WO2018159573A1 - Method for producing saccharifying enzyme and method for oligosaccharide production - Google Patents

Method for producing saccharifying enzyme and method for oligosaccharide production Download PDF

Info

Publication number
WO2018159573A1
WO2018159573A1 PCT/JP2018/007113 JP2018007113W WO2018159573A1 WO 2018159573 A1 WO2018159573 A1 WO 2018159573A1 JP 2018007113 W JP2018007113 W JP 2018007113W WO 2018159573 A1 WO2018159573 A1 WO 2018159573A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
cellulase
saccharifying enzyme
soybean
protein
Prior art date
Application number
PCT/JP2018/007113
Other languages
French (fr)
Japanese (ja)
Inventor
雄介 加川
成利 吉田
紳吾 平松
山田 勝成
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2018514490A priority Critical patent/JPWO2018159573A1/en
Publication of WO2018159573A1 publication Critical patent/WO2018159573A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/14Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase

Definitions

  • the present invention relates to a method for producing a saccharifying enzyme by Trichoderma filamentous fungi using soybean hull and a method for producing an oligosaccharide using the same.
  • One of the decomposition methods is an enzyme decomposition method in which cellulosic biomass is hydrolyzed using cellulase, which is a saccharifying enzyme, and has attracted attention.
  • oligosaccharides In addition to the characteristics of low sweetness and low calories, oligosaccharides have the function of promoting the growth of enteric bacteria and maintaining the state of the intestine in good condition. Yes.
  • xylo-oligosaccharides and cellooligosaccharides are less susceptible to degradation by acids and digestive enzymes, and thus exert their effects even in trace amounts compared to other oligosaccharides.
  • Xylooligosaccharides are used not only for human food applications but also as an additive to livestock feed.
  • Xylooligosaccharide is obtained by hydrolyzing xylan, which is one of the constituent components of plants, with a saccharifying enzyme.
  • xylan which is one of the constituent components of plants
  • a saccharifying enzyme when cellulase is used as a saccharifying enzyme, it is difficult to efficiently produce xylooligosaccharide because cellulase also contains ⁇ -xylosidase that degrades xylooligosaccharide. Has been.
  • Patent Document 1 as a method for producing xylooligosaccharides, cellulose-containing biomass is hydrolyzed with cellulase derived from Trichoderma filamentous fungi, and recovered cellulase with reduced ⁇ -xylosidase activity recovered from the hydrolyzate is used. Yes.
  • a method for producing cellulase there is a method for producing cellulase using Trichoderma filamentous fungi having high cellulase production ability.
  • a Trichoderma filamentous fungus is subjected to gene mutation treatment to obtain a Trichoderma filamentous fungus mutant having high cellulase production ability.
  • ⁇ -xylosidase activity in cellulase obtained from the mutant of Patent Document 2 or production of xylo-oligosaccharides.
  • Patent Document 2 describes that soy bean can be used in addition to cellulose as a carbon source in a medium for producing cellulase.
  • Trichoderma filamentous fungi belong to aerobic filamentous fungi that require oxygen for growth, and when cultured in a liquid medium, the viscosity of the medium increases. As the viscosity increases, the distribution of oxygen and nutrients becomes uneven, so when culturing Trichoderma filamentous fungi, the culture solution is agitated or the oxygen supply rate is increased, so that the dissolved oxygen saturation during the culture is increased. It is necessary to maintain the degree above a certain level.
  • the oxygen transfer capacity coefficient becomes lower. Therefore, in order to keep the dissolved oxygen saturation during the culture at a certain level or more, it is necessary to further increase the number of stirring and the amount of oxygen supply. However, when the number of stirring is increased, there is a problem that large shear damage is given to the bacterial cells, and there is a problem that more energy is required to increase the oxygen supply amount.
  • Patent Document 3 discloses a method in which a mycelial elongation inhibitor is added to a medium to form a mycelium form in a pellet form
  • Patent Document 4 is a causative substance of viscosity. Disclosed are mutants of filamentous fungi that suppress protein secretion.
  • Patent Document 5 discloses the production of cellulase as a protein.
  • a method of adding cellulose or xylan or the like as an inducer to the medium is disclosed.
  • the present inventor has conducted intensive studies to solve the above-mentioned problems. As a result, by culturing Trichoderma filamentous fungi in a medium containing 0.8% w / v or more of soybean hull as a dry weight, the ⁇ -xylosidase ratio The inventors have found that a saccharifying enzyme having a very low activity can be obtained, and that the decrease in dissolved oxygen saturation can be suppressed, and have completed the present invention.
  • the present invention provides the following (1) to (5).
  • a method for producing a saccharifying enzyme comprising culturing Trichoderma filamentous fungi in a medium containing 0.8 w / v% or more of soybean hull as a dry weight.
  • the ⁇ -xylosidase specific activity of the cellulase is 0.1 U / mg protein or less per mg of the cellulase protein as an enzyme activity for degrading 4-nitrophenyl- ⁇ -D-xylopyranoside.
  • a method for producing a saccharifying enzyme comprising culturing Trichoderma filamentous fungi in a medium containing 0.8 w / v% or more of soybean hull as a dry weight.
  • Trichoderma filamentous fungi when Trichoderma filamentous fungi are cultured in a medium to which soybean hull is added at 0.8 w / v% or more, oligosaccharides can be efficiently produced from biomass by using a saccharifying enzyme obtained by the culture. Become. Further, by using the method of the present invention, it is possible to maintain a high dissolved oxygen saturation in the culture solution when culturing Trichoderma filamentous fungi.
  • the Trichoderma filamentous fungus used in the present invention is also referred to as the genus Hypocrea, but is referred to as Trichoderma in the present specification.
  • the Trichoderma filamentous fungi used in the present invention may be any species of the genus Trichoderma, but Trichoderma filamentous fungi having high saccharifying enzyme productivity are preferred. Specifically, Trichoderma reesei, Trichoderma viride, Trichoderma atroviride and Trichoderma longibratitam are preferred. .
  • the soybean hull used in the present invention is a thin film-like seed coat covering each soybean seed wrapped in soybean straw and is a part of the soybean seed. Soybean hull is contained in about 10 g (dry weight) per 100 g (dry weight) of soybean seeds. Soybean hulls may be produced directly from soybeans or indirectly from okara or defatted soybeans that are discarded during the production of soybean foods. Soybean hull is also referred to as soy bean mill feed or soy hull, and is referred to as soy hull in this specification.
  • a soybean-derived material containing soybean hull or a mixture of soybean and soybean-derived material in addition to soybean hull can be used to prepare a medium.
  • Specific examples of the soybean-derived material include okara, defatted soybean, soybean seed and the like.
  • the dry weight is a value obtained by removing moisture from the fresh weight. Specifically, the soybean hull or the soybean-derived material is left in a dryer at 90 ° C. for 12 hours, and the weight when returned to normal temperature is dried. Weight.
  • the dry weight of soybean hull contained in soybean or soybean-derived material can be quantified as insoluble dietary fiber contained in soybean or soybean-derived material.
  • the value determined according to the Prosky method is used as the dry weight of soybean hull.
  • a specific method for determining the dry weight of soybean hull by the Prosky method is as follows.
  • soybean or soybean-derived material is treated with heat-resistant ⁇ -amylase for 30 minutes at pH 6.0 and 95 ° C., and then treated with protease for 30 minutes at pH 7.5 and 60 ° C.
  • this enzyme-treated soybean is treated with amyloglucosidase at pH 4.5 and 60 ° C. for 30 minutes.
  • 95% ethanol corresponding to a volume equivalent to four times the amount used is added and allowed to stand for 1 hour to form a precipitate, and then the precipitate is collected by suction filtration.
  • the collected precipitate is washed with ethanol and acetone, and the washed precipitate is dried at 90 ° C. for 12 hours and then returned to room temperature, and then the dry weight is measured.
  • the dried precipitate contains protein derived from soybean, enzyme-derived protein, organic matter, etc. that remains without being decomposed
  • the protein and ash are separately quantified and subtracted from the dry weight of the precipitate to insoluble food.
  • the fiber amount is calculated.
  • the protein is quantified using the Kjeldahl method for the dried precipitate, and the ash is quantified as the dry weight of soybean hull after the dried precipitate is ashed at 600 ° C.
  • the medium contains nutrients necessary for culturing Trichoderma fungi in addition to soybean hull.
  • the medium composition other than soybean hull for culturing Trichoderma filamentous fungi is not particularly limited as long as the medium composition is such that Trichoderma filamentous fungi can produce saccharifying enzymes.
  • the medium contains water as a medium, and contains a nitrogen source and trace elements useful for survival or growth of Trichoderma filamentous fungi. Examples of the nitrogen source include at least one selected from corn steep liquor, polypeptone, gravy, and soybean meal.
  • trace elements examples include sulfur, calcium, magnesium, zinc, iron, copper, manganese, boron, molybdenum, and the like. Salts of these trace elements (sulfate for sulfur, boric acid for boron, etc.) ) Can be included in the medium. Specific examples include ammonium sulfate, calcium chloride, magnesium sulfate, zinc chloride, iron chloride, copper sulfate, manganese chloride, boric acid, hexaammonium heptamolybdate and the like, and hydrates thereof can also be used. . In addition, since soybean hull functions also as a carbon source, it is not necessary to add a carbon source separately, but carbon sources other than soybean hull may be included.
  • examples of the carbon source include saccharides.
  • examples of the saccharide include at least one selected from glucose, xylose, galactose, fructose, cellobiose, lactose, and sucrose.
  • the concentration of the saccharide is preferably 200 g / L or less, more preferably 100 g / L or less, and particularly preferably 50 g / L or less.
  • an antifoaming agent or a surfactant that is well-known to be added to culture of microorganisms may be added to the medium.
  • the soybean hull When the soybean hull is added to the medium, the soybean hull may be pretreated.
  • Specific pretreatment methods include drying, steaming, heating, and pulverization.
  • the Trichoderma filamentous fungus When the amount of Trichoderma filamentous fungi to be cultured is small, the Trichoderma filamentous fungus is cultured and grown under normal conditions not containing soybean hull, and then the Trichoderma filamentous fungus is grown in a medium containing soybean hull.
  • the main culture may be performed in the medium.
  • the saccharifying enzyme obtained by the method of the present invention includes cellulase, amylase, invertase, chitinase and the like.
  • cellulase can be produced particularly efficiently.
  • Cellulase includes various hydrolases, including enzymes having a degrading activity on xylan, cellulose, and hemicellulose. Specific examples include cellobiohydrase (EC 3.2.1.91) that produces cellobiose by hydrolysis of cellulose chains, and endoglucanase (EC 3.2.1.4) that hydrolyzes from the central part of cellulose chains.
  • cellobiohydrase EC 3.2.1.91
  • endoglucanase EC 3.2.1.4
  • ⁇ -glucosidase that hydrolyzes cellooligosaccharide or cellobiose
  • xylanase EC 3.2.1.8
  • EC 3.2.1.37 ⁇ -glucosidase that hydrolyzes cellooligosaccharide or cellobiose
  • ⁇ -xylosidase is an enzyme that hydrolyzes xylobiose in which two molecules of xylose are ⁇ 1,4-linked to xylose. That is, when a xylan-containing biomass is hydrolyzed using a saccharifying enzyme with reduced ⁇ -xylosidase activity obtained by the method of the present invention, xylobiose hydrolysis is suppressed, and xylo-oligosaccharide can be produced efficiently.
  • Xylooligosaccharides are those having a chain length in which two or more sugars are linked by ⁇ -1,4 bonds, and specifically, xylobiose, xylotriose, xylotetraose, xylopentaose, and the like.
  • soybean hull is contained in the medium used for culturing Trichoderma filamentous fungi Preferably, it is more preferably 8.0 (w / v)% or more.
  • the upper limit of the content of soybean hull in the medium is not particularly limited, but usually the content of soybean hull is 30 (w / v)% or less, preferably 20 (w / v)% or less, particularly Preferably, it is 10 (w / v)% or less.
  • ⁇ -xylosidase The specific activity of ⁇ -xylosidase is that p-nitrophenyl ⁇ -D-xylopyranoside (4-nitrophenyl ⁇ -D-xylopyranoside) is used as a substrate, and 4-nitrophenol produced by enzymatic degradation is increased by increasing the absorbance at 405 nm. taking measurement. Specifically, 10 ⁇ L of a culture supernatant diluted 20-fold with distilled water was added to 90 ⁇ L of a substrate solution (1 mM 4-nitrophenyl ⁇ -D-xylopyranoside, 0.1 M sodium acetate (pH 5.0)) at 30 ° C. Incubate for exactly 30 minutes.
  • One unit (U) of ⁇ -xylosidase activity represents the enzyme activity that liberates 1 ⁇ mol of 4-nitrophenol per minute under the reaction conditions of 30 ° C. for 30 minutes.
  • ⁇ -xylosidase specific activity is preferably 0.1 U / mg protein or less, more preferably 0.02 U / mg protein or less, per 1 mg of cellulase protein as activity against p-nitrophenyl ⁇ -D-xylopyranoside, More preferably, it is 0.01 U / mg protein or less.
  • ⁇ -Glucosidase (BGL) is an enzyme that hydrolyzes cellobiose with ⁇ -1,4-linked glucose into glucose.
  • BGL ⁇ -Glucosidase
  • hydrolysis of cellooligosaccharide is performed. Since the decomposition reaction does not proceed, cellooligosaccharide can be produced efficiently.
  • Cellooligosaccharides are those having a chain length in which two or more sugars are linked by ⁇ 1,4 glucoside bonds, and are made of cellulose, which is a constituent component of plants. Because it is not easily affected by acids and enzymes, it reaches the intestines and is used as an additive to health foods for the purpose of improving bowel movements.
  • an oligosaccharide composed of xylooligosaccharide and cellooligosaccharide can be obtained.
  • the specific activity of ⁇ -glucosidase is that p-nitrophenyl ⁇ -D-glucopyranoside (4-nitrophenyl ⁇ -D-glucopyranoside) is used as a substrate, and 4-nitrophenol produced by enzymatic degradation is increased by increasing the absorbance at 405 nm. taking measurement. Specifically, 10 ⁇ L of a culture supernatant diluted 20-fold with distilled water was added to 90 ⁇ L of a substrate solution [1 mM 4-nitrophenyl ⁇ -D-glucopyranoside, 0.1 M sodium acetate (pH 5.0)] at 30 ° C. Incubate for exactly 10 minutes.
  • One unit (U) of BGL activity represents the enzyme activity that liberates 1.0 ⁇ mol of 4-nitrophenol per minute under the reaction conditions of 30 ° C. for 10 minutes.
  • the preferred specific activity of ⁇ -glucosidase of the present invention is preferably 1.2 U / mg protein or less per mg of cellulase protein as the enzyme activity for degrading p-nitrophenyl ⁇ -D-glucopyranoside.
  • the cellulase obtained by the method of the present invention preferably contains cellobiohydrase, endoglucanase, and xylanase as enzyme components other than those described above.
  • the protein concentration of cellulase is measured as follows.
  • the culture solution obtained by culturing Trichoderma filamentous fungi by the method of the present invention is centrifuged at 15,000 ⁇ g for 10 minutes, and the supernatant is used as a cellulase solution.
  • 5 ⁇ L of a cellulase solution diluted to 250 ⁇ L of Quick Start Bradford protein assay (Bio-Rad) is added, and the absorbance at 595 nm after standing at room temperature for 15 minutes is measured.
  • the bovine serum albumin solution as a standard solution, the protein concentration contained in the saccharifying enzyme solution is calculated based on the calibration curve.
  • the culture method for culturing Trichoderma filamentous fungi in the present invention is not particularly limited.
  • the culture can be performed by liquid culture using a centrifuge tube, flask, jar fermenter, tank, or solid culture using a plate. it can.
  • Trichoderma filamentous fungi are preferably cultured under aerobic conditions.
  • jar fermenters and deep culture in which aeration and agitation are performed in a tank are particularly preferable.
  • Cultivation is performed under conditions where saccharifying enzyme is produced until a recoverable amount of saccharifying enzyme is accumulated.
  • the culture conditions are not particularly limited, but the culture temperature is usually about 25 ° C to 35 ° C, preferably about 25 ° C to 31 ° C.
  • the pH is usually about 3.0 to 7.0, preferably about 4.0 to 6.0.
  • the culture time is usually about 24 to 96 hours, preferably about 36 to 72 hours.
  • the amount of ventilation is usually about 0.1 vvm to 2.0 vvm, preferably about 0.3 vvm to 1.5 vvm, and particularly preferably about 0.5 vvm to 1.0 vvm.
  • the soy hull is contained in the medium used for culturing Trichoderma filamentous fungi in an amount of 0.8 w / v% or more as a dry weight, the viscosity during the culturing does not increase. Can be suppressed and the dissolved oxygen saturation can be kept high. When cultivating on a large scale, maintaining a high dissolved oxygen saturation in the medium is effective because it reduces the capacity of the blower, stirring motor, and stirring energy required for aeration.
  • the dissolved oxygen saturation in the culture solution can be calculated by measuring the oxygen utilization rate in the culture solution.
  • the oxygen utilization rate (mM / L / hr) in the present invention refers to the oxygen consumption rate per liter of culture solution per unit time 24 hours after the start of culture.
  • the specific calculation method is to maintain the culture conditions constant, stop the supply of oxygen 24 hours after the start of culture, and plot the dissolved oxygen (mg / L) value (DO value) every 10 seconds. Then, the slope (A) (unit: DO / sec) is obtained for a plot of three or more points that logarithmically decrease in the curve.
  • the formula for calculating the oxygen utilization rate is as follows.
  • Oxygen utilization rate (mM / L / hr) ( ⁇ A) ⁇ (1/32) ⁇ 60 ⁇ 60 (Formula 1). *
  • a commercially available DO meter can be used for measuring the DO value.
  • DO meter There is no restriction
  • Examples include a sealed DO electrode (Able Co., Ltd.) and a dissolved oxygen sensor (Mettler Toledo Co., Ltd.).
  • the DO meter is preliminarily subjected to zero point calibration and span calibration. Zero point calibration is performed using 2% sodium sulfite solution. Span calibration is performed with aeration and agitation in the absence of bacterial cells under the actual culture conditions, and waits until the dissolved oxygen is saturated.After that, confirm that the indicated value of the instrument is stable, and Calibrate according to saturated dissolved oxygen.
  • When performing DO measurement by pressurizing the culture tank it is necessary to perform pressure correction.
  • the culture tank is large, it is necessary to perform hydrostatic pressure correction.
  • the calculation formula for correction is as follows.
  • D DO (1 + ⁇ + ⁇ ) (Formula 2)
  • DO corrected saturated dissolved oxygen
  • DO 1 atm, saturated dissolved oxygen in pure water
  • gauge pressure (kg / cm 2 )
  • Hydrostatic pressure (liquid depth (m) / 10 at the DO meter mounting position).
  • the dissolved oxygen saturation is determined during the culture period for saturated dissolved oxygen when the pH and temperature are set as culture conditions using a medium that does not contain bacteria, and the saturated state of dissolved oxygen is 100% when aerated with air.
  • the ratio of dissolved oxygen is calculated as dissolved oxygen saturation.
  • Dissolved oxygen (mg / L) represents the concentration of oxygen dissolved in water.
  • Saturated dissolved oxygen refers to dissolved oxygen in a state in which dissolved oxygen is kept constant by aeration and agitation in the absence of bacterial cells under the culture conditions for actual culture.
  • the culture conditions such as the aeration conditions are not changed during the culture period. As oxygen demand decreases, dissolved oxygen saturation increases.
  • the method for calculating the dissolved oxygen saturation is as follows.
  • Dissolved oxygen saturation (%) (dissolved oxygen during culture) / (saturated dissolved oxygen before start of culture) ⁇ 100 (Equation 3)
  • a commercially available digital rotational viscometer can be used to measure the viscosity of the culture solution.
  • the digital rotational viscometer is previously calibrated at 0 point.
  • the viscosity of the culture solution is determined by placing the culture solution in the middle of the culture in a specified container, immersing the spindle in the culture solution and rotating it, and measuring the torque, which is the viscous resistance acting on the spindle at this time. Can be measured.
  • centipoise The unit of viscosity is centipoise (cP).
  • One poise is defined as the viscosity at which there is a velocity gradient of 1 cm / sec per cm in the fluid, producing a stress in the magnitude of 1 dyne per cm 2 of velocity in a plane perpendicular to the direction of the velocity gradient.
  • the saccharifying enzyme obtained by culturing Trichoderma filamentous fungi is used for the hydrolysis reaction of biomass containing xylan.
  • the method for preparing the saccharifying enzyme from the culture solution of Trichoderma filamentous fungi is not particularly limited, but it is preferable to remove the Trichoderma filamentous fungi or treat them so that they do not grow. This is to prevent the glucose produced when hydrolyzing the biomass containing xylan with a saccharifying enzyme from being consumed by the cells.
  • Examples of the method for removing the cells include centrifugation, membrane separation and the like.
  • Examples of the treatment method for preventing the bacterial cells from growing include heat treatment, chemical treatment, acid / alkali treatment, and UV treatment.
  • the culture solution processed so that a microbial cell may not be removed or grown can be used for hydrolysis of biomass as it is.
  • it can be purified or partially purified by, for example, a filter press method, a centrifugal separation method, a filter filtration method, or the like.
  • the biomass containing xylan and cellulose of the present invention is not particularly limited, and in addition to plants such as seed plants, fern plants, moss plants, algae and aquatic plants, waste building materials and the like can also be used.
  • Seed plants are classified into gymnosperms and angiosperms, and both can be preferably used.
  • Angiosperms are further classified into monocotyledonous plants and dicotyledonous plants.
  • Specific examples of monocotyledonous plants include bagasse, switchgrass, napiergrass, eliansus, corn stover, corn cob, rice straw, and straw.
  • dicotyledonous plants beet pulp, eucalyptus, oak, birch and the like are preferably used.
  • Particularly preferred in the present invention is bagasse.
  • pretreated biomass may be used as the biomass containing xylan and cellulose.
  • the pretreatment method is not particularly limited, and known methods such as acid treatment, sulfuric acid treatment, dilute sulfuric acid treatment, alkali treatment, hydrothermal treatment, subcritical treatment, fine pulverization treatment, and steaming treatment can be used. Pulp may be used as biomass containing such pretreated xylan.
  • the reaction conditions for hydrolyzing biomass containing xylan and cellulose by the saccharifying enzyme obtained in the present invention are not particularly limited, but the reaction pH is preferably 3 to 7, more preferably 4 to 6, Preferably it is around 5.
  • the reaction temperature is not particularly limited, but is preferably 40 ° C to 70 ° C.
  • Oligosaccharide can be efficiently produced by hydrolyzing biomass containing xylan and cellulose with the saccharifying enzyme obtained in the present invention.
  • the oligosaccharide produced in the present invention include xylooligosaccharides, cellooligosaccharides, fructooligosaccharides, and isomalouloligosaccharides, preferably xylooligosaccharides and / or cellooligosaccharides.
  • the oligosaccharide produced can be collected by a conventional method, for example, a filtration method using a membrane.
  • Reference Example 5 Quantification of soybean hull by the Prosky method Dry okara (Materis Co., Ltd.) was treated with a heat-resistant ⁇ -amylase aqueous solution at pH 6.0 and 95 ° C. for 30 minutes, and then pH 7 with an aqueous protease solution. 5. Treated for 30 minutes at 60 ° C. Next, this enzyme-treated soybean was treated with an amyloglucosidase aqueous solution at pH 4.5 and 60 ° C. for 30 minutes. Subsequently, 95% ethanol corresponding to a volume equivalent to four times the amount used was added and allowed to stand for 1 hour to form a precipitate, and then the precipitate was collected by suction filtration.
  • the obtained precipitate was washed with ethanol and acetone, the washed precipitate was dried at 90 ° C. for 12 hours, and the dry weight was measured. Further, proteins and ash contained in the dried precipitate were quantified, and a value subtracted from the dry weight of the precipitate was used as the dry weight of soybean hull in the following experiment.
  • the protein was quantified by the Kjeldahl method, and the ash was measured by weighing the residue after the dried precipitate was ashed at 600 ° C. From the measured value, 10 g of soybean hull was contained per 100 g of dried okara.
  • Example 1 (1) Pre-culture Trichoderma reesei PC-3-7 strain (ATCC # 66589) spores were diluted with physiological saline to 1.0 ⁇ 10 7 / mL, and 1 mL of the diluted spore solution and corn steep liquor : 5.0 (w / v)%, glucose: 2.0 (w / v)%, ammonium tartrate: 0.37 (w / v)%, ammonium sulfate: 0.14 (w / v)%, calcium chloride Dihydrate: 0.03 (w / v)%, magnesium sulfate heptahydrate: 0.03 (w / v)%, zinc chloride: 0.02 (w / v)%, iron (III) chloride Hexahydrate: 0.01 (w / v)%, copper (II) sulfate pentahydrate: 0.004 (w / v)%, manganese chloride tetrahydrate: 0.0008 (w /
  • Corn steep liquor 5.0 (w / v)%, ammonium sulfate: 0.14 (w / v)%, calcium chloride dihydrate: 0.03 (w / v)%, magnesium sulfate heptahydrate: 0.03 (w / v)%, zinc chloride: 0.02 (w / v)%, iron (III) chloride hexahydrate: 0.01 (w / v)%, copper sulfate (II) pentahydrate Japanese: 0.004 (w / v)%, Manganese chloride tetrahydrate: 0.0008 (w / v)%, Boric acid: 0.0006 (w / v)%, Hexammonium hexamolybdate tetrahydrate Japanese: 0.026 (w / v)%, PE-M (antifoaming agent): 0.01 (w / v)%, Tween 80: 0.01 (w / v)%.
  • the sample after saccharification reaction is centrifuged at 15,000 xg for 10 minutes at 4 ° C, the supernatant is collected, and 1/10 volume of 1N aqueous sodium hydroxide is added to the volume of the supernatant. The saccharification reaction was stopped.
  • the xylobiose, xylotriose, cellobiose, and cellotriose concentrations contained in the saccharified solution were quantified by comparison with the standard under the following HPLC conditions.
  • the ratio of mobile phase B was gradually increased so as to reach 0 to 40%, and only in mobile phase A in 10.01 minutes, and analysis was performed up to 20 minutes.
  • ELSD evaporative light scattering detector
  • the results of the pulp hydrolysis reaction are shown in Tables 2 and 3, and the results of the bagasse hydrolysis reaction are shown in Tables 4 and 5.
  • the cellulase solution produced using a medium containing 8.0 (w / v) soybean hull is more preferable than the cellulase solution produced using a medium containing 0.8 (w / v) soybean hull.
  • the accumulated amount at the time of hydrolysis of the pulp was about twice as large as 4.0 g / L, whereas the accumulated amount at the time of hydrolysis of the bagasse was about 2.5 times larger than 1.75 g / L.
  • both cellulase solutions produced using a medium containing soybean hulls 0.8 and 8.0 (w / v)% were reduced to 0.0. An accumulation amount of 2 g / L or more could be confirmed.
  • both the cellulase solution produced using a medium containing soybean hull 0.8 and 8.0 (w / v)% was about 9.0 g / L at the time of pulp hydrolysis, and 1. at the time of bagasse hydrolysis. Accumulated amount of 0 g / L or more was confirmed.
  • Cellotriose was about 1.5 g / L at the time of pulp hydrolysis, and the accumulated amount could not be confirmed at the time of bagasse hydrolysis.
  • Comparative Example 1 (1) Precultured in the same manner as in Example 1.
  • Example 2 Main culture Main culture medium components similar to those in Example 1 were added to pulp [Arbocel (registered trademark) (J. Rettenmeier & Sohne)], ground bagasse, alkali-treated ground bagasse, ground corn hull, dried okara of Reference Example 5 ( A culture test was conducted in the same manner as in Example 1 except that each medium was added with a material added by Materis Co., Ltd.
  • the crushed bagasse was a crushed bagasse obtained by pulverizing a solid of bagasse so as to have an average particle size of 100 ⁇ m.
  • the alkali-treated ground bagasse is a solid content concentration 30 (w / v)% slurry added with 100 mg of sodium hydroxide per gram of bagasse solids at 180 ° C.
  • the pulverized corn hull was obtained by pulverizing corn hull (Qinhuangdao Ryufu Agricultural Products Processing Co., Ltd.) to an average particle size of 100 ⁇ m. Note that corn hull indicates the rind of corn seed.
  • the final concentration of the additive in the main culture medium is as follows: pulp: 8.0 (w / v)%, ground bagasse: 8.0 (w / v)%, alkali-treated ground bagasse: 8.0 (w / v) %, Ground corn hull: 8.0 (w / v)%, dried okara: 0.5 (w / v)% (0.05 w / v% as the final concentration of soybean hull).
  • the protein concentration of the cellulase solution obtained from each culture solution was measured in the same manner as in Example 1.
  • the protein concentration contained in the culture medium obtained by culturing was about 9.6 g / L when pulp was added without adding soybean hull, and about 2.0 g when crushed bagasse was added.
  • / L about 4.9 g / L when alkali-treated ground bagasse was added, and about 6.3 g / L when ground corn hull was added.
  • 0.05 (w / v)% is added as soybean hull, it is 0.77 g / L, the production amount of cellulase is very small, and the cell growth of Trichoderma reesei PC-3-7 strain can be almost confirmed. There wasn't.
  • the results are shown in Table 6.
  • Example 1 From the results of Example 1 and Comparative Example 1, by culturing Trichoderma filamentous fungi in a medium containing 0.8 w / v% or more of soybean hull as a dry weight, a sufficient amount of saccharifying enzyme with reduced ⁇ -xylosidase activity was obtained. It has been found that production is further suppressed and a decrease in dissolved oxygen concentration in the culture medium is also suppressed. Moreover, it became possible to produce xylo-oligosaccharide efficiently by using the cellulase obtained in the Example, and to produce cellooligosaccharide simultaneously.
  • a saccharification enzyme suitable for producing oligosaccharides simply and efficiently from biomass containing xylan and cellulose can be obtained.

Abstract

Disclosed are: a method for producing a saccharifying enzyme whereby a saccharifying enzyme suitable for xylooligosaccharide production can be easily produced while preventing a decrease in the degree of saturation of dissolved oxygen in a culture liquid; and a method for oligosaccharide production using the saccharifying enzyme. The method for producing a saccharifying enzyme comprises culturing a fungus belonging to the genus Trichoderma in a medium containing 0.8 w/v% or more, in terms of dry weight, of soybean hulls. The method for oligosaccharide production comprises hydrolyzing a biomass, said biomass containing xylan and cellulose, with the cellulase that is obtained by the aforesaid production method.

