WO2021152888A1 - Noise filter, noise filter device, and power conversion device - Google Patents

Noise filter, noise filter device, and power conversion device Download PDF

Info

Publication number
WO2021152888A1
WO2021152888A1 PCT/JP2020/031205 JP2020031205W WO2021152888A1 WO 2021152888 A1 WO2021152888 A1 WO 2021152888A1 JP 2020031205 W JP2020031205 W JP 2020031205W WO 2021152888 A1 WO2021152888 A1 WO 2021152888A1
Authority
WO
WIPO (PCT)
Prior art keywords
bus bar
noise filter
magnetic core
noise
outer surfaces
Prior art date
Application number
PCT/JP2020/031205
Other languages
French (fr)
Japanese (ja)
Inventor
谷口 斉
船戸 裕樹
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to DE112020005719.4T priority Critical patent/DE112020005719T5/en
Publication of WO2021152888A1 publication Critical patent/WO2021152888A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/02Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for suppression of electromagnetic interference
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F17/062Toroidal core with turns of coil around it
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F37/00Fixed inductances not covered by group H01F17/00
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/22Auxiliary parts of casings not covered by groups H02K5/06-H02K5/20, e.g. shaped to form connection boxes or terminal boxes
    • H02K5/225Terminal boxes or connection arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F17/06Fixed inductances of the signal type  with magnetic core with core substantially closed in itself, e.g. toroid
    • H01F2017/065Core mounted around conductor to absorb noise, e.g. EMI filter

