alkaline thermophilus W21-10 strain.
 本実施形態のリグノセルロース系バイオマス分解用組成物において、上述の微生物の代わりに、前記微生物由来の酵素又は遺伝子産物を含んでいてもよい。
 前記微生物由来の酵素としては、例えば、エキソ-1,4-β-グルカナーゼ、エンド-1,4-β-グルカナーゼ、セルラーゼ(例えば、エンドグルカナーゼ(EG)、セロビオハイドロラーゼ(CBH)及びβ-グルコシダーゼ(BGL)等)、ヘミセルラーゼ(例えば、キシラナーゼ、キシロシダーゼ、マンナナーゼ、ペクチナーゼ、ガラクトシダーゼ、グルクロニダーゼ、アラビノフラノシダーゼ等)等の多糖分解酵素等が挙げられる。
The lignocellulosic biomass decomposing composition of the present embodiment may contain an enzyme or gene product derived from the microorganism instead of the microorganism described above.
Examples of the microorganism-derived enzyme include exo-1,4-β-glucanase, endo-1,4-β-glucanase, cellulase (eg, endoglucanase (EG), cellobiohydrolase (CBH) and β-). Polysaccharide degrading enzymes such as glucosidase (BGL), hemicellulase (eg, xylanase, xylosidase, mannanase, pectinase, galactosidase, glucuronidase, arabinofuranosidase, etc.).
 前記微生物由来の遺伝子産物としては、例えば、上述の酵素をコードするDNA、又はRNA等が挙げられる。前記遺伝子産物は、発現ベクターに組み込まれた形であってもよい。発現ベクターとしては、例えば、pBR322、pBR325、pUC12、pUC13等の大腸菌由来のプラスミド;pUB110、pTP5、pC194等の枯草菌由来のプラスミド;pSH19、pSH15等の酵母由来プラスミド;λファージ等のバクテリオファージ;アデノウィルス、アデノ随伴ウィルス、レンチウィルス、ワクシニアウィルス、バキュロウィルス等のウィルス;及びこれらを改変したベクター等が挙げられ、これらに限定されない。 Examples of the gene product derived from the microorganism include DNA or RNA encoding the above-described enzyme. The gene product may be in a form incorporated into an expression vector. Examples of expression vectors include plasmids derived from E. coli such as pBR322, pBR325, pUC12, and pUC13; plasmids derived from Bacillus subtilis such as pUB110, pTP5, and pC194; plasmids derived from yeast such as pSH19 and pSH15; bacteriophages such as λ phage; Examples include, but are not limited to, viruses such as adenovirus, adeno-associated virus, lentivirus, vaccinia virus, baculovirus, and vectors modified from these.
 本実施形態のリグノセルロース系バイオマス分解用組成物において、微生物、又は前記微生物由来の酵素若しくは遺伝子産物を1種類含んでいてもよく、又は2種類以上含んでいてもよい。中でも、本実施形態のリグノセルロース系バイオマス分解用組成物は、リグノセルロースを高効率で分解できることから、微生物、又は前記微生物由来の酵素若しくは遺伝子産物を2種類以上含んでいることが好ましい。 The lignocellulosic biomass decomposing composition of the present embodiment may contain one type of microorganism, or an enzyme or gene product derived from the microorganism, or may contain two or more types. Especially, since the composition for lignocellulose-type biomass decomposition | disassembly of this embodiment can decompose | disassemble lignocellulose with high efficiency, it is preferable that 2 or more types of microorganisms or the said enzyme or gene product derived from the said microorganisms are included.
<その他微生物>
 本実施形態のリグノセルロース系バイオマス分解用組成物は、さらに、以下の(d)の核酸を含む16S rRNA遺伝子を有する微生物のうち少なくとも1種を含んでいてもよい。
 (d)配列番号3~11のいずれかに示す塩基配列からなる核酸。
<Other microorganisms>
The composition for degrading lignocellulosic biomass of the present embodiment may further contain at least one of microorganisms having a 16S rRNA gene containing the following nucleic acid (d).
(D) a nucleic acid comprising the base sequence shown in any one of SEQ ID NOs: 3 to 11.
 上記(d)における配列番号3に示す塩基配列は、モレラ・グリセリーニ(Moorella glycerini)JW/AS-Y6株の16S rRNA遺伝子の塩基配列に88%の同一性を有する菌種の16S rRNA遺伝子の塩基配列である。
 上記(d)における配列番号4に示す塩基配列は、モレラ・ヒューミフェレラ(Moorella humiferrea)64-FGQ株の16S rRNA遺伝子の塩基配列に87%の同一性を有する菌種の16S rRNA遺伝子の塩基配列である。
 上記(d)における配列番号5に示す塩基配列は、テピダナエロバクター・アセタトキシダン(Tepidanaerobacter acetatoxydans)Re1株の16S rRNA遺伝子の塩基配列に88%の同一性を有する菌種の16S rRNA遺伝子の塩基配列である。
 上記(d)における配列番号6に示す塩基配列は、テピダナエロバクター・アセタトキシダン(Tepidanaerobacter acetatoxydans)Re1株の16S rRNA遺伝子の塩基配列に91%の同一性を有する菌種の16S rRNA遺伝子の塩基配列である。
 上記(d)における配列番号7に示す塩基配列は、テピダナエロバクター・アセタトキシダン(Tepidanaerobacter acetatoxydans)Re1株の16S rRNA遺伝子の塩基配列に95%の同一性を有する菌種の16S rRNA遺伝子の塩基配列である。
 上記(d)における配列番号8に示す塩基配列は、テピディマイクロビウム・フェリフィラム(Tepidimicrobium ferriphilum)DSM16624株の16S rRNA遺伝子の塩基配列に96%の同一性を有する菌種の16S rRNA遺伝子の塩基配列である。
 上記(d)における配列番号9に示す塩基配列は、クロストリジウム・サーモセラム(Clostridium thermocellum)DSM1313株、又はクロストリジウム・サーモセラムATCC27406株の16S rRNA遺伝子の塩基配列に99%の同一性を有する菌種の16S rRNA遺伝子の塩基配列である。
 上記(d)における配列番号10に示す塩基配列は、サーモアナエロバクター・マサラニー(Thermoanaerobacter mathranii)A3株の16S rRNA遺伝子の塩基配列に99%の同一性を有する菌種の16S rRNA遺伝子の塩基配列である。
 上記(d)における配列番号11に示す塩基配列は、難培養微生物(Uncultured bacterium clone)ATB-CK-1492-11株の16S rRNA遺伝子の塩基配列に94%の同一性を有する菌種の16S rRNA遺伝子の塩基配列である。
 モレラ・グリセリーニは、好熱性、嫌気性、芽胞形成菌である。
 モレラ・ヒューミフェレラは、フミン酸と鉄(III)との間の往復電子を介して増殖することができる好熱性、嫌気性細菌である。
 テピダナエロバクター・アセタトキシダンは、酢酸酸化共生微生物である。
 テピディマイクロビウム・フェリフィラムは、嫌気性の中等度好熱菌である。
 クロストリジウム・サーモセラムは、セルロソームという特徴的な酵素複合体を有し、効率的なセルロース分解を行う好熱菌である。
 サーモアナエロバクター・マサラニーは、好熱性のエタノール生成菌である。
 また、一般的に、難培養微生物とは、これまでに分離培養できなかった微生物や既知の微生物種とは系統学的に異なる微生物を意味する。
The base sequence shown in SEQ ID NO: 3 in (d) above is the base of the 16S rRNA gene of a bacterial species having 88% identity to the base sequence of the 16S rRNA gene of the Mororella glycerini JW / AS-Y6 strain. Is an array.
The base sequence shown in SEQ ID NO: 4 in the above (d) is the base sequence of a 16S rRNA gene of a bacterial species having 87% identity to the base sequence of the 16S rRNA gene of the Mororella humiferella 64-FGQ strain. is there.
The base sequence shown in SEQ ID NO: 5 in (d) above is the base sequence of a 16S rRNA gene of a bacterial species having 88% identity to the base sequence of the 16S rRNA gene of Tepidanaerobacteracetoxydans Re1 strain It is.
The base sequence shown in SEQ ID NO: 6 in the above (d) is the base sequence of the 16S rRNA gene of a bacterial species having 91% identity to the base sequence of the 16S rRNA gene of the Tepidanaerobacteracetoxydans Re1 strain It is.
The base sequence shown in SEQ ID NO: 7 in the above (d) is the base sequence of the 16S rRNA gene of a bacterial species having 95% identity to the base sequence of the 16S rRNA gene of the Tepidanaerobacteracetoxydans Re1 strain It is.
The base sequence shown in SEQ ID NO: 8 in the above (d) is the base of the 16S rRNA gene of a bacterial species having 96% identity to the base sequence of the 16S rRNA gene of Tepidimicrobium ferriphyllum DSM 16624 strain Is an array.
The base sequence shown in SEQ ID NO: 9 in (d) above is a 16S rRNA of a bacterial species having 99% identity to the base sequence of the 16S rRNA gene of Clostridium thermocellum DSM1313 strain or Clostridium thermocellum ATCC27406 strain It is the base sequence of a gene.
The base sequence shown in SEQ ID NO: 10 in (d) above is the base sequence of a 16S rRNA gene of a bacterial species having 99% identity to the base sequence of the 16S rRNA gene of Thermoanaerobacter mastranii strain A3. is there.
The base sequence shown in SEQ ID NO: 11 in the above (d) is a 16S rRNA of a bacterial species having 94% identity to the base sequence of the 16S rRNA gene of the uncultured microorganism ATB-CK-1492-11 strain. It is the base sequence of a gene.
Morella glycerini is a thermophilic, anaerobic, spore-forming bacterium.
Morella Humiferella is a thermophilic, anaerobic bacterium that can grow through reciprocating electrons between humic acid and iron (III).
Tepidanaerobacter acetatoxidane is an acetic acid oxidation symbiotic microorganism.
Tepididimicrobium ferriphyllum is an anaerobic moderate thermophile.
Clostridium thermocellum is a thermophilic bacterium that has a characteristic enzyme complex called cellulosome and efficiently decomposes cellulose.
Thermoanaerobacter masalani is a thermophilic ethanol-producing bacterium.
Generally, difficult-to-cultivate microorganisms mean microorganisms that have been systematically different from microorganisms that could not be separated and cultured and known microorganism species.
 中でも、本実施形態のリグノセルロース系バイオマス分解用組成物は、配列番号3~11のいずれかに示す塩基配列からなる核酸を含む16s rRNA遺伝子を有する微生物9種を全て含むことが好ましい。これにより、より効率的にリグノセルロースを分解し、糖化液又はリグノセルロース系バイオマス由来化合物を高収率で得ることができる。 Among these, the lignocellulose-based biomass decomposing composition of the present embodiment preferably contains all nine types of microorganisms having a 16s rRNA gene containing a nucleic acid having the base sequence shown in any of SEQ ID NOs: 3 to 11. Thereby, lignocellulose can be decomposed | disassembled more efficiently and a saccharified liquid or a lignocellulose biomass-derived compound can be obtained with a high yield.
 また、本実施形態のリグノセルロース系バイオマス分解用組成物は、前記(d)と機能的に同等な核酸を含む16S rRNA遺伝子として、以下の(e)の核酸を含む16s rRNA遺伝子を有する微生物を含んでいてもよい。
(e)配列番号3~11のいずれかに示す塩基配列と90%以上の同一性を有する核酸。
In addition, the lignocellulose-based biomass decomposing composition of the present embodiment comprises a microorganism having a 16s rRNA gene containing the following nucleic acid (e) as a 16S rRNA gene containing a nucleic acid functionally equivalent to the above (d): May be included.
(E) a nucleic acid having 90% or more identity with the base sequence shown in any of SEQ ID NOs: 3 to 11.
 前記(d)の核酸を含む16S rRNA遺伝子と機能的に同等であるためには95%以上の同一性を有する。係る同一性としては、95%以上が好ましく、96%以上がより好ましく、97%以上がさらに好ましく、98%以上が特に好ましく、99%以上が最も好ましい。
さらに、前記(e)の核酸を含む16S rRNA遺伝子は、リグノセルロース分解能、又はリグノセルロース系バイオマスの分解産物の代謝能を有する。
なお、本明細書において、「リグノセルロース系バイオマスの分解産物の代謝能」とは、リグノセルロース系バイオマスの分解産物を代謝する能力を意味する。リグノセルロース系バイオマスの分解産物の代謝能として具体的には、例えば、リグノセルロース系バイオマスの分解産物である単糖、オリゴ糖、又は有機酸を代謝し、上述のリグノセルロース系バイオマス由来化合物を生成する能力等が挙げられる。
In order to be functionally equivalent to the 16S rRNA gene containing the nucleic acid of (d), it has 95% or more identity. Such identity is preferably 95% or more, more preferably 96% or more, still more preferably 97% or more, particularly preferably 98% or more, and most preferably 99% or more.
Further, the 16S rRNA gene containing the nucleic acid (e) has lignocellulose resolution or the ability to metabolize lignocellulosic biomass degradation products.
