WO2021152939A1 - Wire rope inspection device, wire rope inspection system, and wire rope inspection method - Google Patents

Wire rope inspection device, wire rope inspection system, and wire rope inspection method Download PDF

Info

Publication number
WO2021152939A1
WO2021152939A1 PCT/JP2020/040302 JP2020040302W WO2021152939A1 WO 2021152939 A1 WO2021152939 A1 WO 2021152939A1 JP 2020040302 W JP2020040302 W JP 2020040302W WO 2021152939 A1 WO2021152939 A1 WO 2021152939A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire rope
detection
detection signals
value
measurement
Prior art date
Application number
PCT/JP2020/040302
Other languages
French (fr)
Japanese (ja)
Inventor
戸波 寛道
亘 潮
Original Assignee
株式会社島津製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社島津製作所 filed Critical 株式会社島津製作所
Priority to JP2021574465A priority Critical patent/JP7318749B2/en
Publication of WO2021152939A1 publication Critical patent/WO2021152939A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws

Definitions

  • the present invention relates to a wire rope inspection device, a wire rope inspection system, and a wire rope inspection method, and in particular, a wire rope inspection device, a wire rope inspection system, and a wire rope inspection system that detect a state of a wire rope based on a change in a magnetic field of the wire rope.
  • wire rope inspection method relates to a wire rope inspection device, a wire rope inspection system, and a wire rope inspection method.
  • wire rope inspection device Conventionally, a wire rope inspection device, a wire rope inspection system, and a wire rope inspection method for detecting a change in the magnetic field of the wire rope are known.
  • wire rope inspection devices, wire rope inspection systems, and wire rope inspection methods are disclosed, for example, in International Publication No. 2019/150539.
  • the wire rope inspection device of International Publication No. 2019/150539 is configured to inspect the wire rope while moving relative to the wire rope.
  • the wire rope inspection device of International Publication No. 2019/150539 has a difference between the first detection signal acquired by the differential coil in the first measurement of the wire rope and the second measurement after the first measurement. It is configured to detect the state of the wire rope based on the difference at substantially the same position as the second detection signal acquired by the moving coil. As a result, the inherent magnetic characteristics (noise data) of the wire rope are removed (cancelled), and a signal caused by damage to the wire rope or the like is extracted.
  • the wire rope is temporarily included in the measurement data due to the shaking of the wire rope and the rope draw (a phenomenon in which a plurality of wire ropes are twisted). Magnetic characteristics (noise) may be included.
  • the temporary magnetic characteristics are data that can change from measurement to measurement because the state of wire rope sway and rope draw differs from measurement to measurement. Therefore, in the wire rope inspection device described in International Publication No.
  • the present invention has been made to solve the above-mentioned problems, and one object of the present invention is even when there is a signal (noise) caused by damage or shaking of the wire rope. It is an object of the present invention to provide a wire rope inspection device, a wire rope inspection system, and a wire rope inspection method capable of easily detecting damage to a wire rope.
  • the wire rope inspection device includes a detection coil that detects a change in the magnetic field of the wire rope, a control unit that receives a detection signal acquired by the detection coil, and a control unit.
  • the control unit is obtained by the detection coil in the first measurement of the wire rope a plurality of times, and has a first value based on a plurality of first detection signals representing the detection signals for each position of the wire rope, and the first measurement. Based on the difference from the second value based on the plurality of second detection signals acquired by the detection coil in the second measurement of the wire rope performed after, and representing the detection signal for each position of the wire rope. It is configured to detect the state of.
  • the wire rope inspection system includes an inspection device including a detection coil for detecting a change in the magnetic field of the wire rope, and a control device for receiving a detection signal acquired by the detection coil.
  • the device is acquired by the detection coil in the first measurement of the wire rope a plurality of times, and is performed after the first measurement and the first value based on the plurality of first detection signals representing the detection signals for each position of the wire rope.
  • the state of the wire rope is detected based on the difference from the second value based on the plurality of second detection signals acquired by the detection coil in the second measurement of the wire rope multiple times and representing the detection signal for each position of the wire rope. It is configured to do.
  • a detection coil for detecting a change in the magnetic field of the wire rope is used to represent a plurality of detection signals for each position of the wire rope in a plurality of first measurements of the wire rope.
  • the detection coil represents a plurality of detection signals for each position of the wire rope. 2.
  • a step of acquiring a second value based on the detection signal and a step of detecting the state of the wire rope based on the difference between the first value and the second value are provided.
  • the first detection signal is based on the plurality of first detection signals.
  • the state of the wire rope is detected based on the difference between the value of 1 and the second value based on the plurality of second detection signals.
  • the signal (noise) caused by the shaking of the wire rope or the like appears temporarily, the appearance (the position where the signal appears in the output waveform) in the detection signal (output waveform) randomly appears. It can change.
  • a signal caused by damage to a wire rope is not temporary, and its appearance (the position where the signal appears in the output waveform) in the detection signal (output waveform) is fixed.
  • it is based on a signal that appears in common and a signal that appears randomly in a plurality of first (second) detection signals. Therefore, it is possible to discriminate between a signal that appears due to damage to the wire rope or the like and a signal that temporarily appears due to the shaking of the wire rope or the like. As a result, even when there is a signal (noise) caused by damage or shaking of the wire rope, damage to the wire rope can be easily detected.
  • the wire rope inspection device 100 is configured to inspect the wire rope W, which is an inspection target.
  • the wire rope inspection device 100 is configured to periodically inspect the wire rope W.
  • the wire rope inspection device 100 is configured to inspect the wire rope W for damage.
  • the damage to the wire rope W is caused by a gap in the detection direction caused by threads, local wear, wire breakage, dents, corrosion, cracks, breakage, etc. (when scratches or the like occur inside the wire rope W).
  • This is a broad concept that includes changes in cross-sectional area (including those), changes in magnetic permeability caused by rust on the wire rope W, welding burns, mixing of impurities, changes in composition, and other non-uniform parts of the wire rope W.
  • a plurality of wire ropes W are provided.
  • five wire ropes W are shown for simplification, but about 10 wire ropes may be provided.
  • the differential coil 10 described later of the wire rope inspection device 100 is configured to collectively detect the magnetic characteristics of the plurality of wire ropes W. That is, the differential coil 10 acquires one detection signal in which the detection signals of the plurality of wire ropes W are combined.
  • the wire rope inspection device 100 (differential coil 10) is configured to inspect a plurality of wire ropes W in a non-contact state. The inspection by the wire rope inspection device 100 is performed in an inspection mode in which the elevator E is moved at a speed slower than the speed of the elevator E during normal operation.
  • the wire rope inspection device 100 inspects the wire rope W while being relatively moved along the surface of the wire rope W used in the elevator E.
  • the elevator E includes a basket portion E1 and a hoisting machine E2 that winds up the wire rope W to raise and lower the basket portion E1.
  • the wire rope inspection device 100 is configured to inspect the moving (winding) wire rope W in a state of being fixed in the vicinity immediately below the hoisting machine E2.
  • the wire rope W is arranged so as to extend in the X direction at the position of the wire rope inspection device 100.
  • the elevator E goes up and down the hoistway 101.
  • the hoisting machine E2 is provided in the hoistway 101 of the elevator E. That is, the elevator E is a so-called machine roomless type elevator.
  • the elevator E may be an elevator having a machine room (a type in which the hoisting machine E2 is provided in a machine room isolated from the hoistway 101).
  • the wire rope inspection device 100 includes a detection unit 1 and an electronic circuit unit 2.
  • the detection unit 1 includes a differential coil 10 having a pair of receiving coils 11 and 12 and an exciting coil 13.
  • the electronic circuit unit 2 includes a control unit 21, a reception I / F 22, a storage unit 23, an excitation I / F 24, a power supply circuit 25, and a communication unit 26.
  • the wire rope inspection device 100 includes a magnetic field application unit 4 (see FIG. 4).
  • the differential coil 10 is an example of a "detection coil" in the claims.
  • an external device 900 (see FIG. 1) is connected to the wire rope inspection device 100 via the communication unit 26.
  • the external device 900 includes a communication unit 901, an analysis unit 902, and a display unit 903.
  • the external device 900 is configured to receive the measurement data of the wire rope W by the wire rope inspection device 100 via the communication unit 901. Further, the external device 900 is configured so that the analysis unit 902 analyzes the type of damage such as wire breakage and cross-sectional area change based on the received measurement data of the wire rope W. Further, the external device 900 is configured to display the analysis result on the display unit 903. Further, the external device 900 is configured to perform an abnormality determination based on the analysis result and display the result on the display unit 903.
  • the wire rope inspection device 100 is configured to detect a change in the magnetic field (magnetic flux) of the wire rope W by the differential coil 10.
  • the change in the magnetic field means a change in the strength of the magnetic field detected by the detection unit 1 due to the relative movement of the wire rope W and the detection unit 1, and a time change in the magnetic field applied to the wire rope W. It is a broad concept including a temporal change in the strength of the magnetic field detected by the detection unit 1 by changing it.
  • the magnetic field application unit 4 applies a magnetic field in advance to the wire rope W, which is the object to be inspected, in the Y direction (the direction intersecting the extending direction of the wire rope W), and the wire rope is a magnetic material. It is configured to adjust the magnitude and direction of the magnetization of W. Further, the magnetic field application unit 4 includes a first magnetic field application unit including magnets 41 and 42, and a second magnetic field application unit including magnets 43 and 44. The first magnetic field application units (magnets 41 and 42) are arranged on one side (X1 direction side) of the wire rope W in the extending direction with respect to the detection unit 1.
  • the second magnetic field application unit (magnets 43 and 44) is arranged on the other side (X2 direction side) of the wire rope W in the extending direction with respect to the detection unit 1.
  • it may be configured that only one of the first magnetic field application part and the second magnetic field application part is provided.
  • the first magnetic field application portions (magnets 41 and 42) are configured to apply a magnetic field parallel to the plane intersecting the extending direction (X direction) of the wire rope W and in the Y2 direction.
  • the second magnetic field application portions (magnets 43 and 44) are configured to apply a magnetic field parallel to the plane intersecting the extending direction (X direction) of the wire rope W and in the Y1 direction. That is, the magnetic field application unit 4 is configured to apply a magnetic field in a direction substantially orthogonal to the X direction, which is the longitudinal direction of the long lumber.
  • the differential coil 10 includes a receiving coil 11 arranged along the direction in which the wire rope W, which is a magnetic material made of a long material, extends. Further, the differential coil 10 is arranged so as to sandwich the wire rope W together with the receiving coil 11 on the side (Y2 direction side) opposite to the side (Y1 direction side) where the receiving coil 11 is arranged with respect to the wire rope W.
  • the receiving coil 12 is included.
  • the excitation coil 13 includes a printed circuit board 13b on which the first conducting wire portion 13a is formed. Further, the excitation coil 13 includes a printed circuit board 13d on which the second conducting wire portion 13c is formed.
  • the first conductor portion 13a and the second conductor portion 13c are connected by a connecting conductor portion (not shown).
  • the wire rope W passes through the inside (inside) of the differential coil 10 and the excitation coil 13. Further, the differential coil 10 is provided inside the excitation coil 13.
  • the arrangement of the differential coil 10 and the excitation coil 13 is not limited to this.
  • the differential coil 10 and the excitation coil 13 in FIG. 4 are schematically shown, and may differ from the actual arrangement (configuration).
  • the differential coil 10 is configured to be a differential coil in which the receiving coil 11 and the receiving coil 12 are differentially connected.
  • the receiving coil 11 is provided so as to be electrically insulated from the first conducting wire portion 13a (see FIG. 4).
  • the receiving coil 11 may be formed as a conductor pattern on the printed circuit board 13b (see FIG. 4) on which the first conducting wire portion 13a is formed, or may be formed on a printed circuit board different from the printed circuit board 13b or a flexible substrate having a multilayer structure. It may be formed as a conductor pattern.
  • the receiving coil 12 is provided so as to be electrically insulated from the second conducting wire portion 13c.
  • the receiving coil 12 may be formed as a conductor pattern on the printed circuit board 13d on which the second conducting wire portion 13c is formed, or may be formed as a conductor pattern on a printed circuit board different from the printed circuit board 13d or a flexible substrate having a multilayer structure. You may.
  • the excitation coil 13 excites the magnetized state of the wire rope W. Specifically, when the excitation AC current is passed through the excitation coil 13, a magnetic field generated based on the excitation AC current is applied inside the excitation coil 13 along the X direction.
  • the differential coil 10 is configured to transmit the differential signals of the pair of receiving coils 11 and 12. Specifically, the differential coil 10 is configured to detect a change in the magnetic field of the wire rope W and transmit a differential signal. The differential coil 10 is configured to detect a change in the magnetic field of the wire rope W, which is an inspection object, in the X direction and output a detection signal (voltage). That is, the differential coil 10 detects a change in the magnetic field in the X direction intersecting the Y direction with respect to the wire rope W to which the magnetic field is applied in the Y direction by the magnetic field application unit 4. Further, the differential coil 10 is configured to output a differential signal (voltage) based on a change in the detected magnetic field of the wire rope W in the X direction. Further, the differential coil 10 is arranged so that substantially all of the magnetic field generated by the excitation coil 13 can be detected (input).
  • the total magnetic flux of the wire rope W (value obtained by multiplying the magnetic field by the magnetic permeability and the area) becomes smaller at the defective parts (scratches, etc.).
  • the absolute value (differential signal) of the difference in the detection voltage by the differential coil 10 becomes large.
  • the differential signal in the portion without defects (scratches, etc.) is substantially zero. In this way, in the differential coil 10, a clear signal (a signal having a good S / N ratio) indicating the presence of defects (scratches, etc.) is detected.
  • the electronic circuit unit 2 can detect the presence of defects (scratches, etc.) in the wire rope W based on the value of the differential signal.
  • the control unit 21 of the electronic circuit unit 2 shown in FIG. 3 is configured to control each unit of the wire rope inspection device 100.
  • the control unit 21 includes a processor such as a CPU (central processing unit), a memory, an AD converter, and the like.
  • the control unit 21 is configured to receive the differential signal (detection signal) of the differential coil 10 and detect the state of the wire rope W. Further, the control unit 21 is configured to control the excitation coil 13 to be excited. Further, the control unit 21 is configured to transmit the detection result of the state of the wire rope W to the external device 900 via the communication unit 26. The details of the control unit 21 will be described later.
  • the receiving I / F 22 is configured to receive the differential signal from the differential coil 10 and transmit it to the control unit 21.
  • the receiving I / F 22 includes an amplifier.
  • the receiving I / F 22 is configured to amplify the differential signal of the differential coil 10 and transmit it to the control unit 21.
  • the excitation I / F 24 is configured to receive a signal from the control unit 21 and control the supply of electric power to the excitation coil 13. Specifically, the excitation I / F 24 controls the supply of electric power from the power supply circuit 25 to the excitation coil 13 based on the control signal from the control unit 21.
  • the wire rope W is formed by knitting (for example, strand knitting) a magnetic wire material.
  • the wire rope W is a magnetic material made of a long material extending in the X direction.
  • the state (presence or absence of scratches, etc.) of the wire rope W is monitored in order to prevent cutting due to deterioration. Then, the wire rope W whose deterioration has progressed from a predetermined amount is replaced.
  • the wire rope W has unique magnetic characteristics.
  • the inherent magnetic characteristics are magnetic properties that change due to differences in the uniformity of twisting at the cross-sectional position orthogonal to the longitudinal direction (X direction) of the wire rope W and the uniformity of the amount of steel material. It is a characteristic.
  • the uniformity of the twist of the wire rope W and the uniformity of the amount of the steel material do not substantially change with time (or are unlikely to change significantly with time). Therefore, since the wire rope W has unique magnetic characteristics, if there is no damage or shaking of the wire rope W described later, the wire rope is measured by the wire rope inspection device 100 at different time points. The output at each position in the longitudinal direction (X direction) of W becomes substantially the same (measured with good reproducibility).
  • each of the first detection signal and the second detection signal is a signal acquired in the outbound route of the elevator E.
  • Each of the first detection signal and the second detection signal may be a signal acquired on the return path of the elevator E.
  • the storage unit 23 is configured to store the position information of the wire rope W and the detection information associated with each of the first detection signal and the second detection signal.
  • the storage unit 23 can be configured by an HDD, an SSD, or the like.
  • the first detection signal is a detection signal acquired by the wire rope W in a undamaged state. That is, the detection signal (reference signal) representing the initial state of the wire rope W acquired in advance is always used in the inspection as the first detection signal.
  • the second detection signal is the current detection signal of the wire rope W. It is not necessary to use the detection signal acquired in advance (initially) as the first detection signal. For example, the detection signal acquired this time may be used as the first detection signal for the next measurement.
  • the wire rope W has magnetic characteristics caused by damage to the wire rope W, swaying of the wire rope W, rope draw (a phenomenon in which a plurality of wire ropes are twisted), and the like. Temporary magnetic properties due to the rope may appear.
  • FIG. 6 describes an example in which the wire rope W is damaged (broken) in the second measurement.
  • the first detection signal obtained by the first measurement by the wire rope inspection device 100 see FIG. 6A
  • the second detection signal obtained by the second measurement FIG. 6
  • a signal due to damage to the wire rope W appears in the difference from 6 (B)).
  • FIG. 6D is a differential result obtained by differentially calculating the difference result of FIG. 6C.
  • the detection signal caused by the shaking of the wire rope W or the like is a signal that can appear in each of the first measurement and the second measurement. Further, since the place where the wire rope W shakes or the like is not constant, the place where the signal caused by the wire rope W shake or the like appears may differ from measurement to measurement. Therefore, in the difference between the first detection signal in the first measurement and the second detection signal in the second measurement (see FIG. 6C), the detection signal caused by the shaking of the wire rope W or the like may not be canceled. .. In this case, even if the difference result of FIG. 6 (C) and the differential result of FIG. 6 (D) are seen, is it a signal caused by damage to the wire rope W or a signal caused by the shaking of the wire rope W? May be difficult to determine.
  • control unit 21 performs a process of calculating the difference between the first added value described later and the second added value described later, and the first detection signal and the second. It is configured to detect the state of the wire rope W based on the addition process based on the detection signal.
  • control unit 21 is the first addition value between the plurality of first detection signals acquired by the differential coil 10 in the first measurement of the wire rope W a plurality of times (five times in the first embodiment). Based on the difference between the wire rope and the second addition value of the plurality of second detection signals acquired by the differential coil 10 in the second measurement of the wire rope W a plurality of times (five times in the first embodiment). It is configured to detect the state of W.
  • the first added value and the second added value are examples of the "first value" and the "second value" in the claims, respectively.
  • the control unit 21 has a first added value in which a plurality of first detection signals are added (see FIG. 7A) and a second added value in which a plurality of second detection signals are added (see FIG. 7A). It is configured to detect the state of the wire rope W based on the difference from FIG. 7B).
  • 7 (A) and 7 (B) are conceptual diagrams for convenience to explain the principle, but the signal caused by the damage of the wire rope W is a solid line, and the signal caused by the shaking of the wire rope W is a broken line. It is displayed with.
  • the broken line and solid line signals of FIGS. 7 (A) and 7 (B) are conceptually illustrated as those corresponding to the peak signals appearing in the waveform of the differential output of FIG. 6 (D).
  • the signal (broken line signal) caused by the shaking of the wire rope W or the like appears at a different position for each measurement. Therefore, in each of the first added value and the second added value after the addition, the signal caused by the swing of the wire rope W or the like is plotted at scattered positions in the output waveform.
  • the position of the signal (solid line signal) caused by the damage of the wire rope W or the like is constant every time the measurement is performed a plurality of times.
  • the second addition value after addition the signals caused by the damage of the wire rope W or the like are added to each other, and a relatively large signal is obtained. That is, by adding the second detection signals to each other, the signal caused by the damage of the wire rope W or the like becomes relatively large, and the signal caused by the shaking of the wire rope W or the like becomes relatively small (S / N). The ratio improves).
  • the addition of the first detection signals and the second detection signals is performed by performing the alignment control of the wire rope W so that the signals at substantially the same positions of the wire rope W are added. .. Specifically, the inspection by the wire rope inspection device 100 is performed while moving the elevator E from the top floor to the bottom floor at a constant speed. Therefore, the signal at the same time for each measurement becomes a signal at substantially the same position on the wire rope W. That is, the alignment control of the wire rope W is performed by adjusting the time between the detection signals in each measurement. It should be noted that the alignment control may be performed by using the position sensor that detects the position of the elevator E instead of the alignment based on the above time alignment. This position sensor may be provided in the wire rope inspection device 100 itself, or may be provided separately from the wire rope inspection device 100.
  • control unit 21 calculates the difference between the acquired first addition value and the second addition value by performing the above-mentioned alignment control. Then, the control unit 21 performs differential calculation on the difference between the calculated first added value and the second added value, and performs signal processing (see FIG. 6D).
  • control unit 21 has a function of determining whether or not the wire rope W has a defect and the size of the defect (scratch or the like) of the wire rope W based on the differential result calculated by the above differential calculation. Have.
  • the control unit 21 may make the above determination directly from the difference result between the first addition value and the second addition value.
  • control unit 21 is configured to acquire the difference between the first detection signal and the second detection signal after correcting the sensitivity of the differential coil 10 with respect to the second detection signal.
  • the correction coefficient for the above correction may be set according to the ambient temperature at which the differential coil 10 is placed.
  • the correction coefficient may be a ratio obtained by comparing representative peaks in the output waveforms of the first detection signal and the second detection signal.
  • control unit 21 detects the state of the wire rope W based on the plurality of second detection signals acquired in the second measurement of the same number of times as the first measurement. It is configured. Specifically, the control unit 21 is configured to detect the state of the wire rope W based on five detection signals acquired in each measurement.
  • the wire rope W inspection method includes a step (step S1) of acquiring a plurality of first detection signals in the first measurement of the wire rope W a plurality of times.
  • the first measurement is performed five times in a row.
  • the five first detection signals are stored in the storage unit 23 (see FIG. 3).
  • the first measurement may be performed before the wire rope W is used for the elevator E, or may be performed after the wire rope W is used.
  • the method for inspecting the wire rope W is a step (step S2) of acquiring a plurality of second detection signals (see FIG. 7B) in the second measurement of the wire rope W a plurality of times after the first measurement. ) Is provided. Specifically, the second measurement is performed after a predetermined period from the first measurement. The second measurement is performed five times in a row.
  • the length between the first measurement and the second measurement is not a relatively long period (for example, several decades) when the wire rope W is cut, but a degree to which the progress of damage to the wire rope W can be confirmed. It is preferable to set it for a predetermined period (for example, several months).
  • the wire rope W is measured (inspected) under the same conditions as the first measurement. For example, in the second measurement, the wire rope W is moved with respect to the wire rope inspection device 100 at the same speed as in the first measurement. In the second measurement, the measurement (inspection) is started from the same position of the wire rope W as the first measurement, and the measurement (inspection) is finished at the same position of the wire rope W as the first measurement. By the second step, an output waveform as shown in FIG. 7B is obtained.
  • the wire rope W inspection method includes a step (step S3) of acquiring the first added value by adding the five first detection signals to each other (see FIG. 7A).
  • the control unit 21 adds the five first detection signals by performing alignment control that substantially matches the position where the wire rope W is detected.
  • step S3 may be performed before step S2.
  • step S3 may be performed at the same time when the five first detection signals are acquired.
  • the wire rope W inspection method includes a step (step S4) of acquiring the second added value by adding the five second detection signals to each other (see FIG. 7B).
  • the control unit 21 adds the five second detection signals by performing alignment control that substantially matches the position where the wire rope W is detected.
  • the second detection signal includes a signal caused by damage to the wire rope W or the like
  • the signals caused by the damage or the like in each of the second detection signals are added to each other (see FIG. 7B). ..
  • the control unit 21 performs the above-mentioned alignment control on the difference between the first added value calculated in step S3 and the second added value calculated in step S4.
  • the calculation step (step S5) is provided.
  • the signals based on the unique magnetic characteristics of the wire ropes W at the time of the first measurement and the time of the second measurement are canceled (see FIG. 5).
  • the signal caused by the damage of the wire rope W and the signal caused by the shaking of the wire rope W and the like are acquired as the difference result (see FIG. 8).
  • FIG. 8 similarly to FIG. 7, the signal caused by the damage of the wire rope W and the like is shown by a solid line, and the signal caused by the shaking of the wire rope W and the like is shown by a broken line.
  • the wire rope W inspection method includes a step (step S6) of detecting the state of the wire rope W based on the difference calculated in step S5 by the control unit 21. Specifically, the control unit 21 outputs a differential result (see FIG. 6D) by performing signal processing (differential calculation) on the difference calculated in step S5. Then, the control unit 21 determines whether or not the wire rope W has a defect and the size of the defect (scratch or the like) of the wire rope W based on the output differential result.
  • the control unit 21 is acquired by the differential coil 10 in the first measurement of the wire rope W a plurality of times, and represents a plurality of first detection signals for each position of the wire rope W.
  • the first addition value (first value) based on the detection signal and the second measurement of the wire rope W performed a plurality of times after the first measurement are acquired by the differential coil 10 and detected for each position of the wire rope W. It is configured to detect the state of the wire rope W based on the difference from the second addition value (second value) based on the plurality of second detection signals representing the signals.
  • the signal (noise) caused by the shaking of the wire rope W or the like appears temporarily, the appearance (position where the signal appears in the output waveform) in the detection signal (output waveform) is random. Can change to.
  • the signal of the wire rope W caused by the damage of the wire rope W, for example is not temporary, and the appearance (the position where the signal appears in the output waveform) in the detection signal (output waveform) is fixed. ing.
  • this characteristic unlike the case where one first detection signal and one second detection signal are used, it is based on a signal that appears in common and a signal that appears randomly in a plurality of first (second) detection signals.
  • the control unit 21 performs a process of calculating the difference between the first added value (first value) and the second added value (second value), and the first. It is configured to detect the state of the wire rope W based on the detection signal and the addition process based on the second detection signal.
  • the appearance of the signal due to the shaking of the wire rope W (the position where the signal appears in the output waveform) can change randomly, and the appearance of the signal due to the damage of the wire rope W or the like. (The position where the signal appears in the output waveform) is constant.
  • the signals that temporarily appear due to the shaking of the wire rope W or the like are not added and plotted at scattered positions in the output waveform.
  • only the signals caused by the damage of the wire rope W or the like can be added.
  • the signal caused by the damage of the wire rope W or the like can be made relatively large, so that the signal caused by the damage of the wire rope W or the like is buried in the signal temporarily appearing in the wire rope W. Can be suppressed. As a result, damage to the wire rope W can be detected more easily.
  • the control unit 21 has a first addition value (first value) obtained by adding a plurality of first detection signals to each other, and a plurality of first addition values. It is configured to detect the state of the wire rope W based on the difference from the second added value (second value) obtained by adding the two detection signals to each other.
  • first value obtained by adding a plurality of first detection signals to each other
  • second value obtained by adding the two detection signals to each other.
  • the control unit 21 states the wire rope W based on the plurality of second detection signals acquired in the second measurement of the same number of times as the first measurement. Is configured to detect.
  • both the first detection signal and the second detection signal can be used. It is possible to cancel (cancel) a signal based on the magnetic characteristics peculiar to the included wire rope W. As a result, it is possible to more reliably detect a signal caused by damage to the wire rope W or the like.
  • the first detection signal is a detection signal acquired by the wire rope W in an undamaged state.
  • the differential coil 10 is configured to collectively detect the magnetic characteristics of the plurality of wire ropes W.
  • the wire rope W is used in the first measurement of the wire rope W a plurality of times by the differential coil 10 that detects the change in the magnetic field of the wire rope W.
  • a step of acquiring a first addition value (first value) based on a plurality of first detection signals representing the detection signals for each position of is provided.
  • the differential coil 10 is used to generate a plurality of second detection signals representing the detection signals for each position of the wire rope W.
  • the step of acquiring the second addition value (second value) based on is provided.
  • the wire rope inspection method includes a step of detecting the state of the wire rope W based on the difference between the first added value and the second added value.
  • the wire rope W can be detected by detecting the state of the wire rope W based on the difference between the first addition value based on the plurality of first detection signals and the second addition value based on the plurality of second detection signals. It is possible to easily distinguish between a signal that appears due to damage to the rope W or the like and a signal that temporarily appears due to the shaking of the wire rope W or the like. As a result, it is possible to provide a wire rope inspection method capable of easily detecting damage to the wire rope W even when a signal (noise) caused by damage or shaking of the wire rope W is present. ..
  • the wire rope inspection device 200 according to the second embodiment determines the state of the wire rope W based on the difference in all combinations of the plurality of first detection signals and the plurality of second detection signals. Detect.
  • the same configuration as that of the first embodiment is shown with the same reference numerals in the drawings, and the description thereof will be omitted.
  • the wire rope inspection device 200 includes an electronic circuit unit 32.
  • the electronic circuit unit 32 includes a control unit 321.
  • the control unit 321 determines the state of the wire rope W based on the third addition value of the differences in all combinations of the plurality of first detection signals and the plurality of second detection signals. It is configured to detect. Specifically, the control unit 321 adds the differences between the five first detection signals and the five second detection signals in all 25 combinations. That is, when the second detection signal includes a signal caused by damage to the wire rope W or the like, the signal caused by the damage or the like is added 25 times.
  • the third additional value is an example of the "third value" in the claims.
  • the wire rope W inspection method includes a step (step S13) of calculating the difference in all combinations of the plurality of first detection signals and the plurality of second detection signals.
  • the control unit 321 performs alignment control that substantially matches the position where the wire rope W is detected, and calculates the difference in each combination.
  • the wire rope W inspection method includes a step (step S14) of adding the plurality of differences calculated in step S13 to calculate the third added value.
  • the control unit 321 performs the alignment control and adds the plurality of differences.
  • the method for inspecting the wire rope W includes a step (step S15) of detecting the state of the wire rope W based on the third addition value calculated in step S14. Specifically, the control unit 321 outputs a differential result by performing signal processing (differential calculation) on the third addition value calculated in step S14. Then, the control unit 321 determines whether or not the wire rope W has a defect and the size of the defect (scratch or the like) of the wire rope W based on the output differential result.
  • the control unit 321 adds the third addition obtained by adding the differences in all combinations of the plurality of first detection signals and the plurality of second detection signals. It is configured to detect the state of the wire rope W based on the value (third value). With this configuration, the number of times signals are added to each other due to damage to the wire rope W or the like can be easily increased. As a result, it is possible to more reliably suppress that the signal caused by the damage of the wire rope W or the like is buried in the signal temporarily appearing in the wire rope W (improve the S / N ratio).
  • the configuration of the wire rope inspection device 300 according to the third embodiment will be described with reference to FIGS. 12 and 13.
  • the wire rope inspection device 300 of the third embodiment performs differential calculation processing on the difference in all combinations of the plurality of first detection signals and the plurality of second detection signals. Performs addition processing.
  • the same configuration as that of the second embodiment will be illustrated with the same reference numerals in the drawings, and the description thereof will be omitted.
  • the wire rope inspection device 300 includes an electronic circuit unit 42.
  • the electronic circuit unit 42 includes a control unit 421.
  • the control unit 421 is based on the fourth addition value, which is the addition value of the differential values of the differences in all combinations of the plurality of first detection signals and the plurality of second detection signals. , It is configured to detect the state of the wire rope W. Specifically, the control unit 421 performs differential calculation processing on each of the differences in all 25 combinations of the five first detection signals and the five second detection signals.
  • the fourth added value is an example of the "fourth value" in the claims.
  • step S24 the control unit 421 performs signal processing (differential calculation) on each of the plurality of differences calculated in step S13.
  • the wire rope W inspection method includes a step (step S25) of calculating the fourth added value by adding the plurality of differential values calculated in step S24.
  • the control unit 421 performs alignment control that substantially matches the position where the wire rope W is detected, and adds the plurality of differential values calculated in step S24. Then, the control unit 421 determines whether or not the wire rope W has a defect and the size of the defect (scratch or the like) of the wire rope W based on the calculated fourth addition value.
  • the control unit 421 is obtained based on adding the differential values of the differences in all combinations of the plurality of first detection signals and the plurality of second detection signals. It is configured to detect the state of the wire rope W based on the fourth value. With this configuration, it is possible to more reliably suppress the burial in the signal temporarily appearing in the wire rope W (improve the S / N ratio) based on the addition of the differential values.
  • the control unit 21 (321, 421) of the wire rope inspection device 100 (200, 300) has shown an example of detecting the state of the wire rope W. Not limited to this.
  • a device separate from the wire rope inspection device 100 (200, 300) may perform the above control.
  • the wire rope inspection system 500 includes a wire rope inspection device 400 and an external device 900a.
  • the external device 900a is an example of a "control device" in the claims.
  • the wire rope inspection device 400 includes an electronic circuit unit 52. Further, the electronic circuit unit 52 includes a control unit 521. Further, the external device 900a includes a control unit 904.
  • the control unit 521 controls to transmit the first detection signal acquired by the first measurement and the second detection signal acquired by the second measurement to the external device 900a via the communication unit 26.
  • the control unit 904 acquires the first detection signal and the second detection signal via the communication unit 901.
  • the control unit 904 is based on the difference between the plurality of first detection signals acquired by the first measurement of the wire rope inspection device 400 and the plurality of second detection signals acquired by the second measurement of the wire rope inspection device 400. It is configured to detect the state of the wire rope W (see FIG. 2) by the control of any one of the first to third embodiments.
  • the external device 900a is provided with a storage unit (not shown) that stores the detection signal transmitted from the wire rope inspection device 400.
  • the external device 900a it may be a terminal such as a PC or a tablet separate from the wire rope inspection device 400, or it may be a server on the cloud.
  • the state of the wire rope W may be detected by a multiplication process based on the first detection signal and the second detection signal.
  • the difference between the first addition value (first value) between the plurality of first detection signals and the second addition value (second value) between the plurality of second detection signals is not limited to this.
  • the state of the wire rope W may be detected based on the difference between the average value of the plurality of first detection signals and the average value of the plurality of second detection signals.
  • signal processing is performed on the third addition value (third value) of the differences in all combinations of the plurality of first detection signals and the plurality of second detection signals.
  • signal processing may be performed on the average value of the third addition value.
  • the wire rope is based on the fourth addition value (fourth value) of the differential values of the differences in all the combinations of the plurality of first detection signals and the plurality of second detection signals.
  • fourth addition value fourth value
  • An example of detecting the state of W has been shown, but the present invention is not limited to this.
  • the state of the wire rope W may be detected based on the average value of the fourth addition value.
  • first to third embodiments an example in which the number of times of the first measurement and the number of times of the second measurement are equal is shown, but the present invention is not limited to this.
  • the number of first measurements and the number of second measurements may be different.
  • the first detection signal is a detection signal of a wire rope in an undamaged state
  • the first detection signal may be a detection signal of a damaged wire rope.
  • wire rope W may be singular.
  • wire rope inspection device 100 (200, 300) is fixed is shown, but the present invention is not limited to this.
  • the wire rope inspection device 100 (200, 300) may move along the fixed wire rope W.
  • first detection signal and the second detection signal may be acquired by two to four, or six or more, respectively.
  • the wire rope inspection device 100 (200, 300) is fixed in the immediate vicinity of the hoisting machine E2, but the present invention is not limited to this.
  • the mounting position of the wire rope inspection device 100 (200, 300) may be any place where the wire rope W passes, and is not limited.
  • first detection signal and the second detection signal are the data of the outward route of the elevator E, but the present invention is not limited to this.
  • Each of the first detection signal and the second detection signal may include both the outbound data and the inbound data of the elevator E.
  • the inspection method of the wire rope W in this case will be described with reference to FIG.
  • the wire rope W inspection method includes a step (step S31) of acquiring a plurality of first detection signals corresponding to the return path of the elevator E in the first measurement of the wire rope W a plurality of times.
  • step S31 the wire rope W inspection method includes a step (step S31) of acquiring a plurality of first detection signals corresponding to the return path of the elevator E in the first measurement of the wire rope W a plurality of times.
  • three each of the first detection signal on the outward route, the second detection signal on the outward route, the second detection signal on the return route, and the second detection signal on the return route are shown. The number is not limited to this.
  • step S32 a plurality of second detection signals corresponding to the return path of the elevator E are acquired. To be equipped with.
  • the wire rope W inspection method includes a step (step S33) of acquiring the first added value by performing alignment control and adding the plurality of first detection signals (return paths) to each other.
  • the wire rope W inspection method includes a step (step S34) of acquiring a second added value by performing alignment control and adding a plurality of second detection signals (return paths) to each other.
  • the wire rope W inspection method is a step of calculating the difference between the first added value calculated in step S33 and the second added value calculated in step S34 by performing alignment control (step S35). ) Is provided.
  • the wire rope W inspection method includes a step (step S36) of adding the difference calculated in step S5 and the difference acquired in step S35.
  • step S36 the direction alignment control (control to invert the horizontal axis (X axis) of either waveform) is performed.
  • the above addition control is performed. Specifically, in the addition control in step S36, both the direction alignment control and the alignment control are performed.
  • the wire rope W inspection method includes a step (step S37) of detecting the state of the wire rope W by performing signal processing (differential calculation) on the value calculated in step S36.
  • first detection signal and the second detection signal are the data of the outward route of the elevator E, but the present invention is not limited to this.
  • Each of the first detection signal and the second detection signal may include both the outbound data and the inbound data of the elevator E.
  • the inspection method of the wire rope W in this case will be described with reference to FIG.
  • step S41 of acquiring the first detection signal of the above is provided.
  • FIG. 16 shows three each of the first detection signal on the outward route, the second detection signal on the outward route, the second detection signal on the return route, and the second detection signal on the return route. The number is not limited to this.
  • the wire rope W inspection method corresponds to a plurality of second detection signals corresponding to the outward path of the elevator E and the return path of the elevator E in the second measurement of the wire rope W a plurality of times after the first measurement.
  • a step (step S42) of acquiring a plurality of second detection signals to be performed is provided.
  • the wire rope W inspection method includes a step (step S43) of calculating the difference in all combinations of the plurality of first detection signals and the plurality of second detection signals.
  • step S43 the difference between the first detection signal on the outward route and the second detection signal on the return route, and the difference between the first detection signal on the return route and the second detection signal on the outward route. Control is done.
  • arbitrary data among the plurality of differences calculated in step S43 are added to each other.
  • the differences between the first detection signal (outward route) and the second detection signal (outward route) may be added to each other.
  • the difference between the first detection signal (return path) and the second detection signal (return path) may be added to each other.
  • the difference between the first detection signal (outward route) and the second detection signal (return route) may be added.
  • the difference between the first detection signal (return route) and the second detection signal (outward route) may be added to each other.
  • all the differences calculated in step S43 may be added.
  • the method for inspecting the wire rope W includes a step (step S45) of detecting the state of the wire rope W based on the third addition value calculated in step S44.
  • the signal processing (differential calculation) is performed on the third added value calculated in step S44, so that the differential result is output.
  • the same addition processing as in step S44 may be performed using the value differentiated with respect to the difference calculated in step S43.
  • a detection coil that detects changes in the magnetic field of the wire rope A control unit that receives a detection signal acquired by the detection coil is provided.
  • the control unit has a first value based on a plurality of first detection signals acquired by the detection coil in a plurality of first measurements of the wire rope and representing each detection signal for each position of the wire rope, and the first value. Difference from a second value based on a plurality of second detection signals acquired by the detection coil in a plurality of second measurements of the wire rope performed after one measurement and representing detection signals for each position of the wire rope.
  • a wire rope inspection device configured to detect the state of the wire rope based on the above.
  • the control unit has a state of the wire rope based on a process of calculating the difference between the first value and the second value and an addition process based on the first detection signal and the second detection signal.
  • the wire rope inspection apparatus according to item 1, which is configured to detect.
  • the control unit has the first value obtained by adding the plurality of first detection signals to each other and the first value obtained by adding the plurality of second detection signals to each other.
  • the wire rope inspection device according to item 2, which is configured to detect the state of the wire rope based on the difference from the value of 2.
  • the control unit of the wire rope is based on a third value obtained by adding differences in all combinations of the plurality of first detection signals and the plurality of second detection signals.
  • the wire rope inspection apparatus according to item 2 which is configured to detect a condition.
  • the control unit is based on a fourth value obtained by adding the differential values of the differences in all the combinations of the plurality of first detection signals and the plurality of second detection signals.
  • the wire rope inspection apparatus according to item 2 which is configured to detect the state of the wire rope.
  • the control unit is configured to detect the state of the wire rope based on the plurality of second detection signals acquired in the plurality of second measurements of the same number of times as the first measurement.
  • the wire rope inspection apparatus according to any one of items 1 to 5.
  • a plurality of the wire ropes are provided, and the wire ropes are provided.
  • the wire rope inspection device according to any one of items 1 to 7, wherein the detection coil is configured to collectively detect the magnetic characteristics of the plurality of wire ropes.
  • a wire rope inspection device that includes a detection coil that detects changes in the magnetic field of the wire rope, A control device for receiving a detection signal acquired by the detection coil is provided.
  • the control device has a first value based on a plurality of first detection signals acquired by the detection coil in a plurality of first measurements of the wire rope and representing each detection signal for each position of the wire rope, and the first value. Difference from a second value based on a plurality of second detection signals acquired by the detection coil in a plurality of second measurements of the wire rope performed after one measurement and representing detection signals for each position of the wire rope.
  • a wire rope inspection system configured to detect the condition of the wire rope based on the above.
  • the detection coil that detects the change in the magnetic field of the wire rope, in the first measurement of the wire rope a plurality of times, the first value based on the plurality of first detection signals representing the detection signals for each position of the wire rope is acquired. And the process to do After the first measurement, in the second measurement of the wire rope a plurality of times, the detection coil acquires a second value based on a plurality of second detection signals representing the detection signals for each position of the wire rope.
  • Process and A wire rope inspection method comprising a step of detecting a state of the wire rope based on a difference between the first value and the second value.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

A control unit (21) of this wire rope inspection device (100) is configured to detect the state of a wire rope on the basis of a difference between a first value based on a plurality of first detection signals acquired by a detection coil (10) in first measurement for measuring a wire rope (W) multiple times and a second value based on a plurality of second detection signals acquired by the detection coil in second measurement for measuring the wire rope multiple times after the first measurement.