Definitions

  • the present invention relates to a noise filter, a noise filter device, and a power conversion device.
  • the motor and power supply are electrically connected via the bus bar.
  • the current flowing through the bus bar is a relatively large current, and the magnetic field generated when the current flows through the bus bar is a source of noise (electromagnetic noise), so it is necessary to prevent adverse effects on surrounding electronic devices. be.
  • Patent Document 1 describes a magnetic core having a magnetic material capable of shielding electromagnetic noise generated by a current flowing through a bus bar and having a through hole in the center, and a through hole of the magnetic core.
  • a bus bar unit consisting of three bus bars that are inserted side by side is disclosed.
  • the magnetic core In the conventional technology, in order to increase the filter effect and suppress noise, the magnetic core must be enlarged, and the material price of the magnetic core is high, which causes a big cost increase. there were.
  • the noise filter according to the aspect of the present invention includes a magnetic core having a magnetic core through hole and a magnetic core outer surface, a bus bar penetration portion arranged in the magnetic core through hole, and the magnetic core outer surface. It is preferable to include a plurality of bus bars having an outer surface portion of the bus bars to be arranged.
  • FIG. 1 is a perspective view of the noise filter according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the noise filter according to the first embodiment.
  • FIG. 3 is a perspective view showing an example of the noise filter in Comparative Example 1.
  • FIG. 4 is a cross-sectional view showing Comparative Example 2.
  • FIG. 5 is a partial cross-sectional view of the noise filter according to the first embodiment.
  • FIG. 6 is a diagram illustrating a calculation example by electromagnetic field simulation.
  • FIG. 7 is a cross-sectional view of the noise filter according to the modified example.
  • FIG. 8 is a perspective view of the noise filter according to the second embodiment.
  • FIG. 9 is a cross-sectional view of the noise filter according to the second embodiment.
  • FIG. 10 is a configuration diagram of the noise filter device according to the third embodiment.
  • FIG. 11 is another configuration diagram of the noise filter device according to the third embodiment.
  • FIG. 12 is a configuration diagram of the power conversion device according to the fourth embodiment.
  • FIG. 1 is a perspective view of the noise filter 100 according to the present embodiment.
  • the noise filter 100 includes a magnetic core 200 and three bus bars 300, 400, and 500.
  • the magnetic core 200 has a rectangular parallelepiped shape having a through hole 600. Three bus bars 300, 400, and 500 penetrate through the through hole 600.
  • examples in which U-phase, V-phase, and W-phase bus bars 300, 400, and 500 are arranged corresponding to three-phase alternating current are shown, but the present invention is not limited to this example, and two or more of them are not limited to this example. Multiple bus bars may be used.
  • the magnetic core 200 will be described with an example of a rectangular parallelepiped shape, the magnetic core 200 may have a shape in which R is added to the four corners of the rectangular parallelepiped shape, or may have another shape.
  • FIG. 2 is a cross-sectional view of the noise filter 100 according to the present embodiment, and is a cross-sectional view taken along the line AA of FIG.
  • the U-phase bus bar 300 goes around the outer surface of the first core 200a, which is one side of the magnetic core 200, penetrates the through hole 600 of the magnetic core 200, and penetrates the through hole 600 of the magnetic core 200. It wraps around the outer surface of the second core 200b, which is the other side. That is, the U-phase bus bar 300 has six bus bar outer surface portions 301, 302, 303, 304, 305, 306, and the six bus bar outer surface portions 301, 302, 303, 304, 305, 306 have. It is arranged along the outer surfaces 201, 202, 203, 204, 205, and 206 of the magnetic core at six locations.
  • the bus bar penetration portion 307 of the U-phase bus bar 300 is arranged in the through hole 600 of the magnetic core 200.
  • the U-phase bass bar 300 is welded at the joint 308.
  • the V-phase bus bar 400 and the W-phase bus bar 500 have the same structure.
  • FIG. 3 is a perspective view showing an example of the noise filter 100'in Comparative Example 1.
  • the noise filter 100' in Comparative Example 1, as shown in FIG. 3, the noise filter 100'includes a magnetic core 200 and three bus bars 300', 400', and 500'.
  • the magnetic core 200 has a rectangular parallelepiped shape having a through hole 600 similar to that of the present embodiment.
  • the three bus bars 300', 400', and 500' of the U phase, the V phase, and the W phase are different from the present embodiment in that they penetrate the through hole 600 in a straight line.
  • the inductance (common mode inductance) of the bus bar penetration portions 307', 407', and 507' in the bus bars 300', 400', and 500' is 815.9 nH.
  • the magnetic core 200 has the effect of increasing the magnetic flux generated by the current flowing through the bass bars 300', 400', and 500'and increasing the filter effect by increasing the inductance components of the bass bars 300', 400', and 500'.
  • the increase in the inductance component is inversely proportional to the reluctance felt by the magnetic field generated by the current penetrating the magnetic core 200. Therefore, increasing the size of the magnetic core 200 is effective in increasing the inductance component, but the material price of the magnetic core 200 is high, which causes a large cost increase.
  • FIG. 4 is a cross-sectional view showing Comparative Example 2.
  • the magnetic core 200 shown in FIG. 3 is not arranged, and only the bus bars 300', 400', and 500'are shown.
  • a magnetic path 800 of magnetic flux is generated around the bus bar 300'due to the current flowing through the bus bar 300'. Since the magnetic path 800 of the magnetic flux generated by the current flowing through the bus bar 300'passes through the air over the entire circumference, there is no effect of increasing the inductance.
  • the inductance (common mode inductance) of the bus bar 300' is 34.2 nH.
  • FIG. 5 is a partial cross-sectional view of the noise filter 100 according to the present embodiment, and is a cross-sectional view taken along the line BB of FIG.
  • the magnetic path 900 of the magnetic flux generated by the current flowing through the outer surface portion 302 of the bus bar includes the magnetic path 900a passing through the magnetic core 200a and the magnetic path 900b passing through the air. Since the magnetic resistance of the magnetic path 900a passing through the magnetic core 200a is significantly smaller than the magnetic resistance of the magnetic path 900b of the portion passing through the air, the magnetic resistance felt by the magnetic flux generated by the current flowing through the outer surface portion 302 of the bus bar is significantly large.
  • the outer surface portion 302 of the bus bar can obtain a larger inductance than the bus bar of Comparative Example 2 in which the magnetic core 200 is not arranged. It is desirable that the distance D between the outer surface portion 302 of the bus bar and the magnetic core 200a be as close as possible in consideration of the insulation distance required for safety and the manufacturing tolerance.
  • the magnetic path of the magnetic flux generated by the current flowing through the bus bar penetrating portion 307 passes through the magnetic cores 200a and 200b, and the inductance of the bus bar penetrating portion 307 is significantly increased.
  • FIG. 6 is a diagram illustrating a calculation example by electromagnetic field simulation.
  • the inductance of the bus bar 300a when the bus bar 300a is arranged on the outer surface 202 of the magnetic body core of the magnetic body core 200 (corresponding to the present embodiment) was calculated.
  • the inductance of the bus bar 300b was calculated when the bus bar 300b was arranged sufficiently away from the magnetic core 200 so as to correspond to Comparative Example 2.
  • the cross sections of the bus bars 300a and 300b are 15 ⁇ 5 mm, and the thickness T of the magnetic core 200 is 20 mm.
  • the inductance per unit length of the bus bar outer surface portion 302 of the bus bar 300a was 1.38 nH / mm.
  • the inductance per unit length of the bus bar 300b was 0.58 nH / mm.
  • the inductance when the bus bar 300a is placed on the magnetic core outer surface 202 of the magnetic core 200 is 2.4 times that when the bus bar 300b is placed sufficiently away from the magnetic core 200, and is the outer surface of the magnetic core. The effect of increasing the inductance by 202 can be confirmed.
  • the result of calculating the common mode inductance by electromagnetic field simulation is 992.14 nH.
  • the common mode inductance in Comparative Example 1 shown in FIG. 3 is 815.9 nH.
  • the common mode inductance is increased by 22%.
  • Increasing the common mode inductance increases the noise reduction effect. Since the unit price of the metal used for the Basba 300, 400, and 500 is sufficiently cheaper than the material unit price of the magnetic core 200, the Basba 300, 400, and 500 are the magnetic core 200 as shown in FIGS. 1 and 2. The cost increase due to the wraparound arrangement on the outer surface of the is acceptable.
  • the unit price of the metal used in the bus bars 300, 400, and 500 is sufficiently cheaper than the material unit price of the magnetic core, so that the size of the magnetic core 200 is increased. It can also reduce costs by 22%.
  • each of the bus bars 300, 400, and 500 has six bus bar outer surface portions 301, 302, 303, 304, 305, and 306, and six bus bar outer surface portions 301, 302, 303. , 304, 305, 306 are arranged along the magnetic core outer surfaces 201, 202, 203, 204, 205, 206 of the magnetic core core outer surfaces 201, 202, 203, 204, 205, 206. Since all can be used, the effect of increasing inductance is large.
  • the noise filter 100 capable of increasing the effect of increasing the inductance by the magnetic core 200 and reducing the conduction noise.
  • a noise filter 100 capable of reducing the size of the magnetic core 200 and reducing the cost without changing the effect of increasing the inductance of the magnetic core 200.
  • FIG. 7 is a cross-sectional view of the noise filter 100 according to the modified example.
  • the same parts as those in FIG. 2 are designated by the same reference numerals.
  • the U-phase bus bar 300 wraps around two outer surfaces of the first core 200a, which is one side of the magnetic core 200, penetrates the through hole 600 of the magnetic core 200, and penetrates the magnetic material. It wraps around two outer surfaces of the second core 200b, which is the other side of the core 200. That is, the U-phase bus bar 300 has four bus bar outer surface portions 302, 303, 304, 305, and the four bus bar outer surface portions 302, 303, 304, 305 have four magnetic core outer surfaces. It is arranged along 202, 203, 204, 205. Then, the bus bar penetration portion 307 of the U-phase bus bar 300 is arranged in the through hole 600 of the magnetic core 200. The U-phase bass bar 300 is welded at the joint 308. The V-phase bus bar 400 and the W-phase bus bar 500 have the same structure.
  • each bus bar 300, 400, 500 has four bus bar outer surface portions 302, 303, 304, 305, and the four bus bar outer surface portions 302, 303, 304, 305 are four. It is arranged along the outer surfaces 202, 203, 204, 205 of the magnetic core at the location. Therefore, since the outer surfaces 202, 203, 204, and 205 of the magnetic core can be effectively used, the effect of increasing the inductance is large.
  • FIG. 8 is a perspective view of the noise filter 1100 according to the present embodiment.
  • the noise filter 1100 includes a magnetic core 1200 and two bus bars 1300 and 1400.
  • the magnetic core 1200 has a cylindrical shape having a through hole 600.
  • Two bus bars 1300 and 1400 penetrate through the through hole 600.
  • the anode and cathode bus bars 1300 and 1400 are shown as an example corresponding to direct current, but the present invention is not limited to this example, and a plurality of bus bars of two or more may be used.
  • the magnetic core 1200 will be described with an example of a cylindrical shape, it may have a rectangular parallelepiped shape or another shape.
  • FIG. 9 is a cross-sectional view of the noise filter 1100 according to the present embodiment, and is a cross-sectional view taken along the line CC of FIG.
  • the magnetic core 1200 has a magnetic core through surface 1201 and a magnetic core outer surface 1202 and 1203 perpendicular to the through hole 600 of the magnetic core 1200.
  • the anode bus bar 1300 is arranged along one magnetic core outer surface 1202 of the magnetic core 1200, penetrates the through hole 600 of the magnetic core 1200, and is along the other magnetic core outer surface 1203 of the magnetic core 1200. Is placed. That is, the anode bus bar 1300 has two bus bar outer surface portions 1302 and 1303 and one bus bar penetration portion 1301. The two bus bar outer surfaces 1302 and 1303 are arranged along the two magnetic core outer surfaces 1202 and 1203 perpendicular to the magnetic core through hole 600. The one bus bar penetration 1301 is arranged along the one magnetic core penetration surface 1201. The anode bus bar 1300 is welded at the joint 308.
  • the cathode bus bar 1400 is arranged along one magnetic core outer surface 1202 of the magnetic core 1200, penetrates the through hole 600 of the magnetic core 1200, and is along the other magnetic core outer surface 1203 of the magnetic core 1200. Is placed. That is, the cathode bus bar 1400 has two bus bar outer surface portions 1402 and 1403 and one bus bar penetration portion 1401. The two bus bar outer surface portions 1402 and 1403 are arranged along the two magnetic core outer surfaces 1202 and 1203 perpendicular to the magnetic core through hole 600. The one bus bar penetration 1401 is arranged along the one magnetic core penetration surface 1201. The cathode bus bar 1400 is welded at the junction 308.
  • the two bus bar outer surface portions 1302, 1303, 1402 and 1403 are arranged along the two magnetic core core outer surfaces 1202 and 1203. Therefore, as compared with Comparative Example 1 shown in FIG. 3, even when a magnetic core 1200 of the same size and the same material is used, the effect of increasing the inductance is large.
  • the bus bars 1300 and 1400 along the magnetic core outer surfaces 1202 and 1203 perpendicular to the through holes 600 of the magnetic core 1200, the magnetic core outer surfaces 1202 and 1203 perpendicular to the through holes 600 of the magnetic core 1200. Can be used effectively.
  • FIG. 10 is a configuration diagram of the noise filter device 1000.
  • the noise filter device 1000 has a configuration incorporating the noise filter 1100 described in the second embodiment.
  • the noise filter device 1000 includes anode bus bars 1006 and 1007 and cathode bus bars 1008 and 1009. Then, the first capacitor 1010, which is an X capacitor, is connected between the anode bus bar 1006 and the cathode bus bar 1008. Further, a second capacitor 1011 which is a Y capacitor is provided between the anode bus bar 1007 and the ground and / or the metal housing, and a third capacitor 1012 which is a Y capacitor is provided between the cathode bus bar 1009 and the ground and / or the metal housing. Is connected.
  • the first capacitor 1010 which is an X capacitor
  • One end of the anode bus bar 1300 (see FIG. 9) of the noise filter 1100 is connected to the anode bus bar 1006 via the terminal 1304, and the other end is connected to the anode bus bar 1007 via the terminal 1305.
  • One end of the cathode bus bar 1400 (see FIG. 9) of the noise filter 1100 is connected to the cathode bus bar 1008 via the terminal 1404, and the other end is connected to the cathode bus bar 1009 via the terminal 1405.
  • Terminals 1304, 1305, 1404, 1405 may be integrated with a bus bar connected to them.
  • the anode buses 1006 and 1007 are provided with terminals 1002 and 1003 on the opposite side of the terminals 1304 and 1305 to which the noise filter 1100 is connected.
  • the cathode bus bars 1008 and 1009 are provided with terminals 1004 and 1005 on the opposite side of the terminals 1404 and 1405 to which the noise filter 1100 is connected.
  • FIG. 11 is another configuration diagram of the noise filter device 1000.
  • the noise filter device 1000 has a configuration in which the noise filter 1100 described in the second embodiment is incorporated, and the connection position of the first capacitor 1010 is different from the example shown in FIG.
  • the first capacitor 1010 which is an X capacitor, is connected between the anode bus bar 1007 and the cathode bus bar 1009.
  • Other configurations are the same as those in FIG. 10, and the same parts are designated by the same reference numerals and the description thereof will be omitted.
  • the first capacitor 1010 causes a voltage change (noise) superimposed on the DC voltage between the anode bus bar 1006 and the cathode bus bar 1008 or between the anode bus bar 1007 and the cathode bus bar 1009. Smooth.
  • the first capacitor 1010 is also commonly referred to as an X capacitor.
  • the capacitance of the first capacitor 1010 is not particularly limited, but may be determined according to the frequency band to be suppressed, and a capacitive element having a capacitance of several nanofarads to several microfarads is mainly used. If necessary, a plurality of or a plurality of capacities may be combined.
  • the second capacitor 1011 smoothes the voltage change (noise) superimposed between the anode bus bar 1007 and the ground and / or the metal housing.
  • the third capacitor 1012 smoothes the voltage change (noise) superimposed between the cathode bus bar 1009 and the ground and / or the metal housing.
  • the second capacitor 1011 and the third capacitor 1012 are also generally referred to as Y capacitors.
  • the second capacitor 1011 and the third capacitor 1012 are not particularly limited, but may be determined according to the frequency band to be suppressed, and a capacitive element having a capacitance of several nanofarads to several microfarads is mainly used. Each capacitor may be connected to the bus bar by combining a plurality of capacitors or a plurality of capacitors as required.
  • FIG. 12 is a configuration diagram of the power conversion device 1500.
  • the power conversion device 1500 has a configuration in which the noise filter 100 described in the first embodiment and the noise filter device 1000 described in the third embodiment are incorporated.
  • the present embodiment is a power conversion device 1500 that mutually converts DC power and AC power, and is connected between the DC power supply 1600 and the motor 1700 in, for example, an electric vehicle or a hybrid vehicle.
  • the power conversion device 1500 converts the DC power supplied from the DC power supply 1600 into AC power to drive the motor 1700. Further, the power conversion device 1500 converts the AC power generated by the regeneration of the motor 1700 into DC power to charge the DC power supply 1600.
  • the DC power supply 1600 uses a high voltage battery of several hundred volts, for example, in a hybrid vehicle.
  • an AC power supply converted into a DC voltage by a converter may be used.
  • a medical device such as an X-ray diagnostic device uses a commercial AC power supply, it is converted to a DC power supply 1600 by using a rectifier circuit or a converter.
  • the DC power supply 1600 is connected to the anode power input terminal 1105 and the cathode power input terminal 1106 of the power conversion device 1500 via the anode cable 1103 and the cathode cable 1104, respectively.
  • the housing of the DC power supply 1600 is a frame ground G and is connected to the ground wire GND.
  • the motor 1700 is not particularly limited, but is composed of a three-phase electric motor.
  • the motor 1700 includes a rotor (not shown) and a stator (not shown), and a magnet is arranged on the rotor and a coil is arranged on the stator.
  • the power converter 1500 generates a three-phase AC voltage and supplies it to the coil of the motor 1700 via the AC cable 1121. As a result, the rotor will rotate.
  • the housing of the motor 1700 is frame ground G and is connected to the ground wire GND.
  • the power conversion device 1500 includes a noise filter 100, a noise filter device 1000, a smoothing capacitor 1109, and a control unit 1111 that controls the power conversion unit 1110. Then, the power conversion device 1500 is housed in a metal housing case 1112 as needed.
  • the noise filter 100 uses the noise filter 100 described in the first embodiment, but the noise filter 100 is not essential and is used as needed. Further, as the noise filter 100, the noise filter 100 described in the first embodiment can be used, but the noise filter 100 is not limited thereto.
  • FIG. 12 shows a configuration when the noise filter 100 is used.
  • the noise filter device 1000 As the noise filter device 1000, the noise filter device 1000 described in the third embodiment can be used, but the noise filter device 1000 is not limited thereto. It is also possible to omit the noise filter 100 by using only the noise filter device 1000 as the filter of the present embodiment. Alternatively, only the noise filter 100 can be used as the filter of the present embodiment, and the noise filter device 1000 can be used as the conventional filter.
  • the anode power input terminal 1105 of the power converter 1500 and the terminal 1002 of the noise filter device 1000 are connected by an anode bus bar 1114, and the cathode power input terminal 1106 of the power converter 1500 and the terminal 1004 of the noise filter device 1000 Is connected by a cathode bus bar 1115.
  • the terminal 1003 of the noise filter device 1000, the anode terminal of the power conversion unit 1110, and the anode terminal of the smoothing capacitor 1109 are connected by an anode bus bar 1116.
  • the terminal 1005 of the noise filter device 1000, the cathode terminal of the power conversion unit 1110, and the cathode terminal of the smoothing capacitor 1109 are connected by a cathode bus bar 1117.
  • the output terminal of the power conversion unit 1110 and the noise filter 100 are connected by an AC bus bar 1118.
  • the noise filter 100 and the AC output terminal 1120 corresponding to three-phase alternating current are connected by an AC bus bar 1119 as needed.
  • the power conversion unit 1110 is composed of a semiconductor module containing a semiconductor element, and converts DC power and AC power to each other. Since the semiconductor element in the power conversion unit 1110 generates a high-frequency switching current and voltage when switching, a smoothing capacitor 1109 for smoothing the current is generally used, and a capacitor having a capacitance of about several tens of microfarads is generally used. Are connected in parallel, but are not limited to this. It is desirable, but not limited to, copper used for the anode bus bars 1114 and 1116, the cathode bus bars 1115 and 1117, and the AC bus bars 1118 and 1119.
  • the semiconductor element in the power conversion unit 1110 is, but is not limited to, an IGBT, MOSFET, SiC, GaN and the like.
  • the power conversion unit 1110 generates a desired voltage or current by switching (switching on and off) the semiconductor element.
  • the switching operation of the semiconductor element is controlled by the control unit 1111.
  • the noise current generated by the switching of the semiconductor element can be attenuated by the noise filter device 1000 and / or the noise filter 100, and the noise leaking to the outside of the power conversion device 1500 can be reduced.
  • the noise filters 100 and 1100 include a magnetic core 200 and 1200 having a magnetic core through hole 600 and a magnetic core outer surface 201, 202, 203, 204, 205, 206, 1202 and 1203, and a magnetic core.
  • the filter effect can be increased and noise can be suppressed without increasing the size of the magnetic core.
  • the present invention is not limited to the above-described embodiment, and other embodiments that can be considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. .. Further, the configuration may be a combination of the above-described embodiment and a modified example.