Description

糖化酵素の製造方法およびオリゴ糖の製造方法Method for producing saccharifying enzyme and method for producing oligosaccharide
 本発明は、大豆ハルを用いたトリコデルマ属糸状菌による糖化酵素の製造方法およびそれを用いたオリゴ糖の製造方法に関する。 The present invention relates to a method for producing a saccharifying enzyme by Trichoderma filamentous fungi using soybean hull and a method for producing an oligosaccharide using the same.
 現在、セルロース系バイオマスを原料とした各種汎用化学品やバイオ燃料などを生産するため、セルロース系バイオマスを分解し、オリゴ糖などの有用な糖を効率的に遊離させる方法が探索されている。この分解法の1つに、セルロース系バイオマスを糖化酵素であるセルラーゼを用いて加水分解する酵素分解法があり、注目されている。 Currently, in order to produce various general-purpose chemicals and biofuels using cellulosic biomass as raw materials, methods for decomposing cellulosic biomass and efficiently releasing useful sugars such as oligosaccharides are being searched. One of the decomposition methods is an enzyme decomposition method in which cellulosic biomass is hydrolyzed using cellulase, which is a saccharifying enzyme, and has attracted attention.
 オリゴ糖は、低甘味、低カロリーなどの特性に加え、腸内細菌の増殖を促進し腸の調子などを良好に保つ機能を有するため、オリゴ糖入りの特定保健用食品などが数多く市販されている。特にキシロオリゴ糖やセロオリゴ糖は、酸や消化酵素による分解を受けにくいため、他オリゴ糖と比較して微量でもその効果を発揮する。また、キシロオリゴ糖は、ヒトの食品用途のみならず家畜の飼料への添加剤としても利用されている。 In addition to the characteristics of low sweetness and low calories, oligosaccharides have the function of promoting the growth of enteric bacteria and maintaining the state of the intestine in good condition. Yes. In particular, xylo-oligosaccharides and cellooligosaccharides are less susceptible to degradation by acids and digestive enzymes, and thus exert their effects even in trace amounts compared to other oligosaccharides. Xylooligosaccharides are used not only for human food applications but also as an additive to livestock feed.
 キシロオリゴ糖は、植物の構成成分の1つであるキシランを糖化酵素で加水分解することで得られる。しかしながら、糖化酵素としてセルラーゼを利用すると、セルラーゼにはキシロオリゴ糖を分解するβ-キシロシダーゼも含まれているため、キシロオリゴ糖を効率的に生産することが難しく、このような課題を解決する方法が検討されている。例えば、特許文献1では、キシロオリゴ糖の製造方法として、セルロース含有バイオマスをトリコデルマ属糸状菌由来のセルラーゼにより加水分解し、該加水分解物から回収したβ-キシロシダーゼ活性が低下した回収セルラーゼを使用している。 Xylooligosaccharide is obtained by hydrolyzing xylan, which is one of the constituent components of plants, with a saccharifying enzyme. However, when cellulase is used as a saccharifying enzyme, it is difficult to efficiently produce xylooligosaccharide because cellulase also contains β-xylosidase that degrades xylooligosaccharide. Has been. For example, in Patent Document 1, as a method for producing xylooligosaccharides, cellulose-containing biomass is hydrolyzed with cellulase derived from Trichoderma filamentous fungi, and recovered cellulase with reduced β-xylosidase activity recovered from the hydrolyzate is used. Yes.
 また、セルラ-ゼの生産方法としては、セルラーゼ生産能の高いトリコデルマ属糸状菌を利用してセルラーゼを生産させる方法がある。特許文献2ではトリコデルマ属糸状菌に遺伝子変異処理を行い、高いセルラーゼ生産能を有するトリコデルマ属糸状菌の変異株を取得している。しかしながら、特許文献2の変異株から得られるセルラーゼ中のβ-キシロシダーゼ活性や、キシロオリゴ糖の生産については記載がない。その他、特許文献2では、セルラーゼを生産させる培地に炭素源として、セルロース等のほかに大豆おからなども利用できると記載されている。 In addition, as a method for producing cellulase, there is a method for producing cellulase using Trichoderma filamentous fungi having high cellulase production ability. In Patent Document 2, a Trichoderma filamentous fungus is subjected to gene mutation treatment to obtain a Trichoderma filamentous fungus mutant having high cellulase production ability. However, there is no description about β-xylosidase activity in cellulase obtained from the mutant of Patent Document 2 or production of xylo-oligosaccharides. In addition, Patent Document 2 describes that soy bean can be used in addition to cellulose as a carbon source in a medium for producing cellulase.
 トリコデルマ属糸状菌は生育に酸素を必須とする好気性糸状菌に属しており、さらに液体培地で培養すると、培地の粘度が高まるという特徴を有している。粘度が高まると、酸素や栄養素の分布が不均一になるため、トリコデルマ属糸状菌を培養する際には、培養液を撹拌したり、酸素供給量を増加させたりして培養中の溶存酸素飽和度を一定以上に維持する必要がある。 Trichoderma filamentous fungi belong to aerobic filamentous fungi that require oxygen for growth, and when cultured in a liquid medium, the viscosity of the medium increases. As the viscosity increases, the distribution of oxygen and nutrients becomes uneven, so when culturing Trichoderma filamentous fungi, the culture solution is agitated or the oxygen supply rate is increased, so that the dissolved oxygen saturation during the culture is increased. It is necessary to maintain the degree above a certain level.
 また、培養槽が大型化すると、酸素移動容量係数が低くなるため、培養中の溶存酸素飽和度を一定以上に保つためには、さらに撹拌数や酸素供給量を増やす必要がある。しかしながら、撹拌数を増やすと、菌体に大きなせん断ダメージを与えてしまうという課題があり、酸素供給量を増やすためにはより大きなエネルギーが必要になる課題がある。 Also, as the culture tank becomes larger, the oxygen transfer capacity coefficient becomes lower. Therefore, in order to keep the dissolved oxygen saturation during the culture at a certain level or more, it is necessary to further increase the number of stirring and the amount of oxygen supply. However, when the number of stirring is increased, there is a problem that large shear damage is given to the bacterial cells, and there is a problem that more energy is required to increase the oxygen supply amount.
 培養液の粘度を低下させる方法として、特許文献3では、培地に菌糸伸長阻害物質を添加して菌糸形態をペレット状にする方法が開示されており、特許文献4には粘度の原因物質となるタンパク質の分泌を抑制した糸状菌の変異株が開示されている。 As a method for reducing the viscosity of a culture solution, Patent Document 3 discloses a method in which a mycelial elongation inhibitor is added to a medium to form a mycelium form in a pellet form, and Patent Document 4 is a causative substance of viscosity. Disclosed are mutants of filamentous fungi that suppress protein secretion.
 一方、糸状菌を使用してタンパク質の生産量を増加させるためには、タンパク質の生産を誘導する誘導剤を添加する方法が知られており、例えば、特許文献5には、タンパク質としてセルラーゼの生産性を向上させるために、培地にセルロースや場合に応じてキシランなどを誘導剤として添加する方法が開示されている。 On the other hand, in order to increase the amount of protein production using filamentous fungi, a method of adding an inducer that induces protein production is known. For example, Patent Document 5 discloses the production of cellulase as a protein. In order to improve the property, a method of adding cellulose or xylan or the like as an inducer to the medium is disclosed.
特願2014-222968号公報Japanese Patent Application No. 2014-222968 特開2008-271927号公報JP 2008-271927 A 特開平7-31467号公報Japanese Patent Laid-Open No. 7-31467 国際公開第2012/027580号International Publication No. 2012/0275580 特開2014-150745号公報JP 2014-150745 A
 上述の通り、キシロオリゴ糖の製造に適した糖化酵素を得るためには、セルラーゼによりセルロース含有バイオマスを加水分解した後、該加水分解物からセルラーゼを回収するという方法があるが、ステップ数が多いことが課題であった。また、糖化酵素の生産性の高いトリコデルマ属糸状菌は好気性生物であることから、培養槽での培養の際、培養液中の溶存酸素飽和度が低下するという課題もあった。 As described above, in order to obtain a saccharifying enzyme suitable for the production of xylo-oligosaccharide, there is a method of recovering cellulase from the hydrolyzate after hydrolysis of cellulose-containing biomass with cellulase, but there are many steps. Was an issue. In addition, since Trichoderma filamentous fungi with high productivity of saccharifying enzymes are aerobic organisms, there has been a problem that the dissolved oxygen saturation in the culture solution is lowered during culture in a culture tank.
 本発明者は、上記課題を解決するために鋭意検討を行ったところ、大豆ハルを乾燥重量として0.8w/v%以上を含む培地でトリコデルマ属糸状菌を培養することにより、β-キシロシダーゼ比活性が極めて低下した糖化酵素が得られること、また溶存酸素飽和度の低下が抑制できることを見出し、本発明を完成するに至った。 The present inventor has conducted intensive studies to solve the above-mentioned problems. As a result, by culturing Trichoderma filamentous fungi in a medium containing 0.8% w / v or more of soybean hull as a dry weight, the β-xylosidase ratio The inventors have found that a saccharifying enzyme having a very low activity can be obtained, and that the decrease in dissolved oxygen saturation can be suppressed, and have completed the present invention.
 すなわち、本発明は以下の(1)~(5)を提供する。
(1)大豆ハルを乾燥重量として0.8w/v%以上含む培地でトリコデルマ属糸状菌を培養することを含む糖化酵素の製造方法。
(2)前記糖化酵素がセルラーゼである(1)に記載の糖化酵素の製造方法。
(3)前記セルラーゼのβ-キシロシダーゼ比活性が、4-ニトロフェニル-β-D-キシロピラノシドを分解する酵素活性として当該セルラーゼタンパク質1mg当たり0.1U/mgタンパク質以下である、(2)に記載の糖化酵素の製造方法。
(4)前記培養が深部培養である(1)~(3)のいずれかに記載の糖化酵素の製造方法。
(5)(2)~(4)のいずれかに記載の製造方法で得られたセルラーゼによりキシランおよびセルロースを含むバイオマスを加水分解することを含む、オリゴ糖の製造方法。
(6)前記オリゴ糖がキシロオリゴ糖および/またはセロオリゴ糖である(5)に記載のオリゴ糖の製造方法。
That is, the present invention provides the following (1) to (5).
(1) A method for producing a saccharifying enzyme, comprising culturing Trichoderma filamentous fungi in a medium containing 0.8 w / v% or more of soybean hull as a dry weight.
(2) The method for producing a saccharifying enzyme according to (1), wherein the saccharifying enzyme is cellulase.
(3) The β-xylosidase specific activity of the cellulase is 0.1 U / mg protein or less per mg of the cellulase protein as an enzyme activity for degrading 4-nitrophenyl-β-D-xylopyranoside. A method for producing a saccharifying enzyme.
(4) The method for producing a saccharification enzyme according to any one of (1) to (3), wherein the culture is submerged culture.
(5) A method for producing an oligosaccharide, comprising hydrolyzing a biomass containing xylan and cellulose with a cellulase obtained by the production method according to any one of (2) to (4).
(6) The method for producing an oligosaccharide according to (5), wherein the oligosaccharide is a xylooligosaccharide and / or a cellooligosaccharide.
 本発明は、大豆ハルを0.8w/v%以上添加した培地でトリコデルマ属糸状菌を培養すると、培養によって得られる糖化酵素を用いることにより、バイオマスから効率よくオリゴ糖を製造することが可能となる。また、本発明の方法を用いることにより、トリコデルマ属糸状菌を培養した際に、培養液中の溶存酸素飽和度を高く維持することも可能となる。 In the present invention, when Trichoderma filamentous fungi are cultured in a medium to which soybean hull is added at 0.8 w / v% or more, oligosaccharides can be efficiently produced from biomass by using a saccharifying enzyme obtained by the culture. Become. Further, by using the method of the present invention, it is possible to maintain a high dissolved oxygen saturation in the culture solution when culturing Trichoderma filamentous fungi.
 本発明で用いるトリコデルマ属(Trichoderma)糸状菌は、ヒポクレア属(Hypocrea)とも呼ばれるが、本明細書中ではトリコデルマ属と記載する。本発明で用いるトリコデルマ属糸状菌はトリコデルマ属のいずれの種でもよいが、糖化酵素の生産性が高いトリコデルマ属糸状菌が好ましい。具体的には、トリコデルマ・リーセイ(Trichoderma reesei)、トリコデルマ・ビリデ(Trichoderma viride)、トリコデルマ・アトロビリデ(Trichoderma atroviride)、トリコデルマ・ロンジブラチアタム(Trichoderma longibrachiatum)が好ましく、より好ましくはトリコデルマ・リーセイである。 The Trichoderma filamentous fungus used in the present invention is also referred to as the genus Hypocrea, but is referred to as Trichoderma in the present specification. The Trichoderma filamentous fungi used in the present invention may be any species of the genus Trichoderma, but Trichoderma filamentous fungi having high saccharifying enzyme productivity are preferred. Specifically, Trichoderma reesei, Trichoderma viride, Trichoderma atroviride and Trichoderma longibratitam are preferred. .
 本発明で用いる大豆ハルは、大豆の莢に包まれた大豆種子のそれぞれを覆う薄い膜状の種皮であり、大豆種子の一部である。大豆ハルは、大豆種子100g(乾燥重量)当たりに、約10g(乾燥重量)含まれている。大豆ハルは大豆から直接的に製造されてもよく、大豆食品製造の過程で廃棄されるおからや脱脂大豆から間接的に製造されてもよい。大豆ハル(soybean hull)は、ソイビーン・ミルフィードやソイ・ハルなどとも呼ばれるが、本明細書中では大豆ハルと記載する。 The soybean hull used in the present invention is a thin film-like seed coat covering each soybean seed wrapped in soybean straw and is a part of the soybean seed. Soybean hull is contained in about 10 g (dry weight) per 100 g (dry weight) of soybean seeds. Soybean hulls may be produced directly from soybeans or indirectly from okara or defatted soybeans that are discarded during the production of soybean foods. Soybean hull is also referred to as soy bean mill feed or soy hull, and is referred to as soy hull in this specification.
 本発明では、大豆ハルを乾燥重量として0.8w/v%以上含む培地を調製することができれば、大豆ハルの他、大豆ハルが含まれている大豆由来物、または大豆と大豆由来物の混合物を用いて培地を調製することができる。大豆由来物の具体例としては、おから、脱脂大豆、大豆種子などが挙げられる。なお、乾燥重量とは新鮮重量から水分を除いた値であり、具体的には、大豆ハルまたは大豆由来物を90℃の乾燥器内で12時間放置し、常温に戻した際の重量を乾燥重量とする。 In the present invention, if a medium containing 0.8% w / v or more of soybean hull as a dry weight can be prepared, a soybean-derived material containing soybean hull or a mixture of soybean and soybean-derived material in addition to soybean hull Can be used to prepare a medium. Specific examples of the soybean-derived material include okara, defatted soybean, soybean seed and the like. The dry weight is a value obtained by removing moisture from the fresh weight. Specifically, the soybean hull or the soybean-derived material is left in a dryer at 90 ° C. for 12 hours, and the weight when returned to normal temperature is dried. Weight.
 大豆や大豆由来物中に含まれる大豆ハルの乾燥重量は、大豆や大豆由来物中に含まれている不溶性食物繊維として定量することができる。本発明では、プロスキー法に従って定量した値を大豆ハルの乾燥重量として用いる。プロスキー法による具体的な大豆ハルの乾燥重量の定量方法は以下のとおりである。 The dry weight of soybean hull contained in soybean or soybean-derived material can be quantified as insoluble dietary fiber contained in soybean or soybean-derived material. In the present invention, the value determined according to the Prosky method is used as the dry weight of soybean hull. A specific method for determining the dry weight of soybean hull by the Prosky method is as follows.