Description

ワイヤロープ検査装置、ワイヤロープ検査システム、およびワイヤロープ検査方法Wire rope inspection equipment, wire rope inspection system, and wire rope inspection method
 本発明は、ワイヤロープ検査装置、ワイヤロープ検査システム、およびワイヤロープ検査方法に関し、特に、ワイヤロープの磁界の変化に基づいてワイヤロープの状態を検知するワイヤロープ検査装置、ワイヤロープ検査システム、およびワイヤロープ検査方法に関する。 The present invention relates to a wire rope inspection device, a wire rope inspection system, and a wire rope inspection method, and in particular, a wire rope inspection device, a wire rope inspection system, and a wire rope inspection system that detect a state of a wire rope based on a change in a magnetic field of the wire rope. Regarding wire rope inspection method.
 従来、ワイヤロープの磁界の変化を検知するワイヤロープ検査装置、ワイヤロープ検査システム、およびワイヤロープ検査方法が知られている。このようなワイヤロープ検査装置、ワイヤロープ検査システム、およびワイヤロープ検査方法は、たとえば、国際公開第2019/150539号に開示されている。 Conventionally, a wire rope inspection device, a wire rope inspection system, and a wire rope inspection method for detecting a change in the magnetic field of the wire rope are known. Such wire rope inspection devices, wire rope inspection systems, and wire rope inspection methods are disclosed, for example, in International Publication No. 2019/150539.
 上記国際公開第2019/150539号のワイヤロープ検査装置は、ワイヤロープに対して相対的に移動しながら、ワイヤロープを検査するように構成されている。具体的には、上記国際公開第2019/150539号のワイヤロープ検査装置は、ワイヤロープの第1測定において差動コイルにより取得した第1検知信号と、第1測定の後の第2測定において差動コイルにより取得した第2検知信号との略同じ位置における差分に基づいて、ワイヤロープの状態を検知するように構成されている。これにより、ワイヤロープにおける固有の磁気特性(雑音データ)が除去(キャンセル)され、ワイヤロープの損傷等に起因する信号が抽出される。 The wire rope inspection device of International Publication No. 2019/150539 is configured to inspect the wire rope while moving relative to the wire rope. Specifically, the wire rope inspection device of International Publication No. 2019/150539 has a difference between the first detection signal acquired by the differential coil in the first measurement of the wire rope and the second measurement after the first measurement. It is configured to detect the state of the wire rope based on the difference at substantially the same position as the second detection signal acquired by the moving coil. As a result, the inherent magnetic characteristics (noise data) of the wire rope are removed (cancelled), and a signal caused by damage to the wire rope or the like is extracted.
国際公開第2019/150539号International Publication No. 2019/150539
 しかしながら、ワイヤロープには、上記のワイヤロープの損傷等に起因する信号に加えて、ワイヤロープの揺れおよびロープドロー(複数のワイヤロープが捩れる現象)等に起因して測定データに一時的な磁気特性(ノイズ)が含まれてしまう場合がある。ここで、上記一時的な磁気特性は、ワイヤロープの揺れおよびロープドローの状態が測定ごとに異なるため、測定ごとに変化し得るデータである。このため、上記国際公開第2019/150539号に記載されているワイヤロープ検査装置では、第1検知信号と第2検知信号との差分に基づいてワイヤロープの状態検出を行った場合に、上記一時的な磁気特性がキャンセルされないため、ワイヤロープの損傷等に起因する信号か、または、ワイヤロープの揺れ等に起因する一時的な磁気特性に起因する信号かを判定することが困難な場合があるという不都合がある。この場合、ワイヤロープの損傷を検出することが困難になるという問題点がある。 However, in addition to the signal caused by the above-mentioned damage to the wire rope, the wire rope is temporarily included in the measurement data due to the shaking of the wire rope and the rope draw (a phenomenon in which a plurality of wire ropes are twisted). Magnetic characteristics (noise) may be included. Here, the temporary magnetic characteristics are data that can change from measurement to measurement because the state of wire rope sway and rope draw differs from measurement to measurement. Therefore, in the wire rope inspection device described in International Publication No. 2019/150539, when the state of the wire rope is detected based on the difference between the first detection signal and the second detection signal, the above temporary Since the magnetic characteristics are not canceled, it may be difficult to determine whether the signal is caused by damage to the wire rope or the temporary magnetic characteristics caused by the shaking of the wire rope. There is an inconvenience. In this case, there is a problem that it becomes difficult to detect the damage of the wire rope.
 この発明は、上記のような課題を解決するためになされたものであり、この発明の1つの目的は、ワイヤロープの損傷等または揺れ等に起因する信号(ノイズ)が存在する場合にも、ワイヤロープの損傷を容易に検出することが可能なワイヤロープ検査装置、ワイヤロープ検査システム、およびワイヤロープ検査方法を提供することである。 The present invention has been made to solve the above-mentioned problems, and one object of the present invention is even when there is a signal (noise) caused by damage or shaking of the wire rope. It is an object of the present invention to provide a wire rope inspection device, a wire rope inspection system, and a wire rope inspection method capable of easily detecting damage to a wire rope.
 上記目的を達成するために、この発明の第1の局面におけるワイヤロープ検査装置は、ワイヤロープの磁界の変化を検知する検知コイルと、検知コイルにより取得された検知信号を受信する制御部と、を備え、制御部は、複数回のワイヤロープの第1測定において検知コイルにより取得され、ワイヤロープの位置ごとの検知信号を表す複数の第1検知信号に基づく第1の値と、第1測定の後に行われる複数回のワイヤロープの第2測定において検知コイルにより取得され、ワイヤロープの位置ごとの検知信号を表す複数の第2検知信号に基づく第2の値との差分に基づき、ワイヤロープの状態を検知するように構成されている。 In order to achieve the above object, the wire rope inspection device according to the first aspect of the present invention includes a detection coil that detects a change in the magnetic field of the wire rope, a control unit that receives a detection signal acquired by the detection coil, and a control unit. The control unit is obtained by the detection coil in the first measurement of the wire rope a plurality of times, and has a first value based on a plurality of first detection signals representing the detection signals for each position of the wire rope, and the first measurement. Based on the difference from the second value based on the plurality of second detection signals acquired by the detection coil in the second measurement of the wire rope performed after, and representing the detection signal for each position of the wire rope. It is configured to detect the state of.
 この発明の第2の局面におけるワイヤロープ検査システムは、ワイヤロープの磁界の変化を検知する検知コイルを含む検査装置と、検知コイルにより取得された検知信号を受信する制御装置と、を備え、制御装置は、複数回のワイヤロープの第1測定において検知コイルにより取得され、ワイヤロープの位置ごとの検知信号を表す複数の第1検知信号に基づく第1の値と、第1測定の後に行われる複数回のワイヤロープの第2測定において検知コイルにより取得され、ワイヤロープの位置ごとの検知信号を表す複数の第2検知信号に基づく第2の値との差分に基づき、ワイヤロープの状態を検知するように構成されている。 The wire rope inspection system according to the second aspect of the present invention includes an inspection device including a detection coil for detecting a change in the magnetic field of the wire rope, and a control device for receiving a detection signal acquired by the detection coil. The device is acquired by the detection coil in the first measurement of the wire rope a plurality of times, and is performed after the first measurement and the first value based on the plurality of first detection signals representing the detection signals for each position of the wire rope. The state of the wire rope is detected based on the difference from the second value based on the plurality of second detection signals acquired by the detection coil in the second measurement of the wire rope multiple times and representing the detection signal for each position of the wire rope. It is configured to do.
 この発明の第3の局面におけるワイヤロープ検査方法は、ワイヤロープの磁界の変化を検知する検知コイルにより、複数回のワイヤロープの第1測定において、ワイヤロープの位置ごとの検知信号を表す複数の第1検知信号に基づく第1の値を取得する工程と、第1測定の後に、複数回のワイヤロープの第2測定において、検知コイルにより、ワイヤロープの位置ごとの検知信号を表す複数の第2検知信号に基づく第2の値を取得する工程と、第1の値と第2の値との差分に基づき、ワイヤロープの状態を検知する工程と、を備える。 In the wire rope inspection method according to the third aspect of the present invention, a detection coil for detecting a change in the magnetic field of the wire rope is used to represent a plurality of detection signals for each position of the wire rope in a plurality of first measurements of the wire rope. In the step of acquiring the first value based on the first detection signal and in the second measurement of the wire rope a plurality of times after the first measurement, the detection coil represents a plurality of detection signals for each position of the wire rope. 2. A step of acquiring a second value based on the detection signal and a step of detecting the state of the wire rope based on the difference between the first value and the second value are provided.
 上記第1の局面におけるワイヤロープ検査装置、上記第2の局面におけるワイヤロープ検査システム、および、上記第3の局面におけるワイヤロープ検査方法では、上記のように、複数の第1検知信号に基づく第1の値と、複数の第2検知信号に基づく第2の値との差分に基づき、ワイヤロープの状態が検知される。ここで、ワイヤロープの揺れ等に起因する信号(ノイズ)は、一時的に現れるものであるので、検知信号(出力波形)の中での現れ方(出力波形において信号が現れる位置)がランダムに変化し得るものである。一方、たとえばワイヤロープの損傷等に起因する信号は、一時的なものではなく、検知信号(出力波形)の中での現れ方(出力波形において信号が現れる位置)が固定されている。この特性を利用することによって、第1検知信号および第2検知信号をそれぞれ1つずつ用いる場合と異なり、複数の第1(第2)検知信号において共通に現れる信号とランダムに現れる信号とに基づいて、ワイヤロープの損傷等に起因して現れた信号と、ワイヤロープの揺れ等に起因して一時的に現れた信号との判別を行うことができる。その結果、ワイヤロープの損傷等または揺れ等に起因する信号(ノイズ)が存在する場合にも、ワイヤロープの損傷を容易に検知することができる。 In the wire rope inspection device in the first aspect, the wire rope inspection system in the second aspect, and the wire rope inspection method in the third aspect, as described above, the first detection signal is based on the plurality of first detection signals. The state of the wire rope is detected based on the difference between the value of 1 and the second value based on the plurality of second detection signals. Here, since the signal (noise) caused by the shaking of the wire rope or the like appears temporarily, the appearance (the position where the signal appears in the output waveform) in the detection signal (output waveform) randomly appears. It can change. On the other hand, for example, a signal caused by damage to a wire rope is not temporary, and its appearance (the position where the signal appears in the output waveform) in the detection signal (output waveform) is fixed. By utilizing this characteristic, unlike the case where one first detection signal and one second detection signal are used, it is based on a signal that appears in common and a signal that appears randomly in a plurality of first (second) detection signals. Therefore, it is possible to discriminate between a signal that appears due to damage to the wire rope or the like and a signal that temporarily appears due to the shaking of the wire rope or the like. As a result, even when there is a signal (noise) caused by damage or shaking of the wire rope, damage to the wire rope can be easily detected.
第1実施形態によるワイヤロープ検査装置の構成を示した図である。It is a figure which showed the structure of the wire rope inspection apparatus by 1st Embodiment. 第1実施形態によるワイヤロープ検査装置が設けられている昇降路およびエレベータを示した図である。It is a figure which showed the hoistway and the elevator provided with the wire rope inspection apparatus by 1st Embodiment. 第1実施形態によるワイヤロープ検査装置の制御的な構成を示すブロック図である。It is a block diagram which shows the control structure of the wire rope inspection apparatus by 1st Embodiment. 第1実施形態によるワイヤロープ検査装置の磁界印加部および検出部の構成を説明するための概略図である。It is the schematic for demonstrating the structure of the magnetic field application part and the detection part of the wire rope inspection apparatus by 1st Embodiment. 第1実施形態によるワイヤロープの固有の磁気特性について説明するための図である。It is a figure for demonstrating the peculiar magnetic property of the wire rope by 1st Embodiment. 第1実施形態によるワイヤロープ検査装置により取得された第1検知信号(図6(A))と、第2検知信号(図6(B))と、第1検知信号および第2検知信号の差分結果(図6(C))と、差分結果を微分した微分結果(図6(D))とをそれぞれ示した図である。Difference between the first detection signal (FIG. 6 (A)), the second detection signal (FIG. 6 (B)), and the first detection signal and the second detection signal acquired by the wire rope inspection device according to the first embodiment. It is a figure which showed the result (FIG. 6 (C)) and the differential result (FIG. 6 (D)) which differentiated the difference result, respectively. 第1実施形態による第1検知信号の第1加算値(図7(A))と、第2検知信号の第2加算値(図7(B))とをそれぞれ示した概念図である。It is a conceptual diagram which showed the 1st addition value (FIG. 7A) of the 1st detection signal by 1st Embodiment, and the 2nd addition value (FIG. 7B) of the 2nd detection signal, respectively. 第1実施形態による第1加算値と第2加算値との差分を示した概念図である。It is a conceptual diagram which showed the difference between the 1st addition value and the 2nd addition value by 1st Embodiment. 第1実施形態によるワイヤロープの状態検知に関する制御を示したフロー図である。It is a flow figure which showed the control about the state detection of the wire rope by 1st Embodiment. 第2実施形態によるワイヤロープ検査装置の制御的な構成を示すブロック図である。It is a block diagram which shows the control structure of the wire rope inspection apparatus by 2nd Embodiment. 第2実施形態によるワイヤロープの状態検知に関する制御を示したフロー図である。It is a flow figure which showed the control about the state detection of the wire rope by 2nd Embodiment. 第3実施形態によるワイヤロープ検査装置の制御的な構成を示すブロック図である。It is a block diagram which shows the control structure of the wire rope inspection apparatus according to 3rd Embodiment. 第3実施形態によるワイヤロープの状態検知に関する制御を示したフロー図である。It is a flow figure which showed the control about the state detection of the wire rope by the 3rd Embodiment. 第1~第3実施形態の変形例によるワイヤロープ検査システムの制御的な構成を示すブロック図である。It is a block diagram which shows the control structure of the wire rope inspection system by the modification of 1st to 3rd Embodiment. 第1実施形態の変形例によるワイヤロープの状態検知に関する制御を示したフロー図である。It is a flow figure which showed the control about the state detection of the wire rope by the modification of 1st Embodiment. 第2および第3実施形態の変形例によるワイヤロープの状態検知に関する制御を示したフロー図である。It is a flow figure which showed the control about the state detection of the wire rope by the modification of 2nd and 3rd Embodiment. 第1実施形態によるワイヤロープ検査装置の検知コイルの構成を説明するための図である。It is a figure for demonstrating the structure of the detection coil of the wire rope inspection apparatus by 1st Embodiment.
 以下、本発明を具体化した実施形態を図面に基づいて説明する。 Hereinafter, embodiments embodying the present invention will be described with reference to the drawings.
 [第1実施形態]
 図1~図9を参照して、第1実施形態によるワイヤロープ検査装置100の構成について説明する。
[First Embodiment]
The configuration of the wire rope inspection device 100 according to the first embodiment will be described with reference to FIGS. 1 to 9.
(ワイヤロープ検査装置の構成)
 図1に示すように、ワイヤロープ検査装置100は、検査対象物であるワイヤロープWを検査するように構成されている。ワイヤロープ検査装置100は、ワイヤロープWを定期的に検査するように構成されている。ワイヤロープ検査装置100は、ワイヤロープWの損傷を検査するように構成されている。
(Structure of wire rope inspection device)
As shown in FIG. 1, the wire rope inspection device 100 is configured to inspect the wire rope W, which is an inspection target. The wire rope inspection device 100 is configured to periodically inspect the wire rope W. The wire rope inspection device 100 is configured to inspect the wire rope W for damage.
 なお、ワイヤロープWの損傷とは、スレ、局所的磨耗、素線断線、凹み、腐食、亀裂、折れ等により生じる検知方向に対する(ワイヤロープW内部で傷等が生じた場合の空隙に起因するものを含む)断面積の変化、ワイヤロープWの錆、溶接焼け、不純物の混入、組成変化等により生じる透磁率の変化、その他ワイヤロープWが不均一となる部分を含む広い概念である。 The damage to the wire rope W is caused by a gap in the detection direction caused by threads, local wear, wire breakage, dents, corrosion, cracks, breakage, etc. (when scratches or the like occur inside the wire rope W). This is a broad concept that includes changes in cross-sectional area (including those), changes in magnetic permeability caused by rust on the wire rope W, welding burns, mixing of impurities, changes in composition, and other non-uniform parts of the wire rope W.
 また、ワイヤロープWは、複数設けられている。図1では簡略化して5本のワイヤロープWを図示しているが、10本程度設けられる場合もある。ここで、第1実施形態では、ワイヤロープ検査装置100の後述する差動コイル10は、複数のワイヤロープWの磁気特性を一括して検知するように構成されている。すなわち、差動コイル10は、複数のワイヤロープWの各々の検知信号が合わさった1つの検知信号を取得する。また、ワイヤロープ検査装置100(差動コイル10)は、複数のワイヤロープWに対して非接触状態で検査を行うように構成されている。なお、ワイヤロープ検査装置100による検査は、通常の運転時におけるエレベータEの速度よりも遅い速度でエレベータEを移動させる検査モードにおいて行われる。 Also, a plurality of wire ropes W are provided. In FIG. 1, five wire ropes W are shown for simplification, but about 10 wire ropes may be provided. Here, in the first embodiment, the differential coil 10 described later of the wire rope inspection device 100 is configured to collectively detect the magnetic characteristics of the plurality of wire ropes W. That is, the differential coil 10 acquires one detection signal in which the detection signals of the plurality of wire ropes W are combined. Further, the wire rope inspection device 100 (differential coil 10) is configured to inspect a plurality of wire ropes W in a non-contact state. The inspection by the wire rope inspection device 100 is performed in an inspection mode in which the elevator E is moved at a speed slower than the speed of the elevator E during normal operation.
 図2に示すように、ワイヤロープ検査装置100は、エレベータEに使用されているワイヤロープWの表面に沿って相対移動されながら、ワイヤロープWを検査する。エレベータEは、カゴ部E1と、ワイヤロープWを巻き上げてカゴ部E1を昇降させる巻上機E2とを備えている。ワイヤロープ検査装置100は、巻上機E2の直下近傍に固定された状態で、移動する(巻き上げられる)ワイヤロープWを検査するように構成されている。なお、ワイヤロープWは、ワイヤロープ検査装置100の位置において、X方向に延びるように配置されている。 As shown in FIG. 2, the wire rope inspection device 100 inspects the wire rope W while being relatively moved along the surface of the wire rope W used in the elevator E. The elevator E includes a basket portion E1 and a hoisting machine E2 that winds up the wire rope W to raise and lower the basket portion E1. The wire rope inspection device 100 is configured to inspect the moving (winding) wire rope W in a state of being fixed in the vicinity immediately below the hoisting machine E2. The wire rope W is arranged so as to extend in the X direction at the position of the wire rope inspection device 100.
 また、エレベータEは、昇降路101を昇降する。巻上機E2は、エレベータEの昇降路101内に設けられている。すなわち、エレベータEは、いわゆる機械室なしタイプのエレベータである。なお、エレベータEが機械室ありタイプ(巻上機E2が昇降路101とは隔離された機械室に設けられているタイプ)のエレベータであってもよい。 In addition, the elevator E goes up and down the hoistway 101. The hoisting machine E2 is provided in the hoistway 101 of the elevator E. That is, the elevator E is a so-called machine roomless type elevator. The elevator E may be an elevator having a machine room (a type in which the hoisting machine E2 is provided in a machine room isolated from the hoistway 101).
 図3に示すように、ワイヤロープ検査装置100は、検出部1と、電子回路部2とを備えている。検出部1は、一対の受信コイル11および12を有する差動コイル10と、励振コイル13とを含んでいる。電子回路部2は、制御部21と、受信I/F22と、記憶部23と、励振I/F24と、電源回路25と、通信部26とを含んでいる。また、ワイヤロープ検査装置100は、磁界印加部4(図4参照)を備えている。なお、差動コイル10は、請求の範囲の「検知コイル」の一例である。 As shown in FIG. 3, the wire rope inspection device 100 includes a detection unit 1 and an electronic circuit unit 2. The detection unit 1 includes a differential coil 10 having a pair of receiving coils 11 and 12 and an exciting coil 13. The electronic circuit unit 2 includes a control unit 21, a reception I / F 22, a storage unit 23, an excitation I / F 24, a power supply circuit 25, and a communication unit 26. Further, the wire rope inspection device 100 includes a magnetic field application unit 4 (see FIG. 4). The differential coil 10 is an example of a "detection coil" in the claims.
 また、ワイヤロープ検査装置100には、通信部26を介して外部装置900(図1参照)が接続されている。 Further, an external device 900 (see FIG. 1) is connected to the wire rope inspection device 100 via the communication unit 26.
 図1に示すように、外部装置900は、通信部901と、解析部902と、表示部903とを備えている。外部装置900は、通信部901を介して、ワイヤロープ検査装置100によるワイヤロープWの計測データを受信するように構成されている。また、外部装置900は、受信したワイヤロープWの計測データに基づいて、解析部902により、素線断線、断面積変化などの損傷の種類を解析するように構成されている。また、外部装置900は、解析結果を、表示部903に表示するように構成されている。また、外部装置900は、解析結果に基づいて、異常判定を行い、表示部903に結果を表示するように構成されている。 As shown in FIG. 1, the external device 900 includes a communication unit 901, an analysis unit 902, and a display unit 903. The external device 900 is configured to receive the measurement data of the wire rope W by the wire rope inspection device 100 via the communication unit 901. Further, the external device 900 is configured so that the analysis unit 902 analyzes the type of damage such as wire breakage and cross-sectional area change based on the received measurement data of the wire rope W. Further, the external device 900 is configured to display the analysis result on the display unit 903. Further, the external device 900 is configured to perform an abnormality determination based on the analysis result and display the result on the display unit 903.