Abstract

A noise filter comprising: a magnetic core having a magnetic core through-hole and a magnetic core outer surface; and a plurality of busbars each having a busbar penetrating portion disposed in the magnetic core through-hole and a busbar outer surface portion disposed along the magnetic core outer surface.

Description

ノイズフィルタ、ノイズフィルタ装置、および電力変換装置Noise filter, noise filter device, and power converter
 本発明は、ノイズフィルタ、ノイズフィルタ装置、および電力変換装置に関する。 The present invention relates to a noise filter, a noise filter device, and a power conversion device.
 一般に、モータや電源はバスバを介して電気的に接続されている。バスバを流れる電流は、比較的大電流であり、バスバを電流が流れる際に生ずる磁界は、ノイズ(電磁ノイズ)の発生源となるため、周辺の電子機器に悪影響を及ぼさないようにする必要がある。 Generally, the motor and power supply are electrically connected via the bus bar. The current flowing through the bus bar is a relatively large current, and the magnetic field generated when the current flows through the bus bar is a source of noise (electromagnetic noise), so it is necessary to prevent adverse effects on surrounding electronic devices. be.
 特許文献1には、バスバを流れる電流に起因して発生する電磁ノイズを遮蔽可能な磁性材を有し、中央部に貫通孔を有している磁性体コアと、磁性体コアの貫通孔に並んだ状態で挿通される三本のバスバとよりなるバスバユニットが開示されている。 Patent Document 1 describes a magnetic core having a magnetic material capable of shielding electromagnetic noise generated by a current flowing through a bus bar and having a through hole in the center, and a through hole of the magnetic core. A bus bar unit consisting of three bus bars that are inserted side by side is disclosed.
日本国特開2018-50417号公報Japanese Patent Application Laid-Open No. 2018-50417
 従来の技術では、フィルタ効果を増加させてノイズを抑制するためには、磁性体コアを大型化しなければならず、磁性体コアの材料価格が高価であることから大きなコストアップ要因となる課題があった。 In the conventional technology, in order to increase the filter effect and suppress noise, the magnetic core must be enlarged, and the material price of the magnetic core is high, which causes a big cost increase. there were.
 本発明の態様によるノイズフィルタは、磁性体コア貫通孔と磁性体コア外面とを有する磁性体コアと、前記磁性体コア貫通孔に配置されるバスバ貫通部と、前記磁性体コア外面に沿って配置されるバスバ外面部とを有する複数のバスバと、を備えるのが好ましい。 The noise filter according to the aspect of the present invention includes a magnetic core having a magnetic core through hole and a magnetic core outer surface, a bus bar penetration portion arranged in the magnetic core through hole, and the magnetic core outer surface. It is preferable to include a plurality of bus bars having an outer surface portion of the bus bars to be arranged.
 本発明によれば、磁性体コアを大型化することなく、フィルタ効果を増加させノイズを抑制することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, it is possible to increase the filter effect and suppress noise without increasing the size of the magnetic core.
Issues, configurations and effects other than those described above will be clarified by the description of the following embodiments.
図1は、第1の実施形態に係るノイズフィルタの斜視図である。FIG. 1 is a perspective view of the noise filter according to the first embodiment. 図2は、第1の実施形態に係るノイズフィルタの断面図である。FIG. 2 is a cross-sectional view of the noise filter according to the first embodiment. 図3は、比較例1におけるノイズフィルタの一例を示す斜視図である。FIG. 3 is a perspective view showing an example of the noise filter in Comparative Example 1. 図4は、比較例2を示す断面図である。FIG. 4 is a cross-sectional view showing Comparative Example 2. 図5は、第1の実施形態に係るノイズフィルタの一部断面図である。FIG. 5 is a partial cross-sectional view of the noise filter according to the first embodiment. 図6は、電磁界シミュレーションによる計算例を説明する図である。FIG. 6 is a diagram illustrating a calculation example by electromagnetic field simulation. 図7は、変形例に係るノイズフィルタの断面図である。FIG. 7 is a cross-sectional view of the noise filter according to the modified example. 図8は、第2の実施形態に係るノイズフィルタの斜視図である。FIG. 8 is a perspective view of the noise filter according to the second embodiment. 図9は、第2の実施形態に係るノイズフィルタの断面図である。FIG. 9 is a cross-sectional view of the noise filter according to the second embodiment. 図10は、第3の実施形態に係るノイズフィルタ装置の構成図である。FIG. 10 is a configuration diagram of the noise filter device according to the third embodiment. 図11は、第3の実施形態に係るノイズフィルタ装置の他の構成図である。FIG. 11 is another configuration diagram of the noise filter device according to the third embodiment. 図12は、第4の実施形態に係る電力変換装置の構成図である。FIG. 12 is a configuration diagram of the power conversion device according to the fourth embodiment.
 以下、図面を参照して本発明の実施形態を説明する。以下の記載および図面は、本発明を説明するための例示であって、説明の明確化のため、適宜、省略および簡略化がなされている。本発明は、他の種々の形態でも実施する事が可能である。特に限定しない限り、各構成要素は単数でも複数でも構わない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following description and drawings are examples for explaining the present invention, and are appropriately omitted and simplified for the sake of clarification of the description. The present invention can also be implemented in various other forms. Unless otherwise specified, each component may be singular or plural.
 図面において示す各構成要素の位置、大きさ、形状、範囲などは、発明の理解を容易にするため、実際の位置、大きさ、形状、範囲などを表していない場合がある。このため、本発明は、必ずしも、図面に開示された位置、大きさ、形状、範囲などに限定されない。 The position, size, shape, range, etc. of each component shown in the drawing may not represent the actual position, size, shape, range, etc. in order to facilitate understanding of the invention. Therefore, the present invention is not necessarily limited to the position, size, shape, range and the like disclosed in the drawings.
[第1の実施形態]
 図1は、本実施形態に係るノイズフィルタ100の斜視図である。
 図1に示すように、ノイズフィルタ100は、磁性体コア200と3本のバスバ300、400、500とを備える。磁性体コア200は貫通孔600を有する直方体形状である。貫通孔600には、3本のバスバ300、400、500が貫通している。本実施形態では、U相、V相、W相の各バスバ300、400、500が三相交流に対応して配置される例を示しているが、この例に限定されず、2本以上の複数本のバスバでもよい。また、磁性体コア200は直方体形状の例で説明するが、直方体形状の4隅にRを付けた形状であってもよく、その他の形状であってもよい。
[First Embodiment]
FIG. 1 is a perspective view of the noise filter 100 according to the present embodiment.
As shown in FIG. 1, the noise filter 100 includes a magnetic core 200 and three bus bars 300, 400, and 500. The magnetic core 200 has a rectangular parallelepiped shape having a through hole 600. Three bus bars 300, 400, and 500 penetrate through the through hole 600. In the present embodiment, examples in which U-phase, V-phase, and W- phase bus bars 300, 400, and 500 are arranged corresponding to three-phase alternating current are shown, but the present invention is not limited to this example, and two or more of them are not limited to this example. Multiple bus bars may be used. Further, although the magnetic core 200 will be described with an example of a rectangular parallelepiped shape, the magnetic core 200 may have a shape in which R is added to the four corners of the rectangular parallelepiped shape, or may have another shape.
 図2は、本実施形態に係るノイズフィルタ100の断面図であり、図1のA-A線の断面図である。 FIG. 2 is a cross-sectional view of the noise filter 100 according to the present embodiment, and is a cross-sectional view taken along the line AA of FIG.
 図2に示すように、U相のバスバ300は、磁性体コア200の一方の辺である第1コア200aの外面を回り込み、磁性体コア200の貫通孔600を貫通し、磁性体コア200の他方の辺である第2コア200bの外面を回り込む。すなわち、U相のバスバ300は、6か所のバスバ外面部301、302、303、304、305、306を有し、6か所のバスバ外面部301、302、303、304、305、306は6か所の磁性体コア外面201、202、203、204、205、206に沿って配置される。そして、U相のバスバ300のバスバ貫通部307は磁性体コア200の貫通孔600に配置される。U相のバスバ300は、接合部308で溶接されている。V相のバスバ400及びW相のバスバ500も同様の構造である。 As shown in FIG. 2, the U-phase bus bar 300 goes around the outer surface of the first core 200a, which is one side of the magnetic core 200, penetrates the through hole 600 of the magnetic core 200, and penetrates the through hole 600 of the magnetic core 200. It wraps around the outer surface of the second core 200b, which is the other side. That is, the U-phase bus bar 300 has six bus bar outer surface portions 301, 302, 303, 304, 305, 306, and the six bus bar outer surface portions 301, 302, 303, 304, 305, 306 have. It is arranged along the outer surfaces 201, 202, 203, 204, 205, and 206 of the magnetic core at six locations. Then, the bus bar penetration portion 307 of the U-phase bus bar 300 is arranged in the through hole 600 of the magnetic core 200. The U-phase bass bar 300 is welded at the joint 308. The V-phase bus bar 400 and the W-phase bus bar 500 have the same structure.
 図3は、比較例1におけるノイズフィルタ100’の一例を示す斜視図である。
 比較例1において、図3に示すように、ノイズフィルタ100’は、磁性体コア200と3本のバスバ300’、400’、500’とを備える。磁性体コア200は、本実施形態と同様の貫通孔600を有する直方体形状である。しかし、U相、V相、W相の3本のバスバ300’、400’、500’は貫通孔600を直線状に貫いている点が本実施形態と相違する。この比較例1では、バスバ300’、400’、500’におけるバスバ貫通部307’、407’、507’のインダクタンス(コモンモード・インダクタンス)は815.9nHである。
FIG. 3 is a perspective view showing an example of the noise filter 100'in Comparative Example 1.
In Comparative Example 1, as shown in FIG. 3, the noise filter 100'includes a magnetic core 200 and three bus bars 300', 400', and 500'. The magnetic core 200 has a rectangular parallelepiped shape having a through hole 600 similar to that of the present embodiment. However, the three bus bars 300', 400', and 500' of the U phase, the V phase, and the W phase are different from the present embodiment in that they penetrate the through hole 600 in a straight line. In Comparative Example 1, the inductance (common mode inductance) of the bus bar penetration portions 307', 407', and 507' in the bus bars 300', 400', and 500'is 815.9 nH.
 磁性体コア200は、バスバ300’、400’、500’を流れる電流で生じる磁束を増加させてバスバ300’、400’、500’のインダクタンス成分の増加によりフィルタ効果を増加させる効果がある。インダクタンス成分の増加は、磁性体コア200を貫通する電流が発生させる磁界の感じる磁気抵抗に反比例する。この為、磁性体コア200の大型化がインダクタンス成分の増加に効果的であるが、磁性体コア200の材料価格が高価であることから大きなコストアップ要因となる。 The magnetic core 200 has the effect of increasing the magnetic flux generated by the current flowing through the bass bars 300', 400', and 500'and increasing the filter effect by increasing the inductance components of the bass bars 300', 400', and 500'. The increase in the inductance component is inversely proportional to the reluctance felt by the magnetic field generated by the current penetrating the magnetic core 200. Therefore, increasing the size of the magnetic core 200 is effective in increasing the inductance component, but the material price of the magnetic core 200 is high, which causes a large cost increase.