In the present specification, “the ability to metabolize the degradation products of lignocellulosic biomass” means the ability to metabolize the degradation products of lignocellulosic biomass. Specifically, the metabolic capacity of the degradation product of lignocellulosic biomass, for example, metabolizes monosaccharides, oligosaccharides, or organic acids that are degradation products of lignocellulosic biomass to produce the above-mentioned lignocellulosic biomass-derived compounds Ability to do so.
本実施形態のリグノセルロース系バイオマス分解用組成物は、前記(d)と機能的に同等な核酸を含む16S rRNA遺伝子として、以下の(f)の核酸を含む16s rRNA遺伝子を有する微生物を含んでいてもよい。
(f)配列番号3~11のいずれかに示す塩基配列において、1若しくは数個の塩基が欠損、置換若しくは付加された塩基配列からなる核酸。
The composition for degrading lignocellulosic biomass of the present embodiment includes a microorganism having a 16s rRNA gene containing a nucleic acid of the following (f) as a 16S rRNA gene containing a nucleic acid functionally equivalent to the above (d). May be.
(F) A nucleic acid comprising a base sequence in which one or several bases are deleted, substituted or added in the base sequence shown in any of SEQ ID NOs: 3 to 11.
ここで、欠失、置換、若しくは付加されてもよい塩基の数としては、1個以上15個以下が好ましく、1個以上10個以下がより好ましく、1個以上5個以下が特に好ましい。
さらに、前記(f)の核酸を含む16S rRNA遺伝子は、リグノセルロース分解能、又はリグノセルロース系バイオマスの分解産物の代謝能を有する。
Here, the number of bases that may be deleted, substituted, or added is preferably 1 or more, 15 or less, more preferably 1 or more and 10 or less, and particularly preferably 1 or more and 5 or less.
Furthermore, the 16S rRNA gene containing the nucleic acid (f) has lignocellulose resolution or the ability to metabolize lignocellulosic biomass degradation products.
 本実施形態のリグノセルロース系バイオマス分解用組成物において、前記(d)~(f)のいずれかの核酸を含む16S rRNA遺伝子を有する微生物の代わりに、前記微生物由来の酵素若しくは遺伝子産物を含んでいてもよい。 In the composition for degrading lignocellulosic biomass of this embodiment, an enzyme or gene product derived from the microorganism is included instead of the microorganism having the 16S rRNA gene containing any one of the nucleic acids (d) to (f). May be.
 前記微生物由来の酵素としては、例えば、エキソ-1,4-β-グルカナーゼ、エンド-1,4-β-グルカナーゼ、セルラーゼ(例えば、エンドグルカナーゼ(EG)、セロビオハイドロラーゼ(CBH)及びβ-グルコシダーゼ(BGL)等)、ヘミセルラーゼ(例えば、キシラナーゼ、キシロシダーゼ、マンナナーゼ、ペクチナーゼ、ガラクトシダーゼ、グルクロニダーゼ、アラビノフラノシダーゼ等)等の多糖分解酵素等が挙げられ、さらに、タンパク質分解酵素、有機酸分解酵素等を含んでいてもよい。 Examples of the microorganism-derived enzyme include exo-1,4-β-glucanase, endo-1,4-β-glucanase, cellulase (eg, endoglucanase (EG), cellobiohydrolase (CBH) and β-). Glucosidase (BGL), etc.), hemicellulases (eg, xylanase, xylosidase, mannanase, pectinase, galactosidase, glucuronidase, arabinofuranosidase, etc.) and the like, and further, proteolytic enzymes, organic acid degrading enzymes Etc. may be included.
 前記微生物由来の遺伝子産物としては、例えば、上述の酵素をコードするDNA、又はRNA等が挙げられる。前記遺伝子産物は、発現ベクターに組み込まれた形であってもよい。発現ベクターとしては、上述において例示したものと同様のものが挙げられる。 Examples of the gene product derived from the microorganism include DNA or RNA encoding the above-described enzyme. The gene product may be in a form incorporated into an expression vector. Examples of expression vectors include those similar to those exemplified above.
 本実施形態のリグノセルロース系バイオマス分解用組成物は、含まれる微生物、又は前記微生物由来の酵素若しくは遺伝子産物のリグノセルロース分解能が損なわれないかぎり、どのような形状であってもよく、例えば、凍結乾燥状態であってもよく、液体培地等に撹拌された状態であってもよい。 The lignocellulosic biomass decomposing composition of the present embodiment may have any shape as long as the lignocellulose-decomposing ability of the contained microorganism, or the enzyme or gene product derived from the microorganism is not impaired. It may be in a dry state or in a state of being stirred in a liquid medium or the like.
≪糖化液の製造方法≫
 本発明の一実施形態に係る糖化液の製造方法は、上述のリグノセルロース系バイオマス分解用組成物を用いて、リグノセルロース系バイオマスから糖化液を生成させる糖化工程を備える方法である。
≪Method for producing saccharified liquid≫
The manufacturing method of the saccharified liquid which concerns on one Embodiment of this invention is a method provided with the saccharification process of producing | generating a saccharified liquid from lignocellulosic biomass using the above-mentioned composition for lignocellulosic biomass decomposition | disassembly.
 本実施形態の製造方法によれば、リグノセルロース系バイオマスから糖化液を高効率及び高収率で得ることができる。 According to the production method of the present embodiment, a saccharified solution can be obtained from lignocellulosic biomass with high efficiency and high yield.
<糖化工程>
 上述のリグノセルロース系バイオマス分解用組成物を用いて、リグノセルロース系バイオマスから糖化液を生成させる。
<Saccharification process>
A saccharified solution is produced from lignocellulosic biomass using the above-described composition for decomposing lignocellulosic biomass.
 本実施形態の製造方法で用いられるリグノセルロース系バイオマスとしては、上述の≪微生物≫で例示されたものと同様のものが挙げられる。 Examples of lignocellulosic biomass used in the production method of the present embodiment include those similar to those exemplified in the above-mentioned << microorganism >>.
 本実施形態の製造方法において、リグノセルロース系バイオマス100重量部に対して水分を5~500重量部、好ましくは50~400重量部、さらに好ましくは50~300重量部程度添加することにより、水分含量を調整すればよい。
また、さらにリグノセルロース系バイオマスには、上述のリグノセルロース系バイオマス分解用組成物に含まれるものが微生物である場合、該微生物の生育に必要とされる塩や栄養素(例えば、ふすま、ペプトン、コーンスティープリカー、酵母エキス、肉エキス、麦芽エキス、ポテトエキス、米ぬか、合成無機塩類等)を添加してもよい。
又は、水分、塩や栄養素の代わりに、前記微生物の生育に使用可能な培地を添加してもよい。培地としては、上述の<クロストリジウム・スピーシーズ(Clostridium sp.)A7株>で例示されたものと同様のものが挙げられる。
また、リグノセルロース系バイオマスは、上述のリグノセルロース系バイオマス分解用組成物と混合する前に、雑菌の繁殖を防止するために、加熱殺菌等の殺菌処理を行ってもよい。
In the production method of the present embodiment, the water content is added by adding about 5 to 500 parts by weight, preferably about 50 to 400 parts by weight, more preferably about 50 to 300 parts by weight with respect to 100 parts by weight of lignocellulosic biomass. Can be adjusted.
Further, in the lignocellulosic biomass, when the above-mentioned composition for decomposing lignocellulosic biomass is a microorganism, salts and nutrients (for example, bran, peptone, corn) required for the growth of the microorganism are included. Steep liquor, yeast extract, meat extract, malt extract, potato extract, rice bran, synthetic inorganic salts, etc.) may be added.
Alternatively, a medium that can be used for the growth of the microorganism may be added instead of moisture, salt, and nutrients. Examples of the medium include the same media as those exemplified above in <Clostridium sp. Strain A7>.
Further, the lignocellulosic biomass may be subjected to a sterilization treatment such as heat sterilization in order to prevent propagation of various bacteria before mixing with the above-described composition for decomposing lignocellulose biomass.
 糖化温度は、45℃以上70℃以下が好ましく、45℃以上65℃以下がより好ましく、50℃以上60℃以下が特に好ましい。また、糖化時間は12時間以上120時間以下が好ましく、24時間以上96時間以下がより好ましく、24時間以上72時間以下がさらに好ましい。 The saccharification temperature is preferably 45 ° C or higher and 70 ° C or lower, more preferably 45 ° C or higher and 65 ° C or lower, and particularly preferably 50 ° C or higher and 60 ° C or lower. The saccharification time is preferably 12 hours to 120 hours, more preferably 24 hours to 96 hours, and even more preferably 24 hours to 72 hours.
 糖化工程において、上述の糖化反応条件については、上述のリグノセルロース系バイオマス分解用組成物に含まれる微生物、酵素、又は遺伝子産物の種類や目的とする糖化の程度等に基づいて適宜設定される。 In the saccharification step, the above-described saccharification reaction conditions are appropriately set based on the type of microorganism, enzyme, or gene product contained in the above-described lignocellulosic biomass decomposition composition, the target saccharification degree, and the like.
本実施形態の製造方法において、糖化工程の前に、前処理工程を備えていてもよい。
前処理工程としては、例えば、粉砕処理、マイクロ波照射、爆砕処理、蒸煮処理、放射線照射処理、化学処理(例えば、ソルボリシス処理、オゾン処理、アルカリ処理、酸処理、酸化剤処理、還元剤処理等)、菌処理、酸化酵素処理、又はこれらの複合処理等が挙げられる。
In the production method of the present embodiment, a pretreatment step may be provided before the saccharification step.
Examples of the pretreatment process include pulverization, microwave irradiation, blasting, steaming, irradiation, chemical treatment (for example, solvolysis, ozone, alkali, acid, oxidant, reducing agent, etc. ), Fungus treatment, oxidase treatment, or combined treatment thereof.
 糖化工程により、リグノセルロース系バイオマスが低分子化されて単糖又はオリゴ糖が生成され、前記単糖又はオリゴ糖を含む糖化液を得ることができる。
この低分子化された前記単糖又はオリゴ糖を炭素源として利用して各種の発酵処理等を行うことにより、後述の≪リグノセルロース系バイオマス由来化合物の製造方法≫に記載のとおり、各種リグノセルロース系バイオマス由来化合物を製造することができる。
By the saccharification step, the lignocellulosic biomass is reduced in molecular weight to produce a monosaccharide or oligosaccharide, and a saccharified solution containing the monosaccharide or oligosaccharide can be obtained.
By performing various fermentation treatments using the monosaccharide or oligosaccharide having a reduced molecular weight as a carbon source, various lignocelluloses as described in << Method for producing lignocellulosic biomass-derived compound >> described below. A biomass-derived compound can be produced.
≪リグノセルロース系バイオマス由来化合物の製造方法≫
 本発明の一実施形態に係るリグノセルロース系バイオマス由来化合物の製造方法は、上述の糖化液の製造方法を用いて、糖化液を製造した後、前記糖化液からリグノセルロース系バイオマス由来化合物を生産させる生産工程を備える方法である。
≪Method for producing compound derived from lignocellulosic biomass≫
The method for producing a lignocellulosic biomass-derived compound according to an embodiment of the present invention produces a lignocellulosic biomass-derived compound from the saccharified solution after producing the saccharified solution using the above-described saccharified solution producing method. A method comprising a production process.
 本実施形態の製造方法によれば、糖化液からリグノセルロース系バイオマス由来化合物を高効率及び高収率で得ることができる。 According to the production method of the present embodiment, a lignocellulosic biomass-derived compound can be obtained from a saccharified solution with high efficiency and high yield.
<生産工程>
 上記の≪糖化液の製造方法≫により得られた糖化液を用いて、リグノセルロース系バイオマス由来化合物を生産させる。
<Production process>
The lignocellulosic biomass-derived compound is produced using the saccharified solution obtained by the above-mentioned << saccharified solution production method >>.
