WO2021153447A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO2021153447A1
WO2021153447A1 PCT/JP2021/002210 JP2021002210W WO2021153447A1 WO 2021153447 A1 WO2021153447 A1 WO 2021153447A1 JP 2021002210 W JP2021002210 W JP 2021002210W WO 2021153447 A1 WO2021153447 A1 WO 2021153447A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor device
support member
bonding material
conductive bonding
terminal
Prior art date
Application number
PCT/JP2021/002210
Other languages
French (fr)
Japanese (ja)
Inventor
恵佑 若本
舞子 畑野
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Priority to JP2021573991A priority Critical patent/JPWO2021153447A1/ja
Publication of WO2021153447A1 publication Critical patent/WO2021153447A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/52Mounting semiconductor bodies in containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/07Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/18Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different subgroups of the same main group of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48225Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • H01L2224/48227Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/4901Structure
    • H01L2224/4903Connectors having different sizes, e.g. different diameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4911Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
    • H01L2224/49111Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/49Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
    • H01L2224/491Disposition
    • H01L2224/4912Layout
    • H01L2224/49175Parallel arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/19Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
    • H01L2924/191Disposition
    • H01L2924/19101Disposition of discrete passive components
    • H01L2924/19107Disposition of discrete passive components off-chip wires

Definitions

  • This disclosure relates to semiconductor devices.
  • An example of a semiconductor element is a switching element (power MOSFET or IGBT).
  • a semiconductor device (power module) provided with a predetermined number of switching elements constitutes a part of a device that performs power conversion, for example, a DC-DC converter.
  • Patent Document 1 discloses an example of a semiconductor device having a plurality of switching elements. In the semiconductor device, each switching element is bonded to a support member made of metal via a conductive bonding material.
  • the temperature of the entire device rises due to heat generated from the switching element.
  • the switching element, the conductive bonding material, and the support member have different coefficients of linear expansion from each other. Therefore, there is a concern that thermal stress is generated in the conductive joint material and, for example, cracks are generated.
  • the present disclosure has been conceived under the above circumstances, and one of the problems thereof is to provide a semiconductor device capable of suppressing damage to the conductive bonding material.
  • the semiconductor device provided by the present disclosure is a semiconductor device including a semiconductor element, a support member made of metal, and a conductive bonding material for conducting conduction bonding between the semiconductor element and the support member, and is the semiconductor device at an operating temperature.
  • the fracture risk which is the ratio of the plastic strain to the elastic strain of the conductive bonding material, is less than 1.0.
  • the main component of the conductive bonding material is Ag, and the ratio of the thickness of the conductive bonding material to the bonding length between the conductive bonding material and the semiconductor element is 0.015 or more.
  • the thickness of the conductive bonding material is 70 ⁇ m or more.
  • the conductive bonding material is made of an Ag sintered body.
  • the main component of the conductive bonding material is Al, and the ratio of the thickness of the conductive bonding material to the bonding length between the conductive bonding material and the semiconductor element is 0.0083 or more.
  • the thickness of the conductive bonding material is 40 ⁇ m or more.
  • the conductive bonding material is solid-phase diffusion bonded to the semiconductor element and the support member.
  • the product of the thickness of the semiconductor element, the thickness of the conductive bonding material, and the thickness of the support member is 4,000,000 ( ⁇ m 3 ) or more.
  • the thickness of the semiconductor element is 100 ⁇ m or more and 350 ⁇ m or less.
  • the thickness of the support member is 1,000 ⁇ m or more.
  • the semiconductor element contains Si as a main component.
  • the semiconductor element contains SiC as a main component.
  • the semiconductor element has a back electrode to which the conductive bonding material is bonded.
  • the semiconductor element is a switching element
  • the back electrode is a drain electrode
  • a substrate having the support member and the back surface metal layer and an insulating layer interposed between the support member and the back surface metal layer is provided.
  • the insulating layer is made of ceramics.
  • the semiconductor element, the conductive bonding material, and the sealing resin covering the supporting member are provided, and the back metal layer is exposed from the sealing resin.
  • the semiconductor device A10 of the present embodiment includes a substrate 10, a first switching element 21, a second switching element 22, a conductive bonding material 29, a first power supply terminal 31, a second power supply terminal 32, an output terminal 33, and a first gate terminal 341.
  • the detection wire 441, the second detection wire 442, the first terminal wire 451 and the second terminal wire 452, the fourth terminal wire 454, the fifth terminal wire 455, and the sealing resin 50 are provided.
  • the semiconductor device A10 has a configuration including a first switching element 21 and a second switching element 22 corresponding to an example of the semiconductor element of the present disclosure, but the semiconductor element of the present disclosure is not limited to the switching element and is made of a semiconductor. It is a concept including various elements having a part. Further, the semiconductor device A10 is disclosed as an example of the semiconductor device of the present disclosure, and the specific configuration of the semiconductor device of the present disclosure is not limited at all.
  • FIG. 1 is a perspective view showing the semiconductor device A10.
  • FIG. 2 is a plan view of a main part showing the semiconductor device A10.
  • FIG. 3 is a cross-sectional view taken along the z direction including the first switching element 21 and the second switching element 22, and is schematically shown for convenience of understanding.
  • the substrate 10 supports a plurality of first switching elements 21 and a plurality of second switching elements 22. Further, the substrate 10 of the present embodiment constitutes a part of the conduction path of the plurality of first switching elements 21 and the plurality of second switching elements 22.
  • the substrate 10 of the present embodiment has a support member 11A, a support member 11B, a bonding layer 12, a front surface metal layer 13, an insulating layer 14, and a back surface metal layer 15.
  • the support member 11A is a member in which a plurality of first switching elements 21 are conduction-bonded.
  • the material of the support member 11A is not particularly limited, and is made of a metal such as Cu, Ni, or Fe or an alloy containing these.
  • the support member 11B is a member in which a plurality of second switching elements 22 are conduction-bonded.
  • the material of the support member 11B is not particularly limited, and is made of a metal such as Cu, Ni, or Fe or an alloy containing these.
  • the first switching element 21 is conductively bonded to the support member 11A by a conductive bonding member 29.
  • the second switching element 22 is conductively bonded to the support member 11B by the conductive bonding member 29.
  • the conductive bonding material 29 is not particularly limited as long as the back electrode 202 of the first switching element 21 and the second switching element 22 is conductively bonded to the support member 11A and the support member 11B.
  • An example of the conductive bonding material 29 is a metal sintered body, and specifically, for example, an Ag sintered body.
  • another example of the conductive bonding material 29 includes a metal bonded to the back surface electrode 202, the support member 11A, and the support member 11B by solid phase diffusion. Specifically, for example, the Al solid phase diffusion layer. Is.
  • the joining layer 12 is a layer that joins the support member 11A and the support member 11B and the surface metal layer 13.
  • the bonding layer 12 is made of an insulating bonding material. If insulation by the bonding layer 12 is not essential, the bonding layer 12 may be a conductive bonding material.
  • the surface metal layer 13 is a layer in which the support member 11A and the support member 11B are joined by the joining layer 12.
  • the material of the surface metal layer 13 is not particularly limited, and is made of, for example, a metal such as Cu, Ni, or Fe or an alloy containing these.
  • the insulating layer 14 is interposed between the surface metal layer 13 and the insulating layer 14, and is made of an insulating material.
  • the insulating material of the insulating layer 14 is not particularly limited, and is, for example, ceramics.
  • the back surface metal layer 15 is a layer provided on the back surface side of the insulating layer 14.
  • the material of the back surface metal layer 15 is not particularly limited, and is made of, for example, a metal such as Cu, Ni, or Fe or an alloy containing these. Further, in the present embodiment, the back surface of the insulating layer 14 is exposed from the back surface 52 of the sealing resin 50.
  • the first auxiliary substrate 18 is located between the plurality of first switching elements 21 and the first power supply terminal 31 in the x direction, and extends in the y direction.
  • the first auxiliary substrate 18 is a ceramic substrate or a printed wiring board whose constituent material is, for example, Al 2 O 3.
  • the first auxiliary substrate 18 is bonded to the support member 11A on the side opposite to the insulating layer 14 in the z direction by an adhesive (not shown).
  • a first gate layer 181 and a first detection layer 182 are arranged on the first auxiliary substrate 18.
  • the first gate layer 181 and the first detection layer 182 are conductive and extend in the y direction.
  • the first gate layer 181 and the first detection layer 182 are made of, for example, Cu foil.
  • the first gate layer 181 is adjacent to the first power supply terminal 31 in the x direction.
  • the first detection layer 182 is adjacent to the plurality of first switching elements 21 in the x direction.
  • the second auxiliary substrate 19 is located between the plurality of second switching elements 22 and the output terminals 33 in the x direction, and extends in the y direction.
  • the constituent material of the second auxiliary substrate 19 is the same as the constituent material of the first auxiliary substrate 18.
  • the second auxiliary substrate 19 is bonded to the support member 11B on the side opposite to the insulating layer 14 in the z direction by an adhesive (not shown).
  • a second gate layer 191 and a second detection layer 192 are arranged on the second auxiliary substrate 19.
  • the second gate layer 191 and the second detection layer 192 are conductive and extend in the y direction.
  • the second gate layer 191 and the second detection layer 192 are made of, for example, Cu foil.
  • the second gate layer 191 is adjacent to the output terminal 33 in the x direction.
  • the second detection layer 192 is adjacent to the plurality of second switching elements 22 in the x direction.
  • the plurality of first switching elements 21 are semiconductor elements that are joined to the support member 11A and conduct to the support member 11B.
  • the plurality of first switching elements 21 are joined to the support member 11A on the side opposite to the insulating layer 14 in the z direction.
  • each of the first switching elements 21 is conductive to the support member 11B via the first conduction wire 411.
  • the plurality of first switching elements 21 are all power MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) containing SiC (silicon carbide) as a main component.
  • the plurality of first switching elements 21 may be IGBTs (Insulated Gate Bipolar Transistors).
  • the first switching element 21 may have Si as a main component.
  • the plurality of first switching elements 21 are arranged in the y direction.
  • the number of the plurality of first switching elements 21 is 4, but the number is not limited to this.
  • Each first switching element 21 has a semiconductor layer 201 and a back surface electrode 202.
  • the semiconductor layer 201 is a portion in which a plurality of semiconductor layers are laminated, including a semiconductor layer made of SiC.
  • the back surface electrode 202 is formed on the back surface of the semiconductor layer 201.
  • the back surface electrode 202 is a drain electrode.
  • a source electrode and a drain electrode are formed on the surface of the semiconductor layer 201.
  • a source current (emitter current when the first switching element 21 is an IGBT) flows through the source electrode.
  • a gate current for driving the first switching element 21 is input to the gate electrode.
  • the size of the gate electrode is smaller than that of the source electrode.
  • the plurality of second switching elements 22 are semiconductor elements bonded to the support member 11B.
  • the plurality of second switching elements 22 are joined to the support member 11B on the side opposite to the insulating layer 14 in the z direction.
  • each of the second switching elements 22 is conducting to the second power supply terminal 32 via the second conduction wire 421.
  • the second switching element 22 is the same element as the first switching element 21.
  • the plurality of second switching elements 22 are arranged in the y direction. In the semiconductor device A10, the number of the plurality of second switching elements 22 is 4, but the number is not limited to this.
  • Each second switching element 22 has a semiconductor layer 201 and a back surface electrode 202.
  • the semiconductor layer 201 includes a semiconductor layer made of SiC, and is a portion where a plurality of semiconductor layers are laminated.
  • the back surface electrode 202 is formed on the back surface of the semiconductor layer 201.
  • the back surface electrode 202 is a drain electrode.
  • a source electrode and a drain electrode are formed on the surface of the semiconductor layer 201.
  • a source current (emitter current when the first switching element 21 is an IGBT) flows through the source electrode.
  • a gate current for driving the first switching element 21 is input to the gate electrode.
  • the size of the gate electrode is smaller than that of the source electrode.
  • the first power supply terminal 31 is a metal and flat plate-shaped conductive member electrically bonded to the support member 11A.
  • the first power supply terminal 31 is a positive electrode (P terminal) of the semiconductor device A10.
  • the constituent material of the first power supply terminal 31 is, for example, Cu.
  • the surface of the first power supply terminal 31 may be plated with Ni (nickel).
  • the first power supply terminal 31 has a comb tooth portion 311 and an external connection portion 312.
  • the comb tooth portion 311 is adjacent to the first auxiliary substrate 18 in the x direction and overlaps the support member 11A in a plan view.
  • the comb tooth portion 311 is joined to the support member 11A on the side opposite to the insulating layer 14 in the z direction. Examples of the method for joining the comb tooth portion 311 to the support member 11A include solder bonding and ultrasonic bonding.
  • the external connection portion 312 has a strip shape extending from the comb tooth portion 311 on the side opposite to the side toward the support member 11B in the x direction. A part of the external connection portion 312 is exposed to the outside from the semiconductor device A10.
  • the second power supply terminal 32 is a metal and flat conductive member having a region overlapping the first power supply terminal 31 in a plan view.
  • the second power supply terminal 32 is arranged apart from any of the support member 11A, the support member 11B, and the first power supply terminal 31 in the z direction. Therefore, the second power supply terminal 32 is electrically insulated from any of the support member 11A, the support member 11B, and the first power supply terminal 31.
  • the second power supply terminal 32 is conductive to the plurality of second switching elements 22.
  • the second power supply terminal 32 is a negative electrode (N terminal) of the semiconductor device A10.
  • the constituent material and thickness of the second power supply terminal 32 are the same as the constituent material and thickness of the first power supply terminal 31.
  • the surface of the second power supply terminal 32 may be Ni-plated.
  • the second power supply terminal 32 has a first strip-shaped portion 321, a plurality of second strip-shaped portions 322, and an external connection portion 323.
  • the first band-shaped portion 321 and the external connection portion 323 correspond to a region overlapping the first power supply terminal 31 in a plan view.
  • the first strip-shaped portion 321 is located between the peripheral edge of the support member 11A intersecting the first power supply terminal 31 and the first auxiliary substrate 18 in a plan view.
  • the first strip-shaped portion 321 extends in the y direction.
  • the plurality of second strips 322 extend from the first strips 321 toward the support member 11B and are arranged in the y direction.
  • the number of the plurality of second band-shaped portions 322 is four, but the number is not limited to this.
  • the external connecting portion 323 has a strip shape extending from the first strip-shaped portion 321 in the x direction to the side opposite to the side facing the support member 11B. A part of the external connection portion 323 is exposed to the outside from the semiconductor device A10.
  • a part of the second band-shaped portion 322 of the second power supply terminal 32 is located between two adjacent first switching elements 21. Therefore, in the semiconductor device A10, the second band-shaped portion 322 passes between the two adjacent first switching elements 21 toward the support member 11B. Further, in the x direction, each second switching element 22 faces each second band-shaped portion 322. Therefore, in a plan view, the plurality of first switching elements 21 and the plurality of second switching elements 22 are staggered with respect to the support member 11A and the support member 11B.
  • the output terminal 33 is a metal and flat conductive member electrically bonded to the support member 11B.
  • the electric power input from the first power supply terminal 31 and the second power supply terminal 32 to the semiconductor device A10 is converted by the plurality of first switching elements 21 and the plurality of second switching elements 22, and the converted electric power is converted to the output terminal 33. It is output.
  • the constituent material and thickness of the output terminal 33 are the same as the constituent material and thickness of the first power supply terminal 31.
  • the surface of the output terminal 33 may be Ni-plated.
  • the output terminal 33 has a comb tooth portion 331 and an external connection portion 332.
  • the comb tooth portion 331 is adjacent to the second auxiliary substrate 19 in the x direction and overlaps the support member 11B in a plan view.
  • the comb tooth portion 331 is joined to the support member 11B on the side opposite to the insulating layer 14 in the z direction. Examples of the method for joining the comb tooth portion 331 to the support member 11B include solder bonding or ultrasonic bonding.