 図4は、比較例2を示す断面図である。この比較例2では、図3に示した磁性体コア200を配置せず、バスバ300’、400’、500’のみであった場合を示すものである。図4に示すように、バスバ300’の周囲には、バスバ300’を流れる電流により磁束の磁路800が生じる。バスバ300’を流れる電流により生じる磁束の磁路800は全周にわたり空気中を通過するため、インダクタンスの増加効果は無い。この比較例2では、バスバ300’のインダクタンス(コモンモード・インダクタンス)は34.2nHである。 FIG. 4 is a cross-sectional view showing Comparative Example 2. In this Comparative Example 2, the magnetic core 200 shown in FIG. 3 is not arranged, and only the bus bars 300', 400', and 500'are shown. As shown in FIG. 4, a magnetic path 800 of magnetic flux is generated around the bus bar 300'due to the current flowing through the bus bar 300'. Since the magnetic path 800 of the magnetic flux generated by the current flowing through the bus bar 300'passes through the air over the entire circumference, there is no effect of increasing the inductance. In Comparative Example 2, the inductance (common mode inductance) of the bus bar 300'is 34.2 nH.
 図5は、本実施形態に係るノイズフィルタ100の一部断面図であり、図2のB-B線の断面図である。
 図5に示すように、バスバ外面部302を流れる電流により生じる磁束の磁路900は、磁性体コア200aを通過する磁路900aと空気を通過する磁路900bからなる。磁性体コア200aを通過する磁路900aの磁気抵抗は空気を通過した部分の磁路900bの磁気抵抗と比較すると著しく小さい為、バスバ外面部302を流れる電流により生じる磁束が感じる磁気抵抗が大幅に減少し、バスバ外面部302は、磁性体コア200を配置しない比較例2のバスバより大きなインダクタンスを得ることができる。バスバ外面部302と磁性体コア200aの距離Dは、安全上必要な絶縁距離と製作上の公差を考慮して可能な限り近づける事が望ましい。
FIG. 5 is a partial cross-sectional view of the noise filter 100 according to the present embodiment, and is a cross-sectional view taken along the line BB of FIG.
As shown in FIG. 5, the magnetic path 900 of the magnetic flux generated by the current flowing through the outer surface portion 302 of the bus bar includes the magnetic path 900a passing through the magnetic core 200a and the magnetic path 900b passing through the air. Since the magnetic resistance of the magnetic path 900a passing through the magnetic core 200a is significantly smaller than the magnetic resistance of the magnetic path 900b of the portion passing through the air, the magnetic resistance felt by the magnetic flux generated by the current flowing through the outer surface portion 302 of the bus bar is significantly large. It is reduced, and the outer surface portion 302 of the bus bar can obtain a larger inductance than the bus bar of Comparative Example 2 in which the magnetic core 200 is not arranged. It is desirable that the distance D between the outer surface portion 302 of the bus bar and the magnetic core 200a be as close as possible in consideration of the insulation distance required for safety and the manufacturing tolerance.
 なお、図2に示すノイズフィルタ100の断面図において、バスバ貫通部307を流れる電流により生じる磁束の磁路は磁性体コア200a、200bを通過し、バスバ貫通部307のインダクタンスを著しく増加させる。 In the cross-sectional view of the noise filter 100 shown in FIG. 2, the magnetic path of the magnetic flux generated by the current flowing through the bus bar penetrating portion 307 passes through the magnetic cores 200a and 200b, and the inductance of the bus bar penetrating portion 307 is significantly increased.
 図6は、電磁界シミュレーションによる計算例を説明する図である。
 図6に示すように、磁性体コア200の磁性体コア外面202にバスバ300aを配置した場合(本実施形態に相当する)のバスバ300aのインダクタンスを計算した。さらに、比較例2に相当するように、磁性体コア200から十分に離してバスバ300bを配置した場合のバスバ300bのインダクタンスを計算した。バスバ300a、300bの断面は15×5mmであり、磁性体コア200の厚さTは20mmである。
FIG. 6 is a diagram illustrating a calculation example by electromagnetic field simulation.
As shown in FIG. 6, the inductance of the bus bar 300a when the bus bar 300a is arranged on the outer surface 202 of the magnetic body core of the magnetic body core 200 (corresponding to the present embodiment) was calculated. Further, the inductance of the bus bar 300b was calculated when the bus bar 300b was arranged sufficiently away from the magnetic core 200 so as to correspond to Comparative Example 2. The cross sections of the bus bars 300a and 300b are 15 × 5 mm, and the thickness T of the magnetic core 200 is 20 mm.
 本実施形態に相当する場合は、バスバ300aのバスバ外面部302の単位長さ当たりのインダクタンスは、1.38nH/mmであった。一方、比較例2に相当する場合は、バスバ300bの単位長さ当たりのインダクタンスは、0.58nH/mmであった。磁性体コア200の磁性体コア外面202にバスバ300aを配置した場合のインダクタンスは、磁性体コア200から十分に離してバスバ300bを配置した場合の2.4倍となっており、磁性体コア外面202によるインダクタンスの増加効果が確認できる。 In the case corresponding to the present embodiment, the inductance per unit length of the bus bar outer surface portion 302 of the bus bar 300a was 1.38 nH / mm. On the other hand, in the case corresponding to Comparative Example 2, the inductance per unit length of the bus bar 300b was 0.58 nH / mm. The inductance when the bus bar 300a is placed on the magnetic core outer surface 202 of the magnetic core 200 is 2.4 times that when the bus bar 300b is placed sufficiently away from the magnetic core 200, and is the outer surface of the magnetic core. The effect of increasing the inductance by 202 can be confirmed.
 次に、本実施形態によるコモンモードインダクタンスを電磁界シミュレーションにより計算した例について説明する。 Next, an example in which the common mode inductance according to the present embodiment is calculated by electromagnetic field simulation will be described.
 図1、図2に示す本実施形態によるノイズフィルタ100において、コモンモードインダクタンスを電磁界シミュレーションにより計算した結果は、992.14nHである。一方、図3に示す比較例1におけるコモンモードインダクタンスは、815.9nHである。同一サイズで同一の材質の磁性体コア200を使用した場合に、22%のコモンモードインダクタンスが増加している。コモンモードインダクタンスの増加は、ノイズ低減効果を増加させる。バスバ300、400、500に使用する金属の単価は、磁性体コア200の材料単価より十分に安価であることから、図1、図2に示すようにバスバ300、400、500を磁性体コア200の外面に回り込み配置することによるコスト増加は許容範囲である。仮に、コモンモードインダクタンスの増加が不要な場合は、バスバ300、400、500で使用する金属の単価は、磁性体コアの材料単価より十分に安価であることから、磁性体コア200の大きさを22%削減してコストを下げることもできる。 In the noise filter 100 according to the present embodiment shown in FIGS. 1 and 2, the result of calculating the common mode inductance by electromagnetic field simulation is 992.14 nH. On the other hand, the common mode inductance in Comparative Example 1 shown in FIG. 3 is 815.9 nH. When the magnetic core 200 of the same size and the same material is used, the common mode inductance is increased by 22%. Increasing the common mode inductance increases the noise reduction effect. Since the unit price of the metal used for the Basba 300, 400, and 500 is sufficiently cheaper than the material unit price of the magnetic core 200, the Basba 300, 400, and 500 are the magnetic core 200 as shown in FIGS. 1 and 2. The cost increase due to the wraparound arrangement on the outer surface of the is acceptable. If it is not necessary to increase the common mode inductance, the unit price of the metal used in the bus bars 300, 400, and 500 is sufficiently cheaper than the material unit price of the magnetic core, so that the size of the magnetic core 200 is increased. It can also reduce costs by 22%.
 本実施形態によれば、各バスバ300、400、500は、6か所のバスバ外面部301、302、303、304、305、306を有し、6か所のバスバ外面部301、302、303、304、305、306は6か所の磁性体コア外面201、202、203、204、205、206に沿って配置されるので、磁性体コア外面201、202、203、204、205、206を全て活用できるためインダクタンスの増加効果が大きい。 According to the present embodiment, each of the bus bars 300, 400, and 500 has six bus bar outer surface portions 301, 302, 303, 304, 305, and 306, and six bus bar outer surface portions 301, 302, 303. , 304, 305, 306 are arranged along the magnetic core outer surfaces 201, 202, 203, 204, 205, 206 of the magnetic core core outer surfaces 201, 202, 203, 204, 205, 206. Since all can be used, the effect of increasing inductance is large.
 このように、本実施形態によれば、磁性体コア200によるインダクタンスの増加効果を大きくして伝導ノイズを低減することが可能なノイズフィルタ100を提供することができる。または、磁性体コア200によるインダクタンスの増加効果を変化させずに磁性体コア200のサイズを小さくしてコストを低減することが可能なノイズフィルタ100を提供することができる。 As described above, according to the present embodiment, it is possible to provide the noise filter 100 capable of increasing the effect of increasing the inductance by the magnetic core 200 and reducing the conduction noise. Alternatively, it is possible to provide a noise filter 100 capable of reducing the size of the magnetic core 200 and reducing the cost without changing the effect of increasing the inductance of the magnetic core 200.
(変形例)
 図7は変形例に係るノイズフィルタ100の断面図である。図2と同一箇所には同一の符号を付している。
(Modification example)
FIG. 7 is a cross-sectional view of the noise filter 100 according to the modified example. The same parts as those in FIG. 2 are designated by the same reference numerals.
 図7に示すように、U相のバスバ300は、磁性体コア200の一方の辺である第1コア200aの外面の2面を回り込み、磁性体コア200の貫通孔600を貫通し、磁性体コア200の他方の辺である第2コア200bの外面の2面を回り込む。すなわち、U相のバスバ300は、4か所のバスバ外面部302、303、304、305を有し、4か所のバスバ外面部302、303、304、305は4か所の磁性体コア外面202、203、204、205に沿って配置される。そして、U相のバスバ300のバスバ貫通部307は磁性体コア200の貫通孔600に配置される。U相のバスバ300は、接合部308で溶接されている。V相のバスバ400及びW相のバスバ500も同様の構造である。 As shown in FIG. 7, the U-phase bus bar 300 wraps around two outer surfaces of the first core 200a, which is one side of the magnetic core 200, penetrates the through hole 600 of the magnetic core 200, and penetrates the magnetic material. It wraps around two outer surfaces of the second core 200b, which is the other side of the core 200. That is, the U-phase bus bar 300 has four bus bar outer surface portions 302, 303, 304, 305, and the four bus bar outer surface portions 302, 303, 304, 305 have four magnetic core outer surfaces. It is arranged along 202, 203, 204, 205. Then, the bus bar penetration portion 307 of the U-phase bus bar 300 is arranged in the through hole 600 of the magnetic core 200. The U-phase bass bar 300 is welded at the joint 308. The V-phase bus bar 400 and the W-phase bus bar 500 have the same structure.
 この変形例によれば、各バスバ300、400、500は、4か所のバスバ外面部302、303、304、305を有し、4か所のバスバ外面部302、303、304、305は4か所の磁性体コア外面202、203、204、205に沿って配置される。したがって、磁性体コア外面202、203、204、205を有効に活用できるためインダクタンスの増加効果が大きい。 According to this modification, each bus bar 300, 400, 500 has four bus bar outer surface portions 302, 303, 304, 305, and the four bus bar outer surface portions 302, 303, 304, 305 are four. It is arranged along the outer surfaces 202, 203, 204, 205 of the magnetic core at the location. Therefore, since the outer surfaces 202, 203, 204, and 205 of the magnetic core can be effectively used, the effect of increasing the inductance is large.
[第2の実施形態]
 図8は、本実施形態に係るノイズフィルタ1100の斜視図である。
 図8に示すように、ノイズフィルタ1100は、磁性体コア1200と2本のバスバ1300、1400とを備える。磁性体コア1200は貫通孔600を有する円筒形状である。貫通孔600には、2本のバスバ1300、1400が貫通している。本実施形態では、直流に対応して陽極と陰極の各バスバ1300、1400を一例として示しているが、この例に限定されず、2本以上の複数本のバスバでもよい。また、磁性体コア1200は円筒形状の例で説明するが、直方体形状であってもよく、その他の形状であってもよい。
[Second Embodiment]
FIG. 8 is a perspective view of the noise filter 1100 according to the present embodiment.
