WO2021152885A1 - Sensor control circuit and device with built-in sensor - Google Patents

Sensor control circuit and device with built-in sensor Download PDF

Info

Publication number
WO2021152885A1
WO2021152885A1 PCT/JP2020/029930 JP2020029930W WO2021152885A1 WO 2021152885 A1 WO2021152885 A1 WO 2021152885A1 JP 2020029930 W JP2020029930 W JP 2020029930W WO 2021152885 A1 WO2021152885 A1 WO 2021152885A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sensor
control circuit
transmission element
transmission
Prior art date
Application number
PCT/JP2020/029930
Other languages
French (fr)
Japanese (ja)
Inventor
北野 幹夫
Original Assignee
北野 幹夫
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北野 幹夫 filed Critical 北野 幹夫
Publication of WO2021152885A1 publication Critical patent/WO2021152885A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/42Photometry, e.g. photographic exposure meter using electric radiation detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/12Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof structurally associated with, e.g. formed in or on a common substrate with, one or more electric light sources, e.g. electroluminescent light sources, and electrically or optically coupled thereto
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters

Definitions

  • the present invention relates to a sensor control circuit and a sensor-embedded device, and relates to, for example, a sensor control circuit and a sensor-embedded device having a transmitting element for transmitting a detection signal and a receiving element for receiving the detection signal.
  • Patent Document 1 discloses an example of a method of controlling the output intensity of a transmitting element in a sensor system.
  • the semiconductor laser drive circuit described in Patent Document 1 is a semiconductor laser drive circuit for a semiconductor laser element including a semiconductor laser diode in which cathodes are commonly connected to each other and a photodiode for monitoring, and the semiconductor laser.
  • the anode of the diode is connected to the power supply line side, and the anode of the monitoring photodiode is connected to the ground line side via a voltage generating means that generates a voltage corresponding to the amount of current flowing through the monitoring photodiode.
  • a voltage generating means that generates a voltage corresponding to the amount of current flowing through the monitoring photodiode.
  • the semiconductor laser drive circuit described in Patent Document 1 controls to keep the light emission output of the semiconductor laser diode serving as a light emitting element constant, and the amount of light emission output of the semiconductor laser diode regardless of the presence or absence of an object to be detected. Is constant, and there is a problem that the power consumption of the light emitting element used for detecting the object to be detected is high.
  • One aspect of the sensor control circuit is an output terminal that outputs a transmission element control signal that controls the transmission intensity of the detection signal to a transmission element that transmits a detection signal to irradiate the object to be detected, and the detection.
  • the receiving element that receives the signal has an input terminal into which a monitor signal whose signal level fluctuates according to the magnitude of the receiving intensity of the detected signal is input, and the transmitting element acquired by the monitor signal to the receiving element.
  • the transmission element control circuit includes a transmission element control circuit that generates the transmission element control signal based on the amount of change in the transmission rate of the detection signal, and the transmission element control circuit cancels the change in the transmission element control signal. To change.
  • One aspect of the sensor-embedded device includes the sensor control circuit, the transmitting element, and the receiving element.
  • the sensor control circuit and the sensor-embedded device it is possible to suppress the transmission intensity of the transmitting element when the transmission rate of the detection signal is high and suppress the power consumption.
  • FIG. 5 is a block diagram of a sensor system to which the sensor control circuit according to the first embodiment is applied. It is a figure explaining the sensor detection type in a sensor system. It is a block diagram of the sensor system which applied the reflection type sensor circuit part in the sensor control circuit which concerns on Embodiment 1. FIG. It is a block diagram of the sensor system explaining the detailed structure of the sensor control circuit which concerns on Embodiment 1. FIG. It is a graph explaining the operation characteristic of the sensor control circuit which concerns on Embodiment 1. FIG. It is a block diagram of the sensor system which applied the reflection type sensor circuit part in the sensor control circuit which concerns on Embodiment 2, and is the output characteristic graph.
  • Embodiment 1 In order to clarify the explanation, the following description and drawings have been omitted or simplified as appropriate.
  • each element described in the drawing as a functional block that performs various processing can be composed of a CPU (Central Processing Unit), a memory, and other circuits in terms of hardware, and a memory in terms of software. It is realized by the program loaded in. Therefore, it is understood by those skilled in the art that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof, and is not limited to any of them.
  • the same elements are designated by the same reference numerals, and duplicate explanations are omitted as necessary.
  • Non-temporary computer-readable media include various types of tangible storage media.
  • Examples of non-temporary computer-readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (Read Only Memory) CD-Rs, CDs. -R / W, including semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)).
  • the program may also be supplied to the computer by various types of temporary computer readable medium. Examples of temporary computer-readable media include electrical, optical, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • a sensor control circuit a sensor system including a transmitting element and a receiving element which are sensor elements controlled by the sensor control circuit, and a sensor-embedded device that performs various controls using the output signal of the sensor system will be described. do.
  • FIG. 1 shows a block diagram of a sensor system 1 to which the sensor control circuit 10 according to the first embodiment is applied.
  • the sensor system 1 according to the first embodiment includes a sensor control circuit 10 and a sensor circuit unit 20.
  • the sensor control circuit 10 has a transmission element control circuit 11, an input terminal Ti, and an output terminal To.
  • the output terminal To outputs a transmission element control signal Vout that controls the transmission intensity of the detection signal to the transmission element 21 that transmits the detection signal to irradiate the object to be detected 100.
  • the input terminal Ti is input with a monitor signal Vrec in which the receiving element 22 that receives the detection signal changes the signal level according to the magnitude of the reception intensity of the detection signal.
  • the transmission element control circuit 11 generates a transmission element control signal Vout based on the amount of change in the transmission rate ⁇ sen of the detection signal from the transmission element 21 acquired by the monitor signal Vrec to the reception element 22. More specifically, the transmission element control circuit 11 changes the transmission element control signal Vout in a direction that cancels the change in the transmission rate ⁇ sen.
  • the transmission rate ⁇ sen of the detection signal indicates the ratio of the detection signal output from the transmission element 21 and the reception signal received by the reception element 22.
  • the transmission rate ⁇ sen is the distance between the transmitting element 21 and the receiving element 22, the ratio at which the detected signal is blocked by the detected object, the reflectance of the detected signal by the detected object, the distance between the transmitting element 21 or the receiving element 22 and the detected object, and the like. Varies depending on.
  • One of the features of the sensor system 1 described below is that the signal level of the transmission element control signal Vout is controlled based on the amount of change in the transmission element ⁇ sen, not the absolute value of the transmission rate ⁇ sen.
  • the sensor circuit unit 20 has a transmitting element 21 and a receiving element 22.
  • the transmission element 21 outputs a detection signal whose output intensity increases or decreases according to the signal level of the transmission element control signal Vout generated in the sensor control circuit 10.
  • the irradiation range of this detection signal is the detection range of the object to be detected 100 in the sensor system 1.
  • the receiving element 22 receives the detection signal output by the transmitting element 21 and outputs a monitor signal Vrec whose signal level increases or decreases according to the received amount. The details of the transmission element control circuit 11 will be described later.
  • the sensor control circuit 10 acquires the amount of change in the transmission rate ⁇ sen by the monitor signal Vrec and transmits the change in the transmission rate ⁇ sen in the direction of canceling the change.
  • the element control signal Vout is changed.
  • the transmission element 21 is controlled to weaken the output intensity of the detection signal.
  • the transmission element control signal Vout changes according to the change in the rate of change ⁇ sen. That is, the change in the transmission element ⁇ sen is reflected in the change in the transmission element control signal Vout, and this transmission element control signal Vout corresponds to detecting the magnitude of the transmission element ⁇ sen.
  • FIG. 2 shows a diagram for explaining the sensor detection type in the sensor system.
  • the transmitting element 21 and the receiving element 22 function as a pair with respect to the arrangement of the transmitting element and the receiving element.
  • typical types are transmission type, reflection type, and regression type.
  • Three reflective sensor detection types are shown.
  • the transmitting element 21 and the receiving element 22 are arranged at positions facing each other, and the detection signal is transmitted from the transmitting element 21 toward the receiving element 22.
  • the transmissibility ⁇ sen changes when the object to be detected 100 invades the detection range formed by the detection signal. Specifically, when the amount of the object to be detected 100 invading the detection range increases, the amount of the detection signal to be received by the receiving element 22 decreases, so that the transmission rate ⁇ sen decreases. That is, the amount of reception in the receiving element 22 is reduced.