  • the external connecting portion 332 has a strip shape extending from the comb tooth portion 331 in the x direction to the side opposite to the side facing the support member 11A.
  • the external connection portion 332 extends to the side opposite to the side on which the external connection portion 312 of the first power supply terminal 31 and the external connection portion 323 of the second power supply terminal 32 extend. A part of the external connection portion 332 is exposed to the outside from the semiconductor device A10.
  • the first gate terminal 341 has conductivity, is arranged so as to face the first gate layer 181 in the y direction, and extends to a side opposite to the side toward the first gate layer 181. A part of the first gate terminal 341 is exposed to the outside of the semiconductor device A10.
  • the constituent material of the first gate terminal 341 is, for example, Cu.
  • the surface of the first gate terminal 341 is Sn-plated.
  • the second gate terminal 342 has conductivity, is arranged so as to face the second gate layer 191 in the y direction, and extends to the side opposite to the side toward the second gate layer 191. As shown in FIGS. 2 and 3, a part of the second gate terminal 342 is exposed to the outside of the semiconductor device A10.
  • the constituent material of the second gate terminal 342 is the same as the constituent material of the first gate terminal 341.
  • the surface of the second gate terminal 342 is Sn-plated.
  • the first detection terminal 351 has conductivity, is arranged so as to face the first detection layer 182 in the y direction, and extends to a side opposite to the side toward the first detection layer 182. A part of the first detection terminal 351 is exposed to the outside of the semiconductor device A10. The first detection terminal 351 is separated from the first gate terminal 341 in the x direction.
  • the constituent material of the first detection terminal 351 is the same as the constituent material of the first gate terminal 341.
  • the surface of the first detection terminal 351 is Sn-plated.
  • the second detection terminal 352 has conductivity, is arranged so as to face the second detection layer 192 in the y direction, and extends to the side opposite to the side toward the second detection layer 192. As shown in FIGS. 2 and 3, a part of the second detection terminal 352 is exposed to the outside of the semiconductor device A10. The second detection terminal 352 is separated from the second gate terminal 342 in the x direction. The constituent material of the second detection terminal 352 is the same as the constituent material of the first gate terminal 341. The surface of the second detection terminal 352 is Sn-plated.
  • the device current detection terminal 36 has conductivity, is located between the first detection terminal 351 and the second detection terminal 352 in the x direction, and is arranged so as to face the support member 11A in the y direction.
  • the device current detection terminal 36 extends in the y direction to the side opposite to the side facing the support member 11A. A part of the device current detection terminal 36 is exposed to the outside of the semiconductor device A10.
  • the constituent material of the device current detection terminal 36 is the same as the constituent material of the first gate terminal 341.
  • the surface of the device current detection terminal 36 is Sn-plated.
  • the first conductive wire 411 is a conductive member that connects the source electrode of each first switching element 21 and the support member 11B.
  • the first conductive wire 411 is a thin metal wire extending in the x direction.
  • the first conductive wire 411 is connected to each region of the source electrode.
  • the plurality of first switching elements 21 are conductive to the support member 11B via the first conductive wire 411.
  • the constituent material of the first conductive wire 411 is, for example, Al.
  • the second conductive wire 421 is a conductive member that connects each second band-shaped portion 322 of the second power supply terminal 32 and the main surface electrode 221 of each second switching element 22.
  • the second conductive wire 421 is a thin metal wire extending in the x direction.
  • the second conductive wire 421 is connected to each region of the main surface electrode 221.
  • each of the second strip-shaped portions 322 is conductive to the main surface electrode 221 via the second conductive wire 421.
  • the constituent material of the second conductive wire 421 is the same as the constituent material of the first conductive wire 411.
  • the first gate wire 431 is conductive and connects the gate electrode of each first switching element 21 to the first gate layer 181.
  • the constituent material of the first gate wire 431 is, for example, Al.
  • Each gate electrode conducts to the first gate layer 181 via the first gate wire 431. Therefore, the first gate terminal 341 is conductive to each gate electrode.
  • the semiconductor device A10 has a configuration in which a plurality of first switching elements 21 are driven when a gate current is input to the first gate terminal 341.
  • the second gate wire 432 has conductivity and connects the gate electrode 223 of each second switching element 22 and the second gate layer 191.
  • the constituent material of the second gate wire 432 is the same as the constituent material of the first gate wire 431.
  • Each gate electrode 223 conducts to the second gate layer 191 via the second gate wire 432. Therefore, the second gate terminal 342 is conductive to each gate electrode 223.
  • the semiconductor device A10 has a configuration in which a plurality of second switching elements 22 are driven when a gate current is input to the second gate terminal 342.
  • the first detection wire 441 is conductive and connects the source electrode of each first switching element 21 to the first detection layer 182.
  • the constituent material of the first detection wire 441 is, for example, Al.
  • the first detection wire 441 is connected to any region of each source electrode.
  • Each source electrode conducts to the first detection layer 182 via the first detection wire 441. Therefore, the first detection terminal 351 is conductive to each source electrode.
  • the source current (or emitter current) input from the first detection terminal 351 to the plurality of first switching elements 21 is detected.
  • the second detection wire 442 has conductivity and connects the main surface electrode 221 of each second switching element 22 and the second detection layer 192.
  • the constituent material of the second detection wire 442 is the same as the constituent material of the first detection wire 441.
  • the second detection wire 442 is connected to any region of the respective main surface electrodes 221.
  • Each main surface electrode 221 conducts to the second detection layer 192 via the second detection wire 442. Therefore, the second detection terminal 352 is conductive to each main surface electrode 221.
  • the source current (or drain current) input from the second detection terminal 352 to the plurality of second switching elements 22 is detected.
  • the first terminal wire 451 has conductivity and connects the first gate terminal 341 and the first gate layer 181.
  • the constituent material of the first terminal wire 451 is, for example, Al (aluminum).
  • the first gate terminal 341 is conductive to the first gate layer 181 via the first terminal wire 451.
  • the second terminal wire 452 has conductivity and connects the second gate terminal 342 and the second gate layer 191.
  • the constituent material of the second terminal wire 452 is the same as the constituent material of the first terminal wire 451.
  • the second gate terminal 342 is conductive to the second gate layer 191 via the second terminal wire 452.
  • the third terminal wire 453 has conductivity and connects the first detection terminal 351 and the first detection layer 182.
  • the constituent material of the third terminal wire 453 is the same as the constituent material of the first terminal wire 451.
  • the first detection terminal 351 is conductive to the first detection layer 182 via the third terminal wire 453.
  • the fourth terminal wire 454 has conductivity and connects the second detection terminal 352 and the second detection layer 192.
  • a fourth terminal wire 454 is provided.
  • the constituent material of the fourth terminal wire 454 is the same as the constituent material of the first terminal wire 451.
  • the second detection terminal 352 is conductive to the second detection layer 192 via the fourth terminal wire 454.
  • the fifth terminal wire 455 has conductivity and connects the device current detection terminal 36 and the support member 11A.
  • the constituent material of the fifth terminal wire 455 is the same as the constituent material of the first terminal wire 451.
  • the device current detection terminal 36 is conductive to the support member 11A via the fifth terminal wire 455. In the semiconductor device A10, the current flowing from the device current detection terminal 36 to the support member 11A is detected.
  • the sealing resin 50 covers at least a part of the substrate 10, a plurality of first switching elements 21, and a plurality of second switching elements 22.
  • the sealing resin 50 has electrical insulation.
  • the constituent material of the sealing resin 50 is, for example, a black epoxy resin.
  • the sealing resin 50 has a front surface 51 and a back surface 52.
  • the surface 51 faces one side in the z direction.
  • the back surface 52 faces the side opposite to the front surface 51 in the z direction.
  • the back surface metal layer 15 of the support member 11A and the support member 11B is exposed from the back surface 52.
  • a part of each of the external connection portion 312 of the first power supply terminal 31, the external connection portion 323 of the second power supply terminal 32, and the insulating member 39 is exposed from one side surface of the sealing resin 50 facing the x direction. .. Further, a part of the external connection portion 332 of the output terminal 33 is exposed from the other side surface of the sealing resin 50 facing the x direction.
  • a part of each of the first gate terminal 341, the second gate terminal 342, the first detection terminal 351 and the second detection terminal 352 and the device current detection terminal 36 is exposed from one side surface of the sealing resin 50 facing the y direction. is doing.
  • ⁇ Destruction risk R> When the semiconductor device A10 is used, for example, heat is generated from a plurality of first switching elements 21 and second switching elements 22, and the temperature of the entire semiconductor device A10 rises. In this way, the temperature (for example, average temperature) of the entire semiconductor device A10 during use is defined as the operating temperature. For example, when the operating temperature rises to 150 ° C., the first switching element 21, the second switching element 22, the conductive bonding material 29, the support member 11A, and the support member 11B are thermally expanded in response to the temperature rise. .. However, the linear expansion coefficients of the first switching element 21, the second switching element 22, the conductive bonding member 29, the support member 11A, and the support member 11B are different from each other.
  • the coefficient of linear expansion of the first switching element 21A and the second switching element 22A is smaller than the coefficient of linear expansion of the support member 11A and the support member 11B. Therefore, thermal stress is generated in the conductive bonding material 29. If the influence of this thermal stress is excessive, the conductive bonding material 29 will be damaged such as cracks. This damage becomes a factor that hinders heat transfer from the first switching element 21 and the second switching element 22 to the support member 11A and the support member 11B. If heat is not sufficiently dissipated from the first switching element 21 and the second switching element 22, the operations of the first switching element 21 and the second switching element 22 may become unstable.
  • FIG. 4 shows the results of the thermal reliability test when the temperature is repeatedly changed with respect to the temperature of the semiconductor device A10.
  • the horizontal axis is the number of cycles given a temperature change of -40 ° C to 150 ° C
  • the vertical axis is the first switching element 21 and the second switching element 22 and the support member 11A and the support by the conductive bonding material 29 in the initial state. This is the joint area when the joint area with the member 11B is 100%.
  • the thickness t2 of the conductive bonding material 29 made of the Ag sintered material was set to four types of 104 ⁇ m, 58 ⁇ m, 42 ⁇ m, and 7 ⁇ m.
  • the support member 11A and the support member 11B were made of Cu and had a thickness t3 of 2,000 ⁇ m.
  • the first switching element 21 and the second switching element 22 had a side length (junction length) L of 4.8 mm.
  • the bonding area decreased due to the cracks in the conductive bonding material 29. Further, the thinner the thickness t2, the more likely it was that the joint area was reduced. Based on the application of the semiconductor device A10, if the number of cycles is 1,000 and the junction area is maintained at 70% or more, heat dissipation from the first switching element 21 and the second switching element 22 and ensuring continuity can be ensured. It was found that it is preferable from the viewpoint.
  • FIG. 5 shows the results of a thermal reliability test using a conductive bonding material 29 made of an Ag sintered material.
  • the thicknesses t2 and t3 are changed, the number of cycles in which the joint area is less than 70% is shown. It can be said that the case where the number of cycles is 1,000 or more is the case where the required thermal reliability is ensured.
  • FIG. 6 shows the results of a thermal reliability test using the conductive bonding material 29 made of the Al solid phase diffusion layer.
  • the thicknesses t2 and t3 are changed, the number of cycles in which the joint area is less than 70% is shown. It can be said that the case where the number of cycles is 1,000 or more is the case where the required thermal reliability is ensured.
  • FIG. 7 shows the results of a thermal reliability simulation assuming a case where the joint area is maintained at 70 or more in 1,000 cycles.
  • the fracture risk R which is the ratio of the plastic strain ⁇ 2 to the elastic strain ⁇ 1 of the total strain ⁇ 0, was defined (both are Mises equivalent strains).
  • the fracture risk R is 1 in the case where the bonding area is 70% after 1,000 cycles. It was less than 0.0.
  • FIGS. 8 and 9 show the simulation results of the fracture risk R when the conductive bonding material 29 is made of an Ag sintered material.
  • the horizontal axis of FIG. 8 is the thickness t2 of the conductive bonding member 29, and the vertical axis is the thickness t1 of the first switching element 21 and the second switching element 22.
  • the horizontal axis of FIG. 9 is the thickness t2 of the conductive joining member 29, and the vertical axis is the thickness t3 of the support member 11A and the support member 11B.
  • the hatched areas in FIGS. 8 and 9 are areas where the fracture risk R is less than 1.0.
  • the junction length L of the first switching element 21 and the second switching element 22 was 4.8 mm.
  • FIGS. 10 and 11 show the simulation results of the fracture risk R when the conductive bonding material 29 is composed of the Al solid phase diffusion layer.
  • the horizontal axis of FIG. 10 is the thickness t2 of the conductive bonding member 29, and the vertical axis is the thickness t1 of the first switching element 21 and the second switching element 22.
  • the horizontal axis of FIG. 11 is the thickness t2 of the conductive joining member 29, and the vertical axis is the thickness t3 of the support member 11A and the support member 11B.
  • the hatched areas in FIGS. 8 and 9 are areas where the fracture risk R is less than 1.0.
  • the junction length L of the first switching element 21 and the second switching element 22 was 4.8 mm.
  • the ratio of the thickness t2 to the bonding length L is 0. 015 or more is preferable for ensuring thermal reliability.
  • the thickness t2 is preferably 70 ⁇ m or more.
  • the thickness t1 is preferably 100 ⁇ m or more and 350 ⁇ m or less, and the thickness t3 is preferably 1,000 ⁇ m or more. Further, the product of the thickness t1, the thickness t2 and the thickness t3 is preferably 4,000,000 ( ⁇ m 3 ) or more.
  • the ratio of the thickness t2 to the bonding length L is 0 in the region where the fracture risk R is less than 1.0. It is preferable that it is .0083 or more for ensuring thermal reliability.
  • the thickness t2 is preferably 40 ⁇ m or more.
  • the thickness t1 is preferably 100 ⁇ m or more and 350 ⁇ m or less, and the thickness t3 is preferably 1,000 ⁇ m or more. Further, the product of the thickness t1, the thickness t2 and the thickness t3 is preferably 4,000,000 ( ⁇ m 3 ) or more.
  • the semiconductor device according to the present disclosure is not limited to the above-described embodiment.
  • the specific configuration of each part of the semiconductor device according to the present disclosure can be freely redesigned.
  • the main component of the conductive bonding material is Ag.
  • the semiconductor device according to Appendix 1, wherein the ratio of the thickness of the conductive bonding material to the bonding length of the conductive bonding material and the semiconductor element is 0.015 or more.
  • Appendix 3 The semiconductor device according to Appendix 2, wherein the conductive bonding material has a thickness of 70 ⁇ m or more.
  • [Appendix 4] The semiconductor device according to Appendix 2 or 3, wherein the conductive bonding material is made of an Ag sintered body.
  • [Appendix 5] The main component of the conductive bonding material is Al.
  • [Appendix 6] The semiconductor device according to Appendix 5, wherein the conductive bonding material has a thickness of 40 ⁇ m or more.
  • [Appendix 7] The semiconductor device according to Appendix 5 or 6, wherein the conductive bonding material is solid-phase diffusion bonded to the semiconductor element and the support member.
  • [Appendix 8] The product of the thickness of the semiconductor element, the thickness of the conductive bonding material, and the thickness of the support member is 4,000,000 ( ⁇ m 3 ) or more, according to any one of Appendix 2 to 7.
  • [Appendix 9] The semiconductor device according to Appendix 8, wherein the thickness of the semiconductor element is 100 ⁇ m or more and 350 ⁇ m or less.
  • [Appendix 10] The semiconductor device according to Appendix 8 or 9, wherein the support member has a thickness of 1,000 ⁇ m or more.
  • [Appendix 11] The semiconductor device according to any one of Supplementary note 1 to 10, wherein the semiconductor element contains Si as a main component.
  • [Appendix 12] The semiconductor device according to any one of Supplementary note 1 to 10, wherein the semiconductor element contains SiC as a main component.
  • [Appendix 13] The semiconductor device according to Appendix 11 or 12, wherein the semiconductor element has a back electrode to which the conductive bonding material is bonded.
  • the semiconductor element is a switching element and The semiconductor device according to Appendix 13, wherein the back surface electrode is a drain electrode.
  • [Appendix 15] The semiconductor device according to Appendix 14, further comprising a substrate having a support member and a back surface metal layer and an insulating layer interposed between the support member and the back surface metal layer.
  • [Appendix 16] The semiconductor device according to Appendix 15, wherein the insulating layer is made of ceramics.
  • [Appendix 17] The semiconductor element, the conductive bonding material, and the sealing resin covering the support member are provided. The semiconductor device according to Appendix 15 or 16, wherein the back metal layer is exposed from the sealing resin.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