 図4に示すように、ワイヤロープ検査装置100は、差動コイル10によりワイヤロープWの磁界(磁束)の変化を検知するように構成されている。 As shown in FIG. 4, the wire rope inspection device 100 is configured to detect a change in the magnetic field (magnetic flux) of the wire rope W by the differential coil 10.
 なお、磁界の変化とは、ワイヤロープWと検出部1とを相対移動させることによる検出部1で検知される磁界の強さの時間的な変化、および、ワイヤロープWに印加する磁界を時間変化させることによる検出部1で検知される磁界の強さの時間的な変化を含む広い概念である。 The change in the magnetic field means a change in the strength of the magnetic field detected by the detection unit 1 due to the relative movement of the wire rope W and the detection unit 1, and a time change in the magnetic field applied to the wire rope W. It is a broad concept including a temporal change in the strength of the magnetic field detected by the detection unit 1 by changing it.
(磁界印加部の構成)
 図4に示すように、磁界印加部4は、検査対象物であるワイヤロープWに対して予めY方向(ワイヤロープWの延びる方向に交差する方向)に磁界を印加し磁性体であるワイヤロープWの磁化の大きさおよび方向を整えるように構成されている。また、磁界印加部4は、磁石41および42を含む第1磁界印加部と、磁石43および44を含む第2磁界印加部とを含んでいる。第1磁界印加部(磁石41および42)は、検出部1に対して、ワイヤロープWの延びる方向の一方側(X1方向側)に配置されている。また、第2磁界印加部(磁石43および44)は、検出部1に対して、ワイヤロープWの延びる方向の他方側(X2方向側)に配置されている。なお、第1磁界印加部および第2磁界印加部のいずれか一方のみが設けられる構成であってもよい。
(Structure of magnetic field application part)
As shown in FIG. 4, the magnetic field application unit 4 applies a magnetic field in advance to the wire rope W, which is the object to be inspected, in the Y direction (the direction intersecting the extending direction of the wire rope W), and the wire rope is a magnetic material. It is configured to adjust the magnitude and direction of the magnetization of W. Further, the magnetic field application unit 4 includes a first magnetic field application unit including magnets 41 and 42, and a second magnetic field application unit including magnets 43 and 44. The first magnetic field application units (magnets 41 and 42) are arranged on one side (X1 direction side) of the wire rope W in the extending direction with respect to the detection unit 1. Further, the second magnetic field application unit (magnets 43 and 44) is arranged on the other side (X2 direction side) of the wire rope W in the extending direction with respect to the detection unit 1. In addition, it may be configured that only one of the first magnetic field application part and the second magnetic field application part is provided.
 第1磁界印加部(磁石41および42)は、ワイヤロープWの延びる方向(X方向)に交差する面に平行かつY2方向に磁界を印加するように構成されている。第2磁界印加部(磁石43および44)は、ワイヤロープWの延びる方向(X方向)に交差する面に平行かつY1方向に磁界を印加するように構成されている。すなわち、磁界印加部4は、長尺材の長手方向であるX方向と略直交する方向に磁界を印加するように構成されている。 The first magnetic field application portions (magnets 41 and 42) are configured to apply a magnetic field parallel to the plane intersecting the extending direction (X direction) of the wire rope W and in the Y2 direction. The second magnetic field application portions (magnets 43 and 44) are configured to apply a magnetic field parallel to the plane intersecting the extending direction (X direction) of the wire rope W and in the Y1 direction. That is, the magnetic field application unit 4 is configured to apply a magnetic field in a direction substantially orthogonal to the X direction, which is the longitudinal direction of the long lumber.
(検出部の構成)
 図4に示すように、差動コイル10は、長尺材からなる磁性体であるワイヤロープWが延びる方向に沿うように配置された受信コイル11を含む。また、差動コイル10は、ワイヤロープWに対して受信コイル11が配置される側(Y1方向側)とは反対側(Y2方向側)において、受信コイル11とともにワイヤロープWを挟むように配置されている受信コイル12を含む。励振コイル13は、第1導線部13aが形成されたプリント基板13bを含む。また、励振コイル13は、第2導線部13cが形成されたプリント基板13dを含む。第1導線部13aと第2導線部13cとは、図示しない接続導線部により接続されている。ワイヤロープWは、差動コイル10および励振コイル13の内部(内側)を通過する。また、差動コイル10は、励振コイル13の内側に設けられている。なお、差動コイル10および励振コイル13の配置はこれに限られない。なお、図4の差動コイル10および励振コイル13は、概略的に図示したものであり、実際の配置(構成)とは異なっている場合がある。
(Configuration of detector)
As shown in FIG. 4, the differential coil 10 includes a receiving coil 11 arranged along the direction in which the wire rope W, which is a magnetic material made of a long material, extends. Further, the differential coil 10 is arranged so as to sandwich the wire rope W together with the receiving coil 11 on the side (Y2 direction side) opposite to the side (Y1 direction side) where the receiving coil 11 is arranged with respect to the wire rope W. The receiving coil 12 is included. The excitation coil 13 includes a printed circuit board 13b on which the first conducting wire portion 13a is formed. Further, the excitation coil 13 includes a printed circuit board 13d on which the second conducting wire portion 13c is formed. The first conductor portion 13a and the second conductor portion 13c are connected by a connecting conductor portion (not shown). The wire rope W passes through the inside (inside) of the differential coil 10 and the excitation coil 13. Further, the differential coil 10 is provided inside the excitation coil 13. The arrangement of the differential coil 10 and the excitation coil 13 is not limited to this. The differential coil 10 and the excitation coil 13 in FIG. 4 are schematically shown, and may differ from the actual arrangement (configuration).
 また、差動コイル10は、図17に示すように、受信コイル11と受信コイル12とが差動接続された差動コイルとなるように構成されている。また、受信コイル11は、第1導線部13a(図4参照)と電気的に絶縁して設けられる。受信コイル11は、第1導線部13aが形成されたプリント基板13b(図4参照)に導体パターンとして形成してもよいし、プリント基板13bとは異なるプリント基板、または、多層構造のフレキシブル基板に導体パターンとして形成してもよい。受信コイル12は、第2導線部13cと電気的に絶縁して設けられる。受信コイル12は、第2導線部13cが形成されたプリント基板13dに導体パターンとして形成してもよいし、プリント基板13dとは異なるプリント基板、または、多層構造のフレキシブル基板に導体パターンとして形成してもよい。 Further, as shown in FIG. 17, the differential coil 10 is configured to be a differential coil in which the receiving coil 11 and the receiving coil 12 are differentially connected. Further, the receiving coil 11 is provided so as to be electrically insulated from the first conducting wire portion 13a (see FIG. 4). The receiving coil 11 may be formed as a conductor pattern on the printed circuit board 13b (see FIG. 4) on which the first conducting wire portion 13a is formed, or may be formed on a printed circuit board different from the printed circuit board 13b or a flexible substrate having a multilayer structure. It may be formed as a conductor pattern. The receiving coil 12 is provided so as to be electrically insulated from the second conducting wire portion 13c. The receiving coil 12 may be formed as a conductor pattern on the printed circuit board 13d on which the second conducting wire portion 13c is formed, or may be formed as a conductor pattern on a printed circuit board different from the printed circuit board 13d or a flexible substrate having a multilayer structure. You may.
 励振コイル13は、ワイヤロープWの磁化の状態を励振する。具体的には、励振コイル13に励振交流電流が流されることにより、励振コイル13の内部において、励振交流電流に基づいて発生する磁界がX方向に沿って印加されるように構成されている。 The excitation coil 13 excites the magnetized state of the wire rope W. Specifically, when the excitation AC current is passed through the excitation coil 13, a magnetic field generated based on the excitation AC current is applied inside the excitation coil 13 along the X direction.
 差動コイル10は、一対の受信コイル11および12の差動信号を送信するように構成されている。具体的には、差動コイル10は、ワイヤロープWの磁界の変化を検知して差動信号を送信するように構成されている。差動コイル10は、検査対象物であるワイヤロープWのX方向の磁界の変化を検知して検知信号(電圧)を出力するように構成されている。すなわち、差動コイル10は、磁界印加部4によりY方向に磁界が印加されたワイヤロープWに対して、Y方向に交差するX方向の磁界の変化を検知する。また、差動コイル10は、検知したワイヤロープWのX方向の磁界の変化に基づく差動信号(電圧)を出力するように構成されている。また、差動コイル10は、励振コイル13によって発生する磁界の略全てが検知可能に(入力される様に)配置されている。 The differential coil 10 is configured to transmit the differential signals of the pair of receiving coils 11 and 12. Specifically, the differential coil 10 is configured to detect a change in the magnetic field of the wire rope W and transmit a differential signal. The differential coil 10 is configured to detect a change in the magnetic field of the wire rope W, which is an inspection object, in the X direction and output a detection signal (voltage). That is, the differential coil 10 detects a change in the magnetic field in the X direction intersecting the Y direction with respect to the wire rope W to which the magnetic field is applied in the Y direction by the magnetic field application unit 4. Further, the differential coil 10 is configured to output a differential signal (voltage) based on a change in the detected magnetic field of the wire rope W in the X direction. Further, the differential coil 10 is arranged so that substantially all of the magnetic field generated by the excitation coil 13 can be detected (input).
 ワイヤロープWに欠陥(傷等)が存在する場合は、欠陥(傷等)のある部分でワイヤロープWの全磁束(磁界に透磁率と面積とを掛けた値)が小さくなる。その結果、たとえば、差動コイル10が、欠陥(傷等)のある場所に位置する場合、差動コイル10による検知電圧の差の絶対値(差動信号)が大きくなる。一方、欠陥(傷等)のない部分での差動信号は略ゼロとなる。このように、差動コイル10において、欠陥(傷等)の存在をあらわす明確な信号(S/N比の良い信号)が検知される。これにより、電子回路部2は、差動信号の値に基づいてワイヤロープWの欠陥(傷等)の存在を検出することが可能である。 If the wire rope W has defects (scratches, etc.), the total magnetic flux of the wire rope W (value obtained by multiplying the magnetic field by the magnetic permeability and the area) becomes smaller at the defective parts (scratches, etc.). As a result, for example, when the differential coil 10 is located at a place having a defect (scratch or the like), the absolute value (differential signal) of the difference in the detection voltage by the differential coil 10 becomes large. On the other hand, the differential signal in the portion without defects (scratches, etc.) is substantially zero. In this way, in the differential coil 10, a clear signal (a signal having a good S / N ratio) indicating the presence of defects (scratches, etc.) is detected. As a result, the electronic circuit unit 2 can detect the presence of defects (scratches, etc.) in the wire rope W based on the value of the differential signal.
(電子回路部の構成)
 図3に示す電子回路部2の制御部21は、ワイヤロープ検査装置100の各部を制御するように構成されている。具体的には、制御部21は、CPU(中央処理装置)などのプロセッサ、メモリ、AD変換器などを含んでいる。
(Configuration of electronic circuit section)
The control unit 21 of the electronic circuit unit 2 shown in FIG. 3 is configured to control each unit of the wire rope inspection device 100. Specifically, the control unit 21 includes a processor such as a CPU (central processing unit), a memory, an AD converter, and the like.
 制御部21は、差動コイル10の差動信号(検知信号)を受信して、ワイヤロープWの状態を検知するように構成されている。また、制御部21は、励振コイル13を励振させる制御を行うように構成されている。また、制御部21は、通信部26を介して、ワイヤロープWの状態の検知結果を外部装置900に送信するように構成されている。制御部21の詳細は後述する。 The control unit 21 is configured to receive the differential signal (detection signal) of the differential coil 10 and detect the state of the wire rope W. Further, the control unit 21 is configured to control the excitation coil 13 to be excited. Further, the control unit 21 is configured to transmit the detection result of the state of the wire rope W to the external device 900 via the communication unit 26. The details of the control unit 21 will be described later.
 受信I/F22は、差動コイル10からの差動信号を受信して、制御部21に送信するように構成されている。具体的には、受信I/F22は、増幅器を含んでいる。また、受信I/F22は、差動コイル10の差動信号を増幅して、制御部21に送信するように構成されている。 The receiving I / F 22 is configured to receive the differential signal from the differential coil 10 and transmit it to the control unit 21. Specifically, the receiving I / F 22 includes an amplifier. Further, the receiving I / F 22 is configured to amplify the differential signal of the differential coil 10 and transmit it to the control unit 21.
 励振I/F24は、制御部21からの信号を受信して、励振コイル13に対する電力の供給を制御するように構成されている。具体的には、励振I/F24は、制御部21からの制御信号に基づいて、電源回路25から励振コイル13への電力の供給を制御する。 The excitation I / F 24 is configured to receive a signal from the control unit 21 and control the supply of electric power to the excitation coil 13. Specifically, the excitation I / F 24 controls the supply of electric power from the power supply circuit 25 to the excitation coil 13 based on the control signal from the control unit 21.
(ワイヤロープの構成、特性)
 ワイヤロープWは、磁性を有する素線材料が編みこまれる(たとえば、ストランド編みされる)ことにより形成されている。ワイヤロープWは、X方向に延びる長尺材からなる磁性体である。ワイヤロープWは、劣化による切断が起こるのを防ぐために、状態(傷等の有無)を監視されている。そして、劣化が所定量より進行したワイヤロープWは、交換される。
(Structure and characteristics of wire rope)
The wire rope W is formed by knitting (for example, strand knitting) a magnetic wire material. The wire rope W is a magnetic material made of a long material extending in the X direction. The state (presence or absence of scratches, etc.) of the wire rope W is monitored in order to prevent cutting due to deterioration. Then, the wire rope W whose deterioration has progressed from a predetermined amount is replaced.
 ワイヤロープWは、固有の磁気特性を有している。固有の磁気特性とは、ワイヤロープWの長手方向(X方向)に直交する断面位置における撚(よ)りの均一度や、鋼材の量の均一度などの違いに起因して、変化する磁気特性である。ここで、ワイヤロープWの撚りの均一度や、鋼材の量の均一度は、経時的に略変化することがない(もしくは経時的に大きく変化しにくい)。したがって、ワイヤロープWは、固有の磁気特性を有することにより、後述するワイヤロープWの損傷等および揺れ等がない場合、ワイヤロープ検査装置100による時間的に互いに異なる時点における測定毎に、ワイヤロープWの長手方向(X方向)の各位置における出力が、略同じになる(再現性よく計測される)。 The wire rope W has unique magnetic characteristics. The inherent magnetic characteristics are magnetic properties that change due to differences in the uniformity of twisting at the cross-sectional position orthogonal to the longitudinal direction (X direction) of the wire rope W and the uniformity of the amount of steel material. It is a characteristic. Here, the uniformity of the twist of the wire rope W and the uniformity of the amount of the steel material do not substantially change with time (or are unlikely to change significantly with time). Therefore, since the wire rope W has unique magnetic characteristics, if there is no damage or shaking of the wire rope W described later, the wire rope is measured by the wire rope inspection device 100 at different time points. The output at each position in the longitudinal direction (X direction) of W becomes substantially the same (measured with good reproducibility).
 具体的には、図5(A)に示すように、ワイヤロープ検査装置100による第1測定により得られたワイヤロープWの長手方向の位置ごとの検知信号を表す第1検知信号と、図5(B)に示すように、第1測定の後に行われる第2測定により得られたワイヤロープWの長手方向の位置ごとの検知信号を表す第2検知信号とが略同じになる。なお、第1実施形態では、第1検知信号および第2検知信号の各々は、エレベータEの往路において取得された信号であるとする。第1検知信号および第2検知信号の各々が、エレベータEの復路において取得された信号であってもよい。 Specifically, as shown in FIG. 5A, a first detection signal representing each position in the longitudinal direction of the wire rope W obtained by the first measurement by the wire rope inspection device 100, and FIG. 5 As shown in (B), the second detection signal representing each position in the longitudinal direction of the wire rope W obtained by the second measurement performed after the first measurement is substantially the same. In the first embodiment, it is assumed that each of the first detection signal and the second detection signal is a signal acquired in the outbound route of the elevator E. Each of the first detection signal and the second detection signal may be a signal acquired on the return path of the elevator E.
 また、取得された第1検知信号および第2検知信号は、記憶部23に記憶される。記憶部23は、ワイヤロープWの位置情報と、第1検知信号および第2検知信号のそれぞれとを関連付けた検知情報を記憶するように構成されている。なお、記憶部23は、HDDまたはSSDなどにより構成することが可能である。 Further, the acquired first detection signal and second detection signal are stored in the storage unit 23. The storage unit 23 is configured to store the position information of the wire rope W and the detection information associated with each of the first detection signal and the second detection signal. The storage unit 23 can be configured by an HDD, an SSD, or the like.
 また、第1実施形態では、第1検知信号は、損傷がない状態のワイヤロープWにおいて取得された検知信号である。すなわち、予め取得されたワイヤロープWの初期状態を表す検知信号(基準信号)が、第1検知信号として常に検査において使用される。また、第2検知信号は、現在のワイヤロープWの検知信号である。なお、第1検知信号として、予め(初期に)取得された検知信号を用いなくてもよい。たとえば、今回取得した検知信号を、次回の測定の第1検知信号として用いてもよい。 Further, in the first embodiment, the first detection signal is a detection signal acquired by the wire rope W in a undamaged state. That is, the detection signal (reference signal) representing the initial state of the wire rope W acquired in advance is always used in the inspection as the first detection signal. The second detection signal is the current detection signal of the wire rope W. It is not necessary to use the detection signal acquired in advance (initially) as the first detection signal. For example, the detection signal acquired this time may be used as the first detection signal for the next measurement.
 したがって、ワイヤロープWの長手方向(X方向)の略同じ位置における差分を取得すると、固有の磁気特性が除去された図5(C)に示すような振幅の小さな出力波形が得られる。すなわち、第1測定時および第2測定時におけるワイヤロープWの互いの固有の磁気特性に基づく信号(出力)がキャンセルされて、図5(C)に示すような比較的平坦な出力波形が得られる。このような結果は、第1測定と第2測定との間の期間が、比較的短い期間(数秒、数分)および比較的長い期間(数ヶ月、数年)のいずれの場合でも、同様に得られる。 Therefore, when the difference at substantially the same position in the longitudinal direction (X direction) of the wire rope W is acquired, an output waveform having a small amplitude as shown in FIG. 5 (C) from which the inherent magnetic characteristics are removed can be obtained. That is, the signals (outputs) based on the unique magnetic characteristics of the wire ropes W at the first measurement and the second measurement are canceled, and a relatively flat output waveform as shown in FIG. 5C is obtained. Be done. Such results are similar regardless of whether the period between the first and second measurements is relatively short (seconds, minutes) or relatively long (months, years). can get.
 また、ワイヤロープWには、上記の固有の磁気特性以外に、ワイヤロープWの損傷等に起因する磁気特性、および、ワイヤロープWの揺れやロープドロー(複数のワイヤロープが捩れる現象)等に起因する一時的な磁気特性が現れる場合がある。 In addition to the above-mentioned inherent magnetic characteristics, the wire rope W has magnetic characteristics caused by damage to the wire rope W, swaying of the wire rope W, rope draw (a phenomenon in which a plurality of wire ropes are twisted), and the like. Temporary magnetic properties due to the rope may appear.
 図6では、第2測定においてワイヤロープWに損傷(断線)があった場合の例を記載する。この場合、図6に示すように、ワイヤロープ検査装置100による第1測定により得られた第1検知信号(図6(A)参照)と、第2測定により得られた第2検知信号(図6(B)参照)との差分に、ワイヤロープWの損傷に起因する信号(図6(C)および(D)の破線部分参照)が現れる。なお、図6(D)は、図6(C)の差分結果を微分計算することにより得られる微分結果である。 FIG. 6 describes an example in which the wire rope W is damaged (broken) in the second measurement. In this case, as shown in FIG. 6, the first detection signal obtained by the first measurement by the wire rope inspection device 100 (see FIG. 6A) and the second detection signal obtained by the second measurement (FIG. 6). A signal due to damage to the wire rope W (see the broken line portion in FIGS. 6C and 6D) appears in the difference from 6 (B)). Note that FIG. 6D is a differential result obtained by differentially calculating the difference result of FIG. 6C.
 また、ワイヤロープWの揺れ等に起因する検知信号は、第1測定および第2測定の各々に現れ得る信号である。また、ワイヤロープWにおいて揺れ等が生じる場所は一定ではないので、ワイヤロープWの揺れ等に起因する信号が現れる箇所は測定ごとに異なり得る。したがって、第1測定における第1検知信号と、第2測定における第2検知信号との差分(図6(C)参照)において、ワイヤロープWの揺れ等に起因する検知信号はキャンセルされない場合がある。この場合、図6(C)の差分結果および図6(D)の微分結果を見ても、ワイヤロープWに損傷等に起因する信号か、または、ワイヤロープWの揺れ等に起因する信号かを判別することが困難な場合がある。 Further, the detection signal caused by the shaking of the wire rope W or the like is a signal that can appear in each of the first measurement and the second measurement. Further, since the place where the wire rope W shakes or the like is not constant, the place where the signal caused by the wire rope W shake or the like appears may differ from measurement to measurement. Therefore, in the difference between the first detection signal in the first measurement and the second detection signal in the second measurement (see FIG. 6C), the detection signal caused by the shaking of the wire rope W or the like may not be canceled. .. In this case, even if the difference result of FIG. 6 (C) and the differential result of FIG. 6 (D) are seen, is it a signal caused by damage to the wire rope W or a signal caused by the shaking of the wire rope W? May be difficult to determine.