  • the sensor control circuit 10 changes the transmission element control signal Vout so as to increase the transmission amount of the transmission element 21.
  • the sensor control circuit 10 changes the transmission element control signal Vout so as to reduce the transmission amount of the transmission element 21.
  • the receiving amount of the receiving element 22 changes not only by the amount of penetration of the object to be detected 100 into the detection range but also by the distance between the transmitting element 21 and the receiving element 22. At this time, the relationship between the change in the received amount and the change in the transmission element control signal Vout is the same as the above-mentioned change.
  • the transmitting surface of the transmitting element 21 and the receiving surface of the receiving element 22 are arranged so as to face in the same direction. Then, in the reflection type, the detection signal output by the transmitting element 21 is reflected by the object to be detected 100, and the receiving element 22 receives the detection signal reflected by the object to be detected 100. Then, in the reflection type, the transmissibility ⁇ sen changes as the distance between the receiving element 22 (or the transmitting element 21) and the object to be detected 100 changes. Specifically, as the distance between the receiving element 22 and the object to be detected 100 increases, the amount of the detection signal reflected by the object to be detected 100 and reaches the receiving element 22 decreases, so that the transmission rate ⁇ sen becomes small.
  • the sensor control circuit 10 changes the transmission element control signal Vout so as to increase the transmission amount of the transmission element 21.
  • the sensor control circuit 10 changes the transmission element control signal Vout so as to reduce the transmission amount of the transmission element 21.
  • the reception amount of the receiving element 22 changes even when the object to be detected 100 is moved in the vertical direction of the drawing with respect to the detection range. At this time, the relationship between the change in the received amount and the change in the transmission element control signal Vout is the same as the above-mentioned change.
  • the receiving element 22 receives the detection signal by directing the transmitting surface of the transmitting element 21 and the receiving surface of the receiving element 22 in the same direction and reflecting the detection signal with the reflector. Then, in the regression type, the object 100 to be detected, which has a sufficiently lower reflectance than the reflector, blocks the detection signal reflected by the reflector (that is, the object 100 to be detected invades the detection range), so that the transmission rate ⁇ sen is increased. Change. Further, in the regression reflection type, the transmissibility ⁇ sen changes as the distance between the receiving element 22 (or the transmitting element 21) and the reflector changes.
  • the sensor control circuit 10 changes the transmission element control signal Vout so as to increase the transmission amount of the transmission element 21.
  • the sensor control circuit 10 changes the transmission element control signal Vout so as to reduce the transmission amount of the transmission element 21.
  • the regression reflection type it is premised that there is no influence of reflection other than the reflector, and it is necessary to select the object to be detected 100 having a small degree of reflection.
  • the sensor control circuit 10 will be described in more detail.
  • the transmitting element 21 and the receiving element 22 used in the sensor control circuit 10 an element that transmits and receives a medium propagating in space as a detection signal is used. Visible light, invisible light, sound, ultrasonic waves, heat, water pressure, radio waves, and the like can be considered as the medium propagating in space. Therefore, in the following, an example of the sensor system 1 using the light emitting unit 23 and the light receiving unit 24 for transmitting and receiving visible light signals as the transmitting element 21 and the receiving element 22 will be described. Further, in the following description, a sensor system 1 that uses a sensor having a reflection type sensor detection type as the sensor circuit unit 20 will be described as an example.
  • FIG. 3 shows a block diagram of the sensor system 1 to which the reflection type sensor circuit unit 20 is applied in the sensor control circuit 10 according to the first embodiment.
  • the sensor control circuit 10 gives a transmission element control signal Vout to the light emitting unit 23 and receives a monitor signal Vrec from the light receiving unit 24. Then, the sensor control circuit 10 outputs the transmission element control signal Vout based on the magnitude of the difference signal between the reference signal Vref and the monitor signal Vrec, which is the control reference, in the transmission element control circuit 11. Further, the transmission element control signal Vout is generated by the difference signal amplifier 12.
  • the sensor control circuit 10 controls that the light emitted by the light emitting unit 23 becomes weaker as the object to be detected 100 is closer to the sensor circuit unit 20.
  • the sensor control circuit 10 determines the intensity of light emitted by the light emitting unit 23 so as to suppress fluctuations in the amount of light received by the light receiving unit 24 with respect to the distance between the object to be detected 100 and the sensor circuit unit 20. It can be said to control.
  • FIG. 4 shows a block diagram of the sensor system 1 for explaining the detailed configuration of the sensor control circuit 10 according to the first embodiment.
  • the detection signal transmitted by the transmitting element 21 is reflected by the object to be detected 100 and received by the receiving element 22 in FIG. NS.
  • the sensor control circuit 10 includes a transmission element control circuit 11.
  • the transmission element control circuit 11 acquires the amount of change in the transmission rate ⁇ sen of the detection signal from the light emitting unit 23 to the light receiving unit 24 by the monitor signal Vrec, and uses the value of the reference signal Vref and the amount of change in the transmission rate ⁇ sen. , The transmission element control signal Vout is changed in the direction of canceling the change of the transmission rate ⁇ sen.
  • the difference signal amplifier 12 is used in the example shown in FIG.
  • the configuration of the difference signal amplifier 12 described below is an example for realizing the difference signal amplifier 12, and other types or various amplifier circuits having a circuit configuration can be used.
  • the difference signal amplifier 12 has an amplifier OP, a first impedance element (for example, resistor R1), and a second impedance element (for example, resistor R2).
  • the impedance element is not limited to a single resistor, but includes a capacitor, a circuit including a resistor and a capacitor, or other elements and circuits having various forms of impedance.
  • the amplifier OP is an amplifier that amplifies and outputs the voltage difference between two input signals.
  • the constant voltage source outputs the reference signal Vref. This reference signal Vref is given to the forward rotation input terminal of the amplifier OP.
  • the resistor R2 is connected between the output terminal of the amplifier OP and the inverting input terminal.
  • a monitor signal Vrec is given to one end of the resistor R1, and the other end is connected to the inverting input terminal of the amplifier OP.
  • the gain of the difference signal amplifier 12 using the amplifier OP in the sensor control circuit 10 can be changed by adjusting the resistance values of the resistors R1 and R2. Further, the output signal of the amplifier OP becomes the transmission element control signal Vout.
  • the transmission element control signal Vout is calculated by the equation (1).
  • Vout ⁇ Vref ⁇ (R1 + R2) / R1-Vrec ⁇ (R2 / R1) Vref + (Vref-Vrec) ⁇ (R2 / R1) ⁇ ⁇ ⁇ (1) That is, the difference signal amplifier 12 adds the value obtained by multiplying the difference between the value of the reference signal Vref and the value of the monitor signal Vrec by the ratio of the resistors R1 and R2 to the value of the reference signal Vref, and adds the value to the transmission element control signal. Let it be the signal level of Vout.
  • the light emitting unit 23 has a light emitting element Dtran and a resistor R4.
  • a transmission element control signal Vout is given to the anode, and the cathode is connected to the ground node via the resistor R4.
  • the amount of light emitted from the light emitting element Dtran changes depending on the flowing current.
  • the current flowing through the light emitting element Dtran is set by using the resistor R4.
  • the circuit configuration of the light emitting unit 23 shown in FIG. 4 is an example, and other circuit configurations may be used.
  • the light receiving unit 24 has a light receiving element Trec and a resistor R5.
  • a power supply voltage VCS is applied to the collector, and the emitter is connected to the ground node via the resistor R5.
  • the light receiving element Trec outputs a current having a magnitude corresponding to the magnitude of the light receiving amount from the emitter.
  • the signal level of the monitor signal Vrec is determined by converting the current output from the emitter of the light receiving element Trec into a voltage using the resistor R5. That is, since the signal level of the monitor signal Vrec fluctuates according to the fluctuation of the transmission rate ⁇ sen of the detection signal and the fluctuation of the received light amount, the sensor control circuit 10 changes the transmission rate ⁇ sen by this monitor signal Vrec. Can be grasped.
  • the circuit configuration of the light receiving unit 24 shown in FIG. 4 is an example using a phototransistor, and may be another circuit configuration (for example, a configuration using a photodiode).