This semiconductor device comprises: a semiconductor element; a support member formed from metal; and a conducting joint material that conductively joins the semiconductor element and the support member. If the ratio of plastic strain to elastic strain of the conducting joint material is considered to be breakage risk, the breakage risk at temperatures at which the semiconductor device is used is less than 1.0.

Description

半導体装置Semiconductor device
 本開示は、半導体装置に関する。 This disclosure relates to semiconductor devices.
 半導体素子の一例としてスイッチング素子(パワーMOSFETまたはIGBT)がある。所定数のスイッチング素子を備えた半導体装置(パワーモジュール)は、たとえば、DC-DCコンバータといった電力変換を行う装置の一部を構成する。特許文献1には、複数のスイッチング素子を有する半導体装置の一例が開示されている。当該半導体装置では、金属からなる支持部材に、導通接合材を介して、各スイッチング素子が接合されている。 An example of a semiconductor element is a switching element (power MOSFET or IGBT). A semiconductor device (power module) provided with a predetermined number of switching elements constitutes a part of a device that performs power conversion, for example, a DC-DC converter. Patent Document 1 discloses an example of a semiconductor device having a plurality of switching elements. In the semiconductor device, each switching element is bonded to a support member made of metal via a conductive bonding material.
特開2009-158787号公報Japanese Unexamined Patent Publication No. 2009-158787
 半導体装置の使用時には、たとえば、スイッチング素子からの発熱により、装置全体の温度が上昇する。スイッチング素子、導通接合材および支持部材は、互いの線膨張率が異なることが一般的である。このため、導通接合材に熱応力が生じ、たとえば亀裂が生じることが懸念される。 When using a semiconductor device, for example, the temperature of the entire device rises due to heat generated from the switching element. Generally, the switching element, the conductive bonding material, and the support member have different coefficients of linear expansion from each other. Therefore, there is a concern that thermal stress is generated in the conductive joint material and, for example, cracks are generated.
 本開示は、上記した事情のもとで考え出されたものであって、導通接合材の損傷を抑制することが可能な半導体装置を提供することをその一の課題とする。 The present disclosure has been conceived under the above circumstances, and one of the problems thereof is to provide a semiconductor device capable of suppressing damage to the conductive bonding material.
 本開示によって提供される半導体装置は、半導体素子と、金属からなる支持部材と、前記半導体素子と前記支持部材とを導通接合する導通接合材と、を備える半導体装置であって、使用温度における前記導通接合材の弾性ひずみに対する塑性ひずみの比である破壊危険度が1.0未満である。 The semiconductor device provided by the present disclosure is a semiconductor device including a semiconductor element, a support member made of metal, and a conductive bonding material for conducting conduction bonding between the semiconductor element and the support member, and is the semiconductor device at an operating temperature. The fracture risk, which is the ratio of the plastic strain to the elastic strain of the conductive bonding material, is less than 1.0.
 好ましくは、前記導通接合材の主成分は、Agであり、前記導通接合材と前記半導体素子との接合長さに対する前記導通接合材の厚さの比は、0.015以上である。 Preferably, the main component of the conductive bonding material is Ag, and the ratio of the thickness of the conductive bonding material to the bonding length between the conductive bonding material and the semiconductor element is 0.015 or more.
 好ましくは、前記導通接合材の厚さは、70μm以上である。 Preferably, the thickness of the conductive bonding material is 70 μm or more.
 好ましくは、前記導通接合材は、Ag焼結体からなる。 Preferably, the conductive bonding material is made of an Ag sintered body.
 好ましくは、前記導通接合材の主成分は、Alであり、前記導通接合材と前記半導体素子との接合長さに対する前記導通接合材の厚さの比は、0.0083以上である。 Preferably, the main component of the conductive bonding material is Al, and the ratio of the thickness of the conductive bonding material to the bonding length between the conductive bonding material and the semiconductor element is 0.0083 or more.
 好ましくは、前記導通接合材の厚さは、40μm以上である。 Preferably, the thickness of the conductive bonding material is 40 μm or more.
 好ましくは、前記導通接合材は、前記半導体素子および前記支持部材に固相拡散接合されている。 Preferably, the conductive bonding material is solid-phase diffusion bonded to the semiconductor element and the support member.
 好ましくは、前記半導体素子の厚さ、前記導通接合材の厚さ、および前記支持部材の厚さの積は、4,000,000(μm3)以上である。 Preferably, the product of the thickness of the semiconductor element, the thickness of the conductive bonding material, and the thickness of the support member is 4,000,000 (μm 3 ) or more.
 好ましくは、前記半導体素子の厚さは、100μm以上350μm以下である。 Preferably, the thickness of the semiconductor element is 100 μm or more and 350 μm or less.
 好ましくは、前記支持部材の厚さは、1,000μm以上である。 Preferably, the thickness of the support member is 1,000 μm or more.
 好ましくは、前記半導体素子は、主成分としてSiを含む。 Preferably, the semiconductor element contains Si as a main component.
 好ましくは、前記半導体素子は、主成分としてSiCを含む。 Preferably, the semiconductor element contains SiC as a main component.
 好ましくは、前記半導体素子は、前記導通接合材が接合される裏面電極を有する。 Preferably, the semiconductor element has a back electrode to which the conductive bonding material is bonded.
 好ましくは、前記半導体素子は、スイッチング素子であり、前記裏面電極は、ドレイン電極である。 Preferably, the semiconductor element is a switching element, and the back electrode is a drain electrode.
 好ましくは、前記支持部材および裏面金属層と、前記支持部材および前記裏面金属層との間に介在する絶縁層と、を有する基板を備える。 Preferably, a substrate having the support member and the back surface metal layer and an insulating layer interposed between the support member and the back surface metal layer is provided.
 好ましくは、前記絶縁層は、セラミックスからなる。 Preferably, the insulating layer is made of ceramics.
 好ましくは、前記半導体素子、前記導通接合材および前記支持部材を覆う封止樹脂を備え、前記裏面金属層は、前記封止樹脂から露出する。 Preferably, the semiconductor element, the conductive bonding material, and the sealing resin covering the supporting member are provided, and the back metal layer is exposed from the sealing resin.
 本開示の半導体装置によれば、たとえば、導通接合材の損傷を抑制しうる。 According to the semiconductor device of the present disclosure, for example, damage to the conductive bonding material can be suppressed.
 本開示のその他の特徴および利点は、添付図面を参照して以下に行う詳細な説明によって、より明らかとなろう。 Other features and advantages of this disclosure will become more apparent with the detailed description given below with reference to the accompanying drawings.
第1実施形態に係る半導体装置を示す斜視図である。It is a perspective view which shows the semiconductor device which concerns on 1st Embodiment. 第1実施形態に係る半導体装置を示す要部平面図である。It is a main part plan view which shows the semiconductor device which concerns on 1st Embodiment. 第1実施形態に係る半導体装置を示す要部拡大断面図である。It is an enlarged sectional view of the main part which shows the semiconductor device which concerns on 1st Embodiment. 半導体装置の熱信頼性試験の結果を示すグラフである。It is a graph which shows the result of the thermal reliability test of a semiconductor device. 半導体装置の熱信頼性試験の結果を示す表である。It is a table which shows the result of the thermal reliability test of a semiconductor device. 半導体装置の熱信頼性試験の結果を示す表である。It is a table which shows the result of the thermal reliability test of a semiconductor device. 半導体装置の熱信頼性試験の結果を示す表である。It is a table which shows the result of the thermal reliability test of a semiconductor device. 半導体装置の熱信頼性シミュレーションの結果を示すグラフである。It is a graph which shows the result of the thermal reliability simulation of a semiconductor device. 半導体装置の熱信頼性シミュレーションの結果を示すグラフである。It is a graph which shows the result of the thermal reliability simulation of a semiconductor device. 半導体装置の熱信頼性シミュレーションの結果を示すグラフである。It is a graph which shows the result of the thermal reliability simulation of a semiconductor device. 半導体装置の熱信頼性シミュレーションの結果を示すグラフである。It is a graph which shows the result of the thermal reliability simulation of a semiconductor device.
 以下、本開示の好ましい実施の形態につき、図面を参照して具体的に説明する。 Hereinafter, preferred embodiments of the present disclosure will be specifically described with reference to the drawings.
 本開示における「第1」、「第2」、「第3」等の用語は、単にラベルとして用いたものであり、必ずしもそれらの対象物に順列を付することを意図していない。 The terms "first", "second", "third", etc. in the present disclosure are merely used as labels, and are not necessarily intended to permutate those objects.
 図1~図3は、本開示の第1実施形態に係る半導体装置A10を示している。本実施形態の半導体装置A10は、基板10、第1スイッチング素子21、第2スイッチング素子22、導通接合材29、第1電源端子31、第2電源端子32、出力端子33、第1ゲート端子341、第2ゲート端子342、第1検出端子351、第2検出端子352、装置電流検出端子36、第1導通ワイヤ411、第2導通ワイヤ421、第1ゲートワイヤ431、第2ゲートワイヤ432、第1検出ワイヤ441、第2検出ワイヤ442、第1端子ワイヤ451、第2端子ワイヤ452、第4端子ワイヤ454、第5端子ワイヤ455および封止樹脂50を備える。 1 to 3 show the semiconductor device A10 according to the first embodiment of the present disclosure. The semiconductor device A10 of the present embodiment includes a substrate 10, a first switching element 21, a second switching element 22, a conductive bonding material 29, a first power supply terminal 31, a second power supply terminal 32, an output terminal 33, and a first gate terminal 341. , 2nd gate terminal 342, 1st detection terminal 351, 2nd detection terminal 352, device current detection terminal 36, 1st conduction wire 411, 2nd conduction wire 421, 1st gate wire 431, 2nd gate wire 432, 1st 1 The detection wire 441, the second detection wire 442, the first terminal wire 451 and the second terminal wire 452, the fourth terminal wire 454, the fifth terminal wire 455, and the sealing resin 50 are provided.
 半導体装置A10は、本開示の半導体素子の一例に相当する第1スイッチング素子21、第2スイッチング素子22を備える構成であるが、本開示の半導体素子は、スイッチング素子に限定されず、半導体からなる部位を有する種々の素子を含む概念である。また、半導体装置A10は、本開示の半導体装置の一例として開示されるものであり、本開示の半導体装置の具体的な構成は何ら限定されない。 The semiconductor device A10 has a configuration including a first switching element 21 and a second switching element 22 corresponding to an example of the semiconductor element of the present disclosure, but the semiconductor element of the present disclosure is not limited to the switching element and is made of a semiconductor. It is a concept including various elements having a part. Further, the semiconductor device A10 is disclosed as an example of the semiconductor device of the present disclosure, and the specific configuration of the semiconductor device of the present disclosure is not limited at all.
 図1は、半導体装置A10を示す斜視図である。図2は、半導体装置A10を示す要部平面図である。図3は、第1スイッチング素子21、第2スイッチング素子22を含むz方向に沿った断面における断面図であり、理解の便宜上、模式的に示している。 FIG. 1 is a perspective view showing the semiconductor device A10. FIG. 2 is a plan view of a main part showing the semiconductor device A10. FIG. 3 is a cross-sectional view taken along the z direction including the first switching element 21 and the second switching element 22, and is schematically shown for convenience of understanding.
<基板10>
 基板10は、複数の第1スイッチング素子21および複数の第2スイッチング素子22を支持するものである。また、本実施形態の基板10は、複数の第1スイッチング素子21および複数の第2スイッチング素子22の導通経路の一部を構成している。本実施形態の基板10は、支持部材11A、支持部材11B、接合層12、表面金属層13、絶縁層14および裏面金属層15を有する。
<Board 10>
The substrate 10 supports a plurality of first switching elements 21 and a plurality of second switching elements 22. Further, the substrate 10 of the present embodiment constitutes a part of the conduction path of the plurality of first switching elements 21 and the plurality of second switching elements 22. The substrate 10 of the present embodiment has a support member 11A, a support member 11B, a bonding layer 12, a front surface metal layer 13, an insulating layer 14, and a back surface metal layer 15.
 支持部材11Aは、複数の第1スイッチング素子21が導通接合された部材である。支持部材11Aの材質は特に限定されず、Cu、Ni、Fe等の金属やこれらを含む合金からなる。支持部材11Bは、複数の第2スイッチング素子22が導通接合された部材である。支持部材11Bの材質は特に限定されず、Cu、Ni、Fe等の金属やこれらを含む合金からなる。 The support member 11A is a member in which a plurality of first switching elements 21 are conduction-bonded. The material of the support member 11A is not particularly limited, and is made of a metal such as Cu, Ni, or Fe or an alloy containing these. The support member 11B is a member in which a plurality of second switching elements 22 are conduction-bonded. The material of the support member 11B is not particularly limited, and is made of a metal such as Cu, Ni, or Fe or an alloy containing these.
 第1スイッチング素子21は、導通接合材29によって支持部材11Aに導通接合されている。また、第2スイッチング素子22は、導通接合材29によって支持部材11Bに導通接合されている。導通接合材29は、第1スイッチング素子21および第2スイッチング素子22の裏面電極202を支持部材11Aおよび支持部材11Bに導通接合するものであれば特に限定されない。導通接合材29の一例を挙げると、金属の焼結体が挙げられ、具体的には、たとえばAg焼結体である。また、導通接合材29の他の例を挙げると、裏面電極202と支持部材11Aおよび支持部材11Bとに固相拡散によって接合された金属が挙げられ、具体的には、たとえばAl固相拡散層である。 The first switching element 21 is conductively bonded to the support member 11A by a conductive bonding member 29. Further, the second switching element 22 is conductively bonded to the support member 11B by the conductive bonding member 29. The conductive bonding material 29 is not particularly limited as long as the back electrode 202 of the first switching element 21 and the second switching element 22 is conductively bonded to the support member 11A and the support member 11B. An example of the conductive bonding material 29 is a metal sintered body, and specifically, for example, an Ag sintered body. Further, another example of the conductive bonding material 29 includes a metal bonded to the back surface electrode 202, the support member 11A, and the support member 11B by solid phase diffusion. Specifically, for example, the Al solid phase diffusion layer. Is.
 接合層12は、支持部材11Aおよび支持部材11Bと、表面金属層13とを接合する層である。支持部材11Aと支持部材11Bとを絶縁する場合、接合層12は、絶縁性接合材からなる。接合層12による絶縁が必須でない場合、接合層12は、導電性接合材であってもよい。 The joining layer 12 is a layer that joins the support member 11A and the support member 11B and the surface metal layer 13. When insulating the support member 11A and the support member 11B, the bonding layer 12 is made of an insulating bonding material. If insulation by the bonding layer 12 is not essential, the bonding layer 12 may be a conductive bonding material.
 表面金属層13は、支持部材11Aおよび支持部材11Bが接合層12によって接合される層である。表面金属層13の材質は特に限定されず、たとえばCu、Ni、Fe等の金属やこれらを含む合金からなる。 The surface metal layer 13 is a layer in which the support member 11A and the support member 11B are joined by the joining layer 12. The material of the surface metal layer 13 is not particularly limited, and is made of, for example, a metal such as Cu, Ni, or Fe or an alloy containing these.
 絶縁層14は、表面金属層13と絶縁層14との間に介在しており、絶縁性材料からなる。絶縁層14の絶縁性材質は特に限定されず、たとえばセラミックスである。 The insulating layer 14 is interposed between the surface metal layer 13 and the insulating layer 14, and is made of an insulating material. The insulating material of the insulating layer 14 is not particularly limited, and is, for example, ceramics.
 裏面金属層15は、絶縁層14の裏面側に設けられている層である。裏面金属層15の材質は特に限定されず、たとえばCu、Ni、Fe等の金属やこれらを含む合金からなる。また、本実施形態においては、絶縁層14の裏面は、封止樹脂50の裏面52から露出している。 The back surface metal layer 15 is a layer provided on the back surface side of the insulating layer 14. The material of the back surface metal layer 15 is not particularly limited, and is made of, for example, a metal such as Cu, Ni, or Fe or an alloy containing these. Further, in the present embodiment, the back surface of the insulating layer 14 is exposed from the back surface 52 of the sealing resin 50.
<第1補助基板18>
 第1補助基板18は、x方向において複数の第1スイッチング素子21と第1電源端子31との間に位置し、y方向に延びている。第1補助基板18は、たとえばAl23などを構成材料とするセラミックス基板、またはプリント配線基板である。第1補助基板18は、接着剤(図示略)によりz方向において支持部材11Aに対して絶縁層14とは反対側に接合されている。第1補助基板18には、第1ゲート層181および第1検出層182が配置されている。第1ゲート層181および第1検出層182は、導電性を有し、かつy方向に延びている。第1ゲート層181および第1検出層182は、たとえばCu箔からなる。第1ゲート層181は、x方向において第1電源端子31に隣接している。第1検出層182は、x方向において複数の第1スイッチング素子21に隣接している。
<1st auxiliary board 18>
The first auxiliary substrate 18 is located between the plurality of first switching elements 21 and the first power supply terminal 31 in the x direction, and extends in the y direction. The first auxiliary substrate 18 is a ceramic substrate or a printed wiring board whose constituent material is, for example, Al 2 O 3. The first auxiliary substrate 18 is bonded to the support member 11A on the side opposite to the insulating layer 14 in the z direction by an adhesive (not shown). A first gate layer 181 and a first detection layer 182 are arranged on the first auxiliary substrate 18. The first gate layer 181 and the first detection layer 182 are conductive and extend in the y direction. The first gate layer 181 and the first detection layer 182 are made of, for example, Cu foil. The first gate layer 181 is adjacent to the first power supply terminal 31 in the x direction. The first detection layer 182 is adjacent to the plurality of first switching elements 21 in the x direction.