 生産工程としては、リグノセルロース系バイオマス由来化合物が得られる処理方法であればよく、例えば、発酵処理、化学合成処理等が挙げられる。発酵としては、例えば、エタノール発酵、メタン発酵、水素発酵、アセトン-ブタノール発酵、乳酸発酵、コハク酸発酵、イタコン酸発酵、アミノ酸発酵等が挙げられる。これらの発酵処理に使用される微生物や発酵処理条件は公知のものを用いればよい。 The production process may be any treatment method capable of obtaining a lignocellulosic biomass-derived compound, and examples thereof include fermentation treatment and chemical synthesis treatment. Examples of fermentation include ethanol fermentation, methane fermentation, hydrogen fermentation, acetone-butanol fermentation, lactic acid fermentation, succinic acid fermentation, itaconic acid fermentation, and amino acid fermentation. Known microorganisms and fermentation treatment conditions may be used for these fermentation treatments.
 また、前記発酵処理は、上記糖化工程の後に行ってもよく、また上記糖化工程と同時に行ってもよい。後者の発酵処理と糖化工程とを同時に行う場合には、糖化工程に要する上述のリグノセルロース系バイオマス分解用組成物と、発酵処理に要する微生物(例えば、酵母等)とを共存させて、上述のリグノセルロース系バイオマス分解用組成物と微生物との双方が、有効に作用若しくは生育できる条件に設定してインキュベートすればよい。 The fermentation treatment may be performed after the saccharification step or may be performed simultaneously with the saccharification step. When the latter fermentation treatment and the saccharification step are performed simultaneously, the above-mentioned lignocellulosic biomass decomposing composition required for the saccharification step and the microorganisms required for the fermentation treatment (for example, yeast, etc.) are allowed to coexist, What is necessary is just to set and incubate on the conditions which both the composition for lignocellulose type | system | group biomass decomposition | disassembly and microorganisms can act or grow effectively.
 発酵処理に用いられる微生物としては、目的のリグノセルロース系バイオマス由来化合物を生成できるものであれば、特別な限定はない。発酵処理に用いられる微生物として具体的には、酵母や細菌等が挙げられ、遺伝子組換え微生物であってもよい。遺伝子組換え微生物とは、アルコール等の目的のリグノセルロース系バイオマス由来化合物への変換に必要な酵素遺伝子を有していない微生物に、遺伝子工学技術によりこれら遺伝子を導入し、アルコール等の目的のリグノセルロース系バイオマス由来化合物の生成を可能にしたものである。遺伝子組換え微生物としては、例えば、アルコール発酵性を有する遺伝子組換え大腸菌等が挙げられる。 The microorganism used for the fermentation treatment is not particularly limited as long as the target lignocellulose-based biomass-derived compound can be produced. Specific examples of the microorganism used for the fermentation treatment include yeast and bacteria, and may be a genetically modified microorganism. A genetically modified microorganism refers to a microorganism that does not have an enzyme gene required for conversion to a target lignocellulosic biomass-derived compound, such as alcohol, by introducing these genes using genetic engineering technology. This enables generation of a cellulosic biomass-derived compound. Examples of the genetically modified microorganism include genetically modified Escherichia coli having alcohol fermentability.
 生産工程において得られるリグノセルロース系バイオマス由来化合物としては、上述の≪微生物≫で例示されたものと同様のものが挙げられる。 Examples of the lignocellulosic biomass-derived compound obtained in the production process include the same compounds as those exemplified in the above-mentioned << microorganism >>.
 また、本実施形態の製造方法において、生成工程の後に、精製工程を備えていてもよい。
 精製工程は、前記生成工程において得られたリグノセルロース系バイオマス化合物を精製するための工程である。
 精製方法としては、リグノセルロース系バイオマス化合物がアルコール類である場合は、例えば、蒸留法等が挙げられる。また、リグノセルロース系バイオマス化合物がアミノ酸類である場合は、例えば、イオン交換法、活性炭を用いた異物の吸着除去法等が挙げられる。
Moreover, in the manufacturing method of this embodiment, the refinement | purification process may be provided after the production | generation process.
A refinement | purification process is a process for refine | purifying the lignocellulosic biomass compound obtained in the said production | generation process.
As a purification method, when the lignocellulosic biomass compound is an alcohol, for example, a distillation method and the like can be mentioned. Further, when the lignocellulose-based biomass compound is an amino acid, for example, an ion exchange method, a foreign matter adsorption removal method using activated carbon, and the like can be mentioned.
 以下、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
[実施例1]
(1)バイオマス分解菌の選別
 まず、サトウキビ茎葉、籾殻、及び牛糞尿を含む堆肥サンプル湿重量約2~5gと、オイルパーム幹の搾汁後の繊維物、又はトウモロコシ茎葉をコーヒーミルにて粉砕した繊維物とを、BMN培地20~25mLに懸濁した。次いで、得られた懸濁液を窒素(工業用グレード)にて十分にバブリングし、気相を窒素ガスで置換した後、ブチルゴム栓で密閉し、60℃にて3日間から1週間程度培養を行った。
 なお、BMN培地の組成は、1.5g/Lのリン酸二水素カリウム、2.9g/Lのリン酸水素二カリウム、2.1g/Lの尿素、2g/Lの酵母エキス(ディフコ社製)、4g/Lの炭酸ナトリウム、0.5g/Lのシステイン塩酸塩、0.2mLのミネラル溶液(MgCl・6HO 5g; CaCl・2HO 0.75g; FeSO・6HO 0.0063gを水4mLに溶解したもの)である。
[Example 1]
(1) Selection of biomass-degrading bacteria First, a wet weight of about 2 to 5 g of compost sample containing sugarcane foliage, rice husks, and cow manure, and fiber or corn foliage after squeezing oil palm trunk are ground in a coffee mill. The fiber material was suspended in 20-25 mL of BMN medium. Next, the obtained suspension was sufficiently bubbled with nitrogen (industrial grade), the gas phase was replaced with nitrogen gas, sealed with a butyl rubber stopper, and cultured at 60 ° C. for 3 days to 1 week. went.
The composition of the BMN medium was 1.5 g / L potassium dihydrogen phosphate, 2.9 g / L dipotassium hydrogen phosphate, 2.1 g / L urea, 2 g / L yeast extract (manufactured by Difco). ) 4 g / L sodium carbonate, 0.5 g / L cysteine hydrochloride, 0.2 mL mineral solution (MgCl 2 .6H 2 O 5 g; CaCl 2 .2H 2 O 0.75 g; FeSO 4 .6H 2 O 0.0063 g dissolved in 4 mL of water).
 次いで、3日間から1週間程度培養後、サンプルを加えていない上記培養液と比較し、微生物分解による繊維物の色の変化や添加量の明らかな減少や粉末に粘性が認められ、明らかに様子の相違が認められる培養液を選択した。次いで、選択した培養液をよく攪拌懸濁して、そのうち0.5mLの培養液を新しい前記繊維物を含むBMN培地へ接種し、再度同条件にて培養を行った。この操作を2~3回繰り返し、バイオマス繊維分解菌を集積培養した。 Next, after culturing for about 3 days to 1 week, compared to the above culture solution with no sample added, the color change of the fibrous material due to microbial degradation, the apparent decrease in the amount added, and the viscosity of the powder were clearly observed, clearly A culture solution in which a difference was observed was selected. Subsequently, the selected culture broth was well stirred and suspended, and 0.5 mL of the broth was inoculated into the BMN medium containing the new fiber material, and cultured again under the same conditions. This operation was repeated 2-3 times to accumulate and culture the biomass fiber-degrading bacteria.
 次いで、約4日間の集積培養後、1%のバイオマス繊維物の容量を目視で半減以下とできる培養液を選択した。その培養液の一部を、1%バイオマス繊維物、1.5%寒天(ディフコ社製)を含むBMN寒天培地に、適当な希釈倍率にて接種し、60℃、120時間~144時間培養を行った。
 120時間~144時間後に出現したコロニーのみ選択し、再度1%の前記バイオマス繊維物を含むBMN液体培地に接種し、分解能を確認した。さらに分離したセルロース分解菌を純化するため、このコロニー分離操作を2回繰り返した。
Then, after about 4 days of enrichment culture, a culture solution capable of visually reducing the volume of 1% biomass fiber by half or less was selected. A part of the culture solution is inoculated at an appropriate dilution rate into a BMN agar medium containing 1% biomass fiber and 1.5% agar (Difco), and cultured at 60 ° C. for 120 to 144 hours. went.
Only colonies that appeared after 120 hours to 144 hours were selected and again inoculated into BMN liquid medium containing 1% of the biomass fiber, and the resolution was confirmed. Further, this colony separation operation was repeated twice in order to purify the separated cellulose-degrading bacteria.
 さらに分解菌を純化するために、前記分離したコロニーの培養液一部を、0.5%セロビオース、又は1%結晶性セルロースを含むBMN寒天培地にそれぞれ接種した。次いで、0.5%セロビオースを含む寒天培地に出現したコロニーは嫌気条件下で単離分離し、バイオマス繊維物を含むBMN培地で分解能を確認し、高分解性を示すコロニーについて最終的に高分解性菌として選別し、ISI-3と命名した。 In order to further purify the degrading bacteria, a part of the culture solution of the separated colonies was inoculated on a BMN agar medium containing 0.5% cellobiose or 1% crystalline cellulose. Next, colonies that appeared on the agar medium containing 0.5% cellobiose were isolated and separated under anaerobic conditions, and the resolution was confirmed with the BMN medium containing biomass fiber, and the colonies showing high degradability were finally high-decomposed. It was selected as a sex bacterium and named ISI-3.
(2)バイオマス分解能の検討
 次いで、(1)で餞別したISI-3について、バイオマス分解能を検討するために、様々なバイオマス繊維物を用いて繊維分解能の検討を行った。以下の6種類のバイオマス繊維物を用いて、ISI-3のバイオマス分解能を測定した。
 i)スターチ工場から排出されるキャッサバパルプ乾燥物(以下、「キャッサバパルプ」と称することがある。)
 ii)サトウキビ搾汁残渣であるサトウキビ繊維(サトウキビバガス)の粉砕物(以下、「サトウキビバガス」と称することがある。)
 iii)トウモロコシ茎葉(コーン茎葉)の粉砕物(以下、「コーン茎葉」と称することがある。)
 iv)オイルパーム古木から得られた搾汁後の繊維粉砕物(以下、「パーム幹繊維」と称することがある。)
 v)稲わら粉砕物(以下、「キャッサバパルプ」と称することがある。)
 vi)サトウキビ近縁野生種エリアンサスの乾燥繊維粉砕物(以下、「エリアンサス」と称することがある。)
 前記6種類のバイオマスはそれぞれ、70℃で3日間乾燥させ、粉砕ミル(ワンダーブレンダー WB-1大阪ケミカル社製)を用いて粉砕した。
 バイオマス分解能の測定方法は1%の前記バイオマスをそれぞれ含むBMN液体培地を用いて、ISI-3を接種することで外観の容量の減少、及び投入した各バイオマスの重量から最終的に分解物の乾燥重量の差を算出し、比率に表すことにより分解できたバイオマス量を算出した。
分解できたバイオマス量の算出方法としてより具体的には、まず、前記バイオマスを含むBMN液体培地、及びISI-3のそれぞれの培養液を用い、残存する固形物が均一になるように良く混合した。次いで、その培養液からそれぞれ3mLを3本採取し、あらかじめ空の重量を測定してある15mLのファルコンチューブへ移した。次いで、ファルコンチューブを4℃にて8,000回転にて上清と沈殿物に分離した。前記沈殿物は5mLの蒸留水で懸濁し、再度、遠心分離を行い、上清を取り除いた。次いで、得られた沈殿物を乾燥させるため、80℃の恒温器にて3日間乾燥させた。次いで、乾燥させた沈殿物を含むファルコンチューブの重量を測定し、空のファルコンチューブ重量を差し引くことで沈殿物の乾燥重量を算出した。次いで、得られた乾燥重量を3で割ることで、1mL中のバイオマス乾燥重量とした。さらに、バイオマス分解率(糖化し可溶化したバイオマス量の割合)を以下の計算式により算出した。試験は3回繰り返し、平均値を得た。
バイオマス分解率(%)
=[{(分解前のバイオマス乾燥重量[g/mL])-(分解後の培養液中に含まれた残渣の乾燥重量[g/mL])}/分解前のバイオマス乾燥重量[g/mL]]×100
(2) Examination of biomass resolution Next, in order to examine the biomass resolution of ISI-3 separated in (1), the fiber resolution was examined using various biomass fibers. The biomass resolution of ISI-3 was measured using the following six types of biomass fiber.
i) Dried cassava pulp discharged from the starch factory (hereinafter sometimes referred to as “cassava pulp”)
ii) A pulverized product of sugarcane fiber (sugarcane bagasse) which is a sugarcane juice residue (hereinafter, sometimes referred to as “sugarcane bagasse”).
iii) Ground corn stover (corn stover) (hereinafter sometimes referred to as “corn stover”)
iv) Fiber pulverized material obtained from old oil palm trees (hereinafter, sometimes referred to as “palm trunk fiber”)
v) Rice straw ground product (hereinafter sometimes referred to as “cassava pulp”)