 ここで、第1実施形態では、図7に示すように、制御部21は、後述する第1加算値と後述する第2加算値との差分を算出する処理と、第1検知信号および第2検知信号に基づいた加算処理とに基づいて、ワイヤロープWの状態を検知するように構成されている。 Here, in the first embodiment, as shown in FIG. 7, the control unit 21 performs a process of calculating the difference between the first added value described later and the second added value described later, and the first detection signal and the second. It is configured to detect the state of the wire rope W based on the addition process based on the detection signal.
 具体的には、制御部21は、複数回(第1実施形態では5回)のワイヤロープWの第1測定において差動コイル10により取得された複数の第1検知信号同士の第1加算値と、複数回(第1実施形態では5回)のワイヤロープWの第2測定において差動コイル10により取得された複数の第2検知信号同士の第2加算値との差分に基づき、ワイヤロープWの状態を検知するように構成されている。なお、第1加算値および第2加算値は、それぞれ、請求の範囲の「第1の値」および「第2の値」の一例である。 Specifically, the control unit 21 is the first addition value between the plurality of first detection signals acquired by the differential coil 10 in the first measurement of the wire rope W a plurality of times (five times in the first embodiment). Based on the difference between the wire rope and the second addition value of the plurality of second detection signals acquired by the differential coil 10 in the second measurement of the wire rope W a plurality of times (five times in the first embodiment). It is configured to detect the state of W. The first added value and the second added value are examples of the "first value" and the "second value" in the claims, respectively.
 詳細には、制御部21は、複数の第1検知信号同士が加算された第1加算値(図7(A)参照)と、複数の第2検知信号同士が加算された第2加算値(図7(B)参照)との差分に基づいて、ワイヤロープWの状態を検知するように構成されている。図7(A)および(B)は、原理説明のため便宜的に示す概念図であるが、ワイヤロープWの損傷等に起因する信号を実線、ワイヤロープWの揺れ等に起因する信号を破線で表示している。なお、図7(A)および図7(B)の破線および実線の信号は、図6(D)の微分出力の波形において現れるピーク信号に相当するものを概念的に図示したものである。 Specifically, the control unit 21 has a first added value in which a plurality of first detection signals are added (see FIG. 7A) and a second added value in which a plurality of second detection signals are added (see FIG. 7A). It is configured to detect the state of the wire rope W based on the difference from FIG. 7B). 7 (A) and 7 (B) are conceptual diagrams for convenience to explain the principle, but the signal caused by the damage of the wire rope W is a solid line, and the signal caused by the shaking of the wire rope W is a broken line. It is displayed with. The broken line and solid line signals of FIGS. 7 (A) and 7 (B) are conceptually illustrated as those corresponding to the peak signals appearing in the waveform of the differential output of FIG. 6 (D).
 図7(A)および図7(B)に示すように、ワイヤロープWの揺れ等に起因する信号(破線の信号)は、複数回の測定ごとに現れる位置が異なっている。このため、加算後の第1加算値および第2加算値の各々において、ワイヤロープWの揺れ等に起因する信号は、出力波形においてばらけた位置にプロットされる。一方、図7(B)に示すように、ワイヤロープWの損傷等に起因する信号(実線の信号)は、複数回の測定ごとで現れる位置が一定である。これにより、加算後の第2加算値において、ワイヤロープWの損傷等に起因する信号同士は加算され、比較的大きい信号が得られる。すなわち、第2検知信号同士を加算することにより、ワイヤロープWの損傷等に起因する信号が相対的に大きくなり、ワイヤロープWの揺れ等に起因する信号が相対的に小さくなる(S/N比が向上する)。 As shown in FIGS. 7 (A) and 7 (B), the signal (broken line signal) caused by the shaking of the wire rope W or the like appears at a different position for each measurement. Therefore, in each of the first added value and the second added value after the addition, the signal caused by the swing of the wire rope W or the like is plotted at scattered positions in the output waveform. On the other hand, as shown in FIG. 7B, the position of the signal (solid line signal) caused by the damage of the wire rope W or the like is constant every time the measurement is performed a plurality of times. As a result, in the second addition value after addition, the signals caused by the damage of the wire rope W or the like are added to each other, and a relatively large signal is obtained. That is, by adding the second detection signals to each other, the signal caused by the damage of the wire rope W or the like becomes relatively large, and the signal caused by the shaking of the wire rope W or the like becomes relatively small (S / N). The ratio improves).
 なお、第1検知信号同士および第2検知信号同士の加算は、ワイヤロープWの位置合わせ制御を行うことにより、ワイヤロープWの略同じ位置の信号同士が加算されるように調整して行われる。具体的には、ワイヤロープ検査装置100による検査は、エレベータEを最上階から最下階まで等速で移動させながら行われる。したがって、測定ごとにおいて同じ時間における信号はワイヤロープW上の略同じ位置における信号となる。すなわち、各測定における検知信号同士で時間合わせを行うことにより、ワイヤロープWの位置合わせ制御が行われている。なお、上記の時間合わせに基づいた位置合わせではなく、エレベータEの位置を検知する位置センサを用いて位置合わせ制御が行われてもよい。この位置センサは、ワイヤロープ検査装置100自体に設けられていてもよいし、ワイヤロープ検査装置100とは別個に設けられていてもよい。 The addition of the first detection signals and the second detection signals is performed by performing the alignment control of the wire rope W so that the signals at substantially the same positions of the wire rope W are added. .. Specifically, the inspection by the wire rope inspection device 100 is performed while moving the elevator E from the top floor to the bottom floor at a constant speed. Therefore, the signal at the same time for each measurement becomes a signal at substantially the same position on the wire rope W. That is, the alignment control of the wire rope W is performed by adjusting the time between the detection signals in each measurement. It should be noted that the alignment control may be performed by using the position sensor that detects the position of the elevator E instead of the alignment based on the above time alignment. This position sensor may be provided in the wire rope inspection device 100 itself, or may be provided separately from the wire rope inspection device 100.
 また、図8に示すように、制御部21は、取得された第1加算値と第2加算値との差分を、上述した位置合わせ制御を行って算出する。そして、制御部21は、算出した第1加算値と第2加算値との差分に対して微分計算を行って信号処理(図6(D)参照)を行う。 Further, as shown in FIG. 8, the control unit 21 calculates the difference between the acquired first addition value and the second addition value by performing the above-mentioned alignment control. Then, the control unit 21 performs differential calculation on the difference between the calculated first added value and the second added value, and performs signal processing (see FIG. 6D).
 また、制御部21は、上記微分計算により算出された微分結果に基づいて、ワイヤロープWに欠陥があるか否か、および、ワイヤロープWの欠陥(傷等)の大きさを判定する機能を有している。なお、制御部21は、第1加算値と第2加算値との差分結果から直接的に上記判定を行ってもよい。 Further, the control unit 21 has a function of determining whether or not the wire rope W has a defect and the size of the defect (scratch or the like) of the wire rope W based on the differential result calculated by the above differential calculation. Have. The control unit 21 may make the above determination directly from the difference result between the first addition value and the second addition value.
 また、制御部21は、第2検知信号に対して、差動コイル10の感度の補正を行った上で、第1検知信号と第2検知信号との差分を取得するように構成されている。たとえば、上記補正の補正係数は、差動コイル10が置かれる環境温度などに応じて設定されてもよい。この他、上記補正係数は、第1検知信号および第2検知信号の出力波形中の代表となるピークを比較して得られる比としてもよい。 Further, the control unit 21 is configured to acquire the difference between the first detection signal and the second detection signal after correcting the sensitivity of the differential coil 10 with respect to the second detection signal. .. For example, the correction coefficient for the above correction may be set according to the ambient temperature at which the differential coil 10 is placed. In addition, the correction coefficient may be a ratio obtained by comparing representative peaks in the output waveforms of the first detection signal and the second detection signal.
 また、第1実施形態では、制御部21は、第1測定と同じ回数の複数回の第2測定において取得された複数の第2検知信号に基づいて、ワイヤロープWの状態を検知するように構成されている。具体的には、制御部21は、各測定において取得された5つずつの検知信号に基づいて、ワイヤロープWの状態を検知するように構成されている。 Further, in the first embodiment, the control unit 21 detects the state of the wire rope W based on the plurality of second detection signals acquired in the second measurement of the same number of times as the first measurement. It is configured. Specifically, the control unit 21 is configured to detect the state of the wire rope W based on five detection signals acquired in each measurement.
(ワイヤロープ検査方法)
 次に、図9を参照して、ワイヤロープWの検査方法について説明する。
(Wire rope inspection method)
Next, a method of inspecting the wire rope W will be described with reference to FIG.
 まず、図9に示すように、ワイヤロープWの検査方法は、複数回のワイヤロープWの第1測定において複数の第1検知信号を取得する工程(ステップS1)を備える。なお、第1測定は、5回連続で行われる。そして、5つの第1検知信号は、記憶部23(図3参照)に記憶される。第1測定は、ワイヤロープWをエレベータEに使用を開始する前に行ってもよいし、使用を開始した後に行ってもよい。 First, as shown in FIG. 9, the wire rope W inspection method includes a step (step S1) of acquiring a plurality of first detection signals in the first measurement of the wire rope W a plurality of times. The first measurement is performed five times in a row. Then, the five first detection signals are stored in the storage unit 23 (see FIG. 3). The first measurement may be performed before the wire rope W is used for the elevator E, or may be performed after the wire rope W is used.
 次に、ワイヤロープWの検査方法は、第1測定の後に、複数回のワイヤロープWの第2測定において、複数の第2検知信号(図7(B)参照)を取得する工程(ステップS2)を備える。具体的には、第2測定は、第1測定から所定の期間後に行われる。また、第2測定は、5回連続で行われる。 Next, the method for inspecting the wire rope W is a step (step S2) of acquiring a plurality of second detection signals (see FIG. 7B) in the second measurement of the wire rope W a plurality of times after the first measurement. ) Is provided. Specifically, the second measurement is performed after a predetermined period from the first measurement. The second measurement is performed five times in a row.
 なお、第1測定と、第2測定との間の長さは、ワイヤロープWの切断などが生じる比較的長い期間(たとえば数十年)ではなく、ワイヤロープWの損傷の進行を確認できる程度の所定期間(たとえば数ヶ月)に設定するのが好ましい。また、第2測定では、第1測定と同じ条件で、ワイヤロープWの測定(検査)が行われる。たとえば、第2測定では、第1測定と同じ速度でワイヤロープ検査装置100に対してワイヤロープWを移動させる。また、第2測定では、第1測定と同じワイヤロープWの位置から測定(検査)を開始して、第1測定と同じワイヤロープWの位置で測定(検査)を終了する。第2工程により、図7(B)に示すような出力波形が得られる。 The length between the first measurement and the second measurement is not a relatively long period (for example, several decades) when the wire rope W is cut, but a degree to which the progress of damage to the wire rope W can be confirmed. It is preferable to set it for a predetermined period (for example, several months). Further, in the second measurement, the wire rope W is measured (inspected) under the same conditions as the first measurement. For example, in the second measurement, the wire rope W is moved with respect to the wire rope inspection device 100 at the same speed as in the first measurement. In the second measurement, the measurement (inspection) is started from the same position of the wire rope W as the first measurement, and the measurement (inspection) is finished at the same position of the wire rope W as the first measurement. By the second step, an output waveform as shown in FIG. 7B is obtained.
 次に、ワイヤロープWの検査方法は、5つの第1検知信号同士を加算することにより第1加算値を取得する(図7(A)参照)工程(ステップS3)を備える。具体的には、制御部21は、5つの第1検知信号同士を、ワイヤロープWを検知した位置を略一致させる位置合わせ制御を行って加算する。なお、ステップS3は、ステップS2よりも前に行われてもよい。たとえば、5つの第1検知信号を取得した際にステップS3も併せて行ってもよい。 Next, the wire rope W inspection method includes a step (step S3) of acquiring the first added value by adding the five first detection signals to each other (see FIG. 7A). Specifically, the control unit 21 adds the five first detection signals by performing alignment control that substantially matches the position where the wire rope W is detected. Note that step S3 may be performed before step S2. For example, step S3 may be performed at the same time when the five first detection signals are acquired.
 次に、ワイヤロープWの検査方法は、5つの第2検知信号同士を加算することにより第2加算値を取得する(図7(B)参照)工程(ステップS4)を備える。具体的には、制御部21は、5つの第2検知信号同士を、ワイヤロープWを検知した位置を略一致させる位置合わせ制御を行って加算する。これにより、第2検知信号に、ワイヤロープWの損傷等に起因する信号があれば、それぞれの第2検知信号における上記損傷等に起因する信号同士が加算される(図7(B)参照)。 Next, the wire rope W inspection method includes a step (step S4) of acquiring the second added value by adding the five second detection signals to each other (see FIG. 7B). Specifically, the control unit 21 adds the five second detection signals by performing alignment control that substantially matches the position where the wire rope W is detected. As a result, if the second detection signal includes a signal caused by damage to the wire rope W or the like, the signals caused by the damage or the like in each of the second detection signals are added to each other (see FIG. 7B). ..
 次に、ワイヤロープWの検査方法は、制御部21により、ステップS3において算出された第1加算値と、ステップS4において算出された第2加算値との差分を、上記位置合わせ制御を行って算出する工程(ステップS5)を備える。これにより、第1測定時および第2測定時におけるワイヤロープWの互いの固有の磁気特性に基づく信号がキャンセル(図5参照)される。これにより、ワイヤロープWの損傷等に起因する信号、および、ワイヤロープWの揺れ等に起因する信号だけが、差分結果(図8参照)として取得される。なお、図8では、図7と同様に、ワイヤロープWの損傷等に起因する信号を実線、ワイヤロープWの揺れ等に起因する信号を破線で表示している。 Next, in the wire rope W inspection method, the control unit 21 performs the above-mentioned alignment control on the difference between the first added value calculated in step S3 and the second added value calculated in step S4. The calculation step (step S5) is provided. As a result, the signals based on the unique magnetic characteristics of the wire ropes W at the time of the first measurement and the time of the second measurement are canceled (see FIG. 5). As a result, only the signal caused by the damage of the wire rope W and the signal caused by the shaking of the wire rope W and the like are acquired as the difference result (see FIG. 8). In FIG. 8, similarly to FIG. 7, the signal caused by the damage of the wire rope W and the like is shown by a solid line, and the signal caused by the shaking of the wire rope W and the like is shown by a broken line.
 そして、ワイヤロープWの検査方法は、制御部21により、ステップS5において算出された差分に基づき、ワイヤロープWの状態を検知する工程(ステップS6)を備える。具体的には、制御部21は、ステップS5において算出された差分に対して信号処理(微分計算)を行うことにより、微分結果(図6(D)参照)を出力する。そして、制御部21は、出力した微分結果に基づいて、ワイヤロープWに欠陥があるか否か、および、ワイヤロープWの欠陥(傷等)の大きさを判定する。 The wire rope W inspection method includes a step (step S6) of detecting the state of the wire rope W based on the difference calculated in step S5 by the control unit 21. Specifically, the control unit 21 outputs a differential result (see FIG. 6D) by performing signal processing (differential calculation) on the difference calculated in step S5. Then, the control unit 21 determines whether or not the wire rope W has a defect and the size of the defect (scratch or the like) of the wire rope W based on the output differential result.
 (第1実施形態の効果)
 第1実施形態では、以下のような効果を得ることができる。
(Effect of the first embodiment)
In the first embodiment, the following effects can be obtained.
 第1実施形態では、上記のように、制御部21は、複数回のワイヤロープWの第1測定において差動コイル10により取得され、ワイヤロープWの位置ごとの検知信号を表す複数の第1検知信号に基づく第1加算値(第1の値)と、第1測定の後に行われる複数回のワイヤロープWの第2測定において差動コイル10により取得され、ワイヤロープWの位置ごとの検知信号を表す複数の第2検知信号に基づく第2加算値(第2の値)との差分に基づき、ワイヤロープWの状態を検知するように構成されている。ここで、ワイヤロープWの揺れ等に起因する信号(ノイズ)は、一時的に現れるものであるので、検知信号(出力波形)の中での現れ方(出力波形において信号が現れる位置)がランダムに変化し得るものである。一方、たとえばワイヤロープWの損傷等に起因するワイヤロープWの信号は、一時的なものではなく、検知信号(出力波形)の中での現れ方(出力波形において信号が現れる位置)が固定されている。この特性を利用することによって、第1検知信号および第2検知信号をそれぞれ1つずつ用いる場合と異なり、複数の第1(第2)検知信号において共通に現れる信号とランダムに現れる信号とに基づいて、ワイヤロープWの損傷等に起因して現れた信号と、ワイヤロープWの揺れ等に起因して一時的に現れた信号との判別を行うことができる。その結果、ワイヤロープWの損傷等または揺れ等に起因する信号(ノイズ)が存在する場合にも、ワイヤロープWの損傷を容易に検知することができる。 In the first embodiment, as described above, the control unit 21 is acquired by the differential coil 10 in the first measurement of the wire rope W a plurality of times, and represents a plurality of first detection signals for each position of the wire rope W. The first addition value (first value) based on the detection signal and the second measurement of the wire rope W performed a plurality of times after the first measurement are acquired by the differential coil 10 and detected for each position of the wire rope W. It is configured to detect the state of the wire rope W based on the difference from the second addition value (second value) based on the plurality of second detection signals representing the signals. Here, since the signal (noise) caused by the shaking of the wire rope W or the like appears temporarily, the appearance (position where the signal appears in the output waveform) in the detection signal (output waveform) is random. Can change to. On the other hand, the signal of the wire rope W caused by the damage of the wire rope W, for example, is not temporary, and the appearance (the position where the signal appears in the output waveform) in the detection signal (output waveform) is fixed. ing. By utilizing this characteristic, unlike the case where one first detection signal and one second detection signal are used, it is based on a signal that appears in common and a signal that appears randomly in a plurality of first (second) detection signals. Therefore, it is possible to discriminate between a signal that appears due to damage to the wire rope W and the like and a signal that temporarily appears due to the shaking of the wire rope W and the like. As a result, even when there is a signal (noise) caused by damage or shaking of the wire rope W, damage to the wire rope W can be easily detected.
 また、第1実施形態では、上記のように、制御部21は、第1加算値(第1の値)と第2加算値(第2の値)との差分を算出する処理と、第1検知信号および第2検知信号に基づいた加算処理とに基づいて、ワイヤロープWの状態を検知するように構成されている。ここで、上述したように、ワイヤロープWの揺れ等に起因する信号の現れ方(出力波形において信号が現れる位置)はランダムに変化し得るとともにワイヤロープWの損傷等に起因する信号の現れ方(出力波形において信号が現れる位置)は一定である。したがって、第1検知信号および第2検知信号に基づいた加算処理を行うことによって、ワイヤロープWの揺れ等に起因して一時的に現れる信号同士は加算されずに出力波形においてばらけた位置にプロットされるとともに、ワイヤロープWの損傷等に起因する信号同士だけを加算することができる。その結果、ワイヤロープWの損傷等に起因する信号を相対的に大きくすることができるので、ワイヤロープWの損傷等に起因する信号が、ワイヤロープWに一時的に現れている信号に埋もれるのを抑制することができる。これにより、ワイヤロープWの損傷をより容易に検知することができる。 Further, in the first embodiment, as described above, the control unit 21 performs a process of calculating the difference between the first added value (first value) and the second added value (second value), and the first. It is configured to detect the state of the wire rope W based on the detection signal and the addition process based on the second detection signal. Here, as described above, the appearance of the signal due to the shaking of the wire rope W (the position where the signal appears in the output waveform) can change randomly, and the appearance of the signal due to the damage of the wire rope W or the like. (The position where the signal appears in the output waveform) is constant. Therefore, by performing the addition processing based on the first detection signal and the second detection signal, the signals that temporarily appear due to the shaking of the wire rope W or the like are not added and plotted at scattered positions in the output waveform. At the same time, only the signals caused by the damage of the wire rope W or the like can be added. As a result, the signal caused by the damage of the wire rope W or the like can be made relatively large, so that the signal caused by the damage of the wire rope W or the like is buried in the signal temporarily appearing in the wire rope W. Can be suppressed. As a result, damage to the wire rope W can be detected more easily.