  • the forward rotation input terminal and the inverting input terminal of the amplifier OP have the same potential due to a virtual short circuit. That is, the amplifier OP operates so that the inverting input voltage Vm of the inverting input terminal matches the value of the reference signal Vref given to the forward rotation input terminal regardless of the value of the monitor signal Vrec. More specifically, the difference signal amplifier 12 changes the transmission element control signal Vout so that the inverting input voltage Vm matches the value of the reference signal Vref when the monitor signal Vrec changes.
  • the transmitting element control circuit 11 acquires the amount of change in the transmission rate ⁇ sen of the detection signal from the light emitting unit 23 to the receiving element 22 by the monitor signal Vrec, and changes the value of the reference signal Vref and the transmission rate ⁇ sen.
  • the function of changing the transmission element control signal Vout in the direction of canceling the change of the transmission rate ⁇ sen is realized by using the amount.
  • FIG. 5 shows a graph for explaining the operating characteristics of the sensor control circuit 10 according to the first embodiment.
  • the horizontal axis shows the distance between the light receiving unit 24 and the light emitting unit 23 and the object to be detected 100
  • the vertical axis shows the magnitude of the transmitting element control signal Vout.
  • a curve in which the value of the resistor R2 is changed in four ways while the resistor R1 is constant is shown.
  • the transmission element control signal Vout increases as the distance between the light receiving unit 24 and the light emitting unit 23 and the object to be detected 100 increases. Further, the magnitude of the transmission element control signal Vout reaches an upper limit value (for example, power supply voltage) when the distance between the light receiving unit 24 and the light emitting unit 23 and the object to be detected 100 increases. Then, as shown in FIG. 5, it can be seen that by changing the resistor R2, the range in which the transmission element control signal Vout changes linearly and the slope of the change in the transmission element control signal Vout can be changed.
  • an upper limit value for example, power supply voltage
  • the amount of the detected object 100 blocking the detection signal or the distance between the detected object 100 and the receiving element 22 or the transmitting element 21 changes. If so, the transmission rate ⁇ -sen of the detection signal changes. Then, the sensor control circuit 10 according to the first embodiment acquires the change amount of the transmission rate ⁇ sen of the detection signal by the monitor signal Vrec in the transmission element control circuit 11, and changes the value of the reference signal Vref and the transmission rate ⁇ sen. And, the transmission element control signal Vout is changed in the direction of canceling the change of the transmission rate ⁇ sen.
  • the transmission intensity of the transmitting element 21 is increased so as to compensate for the decrease in the received amount. Control to increase can be performed. That is, in the sensor system 1 according to the first embodiment, the detected object 100 can be detected while suppressing the power consumption of the transmitting element 21 in the standby state waiting for the detection of the detected object 100.
  • the transmission element control signal Vout depends on the distance between the sensor circuit unit 20 and the object to be detected 100. Can be changed.
  • the power consumption of the distance sensor that detects a change in the object to be detected 100 such that the distance is short in the steady state and the distance is long at the timing to be detected. Can be reduced.
  • the effect of reducing the power consumption is obtained.
  • Such a distance sensor can be used, for example, as a sensor for detecting the amount of pressing of a piano keyboard.
  • the transmission intensity of the transmission element 21 is increased so as to compensate for the decrease.
  • the reception level can be maintained within a range in which the output on the transmitting side is not saturated, and it is possible to prevent the received signal from becoming too small to be detected. That is, in the sensor system 1 according to the first embodiment, the detection range can be made wider than that of the conventional sensor system.
  • FIG. 6 shows a block diagram of the sensor system 2 to which the reflection type sensor circuit unit 20 is applied in the sensor control circuit 30 according to the second embodiment and an output characteristic graph thereof.
  • the sensor control circuit 30 according to the second embodiment replaces the reference signal Vref in the sensor control circuit 10 according to the first embodiment with a reference signal Vref including a DC component and an AC component. be.
  • the reference signal including the DC component and the AC signal as the reference signal in this way, the sensor system 2 according to the second embodiment becomes a system for feeding back the signal including the DC component and the AC component.
  • the output characteristics of the sensor control circuit 30 according to the second embodiment show that the DC component and the AC component become longer as the distance between the light emitting unit 23 and the light receiving unit 24 and the object to be detected 100 increases. Both get bigger.
  • FIG. 6 uses a reference signal containing a direct current component and an AC component, it is also possible to use a reference signal containing only an AC component in the case of a medium that does not transmit direct current. That is, what kind of component is included as the reference signal can be determined by the characteristics of the medium for transmitting the detection signal and the sensor used as the sensor circuit unit 20.
  • the output by the DC component and the output by the AC component are 2 You can get one.
  • an application such as a sensor light that discourages intrusion by turning on a light to notify an intruder that an intrusion has been detected.
  • DC detection notification to the intruder by the change in the brightness of the lighting
  • An application that uses detection of AC components with different frequencies for notification is conceivable.
  • the lighting that is the transmitter is driven by both AC and DC signals.
  • the AC signal is set to a different frequency for each device in multiple "security lighting devices with sensors”. It is conceivable that only the AC component of the output of the above is mixed, the AC component after mixing is multiplexed by FDM (Frequency Division Multiplexing), and the higher system such as the CPU is notified by one transmission line.
  • FDM Frequency Division Multiplexing
  • the AC component included in the reference signal Vref not only a signal having a constant amplitude and frequency but also a signal having a fluctuating amplitude and frequency such as a music signal can be used. Further, only one of the amplitude and frequency of this AC component may be constant.
  • FIG. 7 shows a block diagram of the sensor system 3 to which the reflection type sensor circuit unit 20 is applied in the sensor control circuit 40 according to the third embodiment and an output characteristic graph thereof.
  • the sensor control circuit 40 As shown in FIG. 7, the sensor control circuit 40 according to the third embodiment has a DC component (DC in the figure) and an AC component (AC in the figure) as a reference signal Vref in the sensor control circuit 10 according to the first embodiment. ) And a signal including. Further, the sensor control circuit 40 replaces the transmission element control circuit 11 with the transmission element control circuit 41.
  • the transmission element control circuit 41 is the one in which the DC component removal circuit 42 is added in addition to the difference signal amplifier 12.
  • the DC component removing circuit 42 removes the DC component of the signal obtained from the light receiving unit 24 to generate a monitor signal Vrec to be given to the difference signal amplifier 12.
  • the sensor system 3 By using a signal obtained by synthesizing a DC component and an AC component as a reference signal and returning only the AC component of the monitor signal Vrec, the sensor system 3 according to the third embodiment has a transmission element control signal. It is possible to construct a system in which only the AC component contained in Vout fluctuates. For example, even if it is not possible to transmit only the AC signal and the DC signal and the AC signal are transmitted, the effect is the same as if only the AC signal is transmitted, and in the third embodiment, the effect is the same. In comparison with the "security lighting with sensor" of the second embodiment, in order to detect the intrusion without notifying the intruder for the purpose of catching the intruder, sensing can be performed without changing the brightness of the lighting. The point is different.
  • the DC component of the transmission element control signal Vout of the sensor system 3 according to the third embodiment is the distance between the light emitting unit 23, the light receiving unit 24, and the object to be detected 100. It is constant regardless.
  • the AC component of the transmission element control signal Vout of the sensor system 3 according to the third embodiment becomes larger as the distance between the light emitting unit 23 and the light receiving unit 24 and the object to be detected 100 increases. This is because only the AC component of the transmission element control signal Vout is fed back by the DC component removing circuit 42.
  • the sensor circuit unit 20 can be driven by a signal containing only an AC component as a transmission element or a reception element.
  • an element for example, a speaker and a microphone when sound is used as a detection signal
  • the difference signal amplifier 12 is configured such that the output of the difference signal amplifier 12 changes in both directions ⁇ with reference to the ground node with ⁇ power supply. That is, as the reference signal, various signal sources can be used, such as a DC signal only, a signal obtained by combining a DC signal and an AC signal, and an AC signal only, depending on the application and specifications of the sensor system.
  • FIG. 8 shows a block diagram of the sensor system 4 to which the reflection type sensor circuit unit 20 is applied in the sensor control circuit 50 according to the fourth embodiment.
  • the sensor control circuit 50 according to the fourth embodiment has a transmission element control circuit 51 instead of the transmission element control circuit 11 according to the first embodiment.
  • the transmission element control circuit 51 is a difference signal amplifier 12 plus a direct feedback circuit 52.
  • the size of the transmission element control signal Vout1 corresponding to the transmission element control signal Vout of another embodiment and the magnitude of the AC component of the transmission element control signal Vout1 are used as output signals.