 大豆または大豆由来物を耐熱性α-アミラーゼによってpH6.0、95℃条件下にて30分間処理した後、プロテアーゼによってpH7.5、60℃条件下にて30分処理をする。次にこの酵素処理した大豆をアミログルコシダーゼによってpH4.5、60℃条件下にて30分間処理を行う。続いて、使用した量の4倍量分の体積に当たる95%エタノールを添加し、1時間静置させ、沈殿を生成させた後、吸引ろ過により沈殿物を回収する。回収した沈殿物をエタノールおよびアセトンで洗浄し、洗浄した沈殿物を90℃で12時間乾燥させてから常温に戻した後に乾燥重量を測定する。乾燥させた沈殿物中には、分解されずに残った大豆由来のタンパク質や酵素由来タンパク質、有機物などが含まれるため、別途タンパク質と灰分を定量し、沈殿物の乾燥重量から差し引くことで不溶性食物繊維量を算出する。タンパク質は、乾燥させた沈殿物を、ケルダール法を用いて定量し、灰分は乾燥した沈殿物を600℃で灰化させた後の残渣の重量を、大豆ハルの乾燥重量として定量する。 The soybean or soybean-derived material is treated with heat-resistant α-amylase for 30 minutes at pH 6.0 and 95 ° C., and then treated with protease for 30 minutes at pH 7.5 and 60 ° C. Next, this enzyme-treated soybean is treated with amyloglucosidase at pH 4.5 and 60 ° C. for 30 minutes. Subsequently, 95% ethanol corresponding to a volume equivalent to four times the amount used is added and allowed to stand for 1 hour to form a precipitate, and then the precipitate is collected by suction filtration. The collected precipitate is washed with ethanol and acetone, and the washed precipitate is dried at 90 ° C. for 12 hours and then returned to room temperature, and then the dry weight is measured. Since the dried precipitate contains protein derived from soybean, enzyme-derived protein, organic matter, etc. that remains without being decomposed, the protein and ash are separately quantified and subtracted from the dry weight of the precipitate to insoluble food. The fiber amount is calculated. The protein is quantified using the Kjeldahl method for the dried precipitate, and the ash is quantified as the dry weight of soybean hull after the dried precipitate is ashed at 600 ° C.
 本発明では、大豆ハルは糖化酵素誘導剤として用いられるため、培地には大豆ハルの他にトリコデルマ属糸状菌を培養するうえで必要な栄養分が含まれる。本発明においてトリコデルマ属糸状菌を培養するための大豆ハル以外の培地組成は、トリコデルマ属糸状菌が糖化酵素を製造できるような培地組成となっていれば特に制限はない。通常、培地は、水を媒体として含み、窒素源及びトリコデルマ属糸状菌の生存又は生育に有用な微量元素を含む。窒素源としては、例えば、コーンスティープリカー、ポリペプトン、肉汁、大豆かすから選ばれる少なくとも1種を挙げることができる。微量元素としては、イオウ、カルシウム、マグネシウム、亜鉛、鉄、銅、マンガン、ホウ素、モリブデン等を挙げることができ、これらの微量元素の塩(イオウの場合硫酸塩等、ホウ素の場合はホウ酸等)を培地に含めることができる。具体例としては、硫酸アンモニウム、塩化カルシウム、硫酸マグネシウム、塩化亜鉛、塩化鉄、硫酸銅、塩化マンガン、ホウ酸、七モリブデン酸六アンモニウム等を挙げることができ、これらの水和物も用いることができる。なお、大豆ハルは炭素源としても機能するので、別途、炭素源を添加する必要はないが、大豆ハル以外の炭素源が含まれてもよい。この場合、炭素源としては、例えば、糖類を挙げることができる。糖類としては、例えば、グルコース、キシロース、ガラクトース、フルクトース、セロビオース、ラクトース、スクロースから選ばれる少なくとも1種を挙げることができる。糖類の濃度は、好ましくは200g/L以下であり、より好ましくは100g/L以下であり、特に好ましくは50g/L以下である。また、所望により、培地には、微生物の培養に添加することが周知である消泡剤や界面活性剤を添加してもよい。 In the present invention, since soybean hull is used as a saccharifying enzyme inducer, the medium contains nutrients necessary for culturing Trichoderma fungi in addition to soybean hull. In the present invention, the medium composition other than soybean hull for culturing Trichoderma filamentous fungi is not particularly limited as long as the medium composition is such that Trichoderma filamentous fungi can produce saccharifying enzymes. Usually, the medium contains water as a medium, and contains a nitrogen source and trace elements useful for survival or growth of Trichoderma filamentous fungi. Examples of the nitrogen source include at least one selected from corn steep liquor, polypeptone, gravy, and soybean meal. Examples of trace elements include sulfur, calcium, magnesium, zinc, iron, copper, manganese, boron, molybdenum, and the like. Salts of these trace elements (sulfate for sulfur, boric acid for boron, etc.) ) Can be included in the medium. Specific examples include ammonium sulfate, calcium chloride, magnesium sulfate, zinc chloride, iron chloride, copper sulfate, manganese chloride, boric acid, hexaammonium heptamolybdate and the like, and hydrates thereof can also be used. . In addition, since soybean hull functions also as a carbon source, it is not necessary to add a carbon source separately, but carbon sources other than soybean hull may be included. In this case, examples of the carbon source include saccharides. Examples of the saccharide include at least one selected from glucose, xylose, galactose, fructose, cellobiose, lactose, and sucrose. The concentration of the saccharide is preferably 200 g / L or less, more preferably 100 g / L or less, and particularly preferably 50 g / L or less. Further, if desired, an antifoaming agent or a surfactant that is well-known to be added to culture of microorganisms may be added to the medium.
 大豆ハルを培地に添加する際には大豆ハルに何らかの前処理をしてもよい。具体的な前処理方法としては、乾燥、蒸煮、加熱、粉砕などが挙げられる。 When the soybean hull is added to the medium, the soybean hull may be pretreated. Specific pretreatment methods include drying, steaming, heating, and pulverization.
 培養するトリコデルマ属糸状菌の菌量が少ない場合には、大豆ハルを含まない通常の条件でトリコデルマ属糸状菌を培養して増殖させ、次に、増殖したトリコデルマ属糸状菌を、大豆ハル含有培地中で培養する、本培養を行ってもよい。 When the amount of Trichoderma filamentous fungi to be cultured is small, the Trichoderma filamentous fungus is cultured and grown under normal conditions not containing soybean hull, and then the Trichoderma filamentous fungus is grown in a medium containing soybean hull. The main culture may be performed in the medium.
 本発明の方法で得られる糖化酵素には、セルラーゼ、アミラーゼ、インベルターゼ、キチナーゼなどが含まれる。本発明では特にセルラーゼを効率的に生産させることができる。 The saccharifying enzyme obtained by the method of the present invention includes cellulase, amylase, invertase, chitinase and the like. In the present invention, cellulase can be produced particularly efficiently.
 セルラーゼには、様々な加水分解酵素が含まれており、キシラン、セルロース、ヘミセルロースに対する分解活性を持つ酵素などが含まれている。具体例としては、セルロース鎖の加水分解によりセロビオースを生産するセロビオハイドラーゼ(EC 3.2.1.91)、セルロース鎖の中央部分から加水分解するエンドグルカナーゼ(EC 3.2.1.4)、セロオリゴ糖あるいはセロビオースを加水分解するβ-グルコシダーゼ(EC 3.2.1.21)、ヘミセルロースあるいは特にキシランに作用することを特徴とするキシラナーゼ(EC 3.2.1.8)、キシロオリゴ糖を加水分解するβ-キシロシダーゼ(EC 3.2.1.37)などが挙げられる。 Cellulase includes various hydrolases, including enzymes having a degrading activity on xylan, cellulose, and hemicellulose. Specific examples include cellobiohydrase (EC 3.2.1.91) that produces cellobiose by hydrolysis of cellulose chains, and endoglucanase (EC 3.2.1.4) that hydrolyzes from the central part of cellulose chains. ), Β-glucosidase that hydrolyzes cellooligosaccharide or cellobiose (EC 3.2.121), xylanase (EC 3.2.1.8) characterized by acting on hemicellulose or especially xylan, xylooligosaccharide And β-xylosidase (EC 3.2.1.37) that hydrolyzes.
 本発明の方法を用いると、β-キシロシダーゼの比活性が低下したセルラーゼを得ることができる。β-キシロシダーゼは、キシロース2分子がβ1,4-結合したキシロビオースをキシロースに加水分解する酵素である。つまり、本願発明の方法で得られるβ-キシロシダーゼ活性が低下した糖化酵素を用いてキシランを含むバイオマスを加水分解すると、キシロビオースの加水分解が抑制され、キシロオリゴ糖を効率的に製造することができる。キシロオリゴ糖は、キシロースがβ-1,4結合により2糖以上結合した鎖長のものであり、具体的には、キシロビオース、キシロトリオース、キシロテトラオース、キシロペンタオース等である。 By using the method of the present invention, a cellulase having a reduced specific activity of β-xylosidase can be obtained. β-xylosidase is an enzyme that hydrolyzes xylobiose in which two molecules of xylose are β1,4-linked to xylose. That is, when a xylan-containing biomass is hydrolyzed using a saccharifying enzyme with reduced β-xylosidase activity obtained by the method of the present invention, xylobiose hydrolysis is suppressed, and xylo-oligosaccharide can be produced efficiently. Xylooligosaccharides are those having a chain length in which two or more sugars are linked by β-1,4 bonds, and specifically, xylobiose, xylotriose, xylotetraose, xylopentaose, and the like.
 β-キシロシダーゼの比活性をさらに低下させキシロオリゴ糖の蓄積量を増大させるためには、トリコデルマ属糸状菌の培養に用いる培地中に大豆ハルが4.0(w/v)%以上含まれていることが好ましく、8.0(w/v)%以上含まれることがさらに好ましい。培地中の大豆ハルの含有量の上限は、特に限定されないが、通常、大豆ハルの含有量は30(w/v)%以下であり、好ましくは20(w/v)%以下であり、特に好ましくは10(w/v)%以下である。 In order to further reduce the specific activity of β-xylosidase and increase the amount of xylooligosaccharide accumulated, 4.0 (w / v)% or more of soybean hull is contained in the medium used for culturing Trichoderma filamentous fungi Preferably, it is more preferably 8.0 (w / v)% or more. The upper limit of the content of soybean hull in the medium is not particularly limited, but usually the content of soybean hull is 30 (w / v)% or less, preferably 20 (w / v)% or less, particularly Preferably, it is 10 (w / v)% or less.
 β-キシロシダーゼの比活性は、基質としてp-ニトロフェニルβ-D-キシロピラノシド(4-ニトロフェニル β-D-キシロピラノシド)を用い、酵素分解によって生じた4-ニトロフェノールを405nmの吸光度の増加にて測定する。具体的には、基質溶液(1mM 4-ニトロフェニル β-D-キシロピラノシド、0.1M酢酸ナトリウム(pH5.0))90μLに蒸留水にて20倍希釈した培養上清液10μLを加えて30℃にて正確に30分間反応させる。続いて、反応停止液(2M NaCO)10μLを加えてよく混合し、反応を停止させ、405nmの吸光度測定を行う。1単位(U)のβ-キシロシダーゼ活性は、30℃、30分間の反応条件下で、1分間に1μmolの4-ニトロフェノールを遊離させる酵素活性を表す。 The specific activity of β-xylosidase is that p-nitrophenyl β-D-xylopyranoside (4-nitrophenyl β-D-xylopyranoside) is used as a substrate, and 4-nitrophenol produced by enzymatic degradation is increased by increasing the absorbance at 405 nm. taking measurement. Specifically, 10 μL of a culture supernatant diluted 20-fold with distilled water was added to 90 μL of a substrate solution (1 mM 4-nitrophenyl β-D-xylopyranoside, 0.1 M sodium acetate (pH 5.0)) at 30 ° C. Incubate for exactly 30 minutes. Subsequently, 10 μL of a reaction stop solution (2M Na 2 CO 3 ) is added and mixed well to stop the reaction, and absorbance at 405 nm is measured. One unit (U) of β-xylosidase activity represents the enzyme activity that liberates 1 μmol of 4-nitrophenol per minute under the reaction conditions of 30 ° C. for 30 minutes.
 β-キシロシダーゼ比活性は、p-ニトロフェニルβ-D-キシロピラノシドに対する活性として、セルラーゼタンパク質1mg当たり0.1U/mgタンパク質以下であることが好ましく、より好ましくは0.02U/mgタンパク質以下であり、さらに好ましくは0.01U/mgタンパク質以下である。 β-xylosidase specific activity is preferably 0.1 U / mg protein or less, more preferably 0.02 U / mg protein or less, per 1 mg of cellulase protein as activity against p-nitrophenyl β-D-xylopyranoside, More preferably, it is 0.01 U / mg protein or less.
 また、本発明の方法で得られるセルラーゼに含まれる加水分解酵素のうち、β-グルコシダーゼの比活性は低いほうが好ましい。β-グルコシダーゼ(BGL)は、グルコースがβ-1,4結合したセロビオースをグルコースに加水分解する酵素であり、β-グルコシダーゼの比活性の低いセルラーゼを用いてバイオマスを加水分解すると、セロオリゴ糖の加水分解反応が進まないため、セロオリゴ糖を効率的に生産することができる。セロオリゴ糖とは、グルコースがβ1,4グルコシド結合により2糖以上結合した鎖長のものを示し、植物の構成成分であるセルロースからなる。酸や酵素などの影響を受けにくい特徴を持つことから、腸にまで届き、便通の改善などを目的に健康食品への添加物などとして使用されている。β-グルコシダーゼ比活性の低い本発明のセルラーゼを用いることで、キシロオリゴ糖とセロオリゴ糖からなるオリゴ糖を得ることができる。 Of the hydrolases contained in the cellulase obtained by the method of the present invention, the specific activity of β-glucosidase is preferably low. β-Glucosidase (BGL) is an enzyme that hydrolyzes cellobiose with β-1,4-linked glucose into glucose. When cellulolyse is hydrolyzed using cellulase with low specific activity of β-glucosidase, hydrolysis of cellooligosaccharide is performed. Since the decomposition reaction does not proceed, cellooligosaccharide can be produced efficiently. Cellooligosaccharides are those having a chain length in which two or more sugars are linked by β1,4 glucoside bonds, and are made of cellulose, which is a constituent component of plants. Because it is not easily affected by acids and enzymes, it reaches the intestines and is used as an additive to health foods for the purpose of improving bowel movements. By using the cellulase of the present invention having a low β-glucosidase specific activity, an oligosaccharide composed of xylooligosaccharide and cellooligosaccharide can be obtained.
 β-グルコシダーゼの比活性は、基質としてp-ニトロフェニルβ-D-グルコピラノシド(4-ニトロフェニル β-D-グルコピラノシド)を用い、酵素分解によって生じた4-ニトロフェノールを405nmの吸光度の増加にて測定する。具体的には、基質溶液〔1mM 4-ニトロフェニル β-D-グルコピラノシド、0.1M酢酸ナトリウム(pH5.0)〕90μLに蒸留水にて20倍希釈した培養上清液10μLを加えて30℃にて正確に10分間反応させる。続いて、反応停止液(2M NaCO)10μLを加えてよく混合し、反応を停止させ、405nmの吸光度測定を行う。1単位(U)のBGL活性は、30℃、10分間の反応条件下で、1分間に1.0μmolの4-ニトロフェノールを遊離させる酵素活性を表す。 The specific activity of β-glucosidase is that p-nitrophenyl β-D-glucopyranoside (4-nitrophenyl β-D-glucopyranoside) is used as a substrate, and 4-nitrophenol produced by enzymatic degradation is increased by increasing the absorbance at 405 nm. taking measurement. Specifically, 10 μL of a culture supernatant diluted 20-fold with distilled water was added to 90 μL of a substrate solution [1 mM 4-nitrophenyl β-D-glucopyranoside, 0.1 M sodium acetate (pH 5.0)] at 30 ° C. Incubate for exactly 10 minutes. Subsequently, 10 μL of a reaction stop solution (2M Na 2 CO 3 ) is added and mixed well to stop the reaction, and absorbance at 405 nm is measured. One unit (U) of BGL activity represents the enzyme activity that liberates 1.0 μmol of 4-nitrophenol per minute under the reaction conditions of 30 ° C. for 10 minutes.
 本発明の好ましいβ-グルコシダーゼの比活性は、p-ニトロフェニルβ-D-グルコピラノシドを分解する酵素活性として、セルラーゼタンパク質1mg当たり1.2U/mgタンパク質以下であることが好ましい。 The preferred specific activity of β-glucosidase of the present invention is preferably 1.2 U / mg protein or less per mg of cellulase protein as the enzyme activity for degrading p-nitrophenyl β-D-glucopyranoside.
 本発明の方法で得られるセルラーゼには、上記以外の酵素成分として、セロビオハイドラーゼ、エンドグルカナーゼ、キシラナーゼが含まれていることが好ましい。 The cellulase obtained by the method of the present invention preferably contains cellobiohydrase, endoglucanase, and xylanase as enzyme components other than those described above.
 セルラーゼのタンパク質濃度は以下の通り測定を行う。本発明の方法でトリコデルマ糸状菌を培養することにより得られた培養液を15,000×gで10分間遠心分離し、上清をセルラーゼ溶液とする。Quick Start Bradford プロテインアッセイ(Bio-Rad社製)250μLに希釈したセルラーゼ溶液を5μL添加し、室温で15分間静置後の595nmで用いる吸光度を測定する。牛血清アルブミン溶液を標準液とし、検量線に基づいて糖化酵素溶液に含まれるタンパク質濃度を算出する。 The protein concentration of cellulase is measured as follows. The culture solution obtained by culturing Trichoderma filamentous fungi by the method of the present invention is centrifuged at 15,000 × g for 10 minutes, and the supernatant is used as a cellulase solution. 5 μL of a cellulase solution diluted to 250 μL of Quick Start Bradford protein assay (Bio-Rad) is added, and the absorbance at 595 nm after standing at room temperature for 15 minutes is measured. Using the bovine serum albumin solution as a standard solution, the protein concentration contained in the saccharifying enzyme solution is calculated based on the calibration curve.