 また、第1実施形態では、上記のように、制御部21は、複数の第1検知信号同士を加算することに基づいて得られた第1加算値(第1の値)と、複数の第2検知信号同士を加算することに基づいて得られた第2加算値(第2の値)との差分に基づいて、ワイヤロープWの状態を検知するように構成されている。このように構成すれば、複数の第1検知信号同士、および、複数の第2検知信号同士を加算することにより、ワイヤロープWに一時的に現れている信号同士が加算されずにワイヤロープWの損傷等に起因する信号同士が加算されるので、ワイヤロープWの損傷等に起因する信号が、ワイヤロープWに一時的に現れている信号に埋もれるのを抑制することができる。また、第1加算値および第2加算値の全組み合わせの差分を算出する場合に比べて、制御部21の演算処理における負荷を軽減することができる。 Further, in the first embodiment, as described above, the control unit 21 has a first addition value (first value) obtained by adding a plurality of first detection signals to each other, and a plurality of first addition values. It is configured to detect the state of the wire rope W based on the difference from the second added value (second value) obtained by adding the two detection signals to each other. With this configuration, by adding the plurality of first detection signals and the plurality of second detection signals, the signals temporarily appearing on the wire rope W are not added to each other, and the wire rope W is not added. Since the signals caused by the damage or the like are added to each other, it is possible to prevent the signal caused by the damage or the like of the wire rope W from being buried in the signal temporarily appearing on the wire rope W. Further, the load in the arithmetic processing of the control unit 21 can be reduced as compared with the case of calculating the difference of all combinations of the first added value and the second added value.
 また、第1実施形態では、上記のように、制御部21は、第1測定と同じ回数の複数回の第2測定において取得された複数の第2検知信号に基づいて、ワイヤロープWの状態を検知するように構成されている。このように構成すれば、複数の第1検知信号同士の加算値と、複数の第2検知信号同士の加算値との差分を算出する際に、第1検知信号および第2検知信号の両方に含まれるワイヤロープWに固有の磁気特性に基づく信号をキャンセルする(打ち消す)ことができる。その結果、ワイヤロープWの損傷等に起因する信号をより確実に検知することができる。 Further, in the first embodiment, as described above, the control unit 21 states the wire rope W based on the plurality of second detection signals acquired in the second measurement of the same number of times as the first measurement. Is configured to detect. With this configuration, when calculating the difference between the added value of the plurality of first detection signals and the added value of the plurality of second detection signals, both the first detection signal and the second detection signal can be used. It is possible to cancel (cancel) a signal based on the magnetic characteristics peculiar to the included wire rope W. As a result, it is possible to more reliably detect a signal caused by damage to the wire rope W or the like.
 また、第1実施形態では、上記のように、第1検知信号は、損傷がない状態のワイヤロープWにおいて取得された検知信号である。このように構成すれば、第2測定時にワイヤロープWに損傷がある場合に、ワイヤロープWの損傷をより確実に検知することができる。 Further, in the first embodiment, as described above, the first detection signal is a detection signal acquired by the wire rope W in an undamaged state. With this configuration, if the wire rope W is damaged during the second measurement, the damage to the wire rope W can be detected more reliably.
 また、第1実施形態では、上記のように、ワイヤロープWは、複数設けられている。また、差動コイル10は、複数のワイヤロープWの磁気特性を一括して検知するように構成されている。このように構成すれば、複数のワイヤロープWを個別に検査する場合に比べて、検査に要する時間を短縮することができる。これにより、複数回の測定を毎回行う必要がある場合でも、測定に要する時間が長くなるのを抑制することができる。 Further, in the first embodiment, as described above, a plurality of wire ropes W are provided. Further, the differential coil 10 is configured to collectively detect the magnetic characteristics of the plurality of wire ropes W. With this configuration, the time required for inspection can be shortened as compared with the case where a plurality of wire ropes W are individually inspected. As a result, even when it is necessary to perform a plurality of measurements each time, it is possible to suppress an increase in the time required for the measurement.
 また、第1実施形態では、上記のように、ワイヤロープ検査方法は、ワイヤロープWの磁界の変化を検知する差動コイル10により、複数回のワイヤロープWの第1測定において、ワイヤロープWの位置ごとの検知信号を表す複数の第1検知信号に基づく第1加算値(第1の値)を取得する工程を備える。また、ワイヤロープ検査方法は、第1測定の後に、複数回のワイヤロープWの第2測定において、差動コイル10により、ワイヤロープWの位置ごとの検知信号を表す複数の第2検知信号に基づく第2加算値(第2の値)を取得する工程を備える。そして、ワイヤロープ検査方法は、第1加算値と、第2加算値との差分に基づき、ワイヤロープWの状態を検知する工程を備える。このように構成すれば、複数の第1検知信号に基づく第1加算値と複数の第2検知信号に基づく第2加算値との差分に基づいてワイヤロープWの状態を検知することにより、ワイヤロープWの損傷等に起因して現れた信号と、ワイヤロープWの揺れ等に起因して一時的に現れた信号との判別を容易に行うことができる。その結果、ワイヤロープWの損傷等または揺れ等に起因する信号(ノイズ)が存在する場合にも、ワイヤロープWの損傷を容易に検知することが可能なワイヤロープ検査方法を提供することができる。 Further, in the first embodiment, as described above, in the wire rope inspection method, the wire rope W is used in the first measurement of the wire rope W a plurality of times by the differential coil 10 that detects the change in the magnetic field of the wire rope W. A step of acquiring a first addition value (first value) based on a plurality of first detection signals representing the detection signals for each position of is provided. Further, in the wire rope inspection method, after the first measurement, in the second measurement of the wire rope W a plurality of times, the differential coil 10 is used to generate a plurality of second detection signals representing the detection signals for each position of the wire rope W. The step of acquiring the second addition value (second value) based on is provided. The wire rope inspection method includes a step of detecting the state of the wire rope W based on the difference between the first added value and the second added value. With this configuration, the wire rope W can be detected by detecting the state of the wire rope W based on the difference between the first addition value based on the plurality of first detection signals and the second addition value based on the plurality of second detection signals. It is possible to easily distinguish between a signal that appears due to damage to the rope W or the like and a signal that temporarily appears due to the shaking of the wire rope W or the like. As a result, it is possible to provide a wire rope inspection method capable of easily detecting damage to the wire rope W even when a signal (noise) caused by damage or shaking of the wire rope W is present. ..
 [第2実施形態]
 次に、図10および図11を参照して、第2実施形態によるワイヤロープ検査装置200の構成について説明する。この第2実施形態のワイヤロープ検査装置200は、上記第1実施形態と異なり、複数の第1検知信号と複数の第2検知信号との全組み合わせにおける差分に基づいて、ワイヤロープWの状態を検知する。なお、上記第1実施形態と同一の構成については、図中において同じ符号を付して図示し、その説明を省略する。
[Second Embodiment]
Next, the configuration of the wire rope inspection device 200 according to the second embodiment will be described with reference to FIGS. 10 and 11. Unlike the first embodiment, the wire rope inspection device 200 of the second embodiment determines the state of the wire rope W based on the difference in all combinations of the plurality of first detection signals and the plurality of second detection signals. Detect. The same configuration as that of the first embodiment is shown with the same reference numerals in the drawings, and the description thereof will be omitted.
 図10に示すように、ワイヤロープ検査装置200は、電子回路部32を備えている。電子回路部32は、制御部321を含んでいる。 As shown in FIG. 10, the wire rope inspection device 200 includes an electronic circuit unit 32. The electronic circuit unit 32 includes a control unit 321.
 ここで、第2実施形態では、制御部321は、複数の第1検知信号と、複数の第2検知信号との全組み合わせにおける差分同士の第3加算値に基づいて、ワイヤロープWの状態を検知するように構成されている。具体的には、制御部321は、5つの第1検知信号と、5つの第2検知信号との、全25通りの組み合わせにおける差分同士を加算する。すなわち、第2検知信号にワイヤロープWの損傷等に起因する信号が含まれている場合、上記損傷等に起因する信号は25回加算されることになる。なお、第3加算値は、請求の範囲の「第3の値」の一例である。 Here, in the second embodiment, the control unit 321 determines the state of the wire rope W based on the third addition value of the differences in all combinations of the plurality of first detection signals and the plurality of second detection signals. It is configured to detect. Specifically, the control unit 321 adds the differences between the five first detection signals and the five second detection signals in all 25 combinations. That is, when the second detection signal includes a signal caused by damage to the wire rope W or the like, the signal caused by the damage or the like is added 25 times. The third additional value is an example of the "third value" in the claims.
(ワイヤロープ検査方法)
 次に、図11を参照して、ワイヤロープWの検査方法について説明する。
(Wire rope inspection method)
Next, a method of inspecting the wire rope W will be described with reference to FIG.
 図11に示すように、ワイヤロープWの検査方法は、複数の第1検知信号と、複数の第2検知信号との全組み合わせにおける差分を算出する工程(ステップS13)を備える。制御部321は、ワイヤロープWを検知した位置を略一致させる位置合わせ制御を行って、各組み合わせにおける差分を算出する。 As shown in FIG. 11, the wire rope W inspection method includes a step (step S13) of calculating the difference in all combinations of the plurality of first detection signals and the plurality of second detection signals. The control unit 321 performs alignment control that substantially matches the position where the wire rope W is detected, and calculates the difference in each combination.
 次に、ワイヤロープWの検査方法は、ステップS13において算出された複数の差分同士を加算して第3加算値を算出する工程(ステップS14)を備える。制御部321は、上記位置合わせ制御を行って、上記複数の差分同士を加算する。 Next, the wire rope W inspection method includes a step (step S14) of adding the plurality of differences calculated in step S13 to calculate the third added value. The control unit 321 performs the alignment control and adds the plurality of differences.
 そして、ワイヤロープWの検査方法は、ステップS14において算出された第3加算値に基づき、ワイヤロープWの状態を検知する工程(ステップS15)を備える。具体的には、制御部321は、ステップS14において算出された第3加算値に対して信号処理(微分計算)を行うことにより、微分結果を出力する。そして、制御部321は、出力した微分結果に基づいて、ワイヤロープWに欠陥があるか否か、および、ワイヤロープWの欠陥(傷等)の大きさを判定する。 Then, the method for inspecting the wire rope W includes a step (step S15) of detecting the state of the wire rope W based on the third addition value calculated in step S14. Specifically, the control unit 321 outputs a differential result by performing signal processing (differential calculation) on the third addition value calculated in step S14. Then, the control unit 321 determines whether or not the wire rope W has a defect and the size of the defect (scratch or the like) of the wire rope W based on the output differential result.
 なお、第2実施形態のその他の構成は、上記第1実施形態と同様である。 The other configurations of the second embodiment are the same as those of the first embodiment.
(第2実施形態の効果)
 第2実施形態では、以下のような効果を得ることができる。
(Effect of the second embodiment)
In the second embodiment, the following effects can be obtained.
 第2実施形態では、上記のように、制御部321は、複数の第1検知信号と、複数の第2検知信号との全組み合わせにおける差分同士を加算することに基づいて得られた第3加算値(第3の値)に基づいて、ワイヤロープWの状態を検知するように構成されている。このように構成すれば、ワイヤロープWの損傷等に起因する信号同士の加算回数を容易に大きくすることができる。その結果、ワイヤロープWの損傷等に起因する信号が、ワイヤロープWに一時的に現れている信号に埋もれるのをより確実に抑制する(S/N比を向上させる)ことができる。 In the second embodiment, as described above, the control unit 321 adds the third addition obtained by adding the differences in all combinations of the plurality of first detection signals and the plurality of second detection signals. It is configured to detect the state of the wire rope W based on the value (third value). With this configuration, the number of times signals are added to each other due to damage to the wire rope W or the like can be easily increased. As a result, it is possible to more reliably suppress that the signal caused by the damage of the wire rope W or the like is buried in the signal temporarily appearing in the wire rope W (improve the S / N ratio).
 第2実施形態のその他の効果は、上記第1実施形態と同様である。 Other effects of the second embodiment are the same as those of the first embodiment.
 [第3実施形態]
 次に、図12および図13を参照して、第3実施形態によるワイヤロープ検査装置300の構成について説明する。この第3実施形態のワイヤロープ検査装置300は、上記第2実施形態と異なり、複数の第1検知信号と複数の第2検知信号との全組み合わせにおける差分に対して微分計算処理を行った後に加算処理を行う。なお、上記第2実施形態と同一の構成については、図中において同じ符号を付して図示し、その説明を省略する。
[Third Embodiment]
Next, the configuration of the wire rope inspection device 300 according to the third embodiment will be described with reference to FIGS. 12 and 13. Unlike the second embodiment, the wire rope inspection device 300 of the third embodiment performs differential calculation processing on the difference in all combinations of the plurality of first detection signals and the plurality of second detection signals. Performs addition processing. The same configuration as that of the second embodiment will be illustrated with the same reference numerals in the drawings, and the description thereof will be omitted.
 図12に示すように、ワイヤロープ検査装置300は、電子回路部42を備えている。電子回路部42は、制御部421を含んでいる。 As shown in FIG. 12, the wire rope inspection device 300 includes an electronic circuit unit 42. The electronic circuit unit 42 includes a control unit 421.
 ここで、第3実施形態では、制御部421は、複数の第1検知信号と、複数の第2検知信号との全組み合わせにおける差分の微分値同士の加算値である第4加算値に基づいて、ワイヤロープWの状態を検知するように構成されている。具体的には、制御部421は、5つの第1検知信号と、5つの第2検知信号との、全25通りの組み合わせにおける差分の各々に対して、微分計算処理を行う。なお、第4加算値は、請求の範囲の「第4の値」の一例である。 Here, in the third embodiment, the control unit 421 is based on the fourth addition value, which is the addition value of the differential values of the differences in all combinations of the plurality of first detection signals and the plurality of second detection signals. , It is configured to detect the state of the wire rope W. Specifically, the control unit 421 performs differential calculation processing on each of the differences in all 25 combinations of the five first detection signals and the five second detection signals. The fourth added value is an example of the "fourth value" in the claims.
(ワイヤロープ検査方法)
 次に、図13を参照して、ワイヤロープWの検査方法について説明する。
(Wire rope inspection method)
Next, a method of inspecting the wire rope W will be described with reference to FIG.
 図13に示すように、ステップS24では、制御部421は、ステップS13において算出された複数の差分の各々に対して信号処理(微分計算)を行う。 As shown in FIG. 13, in step S24, the control unit 421 performs signal processing (differential calculation) on each of the plurality of differences calculated in step S13.
 そして、ワイヤロープWの検査方法は、ステップS24において算出された複数の微分値同士を加算することにより第4加算値を算出する工程(ステップS25)を備える。具体的には、制御部421は、ワイヤロープWを検知した位置を略一致させる位置合わせ制御を行って、ステップS24において算出された複数の微分値同士を加算する。そして、制御部421は、算出した第4加算値に基づいて、ワイヤロープWに欠陥があるか否か、および、ワイヤロープWの欠陥(傷等)の大きさを判定する。 The wire rope W inspection method includes a step (step S25) of calculating the fourth added value by adding the plurality of differential values calculated in step S24. Specifically, the control unit 421 performs alignment control that substantially matches the position where the wire rope W is detected, and adds the plurality of differential values calculated in step S24. Then, the control unit 421 determines whether or not the wire rope W has a defect and the size of the defect (scratch or the like) of the wire rope W based on the calculated fourth addition value.
 なお、第3実施形態のその他の構成は、上記第2実施形態と同様である。 The other configurations of the third embodiment are the same as those of the second embodiment.
(第3実施形態の効果)
 第3実施形態では、以下のような効果を得ることができる。
(Effect of Third Embodiment)
In the third embodiment, the following effects can be obtained.
 第3実施形態では、上記のように、制御部421は、複数の第1検知信号と、複数の第2検知信号との全組み合わせにおける差分の微分値同士を加算することに基づいて得られた第4の値に基づいて、ワイヤロープWの状態を検知するように構成されている。このように構成すれば、上記微分値同士の加算に基づいて、ワイヤロープWに一時的に現れている信号に埋もれるのをより確実に抑制する(S/N比を向上させる)ことができる。 In the third embodiment, as described above, the control unit 421 is obtained based on adding the differential values of the differences in all combinations of the plurality of first detection signals and the plurality of second detection signals. It is configured to detect the state of the wire rope W based on the fourth value. With this configuration, it is possible to more reliably suppress the burial in the signal temporarily appearing in the wire rope W (improve the S / N ratio) based on the addition of the differential values.
 第3実施形態のその他の効果は、上記第2実施形態と同様である。 Other effects of the third embodiment are the same as those of the second embodiment.
[変形例]
 なお、今回開示された実施形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施形態の説明ではなく請求の範囲によって示され、さらに請求の範囲と均等の意味および範囲内でのすべての変更(変形例)が含まれる。
[Modification example]
It should be noted that the embodiments disclosed this time are exemplary in all respects and are not considered to be restrictive. The scope of the present invention is shown by the claims rather than the description of the above-described embodiment, and further includes all modifications (modifications) within the meaning and scope equivalent to the claims.
 たとえば、上記第1~第3実施形態では、ワイヤロープ検査装置100(200、300)の制御部21(321、421)が、ワイヤロープWの状態を検知する例を示したが、本発明はこれに限られない。たとえば、ワイヤロープ検査装置100(200、300)とは別個の装置が上記の制御を行ってもよい。 For example, in the first to third embodiments, the control unit 21 (321, 421) of the wire rope inspection device 100 (200, 300) has shown an example of detecting the state of the wire rope W. Not limited to this. For example, a device separate from the wire rope inspection device 100 (200, 300) may perform the above control.
 具体的には、図14に示すように、ワイヤロープ検査システム500は、ワイヤロープ検査装置400と、外部装置900aとを備えている。なお、外部装置900aは、請求の範囲の「制御装置」の一例である。 Specifically, as shown in FIG. 14, the wire rope inspection system 500 includes a wire rope inspection device 400 and an external device 900a. The external device 900a is an example of a "control device" in the claims.
 ワイヤロープ検査装置400は、電子回路部52を備える。また、電子回路部52は、制御部521を含む。また、外部装置900aは、制御部904を備える。 The wire rope inspection device 400 includes an electronic circuit unit 52. Further, the electronic circuit unit 52 includes a control unit 521. Further, the external device 900a includes a control unit 904.
 制御部521は、通信部26を介して、第1測定により取得した第1検知信号と、第2測定により取得した第2検知信号とを外部装置900aに送信する制御を行う。 The control unit 521 controls to transmit the first detection signal acquired by the first measurement and the second detection signal acquired by the second measurement to the external device 900a via the communication unit 26.
 制御部904は、通信部901を介して、第1検知信号と第2検知信号とを取得する。制御部904は、ワイヤロープ検査装置400における第1測定により取得した複数の第1検知信号と、ワイヤロープ検査装置400における第2測定により取得した複数の第2検知信号との差分に基づいて、上記第1~第3実施形態のいずれかの制御により、ワイヤロープW(図2参照)の状態を検知するように構成されている。なお、外部装置900aには、ワイヤロープ検査装置400から送信された検知信号を記憶する図示しない記憶部が設けられている。なお、外部装置900aの例としては、ワイヤロープ検査装置400とは別個のPCまたはタブレット等の端末であってもよいし、クラウド上のサーバであってもよい。 The control unit 904 acquires the first detection signal and the second detection signal via the communication unit 901. The control unit 904 is based on the difference between the plurality of first detection signals acquired by the first measurement of the wire rope inspection device 400 and the plurality of second detection signals acquired by the second measurement of the wire rope inspection device 400. It is configured to detect the state of the wire rope W (see FIG. 2) by the control of any one of the first to third embodiments. The external device 900a is provided with a storage unit (not shown) that stores the detection signal transmitted from the wire rope inspection device 400. As an example of the external device 900a, it may be a terminal such as a PC or a tablet separate from the wire rope inspection device 400, or it may be a server on the cloud.
 これにより、ワイヤロープWの損傷等に起因して現れた信号と、ワイヤロープWの揺れ等に起因して一時的に現れた信号との判別を容易に行うことができるので、ワイヤロープWの損傷を容易に検知することが可能なワイヤロープ検査システム500を提供することができる。 As a result, it is possible to easily distinguish between the signal appearing due to damage to the wire rope W and the signal temporarily appearing due to the shaking of the wire rope W, so that the wire rope W can be easily discriminated. It is possible to provide a wire rope inspection system 500 capable of easily detecting damage.
 また、上記第1~第3実施形態では、第1検知信号および第2検知信号に基づいた加算処理を行う例を示したが、本発明はこれに限られない。たとえば、第1検知信号および第2検知信号に基づいた乗算処理によって、ワイヤロープWの状態を検知してもよい。 Further, in the first to third embodiments described above, an example of performing addition processing based on the first detection signal and the second detection signal has been shown, but the present invention is not limited to this. For example, the state of the wire rope W may be detected by a multiplication process based on the first detection signal and the second detection signal.
 また、上記第1実施形態では、複数の第1検知信号同士の第1加算値(第1の値)と、複数の第2検知信号同士の第2加算値(第2の値)との差分に基づき、ワイヤロープWの状態を検知する例を示したが、本発明はこれに限られない。たとえば、複数の第1検知信号の平均値と、複数の第2検知信号の平均値との差分に基づき、ワイヤロープWの状態を検知してもよい。 Further, in the first embodiment, the difference between the first addition value (first value) between the plurality of first detection signals and the second addition value (second value) between the plurality of second detection signals. An example of detecting the state of the wire rope W has been shown based on the above, but the present invention is not limited to this. For example, the state of the wire rope W may be detected based on the difference between the average value of the plurality of first detection signals and the average value of the plurality of second detection signals.