  • the detection result signal Vout2 whose signal level changes proportionally is output.
  • the direct feedback circuit 52 according to the fourth embodiment generates a feedback signal whose signal level changes in proportion to the magnitude of the AC component of the transmission element control signal Vout1, and is on the inverting input terminal side of the difference signal amplifier 12. Give feedback to.
  • the direct feedback circuit 52 includes a filter circuit 53, an amplitude detection circuit 54, and an amplifier 55.
  • the filter circuit 53 extracts the AC component of the transmission element control signal Vout1.
  • the filter circuit 53 can use a high-pass filter, a band-pass filter, or the like when extracting the AC component of the transmission element control signal Vout1.
  • a low-pass filter is used as the filter circuit 53.
  • a high-pass filter or a band-pass filter is used as the filter circuit 53 in order to extract the AC component.
  • the amplitude detection circuit 54 generates a detection result signal Vout2 having a DC component corresponding to the magnitude of the amplitude of the AC component extracted by the filter circuit 53.
  • the amplifier 55 amplifies or attenuates the detection result signal Vout2 by a preset gain k to generate a feedback signal Vfb. This Vfb is combined with the monitor signal Vrec output by the DC component removing circuit 42, and is input to the inverting input terminal of the difference signal amplifier 12.
  • FIG. 9 shows an output characteristic graph of the sensor control circuit 50 according to the fourth embodiment.
  • the range of the fluctuation width of the signal of the AC component of the transmission element control signal Vout is shown by hatching with diagonal lines.
  • the swing width of the AC component increases according to the distance between the light emitting unit 23 and the light receiving unit 24 and the object to be detected 100. This is because the sensor control circuit 50 has a signal path for feeding back the AC component of the reference signal via the light emitting unit 23 and the light receiving unit 24.
  • the detection result signal Vout2 is directly generated by the feedback circuit 52 according to the change in the magnitude of the AC component of the transmission element control signal Vout. That is, the signal level of the detection result signal Vout2 increases according to the distance between the light emitting unit 23 and the light receiving unit 24 and the object to be detected 100.
  • the gain k of the amplifier 55 when the gain k of the amplifier 55 is set to 1, the DC component of the transmission element control signal Vout1 is generated by inverting and amplifying the difference value between the detection result signal Vout2 and the reference signal Vref.
  • the gain k of the amplifier 55 can be selected as an appropriate value other than 1 in consideration of the feedback amount of the detection result signal Vout2 to be fed back and the gain of the entire direct feedback circuit 52.
  • the alternating current of the light emitting unit 23 It is possible to prevent the emission intensity based on the signal from being saturated.
  • the signal level of the DC component of the transmission element control signal Vout1 decreases according to the distance between the light emitting unit 23 and the light receiving unit 24 and the object to be detected, for example.
  • the light emitting unit 23 is used as the transmitting element 21, the amount of light emitted that can be visually observed increases as the distance between the object to be detected 100 and the sensor circuit unit 20 decreases.
  • the feedback signal Vfb directly generated by the feedback circuit 52 is fed back to the inverting input terminal of the difference signal amplifier 12, but the destination to which the feedback signal Vfb is given is the forward rotation input terminal of the difference signal amplifier 12. It can also be used, or it can be a transmission element control signal Vout1.
  • the configuration for adjusting the polarity of the feedback signal Vfb according to the destination is an improvement within a range that can be easily conceived by those skilled in the art, description thereof will be omitted here.
  • the direct feedback system configured by the direct feedback circuit 52 of the fourth embodiment, since the AC component is converted to DC and then negative feedback is provided, the change direction of the DC output is opposite to that of the AC output, but the positive feedback By returning with, the direction of change of direct current can be made the same as that of alternating current output.
  • FIG. 10 shows a block diagram of the sensor system 5 to which the reflection type sensor circuit unit 20 is applied in the sensor control circuit 60 according to the fifth embodiment.
  • the digital arithmetic circuit 61 is used as the transmission element control circuit 11 according to the first embodiment. Further, the digital arithmetic circuit 61 includes an analog-to-digital conversion circuit 62, a register 63, a signal processing unit 64, and a digital-to-analog conversion circuit 65. In the example shown in FIG. 10, the digital arithmetic circuit 61 includes the analog-to-digital conversion circuit 62, the register 63, the signal processing unit 64, and the digital-to-analog conversion circuit 65 in the package. However, the analog-to-digital conversion circuit 62 and the register 63 are included in the package.
  • the signal processing unit 64 and the digital-to-analog conversion circuit 65 may be incorporated as separate parts, or a digital IO (for example, a speaker driven by a digital amplifier and a MEMS microphone) may be incorporated in the light emitting unit 23 and the light receiving unit 24. Can be directly connected to the signal processing unit 64 without including the analog-to-digital conversion circuit 62 and the digital-to-analog conversion circuit 65. Further, in the digital arithmetic circuit 61, it is assumed that the signal processing unit 64 executes a sensor control program that controls the sensor circuit unit 20. Further, the register 63 includes a reference value, and this reference value can be given from the outside without using the register 63. Further, the digital arithmetic circuit 61 having the same function as the transmission element control circuit 11 according to the first embodiment can be configured without using the reference value itself.
  • the analog-to-digital conversion circuit 62 converts the monitor signal Vrec having an analog value into a digital value.
  • the register 63 holds a reference value that is a value of the reference signal Vref, which is the signal level of the reference signal.
  • the signal processing unit 64 performs the control performed by the difference signal amplifier 12 composed of the amplifier OP, the resistor R1 and the resistor R2 according to the first embodiment. Specifically, the value obtained by amplifying the voltage difference between the reception level signal Vrec and the reference signal Vref with the gain A of the difference signal amplifier 12 according to the first embodiment is calculated as the value of the transmission element control signal Vout.
  • the digital-to-analog conversion circuit 65 converts the digital value of the transmission element control signal Vout calculated by the signal processing unit 64 into an analog value, and outputs the transmission element control signal Vout having a voltage value corresponding to the analog value.
  • a sensor control circuit 60 that performs the same function as the sensor control circuit 10 according to the first embodiment can be configured by a digital circuit. Further, by improving the processing in the signal processing unit 64, it is possible to realize the control described in the second to fourth embodiments.
  • FIG. 11 shows a block diagram of the sensor embedded device 6 according to the sixth embodiment.
  • the light emitting unit 23 includes an output element (for example, a light emitting element Dtran) that outputs a detection signal, and changes in the current flowing through the light emitting element Dtran.
  • the sensor output signal that fluctuates according to the response is taken out, and the sensor output signal is used to control a device other than the transmitting element or another element.
  • the current flowing through the light emitting element Dtran is converted into a voltage value by the resistor R4 and becomes a sensor output signal.
  • the sensor output signal is incorporated into a signal processing circuit 70 including an analog-to-digital conversion circuit that converts the sensor output signal into a digital value.
  • the signal processing circuit 70 uses the sensor output signal for various controls.
  • the sensor output signal converted into a voltage value by the resistor R4 has a dynamic range from 0 V to a voltage value close to the power supply voltage VCS (more specifically, a voltage obtained by subtracting the diode voltage of the light emitting element Dtran from the power supply voltage VCS). Since it has, it is suitable for conversion and use with an analog-digital conversion circuit.
  • the sensor-embedded device 6 controls a device other than the transmitting element or another element by using the transmitting element control signal Vout of the sensor control circuit 10.
  • the transmission element control signal Vout is given to the motor drive circuit 71 to drive the motor 72.
  • the sensor-embedded device 6 can consider, for example, an application example in which the actuator is operated according to the detection result of the object to be detected 100.
  • FIG. 12 shows a block diagram of the sensor embedded device 7 according to the seventh embodiment.
  • the sensor embedded device 7 according to the seventh embodiment has a sensor circuit unit 80 instead of the sensor circuit unit 20 according to the second embodiment. Then, in the sensor circuit unit 80, a light receiving unit 81 is added to the light emitting unit 23 and the light receiving unit 24.
  • the sensor circuit unit 80 detects the amount of light emitted from the light emitting unit 23 by the light receiving unit 81 regardless of the change in the position of the object to be detected 100, and outputs a transmission monitor signal whose signal level changes according to the detected amount of received light. do. Then, the transmission monitor signal output by the light receiving unit 81 is output via the high-pass filter 82 or the low-pass filter 84.