<第2補助基板19>
 第2補助基板19は、x方向において複数の第2スイッチング素子22と出力端子33との間に位置し、かつy方向に延びている。第2補助基板19の構成材料は、第1補助基板18の構成材料と同一である。第2補助基板19は、接着剤(図示略)によりz方向において支持部材11Bに対して絶縁層14とは反対側に接合されている。第2補助基板19には、第2ゲート層191および第2検出層192が配置されている。第2ゲート層191および第2検出層192は、導電性を有し、かつy方向に延びている。第2ゲート層191および第2検出層192は、たとえばCu箔からなる。第2ゲート層191は、x方向において出力端子33に隣接している。第2検出層192は、x方向において複数の第2スイッチング素子22に隣接している。
<Second auxiliary board 19>
The second auxiliary substrate 19 is located between the plurality of second switching elements 22 and the output terminals 33 in the x direction, and extends in the y direction. The constituent material of the second auxiliary substrate 19 is the same as the constituent material of the first auxiliary substrate 18. The second auxiliary substrate 19 is bonded to the support member 11B on the side opposite to the insulating layer 14 in the z direction by an adhesive (not shown). A second gate layer 191 and a second detection layer 192 are arranged on the second auxiliary substrate 19. The second gate layer 191 and the second detection layer 192 are conductive and extend in the y direction. The second gate layer 191 and the second detection layer 192 are made of, for example, Cu foil. The second gate layer 191 is adjacent to the output terminal 33 in the x direction. The second detection layer 192 is adjacent to the plurality of second switching elements 22 in the x direction.
<第1スイッチング素子21>
 複数の第1スイッチング素子21は、支持部材11Aに接合され、かつ支持部材11Bに導通する半導体素子である。複数の第1スイッチング素子21は、z方向において支持部材11Aに対して絶縁層14とは反対側に接合されている。半導体装置A10では、各々の第1スイッチング素子21は、第1導通ワイヤ411を介して支持部材11Bに導通している。また、半導体装置A10では、複数の第1スイッチング素子21は、いずれもSiC(炭化ケイ素)を主要成分としたパワーMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。なお、複数の第1スイッチング素子21は、IGBT(Insulated Gate Bipolar Transistor)であってもよい。また、第1スイッチング素子21は、Siを主成分としたものであってもよい。複数の第1スイッチング素子21は、y方向に配列されている。なお、半導体装置A10では、複数の第1スイッチング素子21の個数は4つであるが、個数はこれに限定されない。各々の第1スイッチング素子21は、半導体層201および裏面電極202を有する。
<First switching element 21>
The plurality of first switching elements 21 are semiconductor elements that are joined to the support member 11A and conduct to the support member 11B. The plurality of first switching elements 21 are joined to the support member 11A on the side opposite to the insulating layer 14 in the z direction. In the semiconductor device A10, each of the first switching elements 21 is conductive to the support member 11B via the first conduction wire 411. Further, in the semiconductor device A10, the plurality of first switching elements 21 are all power MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors) containing SiC (silicon carbide) as a main component. The plurality of first switching elements 21 may be IGBTs (Insulated Gate Bipolar Transistors). Further, the first switching element 21 may have Si as a main component. The plurality of first switching elements 21 are arranged in the y direction. In the semiconductor device A10, the number of the plurality of first switching elements 21 is 4, but the number is not limited to this. Each first switching element 21 has a semiconductor layer 201 and a back surface electrode 202.
 半導体層201は、SiCからなる半導体層を含み、複数の半導体層が積層された部位 である。裏面電極202は、半導体層201の裏面に形成されている。本実施形態においては、裏面電極202は、ドレイン電極である。また、半導体層201の表面には、ソース電極およびドレイン電極が形成されている。ソース電極には、ソース電流(第1スイッチング素子21がIGBTである場合はエミッタ電流)が流れる。ゲート電極には、第1スイッチング素子21を駆動させるためのゲート電流が入力される。ゲート電極の大きさは、ソース電極よりも小である。 The semiconductor layer 201 is a portion in which a plurality of semiconductor layers are laminated, including a semiconductor layer made of SiC. The back surface electrode 202 is formed on the back surface of the semiconductor layer 201. In the present embodiment, the back surface electrode 202 is a drain electrode. Further, a source electrode and a drain electrode are formed on the surface of the semiconductor layer 201. A source current (emitter current when the first switching element 21 is an IGBT) flows through the source electrode. A gate current for driving the first switching element 21 is input to the gate electrode. The size of the gate electrode is smaller than that of the source electrode.
<第2スイッチング素子22>
 複数の第2スイッチング素子22は、支持部材11Bに接合された半導体素子である。複数の第2スイッチング素子22は、z方向において支持部材11Bに対して絶縁層14とは反対側に接合されている。半導体装置A10では、各々の第2スイッチング素子22は、第2導通ワイヤ421を介して第2電源端子32に導通している。また、第2スイッチング素子22は、第1スイッチング素子21と同一の素子である。複数の第2スイッチング素子22は、y方向に配列されている。なお、半導体装置A10では、複数の第2スイッチング素子22の個数は4つであるが、個数はこれに限定されない。各々の第2スイッチング素子22は、半導体層201および裏面電極202を有する。
<Second switching element 22>
The plurality of second switching elements 22 are semiconductor elements bonded to the support member 11B. The plurality of second switching elements 22 are joined to the support member 11B on the side opposite to the insulating layer 14 in the z direction. In the semiconductor device A10, each of the second switching elements 22 is conducting to the second power supply terminal 32 via the second conduction wire 421. Further, the second switching element 22 is the same element as the first switching element 21. The plurality of second switching elements 22 are arranged in the y direction. In the semiconductor device A10, the number of the plurality of second switching elements 22 is 4, but the number is not limited to this. Each second switching element 22 has a semiconductor layer 201 and a back surface electrode 202.
 半導体層201は、SiCからなる半導体層を含み、複数の半導体層が積層された部位である。裏面電極202は、半導体層201の裏面に形成されている。本実施形態においては、裏面電極202は、ドレイン電極である。また、半導体層201の表面には、ソース電極およびドレイン電極が形成されている。ソース電極には、ソース電流(第1スイッチング素子21がIGBTである場合はエミッタ電流)が流れる。ゲート電極には、第1スイッチング素子21を駆動させるためのゲート電流が入力される。ゲート電極の大きさは、ソース電極よりも小である。 The semiconductor layer 201 includes a semiconductor layer made of SiC, and is a portion where a plurality of semiconductor layers are laminated. The back surface electrode 202 is formed on the back surface of the semiconductor layer 201. In the present embodiment, the back surface electrode 202 is a drain electrode. Further, a source electrode and a drain electrode are formed on the surface of the semiconductor layer 201. A source current (emitter current when the first switching element 21 is an IGBT) flows through the source electrode. A gate current for driving the first switching element 21 is input to the gate electrode. The size of the gate electrode is smaller than that of the source electrode.
<第1電源端子31,第2電源端子32,出力端子33>
 第1電源端子31は、支持部材11Aに電気的に接合された金属製かつ平板状の導電部材である。第1電源端子31は、半導体装置A10の正極(P端子)である。第1電源端子31の構成材料は、たとえばCuである。第1電源端子31の表面には、Ni(ニッケル)めっきを施してもよい。
<1st power supply terminal 31, 2nd power supply terminal 32, output terminal 33>
The first power supply terminal 31 is a metal and flat plate-shaped conductive member electrically bonded to the support member 11A. The first power supply terminal 31 is a positive electrode (P terminal) of the semiconductor device A10. The constituent material of the first power supply terminal 31 is, for example, Cu. The surface of the first power supply terminal 31 may be plated with Ni (nickel).
 第1電源端子31は、櫛歯部311および外部接続部312を有する。櫛歯部311は、x方向において第1補助基板18に隣接し、かつ平面視において支持部材11Aに重なっている。櫛歯部311は、z方向において支持部材11Aに対して絶縁層14とは反対側に接合されている。支持部材11Aに対する櫛歯部311の接合方法として、はんだ接合または超音波接合が挙げられる。外部接続部312は、櫛歯部311からx方向において支持部材11Bに向かう側とは反対側に延びる帯状である。外部接続部312の一部は、半導体装置A10から外部に露出している。 The first power supply terminal 31 has a comb tooth portion 311 and an external connection portion 312. The comb tooth portion 311 is adjacent to the first auxiliary substrate 18 in the x direction and overlaps the support member 11A in a plan view. The comb tooth portion 311 is joined to the support member 11A on the side opposite to the insulating layer 14 in the z direction. Examples of the method for joining the comb tooth portion 311 to the support member 11A include solder bonding and ultrasonic bonding. The external connection portion 312 has a strip shape extending from the comb tooth portion 311 on the side opposite to the side toward the support member 11B in the x direction. A part of the external connection portion 312 is exposed to the outside from the semiconductor device A10.
 第2電源端子32は、平面視において第1電源端子31に重なる領域を有する金属製かつ平板状の導電部材である。第2電源端子32は、z方向において支持部材11A、支持部材11Bおよび第1電源端子31のいずれに対して離間して配置されている。このため、第2電源端子32は、支持部材11A、支持部材11Bおよび第1電源端子31のいずれに対して電気絶縁がなされている。第2電源端子32は、複数の第2スイッチング素子22に導通している。第2電源端子32は、半導体装置A10の負極(N端子)である。第2電源端子32の構成材料および厚さは、第1電源端子31の構成材料および厚さと同一である。第2電源端子32の表面には、Niめっきを施してもよい。 The second power supply terminal 32 is a metal and flat conductive member having a region overlapping the first power supply terminal 31 in a plan view. The second power supply terminal 32 is arranged apart from any of the support member 11A, the support member 11B, and the first power supply terminal 31 in the z direction. Therefore, the second power supply terminal 32 is electrically insulated from any of the support member 11A, the support member 11B, and the first power supply terminal 31. The second power supply terminal 32 is conductive to the plurality of second switching elements 22. The second power supply terminal 32 is a negative electrode (N terminal) of the semiconductor device A10. The constituent material and thickness of the second power supply terminal 32 are the same as the constituent material and thickness of the first power supply terminal 31. The surface of the second power supply terminal 32 may be Ni-plated.
 第2電源端子32は、第1帯状部321、複数の第2帯状部322、および外部接続部323を有する。半導体装置A10では、第1帯状部321および外部接続部323が、平面視において第1電源端子31に重なる領域に該当する。第1帯状部321は、平面視において、第1電源端子31に交差する支持部材11Aの周縁と、第1補助基板18との間に位置している。あわせて、第1帯状部321は、y方向に延びている。複数の第2帯状部322は、第1帯状部321から支持部材11Bに向けて延び、かつy方向に配列されている。なお、半導体装置A10では、複数の第2帯状部322の個数は4つであるが、個数はこれに限定されない。外部接続部323は、第1帯状部321からx方向において支持部材11Bに向かう側とは反対側に延びる帯状である。外部接続部323の一部は、半導体装置A10から外部に露出している。 The second power supply terminal 32 has a first strip-shaped portion 321, a plurality of second strip-shaped portions 322, and an external connection portion 323. In the semiconductor device A10, the first band-shaped portion 321 and the external connection portion 323 correspond to a region overlapping the first power supply terminal 31 in a plan view. The first strip-shaped portion 321 is located between the peripheral edge of the support member 11A intersecting the first power supply terminal 31 and the first auxiliary substrate 18 in a plan view. At the same time, the first strip-shaped portion 321 extends in the y direction. The plurality of second strips 322 extend from the first strips 321 toward the support member 11B and are arranged in the y direction. In the semiconductor device A10, the number of the plurality of second band-shaped portions 322 is four, but the number is not limited to this. The external connecting portion 323 has a strip shape extending from the first strip-shaped portion 321 in the x direction to the side opposite to the side facing the support member 11B. A part of the external connection portion 323 is exposed to the outside from the semiconductor device A10.
 隣り合う2つの第1スイッチング素子21の間に、第2電源端子32の第2帯状部322の一部が位置している。このため、半導体装置A10では、隣り合う2つの第1スイッチング素子21の間を、第2帯状部322が支持部材11Bに向けて通過している。また、x方向において、各々の第2スイッチング素子22は、各々の第2帯状部322に対向している。したがって、平面視において、複数の第1スイッチング素子21および複数の第2スイッチング素子22は、支持部材11Aおよび支持部材11Bに対して千鳥配置されている。 A part of the second band-shaped portion 322 of the second power supply terminal 32 is located between two adjacent first switching elements 21. Therefore, in the semiconductor device A10, the second band-shaped portion 322 passes between the two adjacent first switching elements 21 toward the support member 11B. Further, in the x direction, each second switching element 22 faces each second band-shaped portion 322. Therefore, in a plan view, the plurality of first switching elements 21 and the plurality of second switching elements 22 are staggered with respect to the support member 11A and the support member 11B.
 出力端子33は、支持部材11Bに電気的に接合された金属製かつ平板状の導電部材である。第1電源端子31および第2電源端子32から半導体装置A10に入力された電力は、複数の第1スイッチング素子21および複数の第2スイッチング素子22により変換され、変換された電力が出力端子33に出力される。出力端子33の構成材料および厚さは、第1電源端子31の構成材料および厚さと同一である。出力端子33の表面には、Niめっきを施してもよい。 The output terminal 33 is a metal and flat conductive member electrically bonded to the support member 11B. The electric power input from the first power supply terminal 31 and the second power supply terminal 32 to the semiconductor device A10 is converted by the plurality of first switching elements 21 and the plurality of second switching elements 22, and the converted electric power is converted to the output terminal 33. It is output. The constituent material and thickness of the output terminal 33 are the same as the constituent material and thickness of the first power supply terminal 31. The surface of the output terminal 33 may be Ni-plated.
 出力端子33は、櫛歯部331および外部接続部332を有する。櫛歯部331は、x方向において第2補助基板19に隣接し、かつ平面視において支持部材11Bに重なっている。櫛歯部331は、z方向において支持部材11Bに対して絶縁層14とは反対側に接合されている。支持部材11Bに対する櫛歯部331の接合方法として、はんだ接合または超音波接合が挙げられる。外部接続部332は、櫛歯部331からx方向において支持部材11Aに向かう側とは反対側に延びる帯状である。このため、外部接続部332は、第1電源端子31の外部接続部312、および第2電源端子32の外部接続部323が延びる側とは反対側に延びている。外部接続部332の一部は、半導体装置A10から外部に露出している。 The output terminal 33 has a comb tooth portion 331 and an external connection portion 332. The comb tooth portion 331 is adjacent to the second auxiliary substrate 19 in the x direction and overlaps the support member 11B in a plan view. The comb tooth portion 331 is joined to the support member 11B on the side opposite to the insulating layer 14 in the z direction. Examples of the method for joining the comb tooth portion 331 to the support member 11B include solder bonding or ultrasonic bonding. The external connecting portion 332 has a strip shape extending from the comb tooth portion 331 in the x direction to the side opposite to the side facing the support member 11A. Therefore, the external connection portion 332 extends to the side opposite to the side on which the external connection portion 312 of the first power supply terminal 31 and the external connection portion 323 of the second power supply terminal 32 extend. A part of the external connection portion 332 is exposed to the outside from the semiconductor device A10.
<第1ゲート端子341,第2ゲート端子342>
 第1ゲート端子341は、導電性を有するとともに、y方向において、第1ゲート層181に対向して配置され、かつ第1ゲート層181に向かう側とは反対側に延びている。第1ゲート端子341の一部は、半導体装置A10の外部に露出している。第1ゲート端子341の構成材料は、たとえばCuである。第1ゲート端子341の表面には、Snめっきが施されている。
<1st gate terminal 341, 2nd gate terminal 342>
The first gate terminal 341 has conductivity, is arranged so as to face the first gate layer 181 in the y direction, and extends to a side opposite to the side toward the first gate layer 181. A part of the first gate terminal 341 is exposed to the outside of the semiconductor device A10. The constituent material of the first gate terminal 341 is, for example, Cu. The surface of the first gate terminal 341 is Sn-plated.