 本発明でトリコデルマ属糸状菌を培養する培養方法は特に限定されず、例えば遠沈管、フラスコ、ジャーファーメンター、タンクなどを用いた液体培養や、プレートなどを用いた固体培養などで培養することができる。トリコデルマ属糸状菌は、好気的条件で培養することが好ましく、これらの培養方法の中でも、特にジャーファーメンターや、タンク内に通気や撹拌を行いながら培養する深部培養が好ましい。培養は、糖化酵素が生産される条件下で、回収可能な量の糖化酵素が蓄積されるまで行う。培養条件は、特に限定されないが、培養温度は通常、25℃~35℃程度、好ましくは25℃~31℃程度である。pHは通常3.0~7.0程度、好ましくは4.0~6.0程度である。培養時間は、通常、24時間~96時間程度、好ましくは36時間~72時間程度である。通気量は、通常、0.1vvm~2.0vvm程度、好ましくは0.3vvm~1.5vvm程度、特に好ましくは0.5vvm~1.0vvm程度である。 The culture method for culturing Trichoderma filamentous fungi in the present invention is not particularly limited. For example, the culture can be performed by liquid culture using a centrifuge tube, flask, jar fermenter, tank, or solid culture using a plate. it can. Trichoderma filamentous fungi are preferably cultured under aerobic conditions. Among these culture methods, jar fermenters and deep culture in which aeration and agitation are performed in a tank are particularly preferable. Cultivation is performed under conditions where saccharifying enzyme is produced until a recoverable amount of saccharifying enzyme is accumulated. The culture conditions are not particularly limited, but the culture temperature is usually about 25 ° C to 35 ° C, preferably about 25 ° C to 31 ° C. The pH is usually about 3.0 to 7.0, preferably about 4.0 to 6.0. The culture time is usually about 24 to 96 hours, preferably about 36 to 72 hours. The amount of ventilation is usually about 0.1 vvm to 2.0 vvm, preferably about 0.3 vvm to 1.5 vvm, and particularly preferably about 0.5 vvm to 1.0 vvm.
 本発明の方法では、大豆ハルがトリコデルマ属糸状菌の培養に用いる培地中に乾燥重量として0.8w/v%以上含まれていることにより、培養中の粘度が上がらないことから溶存酸素飽和度の低下を抑制し、溶存酸素飽和度を高く維持することができる。大きなスケールでの培養を想定した際、培地中の溶存酸素飽和度を高く維持できることは、通気に必要なブロワや撹拌モーターの容量、撹拌エネルギーの削減につながるため効果的である。 In the method of the present invention, since the soy hull is contained in the medium used for culturing Trichoderma filamentous fungi in an amount of 0.8 w / v% or more as a dry weight, the viscosity during the culturing does not increase. Can be suppressed and the dissolved oxygen saturation can be kept high. When cultivating on a large scale, maintaining a high dissolved oxygen saturation in the medium is effective because it reduces the capacity of the blower, stirring motor, and stirring energy required for aeration.
 培養液中の溶存酸素飽和度は、培養液中の酸素利用速度を測定することによって算出することができる。本発明における酸素利用速度(mM/L/hr)は培養開始後24時間後の単位時間当たりの培養液1L当たりの酸素消費速度のことを指す。具体的な算出方法は、培養条件を一定に保って培養を行い、培養開始後24時間時点で酸素の供給を止め、溶存酸素(mg/L)の値(DO値)を10秒間ごとにプロットし、その曲線の中で対数的に減少している3点以上のプロットについて、その傾き(A)(単位;DO/sec)を求める。酸素利用速度の算出式は以下である。 The dissolved oxygen saturation in the culture solution can be calculated by measuring the oxygen utilization rate in the culture solution. The oxygen utilization rate (mM / L / hr) in the present invention refers to the oxygen consumption rate per liter of culture solution per unit time 24 hours after the start of culture. The specific calculation method is to maintain the culture conditions constant, stop the supply of oxygen 24 hours after the start of culture, and plot the dissolved oxygen (mg / L) value (DO value) every 10 seconds. Then, the slope (A) (unit: DO / sec) is obtained for a plot of three or more points that logarithmically decrease in the curve. The formula for calculating the oxygen utilization rate is as follows.
 酸素利用速度(mM/L/hr)=(-A)×(1/32)×60×60・・・(式1)。   Oxygen utilization rate (mM / L / hr) = (− A) × (1/32) × 60 × 60 (Formula 1). *
 DO値の測定には市販のDO計を使用することができる。使用するDO計には特に制限はなく、DO値を正確に測定できるものであれば良い。例として、密閉型DO電極(エイブル株式会社)や溶存酸素センサ(メトラー・トレド株式会社)などが挙げられる。DO計は予め0点校正とスパン校正を行っておく。0点校正は亜硫酸ソーダ2%溶液を使用して行う。スパン校正は実際に培養する条件において菌体が存在しない状態で通気、攪拌を行い、溶存酸素が飽和になるまで待ち、その後計器の指示値が安定していることを確認し、その温度での飽和溶存酸素に合わせて校正を行う。また、培養槽を加圧してDO測定を行う際は、圧補正を行う必要がある。さらに、培養槽が大きい場合は静水圧補正を行う必要がある。補正を行う際の計算式は以下である。 A commercially available DO meter can be used for measuring the DO value. There is no restriction | limiting in particular in the DO meter to be used, What is necessary is just what can measure DO value correctly. Examples include a sealed DO electrode (Able Co., Ltd.) and a dissolved oxygen sensor (Mettler Toledo Co., Ltd.). The DO meter is preliminarily subjected to zero point calibration and span calibration. Zero point calibration is performed using 2% sodium sulfite solution. Span calibration is performed with aeration and agitation in the absence of bacterial cells under the actual culture conditions, and waits until the dissolved oxygen is saturated.After that, confirm that the indicated value of the instrument is stable, and Calibrate according to saturated dissolved oxygen. Moreover, when performing DO measurement by pressurizing the culture tank, it is necessary to perform pressure correction. Furthermore, when the culture tank is large, it is necessary to perform hydrostatic pressure correction. The calculation formula for correction is as follows.
 D=DO(1+α+β)・・・(式2)
D:補正した飽和溶存酸素
DO:1気圧、純水中での飽和溶存酸素
α:ゲージ圧(kg/cm
β:静水圧(DO計取り付け位置の液深(m)/10)。
D = DO (1 + α + β) (Formula 2)
D: corrected saturated dissolved oxygen DO: 1 atm, saturated dissolved oxygen in pure water α: gauge pressure (kg / cm 2 )
β: Hydrostatic pressure (liquid depth (m) / 10 at the DO meter mounting position).
 溶存酸素飽和度は、菌を含まない培地を用いてpHや温度を培養条件に設定し、空気を通気した際の溶存酸素の飽和状態を100%とした場合の、飽和溶存酸素に対する培養期間中の溶存酸素の割合を溶存酸素飽和度として算出する。溶存酸素(mg/L)は、水中に溶解している酸素の濃度を表す。飽和溶存酸素とは、実際に培養を行なう培養条件において、菌体が存在しない状態で通気、攪拌を行い、溶存酸素が一定になった状態での溶存酸素のことを指す。また、溶存酸素飽和度を算出する際は、培養期間中に通気条件など培養条件を変化させることはしないこととする。酸素要求性が低下すると、溶存酸素飽和度は増加する。溶存酸素飽和度の算出方法は以下である。 The dissolved oxygen saturation is determined during the culture period for saturated dissolved oxygen when the pH and temperature are set as culture conditions using a medium that does not contain bacteria, and the saturated state of dissolved oxygen is 100% when aerated with air. The ratio of dissolved oxygen is calculated as dissolved oxygen saturation. Dissolved oxygen (mg / L) represents the concentration of oxygen dissolved in water. Saturated dissolved oxygen refers to dissolved oxygen in a state in which dissolved oxygen is kept constant by aeration and agitation in the absence of bacterial cells under the culture conditions for actual culture. When calculating the dissolved oxygen saturation, the culture conditions such as the aeration conditions are not changed during the culture period. As oxygen demand decreases, dissolved oxygen saturation increases. The method for calculating the dissolved oxygen saturation is as follows.
 溶存酸素飽和度(%)=(培養中の溶存酸素)/(培養開始前の飽和溶存酸素)×100・・・(式3) Dissolved oxygen saturation (%) = (dissolved oxygen during culture) / (saturated dissolved oxygen before start of culture) × 100 (Equation 3)
 培養液の粘度の測定には、市販のデジタル回転粘度計を使用することができる。使用する粘度計には特に制限はなく、培養液の粘度を正確に測定できるものであれば良い。例として、デジタル回転粘度計 DV2T(BROOKFIELD社)、スピンドル LV-1(BROOKFIELD社)などが挙げられる。デジタル回転粘度計は、予め0点校正を行っておく。培養液の粘度は、培養途中の培養液を指定の容器に入れ、培養液にスピンドルを浸して回転させ、この時のスピンドルに働く粘性抵抗であるトルクを測定することにより、培養液の粘度を測定することができる。粘度の単位は、センチポアズ(cP)とする。1ポアズは、流体内に1cmにつき1cm/秒の速度勾配があるとき、その速度勾配の方向に垂直な面において速度の方向1cmにつき1ダインの力の大きさの応力が生ずる粘度と定義される。 A commercially available digital rotational viscometer can be used to measure the viscosity of the culture solution. There is no restriction | limiting in particular in the viscometer to be used, What is necessary is just to be able to measure the viscosity of a culture solution correctly. Examples include a digital rotational viscometer DV2T (BROOKFIELD), spindle LV-1 (BROOKFIELD), and the like. The digital rotational viscometer is previously calibrated at 0 point. The viscosity of the culture solution is determined by placing the culture solution in the middle of the culture in a specified container, immersing the spindle in the culture solution and rotating it, and measuring the torque, which is the viscous resistance acting on the spindle at this time. Can be measured. The unit of viscosity is centipoise (cP). One poise is defined as the viscosity at which there is a velocity gradient of 1 cm / sec per cm in the fluid, producing a stress in the magnitude of 1 dyne per cm 2 of velocity in a plane perpendicular to the direction of the velocity gradient. The
 トリコデルマ属糸状菌を培養して得られる糖化酵素は、キシランを含むバイオマスの加水分解反応に使用される。トリコデルマ属糸状菌の培養液から糖化酵素を調製する方法は特に限定はされないが、トリコデルマ属糸状菌の菌体を除去する、もしくは生育していないように処理することが好ましい。これは糖化酵素でキシランを含むバイオマスを加水分解反応する際に生じるグルコースが菌体により消費されるのを防ぐためである。菌体の除去方法としては、遠心分離、膜分離などが例として挙げられる。菌体が生育しないようにする処理方法としては、熱処理、薬剤処理、酸・アルカリ処理、UV処理などが挙げられる。このように菌体を除去又は生育していないように処理した培養液は、そのままバイオマスの加水分解に供することができる。糖化酵素を精製又は部分精製することが望まれる場合には、例えば、フィルタープレス法、遠心分離法、フィルターろ過法等により精製又は部分精製することができる。 The saccharifying enzyme obtained by culturing Trichoderma filamentous fungi is used for the hydrolysis reaction of biomass containing xylan. The method for preparing the saccharifying enzyme from the culture solution of Trichoderma filamentous fungi is not particularly limited, but it is preferable to remove the Trichoderma filamentous fungi or treat them so that they do not grow. This is to prevent the glucose produced when hydrolyzing the biomass containing xylan with a saccharifying enzyme from being consumed by the cells. Examples of the method for removing the cells include centrifugation, membrane separation and the like. Examples of the treatment method for preventing the bacterial cells from growing include heat treatment, chemical treatment, acid / alkali treatment, and UV treatment. Thus, the culture solution processed so that a microbial cell may not be removed or grown can be used for hydrolysis of biomass as it is. When it is desired to purify or partially purify the saccharifying enzyme, it can be purified or partially purified by, for example, a filter press method, a centrifugal separation method, a filter filtration method, or the like.
 本発明のキシランおよびセルロースを含むバイオマスは、特に限定はされず、種子植物、シダ植物、コケ植物、藻類、水草などの植物の他、廃建材なども用いることができる。種子植物は、裸子植物と被子植物に分類されるが、どちらも好ましく用いることができる。被子植物はさらに単子葉植物と双子葉植物に分類されるが、単子葉植物の具体例としては、バガス、スイッチグラス、ネピアグラス、エリアンサス、コーンストーバー、コーンコブ、稲わら、麦わらなどが挙げられ、双子葉植物の具体例としては、ビートパルプ、ユーカリ、ナラ、シラカバなどが好ましく用いられる。本発明において特に好ましいのはバガスである。 The biomass containing xylan and cellulose of the present invention is not particularly limited, and in addition to plants such as seed plants, fern plants, moss plants, algae and aquatic plants, waste building materials and the like can also be used. Seed plants are classified into gymnosperms and angiosperms, and both can be preferably used. Angiosperms are further classified into monocotyledonous plants and dicotyledonous plants. Specific examples of monocotyledonous plants include bagasse, switchgrass, napiergrass, eliansus, corn stover, corn cob, rice straw, and straw. As specific examples of dicotyledonous plants, beet pulp, eucalyptus, oak, birch and the like are preferably used. Particularly preferred in the present invention is bagasse.
 また、キシランおよびセルロースを含むバイオマスは、前処理されたものを用いてもよい。前処理方法は特に限定されないが、例えば、酸処理、硫酸処理、希硫酸処理、アルカリ処理、水熱処理、亜臨界処理、微粉砕処理、蒸煮処理、など公知の手法を用いることができる。このような前処理をされたキシランを含むバイオマスとして、パルプを用いてもよい。 In addition, pretreated biomass may be used as the biomass containing xylan and cellulose. The pretreatment method is not particularly limited, and known methods such as acid treatment, sulfuric acid treatment, dilute sulfuric acid treatment, alkali treatment, hydrothermal treatment, subcritical treatment, fine pulverization treatment, and steaming treatment can be used. Pulp may be used as biomass containing such pretreated xylan.
 また、本発明で得られた糖化酵素によりキシランおよびセルロースを含むバイオマスを加水分解する際の反応条件は特に限定されないが、反応pHは3から7が好ましく、より好ましくは4から6であり、より好ましくは5付近である。反応温度についても特に限定はされないが、40℃から70℃が好ましい。 The reaction conditions for hydrolyzing biomass containing xylan and cellulose by the saccharifying enzyme obtained in the present invention are not particularly limited, but the reaction pH is preferably 3 to 7, more preferably 4 to 6, Preferably it is around 5. The reaction temperature is not particularly limited, but is preferably 40 ° C to 70 ° C.
 本発明で得られた糖化酵素によりキシランおよびセルロースを含むバイオマスを加水分解すると、オリゴ糖を効率生産することができる。本発明で生産されるオリゴ糖は、キシロオリゴ糖、セロオリゴ糖、フラクトオリゴ糖、イソマルオリゴ糖などが挙げられ、好ましくは、キシロオリゴ糖および/またはセロオリゴ糖である。 Oligosaccharide can be efficiently produced by hydrolyzing biomass containing xylan and cellulose with the saccharifying enzyme obtained in the present invention. Examples of the oligosaccharide produced in the present invention include xylooligosaccharides, cellooligosaccharides, fructooligosaccharides, and isomalouloligosaccharides, preferably xylooligosaccharides and / or cellooligosaccharides.
 生産されたオリゴ糖の回収は、常法、例えば、メンブレンを用いたろ過法等により行うことができる。 The oligosaccharide produced can be collected by a conventional method, for example, a filtration method using a membrane.
 以下に実施例を挙げて本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to examples.
 <参考例1>タンパク質濃度測定方法