  • the AC component of the transmission monitor signal is extracted by the high-pass filter 82, and the AC is a DC signal having a signal level corresponding to the amplitude of the extracted AC component.
  • the component transmission monitor signal Vout_AC is output.
  • the DC component of the transmission monitor signal is extracted by the low-pass filter 84, and the DC component transmission monitor signal Vout_DC, which is a DC signal having the signal level of the extracted DC component, is output. ..
  • the temperature characteristic of the light emitting unit 23 or the characteristic change due to the change with time (hereinafter, these characteristic change is simply referred to as the characteristic change). It is possible to obtain an output result that is not affected by.
  • the characteristic change occurs in the light emitting unit 23, in the system composed of the sensor control circuit 10, the light emitting unit 23, and the light receiving unit 24 constituting the sensor system, the transmission rate ⁇ sen is caused by the characteristic change of the light emitting unit 23. Since the change component is included, the output signal of the sensor control circuit 10 includes the change component due to the characteristic change of the light emitting unit 23.
  • the sensor-embedded device 7 by providing the light receiving unit 81 that directly monitors the light emitting amount of the light emitting unit 23, it is possible to obtain an output result that is not affected by this characteristic change.
  • APC control for suppressing the change in the amount of light emitted by the light emitting unit 23 over time is performed, and the object to be detected is controlled by the AC component. Can also be detected.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Semiconductor Lasers (AREA)
  • Photo Coupler, Interrupter, Optical-To-Optical Conversion Devices (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

In a conventional sensor control circuit, there has been a problem that the transmission strength of a transmission element is fixed regardless of whether an object to be detected is present, and thus the power consumption of the transmission element used to detect the object to be detected is high. This sensor control circuit (10) comprises: an output terminal To that outputs, to a transmission element (21) which transmits a detection signal that is projected to an object (100) to be detected, a transmission element control signal Vout which controls the transmission strength of the detection signal; an input terminal Ti into which is input a monitor signal Vrec, a signal level of the monitor signal being varied by a reception element (22) that receives the detection signal according to the magnitude of the reception strength of the detection signal; and a transmission element control circuit (11) that generates the transmission element control signal Vout on the basis of the amount of change in a transmission rate βsen of the detection signal from the transmission element (21) to the reception element (22), the amount of change being obtained by the monitor signal Vrec. The transmission element control circuit (11) changes the transmission element control signal Vout in a direction to cancel out the change in the transmission rate βsen.

Description

センサ制御回路及びセンサ組み込み機器Sensor control circuit and sensor embedded device
 本発明はセンサ制御回路及びセンサ組み込み機器に関し、例えば、検出信号を送信する送信素子と検出信号を受信する受信素子とを有するセンサ制御回路及びセンサ組み込み機器に関する。 The present invention relates to a sensor control circuit and a sensor-embedded device, and relates to, for example, a sensor control circuit and a sensor-embedded device having a transmitting element for transmitting a detection signal and a receiving element for receiving the detection signal.
 送信素子と受信素子との間で検出信号を送受信し、検出信号により設定される検出範囲に被検出物が入ったことを検出するセンサシステムがある。このようなセンサシステムでは、送信素子の出力強度の制御が行われることがある。そこで、センサシステムにおける送信素子の出力強度の制御方法の一例が特許文献1に開示されている。 There is a sensor system that transmits and receives a detection signal between the transmitting element and the receiving element and detects that the object to be detected has entered the detection range set by the detection signal. In such a sensor system, the output intensity of the transmitting element may be controlled. Therefore, Patent Document 1 discloses an example of a method of controlling the output intensity of a transmitting element in a sensor system.
 特許文献1に記載の半導体レーザ駆動回路は、互いのカソードが共通接続された半導体レーザダイオードとモニタ用フォトダイオードとを備えてなる半導体レーザ素子のための半導体レーザ駆動回路であって、前記半導体レーザダイオードのアノードが電源ライン側に接続され、前記モニタ用フォトダイオードのアノードが、当該モニタ用フォトダイオードに流れる電流量に応じた電圧を発生させる電圧発生手段を介してグランドライン側に接続され、前記電源ラインと半導体レーザダイオードのアノードとの間、または、前記半導体レーザダイオード及び前記モニタ用フォトダイオードのカソードと前記グランドラインとの間に配されて、前記半導体レーザダイオードに供給される電流量を調整する電流制御素子と、前記電圧発生手段で発生した電圧信号を受けて、その電圧信号レベルに応じた制御信号を前記電流制御素子の制御端子に与えて前記半導体レーザダイオードのレーザ光出力が所定レベルになるようフィードバック制御するフィードバック制御手段と、前記半導体レーザダイオード及び前記モニタ用フォトダイオードのカソードと前記グランドラインとの間に配されて、前記モニタ用フォトダイオードに逆バイアス電圧を印加するバイアス手段と、を備えてなる。 The semiconductor laser drive circuit described in Patent Document 1 is a semiconductor laser drive circuit for a semiconductor laser element including a semiconductor laser diode in which cathodes are commonly connected to each other and a photodiode for monitoring, and the semiconductor laser. The anode of the diode is connected to the power supply line side, and the anode of the monitoring photodiode is connected to the ground line side via a voltage generating means that generates a voltage corresponding to the amount of current flowing through the monitoring photodiode. Arranged between the power supply line and the anode of the semiconductor laser diode, or between the cathode of the semiconductor laser diode and the monitoring photodiode and the ground line, the amount of current supplied to the semiconductor laser diode is adjusted. In response to the voltage signal generated by the current control element and the voltage generating means, a control signal corresponding to the voltage signal level is given to the control terminal of the current control element, and the laser light output of the semiconductor laser diode is at a predetermined level. A feedback control means for feedback control so as to be, and a bias means for applying a reverse bias voltage to the monitor photodiode, which is arranged between the cathode of the semiconductor laser diode and the monitor photodiode and the ground line. Be equipped with.
特開2005-26371号公報Japanese Unexamined Patent Publication No. 2005-26371
 しかしながら、特許文献1に記載の半導体レーザー駆動回路は、発光素子となる半導体レーザダイオードの発光出力を一定に保つ制御を行うものであり、被検出物の有無によらず半導体レーザダイオードの発光出力量が一定になり、被検出物の検出に用いる発光素子の消費電力が高い問題がある。 However, the semiconductor laser drive circuit described in Patent Document 1 controls to keep the light emission output of the semiconductor laser diode serving as a light emitting element constant, and the amount of light emission output of the semiconductor laser diode regardless of the presence or absence of an object to be detected. Is constant, and there is a problem that the power consumption of the light emitting element used for detecting the object to be detected is high.
 本発明にかかるセンサ制御回路の一態様は、被検出物に対して照射する検出信号を送信する送信素子に前記検出信号の送信強度を制御する送信素子制御信号を出力する出力端子と、前記検出信号を受信する受信素子が前記検出信号の受信強度の大きさに応じて信号レベルを変動させるモニタ信号が入力される入力端子と、前記モニタ信号により取得される前記送信素子から前記受信素子への前記検出信号の伝達率の変化量に基づき前記送信素子制御信号を生成する送信素子制御回路と、を有し、前記送信素子制御回路は、前記伝達率の変化を打ち消す方向に前記送信素子制御信号を変化させる。 One aspect of the sensor control circuit according to the present invention is an output terminal that outputs a transmission element control signal that controls the transmission intensity of the detection signal to a transmission element that transmits a detection signal to irradiate the object to be detected, and the detection. The receiving element that receives the signal has an input terminal into which a monitor signal whose signal level fluctuates according to the magnitude of the receiving intensity of the detected signal is input, and the transmitting element acquired by the monitor signal to the receiving element. The transmission element control circuit includes a transmission element control circuit that generates the transmission element control signal based on the amount of change in the transmission rate of the detection signal, and the transmission element control circuit cancels the change in the transmission element control signal. To change.
 本発明にかかるセンサ組み込み機器の一態様は、上記センサ制御回路、前記送信素子及び前記受信素子を有する。 One aspect of the sensor-embedded device according to the present invention includes the sensor control circuit, the transmitting element, and the receiving element.
 本発明にかかるセンサ制御回路及びセンサ組み込み機器によれば、検出信号の伝達率が高い場合における送信素子の送信強度を抑制して消費電力を抑制することができる。 According to the sensor control circuit and the sensor-embedded device according to the present invention, it is possible to suppress the transmission intensity of the transmitting element when the transmission rate of the detection signal is high and suppress the power consumption.