 第2ゲート端子342は、導電性を有するとともに、y方向において、第2ゲート層191に対向して配置され、かつ第2ゲート層191に向かう側とは反対側に延びている。図2および図3に示すように、第2ゲート端子342の一部は、半導体装置A10の外部に露出している。第2ゲート端子342の構成材料は、第1ゲート端子341の構成材料と同一である。第2ゲート端子342の表面には、Snめっきが施されている。 The second gate terminal 342 has conductivity, is arranged so as to face the second gate layer 191 in the y direction, and extends to the side opposite to the side toward the second gate layer 191. As shown in FIGS. 2 and 3, a part of the second gate terminal 342 is exposed to the outside of the semiconductor device A10. The constituent material of the second gate terminal 342 is the same as the constituent material of the first gate terminal 341. The surface of the second gate terminal 342 is Sn-plated.
<第1検出端子351,第2検出端子352>
 第1検出端子351は、導電性を有するとともに、y方向において、第1検出層182に対向して配置され、かつ第1検出層182に向かう側とは反対側に延びている。第1検 出端子351の一部は、半導体装置A10の外部に露出している。第1検出端子351は、x方向において第1ゲート端子341とは離間している。第1検出端子351の構成材料は、第1ゲート端子341の構成材料と同一である。第1検出端子351の表面には、Snめっきが施されている。
<First detection terminal 351 and second detection terminal 352>
The first detection terminal 351 has conductivity, is arranged so as to face the first detection layer 182 in the y direction, and extends to a side opposite to the side toward the first detection layer 182. A part of the first detection terminal 351 is exposed to the outside of the semiconductor device A10. The first detection terminal 351 is separated from the first gate terminal 341 in the x direction. The constituent material of the first detection terminal 351 is the same as the constituent material of the first gate terminal 341. The surface of the first detection terminal 351 is Sn-plated.
 第2検出端子352は、導電性を有するとともに、y方向において、第2検出層192に対向して配置され、かつ第2検出層192に向かう側とは反対側に延びている。図2および図3に示すように、第2検出端子352の一部は、半導体装置A10の外部に露出している。第2検出端子352は、x方向において第2ゲート端子342とは離間している。第2検出端子352の構成材料は、第1ゲート端子341の構成材料と同一である。第2検出端子352の表面には、Snめっきが施されている。 The second detection terminal 352 has conductivity, is arranged so as to face the second detection layer 192 in the y direction, and extends to the side opposite to the side toward the second detection layer 192. As shown in FIGS. 2 and 3, a part of the second detection terminal 352 is exposed to the outside of the semiconductor device A10. The second detection terminal 352 is separated from the second gate terminal 342 in the x direction. The constituent material of the second detection terminal 352 is the same as the constituent material of the first gate terminal 341. The surface of the second detection terminal 352 is Sn-plated.
<装置電流検出端子36>
 装置電流検出端子36は、導電性を有するとともに、x方向において第1検出端子351と第2検出端子352との間に位置し、かつy方向において支持部材11Aに対向して配置されている。装置電流検出端子36は、y方向において支持部材11Aに向かう側とは反対側に延びている。装置電流検出端子36の一部は、半導体装置A10の外部に露出している。装置電流検出端子36の構成材料は、第1ゲート端子341の構成材料と同一である。装置電流検出端子36の表面には、Snめっきが施されている。
<Device current detection terminal 36>
The device current detection terminal 36 has conductivity, is located between the first detection terminal 351 and the second detection terminal 352 in the x direction, and is arranged so as to face the support member 11A in the y direction. The device current detection terminal 36 extends in the y direction to the side opposite to the side facing the support member 11A. A part of the device current detection terminal 36 is exposed to the outside of the semiconductor device A10. The constituent material of the device current detection terminal 36 is the same as the constituent material of the first gate terminal 341. The surface of the device current detection terminal 36 is Sn-plated.
<第1導通ワイヤ411、第2導通ワイヤ421>
 第1導通ワイヤ411は、各々の第1スイッチング素子21のソース電極と、支持部材11Bとを接続する導電部材である。第1導通ワイヤ411は、x方向に延びる金属細線である。第1導通ワイヤ411は、ソース電極の各々の領域に接続されている。半導体装置A10では、複数の第1スイッチング素子21は、第1導通ワイヤ411を介して支持部材11Bに導通している。第1導通ワイヤ411の構成材料は、たとえばAlである。
<1st conducting wire 411, 2nd conducting wire 421>
The first conductive wire 411 is a conductive member that connects the source electrode of each first switching element 21 and the support member 11B. The first conductive wire 411 is a thin metal wire extending in the x direction. The first conductive wire 411 is connected to each region of the source electrode. In the semiconductor device A10, the plurality of first switching elements 21 are conductive to the support member 11B via the first conductive wire 411. The constituent material of the first conductive wire 411 is, for example, Al.
 第2導通ワイヤ421は、第2電源端子32の各々の第2帯状部322と、各々の第2スイッチング素子22の主面電極221とを接続する導電部材である。第2導通ワイヤ421は、x方向に延びる金属細線である。第2導通ワイヤ421は、主面電極221の各々の領域に接続されている。半導体装置A10では、各々の第2帯状部322は、第2導通ワイヤ421を介して主面電極221に導通している。第2導通ワイヤ421の構成材料は、第1導通ワイヤ411の構成材料と同一である。 The second conductive wire 421 is a conductive member that connects each second band-shaped portion 322 of the second power supply terminal 32 and the main surface electrode 221 of each second switching element 22. The second conductive wire 421 is a thin metal wire extending in the x direction. The second conductive wire 421 is connected to each region of the main surface electrode 221. In the semiconductor device A10, each of the second strip-shaped portions 322 is conductive to the main surface electrode 221 via the second conductive wire 421. The constituent material of the second conductive wire 421 is the same as the constituent material of the first conductive wire 411.
<第1ゲートワイヤ431,第2ゲートワイヤ432>
 第1ゲートワイヤ431は、導電性を有し、かつ各々の第1スイッチング素子21のゲート電極と、第1ゲート層181とを接続している。第1ゲートワイヤ431の構成材料は、たとえばAlである。各々のゲート電極は、第1ゲートワイヤ431を介して第1ゲート層181に導通している。したがって、第1ゲート端子341は、各々のゲート電極に導通している。半導体装置A10では、第1ゲート端子341にゲート電流が入力されると、複数の第1スイッチング素子21が駆動する構成となっている。
<1st gate wire 431, 2nd gate wire 432>
The first gate wire 431 is conductive and connects the gate electrode of each first switching element 21 to the first gate layer 181. The constituent material of the first gate wire 431 is, for example, Al. Each gate electrode conducts to the first gate layer 181 via the first gate wire 431. Therefore, the first gate terminal 341 is conductive to each gate electrode. The semiconductor device A10 has a configuration in which a plurality of first switching elements 21 are driven when a gate current is input to the first gate terminal 341.
 第2ゲートワイヤ432は、導電性を有し、かつ各々の第2スイッチング素子22のゲート電極223と、第2ゲート層191とを接続している。第2ゲートワイヤ432の構成材料は、第1ゲートワイヤ431の構成材料と同一である。各々のゲート電極223は、第2ゲートワイヤ432を介して第2ゲート層191に導通している。したがって、第2ゲート端子342は、各々のゲート電極223に導通している。半導体装置A10では、第2ゲート端子342にゲート電流が入力されると、複数の第2スイッチング素子22が駆動する構成となっている。 The second gate wire 432 has conductivity and connects the gate electrode 223 of each second switching element 22 and the second gate layer 191. The constituent material of the second gate wire 432 is the same as the constituent material of the first gate wire 431. Each gate electrode 223 conducts to the second gate layer 191 via the second gate wire 432. Therefore, the second gate terminal 342 is conductive to each gate electrode 223. The semiconductor device A10 has a configuration in which a plurality of second switching elements 22 are driven when a gate current is input to the second gate terminal 342.
<第1検出ワイヤ441,第2検出ワイヤ442>
 第1検出ワイヤ441は、導電性を有し、かつ各々の第1スイッチング素子21のソース電極と、第1検出層182とを接続している。第1検出ワイヤ441の構成材料は、たとえばAlである。第1検出ワイヤ441は、各々のソース電極のうち、いずれかの領域に接続されている。各々のソース電極は、第1検出ワイヤ441を介して第1検出層182に導通している。したがって、第1検出端子351は、各々のソース電極に導通している。半導体装置A10では、第1検出端子351から複数の第1スイッチング素子21に入力されるソース電流(またはエミッタ電流)が検出される。
<First detection wire 441, second detection wire 442>
The first detection wire 441 is conductive and connects the source electrode of each first switching element 21 to the first detection layer 182. The constituent material of the first detection wire 441 is, for example, Al. The first detection wire 441 is connected to any region of each source electrode. Each source electrode conducts to the first detection layer 182 via the first detection wire 441. Therefore, the first detection terminal 351 is conductive to each source electrode. In the semiconductor device A10, the source current (or emitter current) input from the first detection terminal 351 to the plurality of first switching elements 21 is detected.
 第2検出ワイヤ442は、導電性を有し、かつ各々の第2スイッチング素子22の主面電極221と、第2検出層192とを接続している。第2検出ワイヤ442の構成材料は、第1検出ワイヤ441の構成材料と同一である。第2検出ワイヤ442は、各々の主面電極221のうち、いずれかの領域に接続されている。各々の主面電極221は、第2検出ワイヤ442を介して第2検出層192に導通している。したがって、第2検出端子352は、各々の主面電極221に導通している。半導体装置A10では、第2検出端子352から複数の第2スイッチング素子22に入力されるソース電流(またはドレイン電流)が検出される。 The second detection wire 442 has conductivity and connects the main surface electrode 221 of each second switching element 22 and the second detection layer 192. The constituent material of the second detection wire 442 is the same as the constituent material of the first detection wire 441. The second detection wire 442 is connected to any region of the respective main surface electrodes 221. Each main surface electrode 221 conducts to the second detection layer 192 via the second detection wire 442. Therefore, the second detection terminal 352 is conductive to each main surface electrode 221. In the semiconductor device A10, the source current (or drain current) input from the second detection terminal 352 to the plurality of second switching elements 22 is detected.
<第1端子ワイヤ451,第2端子ワイヤ452,第3端子ワイヤ453,第4端子ワイヤ454,第5端子ワイヤ455>
 第1端子ワイヤ451は、導電性を有し、かつ第1ゲート端子341と第1ゲート層181とを接続している。第1端子ワイヤ451の構成材料は、たとえばAl(アルミニウム)である。第1ゲート端子341は、第1端子ワイヤ451を介して第1ゲート層181に導通している。
<1st terminal wire 4511, 2nd terminal wire 452, 3rd terminal wire 453, 4th terminal wire 454, 5th terminal wire 455>
The first terminal wire 451 has conductivity and connects the first gate terminal 341 and the first gate layer 181. The constituent material of the first terminal wire 451 is, for example, Al (aluminum). The first gate terminal 341 is conductive to the first gate layer 181 via the first terminal wire 451.
 第2端子ワイヤ452は、導電性を有し、かつ第2ゲート端子342と第2ゲート層191とを接続している。第2端子ワイヤ452の構成材料は、第1端子ワイヤ451の構成材料と同一である。第2ゲート端子342は、第2端子ワイヤ452を介して第2ゲート層191に導通している。 The second terminal wire 452 has conductivity and connects the second gate terminal 342 and the second gate layer 191. The constituent material of the second terminal wire 452 is the same as the constituent material of the first terminal wire 451. The second gate terminal 342 is conductive to the second gate layer 191 via the second terminal wire 452.
 第3端子ワイヤ453は、導電性を有し、かつ第1検出端子351と第1検出層182とを接続している。第3端子ワイヤ453の構成材料は、第1端子ワイヤ451の構成材料と同一である。第1検出端子351は、第3端子ワイヤ453を介して第1検出層182に導通している。 The third terminal wire 453 has conductivity and connects the first detection terminal 351 and the first detection layer 182. The constituent material of the third terminal wire 453 is the same as the constituent material of the first terminal wire 451. The first detection terminal 351 is conductive to the first detection layer 182 via the third terminal wire 453.
 第4端子ワイヤ454は、導電性を有し、かつ第2検出端子352と第2検出層192とを接続している。第4端子ワイヤ454を備える。第4端子ワイヤ454の構成材料は、第1端子ワイヤ451の構成材料と同一である。第2検出端子352は、第4端子ワイヤ454を介して第2検出層192に導通している。 The fourth terminal wire 454 has conductivity and connects the second detection terminal 352 and the second detection layer 192. A fourth terminal wire 454 is provided. The constituent material of the fourth terminal wire 454 is the same as the constituent material of the first terminal wire 451. The second detection terminal 352 is conductive to the second detection layer 192 via the fourth terminal wire 454.
 第5端子ワイヤ455は、導電性を有し、かつ装置電流検出端子36と支持部材11Aとを接続している。第5端子ワイヤ455の構成材料は、第1端子ワイヤ451の構成材料と同一である。装置電流検出端子36は、第5端子ワイヤ455を介して支持部材11Aに導通している。半導体装置A10では、装置電流検出端子36から支持部材11Aに流れる電流が検出される。 The fifth terminal wire 455 has conductivity and connects the device current detection terminal 36 and the support member 11A. The constituent material of the fifth terminal wire 455 is the same as the constituent material of the first terminal wire 451. The device current detection terminal 36 is conductive to the support member 11A via the fifth terminal wire 455. In the semiconductor device A10, the current flowing from the device current detection terminal 36 to the support member 11A is detected.
<封止樹脂50>
 封止樹脂50は、基板10の少なくとも一部、複数の第1スイッチング素子21、および複数の第2スイッチング素子22を覆っている。封止樹脂50は、電気絶縁性を有する。封止樹脂50の構成材料は、たとえば黒色のエポキシ樹脂である。封止樹脂50は、表面51および裏面52を有する。
<Encapsulating resin 50>
The sealing resin 50 covers at least a part of the substrate 10, a plurality of first switching elements 21, and a plurality of second switching elements 22. The sealing resin 50 has electrical insulation. The constituent material of the sealing resin 50 is, for example, a black epoxy resin. The sealing resin 50 has a front surface 51 and a back surface 52.
 表面51は、z方向において一方側を向く。裏面52は、z方向において表面51とは反対側を向く。本実施形態においては、裏面52から支持部材11Aおよび支持部材11Bの裏面金属層15が露出している。 The surface 51 faces one side in the z direction. The back surface 52 faces the side opposite to the front surface 51 in the z direction. In the present embodiment, the back surface metal layer 15 of the support member 11A and the support member 11B is exposed from the back surface 52.
 封止樹脂50のx方向を向く一方の側面から、第1電源端子31の外部接続部312、第2電源端子32の外部接続部323、および絶縁部材39のそれぞれ一部ずつが露出している。また、封止樹脂50のx方向を向く他方の側面から、出力端子33の外部接続部332の一部が露出している。封止樹脂50のy方向を向く一方の側面から、第1ゲート端子341、第2ゲート端子342、第1検出端子351、第2検出端子352および装置電流検出端子36のそれぞれ一部ずつが露出している。 A part of each of the external connection portion 312 of the first power supply terminal 31, the external connection portion 323 of the second power supply terminal 32, and the insulating member 39 is exposed from one side surface of the sealing resin 50 facing the x direction. .. Further, a part of the external connection portion 332 of the output terminal 33 is exposed from the other side surface of the sealing resin 50 facing the x direction. A part of each of the first gate terminal 341, the second gate terminal 342, the first detection terminal 351 and the second detection terminal 352 and the device current detection terminal 36 is exposed from one side surface of the sealing resin 50 facing the y direction. is doing.
<破壊危険度R>
 半導体装置A10は、使用時にたとえば、複数の第1スイッチング素子21および第2スイッチング素子22等から発熱し、半導体装置A10全体の温度が上昇する。このように、使用時における半導体装置A10全体の温度(たとえば、平均温度)を、使用温度と定義する。たとえば、使用温度が150℃に上昇する場合、この温度上昇に応じて、第1スイッチング素子21および第2スイッチング素子22と導通接合材29と支持部材11Aおよび支持部材11Bとが、それぞれ熱膨張する。しかし、第1スイッチング素子21および第2スイッチング素子22と導通接合材29と支持部材11Aおよび支持部材11Bの線膨張係数は互いに異なる。一般的に、第1スイッチング素子21Aおよび第2スイッチング素子22Aの線膨張係数は、支持部材11Aおよび支持部材11Bの線膨張係数よりも小さい。このため、導通接合材29には、熱応力が生じる。この熱応力の影響が過大であると、導通接合材29に亀裂等の破損が生じる。この破損は、第1スイッチング素子21および第2スイッチング素子22から支持部材11Aおよび支持部材11Bへの熱伝達を阻害する要因となる。第1スイッチング素子21および第2スイッチング素子22からの放熱が十分に行われないと、第1スイッチング素子21および第2スイッチング素子22の動作が不安定となるおそれがある。
<Destruction risk R>
When the semiconductor device A10 is used, for example, heat is generated from a plurality of first switching elements 21 and second switching elements 22, and the temperature of the entire semiconductor device A10 rises. In this way, the temperature (for example, average temperature) of the entire semiconductor device A10 during use is defined as the operating temperature. For example, when the operating temperature rises to 150 ° C., the first switching element 21, the second switching element 22, the conductive bonding material 29, the support member 11A, and the support member 11B are thermally expanded in response to the temperature rise. .. However, the linear expansion coefficients of the first switching element 21, the second switching element 22, the conductive bonding member 29, the support member 11A, and the support member 11B are different from each other. Generally, the coefficient of linear expansion of the first switching element 21A and the second switching element 22A is smaller than the coefficient of linear expansion of the support member 11A and the support member 11B. Therefore, thermal stress is generated in the conductive bonding material 29. If the influence of this thermal stress is excessive, the conductive bonding material 29 will be damaged such as cracks. This damage becomes a factor that hinders heat transfer from the first switching element 21 and the second switching element 22 to the support member 11A and the support member 11B. If heat is not sufficiently dissipated from the first switching element 21 and the second switching element 22, the operations of the first switching element 21 and the second switching element 22 may become unstable.