 市販のタンパク質濃度測定試薬(Quick Start Bradfordプロテインアッセイ、Bio-Rad製)を使用した。室温に戻したタンパク質濃度測定試薬250μLに希釈した糸状菌由来セルラーゼ溶液を5μL添加し、室温で5分間静置後の595nmにおける吸光度をマイクロプレートリーダーで測定した。標準品としてBSAを使用し、検量線に照らし合わせてタンパク質濃度を算出した。
Reference Example 1 Protein Concentration Measuring Method A commercially available protein concentration measuring reagent (Quick Start Bradford protein assay, manufactured by Bio-Rad) was used. 5 μL of the filamentous fungus-derived cellulase solution diluted to 250 μL of the protein concentration measuring reagent returned to room temperature was added, and the absorbance at 595 nm after standing at room temperature for 5 minutes was measured with a microplate reader. BSA was used as a standard product, and the protein concentration was calculated against a calibration curve.
 <参考例2>β-キシロシダーゼ活性測定方法
 1mMp-ニトロフェニル-β-キシロピラノシド(シグマアルドリッチジャパン社製)を含有する50mM酢酸バッファー90μLに酵素希釈液10μLを添加し50℃で30分間反応させた。その後、2M炭酸ナトリウム10μLを加えてよく混合して反応を停止し、405nmの吸光度の増加を測定した。1分間あたり1μmolのp-ニトロフェノールを遊離する活性を1Uと定義した。
Reference Example 2 Method for Measuring β-xylosidase Activity 10 μL of enzyme dilution solution was added to 90 μL of 50 mM acetate buffer containing 1 mM p-nitrophenyl-β-xylopyranoside (Sigma Aldrich Japan) and reacted at 50 ° C. for 30 minutes. Thereafter, 10 μL of 2M sodium carbonate was added and mixed well to stop the reaction, and the increase in absorbance at 405 nm was measured. The activity to release 1 μmol of p-nitrophenol per minute was defined as 1U.
 <参考例3>β-グルコシダーゼ活性測定方法
 1mMp-ニトロフェニル-β-グルコピラノシド(シグマアルドリッチジャパン社製)を含有する50mM酢酸バッファー90μLに酵素希釈液10μLを添加して50℃で10分間反応させた。その後2M炭酸ナトリウム10μLを加えてよく混合して反応を停止し、405nmの吸光度の増加を測定した。1分間あたり1μmolのp-ニトロフェノールを遊離する活性を1Uと定義した。
Reference Example 3 Method for Measuring β-Glucosidase Activity 10 μL of enzyme diluent was added to 90 μL of 50 mM acetate buffer containing 1 mM p-nitrophenyl-β-glucopyranoside (Sigma Aldrich Japan), and reacted at 50 ° C. for 10 minutes. . Thereafter, 10 μL of 2M sodium carbonate was added and mixed well to stop the reaction, and the increase in absorbance at 405 nm was measured. The activity to release 1 μmol of p-nitrophenol per minute was defined as 1U.
 <参考例4>溶存酸素飽和度の算出
 培養開始24時間後に酸素供給を停止し、培養液の溶存酸素量の値(DO値)の経時変化を10秒ごとに測定し、プロットした。プロットした曲線の中で対数的に減少している3点以上のプロットの傾きを求め、その傾きから酸素利用速度を求め、式3を用いて、溶存酸素飽和度(%)を算出した。DO計は密閉型溶存酸素電極SDOC-12F-L120(エイブル株式会社製)を使用した。
Reference Example 4 Calculation of Dissolved Oxygen Saturation Oxygen supply was stopped 24 hours after the start of culture, and the change over time in the dissolved oxygen content (DO value) of the culture solution was measured every 10 seconds and plotted. The slope of three or more plots that are logarithmically reduced in the plotted curve was determined, the oxygen utilization rate was determined from the slope, and the dissolved oxygen saturation (%) was calculated using Equation 3. As the DO meter, a sealed dissolved oxygen electrode SDOC-12F-L120 (manufactured by Able Co., Ltd.) was used.
 <参考例5>プロスキー法による大豆ハルの定量
 乾燥おから(マテリス株式会社製)を耐熱性α-アミラーゼ水溶液によってpH6.0、95℃条件下にて30分間処理した後、プロテアーゼ水溶液によってpH7.5、60℃条件下にて30分処理した。次にこの酵素処理した大豆をアミログルコシダーゼ水溶液によってpH4.5、60℃条件下にて30分間処理を行った。続いて、使用した量の4倍量分の体積に当たる95%エタノールを添加し、1時間静置させ、沈殿を生成させた後、吸引ろ過により沈殿物を回収した。得られた沈殿物をエタノールおよびアセトンで洗浄し、洗浄した沈殿物を90℃で12時間乾燥して乾燥重量を測定した。さらに、乾燥させた沈殿物中に含まれるタンパク質と灰分を定量し、沈殿物の乾燥重量から差し引いた値を、大豆ハルの乾燥重量として以下の実験に用いた。タンパク質の定量はケルダール法を用い、灰分は、乾燥させた沈殿物を600℃で灰化させた後の残渣の重量を計測した。計測された値から、大豆ハルは乾燥おから100g当たり10g含まれていた。
Reference Example 5 Quantification of soybean hull by the Prosky method Dry okara (Materis Co., Ltd.) was treated with a heat-resistant α-amylase aqueous solution at pH 6.0 and 95 ° C. for 30 minutes, and then pH 7 with an aqueous protease solution. 5. Treated for 30 minutes at 60 ° C. Next, this enzyme-treated soybean was treated with an amyloglucosidase aqueous solution at pH 4.5 and 60 ° C. for 30 minutes. Subsequently, 95% ethanol corresponding to a volume equivalent to four times the amount used was added and allowed to stand for 1 hour to form a precipitate, and then the precipitate was collected by suction filtration. The obtained precipitate was washed with ethanol and acetone, the washed precipitate was dried at 90 ° C. for 12 hours, and the dry weight was measured. Further, proteins and ash contained in the dried precipitate were quantified, and a value subtracted from the dry weight of the precipitate was used as the dry weight of soybean hull in the following experiment. The protein was quantified by the Kjeldahl method, and the ash was measured by weighing the residue after the dried precipitate was ashed at 600 ° C. From the measured value, 10 g of soybean hull was contained per 100 g of dried okara.
 <参考例6>培養液の粘度の測定
 サンプリングした培養開始24時間後の培養液の粘度を測定するため、デジタル回転粘度計 DV2Tとスピンドル LV-1(BROOKFIELD社製)を使用し、回転数を10rpmに設定した際の粘度(cP)を求めた。
<Reference Example 6> Measurement of viscosity of culture solution In order to measure the viscosity of the sampled culture solution 24 hours after the start of culture, a digital rotational viscometer DV2T and spindle LV-1 (manufactured by BROOKFIELD) were used, and the number of rotations was adjusted. The viscosity (cP) when set to 10 rpm was determined.
実施例1
(1) 前培養
 トリコデルマ・リーセイ PC-3-7株(ATCC#66589)の胞子を1.0×10/mLになるように生理食塩水で希釈し、その希釈胞子溶液1mLとコーンスティープリカー:5.0(w/v)%、グルコース:2.0(w/v)%、酒石酸アンモニウム:0.37(w/v)%、硫酸アンモニウム:0.14(w/v)%、塩化カルシウム二水和物:0.03(w/v)%、硫酸マグネシウム七水和物:0.03(w/v)%、塩化亜鉛:0.02(w/v)%、塩化鉄(III)六水和物:0.01(w/v)%、硫酸銅(II)五水和物:0.004(w/v)%、塩化マンガン四水和物:0.0008(w/v)%、ホウ酸:0.0006(w/v)%、七モリブデン酸六アンモニウム四水和物:0.026(w/v)%、PE―M(消泡剤):0.01(w/v)%、Tween80:0.01(w/v)%となるよう精製水で溶解させた前培養液100mLを500mLバッフル付フラスコに入れ、振盪培養機にて28℃、120rpmの条件にて72時間培養を行った。
Example 1
(1) Pre-culture Trichoderma reesei PC-3-7 strain (ATCC # 66589) spores were diluted with physiological saline to 1.0 × 10 7 / mL, and 1 mL of the diluted spore solution and corn steep liquor : 5.0 (w / v)%, glucose: 2.0 (w / v)%, ammonium tartrate: 0.37 (w / v)%, ammonium sulfate: 0.14 (w / v)%, calcium chloride Dihydrate: 0.03 (w / v)%, magnesium sulfate heptahydrate: 0.03 (w / v)%, zinc chloride: 0.02 (w / v)%, iron (III) chloride Hexahydrate: 0.01 (w / v)%, copper (II) sulfate pentahydrate: 0.004 (w / v)%, manganese chloride tetrahydrate: 0.0008 (w / v) %, Boric acid: 0.0006 (w / v)%, hexaammonium hexamolybdate tetrahydrate: 0.026 ( 100 mL of a preculture solution dissolved in purified water so as to be w / v)%, PE-M (antifoaming agent): 0.01 (w / v)%, Tween 80: 0.01 (w / v)% It put into the flask with a 500 mL baffle, and culture | cultivated for 72 hours on 28 degreeC and 120 rpm conditions with the shaking incubator.
(2) 本培養
 大豆ハル(株式会社清水製粉工場製)または参考例5の乾燥おから(マテリス株式会社製、大豆ハルを10w/w%含有する。)を下記の本培養培地に添加し、マイクロジャーファーメンター(Bio-Jr.8、バイオット社製)を用い、それぞれ深部培養検討を行った。乾燥おからはそのまま、大豆ハルは、「家庭用臼式 お茶粉末器 まるごと緑茶 EU6820P」(パナソニック株式会社製)を用いて粉砕し、培地に添加した。
(2) Main culture Soybean hull (manufactured by Shimizu Flour Mills Co., Ltd.) or dried okara of Reference Example 5 (Materis Co., Ltd., containing 10 w / w% soy hull) is added to the following main culture medium, Using a micro jar fermenter (Bio-Jr. 8, manufactured by Biot Co., Ltd.), each of the subcultures was examined. Soybean hull was pulverized as it was with dried okara, using a “home mortar tea powder device whole green tea EU6820P” (manufactured by Panasonic Corporation) and added to the medium.
 トリコデルマ・リーセイ PC-3-7株の前培養液10mLを、大豆ハルまたは乾燥おからが添加された本培養培地100mLに接種した。前培養溶液接種後の本培養培地における乾燥重量としての大豆ハルの終濃度は大豆ハル:8.0(w/v)%、乾燥おから:8.0(w/v)%(大豆ハル終濃度として0.8w/v%)とした。本培養培地の成分は以下の通りである。 10 mL of the pre-culture solution of Trichoderma reesei PC-3-7 strain was inoculated into 100 mL of the main culture medium supplemented with soybean hull or dried okara. The final concentration of soybean hull as dry weight in the main culture medium after inoculation with the preculture solution was soybean hull: 8.0 (w / v)%, dried okara: 8.0 (w / v)% (soy hull end) The concentration was 0.8 w / v%). The components of the main culture medium are as follows.
 コーンスティープリカー:5.0(w/v)%、硫酸アンモニウム:0.14(w/v)%、塩化カルシウム二水和物:0.03(w/v)%、硫酸マグネシウム七水和物:0.03(w/v)%、塩化亜鉛:0.02(w/v)%、塩化鉄(III)六水和物:0.01(w/v)%、硫酸銅(II)五水和物:0.004(w/v)%、塩化マンガン四水和物:0.0008(w/v)%、ホウ酸:0.0006(w/v)%、七モリブデン酸六アンモニウム四水和物:0.026(w/v)%、PE-M(消泡剤):0.01(w/v)%、Tween80:0.01(w/v)%。 Corn steep liquor: 5.0 (w / v)%, ammonium sulfate: 0.14 (w / v)%, calcium chloride dihydrate: 0.03 (w / v)%, magnesium sulfate heptahydrate: 0.03 (w / v)%, zinc chloride: 0.02 (w / v)%, iron (III) chloride hexahydrate: 0.01 (w / v)%, copper sulfate (II) pentahydrate Japanese: 0.004 (w / v)%, Manganese chloride tetrahydrate: 0.0008 (w / v)%, Boric acid: 0.0006 (w / v)%, Hexammonium hexamolybdate tetrahydrate Japanese: 0.026 (w / v)%, PE-M (antifoaming agent): 0.01 (w / v)%, Tween 80: 0.01 (w / v)%.
 培養条件は、本培養培地に前培養液を接種後、28℃、900rpm、通気量100mL/minの培養条件にて、pH5に制御しながら深部培養を96時間行った。 As the culture conditions, after inoculating the main culture medium with the preculture solution, deep culture was performed for 96 hours while controlling the pH at 5 at 28 ° C., 900 rpm, and aeration rate of 100 mL / min.
(3) 培養液の採取
 培養開始96時間後に1mLずつ培養液を採取した。培養液を15,000×g、4℃の条件下で10分間遠心分離を行い、上清を得た。その上清を0.22μmのフィルターでろ過し、そのろ液をセルラーゼ溶液として、以下の実験に用いた。
(3) Collection of culture solution 1 mL of the culture solution was collected 96 hours after the start of the culture. The culture was centrifuged at 15,000 × g and 4 ° C. for 10 minutes to obtain a supernatant. The supernatant was filtered through a 0.22 μm filter, and the filtrate was used as a cellulase solution in the following experiments.
(4) タンパク質濃度の測定
 参考例1で記載した手法を用い、培養開始96時間目の培養液におけるセルラーゼのタンパク質濃度を測定した。その結果、終濃度0.8(w/v)%の大豆ハルを含む培地を用いて培養し得られた培養液に含まれるタンパク質濃度は5.60g/L、終濃度8.0(w/v)%の大豆ハルを含む培地を用いて培養し得られた培養液に含まれるタンパク質濃度は、4.27g/Lであった。結果は表1に示す。
(4) Measurement of protein concentration Using the method described in Reference Example 1, the protein concentration of cellulase in the culture solution at 96 hours after the start of culture was measured. As a result, the protein concentration contained in the culture solution obtained using the medium containing soybean hull having a final concentration of 0.8 (w / v)% was 5.60 g / L, and the final concentration was 8.0 (w / v). v) The protein concentration contained in the culture medium obtained by culturing using the medium containing% soybean hull was 4.27 g / L. The results are shown in Table 1.
(5) β-キシロシダーゼ活性の測定
 参考例2で記載した手法を用い、培養開始96時間目のセルラーゼ溶液に含有するβ-キシロシダーゼ(BXL)の比活性を測定した。その結果、大豆ハルを終濃度0.8(w/v)%含む培地を用いて培養し得られたセルラーゼ溶液中のBXL比活性は、0.02U/mgタンパク質であるのに対し、大豆ハルを終濃度8.0(w/v)%含む培地を用いて培養し得られたセルラーゼ溶液中のBXL活性、比活性は、全く検出されなかった。大豆ハルの培養液における含有量が高いほど、BXLの比活性が低下した。結果は表1に示す。
(5) Measurement of β-xylosidase activity Using the method described in Reference Example 2, the specific activity of β-xylosidase (BXL) contained in the cellulase solution 96 hours after the start of culture was measured. As a result, the BXL specific activity in the cellulase solution obtained by culturing using a medium containing soybean hull at a final concentration of 0.8 (w / v)% was 0.02 U / mg protein, whereas soybean hull was BXL activity and specific activity were not detected at all in the cellulase solution obtained by culturing using a medium containing a final concentration of 8.0 (w / v)%. The higher the content of soybean hull in the culture solution, the lower the specific activity of BXL. The results are shown in Table 1.
(6) β-グルコシダーゼ活性の測定
 参考例3で記載した手法を用い、培養開始96時間目のセルラーゼ溶液に含有するβ-グルコシダーゼ(BGL)の比活性を測定した。その結果、大豆ハルを終濃度0.8(w/v)%および8(w/v)%含む培地を用いて培養し得られたセルラーゼ溶液中のBGL比活性は、それぞれ約0.3U/mgタンパク質であった。結果は表1に示す。
(6) Measurement of β-glucosidase activity Using the method described in Reference Example 3, the specific activity of β-glucosidase (BGL) contained in the cellulase solution 96 hours after the start of culture was measured. As a result, the BGL specific activity in the cellulase solution obtained by culturing using the medium containing soybean hull at final concentrations of 0.8 (w / v)% and 8 (w / v)% was about 0.3 U / mg protein. The results are shown in Table 1.
(7) 培養液中の溶存酸素飽和度の測定
 参考例4で記載した手法を用い、培養液中の経時的な溶存酸素飽和度を測定した。その結果、大豆ハルを終濃度0.8(w/v)%および8.0(w/v)%含む培地を用いて培養した際、溶存酸素飽和度は60%以上であった。結果は表1に示す。
(7) Measurement of dissolved oxygen saturation in culture solution Using the method described in Reference Example 4, the dissolved oxygen saturation over time in the culture solution was measured. As a result, the dissolved oxygen saturation was 60% or more when cultured using a medium containing soybean hulls at final concentrations of 0.8 (w / v)% and 8.0 (w / v)%. The results are shown in Table 1.
(8) 培養液の粘度の測定
 参考例5で記載した手法を用い、培養液中の経時的な粘度を測定した。その結果、大豆ハルを終濃度8.0(w/v)%を含む培地を用いて培養した際、粘度は21.3cPであった。結果は表1に示す。
(8) Measurement of viscosity of culture solution Using the method described in Reference Example 5, the viscosity of the culture solution over time was measured. As a result, when the soybean hull was cultured using a medium containing a final concentration of 8.0 (w / v)%, the viscosity was 21.3 cP. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(9) キシロオリゴ糖およびセロオリゴ糖の製造