 また、上記第2実施形態では、複数の第1検知信号と、複数の第2検知信号との全組み合わせにおける差分同士の第3加算値(第3の値)に対して信号処理(微分計算)を行う例を示したが、本発明はこれに限られない。たとえば、上記第3加算値の平均値に対して信号処理(微分計算)を行ってもよい。 Further, in the second embodiment, signal processing (differential calculation) is performed on the third addition value (third value) of the differences in all combinations of the plurality of first detection signals and the plurality of second detection signals. However, the present invention is not limited to this. For example, signal processing (differential calculation) may be performed on the average value of the third addition value.
 また、上記第2実施形態では、複数の第1検知信号と、複数の第2検知信号との全組み合わせにおける差分の微分値同士の第4加算値(第4の値)に基づいて、ワイヤロープWの状態を検知する例を示したが、本発明はこれに限られない。たとえば、上記第4加算値の平均値に基づいて、ワイヤロープWの状態を検知してもよい。 Further, in the second embodiment, the wire rope is based on the fourth addition value (fourth value) of the differential values of the differences in all the combinations of the plurality of first detection signals and the plurality of second detection signals. An example of detecting the state of W has been shown, but the present invention is not limited to this. For example, the state of the wire rope W may be detected based on the average value of the fourth addition value.
 また、上記第1~第3実施形態では、第1測定の回数と第2測定の回数とが等しい例を示したが、本発明はこれに限られない。第1測定の回数と第2測定の回数とが異なっていてもよい。 Further, in the above-mentioned first to third embodiments, an example in which the number of times of the first measurement and the number of times of the second measurement are equal is shown, but the present invention is not limited to this. The number of first measurements and the number of second measurements may be different.
 また、上記第1~第3実施形態では、第1検知信号が、損傷のない状態のワイヤロープの検知信号である例を示したが、本発明はこれに限られない。第1検知信号が、損傷のある状態のワイヤロープの検知信号であってもよい。 Further, in the first to third embodiments described above, an example is shown in which the first detection signal is a detection signal of a wire rope in an undamaged state, but the present invention is not limited to this. The first detection signal may be a detection signal of a damaged wire rope.
 また、上記第1~第3実施形態では、ワイヤロープWが複数設けられている例を示したが、本発明はこれに限られない。ワイヤロープWが単数であってもよい。 Further, in the first to third embodiments described above, an example in which a plurality of wire ropes W are provided is shown, but the present invention is not limited to this. The wire rope W may be singular.
 また、上記第1~第3実施形態では、ワイヤロープ検査装置100(200、300)が固定されている例を示したが、本発明はこれに限られない。固定されたワイヤロープWに沿ってワイヤロープ検査装置100(200、300)が移動してもよい。 Further, in the first to third embodiments described above, an example in which the wire rope inspection device 100 (200, 300) is fixed is shown, but the present invention is not limited to this. The wire rope inspection device 100 (200, 300) may move along the fixed wire rope W.
 また、上記第1~第3実施形態では、第1検知信号および第2検知信号をそれぞれ5つずつ取得する例を示したが、本発明はこれに限られない。第1検知信号および第2検知信号をそれぞれ、2つ~4つ、または6つ以上ずつ取得してもよい。 Further, in the first to third embodiments described above, an example of acquiring five first detection signals and five second detection signals is shown, but the present invention is not limited to this. The first detection signal and the second detection signal may be acquired by two to four, or six or more, respectively.
 また、上記第1~第3実施形態では、ワイヤロープ検査装置100(200、300)が巻上機E2の直下近傍に固定されている例を示したが、本発明はこれに限られない。ワイヤロープ検査装置100(200、300)の取り付け位置は、ワイヤロープWが通過する場所ならばどこでも良く、限定されない。 Further, in the first to third embodiments described above, an example is shown in which the wire rope inspection device 100 (200, 300) is fixed in the immediate vicinity of the hoisting machine E2, but the present invention is not limited to this. The mounting position of the wire rope inspection device 100 (200, 300) may be any place where the wire rope W passes, and is not limited.
 また、上記第1実施形態では、第1検知信号および第2検知信号が、エレベータEの往路のデータである例を示したが、本発明はこれに限られない。第1検知信号および第2検知信号の各々が、エレベータEの往路のデータおよび復路のデータの両方を含んでいてもよい。この場合のワイヤロープWの検査方法について、図15を用いて説明する。 Further, in the above-mentioned first embodiment, an example is shown in which the first detection signal and the second detection signal are the data of the outward route of the elevator E, but the present invention is not limited to this. Each of the first detection signal and the second detection signal may include both the outbound data and the inbound data of the elevator E. The inspection method of the wire rope W in this case will be described with reference to FIG.
 図15に示すように、ワイヤロープWの検査方法は、複数回のワイヤロープWの第1測定においてエレベータEの復路に対応する複数の第1検知信号を取得する工程(ステップS31)を備える。なお、図15では、便宜上、往路の第1検知信号、往路の第2検知信号、復路の第2検知信号、および、復路の第2検知信号の各々を、3つずつ図示しているが、個数はこれに限られない。 As shown in FIG. 15, the wire rope W inspection method includes a step (step S31) of acquiring a plurality of first detection signals corresponding to the return path of the elevator E in the first measurement of the wire rope W a plurality of times. In FIG. 15, for convenience, three each of the first detection signal on the outward route, the second detection signal on the outward route, the second detection signal on the return route, and the second detection signal on the return route are shown. The number is not limited to this.
 次に、ワイヤロープWの検査方法は、第1測定の後に、複数回のワイヤロープWの第2測定において、エレベータEの復路に対応する複数の第2検知信号を取得する工程(ステップS32)を備える。 Next, in the wire rope W inspection method, after the first measurement, in the second measurement of the wire rope W a plurality of times, a plurality of second detection signals corresponding to the return path of the elevator E are acquired (step S32). To be equipped with.
 次に、ワイヤロープWの検査方法は、複数の第1検知信号(復路)同士を位置合わせ制御を行って加算することにより第1加算値を取得する工程(ステップS33)を備える。 Next, the wire rope W inspection method includes a step (step S33) of acquiring the first added value by performing alignment control and adding the plurality of first detection signals (return paths) to each other.
 次に、ワイヤロープWの検査方法は、複数の第2検知信号(復路)同士を位置合わせ制御を行って加算することにより第2加算値を取得する工程(ステップS34)を備える。 Next, the wire rope W inspection method includes a step (step S34) of acquiring a second added value by performing alignment control and adding a plurality of second detection signals (return paths) to each other.
 次に、ワイヤロープWの検査方法は、ステップS33において算出された第1加算値と、ステップS34において算出された第2加算値との差分を、位置合わせ制御を行って算出する工程(ステップS35)を備える。 Next, the wire rope W inspection method is a step of calculating the difference between the first added value calculated in step S33 and the second added value calculated in step S34 by performing alignment control (step S35). ) Is provided.
 そして、ワイヤロープWの検査方法は、ステップS5において算出された差分と、ステップS35において取得された差分とを、加算する工程(ステップS36)を備える。この際、方向性が互いに反転している往路のデータと復路のデータとを加算するために、方向合わせの制御(いずれか一方の波形の横軸(X軸)を反転させる制御)を行って上記加算制御が行われる。具体的には、ステップS36の加算制御においては、方向合わせ制御および位置合わせ制御の両方が行われる。 The wire rope W inspection method includes a step (step S36) of adding the difference calculated in step S5 and the difference acquired in step S35. At this time, in order to add the data of the outward route and the data of the return route whose directions are reversed from each other, the direction alignment control (control to invert the horizontal axis (X axis) of either waveform) is performed. The above addition control is performed. Specifically, in the addition control in step S36, both the direction alignment control and the alignment control are performed.
 そして、ワイヤロープWの検査方法は、ステップS36において算出された値に対して信号処理(微分計算)を行うことにより、ワイヤロープWの状態検知を行う工程(ステップS37)を備える。 The wire rope W inspection method includes a step (step S37) of detecting the state of the wire rope W by performing signal processing (differential calculation) on the value calculated in step S36.
 また、上記第2および第3実施形態では、第1検知信号および第2検知信号が、エレベータEの往路のデータである例を示したが、本発明はこれに限られない。第1検知信号および第2検知信号の各々が、エレベータEの往路のデータおよび復路のデータの両方を含んでいてもよい。この場合のワイヤロープWの検査方法について、図16を用いて説明する。 Further, in the second and third embodiments described above, an example is shown in which the first detection signal and the second detection signal are the data of the outward route of the elevator E, but the present invention is not limited to this. Each of the first detection signal and the second detection signal may include both the outbound data and the inbound data of the elevator E. The inspection method of the wire rope W in this case will be described with reference to FIG.
 図16に示すように、ワイヤロープWの検査方法は、複数回のワイヤロープWの第1測定において、エレベータEの往路に対応する複数の第1検知信号と、エレベータEの復路に対応する複数の第1検知信号とを取得する工程(ステップS41)を備える。なお、図16では、便宜上、往路の第1検知信号、往路の第2検知信号、復路の第2検知信号、および、復路の第2検知信号の各々を、3つずつ図示しているが、個数はこれに限られない。 As shown in FIG. 16, in the method of inspecting the wire rope W, in the first measurement of the wire rope W a plurality of times, a plurality of first detection signals corresponding to the outward path of the elevator E and a plurality of plurality of first detection signals corresponding to the return path of the elevator E are performed. The step (step S41) of acquiring the first detection signal of the above is provided. Note that, for convenience, FIG. 16 shows three each of the first detection signal on the outward route, the second detection signal on the outward route, the second detection signal on the return route, and the second detection signal on the return route. The number is not limited to this.
 次に、ワイヤロープWの検査方法は、第1測定の後に、複数回のワイヤロープWの第2測定において、エレベータEの往路に対応する複数の第2検知信号と、エレベータEの復路に対応する複数の第2検知信号とを取得する工程(ステップS42)を備える。 Next, the wire rope W inspection method corresponds to a plurality of second detection signals corresponding to the outward path of the elevator E and the return path of the elevator E in the second measurement of the wire rope W a plurality of times after the first measurement. A step (step S42) of acquiring a plurality of second detection signals to be performed is provided.
 次に、ワイヤロープWの検査方法は、複数の第1検知信号と、複数の第2検知信号との全組み合わせにおける差分を算出する工程(ステップS43)を備える。この場合、往路の第1検知信号と復路の第2検知信号、および、復路の第1検知信号と往路の第2検知信号との差分を取得する際には、位置合わせ制御に加えて方向合わせ制御が行われる。 Next, the wire rope W inspection method includes a step (step S43) of calculating the difference in all combinations of the plurality of first detection signals and the plurality of second detection signals. In this case, when acquiring the difference between the first detection signal on the outward route and the second detection signal on the return route, and the difference between the first detection signal on the return route and the second detection signal on the outward route, the direction is aligned in addition to the alignment control. Control is done.
 次に、ワイヤロープWの検査方法は、ステップS43において算出された複数の差分のうちの任意のデータ同士が加算される。たとえば、第1検知信号(往路)と第2検知信号(往路)との差分同士が加算されてもよい。また、第1検知信号(復路)と第2検知信号(復路)との差分同士が加算されてもよい。また、第1検知信号(往路)と第2検知信号(復路)との差分同士が加算されてもよい。また、第1検知信号(復路)と第2検知信号(往路)との差分同士が加算されてもよい。また、ステップS43において算出された全ての差分同士が加算されてもよい。 Next, in the wire rope W inspection method, arbitrary data among the plurality of differences calculated in step S43 are added to each other. For example, the differences between the first detection signal (outward route) and the second detection signal (outward route) may be added to each other. Further, the difference between the first detection signal (return path) and the second detection signal (return path) may be added to each other. Further, the difference between the first detection signal (outward route) and the second detection signal (return route) may be added. Further, the difference between the first detection signal (return route) and the second detection signal (outward route) may be added to each other. Further, all the differences calculated in step S43 may be added.
 そして、ワイヤロープWの検査方法は、ステップS44において算出された第3加算値に基づき、ワイヤロープWの状態を検知する工程(ステップS45)を備える。具体的には、ステップS44において算出された第3加算値に対して信号処理(微分計算)が行われることにより、微分結果が出力される。なお、ステップS43において算出された差分に対して微分処理された値を用いて、ステップS44と同様の加算処理が行われてもよい。 Then, the method for inspecting the wire rope W includes a step (step S45) of detecting the state of the wire rope W based on the third addition value calculated in step S44. Specifically, the signal processing (differential calculation) is performed on the third added value calculated in step S44, so that the differential result is output. In addition, the same addition processing as in step S44 may be performed using the value differentiated with respect to the difference calculated in step S43.
[態様]
 上記した例示的な実施形態は、以下の態様の具体例であることが当業者により理解される。
[Aspect]
It will be understood by those skilled in the art that the above exemplary embodiments are specific examples of the following embodiments.
(項目1)
 ワイヤロープの磁界の変化を検知する検知コイルと、
 前記検知コイルにより取得された検知信号を受信する制御部と、を備え、
 前記制御部は、複数回の前記ワイヤロープの第1測定において前記検知コイルにより取得され、前記ワイヤロープの位置ごとの検知信号を表す複数の第1検知信号に基づく第1の値と、前記第1測定の後に行われる複数回の前記ワイヤロープの第2測定において前記検知コイルにより取得され、前記ワイヤロープの位置ごとの検知信号を表す複数の第2検知信号に基づく第2の値との差分に基づき、前記ワイヤロープの状態を検知するように構成されている、ワイヤロープ検査装置。
(Item 1)
A detection coil that detects changes in the magnetic field of the wire rope,
A control unit that receives a detection signal acquired by the detection coil is provided.
The control unit has a first value based on a plurality of first detection signals acquired by the detection coil in a plurality of first measurements of the wire rope and representing each detection signal for each position of the wire rope, and the first value. Difference from a second value based on a plurality of second detection signals acquired by the detection coil in a plurality of second measurements of the wire rope performed after one measurement and representing detection signals for each position of the wire rope. A wire rope inspection device configured to detect the state of the wire rope based on the above.
(項目2)
 前記制御部は、前記第1の値と前記第2の値との差分を算出する処理と、前記第1検知信号および第2検知信号に基づいた加算処理とに基づいて、前記ワイヤロープの状態を検知するように構成されている、項目1に記載のワイヤロープ検査装置。
(Item 2)
The control unit has a state of the wire rope based on a process of calculating the difference between the first value and the second value and an addition process based on the first detection signal and the second detection signal. The wire rope inspection apparatus according to item 1, which is configured to detect.
(項目3)
 前記制御部は、前記複数の第1検知信号同士を加算することに基づいて得られた前記第1の値と、前記複数の第2検知信号同士を加算することに基づいて得られた前記第2の値との差分に基づいて、前記ワイヤロープの状態を検知するように構成されている、項目2に記載のワイヤロープ検査装置。
(Item 3)
The control unit has the first value obtained by adding the plurality of first detection signals to each other and the first value obtained by adding the plurality of second detection signals to each other. The wire rope inspection device according to item 2, which is configured to detect the state of the wire rope based on the difference from the value of 2.
(項目4)
 前記制御部は、前記複数の第1検知信号と、前記複数の第2検知信号との全組み合わせにおける差分同士を加算することに基づいて得られた第3の値に基づいて、前記ワイヤロープの状態を検知するように構成されている、項目2に記載のワイヤロープ検査装置。
(Item 4)
The control unit of the wire rope is based on a third value obtained by adding differences in all combinations of the plurality of first detection signals and the plurality of second detection signals. The wire rope inspection apparatus according to item 2, which is configured to detect a condition.
(項目5)
 前記制御部は、前記複数の第1検知信号と、前記複数の第2検知信号との全組み合わせにおける差分の微分値同士を加算することに基づいて得られた第4の値に基づいて、前記ワイヤロープの状態を検知するように構成されている、項目2に記載のワイヤロープ検査装置。
(Item 5)
The control unit is based on a fourth value obtained by adding the differential values of the differences in all the combinations of the plurality of first detection signals and the plurality of second detection signals. The wire rope inspection apparatus according to item 2, which is configured to detect the state of the wire rope.
(項目6)
 前記制御部は、前記第1測定と同じ回数の前記複数回の第2測定において取得された前記複数の第2検知信号に基づいて、前記ワイヤロープの状態を検知するように構成されている、項目1~5のいずれか1項に記載のワイヤロープ検査装置。
(Item 6)
The control unit is configured to detect the state of the wire rope based on the plurality of second detection signals acquired in the plurality of second measurements of the same number of times as the first measurement. The wire rope inspection apparatus according to any one of items 1 to 5.
(項目7)
 前記第1検知信号は、損傷がない状態の前記ワイヤロープにおいて取得された検知信号である、項目1~6のいずれか1項に記載のワイヤロープ検査装置。
(Item 7)
The wire rope inspection device according to any one of items 1 to 6, wherein the first detection signal is a detection signal acquired in the wire rope in a undamaged state.
(項目8)
 前記ワイヤロープは、複数設けられており、
 前記検知コイルは、前記複数のワイヤロープの磁気特性を一括して検知するように構成されている、項目1~7のいずれか1項に記載のワイヤロープ検査装置。
(Item 8)
A plurality of the wire ropes are provided, and the wire ropes are provided.
The wire rope inspection device according to any one of items 1 to 7, wherein the detection coil is configured to collectively detect the magnetic characteristics of the plurality of wire ropes.
(項目9)
 ワイヤロープの磁界の変化を検知する検知コイルを含むワイヤロープ検査装置と、
 前記検知コイルにより取得された検知信号を受信する制御装置と、を備え、
 前記制御装置は、複数回の前記ワイヤロープの第1測定において前記検知コイルにより取得され、前記ワイヤロープの位置ごとの検知信号を表す複数の第1検知信号に基づく第1の値と、前記第1測定の後に行われる複数回の前記ワイヤロープの第2測定において前記検知コイルにより取得され、前記ワイヤロープの位置ごとの検知信号を表す複数の第2検知信号に基づく第2の値との差分に基づき、前記ワイヤロープの状態を検知するように構成されている、ワイヤロープ検査システム。
(Item 9)
A wire rope inspection device that includes a detection coil that detects changes in the magnetic field of the wire rope,
A control device for receiving a detection signal acquired by the detection coil is provided.
The control device has a first value based on a plurality of first detection signals acquired by the detection coil in a plurality of first measurements of the wire rope and representing each detection signal for each position of the wire rope, and the first value. Difference from a second value based on a plurality of second detection signals acquired by the detection coil in a plurality of second measurements of the wire rope performed after one measurement and representing detection signals for each position of the wire rope. A wire rope inspection system configured to detect the condition of the wire rope based on the above.
(項目10)
 ワイヤロープの磁界の変化を検知する検知コイルにより、複数回の前記ワイヤロープの第1測定において、前記ワイヤロープの位置ごとの検知信号を表す複数の第1検知信号に基づく第1の値を取得する工程と、
 前記第1測定の後に、複数回の前記ワイヤロープの第2測定において、前記検知コイルにより、前記ワイヤロープの位置ごとの検知信号を表す複数の第2検知信号に基づく第2の値を取得する工程と、
 前記第1の値と、前記第2の値との差分に基づき、前記ワイヤロープの状態を検知する工程と、を備える、ワイヤロープ検査方法。
(Item 10)
By the detection coil that detects the change in the magnetic field of the wire rope, in the first measurement of the wire rope a plurality of times, the first value based on the plurality of first detection signals representing the detection signals for each position of the wire rope is acquired. And the process to do
After the first measurement, in the second measurement of the wire rope a plurality of times, the detection coil acquires a second value based on a plurality of second detection signals representing the detection signals for each position of the wire rope. Process and
A wire rope inspection method comprising a step of detecting a state of the wire rope based on a difference between the first value and the second value.
 10 差動コイル(検知コイル)
 21、321、421 制御部
 100、200、300,400 ワイヤロープ検査装置
 900a 外部装置(制御装置)
 500 ワイヤロープ検査システム
 W ワイヤロープ
10 Differential coil (detection coil)
21,321,421 Control unit 100, 200, 300, 400 Wire rope inspection device 900a External device (control device)
500 Wire Rope Inspection System W Wire Rope