vi) A dried fiber pulverized product of wild relative Eliansus (hereinafter sometimes referred to as “Eliansus”).
Each of the six types of biomass was dried at 70 ° C. for 3 days and pulverized using a pulverizing mill (Wonder Blender WB-1 manufactured by Osaka Chemical Co., Ltd.).
The method for measuring biomass resolution is to reduce the volume of appearance by inoculating ISI-3 using a BMN liquid medium containing 1% of the biomass, and finally dry the decomposed product from the weight of each input biomass. The difference in weight was calculated, and the amount of biomass that could be decomposed was calculated by expressing it in a ratio.
More specifically, as a method of calculating the amount of biomass that can be decomposed, first, the BMN liquid medium containing the biomass and each culture solution of ISI-3 were mixed well so that the remaining solids became uniform. . Next, 3 mL of each 3 mL was collected from the culture solution and transferred to a 15 mL Falcon tube whose empty weight was measured in advance. Next, the falcon tube was separated into a supernatant and a precipitate at 8,000 rpm at 4 ° C. The precipitate was suspended in 5 mL of distilled water, centrifuged again, and the supernatant was removed. Subsequently, in order to dry the obtained precipitate, it was dried for 3 days in an incubator at 80 ° C. Next, the weight of the falcon tube containing the dried precipitate was measured, and the dry weight of the precipitate was calculated by subtracting the weight of the empty falcon tube. The resulting dry weight was then divided by 3 to give the biomass dry weight in 1 mL. Furthermore, the biomass degradation rate (ratio of the amount of biomass saccharified and solubilized) was calculated by the following calculation formula. The test was repeated three times to obtain an average value.
Biomass decomposition rate (%)
= [{(Biomass dry weight before decomposition [g / mL])-(Dry weight of residue contained in culture broth after decomposition [g / mL])} / Biomass dry weight before decomposition [g / mL ]] × 100
 前記6種類のバイオマス繊維物を用いたISI-3のバイオマス分解能の検討試験の結果を図4及び図5に示す。図4は、ISI-3接種後の培養5日目における各バイオマスでの分解の様子を示す画像である。各バイオマス繊維物の画像において、左側の培養チューブはISI-3の接種なしのコントロールであり、右側の培養チューブはISI-3の接種ありの培養物である。また、図5は、ISI-3接種後の培養5日目における各バイオマスでの分解率を示すグラフである。 4 and 5 show the results of ISI-3 biomass resolving test using the six types of biomass fibers. FIG. 4 is an image showing the state of degradation in each biomass on the fifth day of culture after inoculation with ISI-3. In each biomass fiber image, the left culture tube is a control without inoculation with ISI-3, and the right culture tube is a culture with ISI-3 inoculation. FIG. 5 is a graph showing the degradation rate of each biomass on the fifth day of culture after ISI-3 inoculation.
 図4及び図5から、ISI-3によるバイオマスの分解効率は、6種のバイオマスにおいて、40~60%程度の分解効率であった。 4 and 5, the biomass decomposition efficiency by ISI-3 was about 40 to 60% for 6 types of biomass.
(3)ISI-3に含まれる菌種の同定
(3-1)ゲノムDNAの抽出
 ISI-3の分類学上の性質を明らかにするために、16S rRNAの塩基配列解析を行った。ISI-3のゲノムDNAは、以下の手順により抽出した。
まず、前記バイオマス繊維物を炭素源として含むBMN液体培地を用いて、それぞれISI-3を4日間培養した。次いで、培養物を4℃にて10,000回転で5分間、遠心分離して、それぞれのバイオマスで培養した菌体を回収した。次いで、得られた菌体を溶菌させるために、最終濃度0.5%となるように10%SDS(ラウリル硫酸ナトリウム)と、最終濃度5μg/mLとになるようにプロテナーゼK(1mg/mL)溶液とを加え、37℃で1時間反応させた。次いで、最終濃度1%となるように10%臭化セチルトリメチルアンモニウム-0.7M塩化ナトリウム溶液を加え、65℃で10分間反応させた。次いで、反応後の培養液と等量のクロロフォルム-イソアミルアルコール溶液を加え、よく攪拌した。次いで、15,000回転、5分間遠心分離を行い、水層を得た。次いで、得られた水層に再度、フェノール-クロロフォルム-イソアミルアルコール混合液を水層と等量加え、攪拌した。次いで、15,000回転、5分間遠心分離を行い、水層を得た。次いで、得られた水層に対し、0.6倍容量のイソプロパノールを加えゲノムDNAを析出させた。次いで、遠心分離を行い、ゲノムDNAを調製した。次いで、調製したゲノムDNAを70%エタノールで洗浄し、乾燥した。
(3) Identification of bacterial species contained in ISI-3 (3-1) Extraction of genomic DNA In order to clarify the taxonomic properties of ISI-3, a base sequence analysis of 16S rRNA was performed. ISI-3 genomic DNA was extracted by the following procedure.
First, ISI-3 was cultured for 4 days using a BMN liquid medium containing the biomass fiber as a carbon source. Subsequently, the culture was centrifuged at 10,000 rpm for 5 minutes at 4 ° C., and the cells cultured with each biomass were collected. Next, in order to lyse the obtained cells, 10% SDS (sodium lauryl sulfate) to a final concentration of 0.5% and proteinase K (1 mg / mL) to a final concentration of 5 μg / mL The solution was added and reacted at 37 ° C. for 1 hour. Next, 10% cetyltrimethylammonium bromide-0.7M sodium chloride solution was added to a final concentration of 1%, and the mixture was reacted at 65 ° C. for 10 minutes. Subsequently, an equal volume of chloroform-isoamyl alcohol solution was added to the culture solution after the reaction, followed by thorough stirring. Next, centrifugation was performed at 15,000 rpm for 5 minutes to obtain an aqueous layer. Next, an equivalent amount of the phenol-chloroform-isoamyl alcohol mixed solution was added to the aqueous layer again and stirred. Next, centrifugation was performed at 15,000 rpm for 5 minutes to obtain an aqueous layer. Subsequently, 0.6-fold volume of isopropanol was added to the obtained aqueous layer to precipitate genomic DNA. Subsequently, centrifugation was performed to prepare genomic DNA. Next, the prepared genomic DNA was washed with 70% ethanol and dried.
(3-2)ゲノムDNAの増幅
 16S rRNA増幅用PCRプライマーは、27Fオリゴヌクレオチドプライマー(5’-AGAGTTTGATCCTGGCTCAG-3’:配列番号12)、及び1492Rオリゴヌクレオチドプライマー(5’-GGCTACCTTGTTACGACTT-3’:配列番号13)を用いた。また、PCRは、ExTaq DNAポリメラーゼ(宝酒造社製)により、16S rRNA遺伝子の増幅を行った。PCRの条件は98℃1分間、55℃1分間、72℃2分間を30サイクルの条件において増幅を行った。得られたPCR産物は、0.8%アガロースゲル電気泳動で増幅されたバンドを確認後、QIAGEN PCR精製キット(QIAGEN社製)を用いて、増幅されたPCR産物を精製した。
(3-2) Amplification of genomic DNA PCR primers for 16S rRNA amplification were 27F oligonucleotide primer (5'-AGAGTTTGATCCTGGCTCAG-3 ': SEQ ID NO: 12) and 1492R oligonucleotide primer (5'-GGCACTCTGTTACGACTTT-3': sequence Number 13) was used. In PCR, 16S rRNA gene was amplified by ExTaq DNA polymerase (Takara Shuzo). PCR was carried out under conditions of 30 cycles of 98 ° C. for 1 minute, 55 ° C. for 1 minute and 72 ° C. for 2 minutes. The obtained PCR product confirmed the amplified band by 0.8% agarose gel electrophoresis, and then purified the amplified PCR product using a QIAGEN PCR purification kit (manufactured by QIAGEN).
(3-3)ゲノムDNAの解析
 塩基配列解析及び相同性検索については、参考文献1及び2に記載された手法(参考文献1:[Lane, D. J., et al., “In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid techniques in bacterial systematics “, 16S/23S rRNA sequencing. p115-175,  John Wiley & Sons, New York, 1991.]、参考文献2:[Takai, K. and Horikoshi, K., “Rapid detection and quatification of members of archaeal community by quantitative PCR using fluorogenic probes”, Appl. Environ. Microbiol., 66, p5066-5072, 2000.])に基づき、GenBank/EMBL/DDBJのデータベースを用いてBLAST(http://www.ncbi.nlm.nih.gov/blast/Blast.cgi)により実施した。
ISI-3を接種したそれぞれのバイオマスにおける微生物コンソーシアムを考えるため、増幅した16s rRNA遺伝子の塩基配列を利用して分子系統解析を行ったところ、12の微生物の存在が確認された。この11つの微生物の16S rRNA遺伝子の塩基配列を配列表の配列番号1~11に示す。相同性検索の結果、ISI-3に含まれる微生物コンソーシアムは、以下の11の微生物である。
・Uncultured Clostridium sp. clone De3176の16S rRNA遺伝子の塩基配列に99%の相同性をもつ菌種(配列番号1)
・Cellulosibacter alkalithermophilus A6の16S rRNA遺伝子の塩基配列に99%の相同性を持つ菌種(配列番号2)
・Moorella glycerini strain JW AS-Y6の16S rRNA遺伝子の塩基配列に88%の相同性をもつ菌種(配列番号3)
・Moorella humiferrea strain 64-FGQの16S rRNA遺伝子の塩基配列に87%の相同性をもつ菌種(配列番号4)
・Tepidanaerobacter acetatoxydans strain Re1の16S rRNA遺伝子の塩基配列に88%、91%、又は95%の相同性をもつ3つの菌種(配列番号5、配列番号6、配列番号7)
・Tepidimicrobium ferriphilum strain DSM 16624の16S rRNA遺伝子の塩基配列に96%の相同性を示す菌種(配列番号8)
・Clostridium thermocellum DSM 1313、又はClostridium thermocellum ATCC 27406の16S rRNA遺伝子の塩基配列に99%の相同性をもつ菌種(配列番号9)
・Thermoanaerobacter mathranii A3の16S rRNA遺伝子の塩基配列に99%の相同性をもつ菌種(配列番号10)
・Uncultured bacterium clone ATB-CK-1492-11の16S rRNA遺伝子の塩基配列に94%の相同性を示す菌種(配列番号11)
また、今回のISI-3に含まれる菌種の同定によって、常に2種類~5種類程度の菌種がコンソーシアムを組み共存し、バイオマスの効率的分解を行っていることが明らかとなった。
(3-3) Analysis of genomic DNA For nucleotide sequence analysis and homology search, the methods described in References 1 and 2 (Reference 1: [Lane, DJ, et al., “In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid techniques in bacterial systematics “, 16S / 23S rRNA sequencing. P115-175, John Wiley & Sons, New York, 1991.], Reference 2: [Takai, K. and Horikoshi , K., “Rapid detection and quatification of members of archaeal community by quantitative PCR using fluorogenic probes”, Appl. Environ. Microbiol., 66, p5066-5072, 2000.]), the GenBank / EMBL / DDBJ database And performed by BLAST (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi).
In order to consider a microbial consortium in each biomass inoculated with ISI-3, molecular phylogenetic analysis was performed using the base sequence of the amplified 16s rRNA gene, and the presence of 12 microorganisms was confirmed. The base sequences of the 16S rRNA genes of these 11 microorganisms are shown in SEQ ID NOs: 1 to 11 in the sequence listing. As a result of the homology search, the microorganism consortium included in ISI-3 is the following 11 microorganisms.
-Unclosed Clostridium sp. Bacterial species having 99% homology to the base sequence of 16S rRNA gene of clone De3176 (SEQ ID NO: 1)
Cell strain having a homology of 99% with the base sequence of the 16S rRNA gene of Cellulosibacterium alkalythermophilus A6 (SEQ ID NO: 2)
-Bacterial species having 88% homology to the base sequence of the 16S rRNA gene of Moorella glycerini strain JW AS-Y6 (SEQ ID NO: 3)
-Species having a homology of 87% to the base sequence of 16S rRNA gene of Moorella humiferrea strain 64-FGQ (SEQ ID NO: 4)
-Three bacterial species having a homology of 88%, 91%, or 95% to the nucleotide sequence of the 16S rRNA gene of Tepidanaerobacteracetoxydan strain strain Re1 (SEQ ID NO: 5, SEQ ID NO: 6, SEQ ID NO: 7)