 キシランを含むバイオマスとして、パルプ〔Arbocel(登録商標)(J.Rettenmaier&Sohne)〕とバガスを用い、それぞれのセルラーゼ溶液を用いて加水分解反応を行った。2mLチューブにぞれぞれのバイオマスを0.1gとり、それぞれのセルラーゼ溶液をタンパク質として1mg分となるように0.1M 酢酸ナトリウムバッファー(pH5.0)にて希釈し、1mLにメスアップしバイオマスに加えた。そして、ローテーターにて50℃、24時間回転混和した。糖化反応後のサンプルを15,000×g、4℃の条件下で10分間遠心分離を行い、上清を分取し、上清のボリュームの10分の1量の1N 水酸化ナトリウム水溶液を添加し、糖化反応を停止した。
(9) Production of Xylooligosaccharide and Cellooligosaccharide As biomass containing xylan, a pulp [Arbocel (registered trademark) (J. Rettenmeier & Sohne)] and bagasse were used, and a hydrolysis reaction was performed using each cellulase solution. Take 0.1 g of each biomass in a 2 mL tube, dilute each cellulase solution as protein to 1 mg with 0.1 M sodium acetate buffer (pH 5.0), make up to 1 mL, and increase the biomass. Added to. The mixture was rotated and mixed at 50 ° C. for 24 hours using a rotator. The sample after saccharification reaction is centrifuged at 15,000 xg for 10 minutes at 4 ° C, the supernatant is collected, and 1/10 volume of 1N aqueous sodium hydroxide is added to the volume of the supernatant. The saccharification reaction was stopped.
 糖化液に含まれるキシロビオース、キシロトリオース、セロビオース、セロトリオース濃度は、下記に示すHPLC条件で、標品との比較により定量した。 The xylobiose, xylotriose, cellobiose, and cellotriose concentrations contained in the saccharified solution were quantified by comparison with the standard under the following HPLC conditions.
カラム:AQUITY UPLC BEH Amide(Water社製)
移動相A:80% アセトニトリル+0.1% TFA
移動相B:30% アセトニトリル+0.1% TFA
流速:0.12mL/min。
Column: AQUITY UPLC BEH Amide (manufactured by Water)
Mobile phase A: 80% acetonitrile + 0.1% TFA
Mobile phase B: 30% acetonitrile + 0.1% TFA
Flow rate: 0.12 mL / min.
 10分間で移動相Bの割合が0から40%に達するように徐々に上昇させ、10.01分で再び移動相Aのみとし、20分まで分析を行った。 In 10 minutes, the ratio of mobile phase B was gradually increased so as to reach 0 to 40%, and only in mobile phase A in 10.01 minutes, and analysis was performed up to 20 minutes.
検出方法:ELSD(蒸発光散乱検出器)
温度:55℃。
Detection method: ELSD (evaporative light scattering detector)
Temperature: 55 ° C.
 パルプの加水分解反応の結果を表2と表3に、バガスの加水分解反応の結果を表4と表5に示す。キシロビオース製造に関し、大豆ハル0.8(w/v)%含む培地を用いて生産したセルラーゼ溶液よりも大豆ハル8.0(w/v)%含む培地を用いて生産したセルラーゼ溶液の方が、パルプの加水分解時の蓄積量は約2倍多い4.0g/Lであるのに対し、バガスの加水分解時の蓄積量は約2.5倍多い1.75g/Lであった。また、キシロトリオースは、パルプ加水分解時には蓄積されなかったが、バガス加水分解時には、大豆ハル0.8および8.0(w/v)%含む培地を用いて生産したセルラーゼ溶液共に、0.2g/L以上の蓄積量を確認することができた。セロビオース製造に関しては、大豆ハル0.8および8.0(w/v)%含む培地を用いて生産したセルラーゼ溶液共に、パルプ加水分解時にて約9.0g/L、バガス加水分解時にて1.0g/L以上の蓄積量を確認できた。セロトリオースは、パルプ加水分解時にて共に約1.5g/L、バガス加水分解時では蓄積量を確認することはできなかった。 The results of the pulp hydrolysis reaction are shown in Tables 2 and 3, and the results of the bagasse hydrolysis reaction are shown in Tables 4 and 5. Regarding xylobiose production, the cellulase solution produced using a medium containing 8.0 (w / v) soybean hull is more preferable than the cellulase solution produced using a medium containing 0.8 (w / v) soybean hull. The accumulated amount at the time of hydrolysis of the pulp was about twice as large as 4.0 g / L, whereas the accumulated amount at the time of hydrolysis of the bagasse was about 2.5 times larger than 1.75 g / L. In addition, xylotriose was not accumulated during pulp hydrolysis, but during bagasse hydrolysis, both cellulase solutions produced using a medium containing soybean hulls 0.8 and 8.0 (w / v)% were reduced to 0.0. An accumulation amount of 2 g / L or more could be confirmed. Regarding cellobiose production, both the cellulase solution produced using a medium containing soybean hull 0.8 and 8.0 (w / v)% was about 9.0 g / L at the time of pulp hydrolysis, and 1. at the time of bagasse hydrolysis. Accumulated amount of 0 g / L or more was confirmed. Cellotriose was about 1.5 g / L at the time of pulp hydrolysis, and the accumulated amount could not be confirmed at the time of bagasse hydrolysis.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
比較例1
(1) 前培養
実施例1と同様の方法で行った。
Comparative Example 1
(1) Precultured in the same manner as in Example 1.
(2) 本培養
 実施例1と同様の本培養培地成分に、パルプ〔Arbocel(登録商標)(J.Rettenmaier&Sohne)〕、粉砕バガス、アルカリ処理粉砕バガス、粉砕コーンハル、参考例5の乾燥おから(マテリス株式会社製)を添加した培地をそれぞれ調製した以外は、実施例1と同様の方法で培養試験を行った。粉砕バガスは、バガスの固形物を平均粒径100μmになるよう粉砕したものを粉砕バガスとした。アルカリ処理粉砕バガスは、バガスの固形物1gあたり100mgの水酸化ナトリウムを添加した固形分濃度30(w/v)%のスラリーを180℃、10分間処理後、固液分離を行い、固形物を充分に洗浄したものをアルカリ処理バガスとした。そして、アルカリ処理バガスを平均粒径100μmになるよう粉砕したものをアルカリ処理粉砕バガスとした。粉砕コーンハルは、コーンハル(秦皇島流涌農産品加工有限公司)を平均粒径100μmになるよう粉砕したものを粉砕コーンハルとした。なお、コーンハルはトウモロコシ種子の外皮を示す。
(2) Main culture Main culture medium components similar to those in Example 1 were added to pulp [Arbocel (registered trademark) (J. Rettenmeier & Sohne)], ground bagasse, alkali-treated ground bagasse, ground corn hull, dried okara of Reference Example 5 ( A culture test was conducted in the same manner as in Example 1 except that each medium was added with a material added by Materis Co., Ltd. The crushed bagasse was a crushed bagasse obtained by pulverizing a solid of bagasse so as to have an average particle size of 100 μm. The alkali-treated ground bagasse is a solid content concentration 30 (w / v)% slurry added with 100 mg of sodium hydroxide per gram of bagasse solids at 180 ° C. for 10 minutes, followed by solid-liquid separation. What was thoroughly washed was designated as alkali-treated bagasse. Then, the alkali-treated bagasse was crushed so as to have an average particle size of 100 μm. The pulverized corn hull was obtained by pulverizing corn hull (Qinhuangdao Ryufu Agricultural Products Processing Co., Ltd.) to an average particle size of 100 μm. Note that corn hull indicates the rind of corn seed.
 前記添加物の本培養培地中での終濃度は、パルプ:8.0(w/v)%、粉砕バガス:8.0(w/v)%、アルカリ処理粉砕バガス:8.0(w/v)%、粉砕コーンハル:8.0(w/v)%、乾燥おから:0.5(w/v)%(大豆ハル終濃度として0.05w/v%)とした。 The final concentration of the additive in the main culture medium is as follows: pulp: 8.0 (w / v)%, ground bagasse: 8.0 (w / v)%, alkali-treated ground bagasse: 8.0 (w / v) %, Ground corn hull: 8.0 (w / v)%, dried okara: 0.5 (w / v)% (0.05 w / v% as the final concentration of soybean hull).
(3) タンパク質濃度の測定
 実施例1と同様の方法でそれぞれの培養液から得られたセルラーゼ溶液のタンパク質濃度を測定した。その結果、培養し得られた培養液に含まれるタンパク質濃度は、大豆ハルを添加せずにパルプを添加した場合した場合は約9.6g/L、粉砕バガスを添加した場合は約2.0g/L、アルカリ処理粉砕バガスを添加した場合は約4.9g/L、粉砕コーンハルを添加した場合は約6.3g/Lであった。大豆ハルとして0.05(w/v)%添加した場合は0.77g/Lであり、セルラーゼの生産量が非常に少なく、トリコデルマ・リーセイ PC-3-7株の菌体増殖もほとんど確認できなかった。結果は表6に示す。
(3) Measurement of protein concentration The protein concentration of the cellulase solution obtained from each culture solution was measured in the same manner as in Example 1. As a result, the protein concentration contained in the culture medium obtained by culturing was about 9.6 g / L when pulp was added without adding soybean hull, and about 2.0 g when crushed bagasse was added. / L, about 4.9 g / L when alkali-treated ground bagasse was added, and about 6.3 g / L when ground corn hull was added. When 0.05 (w / v)% is added as soybean hull, it is 0.77 g / L, the production amount of cellulase is very small, and the cell growth of Trichoderma reesei PC-3-7 strain can be almost confirmed. There wasn't. The results are shown in Table 6.
(4) β-キシロシダーゼ活性の測定
 実施例1と同様の方法でそれぞれの培養液から得られたセルラーゼ溶液に含まれるβ-キシロシダーゼ(BXL)の比活性を測定した。その結果、培養し得られたセルラーゼ溶液中の全タンパク質重量に対するBXLの比活性は、パルプを添加した場合は0.24U/mgタンパク質、粉砕バガスを添加した場合は0U/mgタンパク質、アルカリ処理粉砕バガスを添加した場合は0.11U/mgタンパク質、粉砕コーンハルを添加した場合は0.20U/mgタンパク質、大豆ハルとして0.05(w/v)%添加した場合は0.20U/mgタンパク質であった。結果を表4に示す。
(4) Measurement of β-xylosidase activity The specific activity of β-xylosidase (BXL) contained in the cellulase solution obtained from each culture solution was measured in the same manner as in Example 1. As a result, the specific activity of BXL with respect to the total protein weight in the cellulase solution obtained by culturing was 0.24 U / mg protein when pulp was added, 0 U / mg protein when ground bagasse was added, and alkali-treated grinding. 0.19 U / mg protein when bagasse is added, 0.20 U / mg protein when ground corn hull is added, 0.20 U / mg protein when 0.05 (w / v)% as soybean hull is added there were. The results are shown in Table 4.
(5) β-グルコシダーゼ活性の測定
 実施例1と同様の方法で、それぞれの培養液から得られたセルラーゼ溶液に含まれるβ-グルコシダーゼ(BGL)の比活性を測定した。その結果、培養して得られたセルラーゼ溶液中の全タンパク質重量に対するBGLの比活性は、パルプを添加した場合は0.23U/mgタンパク質、粉砕バガスを添加した場合は0.39U/mgタンパク質、アルカリ処理粉砕バガスを添加した場合は0.19U/mgタンパク質、粉砕コーンハルを添加した場合は0.26U/mgタンパク質、大豆ハルとして0.05(w/v)%添加した場合は0.30U/mgタンパク質であった。結果を表6に示す。
(5) Measurement of β-glucosidase activity In the same manner as in Example 1, the specific activity of β-glucosidase (BGL) contained in the cellulase solution obtained from each culture solution was measured. As a result, the specific activity of BGL with respect to the total protein weight in the cellulase solution obtained by culturing was 0.23 U / mg protein when pulp was added, 0.39 U / mg protein when ground bagasse was added, 0.19 U / mg protein when alkali-treated ground bagasse is added, 0.26 U / mg protein when ground corn hull is added, and 0.30 U / mg when 0.05 (w / v)% is added as soybean hull mg protein. The results are shown in Table 6.
(6) 培養液中の溶存酸素飽和度の測定
 実施例1と同様の方法で、それぞれの培養液中の経時的な溶存酸素飽和度を測定した。その結果、パルプ、粉末バガス、アルカリ処理粉砕バガス、粉砕コーンハルを終濃度8.0(w/v)%含む培地を用いて培養した際、溶存酸素飽和度は50%以下にまで低下した。大豆ハル0.05(w/v)%含む培地を用いて培養した際の溶存酸素飽和度は90%であったが、上記のとおり、酸素を消費する菌体の増殖がほとんど確認できなかったことにより、溶存酸素の低下が抑制されたと判断した。結果は表6に示す。
(6) Measurement of dissolved oxygen saturation in culture solution The dissolved oxygen saturation over time in each culture solution was measured in the same manner as in Example 1. As a result, when the culture was carried out using a medium containing pulp, powdered bagasse, alkali-treated ground bagasse, and ground corn hull at a final concentration of 8.0 (w / v)%, the dissolved oxygen saturation decreased to 50% or less. Although dissolved oxygen saturation was 90% when cultured using a medium containing 0.05% (w / v) soybean hull, as described above, almost no growth of cells that consume oxygen was confirmed. It was judged that the fall of the dissolved oxygen was suppressed by this. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
(7) 培養液の粘度の測定
 実施例1と同様の方法で、パルプ、粉砕コーンハルを添加した場合の培養液中の経時的な粘度を測定した。その結果、パルプを添加した場合は66.4cP、粉砕コーンハルを添加した場合は31.3cPであった。結果を表7に示す。
(7) Measurement of Viscosity of Culture Solution By the same method as in Example 1, the viscosity over time in the culture solution when pulp and ground corn hull were added was measured. As a result, it was 66.4 cP when the pulp was added, and 31.3 cP when the pulverized corn hull was added. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
(8) キシロオリゴ糖の製造
 それぞれのセルラーゼ溶液を用いて、実施例1と同様の方法でパルプとバガスの加水分解反応を行った。パルプ、アルカリ処理粉砕バガス、粉砕コーンハルを添加した培養によって得たセルラーゼ溶液を用いてパルプを糖化した結果、いずれのセルラーゼ溶液を用いても、キシロオリゴ糖は全く蓄積していなかった。またバガスを加水分解した結果、パルプ、アルカリ処理粉砕バガスを添加した培養によって得られたセルラーゼ溶液を用いた場合、キシロオリゴ糖の蓄積量は約0.2g/Lであった。また、コーンハルを添加した培養で得られたセルラーゼ溶液を用いた場合、キシロオリゴ糖の蓄積量は約0.1g/Lであった。粉砕バガス、大豆ハルを0.05(w/v)%添加した培養では、糖化反応に必要な充分量のセルラーゼを得ることができなかった。バガスの加水分解反応の結果を表8に示す
(8) Production of Xylooligosaccharide Hydrolysis reaction of pulp and bagasse was performed in the same manner as in Example 1 using each cellulase solution. As a result of saccharifying the pulp using a cellulase solution obtained by culturing added with pulp, alkali-treated ground bagasse, and ground corn hull, no xylooligosaccharide was accumulated in any of the cellulase solutions. Further, as a result of hydrolysis of bagasse, when a cellulase solution obtained by culturing with addition of pulp and alkali-treated ground bagasse was used, the amount of xylooligosaccharide accumulated was about 0.2 g / L. Moreover, when the cellulase solution obtained by the culture | cultivation which added corn hull was used, the accumulation amount of xylooligosaccharide was about 0.1 g / L. In the culture to which 0.05 (w / v)% of ground bagasse and soybean hull were added, a sufficient amount of cellulase necessary for the saccharification reaction could not be obtained. The results of the bagasse hydrolysis reaction are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例1と比較例1の結果から、大豆ハルを乾燥重量として0.8w/v%以上含む培地でトリコデルマ属糸状菌を培養することによって、β-キシロシダーゼの活性が低下した糖化酵素が充分に生産されること、さらに、培養液中の溶存酸素濃度の低下も抑制されることがわかった。また、実施例で得られたセルラーゼを用いることによってキシロオリゴ糖を効率的に生産することが可能となり、さらにセロオリゴ糖も同時に生産できることがわかった。 From the results of Example 1 and Comparative Example 1, by culturing Trichoderma filamentous fungi in a medium containing 0.8 w / v% or more of soybean hull as a dry weight, a sufficient amount of saccharifying enzyme with reduced β-xylosidase activity was obtained. It has been found that production is further suppressed and a decrease in dissolved oxygen concentration in the culture medium is also suppressed. Moreover, it became possible to produce xylo-oligosaccharide efficiently by using the cellulase obtained in the Example, and to produce cellooligosaccharide simultaneously.
 本願発明を用いると、キシランおよびセルロースを含有するバイオマスから簡便かつ効率的にオリゴ糖の生産することに適した糖化酵素を得ることができる。 When the present invention is used, a saccharification enzyme suitable for producing oligosaccharides simply and efficiently from biomass containing xylan and cellulose can be obtained.