Claims (10)

  1.  ワイヤロープの磁界の変化を検知する検知コイルと、
     前記検知コイルにより取得された検知信号を受信する制御部と、を備え、
     前記制御部は、複数回の前記ワイヤロープの第1測定において前記検知コイルにより取得され、前記ワイヤロープの位置ごとの検知信号を表す複数の第1検知信号に基づく第1の値と、前記第1測定の後に行われる複数回の前記ワイヤロープの第2測定において前記検知コイルにより取得され、前記ワイヤロープの位置ごとの検知信号を表す複数の第2検知信号に基づく第2の値との差分に基づき、前記ワイヤロープの状態を検知するように構成されている、ワイヤロープ検査装置。
    A detection coil that detects changes in the magnetic field of the wire rope,
    A control unit that receives a detection signal acquired by the detection coil is provided.
    The control unit has a first value based on a plurality of first detection signals acquired by the detection coil in a plurality of first measurements of the wire rope and representing each detection signal for each position of the wire rope, and the first value. Difference from a second value based on a plurality of second detection signals acquired by the detection coil in a plurality of second measurements of the wire rope performed after one measurement and representing detection signals for each position of the wire rope. A wire rope inspection device configured to detect the state of the wire rope based on the above.
  2.  前記制御部は、前記第1の値と前記第2の値との差分を算出する処理と、前記第1検知信号および第2検知信号に基づいた加算処理とに基づいて、前記ワイヤロープの状態を検知するように構成されている、請求項1に記載のワイヤロープ検査装置。 The control unit states the wire rope based on a process of calculating the difference between the first value and the second value and an addition process based on the first detection signal and the second detection signal. The wire rope inspection apparatus according to claim 1, which is configured to detect.
  3.  前記制御部は、前記複数の第1検知信号同士を加算することに基づいて得られた前記第1の値と、前記複数の第2検知信号同士を加算することに基づいて得られた前記第2の値との差分に基づいて、前記ワイヤロープの状態を検知するように構成されている、請求項2に記載のワイヤロープ検査装置。 The control unit has the first value obtained by adding the plurality of first detection signals to each other and the first value obtained by adding the plurality of second detection signals to each other. The wire rope inspection device according to claim 2, which is configured to detect the state of the wire rope based on the difference from the value of 2.
  4.  前記制御部は、前記複数の第1検知信号と、前記複数の第2検知信号との全組み合わせにおける差分同士を加算することに基づいて得られた第3の値に基づいて、前記ワイヤロープの状態を検知するように構成されている、請求項2に記載のワイヤロープ検査装置。 The control unit of the wire rope is based on a third value obtained by adding differences in all combinations of the plurality of first detection signals and the plurality of second detection signals. The wire rope inspection apparatus according to claim 2, which is configured to detect a condition.
  5.  前記制御部は、前記複数の第1検知信号と、前記複数の第2検知信号との全組み合わせにおける差分の微分値同士を加算することに基づいて得られた第4の値に基づいて、前記ワイヤロープの状態を検知するように構成されている、請求項2に記載のワイヤロープ検査装置。 The control unit is based on a fourth value obtained by adding the differential values of the differences in all the combinations of the plurality of first detection signals and the plurality of second detection signals. The wire rope inspection device according to claim 2, which is configured to detect the state of the wire rope.
  6.  前記制御部は、前記第1測定と同じ回数の前記複数回の第2測定において取得された前記複数の第2検知信号に基づいて、前記ワイヤロープの状態を検知するように構成されている、請求項1に記載のワイヤロープ検査装置。 The control unit is configured to detect the state of the wire rope based on the plurality of second detection signals acquired in the plurality of second measurements of the same number of times as the first measurement. The wire rope inspection device according to claim 1.
  7.  前記第1検知信号は、損傷がない状態の前記ワイヤロープにおいて取得された検知信号である、請求項1に記載のワイヤロープ検査装置。 The wire rope inspection device according to claim 1, wherein the first detection signal is a detection signal acquired in the wire rope in a undamaged state.
  8.  前記ワイヤロープは、複数設けられており、
     前記検知コイルは、前記複数のワイヤロープの磁気特性を一括して検知するように構成されている、請求項1に記載のワイヤロープ検査装置。
    A plurality of the wire ropes are provided, and the wire ropes are provided.
    The wire rope inspection device according to claim 1, wherein the detection coil is configured to collectively detect the magnetic characteristics of the plurality of wire ropes.
  9.  ワイヤロープの磁界の変化を検知する検知コイルを含むワイヤロープ検査装置と、
     前記検知コイルにより取得された検知信号を受信する制御装置と、を備え、
     前記制御装置は、複数回の前記ワイヤロープの第1測定において前記検知コイルにより取得され、前記ワイヤロープの位置ごとの検知信号を表す複数の第1検知信号に基づく第1の値と、前記第1測定の後に行われる複数回の前記ワイヤロープの第2測定において前記検知コイルにより取得され、前記ワイヤロープの位置ごとの検知信号を表す複数の第2検知信号に基づく第2の値との差分に基づき、前記ワイヤロープの状態を検知するように構成されている、ワイヤロープ検査システム。
    A wire rope inspection device that includes a detection coil that detects changes in the magnetic field of the wire rope,
    A control device for receiving a detection signal acquired by the detection coil is provided.
    The control device has a first value based on a plurality of first detection signals acquired by the detection coil in a plurality of first measurements of the wire rope and representing each detection signal for each position of the wire rope, and the first value. Difference from a second value based on a plurality of second detection signals acquired by the detection coil in a plurality of second measurements of the wire rope performed after one measurement and representing detection signals for each position of the wire rope. A wire rope inspection system configured to detect the condition of the wire rope based on the above.
  10.  ワイヤロープの磁界の変化を検知する検知コイルにより、複数回の前記ワイヤロープの第1測定において、前記ワイヤロープの位置ごとの検知信号を表す複数の第1検知信号に基づく第1の値を取得する工程と、
     前記第1測定の後に、複数回の前記ワイヤロープの第2測定において、前記検知コイルにより、前記ワイヤロープの位置ごとの検知信号を表す複数の第2検知信号に基づく第2の値を取得する工程と、
     前記第1の値と前記第2の値との差分に基づき、前記ワイヤロープの状態を検知する工程と、を備える、ワイヤロープ検査方法。
    By the detection coil that detects the change in the magnetic field of the wire rope, in the first measurement of the wire rope a plurality of times, the first value based on the plurality of first detection signals representing the detection signals for each position of the wire rope is acquired. And the process to do
    After the first measurement, in the second measurement of the wire rope a plurality of times, the detection coil acquires a second value based on a plurality of second detection signals representing the detection signals for each position of the wire rope. Process and
    A wire rope inspection method comprising a step of detecting a state of the wire rope based on a difference between the first value and the second value.
PCT/JP2020/040302 2020-01-28 2020-10-27 Wire rope inspection device, wire rope inspection system, and wire rope inspection method WO2021152939A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021574465A JP7318749B2 (en) 2020-01-28 2020-10-27 WIRE ROPE INSPECTION DEVICE, WIRE ROPE INSPECTION SYSTEM, AND WIRE ROPE INSPECTION METHOD