 図4は、半導体装置A10の温度に対して温度変化を繰り返し与えた場合の熱信頼性試験の結果を示している。横軸は、-40℃~150℃の温度変化を与えたサイクル数であり、縦軸は、初期状態の導通接合材29による第1スイッチング素子21および第2スイッチング素子22と支持部材11Aおよび支持部材11Bとの接合面積を100%とした場合の接合面積である。Ag焼結材からなる導通接合材29の厚さt2を、104μm、58μm、42μm、7μmの4種類に設定した。支持部材11Aおよび支持部材11Bは、Cuからなり、厚さt3が2,000μmであった。第1スイッチング素子21および第2スイッチング素子22は、一辺の長さ(接合長さ)Lが4.8mmであった。 FIG. 4 shows the results of the thermal reliability test when the temperature is repeatedly changed with respect to the temperature of the semiconductor device A10. The horizontal axis is the number of cycles given a temperature change of -40 ° C to 150 ° C, and the vertical axis is the first switching element 21 and the second switching element 22 and the support member 11A and the support by the conductive bonding material 29 in the initial state. This is the joint area when the joint area with the member 11B is 100%. The thickness t2 of the conductive bonding material 29 made of the Ag sintered material was set to four types of 104 μm, 58 μm, 42 μm, and 7 μm. The support member 11A and the support member 11B were made of Cu and had a thickness t3 of 2,000 μm. The first switching element 21 and the second switching element 22 had a side length (junction length) L of 4.8 mm.
 サイクル数が増えると、導通接合材29の亀裂に起因して、接合面積が減少する減少が確認された。また、厚さt2が薄いほど、接合面積の減少が進行しやすい傾向が見られた。半導体装置A10の用途等に基づくと、サイクル数1,000回で、接合面積が70%以上維持されていれば、第1スイッチング素子21および第2スイッチング素子22からの放熱や、導通の確保の観点から好ましいという知見が得られた。 As the number of cycles increased, it was confirmed that the bonding area decreased due to the cracks in the conductive bonding material 29. Further, the thinner the thickness t2, the more likely it was that the joint area was reduced. Based on the application of the semiconductor device A10, if the number of cycles is 1,000 and the junction area is maintained at 70% or more, heat dissipation from the first switching element 21 and the second switching element 22 and ensuring continuity can be ensured. It was found that it is preferable from the viewpoint.
 図5は、Ag焼結材からなる導通接合材29を用いた熱信頼性試験の結果である。厚さt2,t3をそれぞれ変えた場合に、接合面積が70%を下回るサイクル数を示している。サイクル数が1,000以上であるケースは、必要とされる熱信頼性が確保されたケースであると言える。 FIG. 5 shows the results of a thermal reliability test using a conductive bonding material 29 made of an Ag sintered material. When the thicknesses t2 and t3 are changed, the number of cycles in which the joint area is less than 70% is shown. It can be said that the case where the number of cycles is 1,000 or more is the case where the required thermal reliability is ensured.
 図6は、Al固相拡散層からなる導通接合材29を用いた熱信頼性試験の結果である。厚さt2,t3をそれぞれ変えた場合に、接合面積が70%を下回るサイクル数を示している。サイクル数が1,000以上であるケースは、必要とされる熱信頼性が確保されたケースであると言える。 FIG. 6 shows the results of a thermal reliability test using the conductive bonding material 29 made of the Al solid phase diffusion layer. When the thicknesses t2 and t3 are changed, the number of cycles in which the joint area is less than 70% is shown. It can be said that the case where the number of cycles is 1,000 or more is the case where the required thermal reliability is ensured.
 発明者は、図5および図6の熱信頼性試験の結果を踏まえ、所望の熱信頼性が得られる指標を検討した。その結果、使用温度における導通接合材29のひずみの状態が、熱信頼性の結果と良好な対応を有するという知見が得られた。図7は、サイクル数1,000回において接合面積が70以上を維持したケースを想定した、熱信頼性シミュレーションの結果である。熱信頼性の決定因子として、全ひずみε0の弾性ひずみε1に対する塑性ひずみε2の比である破壊危険度Rを定義した(いずれも、ミーゼス相当ひずみ)。導通接合材29が、Ag焼結材およびAl固相拡散層のいずれからなる場合であっても、サイクル数1,000回で接合面積が70%であるケースは、破壊危険度Rが、1.0未満であった。 Based on the results of the thermal reliability tests shown in FIGS. 5 and 6, the inventor examined an index for obtaining the desired thermal reliability. As a result, it was found that the strain state of the conductive bonding material 29 at the operating temperature has a good correspondence with the result of thermal reliability. FIG. 7 shows the results of a thermal reliability simulation assuming a case where the joint area is maintained at 70 or more in 1,000 cycles. As a determinant of thermal reliability, the fracture risk R, which is the ratio of the plastic strain ε2 to the elastic strain ε1 of the total strain ε0, was defined (both are Mises equivalent strains). Regardless of whether the conductive bonding material 29 is made of an Ag sintered material or an Al solid phase diffusion layer, the fracture risk R is 1 in the case where the bonding area is 70% after 1,000 cycles. It was less than 0.0.
 図8および図9は、導通接合材29がAg焼結材からなる場合の、破壊危険度Rのシミュレーション結果を示している。図8の横軸は、導通接合材29の厚さt2であり、縦軸は、第1スイッチング素子21および第2スイッチング素子22の厚さt1である。図9の横軸は、導通接合材29の厚さt2であり、縦軸は、支持部材11Aおよび支持部材11Bの厚さt3である。図8および図9中のハッチングが付された領域は、破壊危険度Rが1.0未満の領域である。第1スイッチング素子21および第2スイッチング素子22の接合長さLは、4.8mmであった。 8 and 9 show the simulation results of the fracture risk R when the conductive bonding material 29 is made of an Ag sintered material. The horizontal axis of FIG. 8 is the thickness t2 of the conductive bonding member 29, and the vertical axis is the thickness t1 of the first switching element 21 and the second switching element 22. The horizontal axis of FIG. 9 is the thickness t2 of the conductive joining member 29, and the vertical axis is the thickness t3 of the support member 11A and the support member 11B. The hatched areas in FIGS. 8 and 9 are areas where the fracture risk R is less than 1.0. The junction length L of the first switching element 21 and the second switching element 22 was 4.8 mm.
 図10および図11は、導通接合材29がAl固相拡散層からなる場合の、破壊危険度Rのシミュレーション結果を示している。図10の横軸は、導通接合材29の厚さt2であり、縦軸は、第1スイッチング素子21および第2スイッチング素子22の厚さt1である。図11の横軸は、導通接合材29の厚さt2であり、縦軸は、支持部材11Aおよび支持部材11Bの厚さt3である。図8および図9中のハッチングが付された領域は、破壊危険度Rが1.0未満の領域である。第1スイッチング素子21および第2スイッチング素子22の接合長さLは、4.8mmであった。 10 and 11 show the simulation results of the fracture risk R when the conductive bonding material 29 is composed of the Al solid phase diffusion layer. The horizontal axis of FIG. 10 is the thickness t2 of the conductive bonding member 29, and the vertical axis is the thickness t1 of the first switching element 21 and the second switching element 22. The horizontal axis of FIG. 11 is the thickness t2 of the conductive joining member 29, and the vertical axis is the thickness t3 of the support member 11A and the support member 11B. The hatched areas in FIGS. 8 and 9 are areas where the fracture risk R is less than 1.0. The junction length L of the first switching element 21 and the second switching element 22 was 4.8 mm.
 図8および図9から、導通接合材29がAg焼結材からなる場合、破壊危険度Rが1.0未満である領域であって、接合長さLに対する厚さt2の比が、0.015以上であることが、熱信頼性の確保に好ましい。また、厚さt2としては、70μm以上が好ましい。厚さt1は、100μm以上350μm以下であり、厚さt3は、1,000μm以上であることが好ましい。さらに、厚さt1,厚さt2および厚さt3の積は、4,000,000(μm3)以上であることが好ましい。 From FIGS. 8 and 9, when the conductive bonding material 29 is made of an Ag sintered material, the ratio of the thickness t2 to the bonding length L is 0. 015 or more is preferable for ensuring thermal reliability. The thickness t2 is preferably 70 μm or more. The thickness t1 is preferably 100 μm or more and 350 μm or less, and the thickness t3 is preferably 1,000 μm or more. Further, the product of the thickness t1, the thickness t2 and the thickness t3 is preferably 4,000,000 (μm 3 ) or more.
 図10および図11から、導通接合材29がAl固相接合層からなる場合、破壊危険度Rが1.0未満である領域であって、接合長さLに対する厚さt2の比が、0.0083以上であることが、熱信頼性の確保に好ましい。また、厚さt2としては、40μm以上が好ましい。厚さt1は、100μm以上350μm以下であり、厚さt3は、1,000μm以上であることが好ましい。さらに、厚さt1,厚さt2および厚さt3の積は、4,000,000(μm3)以上であることが好ましい。 From FIGS. 10 and 11, when the conductive bonding material 29 is made of an Al solid phase bonding layer, the ratio of the thickness t2 to the bonding length L is 0 in the region where the fracture risk R is less than 1.0. It is preferable that it is .0083 or more for ensuring thermal reliability. The thickness t2 is preferably 40 μm or more. The thickness t1 is preferably 100 μm or more and 350 μm or less, and the thickness t3 is preferably 1,000 μm or more. Further, the product of the thickness t1, the thickness t2 and the thickness t3 is preferably 4,000,000 (μm 3 ) or more.
 本実施形態によれば、たとえば、導通接合材29の損傷を抑制可能であるという効果を奏する。 According to this embodiment, for example, it is possible to suppress damage to the conductive bonding material 29.
 本開示に係る半導体装置は、上述した実施形態に限定されるものではない。本開示に係る半導体装置の各部の具体的な構成は、種々に設計変更自在である。 The semiconductor device according to the present disclosure is not limited to the above-described embodiment. The specific configuration of each part of the semiconductor device according to the present disclosure can be freely redesigned.
  〔付記1〕
 半導体素子と、
 金属からなる支持部材と、
 前記半導体素子と前記支持部材とを導通接合する導通接合材と、を備える半導体装置であって、
 使用温度における前記導通接合材の弾性ひずみに対する塑性ひずみの比である破壊危険度が1.0未満である、半導体装置。
  〔付記2〕
 前記導通接合材の主成分は、Agであり、
 前記導通接合材と前記半導体素子との接合長さに対する前記導通接合材の厚さの比は、0.015以上である、付記1に記載の半導体装置。
  〔付記3〕
 前記導通接合材の厚さは、70μm以上である、付記2に記載の半導体装置。
  〔付記4〕
 前記導通接合材は、Ag焼結体からなる、付記2または3に記載の半導体装置。
  〔付記5〕
 前記導通接合材の主成分は、Alであり、
 前記導通接合材と前記半導体素子との接合長さに対する前記導通接合材の厚さの比は、0.0083以上である、付記1に記載の半導体装置。
  〔付記6〕
 前記導通接合材の厚さは、40μm以上である、付記5に記載の半導体装置。
  〔付記7〕
 前記導通接合材は、前記半導体素子および前記支持部材に固相拡散接合されている、付記5または6に記載の半導体装置。
  〔付記8〕
 前記半導体素子の厚さ、前記導通接合材の厚さ、および前記支持部材の厚さの積は、4,000,000(μm3)以上である、付記2ないし7のいずれか1つに記載の半導体装置。
  〔付記9〕
 前記半導体素子の厚さは、100μm以上350μm以下である、付記8に記載の半導体装置。
  〔付記10〕
 前記支持部材の厚さは、1,000μm以上である、付記8または9に記載の半導体装置。
  〔付記11〕
 前記半導体素子は、主成分としてSiを含む、付記1ないし10のいずれか1つに記載の半導体装置。
  〔付記12〕
 前記半導体素子は、主成分としてSiCを含む、付記1ないし10のいずれか1つに記載の半導体装置。
  〔付記13〕
 前記半導体素子は、前記導通接合材が接合される裏面電極を有する、付記11または12に記載の半導体装置。
  〔付記14〕
 前記半導体素子は、スイッチング素子であり、
 前記裏面電極は、ドレイン電極である、付記13に記載の半導体装置。
  〔付記15〕
 前記支持部材および裏面金属層と、前記支持部材および前記裏面金属層との間に介在する絶縁層と、を有する基板を備える、付記14に記載の半導体装置。
  〔付記16〕
 前記絶縁層は、セラミックスからなる、付記15に記載の半導体装置。
  〔付記17〕
 前記半導体素子、前記導通接合材および前記支持部材を覆う封止樹脂を備え、
 前記裏面金属層は、前記封止樹脂から露出する、付記15または16に記載の半導体装置。
[Appendix 1]
With semiconductor elements
Support members made of metal and
A semiconductor device including a conductive bonding material for conductively joining the semiconductor element and the support member.
A semiconductor device in which the fracture risk, which is the ratio of the plastic strain to the elastic strain of the conductive bonding material at the operating temperature, is less than 1.0.
[Appendix 2]
The main component of the conductive bonding material is Ag.
The semiconductor device according to Appendix 1, wherein the ratio of the thickness of the conductive bonding material to the bonding length of the conductive bonding material and the semiconductor element is 0.015 or more.
[Appendix 3]
The semiconductor device according to Appendix 2, wherein the conductive bonding material has a thickness of 70 μm or more.
[Appendix 4]
The semiconductor device according to Appendix 2 or 3, wherein the conductive bonding material is made of an Ag sintered body.
[Appendix 5]
The main component of the conductive bonding material is Al.
The semiconductor device according to Appendix 1, wherein the ratio of the thickness of the conductive bonding material to the bonding length of the conductive bonding material and the semiconductor element is 0.0083 or more.
[Appendix 6]
The semiconductor device according to Appendix 5, wherein the conductive bonding material has a thickness of 40 μm or more.
[Appendix 7]
The semiconductor device according to Appendix 5 or 6, wherein the conductive bonding material is solid-phase diffusion bonded to the semiconductor element and the support member.
[Appendix 8]
The product of the thickness of the semiconductor element, the thickness of the conductive bonding material, and the thickness of the support member is 4,000,000 (μm 3 ) or more, according to any one of Appendix 2 to 7. Semiconductor device.
[Appendix 9]
The semiconductor device according to Appendix 8, wherein the thickness of the semiconductor element is 100 μm or more and 350 μm or less.
[Appendix 10]
The semiconductor device according to Appendix 8 or 9, wherein the support member has a thickness of 1,000 μm or more.
[Appendix 11]
The semiconductor device according to any one of Supplementary note 1 to 10, wherein the semiconductor element contains Si as a main component.
[Appendix 12]
The semiconductor device according to any one of Supplementary note 1 to 10, wherein the semiconductor element contains SiC as a main component.
[Appendix 13]
The semiconductor device according to Appendix 11 or 12, wherein the semiconductor element has a back electrode to which the conductive bonding material is bonded.
[Appendix 14]
The semiconductor element is a switching element and
The semiconductor device according to Appendix 13, wherein the back surface electrode is a drain electrode.
[Appendix 15]
The semiconductor device according to Appendix 14, further comprising a substrate having a support member and a back surface metal layer and an insulating layer interposed between the support member and the back surface metal layer.
[Appendix 16]
The semiconductor device according to Appendix 15, wherein the insulating layer is made of ceramics.
[Appendix 17]
The semiconductor element, the conductive bonding material, and the sealing resin covering the support member are provided.
The semiconductor device according to Appendix 15 or 16, wherein the back metal layer is exposed from the sealing resin.
A10 :半導体装置
10  :基板
11A :支持部材
11B :支持部材
12  :接合層
13  :表面金属層
14  :絶縁層
15  :裏面金属層
18  :第1補助基板
19  :第2補助基板
21  :第1スイッチング素子
21A :第1スイッチング素子
22  :第2スイッチング素子
22A :第2スイッチング素子
29  :導通接合材
31  :第1電源端子
32  :第2電源端子
33  :出力端子
36  :装置電流検出端子
39  :絶縁部材
50  :封止樹脂
51  :表面
52  :裏面
181 :第1ゲート層
182 :第1検出層
191 :第2ゲート層
192 :第2検出層
201 :半導体層
202 :裏面電極
221 :主面電極
223 :ゲート電極
311 :櫛歯部
312 :外部接続部
321 :第1帯状部
322 :第2帯状部
323 :外部接続部
331 :櫛歯部
332 :外部接続部
341 :第1ゲート端子
342 :第2ゲート端子
351 :第1検出端子
352 :第2検出端子
411 :第1導通ワイヤ
421 :第2導通ワイヤ
431 :第1ゲートワイヤ
432 :第2ゲートワイヤ
441 :第1検出ワイヤ
442 :第2検出ワイヤ
451 :第1端子ワイヤ
452 :第2端子ワイヤ
453 :第3端子ワイヤ
454 :第4端子ワイヤ
455 :第5端子ワイヤ
R   :破壊危険度
t1,t2,t3:厚さ
A10: Semiconductor device 10: Substrate 11A: Support member 11B: Support member 12: Bonding layer 13: Front metal layer 14: Insulation layer 15: Back metal layer 18: First auxiliary substrate 19: Second auxiliary substrate 21: First switching Element 21A: First switching element 22: Second switching element 22A: Second switching element 29: Conductive bonding material 31: First power supply terminal 32: Second power supply terminal 33: Output terminal 36: Device current detection terminal 39: Insulation member 50: Encapsulating resin 51: Front surface 52: Back surface 181: First gate layer 182: First detection layer 191: Second gate layer 192: Second detection layer 201: Semiconductor layer 202: Back surface electrode 221: Main surface electrode 223: Gate electrode 311: Comb tooth part 312: External connection part 321: First band-shaped part 322: Second band-shaped part 323: External connection part 331: Comb tooth part 332: External connection part 341: First gate terminal 342: Second gate Terminal 351: First detection terminal 352: Second detection terminal 411: First conduction wire 421: Second conduction wire 431: First gate wire 432: Second gate wire 441: First detection wire 442: Second detection wire 451 : 1st terminal wire 452: 2nd terminal wire 453: 3rd terminal wire 454: 4th terminal wire 455: 5th terminal wire R: Destruction risk t1, t2, t3: Thickness