Claims (6)

  1.  大豆ハルを乾燥重量として0.8w/v%以上含む培地でトリコデルマ属糸状菌を培養することを含む糖化酵素の製造方法。 A method for producing a saccharification enzyme, comprising culturing Trichoderma filamentous fungi in a medium containing 0.8 w / v% or more of soybean hull as a dry weight.
  2.  前記糖化酵素がセルラーゼである請求項1に記載の糖化酵素の製造方法。 The method for producing a saccharifying enzyme according to claim 1, wherein the saccharifying enzyme is a cellulase.
  3.  前記セルラーゼのβ-キシロシダーゼ比活性が、4-ニトロフェニル-β-D-キシロピラノシドを分解する酵素活性として当該セルラーゼタンパク質1mg当たり0.1U/mgタンパク質以下である、請求項2に記載の糖化酵素の製造方法。 The saccharifying enzyme according to claim 2, wherein the specific activity of β-xylosidase of the cellulase is 0.1 U / mg protein or less per mg of the cellulase protein as an enzyme activity for degrading 4-nitrophenyl-β-D-xylopyranoside. Production method.
  4.  前記培養が深部培養である請求項1~3のいずれかに記載の糖化酵素の製造方法。 The method for producing a saccharifying enzyme according to any one of claims 1 to 3, wherein the culture is a submerged culture.
  5.  請求項2~4のいずれかに記載の製造方法で得られたセルラーゼによりキシランおよびセルロースを含むバイオマスを加水分解することを含む、オリゴ糖の製造方法。 A method for producing an oligosaccharide, comprising hydrolyzing a biomass containing xylan and cellulose with a cellulase obtained by the production method according to any one of claims 2 to 4.
  6.  前記オリゴ糖がキシロオリゴ糖および/またはセロオリゴ糖である請求項5に記載のオリゴ糖の製造方法。 The method for producing an oligosaccharide according to claim 5, wherein the oligosaccharide is a xylooligosaccharide and / or a cellooligosaccharide.
PCT/JP2018/007113 2017-02-28 2018-02-27 Method for producing saccharifying enzyme and method for oligosaccharide production WO2018159573A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018514490A JPWO2018159573A1 (en) 2017-02-28 2018-02-27 Method for producing saccharifying enzyme and method for producing oligosaccharide