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020011981 2020-01-28
JP2020-011981 2020-01-28

Publications (1)

Publication Number Publication Date
WO2021152939A1 true WO2021152939A1 (en) 2021-08-05

Family

ID=77078147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/040302 WO2021152939A1 (en) 2020-01-28 2020-10-27 Wire rope inspection device, wire rope inspection system, and wire rope inspection method

Country Status (2)

Country Link
JP (1) JP7318749B2 (en)
WO (1) WO2021152939A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220050152A1 (en) * 2020-08-17 2022-02-17 Shimadzu Corporation Magnetic Material Inspection Device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133731A (en) * 1996-11-07 2000-10-17 Case Technologies Ltd. Method and apparatus for the on-line measurement of the strength of metal cables
JP2001174439A (en) * 1999-12-21 2001-06-29 Fujitec Kk Flaw detector for wire rope
JP2002116187A (en) * 2000-10-06 2002-04-19 Mitsui Miike Mach Co Ltd Magnaflux flaw detector for steel cable and analyzing method of magnetically sensitive element
WO2015166533A1 (en) * 2014-04-28 2015-11-05 東京製綱株式会社 Wire rope inspection device
JP2017075971A (en) * 2012-10-30 2017-04-20 東京製綱株式会社 Damage determination device of wire rope, method and program
WO2019150539A1 (en) * 2018-02-01 2019-08-08 株式会社島津製作所 Wire rope inspection device, wire rope inspection system, and wire rope inspection method
JP2019138703A (en) * 2018-02-07 2019-08-22 株式会社島津製作所 Magnetic body inspection device
JP2019168253A (en) * 2018-03-22 2019-10-03 株式会社島津製作所 Magnetic body inspection system, magnetic body inspection device and magnetic body inspection method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6133731A (en) * 1996-11-07 2000-10-17 Case Technologies Ltd. Method and apparatus for the on-line measurement of the strength of metal cables
JP2001174439A (en) * 1999-12-21 2001-06-29 Fujitec Kk Flaw detector for wire rope
JP2002116187A (en) * 2000-10-06 2002-04-19 Mitsui Miike Mach Co Ltd Magnaflux flaw detector for steel cable and analyzing method of magnetically sensitive element
JP2017075971A (en) * 2012-10-30 2017-04-20 東京製綱株式会社 Damage determination device of wire rope, method and program
WO2015166533A1 (en) * 2014-04-28 2015-11-05 東京製綱株式会社 Wire rope inspection device
WO2019150539A1 (en) * 2018-02-01 2019-08-08 株式会社島津製作所 Wire rope inspection device, wire rope inspection system, and wire rope inspection method
JP2019138703A (en) * 2018-02-07 2019-08-22 株式会社島津製作所 Magnetic body inspection device
JP2019168253A (en) * 2018-03-22 2019-10-03 株式会社島津製作所 Magnetic body inspection system, magnetic body inspection device and magnetic body inspection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220050152A1 (en) * 2020-08-17 2022-02-17 Shimadzu Corporation Magnetic Material Inspection Device
US11493574B2 (en) * 2020-08-17 2022-11-08 Shimadzu Corporation Magnetic material inspection device

Also Published As

Publication number Publication date
JPWO2021152939A1 (en) 2021-08-05
JP7318749B2 (en) 2023-08-01

Similar Documents

Publication Publication Date Title
JP6879389B2 (en) Wire rope inspection equipment, wire rope inspection system and wire rope inspection method
WO2020079747A1 (en) Magnetic body management system and magnetic body management method
EP3879263B1 (en) Magnetic-body inspection device and magnetic-body inspection system
JP7187855B2 (en) Magnetic material inspection system, magnetic material inspection apparatus, and magnetic material inspection method
JP7172135B2 (en) Magnetic inspection device
JP7107438B2 (en) WIRE ROPE INSPECTION SYSTEM AND WIRE ROPE INSPECTION METHOD
JP6594065B2 (en) Rope inspection device and rope inspection system
WO2021152939A1 (en) Wire rope inspection device, wire rope inspection system, and wire rope inspection method
JP7081446B2 (en) Magnetic material inspection device and magnetic material inspection system
JP7027927B2 (en) Magnetic material inspection equipment
JP7371791B2 (en) Wire rope inspection equipment and wire rope inspection system
US11493574B2 (en) Magnetic material inspection device
WO2020246130A1 (en) Wire rope examination system and wire rope examination method
JP7200697B2 (en) WIRE ROPE INSPECTION DEVICE AND WIRE ROPE INSPECTION METHOD
JP7276233B2 (en) Elevator wire rope inspection device, elevator wire rope inspection system, and elevator wire rope inspection method
JP7271866B2 (en) Magnetic inspection system and program
JP7276238B2 (en) Wire rope inspection device and wire rope inspection system
JP7452316B2 (en) Wire rope inspection device, wire rope inspection system and wire rope inspection method
JP7443960B2 (en) Wire rope inspection device, wire rope inspection system, and wire rope inspection method
JP2023137124A (en) wire rope inspection system
JP2023137140A (en) Wire rope inspection device and wire rope inspection method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20917113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021574465

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20917113

Country of ref document: EP

Kind code of ref document: A1