A bacterial species having 96% homology to the base sequence of the 16S rRNA gene of Tepidimicrobium ferriphyllum strain DSM 16624 (SEQ ID NO: 8)
A bacterial species having 99% homology to the base sequence of the 16S rRNA gene of Clostridium thermocellum DSM 1313 or Clostridium thermocellum ATCC 27406 (SEQ ID NO: 9)
-A bacterial species having 99% homology to the base sequence of the 16S rRNA gene of Thermoanaerobacter mathranii A3 (SEQ ID NO: 10)
A bacterial species showing 94% homology to the base sequence of the 16S rRNA gene of Uncultured bacteria clone ATB-CK-1492-11 (SEQ ID NO: 11)
In addition, the identification of the bacterial species contained in ISI-3 this time revealed that approximately 2 to 5 bacterial species always coexist in a consortium and efficiently decompose biomass.
 次いで、炭素源として使用した各バイオマス繊維物において、ISI-3の微生物コンソーシアムが存在する微生物の種類を整理し、表2に示した。 Next, in each biomass fiber used as the carbon source, the types of microorganisms in which the ISI-3 microbial consortium exists are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 全てのバイオマス繊維物を用いた培養において存在したのは、Uncultured Clostridium sp. clone De3176の16S rRNA遺伝子の塩基配列に99%の相同性をもつ菌種、及びCellulosibacter alkalithermophilus A6の16S rRNA遺伝子の塩基配列に99%の相同性を持つ菌種であった。 In the culture using all the biomass fibers, Uncultured Clostridium sp. It was a bacterial species having 99% homology to the base sequence of the 16S rRNA gene of Clone De3176 and a bacterial species having 99% homology to the base sequence of the 16S rRNA gene of Cellulosibacterium alkalythermophilus A6.
また、続いて、多種のバイオマス(キャッサバパルプ、サトウキビバガス、コーン茎葉、パーム幹繊維、及びエリアンサス)を用いた培養において存在したのは、Clostridium thermocellum DSM 1313であった。 Subsequently, Clostridium thermocellum DSM 1313 was present in the culture using various types of biomass (cassava pulp, sugarcane bagasse, corn stover, palm stem fiber, and Eliansus).
また、キャッサバパルプ、サトウキビバガス、コーン茎葉、及びパーム幹繊維において存在したのは、Tepidanaerobacter acetatoxydans strain Re1に88%、又は91%の相同性を有する菌種、Tepidimicrobium ferriphilum strain DSM 16624 に96%の相同性を有する菌種、Thermoanaerobacter mathranii A3に99%の相同性を有する菌種であった。 Also, cassava pulp, sugarcane bagasse, corn stover, and palm stem fiber existed in the Tepidanaerobacteracetoxydan strain Re1, 88%, or 91% homology of 96% in the Epidimicrobium ferrifilum 96 strain DS24 It was a bacterial species having 99% homology to Thermoanaerobacter mastranii A3.
また、コーン茎葉、パーム幹繊維、及びエリアンサスを用いた培養において存在したのは、Moorella glycerini strain JW/AS-Y6に88%の相同性を有する菌種、及びUncultured bacterium clone ATB-CK-1492-11に94%の相同性を有する菌種であった。 In addition, in the culture using corn stover, palm stem fiber, and Elianthus, the bacterial species having 88% homology to Moorella glycerini train JW / AS-Y6, and Uncultured bacteria clone ATB-CK-1492 It was a bacterial species having 94% homology to -11.
さらに、キャッサバパルプ、及びパーム幹繊維を用いた培養において存在したのは、Moorella humiferrea strain 64-FGQに87%の相同性を有する菌種であった。 Further, in the culture using cassava pulp and palm stem fiber, a bacterial species having 87% homology with Moorella humiferrea strain 64-FGQ was present.
以上のことから、バイオマスの種類によって、これら存在が確認された微生物種がコンソーシアムを作り、バイオマスを効率的に分解していることが明らかとなった。 From the above, it was clarified that microbial species whose existence was confirmed made a consortium and efficiently decomposed biomass depending on the type of biomass.
また、今回の培養試験の結果から、バイオマスの効率的な分解においてUncultured Clostridium sp. clone De3176の16S rRNA遺伝子の塩基配列に99%の相同性をもつ菌種、及びCellulosibacter alkalithermophilus A6の16S rRNA遺伝子の塩基配列に99%の相同性を持つ菌種、Clostridium属細菌、Thermoanaerobacter属細菌、Tepidanaerobacter属細菌、Tepidimicrobium 属細菌、及びMoorella属細菌の関与が重要であることが明らかとなった。
中でも、Uncultured Clostridium sp. clone De3176の16S rRNA遺伝子の塩基配列に99%の相同性をもつ菌種、及びCellulosibacter alkalithermophilus A6の16S rRNA遺伝子の塩基配列に99%の相同性を持つ菌種に関しては、特に、全てのバイオマスにおいて存在が確認されたことから、これら全てのバイオマス分解に重要な役割を行っていることが示唆される。そこで、上記2種類の菌種に関しては、ISI-3から純粋分離を試みた。
In addition, from the results of this culture test, it was found that Uncultured Clostridium sp. a strain having 99% homology to the base sequence of the 16S rRNA gene of clone De3176, and a strain having 99% homology to the base sequence of the Cellulosibacterium alkalithermophilus A6 16S rRNA gene, a Clostridium bacterium, a Thermoanaerobacter bacterium, It has been clarified that the involvement of Tepidanaerobacter, Tepidimicrobium, and Moorella bacteria is important.
Among them, Unclosed Clostridium sp. With regard to the bacterial species having 99% homology to the base sequence of the Clone De3176 16S rRNA gene, and the bacterial species having 99% homology to the base sequence of the Cellulosibacterium alkalithermophilus A6, particularly in all biomass. The presence was confirmed, suggesting that it plays an important role in all these biomass degradations. Therefore, pure separation from ISI-3 was attempted for the above two types of bacterial species.
(4)2種類の菌種の単離
 (3)の結果から、Uncultured Clostridium sp. clone De3176の16S rRNA遺伝子の塩基配列に99%の相同性をもつ菌種、及びCellulosibacter alkalithermophilus A6の16S rRNA遺伝子の塩基配列に99%の相同性を持つ菌種は、セルロース分解能が高い菌株であることが推察された。そこで、ISI-3から、特にセルロース分解能の高い菌を分離するため、1%結晶性セルロースを含むBMN寒天培地によりセルロース分解に伴うハロー形成可能な菌株を単離した。次いで、分離したコロニーは1%結晶性セルロースを含むBMN寒天培地によるシングルコロニーの分離操作を行い、本操作を3回繰り返した。最終的に、1%結晶性セルロースを含むBM7寒天培地(BM7培地の組成は、参考文献:「特開2010-51295号公報」参照。)において、72~80時間で結晶性セルロース分解によるハローを形成出来るかどうかを確認した。
その結果、セルロース分解に伴うハローを形成可能な菌株を数株単離し、再度16S rRNA遺伝子の塩基配列を明らかにした。得られたDNA配列データを用いて、(3)と同様にGenBank/EMBL/DDBJのデータベースを用いてBLASTによる相同性解析を行い、Uncultured Clostridium sp. clone De3176に96%の相同性を持つかどうか、又はCellulosibacter alkalithermophilus strain A6に99%の相同性を持つかどうかを確認した。
(4) Isolation of two kinds of bacterial species From the result of (3), Unclosed Clostridium sp. Bacteria having 99% homology to the base sequence of the 16S rRNA gene of clone De3176 and strains having 99% homology to the base sequence of the Cellulosibacterium alkalythermophilus A6 are strains having high cellulose resolution. It was inferred. Therefore, in order to isolate bacteria having high cellulose resolving ability from ISI-3, a strain capable of forming a halo accompanying cellulose degradation was isolated using a BMN agar medium containing 1% crystalline cellulose. Subsequently, the separated colonies were subjected to a single colony separation operation using a BMN agar medium containing 1% crystalline cellulose, and this operation was repeated three times. Finally, in a BM7 agar medium containing 1% crystalline cellulose (for the composition of the BM7 medium, see Reference: “Japanese Patent Laid-Open No. 2010-51295”), a halo due to crystalline cellulose degradation was observed in 72 to 80 hours. It was confirmed whether it could be formed.
As a result, several strains capable of forming a halo accompanying cellulose degradation were isolated and the base sequence of the 16S rRNA gene was clarified again. Using the obtained DNA sequence data, homology analysis by BLAST was performed using the database of GenBank / EMBL / DDBJ in the same manner as in (3), and the Unclosed Clostridium sp. It was confirmed whether it had 96% homology to Clone De3176 or 99% homology to Cellulosibacterium alkalythermophilus strain A6.
 相同性解析の結果、ISI-3から上記2つの微生物と考えられるUncultured Clostridium sp. clone De3176に96%の相同性、及びCellulosibacter alkalithermophilus strain A6に99%の相同性を持つ高温性の嫌気性セルロース分解菌を新規に単離及び取得した。また、16S rRNA遺伝子の塩基配列の結果から、Uncultured Clostridium sp. clone De3176の16S rRNA遺伝子の塩基配列に99%の相同性をもつ菌種、及びCellulosibacter alkalithermophilus A6の16S rRNA遺伝子の塩基配列に99%の相同性を持つ菌種はそれぞれ、配列番号1及び配列番号2に示す塩基配列と一致していた。
Uncultured Clostridium sp. clone De3176に96%の相同性を持つ単離した菌株をClostridium sp. A7株(以下、「A7株」と称することがある。)と命名し、独立行政法人  特許微生物寄託センター(NPMD)国際寄託に2016年3月8日付けで受託番号NITE BP-02216として寄託されている。
また、16S rRNA遺伝子の塩基配列を用いた系統樹解析を図3に示した。系統樹解析からA7株は、Clostridium alkalicellum Z-7026Tに近縁である新種である可能性が高いことが明らかとなった。
また、Cellulosibacter alkalithermophilus strain A6に99%の相同性を持つ高温性の嫌気性セルロース分解菌はCellulosibacter sp.W21-10株(以下、「W21-10株」と称することがある。)と命名し、独立行政法人  特許微生物寄託センター(NPMD)国際寄託に2016年5月24日付けで受託番号NITE BP-02265として寄託されている。
As a result of the homology analysis, Unclosed Clostridium sp. A new thermophilic anaerobic cellulolytic bacterium with 96% homology to Clone De3176 and 99% homology to Cellulosibacterium alkalythermophilus strain A6 was isolated and obtained. In addition, from the results of the base sequence of the 16S rRNA gene, Unclosed Clostridium sp. The bacterial species having 99% homology to the base sequence of the 16S rRNA gene of clone De3176, and the bacterial species having 99% homology to the base sequence of the 16S rRNA gene of Cellulosibacter alkalythermophilus A6 are respectively SEQ ID NO: 1 and SEQ ID NO: 2 was consistent with the nucleotide sequence shown in FIG.
Unclosed Clostridium sp. An isolated strain having 96% homology to Clone De3176 was identified as Clostridium sp. It was named A7 strain (hereinafter sometimes referred to as “A7 strain”) and was deposited at the International Depositary of Patent Microorganisms Depositary (NPMD) as deposit number NITE BP-02216 on March 8, 2016. ing.
A phylogenetic tree analysis using the base sequence of 16S rRNA gene is shown in FIG. Phylogenetic tree analysis revealed that the A7 strain is highly likely to be a new species closely related to Clostridium alkalicumum Z-7026T.
In addition, a thermophilic anaerobic cellulolytic bacterium having 99% homology to Cellulosibacterium alkalythermophilus strain A6 is Cellulosibacterium sp. It was named W21-10 strain (hereinafter sometimes referred to as “W21-10 strain”), and was deposited with the International Depositary of Incorporated Administrative Agency Patent Microorganisms Depositary (NPMD) as of May 24, 2016 with the accession number NITE BP- Deposited as 02265.