As shown in FIG. 8, the noise filter 1100 includes a magnetic core 1200 and two bus bars 1300 and 1400. The magnetic core 1200 has a cylindrical shape having a through hole 600. Two bus bars 1300 and 1400 penetrate through the through hole 600. In the present embodiment, the anode and cathode bus bars 1300 and 1400 are shown as an example corresponding to direct current, but the present invention is not limited to this example, and a plurality of bus bars of two or more may be used. Further, although the magnetic core 1200 will be described with an example of a cylindrical shape, it may have a rectangular parallelepiped shape or another shape.
 図9は、本実施形態に係るノイズフィルタ1100の断面図であり、図8のC-C線の断面図である。
 図9に示すように、磁性体コア1200は、磁性体コア貫通面1201と、磁性体コア1200の貫通孔600に垂直な磁性体コア外面1202、1203を有する。
FIG. 9 is a cross-sectional view of the noise filter 1100 according to the present embodiment, and is a cross-sectional view taken along the line CC of FIG.
As shown in FIG. 9, the magnetic core 1200 has a magnetic core through surface 1201 and a magnetic core outer surface 1202 and 1203 perpendicular to the through hole 600 of the magnetic core 1200.
 陽極のバスバ1300は、磁性体コア1200の一方の磁性体コア外面1202に沿って配置され、磁性体コア1200の貫通孔600を貫通し、磁性体コア1200の他方の磁性体コア外面1203に沿って配置される。すなわち、陽極のバスバ1300は、2か所のバスバ外面部1302、1303と1か所のバスバ貫通部1301を有する。そして、2か所のバスバ外面部1302、1303は磁性体コア貫通孔600に垂直な2か所の磁性体コア外面1202、1203に沿って配置される。1か所のバスバ貫通部1301は1か所の磁性体コア貫通面1201に沿って配置される。陽極のバスバ1300は、接合部308において溶接されている。 The anode bus bar 1300 is arranged along one magnetic core outer surface 1202 of the magnetic core 1200, penetrates the through hole 600 of the magnetic core 1200, and is along the other magnetic core outer surface 1203 of the magnetic core 1200. Is placed. That is, the anode bus bar 1300 has two bus bar outer surface portions 1302 and 1303 and one bus bar penetration portion 1301. The two bus bar outer surfaces 1302 and 1303 are arranged along the two magnetic core outer surfaces 1202 and 1203 perpendicular to the magnetic core through hole 600. The one bus bar penetration 1301 is arranged along the one magnetic core penetration surface 1201. The anode bus bar 1300 is welded at the joint 308.
 陰極のバスバ1400は、磁性体コア1200の一方の磁性体コア外面1202に沿って配置され、磁性体コア1200の貫通孔600を貫通し、磁性体コア1200の他方の磁性体コア外面1203に沿って配置される。すなわち、陰極のバスバ1400は、2か所のバスバ外面部1402、1403と1か所のバスバ貫通部1401を有する。そして、2か所のバスバ外面部1402、1403は磁性体コア貫通孔600に垂直な2か所の磁性体コア外面1202、1203に沿って配置される。1か所のバスバ貫通部1401は1か所の磁性体コア貫通面1201に沿って配置される。陰極のバスバ1400は、接合部308において溶接されている。 The cathode bus bar 1400 is arranged along one magnetic core outer surface 1202 of the magnetic core 1200, penetrates the through hole 600 of the magnetic core 1200, and is along the other magnetic core outer surface 1203 of the magnetic core 1200. Is placed. That is, the cathode bus bar 1400 has two bus bar outer surface portions 1402 and 1403 and one bus bar penetration portion 1401. The two bus bar outer surface portions 1402 and 1403 are arranged along the two magnetic core outer surfaces 1202 and 1203 perpendicular to the magnetic core through hole 600. The one bus bar penetration 1401 is arranged along the one magnetic core penetration surface 1201. The cathode bus bar 1400 is welded at the junction 308.
 本実施形態によれば、2か所のバスバ外面部1302、1303、1402、1403は2か所の磁性体コア外面1202、1203に沿って配置される。したがって、図3に示す比較例1と比較して、同一サイズで同一材質の磁性体コア1200を使用した場合においても、インダクタンスの増加効果が大きい。磁性体コア1200の貫通孔600に垂直な磁性体コア外面1202、1203に沿うようにバスバ1300、1400を配置するために、磁性体コア1200の貫通孔600に垂直な磁性体コア外面1202、1203を有効に活用することができる。 According to the present embodiment, the two bus bar outer surface portions 1302, 1303, 1402 and 1403 are arranged along the two magnetic core core outer surfaces 1202 and 1203. Therefore, as compared with Comparative Example 1 shown in FIG. 3, even when a magnetic core 1200 of the same size and the same material is used, the effect of increasing the inductance is large. In order to arrange the bus bars 1300 and 1400 along the magnetic core outer surfaces 1202 and 1203 perpendicular to the through holes 600 of the magnetic core 1200, the magnetic core outer surfaces 1202 and 1203 perpendicular to the through holes 600 of the magnetic core 1200. Can be used effectively.
[第3の実施形態]
 図10はノイズフィルタ装置1000の構成図である。ノイズフィルタ装置1000は、第2の実施形態で説明したノイズフィルタ1100を組み込んだ構成である。
[Third Embodiment]
FIG. 10 is a configuration diagram of the noise filter device 1000. The noise filter device 1000 has a configuration incorporating the noise filter 1100 described in the second embodiment.
 図10に示すように、ノイズフィルタ装置1000は、陽極バスバ1006、1007および陰極バスバ1008、1009を備える。そして、陽極バスバ1006と陰極バスバ1008との間に、Xコンデンサである第1のキャパシタ1010が接続される。さらに、陽極バスバ1007とグランド及び又は金属筐体の間に、Yコンデンサである第2のキャパシタ1011が、陰極バスバ1009とグランド及び又は金属筐体の間に、Yコンデンサである第3のキャパシタ1012が接続される。 As shown in FIG. 10, the noise filter device 1000 includes anode bus bars 1006 and 1007 and cathode bus bars 1008 and 1009. Then, the first capacitor 1010, which is an X capacitor, is connected between the anode bus bar 1006 and the cathode bus bar 1008. Further, a second capacitor 1011 which is a Y capacitor is provided between the anode bus bar 1007 and the ground and / or the metal housing, and a third capacitor 1012 which is a Y capacitor is provided between the cathode bus bar 1009 and the ground and / or the metal housing. Is connected.
 ノイズフィルタ1100の陽極バスバ1300(図9参照)は、その一方端が端子1304を介して陽極バスバ1006に接続され、他方端が端子1305を介して陽極バスバ1007に接続される。ノイズフィルタ1100の陰極バスバ1400(図9参照)は、その一方端が端子1404を介して陰極バスバ1008に接続され、他方端が端子1405を介して陰極バスバ1009に接続される。端子1304、1305、1404、1405は、それに接続されるバスバと一体化されていても良い。なお、陽極バスバ1006、1007は、ノイズフィルタ1100が接続される端子1304、1305とは反対側に端子1002、1003を備える。また、陰極バスバ1008、1009は、ノイズフィルタ1100が接続される端子1404、1405とは反対側に端子1004、1005を備える。 One end of the anode bus bar 1300 (see FIG. 9) of the noise filter 1100 is connected to the anode bus bar 1006 via the terminal 1304, and the other end is connected to the anode bus bar 1007 via the terminal 1305. One end of the cathode bus bar 1400 (see FIG. 9) of the noise filter 1100 is connected to the cathode bus bar 1008 via the terminal 1404, and the other end is connected to the cathode bus bar 1009 via the terminal 1405. Terminals 1304, 1305, 1404, 1405 may be integrated with a bus bar connected to them. The anode buses 1006 and 1007 are provided with terminals 1002 and 1003 on the opposite side of the terminals 1304 and 1305 to which the noise filter 1100 is connected. Further, the cathode bus bars 1008 and 1009 are provided with terminals 1004 and 1005 on the opposite side of the terminals 1404 and 1405 to which the noise filter 1100 is connected.
 図11はノイズフィルタ装置1000の他の構成図である。ノイズフィルタ装置1000は、第2の実施形態で説明したノイズフィルタ1100を組み込んだ構成であり、図10で示した例とは第1のキャパシタ1010の接続位置が異なる。 FIG. 11 is another configuration diagram of the noise filter device 1000. The noise filter device 1000 has a configuration in which the noise filter 1100 described in the second embodiment is incorporated, and the connection position of the first capacitor 1010 is different from the example shown in FIG.
 図11に示すように、Xコンデンサである第1のキャパシタ1010は、陽極バスバ1007と陰極バスバ1009との間に接続される。その他の構成は図10と同様であり、同一箇所には同一の符号を付してその説明を省略する。 As shown in FIG. 11, the first capacitor 1010, which is an X capacitor, is connected between the anode bus bar 1007 and the cathode bus bar 1009. Other configurations are the same as those in FIG. 10, and the same parts are designated by the same reference numerals and the description thereof will be omitted.
 図10および図11に示すノイズフィルタ装置1000において、第1のキャパシタ1010は、陽極バスバ1006と陰極バスバ1008間、または陽極バスバ1007と陰極バスバ1009間の直流電圧に重畳する電圧変化(ノイズ)を平滑化する。第1のキャパシタ1010は一般的にXキャパシタとも呼ばれる。第1のキャパシタ1010のキャパシタンスは、特に制限されないが、抑制したい周波数帯域によって決めれば良く、主に数ナノファラッドから数マイクロファラッドのキャパシタンスを持つ容量素子が使用される。必要に応じて複数個、複数容量を組み合わせても良い。 In the noise filter device 1000 shown in FIGS. 10 and 11, the first capacitor 1010 causes a voltage change (noise) superimposed on the DC voltage between the anode bus bar 1006 and the cathode bus bar 1008 or between the anode bus bar 1007 and the cathode bus bar 1009. Smooth. The first capacitor 1010 is also commonly referred to as an X capacitor. The capacitance of the first capacitor 1010 is not particularly limited, but may be determined according to the frequency band to be suppressed, and a capacitive element having a capacitance of several nanofarads to several microfarads is mainly used. If necessary, a plurality of or a plurality of capacities may be combined.
 第2のキャパシタ1011は、陽極バスバ1007とグランド及び又は金属筐体間に重畳する電圧変化(ノイズ)を平滑化する。第3のキャパシタ1012は、陰極バスバ1009とグランド及び又は金属筐体間に重畳する電圧変化(ノイズ)を平滑化する。第2のキャパシタ1011と第3のキャパシタ1012は、一般的にYキャパシタとも呼ばれる。第2のキャパシタ1011と第3のキャパシタ1012は、特に制限されないが、抑制したい周波数帯域によって決めれば良く、主に数ナノファラッドから数マイクロファラッドのキャパシタンスを持つ容量素子が使用される。各キャパシタは、必要に応じて複数個、複数容量を組み合わせてバスバに接続しても良い。 The second capacitor 1011 smoothes the voltage change (noise) superimposed between the anode bus bar 1007 and the ground and / or the metal housing. The third capacitor 1012 smoothes the voltage change (noise) superimposed between the cathode bus bar 1009 and the ground and / or the metal housing. The second capacitor 1011 and the third capacitor 1012 are also generally referred to as Y capacitors. The second capacitor 1011 and the third capacitor 1012 are not particularly limited, but may be determined according to the frequency band to be suppressed, and a capacitive element having a capacitance of several nanofarads to several microfarads is mainly used. Each capacitor may be connected to the bus bar by combining a plurality of capacitors or a plurality of capacitors as required.
[第4の実施形態]
 図12は電力変換装置1500の構成図である。電力変換装置1500は、第1の実施形態で説明したノイズフィルタ100および第3の実施形態で説明したノイズフィルタ装置1000を組み込んだ構成である。
[Fourth Embodiment]
FIG. 12 is a configuration diagram of the power conversion device 1500. The power conversion device 1500 has a configuration in which the noise filter 100 described in the first embodiment and the noise filter device 1000 described in the third embodiment are incorporated.
 本実施形態では、直流電力と交流電力を相互に変換する電力変換装置1500であって、例えば電気自動車やハイブリッド自動車などにおいて、直流電源1600とモータ1700との間に接続される。電力変換装置1500は、直流電源1600から供給される直流電力を交流電力に変換してモータ1700を駆動する。また、電力変換装置1500は、モータ1700の回生により生成された交流電力を直流電力に変換して直流電源1600を充電する。直流電源1600は、例えばハイブリッド自動車では数百ボルトの高電圧バッテリを用いる。なお、直流電源1600は交流電源をコンバ-タにより直流電圧に変換したものを用いてもよい。例えば、X線診断装置などの医療装置は商用の交流電源を用いるため、整流回路またはコンバ-タを用いて直流電源1600に変換する。 In the present embodiment, it is a power conversion device 1500 that mutually converts DC power and AC power, and is connected between the DC power supply 1600 and the motor 1700 in, for example, an electric vehicle or a hybrid vehicle. The power conversion device 1500 converts the DC power supplied from the DC power supply 1600 into AC power to drive the motor 1700. Further, the power conversion device 1500 converts the AC power generated by the regeneration of the motor 1700 into DC power to charge the DC power supply 1600. The DC power supply 1600 uses a high voltage battery of several hundred volts, for example, in a hybrid vehicle. As the DC power supply 1600, an AC power supply converted into a DC voltage by a converter may be used. For example, since a medical device such as an X-ray diagnostic device uses a commercial AC power supply, it is converted to a DC power supply 1600 by using a rectifier circuit or a converter.