実施の形態1にかかるセンサ制御回路が適用されるセンサシステムのブロック図である。FIG. 5 is a block diagram of a sensor system to which the sensor control circuit according to the first embodiment is applied. センサシステムにおけるセンサ検出型を説明する図である。It is a figure explaining the sensor detection type in a sensor system. 実施の形態1にかかるセンサ制御回路において反射型のセンサ回路部を適用したセンサシステムのブロック図である。It is a block diagram of the sensor system which applied the reflection type sensor circuit part in the sensor control circuit which concerns on Embodiment 1. FIG. 実施の形態1にかかるセンサ制御回路の詳細な構成を説明するセンサシステムのブロック図である。It is a block diagram of the sensor system explaining the detailed structure of the sensor control circuit which concerns on Embodiment 1. FIG. 実施の形態1にかかるセンサ制御回路の動作特性を説明するグラフである。It is a graph explaining the operation characteristic of the sensor control circuit which concerns on Embodiment 1. FIG. 実施の形態2にかかるセンサ制御回路において反射型のセンサ回路部を適用したセンサシステムのブロック図とその出力特性グラフである。It is a block diagram of the sensor system which applied the reflection type sensor circuit part in the sensor control circuit which concerns on Embodiment 2, and is the output characteristic graph. 実施の形態3にかかるセンサ制御回路において反射型のセンサ回路部を適用したセンサシステムのブロック図とその出力特性グラフである。It is a block diagram of the sensor system which applied the reflection type sensor circuit part in the sensor control circuit which concerns on Embodiment 3, and is the output characteristic graph. 実施の形態4にかかるセンサ制御回路において反射型のセンサ回路部を適用したセンサシステムのブロック図である。It is a block diagram of the sensor system which applied the reflection type sensor circuit part in the sensor control circuit which concerns on Embodiment 4. FIG. 実施の形態4にかかるセンサ制御回路の出力特性グラフである。It is an output characteristic graph of the sensor control circuit which concerns on Embodiment 4. FIG. 実施の形態5にかかるセンサ制御回路において反射型のセンサ回路部を適用したセンサシステムのブロック図である。It is a block diagram of the sensor system which applied the reflection type sensor circuit part in the sensor control circuit which concerns on Embodiment 5. 実施の形態6にかかるセンサ組み込み機器のブロック図である。It is a block diagram of the sensor embedded device which concerns on Embodiment 6. 実施の形態7にかかるセンサ組み込み機器のブロック図である。It is a block diagram of the sensor embedded device which concerns on Embodiment 7.
 実施の形態1
 説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。また、様々な処理を行う機能ブロックとして図面に記載される各要素は、ハードウェア的には、CPU(Central Processing Unit)、メモリ、その他の回路で構成することができ、ソフトウェア的には、メモリにロードされたプログラムなどによって実現される。したがって、これらの機能ブロックがハードウェアのみ、ソフトウェアのみ、又は、それらの組合せによっていろいろな形で実現できることは当業者には理解されるところであり、いずれかに限定されるものではない。なお、各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。
Embodiment 1
In order to clarify the explanation, the following description and drawings have been omitted or simplified as appropriate. In addition, each element described in the drawing as a functional block that performs various processing can be composed of a CPU (Central Processing Unit), a memory, and other circuits in terms of hardware, and a memory in terms of software. It is realized by the program loaded in. Therefore, it is understood by those skilled in the art that these functional blocks can be realized in various forms by hardware only, software only, or a combination thereof, and is not limited to any of them. In each drawing, the same elements are designated by the same reference numerals, and duplicate explanations are omitted as necessary.
 また、上述したプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、CD-ROM(Read Only Memory)CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、RAM(Random Access Memory))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。 In addition, the above-mentioned program can be stored and supplied to a computer using various types of non-transitory computer readable medium. Non-temporary computer-readable media include various types of tangible storage media. Examples of non-temporary computer-readable media include magnetic recording media (eg, flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg, magneto-optical disks), CD-ROMs (Read Only Memory) CD-Rs, CDs. -R / W, including semiconductor memory (for example, mask ROM, PROM (Programmable ROM), EPROM (Erasable PROM), flash ROM, RAM (Random Access Memory)). The program may also be supplied to the computer by various types of temporary computer readable medium. Examples of temporary computer-readable media include electrical, optical, and electromagnetic waves. The temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
 以下の説明では、センサ制御回路と、センサ制御回路により制御されるセンサ素子である送信素子と受信素子を含むセンサシステム、当該センサシステムの出力信号を用いて様々な制御を行うセンサ組み込み機器について説明する。 In the following description, a sensor control circuit, a sensor system including a transmitting element and a receiving element which are sensor elements controlled by the sensor control circuit, and a sensor-embedded device that performs various controls using the output signal of the sensor system will be described. do.
 以下、実施の形態について説明する。図1に実施の形態1にかかるセンサ制御回路10が適用されるセンサシステム1のブロック図を示す。図1に示すように、実施の形態1にかかるセンサシステム1は、センサ制御回路10と、センサ回路部20とを有する。 Hereinafter, embodiments will be described. FIG. 1 shows a block diagram of a sensor system 1 to which the sensor control circuit 10 according to the first embodiment is applied. As shown in FIG. 1, the sensor system 1 according to the first embodiment includes a sensor control circuit 10 and a sensor circuit unit 20.
 センサ制御回路10は、送信素子制御回路11、入力端子Ti、出力端子Toを有する。出力端子Toは、被検出物100に対して照射する検出信号を送信する送信素子21に検出信号の送信強度を制御する送信素子制御信号Voutを出力する。入力端子Tiは、検出信号を受信する受信素子22が検出信号の受信強度の大きさに応じて信号レベルを変動させるモニタ信号Vrecが入力される。送信素子制御回路11は、モニタ信号Vrecにより取得される送信素子21から受信素子22への前記検出信号の伝達率βsenの変化量に基づき送信素子制御信号Voutを生成する。より具体的には、送信素子制御回路11は、伝達率βsenの変化を打ち消す方向に送信素子制御信号Voutを変化させる。 The sensor control circuit 10 has a transmission element control circuit 11, an input terminal Ti, and an output terminal To. The output terminal To outputs a transmission element control signal Vout that controls the transmission intensity of the detection signal to the transmission element 21 that transmits the detection signal to irradiate the object to be detected 100. The input terminal Ti is input with a monitor signal Vrec in which the receiving element 22 that receives the detection signal changes the signal level according to the magnitude of the reception intensity of the detection signal. The transmission element control circuit 11 generates a transmission element control signal Vout based on the amount of change in the transmission rate βsen of the detection signal from the transmission element 21 acquired by the monitor signal Vrec to the reception element 22. More specifically, the transmission element control circuit 11 changes the transmission element control signal Vout in a direction that cancels the change in the transmission rate βsen.
 ここで、検出信号の伝達率βsenは、送信素子21から出力される検出信号と、受信素子22が受信する受信信号と、の割合を示すもので有る。伝達率βsenは、送信素子21と受信素子22の距離、検出信号を被検出物が遮る割合、被検出物による検出信号の反射率、送信素子21または受信素子22と被検出物との距離等によって変動する。以下で説明するセンサシステム1では、伝達率βsenの絶対値ではなく、伝達率βsenの変化量に基づき送信素子制御信号Voutの信号レベルの制御を行うことに特徴の1つを有する。 Here, the transmission rate βsen of the detection signal indicates the ratio of the detection signal output from the transmission element 21 and the reception signal received by the reception element 22. The transmission rate βsen is the distance between the transmitting element 21 and the receiving element 22, the ratio at which the detected signal is blocked by the detected object, the reflectance of the detected signal by the detected object, the distance between the transmitting element 21 or the receiving element 22 and the detected object, and the like. Varies depending on. One of the features of the sensor system 1 described below is that the signal level of the transmission element control signal Vout is controlled based on the amount of change in the transmission element βsen, not the absolute value of the transmission rate βsen.