 なお、A7株は、以下の形態学的特徴を有していた。
(A7株の形態学的特徴)
・培養至適温度  :55℃
・細胞形態      :桿菌(幅0.3~0.4μm×長さ2.0~6.0μm )
・グラム染色    :陽性
・芽胞形成      :なし
・コロニー色調  :オレンジ
The A7 strain had the following morphological characteristics.
(Morphological features of A7 strain)
-Optimum culture temperature: 55 ° C
-Cell morphology: Neisseria gonorrhoeae (width 0.3-0.4 μm x length 2.0-6.0 μm)
-Gram staining: positive-Spore formation: None-Colony color: Orange
 また、W21-10株は、以下の形態学的特徴を有していた。
(W21-10株の形態学的特徴)
・培養至適温度  :60℃
・細胞形態      :桿菌(幅0.2~0.3μm×長さ2.0~3.0μm)
・グラム染色    :陽性
・芽胞形成      :なし
・コロニー色調  :イエロー
In addition, the W21-10 strain had the following morphological characteristics.
(Morphological features of W21-10 strain)
-Optimum culture temperature: 60 ° C
-Cell morphology: Neisseria gonorrhoeae (width 0.2-0.3 μm x length 2.0-3.0 μm)
-Gram staining: Positive-Spore formation: None-Colony color: Yellow
(5)A7株及びW21-10株の生育可能なpHの検討
 さらに、生育可能なpHを調べるために、0.5%セロビオースを含むBMN液体培地を用いて、pH4.0からpH10.0まで、pH1.0おきに培地中のpHを塩酸で調整した後、600nmによる濁度の上昇を指標に生育測定を行なった。なお、pH8.0はTris-HCl緩衝液を培地に添加しpHの調整を行ない、pH9.0~10.0は炭酸ナトリウム緩衝液を用いpHの調整を行なった。各pHに調整された液体培地はオートクレーブ後、pHメーターを用いて、指定のpHとなっているか確認をした後、菌を培養して試験を行なった。
(5) Examination of pH at which A7 strain and W21-10 strain can be grown Further, in order to examine the pH at which growth is possible, a BMN liquid medium containing 0.5% cellobiose was used to adjust pH from 4.0 to pH 10.0. After adjusting the pH of the medium with hydrochloric acid every pH 1.0, growth was measured using the increase in turbidity due to 600 nm as an indicator. For pH 8.0, Tris-HCl buffer was added to the medium to adjust the pH, and for pH 9.0 to 10.0, pH was adjusted using a sodium carbonate buffer. The liquid medium adjusted to each pH was autoclaved, and after confirming whether it had a specified pH using a pH meter, the bacteria were cultured and tested.
その結果、A7株ではpH6.0からpH10.0の範囲で生育を確認でき、至適生育pHは9.0であった。また、W21-10株では、少し生育範囲が狭くpH8.0からpH10.0の範囲で生育を確認でき、至適生育pHは9.5であった。 As a result, in the A7 strain, growth could be confirmed in the range of pH 6.0 to pH 10.0, and the optimum growth pH was 9.0. In the W21-10 strain, the growth range was slightly narrow and growth could be confirmed in the range of pH 8.0 to pH 10.0, and the optimum growth pH was 9.5.
(6)A7株及びW21-10株の炭素源の資化性試験
 A7株及びW21-10株の生理学的特徴を明らかにするために、炭素源の資化性試験を行った。糖の資化性は、セルロース、キシラン、澱粉、βグルカン、セロビオース、グルコース、フラクトース、アラビノース、マンノース、及びマルトースを各0.5%それぞれ含むBM7液体培地を用いて測定を行なった。不溶性基質であるセルロースは、セルロースの消失により資化性の有無を判定し、キシランは生育に伴うガス発生により測定を行った。またその他の可溶性基質を使用した場合、上記と同様に600nmでの濁度の上昇を測定した。培養は4日間行い、その後生育の有無を測定した。
(6) Carbon source assimilation test of A7 strain and W21-10 strain In order to clarify the physiological characteristics of the A7 strain and W21-10 strain, a carbon source assimilation test was conducted. The assimilation of sugar was measured using a BM7 liquid medium containing 0.5% each of cellulose, xylan, starch, β-glucan, cellobiose, glucose, fructose, arabinose, mannose, and maltose. Cellulose, which is an insoluble substrate, was determined for assimilation by the disappearance of cellulose, and xylan was measured by gas generation accompanying growth. When other soluble substrates were used, the increase in turbidity at 600 nm was measured as described above. Culture was performed for 4 days, and then the presence or absence of growth was measured.
 その結果、A7株及びW21-10株において、炭素源としてセルロース、キシラン、セロビオースを用いた場合では、良好な生育を示した。また、炭素源としてグルコース、フラクトース、アラビノース、マンノース、マルトース、及びβグルカンを用いた場合では、ゆっくりではあるが生育が認められた。一方、炭素源として澱粉を用いた場合では、A7株では資化が認められなかったが、W21-10株では資化が認められた。さらに、W21-10株は、ペクチン、ソルビトール、マンニトール、及びグリセロールといった異なる糖質資化性能も有していた。 As a result, the A7 strain and the W21-10 strain showed good growth when cellulose, xylan, and cellobiose were used as the carbon source. Further, when glucose, fructose, arabinose, mannose, maltose, and β-glucan were used as the carbon source, growth was observed although it was slow. On the other hand, when starch was used as the carbon source, no assimilation was observed in the A7 strain, but assimilation was observed in the W21-10 strain. Furthermore, the W21-10 strain also had different carbohydrate utilization capabilities such as pectin, sorbitol, mannitol, and glycerol.
[実施例2]
(1)各バイオマスにおける各種菌株の培養
 既知菌株であるクロストリジウム・サーモセラムATCC27405株、A7株、W21-10株、又はそれらの組み合わせにおいて、バイオマスの分解が促進されるかどうかについて試験を行った。クロストリジウム・サーモセラムATCC27405株のみの培養では、BMN培地の代わりにBM7培地(BM7培地の組成は、参考文献:「特開2010-51295号公報」参照。)を用いて、60℃にて4日間培養を行った。また、代表的なバイオマスとして、キャッサバパルプ、バガス、及びコーン茎葉を一例として用いた。それぞれのバイオマスに対して分解効率を示すために、実施例1の(2)と同様の方法を用いて、培養終了後、良く残渣を撹拌した後、遠心分離により上清を取り除き、洗浄及び乾燥を行い、乾燥重量を求め、バイオマス分解率を算出した。結果を図6に示す。図6において、Ctとはクロストリジウム・サーモセラムATCC27405株を示し、A7とはA7株を示し、W21とはW21-10株を示す。
[Example 2]
(1) Cultivation of various strains in each biomass It was tested whether the degradation of biomass was promoted in known strains such as clostridium thermocellum ATCC27405 strain, A7 strain, W21-10 strain, or combinations thereof. In the case of culturing only the clostridium thermocellum ATCC27405 strain, culturing at 60 ° C. for 4 days using BM7 medium instead of the BMN medium (for the composition of the BM7 medium, see Reference: “JP 2010-51295 A”). Went. As typical biomass, cassava pulp, bagasse, and corn stover were used as examples. In order to show the decomposition efficiency for each biomass, using the same method as in (2) of Example 1, after culturing, after thoroughly stirring the residue, the supernatant was removed by centrifugation, washed and dried The dry weight was determined and the biomass degradation rate was calculated. The results are shown in FIG. In FIG. 6, Ct represents the clostridium thermocellum ATCC27405 strain, A7 represents the A7 strain, and W21 represents the W21-10 strain.
 図6から、クロストリジウム・サーモセラムATCC27405株を接種した場合において、残渣重量から見たバイオマスの分解効率はキャッサバパルプ、バガス、コーン茎葉で40%、35%、39%となっていた。特に、キャッサバパルプにおいて分解効率が低い値となっており、これはキャッサバパルプの澱粉が大部分分解されずに残ってしまった結果であると考えられる。
また、A7株を接種した場合においても、特に、キャッサバパルプにおいて分解効率が低い値となっていた。これは、A7株においても、澱粉資化性が弱いため、単独では大部分の澱粉が残存してしまうために、バイオマス残渣が多く残存したせいであると考えられる。
一方、W21-10株では、澱粉やセルロース資化性能両方有していることから、キャッサバパルプ、及びその他のセルロース系バイオマスにおいても、単独でも良好な分解効率を示した。
また、クロストリジウム・サーモセラムATCC27405株単独と比較して、A7株、及び/又はW21-10株を共存させることで、分解効率は飛躍的に上昇することが明らかとなった。特に、キャッサバパルプを用いた試験において、A7株及びW21-10株を共存させることより、約70%が分解し、可溶化できることが明らかとなった。
以上により、セルロース分解においては、A7株、W21-10株が中心となり、リグノセルロース系バイオマスを協調的、共同的に効率良く分解し、さらに、クロストリジウム・サーモセラムの共同作業により、結晶部分の高い結晶セルロース部分を完全に分解するものと考えられる。
From FIG. 6, when clostridium thermocellum ATCC27405 strain was inoculated, the decomposition efficiency of biomass as seen from the residue weight was 40%, 35%, and 39% for cassava pulp, bagasse, and corn stover. In particular, cassava pulp has a low decomposition efficiency, which is considered to be a result of most cassava pulp starch remaining without being decomposed.
Further, even when A7 strain was inoculated, the degradation efficiency was particularly low in cassava pulp. This is also because the A7 strain is weak in starch assimilation, so that most of the starch remains alone, so that a large amount of biomass residue remains.
On the other hand, since the W21-10 strain has both starch and cellulose assimilation performance, cassava pulp and other cellulosic biomass alone showed good decomposition efficiency.
In addition, it became clear that the degradation efficiency was dramatically increased by the coexistence of the A7 strain and / or the W21-10 strain, compared with the clostridium thermocellum ATCC27405 strain alone. In particular, in a test using cassava pulp, it was revealed that about 70% can be decomposed and solubilized by coexisting with the A7 strain and the W21-10 strain.
As described above, in the cellulose degradation, the A7 and W21-10 strains are the center, and lignocellulosic biomass is efficiently decomposed in a coordinated and collaborative manner, and crystals with high crystal parts are obtained through the joint work of clostridium thermocellum. It is considered that the cellulose part is completely decomposed.
一方、ISI-3によるバイオマスの分解と比較して単独菌でのバイオマスの分解では、分解率が低下している傾向が見られるが、セルロース分解に関与しない菌種、すなわちThermoanaerobacter属細菌、Tepidanaerobacter属細菌、Tepidimicrobium属細菌、及びMoorella属細菌により、生成してくるオリゴ糖や有機酸等が消費され、セルロース分解菌の生産するセルラーゼ等の酵素群におけるセルロース分解作用が促進されると考えられる。
よって、これらの非セルロース分解菌の役割、及び協調作用も、リグノセルロース系バイオマスの分解において、非常に重要であることが明らかとなった。
On the other hand, compared with the decomposition of biomass by ISI-3, decomposition of biomass with a single fungus tends to decrease the decomposition rate, but the bacterial species that do not participate in cellulose decomposition, ie, Thermoanaerobacter genus, Tepidanaerobacter genus It is considered that the oligosaccharides, organic acids, and the like that are produced are consumed by the bacteria, the genus Tepidimicrobium, and the bacteria of the genus Moorella, and the cellulose degrading action in the enzyme group such as cellulase produced by the cellulolytic bacteria is promoted.
Therefore, it became clear that the role of these non-cellulolytic bacteria and the cooperative action are also very important in the degradation of lignocellulosic biomass.
 本実施形態の微生物は、リグノセルロース分解能の優れた新規微生物である。また、前記微生物を含むリグノセルロース系バイオマス分解用組成物によれば、リグノセルロースを高効率で分解し、糖化液又はリグノセルロース系バイオマス由来化合物を高収率で得ることができる。 The microorganism of the present embodiment is a novel microorganism excellent in lignocellulose resolution. Moreover, according to the composition for decomposing lignocellulosic biomass containing the microorganism, lignocellulose can be decomposed with high efficiency, and a saccharified solution or lignocellulosic biomass-derived compound can be obtained in high yield.