 直流電源1600は陽極ケ-ブル1103、陰極ケーブル1104を介して電力変換装置1500の陽極用電源入力端子1105、陰極用電源入力端子1106にそれぞれ接続される。特に制限されないが、直流電源1600の筐体はフレ-ムグランドGとされ、接地線GNDに接続されている。 The DC power supply 1600 is connected to the anode power input terminal 1105 and the cathode power input terminal 1106 of the power conversion device 1500 via the anode cable 1103 and the cathode cable 1104, respectively. Although not particularly limited, the housing of the DC power supply 1600 is a frame ground G and is connected to the ground wire GND.
 モータ1700は、特に制限されないが、3相電気モータによって構成されている。このモータ1700は、回転子(図示省略)と固定子(図示省略)を備え、回転子に磁石が、固定子にコイルが配置されている。電力変換装置1500は3相の交流電圧を生成し、ACケ-ブル1121を介してモータ1700のコイルに供給する。これにより、回転子が回転することになる。なお、特に制限されないが、モータ1700はその筐体がフレ-ムグランドGとされ、接地線GNDに接続されている。 The motor 1700 is not particularly limited, but is composed of a three-phase electric motor. The motor 1700 includes a rotor (not shown) and a stator (not shown), and a magnet is arranged on the rotor and a coil is arranged on the stator. The power converter 1500 generates a three-phase AC voltage and supplies it to the coil of the motor 1700 via the AC cable 1121. As a result, the rotor will rotate. Although not particularly limited, the housing of the motor 1700 is frame ground G and is connected to the ground wire GND.
 次に、電力変換装置1500について説明する。
 電力変換装置1500は、ノイズフィルタ100、ノイズフィルタ装置1000、平滑コンデンサ1109、電力変換部1110を制御する制御部1111を備えている。そして、電力変換装置1500は、必要に応じて金属性の筐体ケース1112に格納される。
Next, the power conversion device 1500 will be described.
The power conversion device 1500 includes a noise filter 100, a noise filter device 1000, a smoothing capacitor 1109, and a control unit 1111 that controls the power conversion unit 1110. Then, the power conversion device 1500 is housed in a metal housing case 1112 as needed.
 ノイズフィルタ100は、第1の実施形態で説明したノイズフィルタ100を使用するが、ノイズフィルタ100は、必須ではなく、必要に応じて使用する。また、ノイズフィルタ100は、第1の実施形態で説明したノイズフィルタ100が使用できるが、これに限定されない。図12では、ノイズフィルタ100を使用した場合の構成である。 The noise filter 100 uses the noise filter 100 described in the first embodiment, but the noise filter 100 is not essential and is used as needed. Further, as the noise filter 100, the noise filter 100 described in the first embodiment can be used, but the noise filter 100 is not limited thereto. FIG. 12 shows a configuration when the noise filter 100 is used.
 ノイズフィルタ装置1000は、第3の実施形態で説明したノイズフィルタ装置1000が使用できるが、これに限定されない。ノイズフィルタ装置1000のみを本実施形態のフィルタとして、ノイズフィルタ100を省略する事もできる。または、ノイズフィルタ100のみを本実施形態のフィルタとして、ノイズフィルタ装置1000を従来のフィルタとする事もできる。 As the noise filter device 1000, the noise filter device 1000 described in the third embodiment can be used, but the noise filter device 1000 is not limited thereto. It is also possible to omit the noise filter 100 by using only the noise filter device 1000 as the filter of the present embodiment. Alternatively, only the noise filter 100 can be used as the filter of the present embodiment, and the noise filter device 1000 can be used as the conventional filter.
 電力変換装置1500の陽極用電源入力端子1105とノイズフィルタ装置1000の端子1002との間は陽極バスバ1114で接続され、電力変換装置1500の陰極用電源入力端子1106とノイズフィルタ装置1000の端子1004との間は陰極バスバ1115で接続されている。ノイズフィルタ装置1000の端子1003と電力変換部1110の陽極端子と平滑コンデンサ1109の陽極端子との間は陽極バスバ1116で接続されている。ノイズフィルタ装置1000の端子1005と電力変換部1110の陰極端子と平滑コンデンサ1109の陰極端子との間は陰極バスバ1117で接続されている。 The anode power input terminal 1105 of the power converter 1500 and the terminal 1002 of the noise filter device 1000 are connected by an anode bus bar 1114, and the cathode power input terminal 1106 of the power converter 1500 and the terminal 1004 of the noise filter device 1000 Is connected by a cathode bus bar 1115. The terminal 1003 of the noise filter device 1000, the anode terminal of the power conversion unit 1110, and the anode terminal of the smoothing capacitor 1109 are connected by an anode bus bar 1116. The terminal 1005 of the noise filter device 1000, the cathode terminal of the power conversion unit 1110, and the cathode terminal of the smoothing capacitor 1109 are connected by a cathode bus bar 1117.
 電力変換部1110の出力端子とノイズフィルタ100はACバスバ1118で接続される。3相交流に対応したノイズフィルタ100とAC出力端子1120は、必要に応じてACバスバ1119で接続される。電力変換部1110は、半導体素子を内蔵した半導体モジュールによって構成され、直流電力と交流電力を相互に変換する。電力変換部1110内の半導体素子はスイッチングする際に高周波の切り替え電流および電圧が発生するため、これを平滑化する平滑コンデンサ1109が一般的に用いられており、数十マイクロファラッド程度のキャパシタンスを持つコンデンサを複数並列に接続されるがこれに限定されない。陽極バスバ1114、1116、陰極バスバ1115、1117、ACバスバ1118、1119は、銅を用いる事が望ましいがこれに限定されない。 The output terminal of the power conversion unit 1110 and the noise filter 100 are connected by an AC bus bar 1118. The noise filter 100 and the AC output terminal 1120 corresponding to three-phase alternating current are connected by an AC bus bar 1119 as needed. The power conversion unit 1110 is composed of a semiconductor module containing a semiconductor element, and converts DC power and AC power to each other. Since the semiconductor element in the power conversion unit 1110 generates a high-frequency switching current and voltage when switching, a smoothing capacitor 1109 for smoothing the current is generally used, and a capacitor having a capacitance of about several tens of microfarads is generally used. Are connected in parallel, but are not limited to this. It is desirable, but not limited to, copper used for the anode bus bars 1114 and 1116, the cathode bus bars 1115 and 1117, and the AC bus bars 1118 and 1119.
 電力変換部1110内の半導体素子は、IGBT、MOSFET、SiC、GaNなどであるがこれに限定されない。電力変換部1110は、半導体素子をスイッチング(オンとオフの切り替え)することにより所望の電圧や電流を生成する。半導体素子のスイッチング動作は制御部1111によって制御される。 The semiconductor element in the power conversion unit 1110 is, but is not limited to, an IGBT, MOSFET, SiC, GaN and the like. The power conversion unit 1110 generates a desired voltage or current by switching (switching on and off) the semiconductor element. The switching operation of the semiconductor element is controlled by the control unit 1111.
 本実施形態によれば、半導体素子のスイッチングにより生じるノイズ電流を、ノイズフィルタ装置1000、及び/又はノイズフィルタ100により減衰させ、電力変換装置1500の外に漏れるノイズを減少させることが出来る。 According to this embodiment, the noise current generated by the switching of the semiconductor element can be attenuated by the noise filter device 1000 and / or the noise filter 100, and the noise leaking to the outside of the power conversion device 1500 can be reduced.
 以上説明した実施形態によれば、次の作用効果が得られる。
(1)ノイズフィルタ100、1100は、磁性体コア貫通孔600と磁性体コア外面201、202、203、204、205、206、1202、1203とを有する磁性体コア200、1200と、磁性体コア貫通孔600に配置されるバスバ貫通部307、1301、1401と、磁性体コア外面201、202、203、204、205、206、1202、1203に沿って配置されるバスバ外面部301、302、303、304、305、306、1302、1303、1402、1403とを有する複数のバスバ300、400、500、1300、1400と、を備えた。これにより、磁性体コアを大型化することなく、フィルタ効果を増加させノイズを抑制することができる。
According to the embodiment described above, the following effects can be obtained.
(1) The noise filters 100 and 1100 include a magnetic core 200 and 1200 having a magnetic core through hole 600 and a magnetic core outer surface 201, 202, 203, 204, 205, 206, 1202 and 1203, and a magnetic core. Basba penetrating portions 307, 1301, 1401 arranged in the through hole 600 and bus bar outer surface portions 301, 302, 303 arranged along the magnetic core outer surfaces 201, 202, 203, 204, 205, 206, 1202, 1203. , 304, 305, 306, 1302, 1303, 1402, 1403 and a plurality of bus bars 300, 400, 500, 1300, 1400. As a result, the filter effect can be increased and noise can be suppressed without increasing the size of the magnetic core.
 本発明は、上記の実施形態に限定されるものではなく、本発明の特徴を損なわない限り、本発明の技術思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。また、上述の実施形態と変形例を組み合わせた構成としてもよい。 The present invention is not limited to the above-described embodiment, and other embodiments that can be considered within the scope of the technical idea of the present invention are also included within the scope of the present invention as long as the features of the present invention are not impaired. .. Further, the configuration may be a combination of the above-described embodiment and a modified example.
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2020-11706(2020年1月28日出願)
The disclosure content of the next priority basic application is incorporated here as a quotation.
Japanese patent application 202-1706 (filed on January 28, 2020)
 100、1100・・・ノイズフィルタ、200、1200・・・磁性体コア、201、202、203、204、205、206、1202、1203・・・磁性体コア外面、300、400、500、1300、1400・・・バスバ、301、302、303、304、305、306、1302、1303、1402、1403・・・バスバ外面部、308・・・接合部、307、1301、1401・・・バスバ貫通部、403・・・バスバ外面部、600・・・貫通孔、1000・・・ノイズフィルタ装置、1006、1007、1114、1116・・・陽極バスバ、1008、1009、1115、1117・・・陰極バスバ、1010・・・第1のキャパシタ、1011・・・第2のキャパシタ、1012・・・第3のキャパシタ、1103・・・陽極ケ-ブル、1104・・・陰極ケーブル、1105・・・陽極用電源入力端子、1106・・・陰極用電源入力端子、1109・・・平滑コンデンサ、1110・・・電力変換部、1111・・・制御部、1112・・・筐体ケース、1118、1119・・・ACバスバ、1120・・・AC出力端子、1121・・・ACケ-ブル、1500・・・電力変換装置、1600・・・直流電源、1700・・・モータ。 100, 1100 ... Noise filter, 200, 1200 ... Magnetic core, 201, 202, 203, 204, 205, 206, 1202, 1203 ... Magnetic core outer surface, 300, 400, 500, 1300, 1400 ... Bus bar, 301, 302, 303, 304, 305, 306, 1302, 1303, 1402, 1403 ... Bus bar outer surface, 308 ... Joint, 307, 1301, 1401 ... Bus bar penetration , 403 ... outer surface of the bus bar, 600 ... through hole, 1000 ... noise filter device, 1006, 1007, 1114, 1116 ... anode bus bar, 1008, 1009, 1115, 1117 ... cathode bus bar, 1010 ... 1st capacitor, 1011 ... 2nd capacitor, 1012 ... 3rd capacitor, 1103 ... Anode cable, 1104 ... Cathode cable, 1105 ... Power supply for anode Input terminal, 1106 ... Power input terminal for cathode, 1109 ... Smoothing capacitor, 1110 ... Power conversion unit, 1111 ... Control unit, 1112 ... Housing case, 1118, 1119 ... AC Bus bar, 1120 ... AC output terminal, 1121 ... AC cable, 1500 ... Power converter, 1600 ... DC power supply, 1700 ... Motor.