 また、センサ回路部20は、送信素子21及び受信素子22を有する。送信素子21は、センサ制御回路10において生成される送信素子制御信号Voutの信号レベルに応じて出力強度が増減する検出信号を出力する。この検出信号の照射範囲がセンサシステム1における被検出物100の検出範囲となる。受信素子22は、送信素子21が出力した検出信号を受信し、その受信量に応じて信号レベルが増減するモニタ信号Vrecを出力する。なお、送信素子制御回路11の詳細については後述する。 Further, the sensor circuit unit 20 has a transmitting element 21 and a receiving element 22. The transmission element 21 outputs a detection signal whose output intensity increases or decreases according to the signal level of the transmission element control signal Vout generated in the sensor control circuit 10. The irradiation range of this detection signal is the detection range of the object to be detected 100 in the sensor system 1. The receiving element 22 receives the detection signal output by the transmitting element 21 and outputs a monitor signal Vrec whose signal level increases or decreases according to the received amount. The details of the transmission element control circuit 11 will be described later.
 実施の形態1にかかるセンサシステム1では、検出信号により形成される検出範囲に被検出物100が侵入すると送信素子21から受信素子22に伝達される検出信号の量が減少するため、検出信号の伝達率βsenが変化する。そして、実施の形態1にかかるセンサシステム1では、伝達率βsenが変化した場合、センサ制御回路10がモニタ信号Vrecにより伝達率βsenの変化量を取得し、伝達率βsenの変化を打ち消す方向に送信素子制御信号Voutを変化させる。このような制御を行うことで、実施の形態1にかかるセンサシステム1では、被検出物100によって、伝達率βsenが低下した場合には送信素子21に検出信号の出力強度を高め、伝達率βsenが上昇した場合には送信素子21に検出信号の出力強度を弱める、制御を行う。 In the sensor system 1 according to the first embodiment, when the object to be detected 100 enters the detection range formed by the detection signal, the amount of the detection signal transmitted from the transmission element 21 to the reception element 22 decreases, so that the detection signal The transmission rate β-sen changes. Then, in the sensor system 1 according to the first embodiment, when the transmission rate βsen changes, the sensor control circuit 10 acquires the amount of change in the transmission rate βsen by the monitor signal Vrec and transmits the change in the transmission rate βsen in the direction of canceling the change. The element control signal Vout is changed. By performing such control, in the sensor system 1 according to the first embodiment, when the transmission rate βsen is lowered by the object to be detected, the output intensity of the detection signal is increased to the transmitting element 21 and the transmission rate βsen is increased. When the value rises, the transmission element 21 is controlled to weaken the output intensity of the detection signal.
 ここで、伝達率βsenの変化を打ち消すために送信素子制御信号Voutを変化させると、変化率βsenの変化が次第に無くなる、つまり収束する。この変化率βsenの変化が収束したことに応じて送信素子制御信号Voutの変化が止まる。その結果、送信素子制御信号Voutには、変化率βsenの変化に従った変化が生じることになる。つまり、伝達率βsenの変化は、送信素子制御信号Voutの変化に反映されており、この送信素子制御信号Voutは、伝達率βsenの大きさを検出していることに相当することになる。 Here, if the transmission element control signal Vout is changed in order to cancel the change in the transmission rate βsen, the change in the change rate βsen gradually disappears, that is, converges. The change in the transmission element control signal Vout stops according to the convergence of the change in the rate of change βsen. As a result, the transmission element control signal Vout changes according to the change in the rate of change βsen. That is, the change in the transmission element βsen is reflected in the change in the transmission element control signal Vout, and this transmission element control signal Vout corresponds to detecting the magnitude of the transmission element βsen.
 ここで、図1に示すセンサ回路部20では、送信素子21、受信素子22の配置方法と被検出物100との位置関係に複数のバリエーションがある。そこで、図2にセンサシステムにおけるセンサ検出型を説明する図を示す。送信素子21及び受信素子22が対となって機能するセンサには、送信素子と受信素子との配置に関して様々な形式があるが、図2では代表的な形式として、透過型、反射型及び回帰反射型の3つのセンサ検出型を示した。 Here, in the sensor circuit unit 20 shown in FIG. 1, there are a plurality of variations in the positional relationship between the method of arranging the transmitting element 21 and the receiving element 22 and the object to be detected 100. Therefore, FIG. 2 shows a diagram for explaining the sensor detection type in the sensor system. There are various types of sensors in which the transmitting element 21 and the receiving element 22 function as a pair with respect to the arrangement of the transmitting element and the receiving element. In FIG. 2, typical types are transmission type, reflection type, and regression type. Three reflective sensor detection types are shown.
 透過型は、送信素子21と受信素子22とを互いに対向する位置に配置し、送信素子21から受信素子22に向かって検出信号を送信する。そして、透過型では、検出信号により形成される検出範囲に被検出物100が侵入することで伝達率βsenが変化する。具体的には、検出範囲への被検出物100の侵入量が大きくなると受信素子22で受信すべき検出信号の量が少なくなるため伝達率βsenが小さくなる。つまり、受信素子22における受信量が減る。このとき、センサ制御回路10は、送信素子21の送信量を増加させるように送信素子制御信号Voutを変化させる。一方、検出範囲への被検出物100の侵入量が小さくなると受信素子22で受信すべき検出信号の量が多くなるため伝達率βsenが大きくなる。つまり、受信素子22における受信量が増える。このとき、センサ制御回路10は、送信素子21の送信量を減少させるように送信素子制御信号Voutを変化させる。 In the transmission type, the transmitting element 21 and the receiving element 22 are arranged at positions facing each other, and the detection signal is transmitted from the transmitting element 21 toward the receiving element 22. Then, in the transmission type, the transmissibility βsen changes when the object to be detected 100 invades the detection range formed by the detection signal. Specifically, when the amount of the object to be detected 100 invading the detection range increases, the amount of the detection signal to be received by the receiving element 22 decreases, so that the transmission rate βsen decreases. That is, the amount of reception in the receiving element 22 is reduced. At this time, the sensor control circuit 10 changes the transmission element control signal Vout so as to increase the transmission amount of the transmission element 21. On the other hand, when the amount of the object to be detected 100 invading the detection range becomes small, the amount of the detection signal to be received by the receiving element 22 increases, so that the transmission rate βsen becomes large. That is, the reception amount in the receiving element 22 increases. At this time, the sensor control circuit 10 changes the transmission element control signal Vout so as to reduce the transmission amount of the transmission element 21.
 なお、透過型では、被検出物100の検出範囲への侵入量だけではなく、送信素子21と受信素子22との距離によっても受信素子22の受信量が変化する。このとき、受信量の変化と送信素子制御信号Voutの変化との関係は、上述した変化と同じである。 In the transmission type, the receiving amount of the receiving element 22 changes not only by the amount of penetration of the object to be detected 100 into the detection range but also by the distance between the transmitting element 21 and the receiving element 22. At this time, the relationship between the change in the received amount and the change in the transmission element control signal Vout is the same as the above-mentioned change.
 反射型は、送信素子21の送信面と受信素子22の受信面を同一方向に向けるように配置する。そして、反射型では、送信素子21が出力する検出信号が被検出物100により反射され、受信素子22が被検出物100で反射された検出信号を受信する。そして、反射型では、受信素子22(あるいは送信素子21)と被検出物100との距離が変化することで伝達率βsenが変化する。具体的には、受信素子22と被検出物100との距離が大きくなると被検出物100で反射され受信素子22に届く検出信号の量が少なくなるため伝達率βsenが小さくなる。つまり、受信素子22における受信量が減る。このとき、センサ制御回路10は、送信素子21の送信量を増加させるように送信素子制御信号Voutを変化させる。一方、受信素子22と被検出物100との距離が小さくなると被検出物100で反射され受信素子22に届く検出信号の量が多くなるため伝達率βsenが大きくなる。つまり、受信素子22における受信量が増える。このとき、センサ制御回路10は、送信素子21の送信量を減少させるように送信素子制御信号Voutを変化させる。 In the reflection type, the transmitting surface of the transmitting element 21 and the receiving surface of the receiving element 22 are arranged so as to face in the same direction. Then, in the reflection type, the detection signal output by the transmitting element 21 is reflected by the object to be detected 100, and the receiving element 22 receives the detection signal reflected by the object to be detected 100. Then, in the reflection type, the transmissibility βsen changes as the distance between the receiving element 22 (or the transmitting element 21) and the object to be detected 100 changes. Specifically, as the distance between the receiving element 22 and the object to be detected 100 increases, the amount of the detection signal reflected by the object to be detected 100 and reaches the receiving element 22 decreases, so that the transmission rate βsen becomes small. That is, the amount of reception in the receiving element 22 is reduced. At this time, the sensor control circuit 10 changes the transmission element control signal Vout so as to increase the transmission amount of the transmission element 21. On the other hand, when the distance between the receiving element 22 and the object to be detected 100 becomes small, the amount of the detection signal reflected by the object to be detected 100 and reaches the receiving element 22 increases, so that the transmission rate βsen increases. That is, the reception amount in the receiving element 22 increases. At this time, the sensor control circuit 10 changes the transmission element control signal Vout so as to reduce the transmission amount of the transmission element 21.