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017036496 2017-02-28
JP2017-036496 2017-02-28

Publications (1)

Publication Number Publication Date
WO2018159573A1 true WO2018159573A1 (en) 2018-09-07

Family

ID=63370771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/007113 WO2018159573A1 (en) 2017-02-28 2018-02-27 Method for producing saccharifying enzyme and method for oligosaccharide production

Country Status (2)

Country Link
JP (1) JPWO2018159573A1 (en)
WO (1) WO2018159573A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112301074A (en) * 2020-10-23 2021-02-02 中国林业科学研究院林产化学工业研究所 Method for preparing xylooligosaccharide and cellooligosaccharide by using forest biomass
CN112481331A (en) * 2020-10-30 2021-03-12 济南茂腾生物科技有限公司 Method for preparing xylooligosaccharide from hemicellulose
WO2021153587A1 (en) * 2020-01-28 2021-08-05 東レ株式会社 Filamentous fungus trichoderma mutant strain
WO2021235419A1 (en) * 2020-05-19 2021-11-25 東レ株式会社 Method for producing proteins using corn hulls

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099109A1 (en) * 2013-12-27 2015-07-02 東レ株式会社 Method for producing sugar solution
WO2016047589A1 (en) * 2014-09-26 2016-03-31 東レ株式会社 Method of preparing sugar solution
WO2016068223A1 (en) * 2014-10-31 2016-05-06 東レ株式会社 Method for producing sugar solution and xylooligosaccharide
WO2017170918A1 (en) * 2016-03-31 2017-10-05 東レ株式会社 Trichoderma fungus having mutant-type bxl1 gene and method for producing xylooligosaccharide and glucose by using same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015099109A1 (en) * 2013-12-27 2015-07-02 東レ株式会社 Method for producing sugar solution
WO2016047589A1 (en) * 2014-09-26 2016-03-31 東レ株式会社 Method of preparing sugar solution
WO2016068223A1 (en) * 2014-10-31 2016-05-06 東レ株式会社 Method for producing sugar solution and xylooligosaccharide
WO2017170918A1 (en) * 2016-03-31 2017-10-05 東レ株式会社 Trichoderma fungus having mutant-type bxl1 gene and method for producing xylooligosaccharide and glucose by using same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
COFFMAN, ANTHONY M. ET AL.: "Effect of Natural and Pretreated Soybean Hulls on Enzyme Production by Trichoderma reesei", J AM OIL CHEM SOC, vol. 91, no. 8, 2014, pages 1331 - 1338, XP055553556, DOI: doi:10.1007/s11746-014-2480-8 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021153587A1 (en) * 2020-01-28 2021-08-05 東レ株式会社 Filamentous fungus trichoderma mutant strain
CN114981405A (en) * 2020-01-28 2022-08-30 东丽株式会社 Mutant strain of Trichoderma filamentous fungus
WO2021235419A1 (en) * 2020-05-19 2021-11-25 東レ株式会社 Method for producing proteins using corn hulls
CN112301074A (en) * 2020-10-23 2021-02-02 中国林业科学研究院林产化学工业研究所 Method for preparing xylooligosaccharide and cellooligosaccharide by using forest biomass
CN112301074B (en) * 2020-10-23 2023-09-01 中国林业科学研究院林产化学工业研究所 Method for preparing xylo-oligosaccharide and fiber oligosaccharide by using forest biomass
CN112481331A (en) * 2020-10-30 2021-03-12 济南茂腾生物科技有限公司 Method for preparing xylooligosaccharide from hemicellulose

Also Published As

Publication number Publication date
JPWO2018159573A1 (en) 2019-12-19

Similar Documents

Publication Publication Date Title
JP5633839B2 (en) Method for converting lignocellulosic biomass
WO2018159573A1 (en) Method for producing saccharifying enzyme and method for oligosaccharide production
JP6244913B2 (en) Method for producing sugar solution
CN105473729B (en) The manufacturing method of liquid glucose
BR112017005071B1 (en) SUGAR LIQUID PRODUCTION METHOD
JP6319515B2 (en) Protein production method
EP2225387A1 (en) Process for producing saccharide
KAPILAN et al. Paddy husk as support for solid state fermentation to produce xylanase from Bacillus pumilus
US20200216869A1 (en) Method of producing xylo-oligosaccharide
Patipong et al. Enzymatic hydrolysis of tropical weed xylans using xylanase from Aureobasidium melanogenum PBUAP46 for xylooligosaccharide production
Abdeshahian et al. Solid substrate fermentation for cellulase production using palm kernel cake as a renewable lignocellulosic source in packed-bed bioreactor
Ahmed et al. Bioprocessing of proximally analyzed wheat straw for enhanced cellulase production through process optimization with Trichoderma viride under SSF
CN104789492B (en) Bacillus megaterium bacterial strain and its application
CN104789491B (en) Lichem bacillus strain and its application
Demirci et al. Xanthan gum production from hydrolyzed rice bran as a carbon source by Xanthomonas spp
CN1670203A (en) Food grade xylanase and its production method
Fadel et al. Clean production of xylanase from white corn flour by Aspergillus fumigates F-993 under solid state fermentation
CN104131042A (en) Method for production of L-lactic acid by control of growth form of rhizopus oryzae
US10072253B2 (en) Liquefied cellulosic biomass for enzyme production
CN103571811B (en) Xylanase and production method
Ritonga et al. Optimization of citric acid production by utilizing rice husk waste as a substrate using submerged fermentation
CN110885136A (en) Treatment method of calcium citrate washing wastewater and preparation method of citric acid
da Cunha et al. Production of enzymes by filamentous fungus using sugarcane and sugarcane bagasse as substrate
Periasamy et al. Optimization of xylanase production from Aspergillus flavus in solid state fermentation using agricultural waste as a substrate
CN108841894B (en) Method for preparing arabinoxylo-oligosaccharide through probiotic transformation

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018514490

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18761441

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18761441

Country of ref document: EP

Kind code of ref document: A1