Claims (9)

  1.  磁性体コア貫通孔と磁性体コア外面とを有する磁性体コアと、
     前記磁性体コア貫通孔に配置されるバスバ貫通部と、前記磁性体コア外面に沿って配置されるバスバ外面部とを有する複数のバスバと、
     を備えるノイズフィルタ。
    A magnetic core having a magnetic core through hole and an outer surface of the magnetic core,
    A plurality of bus bars having a bus bar penetration portion arranged in the magnetic core through hole and a bus bar outer surface portion arranged along the outer surface of the magnetic body core.
    Noise filter with.
  2.  請求項1に記載のノイズフィルタにおいて、
     前記複数のバスバの各々は、6か所のバスバ外面部を有し、前記6か所のバスバ外面部は6か所の前記磁性体コア外面に沿って配置されるノイズフィルタ。
    In the noise filter according to claim 1,
    Each of the plurality of bus bars has six bus bar outer surfaces, and the six bus bar outer surfaces are noise filters arranged along the six magnetic core outer surfaces.
  3.  請求項1に記載のノイズフィルタにおいて、
     前記複数のバスバの各々は、4か所のバスバ外面部を有し、前記4か所のバスバ外面部は4か所の前記磁性体コア外面に沿って配置されるノイズフィルタ。
    In the noise filter according to claim 1,
    Each of the plurality of bus bars has four bus bar outer surfaces, and the four bus bar outer surfaces are noise filters arranged along the four magnetic core outer surfaces.
  4.  請求項2または請求項3に記載のノイズフィルタにおいて、
     前記バスバは3本であり、3相交流に対応したノイズフィルタ。
    In the noise filter according to claim 2 or 3.
    The noise filter has three bus bars and is compatible with three-phase alternating current.
  5.  請求項1に記載のノイズフィルタにおいて、
     前記複数のバスバの各々は、2か所のバスバ外面部を有し、前記2か所のバスバ外面部は2か所の前記磁性体コア外面に沿って配置されるノイズフィルタ。
    In the noise filter according to claim 1,
    Each of the plurality of bus bars has two bus bar outer surfaces, and the two bus bar outer surfaces are noise filters arranged along the two magnetic core outer surfaces.
  6.  請求項5に記載のノイズフィルタにおいて、
     前記バスバ外面部は、前記磁性体コア貫通孔に垂直な前記磁性体コア外面に沿って配置されるノイズフィルタ。
    In the noise filter according to claim 5,
    The outer surface of the bus bar is a noise filter arranged along the outer surface of the magnetic core perpendicular to the through hole of the magnetic core.
  7.  請求項5または請求項6に記載のノイズフィルタにおいて、
     前記バスバは2本であり、直流に対応したノイズフィルタ。
    In the noise filter according to claim 5 or 6.
    The bus bar has two, and is a noise filter corresponding to direct current.
  8.  請求項5または請求項6に記載のノイズフィルタと、
     前記バスバに接続されたキャパシタとを備えるノイズフィルタ装置。
    The noise filter according to claim 5 or 6,
    A noise filter device including a capacitor connected to the bus bar.
  9.  請求項1、請求項2、請求項3、請求項5のいずれか一項に記載のノイズフィルタと、
     前記ノイズフィルタに接続され、直流電力と交流電力を相互に変換する電力変換部とを備える電力変換装置。
    The noise filter according to any one of claims 1, 2, 2, 3, and 5.
    A power conversion device that is connected to the noise filter and includes a power conversion unit that converts DC power and AC power to each other.
PCT/JP2020/031205 2020-01-28 2020-08-19 Noise filter, noise filter device, and power conversion device WO2021152888A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE112020005719.4T DE112020005719T5 (en) 2020-01-28 2020-08-19 NOISE FILTER, NOISE FILTER DEVICE AND ENERGY CONVERSION DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-011706 2020-01-28
JP2020011706A JP7454952B2 (en) 2020-01-28 2020-01-28 Noise filters and power converters