Claims (8)

  1.  以下の(a)~(c)のいずれかの核酸を含む16S rRNA遺伝子を有し、且つリグノセルロース系バイオマスの分解能を有する微生物。
     (a)配列番号1又は2に示す塩基配列からなる核酸、
     (b)配列番号1又は2に示す塩基配列と95%以上の同一性を有する核酸、
     (c)配列番号1又は2に示す塩基配列において、1若しくは数個の塩基が欠損、置換若しくは付加された塩基配列からなる核酸
    A microorganism having a 16S rRNA gene containing any of the following nucleic acids (a) to (c) and having a resolution of lignocellulosic biomass.
    (A) a nucleic acid comprising the base sequence shown in SEQ ID NO: 1 or 2,
    (B) a nucleic acid having 95% or more identity with the base sequence shown in SEQ ID NO: 1 or 2,
    (C) a nucleic acid comprising a base sequence in which one or several bases are deleted, substituted or added in the base sequence shown in SEQ ID NO: 1 or 2
  2.  クロストリジウム・スピーシーズ(Clostridium sp.)A7株(NITE BP-02216)。 Clostridium sp. A7 strain (NITE BP-02216).
  3.  セルロシバクター・アルカリサーモフィラス(Cellulosibacter alkalithermophilus)W21-10株(NITE BP-02265)。 Cellulosibacter alkaline thermophilus W21-10 strain (NITE BP-02265).
  4.  少なくとも1種の請求項1に記載の微生物、又は前記微生物由来の酵素若しくは遺伝子産物を含むリグノセルロース系バイオマス分解用組成物。 A composition for degrading lignocellulosic biomass comprising at least one microorganism according to claim 1, or an enzyme or gene product derived from said microorganism.
  5.  前記微生物がクロストリジウム・スピーシーズ(Clostridium sp.)A7株(NITE BP-02216)、又はセルロシバクター・アルカリサーモフィラス(Cellulosibacter alkalithermophilus)W21-10株(NITE BP-02265)である請求項4に記載のリグノセルロース系バイオマス分解用組成物。 5. The microorganism according to claim 4, wherein the microorganism is Clostridium sp. A7 strain (NITE BP-02216) or Cellulosibacter alkaline thermophilus W21-10 strain (NITE BP-02265) Composition for lignocellulosic biomass decomposition.
  6.  さらに、以下の(d)~(f)のいずれかの核酸を含む16S rRNA遺伝子を有し、且つリグノセルロース系バイオマスの分解能、又はリグノセルロース系バイオマスの分解産物の代謝能を有する微生物のうち少なくとも1種を含む請求項4又は5に記載のリグノセルロース系バイオマス分解用組成物。
     (d)配列番号3~11のいずれかに示す塩基配列からなる核酸、
    (e)配列番号3~11のいずれかに示す塩基配列と90%以上の同一性を有する核酸、
     (f)配列番号3~11のいずれかに示す塩基配列において、1若しくは数個の塩基が欠損、置換若しくは付加された塩基配列からなる核酸
    Further, at least one of the microorganisms having a 16S rRNA gene containing any of the following nucleic acids (d) to (f) and having a resolution of lignocellulosic biomass or a metabolic ability of a degradation product of lignocellulosic biomass: The composition for lignocellulose-type biomass decomposition | disassembly of Claim 4 or 5 containing 1 type.
    (D) a nucleic acid comprising the base sequence shown in any of SEQ ID NOs: 3 to 11,
    (E) a nucleic acid having 90% or more identity with the base sequence shown in any of SEQ ID NOs: 3 to 11,
    (F) a nucleic acid comprising a base sequence in which one or several bases are deleted, substituted or added in the base sequence shown in any of SEQ ID NOs: 3 to 11
  7.  請求項4~6のいずれか一項に記載のリグノセルロース系バイオマス分解用組成物を用いて、リグノセルロース系バイオマスから糖化液を生成させる糖化工程を備える糖化液の製造方法。 A method for producing a saccharified solution comprising a saccharification step for producing a saccharified solution from lignocellulosic biomass using the lignocellulose-based biomass decomposing composition according to any one of claims 4 to 6.
  8.  請求項7に記載の製造方法を用いて、糖化液を製造した後、前記糖化液からリグノセルロース系バイオマス由来化合物を生産させる生産工程を備えるリグノセルロース系バイオマス由来化合物の製造方法。 A method for producing a lignocellulosic biomass-derived compound comprising a production step of producing a lignocellulosic biomass-derived compound from the saccharified solution after producing a saccharified solution using the production method according to claim 7.
PCT/JP2017/021784 2016-06-21 2017-06-13 Microorganism, composition for degrading lignocellulose-based biomass, method for producing saccharified liquid and method for producing compound derived from lignocellulose-based biomass WO2017221765A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780023991.7A CN109153987A (en) 2016-06-21 2017-06-13 Microorganism, for the preparation method of the composition of decomposing lignocellulose biolobic material, the preparation method of saccharified liquid and lignocellulose-like biomass derivative compound
JP2018523926A JP6599006B2 (en) 2016-06-21 2017-06-13 Microorganism, composition for decomposing lignocellulosic biomass, method for producing saccharified liquid, and method for producing compound derived from lignocellulosic biomass
PH12018502608A PH12018502608A1 (en) 2016-06-21 2018-12-11 Microorganism, composition for degrading lignocellulose-based biomass, method for producing saccharified liquid and method for producing compound derived from lignocellulose-based biomass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016123065 2016-06-21
JP2016-123065 2016-06-21