Claims (17)

  1.  半導体素子と、
     金属からなる支持部材と、
     前記半導体素子と前記支持部材とを導通接合する導通接合材と、を備える半導体装置であって、
     使用温度における前記導通接合材の弾性ひずみに対する塑性ひずみの比である破壊危険度が1.0未満である、半導体装置。
    With semiconductor elements
    Support members made of metal and
    A semiconductor device including a conductive bonding material for conductively joining the semiconductor element and the support member.
    A semiconductor device in which the fracture risk, which is the ratio of the plastic strain to the elastic strain of the conductive bonding material at the operating temperature, is less than 1.0.
  2.  前記導通接合材の主成分は、Agであり、
     前記導通接合材と前記半導体素子との接合長さに対する前記導通接合材の厚さの比は、0.015以上である、請求項1に記載の半導体装置。
    The main component of the conductive bonding material is Ag.
    The semiconductor device according to claim 1, wherein the ratio of the thickness of the conductive bonding material to the bonding length of the conductive bonding material and the semiconductor element is 0.015 or more.
  3.  前記導通接合材の厚さは、70μm以上である、請求項2に記載の半導体装置。 The semiconductor device according to claim 2, wherein the thickness of the conductive bonding material is 70 μm or more.
  4.  前記導通接合材は、Ag焼結体からなる、請求項2または3に記載の半導体装置。 The semiconductor device according to claim 2 or 3, wherein the conductive bonding material is made of an Ag sintered body.
  5.  前記導通接合材の主成分は、Alであり、
     前記導通接合材と前記半導体素子との接合長さに対する前記導通接合材の厚さの比は、0.0083以上である、請求項1に記載の半導体装置。
    The main component of the conductive bonding material is Al.
    The semiconductor device according to claim 1, wherein the ratio of the thickness of the conductive bonding material to the bonding length of the conductive bonding material and the semiconductor element is 0.0083 or more.
  6.  前記導通接合材の厚さは、40μm以上である、請求項5に記載の半導体装置。 The semiconductor device according to claim 5, wherein the thickness of the conductive bonding material is 40 μm or more.
  7.  前記導通接合材は、前記半導体素子および前記支持部材に固相拡散接合されている、請求項5または6に記載の半導体装置。 The semiconductor device according to claim 5 or 6, wherein the conductive bonding material is solid-phase diffusion bonded to the semiconductor element and the support member.
  8.  前記半導体素子の厚さ、前記導通接合材の厚さ、および前記支持部材の厚さの積は、4,000,000(μm3)以上である、請求項2ないし7のいずれか1つに記載の半導体装置。 The product of the thickness of the semiconductor element, the thickness of the conductive bonding material, and the thickness of the support member is 4,000,000 (μm 3 ) or more, according to any one of claims 2 to 7. The semiconductor device described.
  9.  前記半導体素子の厚さは、100μm以上350μm以下である、請求項8に記載の半導体装置。 The semiconductor device according to claim 8, wherein the thickness of the semiconductor element is 100 μm or more and 350 μm or less.
  10.  前記支持部材の厚さは、1,000μm以上である、請求項8または9に記載の半導体装置。 The semiconductor device according to claim 8 or 9, wherein the thickness of the support member is 1,000 μm or more.
  11.  前記半導体素子は、主成分としてSiを含む、請求項1ないし10のいずれか1つに記載の半導体装置。 The semiconductor device according to any one of claims 1 to 10, wherein the semiconductor element contains Si as a main component.
  12.  前記半導体素子は、主成分としてSiCを含む、請求項1ないし10のいずれか1つに記載の半導体装置。 The semiconductor device according to any one of claims 1 to 10, wherein the semiconductor element contains SiC as a main component.
  13.  前記半導体素子は、前記導通接合材が接合される裏面電極を有する、請求項11または12に記載の半導体装置。 The semiconductor device according to claim 11 or 12, wherein the semiconductor element has a back electrode to which the conductive bonding material is bonded.
  14.  前記半導体素子は、スイッチング素子であり、
     前記裏面電極は、ドレイン電極である、請求項13に記載の半導体装置。
    The semiconductor element is a switching element and
    The semiconductor device according to claim 13, wherein the back surface electrode is a drain electrode.
  15.  前記支持部材および裏面金属層と、前記支持部材および前記裏面金属層との間に介在する絶縁層と、を有する基板を備える、請求項14に記載の半導体装置。 The semiconductor device according to claim 14, further comprising a substrate having the support member and the back surface metal layer and an insulating layer interposed between the support member and the back surface metal layer.
  16.  前記絶縁層は、セラミックスからなる、請求項15に記載の半導体装置。 The semiconductor device according to claim 15, wherein the insulating layer is made of ceramics.
  17.  前記半導体素子、前記導通接合材および前記支持部材を覆う封止樹脂を備え、
     前記裏面金属層は、前記封止樹脂から露出する、請求項15または16に記載の半導体装置。
    The semiconductor element, the conductive bonding material, and the sealing resin covering the support member are provided.
    The semiconductor device according to claim 15 or 16, wherein the back metal layer is exposed from the sealing resin.
PCT/JP2021/002210 2020-01-30 2021-01-22 Semiconductor device WO2021153447A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021573991A JPWO2021153447A1 (en) 2020-01-30 2021-01-22