Publications (1)

Publication Number Publication Date
WO2021152888A1 true WO2021152888A1 (en) 2021-08-05

Family

ID=77078515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031205 WO2021152888A1 (en) 2020-01-28 2020-08-19 Noise filter, noise filter device, and power conversion device

Country Status (3)

Country Link
JP (1) JP7454952B2 (en)
DE (1) DE112020005719T5 (en)
WO (1) WO2021152888A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022105371B3 (en) 2022-03-08 2023-06-29 Schaeffler Technologies AG & Co. KG Electrically operable final drive train
DE102022206795A1 (en) 2022-07-04 2024-01-04 Magna powertrain gmbh & co kg Busbar device and method for manufacturing a busbar device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119810A (en) * 1982-12-27 1984-07-11 Toshiba Corp Interphase reactor device
JPH0296798U (en) * 1989-01-19 1990-08-01
JP2014120518A (en) * 2012-12-13 2014-06-30 Nec Tokin Corp Inductance element and noise filter
WO2017051551A1 (en) * 2015-09-24 2017-03-30 日立オートモティブシステムズ株式会社 Noise filter for in-vehicle device, and in-vehicle device
JP2018050417A (en) * 2016-09-23 2018-03-29 本田技研工業株式会社 Bus bar unit and bus bar unit manufacturing method
JP2019012894A (en) * 2017-06-29 2019-01-24 矢崎総業株式会社 Noise filter and noise reduction unit

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108945365A (en) 2018-07-17 2018-12-07 浙江知瑞科技有限公司 A kind of steam turbine equipment

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59119810A (en) * 1982-12-27 1984-07-11 Toshiba Corp Interphase reactor device
JPH0296798U (en) * 1989-01-19 1990-08-01
JP2014120518A (en) * 2012-12-13 2014-06-30 Nec Tokin Corp Inductance element and noise filter
WO2017051551A1 (en) * 2015-09-24 2017-03-30 日立オートモティブシステムズ株式会社 Noise filter for in-vehicle device, and in-vehicle device
JP2018050417A (en) * 2016-09-23 2018-03-29 本田技研工業株式会社 Bus bar unit and bus bar unit manufacturing method
JP2019012894A (en) * 2017-06-29 2019-01-24 矢崎総業株式会社 Noise filter and noise reduction unit

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022105371B3 (en) 2022-03-08 2023-06-29 Schaeffler Technologies AG & Co. KG Electrically operable final drive train
DE102022206795A1 (en) 2022-07-04 2024-01-04 Magna powertrain gmbh & co kg Busbar device and method for manufacturing a busbar device

Also Published As

Publication number Publication date
JP2021118476A (en) 2021-08-10
JP7454952B2 (en) 2024-03-25
DE112020005719T5 (en) 2022-10-06

Similar Documents

Publication Publication Date Title
US10277116B2 (en) On-vehicle power conversion apparatus
US9345160B2 (en) Electronic device
EP3654504B1 (en) Voltage filter and power conversion device
JP6041583B2 (en) Power converter
CN107404218B (en) Power conversion device
WO2021152888A1 (en) Noise filter, noise filter device, and power conversion device
JP5217061B2 (en) Transformer
JP3622782B2 (en) Semiconductor device
JP2007181341A (en) Converter device
JP6980630B2 (en) High voltage filter and power converter
JP3830669B2 (en) Power converter
JP2001231268A (en) Power conversion device
JP5353522B2 (en) Power converter
CN116530005A (en) Power conversion device
JP2011041415A (en) Power converter
WO2021250728A1 (en) Noise filter and power conversion device using same
JP7235794B2 (en) Power converter controller
CN112260560B (en) power conversion device
WO2021235150A1 (en) Noise filter and power conversion device
JP2010252519A (en) Rotary electric machine, and motor
WO2023090263A1 (en) Power conversion device and method for manufacturing same
WO2018230012A1 (en) Power conversion device
JP2019004363A (en) AC filter
WO2023153225A1 (en) Common-mode voltage canceller
JP2010193546A (en) Actuator drive circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916989

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20916989

Country of ref document: EP

Kind code of ref document: A1