Publications (1)

Publication Number Publication Date
WO2017221765A1 true WO2017221765A1 (en) 2017-12-28

Family

ID=60783236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/021784 WO2017221765A1 (en) 2016-06-21 2017-06-13 Microorganism, composition for degrading lignocellulose-based biomass, method for producing saccharified liquid and method for producing compound derived from lignocellulose-based biomass

Country Status (4)

Country Link
JP (1) JP6599006B2 (en)
CN (1) CN109153987A (en)
PH (1) PH12018502608A1 (en)
WO (1) WO2017221765A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113308498A (en) * 2021-05-26 2021-08-27 安徽工程大学 Method for preparing bioethanol from pineapple leaves

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147318A1 (en) * 2014-03-28 2015-10-01 国立大学法人三重大学 Alcohol production method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101560488A (en) * 2009-05-27 2009-10-21 中国农业大学 Enzyme and microbial inoculum for decomposing lignocellulose
CN101851650A (en) * 2010-04-19 2010-10-06 中国科学院青岛生物能源与过程研究所 Method for saccharifying cellulose raw material
CN102676426A (en) * 2012-05-09 2012-09-19 湖北省农业科学院农产品加工与核农技术研究所 Compound bacterium agent capable of decomposing cotton stalks quickly and preparation method thereof
CN103789349A (en) * 2014-01-26 2014-05-14 华南理工大学 Method for increasing microbe conversion rate of bagasse by utilizing non-ionic surface active agent
CN104630292A (en) * 2015-02-09 2015-05-20 哈尔滨工业大学宜兴环保研究院 Method for preparing butyric acid by fermenting lignocellulose by using mixed flora
CN106085909A (en) * 2016-06-17 2016-11-09 大庆市春田绿土农业科技有限公司 Ripening microbial inoculum that corn straw is matrixing and application

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015147318A1 (en) * 2014-03-28 2015-10-01 国立大学法人三重大学 Alcohol production method

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CHEN, L. ET AL.: "Mics of the Clostridium thermocellum in lignocellulose degradation-A review", ACTA MICROBIOLOGICA SINICA, vol. 54, 4 February 2014 (2014-02-04), pages 121 - 128, XP055445947 *
DATABASE GenBank [O] 1 May 2007 (2007-05-01), XP055451999, Database accession no. DQ887918 *
DATABASE Nucleotide 23 October 2012 (2012-10-23), "Cellulosibacter alkalithermophilus strain A6 16S ribosomal RNA gene, partial sequence", XP055452004, Database accession no. FJ815191 *
TACHAAPAIKOON, C. ET AL.: "Isolation and characterization of a new cellulosome-producing Clostridium thermocellum strain", BIODEGRADATION, vol. 23, 2012, pages 57 - 68, XP035013497 *
TAGHAVI, S. ET AL.: "Complete Genome Sequence of Clostridium sp. Strain DL-VIII, a Novel Solventogenic Clostridium Species Isolated from Anaerobic Sludge", GENOME ANNOUNCEMENTS, vol. 1, no. 4, 2013, pages - 2, XP055445942, ISSN: 1 *
WANG, C. ET AL.: "Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of Actinobacteria in lignocellulose decomposition", BIOTECHNOLOGY FOR BIOFUELS, vol. 9, no. 1, January 2016 (2016-01-01), pages 1 - 17, XP055445951 *
WATTHANALAMLOET, A. ET AL.: "Cellulosibacter alkalithermophilus gen. nov., sp. nov., an anaerobic alkalithermophilic, cellulolytic- xylanolytic bacterium isolated from soil of a coconut garden", INTERNATIONAL JOURNAL OF SYSTEMATIC AND EVOLUTIONARY MICROBIOLOGY, vol. 62, 2012, pages 2330 - 2335, XP055445929 *
WEI, Y. ET AL.: "Insight into Dominant Cellulolytic Bacteria from Two Biogas Digesters and Their Glycoside Hydrolase Genes", PLOS ONE, vol. 10, 2015, pages e0129921, XP055445953 *
ZHANG, K. ET AL.: "Synergism of Glycoside Hydrolase Secretomes from Two Thermophilic Bacteria Cocultivated on Lignocellulose", APPLIED AND ENVIRONMENTAL MICROBIOLOGY, vol. 80, 2014, pages 2592 - 2601, XP055445936 *

Also Published As

Publication number Publication date
JPWO2017221765A1 (en) 2018-12-13
JP6599006B2 (en) 2019-10-30
PH12018502608A1 (en) 2019-10-28
CN109153987A (en) 2019-01-04

Similar Documents

Publication Publication Date Title
Raghuwanshi et al. Bioprocessing of enhanced cellulase production from a mutant of Trichoderma asperellum RCK2011 and its application in hydrolysis of cellulose
Dar et al. Exploring the gut of Helicoverpa armigera for cellulose degrading bacteria and evaluation of a potential strain for lignocellulosic biomass deconstruction
Saratale et al. Production of thermotolerant and alkalotolerant cellulolytic enzymes by isolated Nocardiopsis sp. KNU
US9085789B2 (en) Paenibacillus spp. and methods for fermentation of lignocellulosic materials
Guo et al. Functional characteristics and diversity of a novel lignocelluloses degrading composite microbial system with high xylanase activity
Tsegaye et al. Biodelignification and hydrolysis of rice straw by novel bacteria isolated from wood feeding termite
Kim et al. Production of cellulases by Penicillium sp. in a solid-state fermentation of oil palm empty fruit bunch
Nutongkaew et al. Bioconversion of oil palm trunk residues hydrolyzed by enzymes from newly isolated fungi and use for ethanol and acetic acid production under two-stage and simultaneous fermentation
Hooker et al. Hydrolysis of untreated lignocellulosic feedstock is independent of S-lignin composition in newly classified anaerobic fungal isolate, Piromyces sp. UH3-1
Das et al. Biodegradation of plant pectin and hemicelluloses with three novel Bacillus pumilus strains and their combined application for quality jute fibre production
WO2012068310A2 (en) Compositions and methods for improved saccharification of genetically modified plant-derived biomass
Menshawy et al. Isolation and molecular identification of cellulose/hemicellulose degrading bacteria from agricultural compost and determination of their hydrolytic potential
Fadel et al. Cellulases and animal feed production by solid-state fermentation by Aspergillus fumigatus NRCF-122 mutant
JP6599006B2 (en) Microorganism, composition for decomposing lignocellulosic biomass, method for producing saccharified liquid, and method for producing compound derived from lignocellulosic biomass
JP6950873B2 (en) Mutant strain Aspergillus acreatus for producing cellulase and xylanase and its preparation method
JP5527723B2 (en) Method for producing microbial cells retaining α-glucan converted from plant cell wall components
Chimtong et al. Symbiotic Behavior during Co-culturing of Clostridium thermocellum NKP-2 and Thermoanaerobacterium thermosaccharolyticum NOI-1 on Corn Hull
Sadhu et al. Characterization of a Bosea sp. strain SF5 (MTCC 10045) isolated from compost soil capable of producing cellulase
Valliammai et al. Mining the prospective of Candida tropicalis YES3 in Napier biomass saccharification
Dixit et al. High solid saccharification using mild alkali-pretreated rice straw by hyper-cellulolytic fungal strain
Jain et al. Characterization of a Trichoderma atroviride strain isolated from switchgrass bales and its use to saccharify ammonia-pretreated switchgrass for biobutanol production
Saini et al. Saccharification of Parthenium hysterophorus biomass using cellulase from Streptomyces sp. NAA2
KR102155046B1 (en) Novel Trichoderma sp. KMF006 strain producing cellulase with high activity
Kumar et al. Cost effective production of cellulase using wheat bran from Bacillus subtilis BM1 and encoding endo-beta-1, 4-glucanase producing gene
CN114214206B (en) Strain for efficiently degrading biomass and application thereof

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2018523926

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17815234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17815234

Country of ref document: EP

Kind code of ref document: A1