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-013334 2020-01-30
JP2020013334 2020-01-30

Publications (1)

Publication Number Publication Date
WO2021153447A1 true WO2021153447A1 (en) 2021-08-05

Family

ID=77078560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002210 WO2021153447A1 (en) 2020-01-30 2021-01-22 Semiconductor device

Country Status (2)

Country Link
JP (1) JPWO2021153447A1 (en)
WO (1) WO2021153447A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088373A (en) * 1994-06-23 1996-01-12 Toshiba Corp Heat sink
JPH088372A (en) * 1994-06-23 1996-01-12 Toshiba Corp Heat sink
JP2000046905A (en) * 1998-07-29 2000-02-18 Sharp Corp Reliability evaluating method for electronic equipment and device thereof, and media with reliability evaluating program recorded
JP2007250566A (en) * 2006-03-13 2007-09-27 Toshiba Corp Semiconductor device and its fabrication process
JP2013243246A (en) * 2012-05-21 2013-12-05 Panasonic Corp Semiconductor element joint structure and manufacturing method
JP2014179541A (en) * 2013-03-15 2014-09-25 Renesas Electronics Corp Semiconductor device and method of manufacturing the same
JP2015142066A (en) * 2014-01-30 2015-08-03 ローム株式会社 Power module and manufacturing method of the same
JP2019071399A (en) * 2016-11-21 2019-05-09 ローム株式会社 Power module and manufacturing method thereof, graphite plate, and power supply
JP2019188456A (en) * 2018-04-27 2019-10-31 ニホンハンダ株式会社 Solder alloy, solder paste, mold solder, and semiconductor device using solder alloy

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH088373A (en) * 1994-06-23 1996-01-12 Toshiba Corp Heat sink
JPH088372A (en) * 1994-06-23 1996-01-12 Toshiba Corp Heat sink
JP2000046905A (en) * 1998-07-29 2000-02-18 Sharp Corp Reliability evaluating method for electronic equipment and device thereof, and media with reliability evaluating program recorded
JP2007250566A (en) * 2006-03-13 2007-09-27 Toshiba Corp Semiconductor device and its fabrication process
JP2013243246A (en) * 2012-05-21 2013-12-05 Panasonic Corp Semiconductor element joint structure and manufacturing method
JP2014179541A (en) * 2013-03-15 2014-09-25 Renesas Electronics Corp Semiconductor device and method of manufacturing the same
JP2015142066A (en) * 2014-01-30 2015-08-03 ローム株式会社 Power module and manufacturing method of the same
JP2019071399A (en) * 2016-11-21 2019-05-09 ローム株式会社 Power module and manufacturing method thereof, graphite plate, and power supply
JP2019188456A (en) * 2018-04-27 2019-10-31 ニホンハンダ株式会社 Solder alloy, solder paste, mold solder, and semiconductor device using solder alloy

Also Published As

Publication number Publication date
JPWO2021153447A1 (en) 2021-08-05

Similar Documents

Publication Publication Date Title
JP7267930B2 (en) semiconductor equipment
CN108735692B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP7273055B2 (en) semiconductor equipment
JP4645406B2 (en) Semiconductor device
WO2018168924A1 (en) Semiconductor device
JP7498814B2 (en) Semiconductor Module
CN113169144B (en) Semiconductor device with a semiconductor device having a plurality of semiconductor chips
JP2010283053A (en) Semiconductor device and method for manufacturing the same
JP2020080348A (en) Semiconductor device
JP2019067951A (en) Semiconductor device
JP7163583B2 (en) semiconductor equipment
JP4096741B2 (en) Semiconductor device
WO2021153447A1 (en) Semiconductor device
JP2007288044A (en) Semiconductor device
JP7196761B2 (en) semiconductor equipment
JP7192886B2 (en) semiconductor equipment
WO2024075514A1 (en) Joining structure and semiconductor device
JP6274019B2 (en) Semiconductor device and manufacturing method thereof
WO2023286531A1 (en) Semiconductor device and manufacturing method of semiconductor device
WO2023140050A1 (en) Semiconductor device
WO2024116851A1 (en) Semiconductor device and electric power conversion unit
WO2023189840A1 (en) Semiconductor device
WO2022264833A1 (en) Semiconductor device
WO2023190334A1 (en) Semiconductor device
WO2023190180A1 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21746924

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573991

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21746924

Country of ref document: EP

Kind code of ref document: A1