 なお、反射型では、被検出物100を検出範囲に対して図面上下方向へ移動させた場合も受信素子22の受信量が変化する。このとき、受信量の変化と送信素子制御信号Voutの変化との関係は、上述した変化と同じである。 In the reflection type, the reception amount of the receiving element 22 changes even when the object to be detected 100 is moved in the vertical direction of the drawing with respect to the detection range. At this time, the relationship between the change in the received amount and the change in the transmission element control signal Vout is the same as the above-mentioned change.
 回帰反射型は、送信素子21の送信面と受信素子22の受信面を同一方向に向け、かつ、リフレクタで検出信号を反射させることで受信素子22が検出信号を受信する。そして、回帰型では、リフレクタよりも反射率が十分に低い被検出物100がリフレクタで反射される検出信号を遮る(つまり、被検出物100が検出範囲へ侵入する)ことで、伝達率βsenが変化する。また、回帰反射型では、受信素子22(あるいは送信素子21)とリフレクタとの距離が変化することで伝達率βsenが変化する。具体的には、被検出物100が検出範囲への侵入量が大きくなる、又は、受信素子22とリフレクタとの距離が大きくなるとリフレクタで反射され受信素子22に届く検出信号の量が少なくなるため伝達率βsenが小さくなる。つまり、受信素子22における受信量が減る。このとき、センサ制御回路10は、送信素子21の送信量を増加させるように送信素子制御信号Voutを変化させる。一方、被検出物100が検出範囲への侵入量が小さくなる、または、受信素子22とリフレクタとの距離が小さくなるとリフレクタで反射され受信素子22に届く検出信号の量が多くなるため伝達率βsenが大きくなる。つまり、受信素子22における受信量が増える。このとき、センサ制御回路10は、送信素子21の送信量を減少させるように送信素子制御信号Voutを変化させる。 In the regression reflection type, the receiving element 22 receives the detection signal by directing the transmitting surface of the transmitting element 21 and the receiving surface of the receiving element 22 in the same direction and reflecting the detection signal with the reflector. Then, in the regression type, the object 100 to be detected, which has a sufficiently lower reflectance than the reflector, blocks the detection signal reflected by the reflector (that is, the object 100 to be detected invades the detection range), so that the transmission rate βsen is increased. Change. Further, in the regression reflection type, the transmissibility βsen changes as the distance between the receiving element 22 (or the transmitting element 21) and the reflector changes. Specifically, when the amount of the object to be detected 100 invading the detection range increases, or when the distance between the receiving element 22 and the reflector increases, the amount of the detection signal reflected by the reflector and reaches the receiving element 22 decreases. The transmission rate βsen becomes smaller. That is, the amount of reception in the receiving element 22 is reduced. At this time, the sensor control circuit 10 changes the transmission element control signal Vout so as to increase the transmission amount of the transmission element 21. On the other hand, when the amount of the detected object 100 entering the detection range becomes small or the distance between the receiving element 22 and the reflector becomes small, the amount of the detection signal reflected by the reflector and reaching the receiving element 22 increases, so that the transmission rate βsen Becomes larger. That is, the reception amount in the receiving element 22 increases. At this time, the sensor control circuit 10 changes the transmission element control signal Vout so as to reduce the transmission amount of the transmission element 21.
 なお、回帰反射型では、リフレクタ以外では反射の影響が無い事が前提であり、被検出物100も反射の程度が少ない物を選ぶ必要がある。 In the regression reflection type, it is premised that there is no influence of reflection other than the reflector, and it is necessary to select the object to be detected 100 having a small degree of reflection.
 続いて、センサ制御回路10についてさらに詳細に説明する。まず、センサ制御回路10で利用する送信素子21及び受信素子22としては、空間を伝搬する媒体を検出信号として送受信する素子を利用する。空間を伝搬する媒体としては、可視光、非可視光、音、超音波、熱、水圧、電波等が考えられる。そこで、以下では、送信素子21及び受信素子22として、可視光信号を送受信する発光部23及び受光部24を用いたセンサシステム1の例について説明する。また、以下の説明では、センサ回路部20として反射型のセンサ検出型を有するセンサを利用するセンサシステム1を例に説明を行う。 Subsequently, the sensor control circuit 10 will be described in more detail. First, as the transmitting element 21 and the receiving element 22 used in the sensor control circuit 10, an element that transmits and receives a medium propagating in space as a detection signal is used. Visible light, invisible light, sound, ultrasonic waves, heat, water pressure, radio waves, and the like can be considered as the medium propagating in space. Therefore, in the following, an example of the sensor system 1 using the light emitting unit 23 and the light receiving unit 24 for transmitting and receiving visible light signals as the transmitting element 21 and the receiving element 22 will be described. Further, in the following description, a sensor system 1 that uses a sensor having a reflection type sensor detection type as the sensor circuit unit 20 will be described as an example.
 そこで、図3に実施の形態1にかかるセンサ制御回路10において反射型のセンサ回路部20を適用したセンサシステム1のブロック図を示す。図3に示す例では、センサ回路部20として、発光部23及び受光部24が上述した反射型の構成で設けられる。また、センサ制御回路10は、発光部23に送信素子制御信号Voutを与えるとともに、受光部24からモニタ信号Vrecを受信する。そして、センサ制御回路10では、送信素子制御回路11において、制御の基準となる基準信号Vrefとモニタ信号Vrecの差分信号の大きさに基づき送信素子制御信号Voutを出力する。また、この送信素子制御信号Voutは、差分信号増幅器12により生成される。そして、センサ制御回路10は、被検出物100がセンサ回路部20に近いほど発光部23が発する光が弱くなる制御を行う。言い換えると、実施の形態1にかかるセンサ制御回路10は、被検出物100とセンサ回路部20との距離に対する受光部24の受光量の変動を抑制するように発光部23が発する光の強弱を制御するとも言える。 Therefore, FIG. 3 shows a block diagram of the sensor system 1 to which the reflection type sensor circuit unit 20 is applied in the sensor control circuit 10 according to the first embodiment. In the example shown in FIG. 3, as the sensor circuit unit 20, the light emitting unit 23 and the light receiving unit 24 are provided with the above-mentioned reflection type configuration. Further, the sensor control circuit 10 gives a transmission element control signal Vout to the light emitting unit 23 and receives a monitor signal Vrec from the light receiving unit 24. Then, the sensor control circuit 10 outputs the transmission element control signal Vout based on the magnitude of the difference signal between the reference signal Vref and the monitor signal Vrec, which is the control reference, in the transmission element control circuit 11. Further, the transmission element control signal Vout is generated by the difference signal amplifier 12. Then, the sensor control circuit 10 controls that the light emitted by the light emitting unit 23 becomes weaker as the object to be detected 100 is closer to the sensor circuit unit 20. In other words, the sensor control circuit 10 according to the first embodiment determines the intensity of light emitted by the light emitting unit 23 so as to suppress fluctuations in the amount of light received by the light receiving unit 24 with respect to the distance between the object to be detected 100 and the sensor circuit unit 20. It can be said to control.
 続いて、図3に示した実施の形態1にかかるセンサシステム1の詳細な回路構成について説明する。そこで、図4に実施の形態1にかかるセンサ制御回路10の詳細な構成を説明するセンサシステム1のブロック図を示す。なお、図4では、図3に示した被検出物100に関する記載を省略したが、図4においても送信素子21が送信する検出信号は被検出物100により反射されて、受信素子22により受信される。 Subsequently, the detailed circuit configuration of the sensor system 1 according to the first embodiment shown in FIG. 3 will be described. Therefore, FIG. 4 shows a block diagram of the sensor system 1 for explaining the detailed configuration of the sensor control circuit 10 according to the first embodiment. Although the description regarding the object to be detected 100 shown in FIG. 3 is omitted in FIG. 4, the detection signal transmitted by the transmitting element 21 is reflected by the object to be detected 100 and received by the receiving element 22 in FIG. NS.
 図4に示すように、センサ制御回路10は、送信素子制御回路11を有する。この送信素子制御回路11は、モニタ信号Vrecにより発光部23から受光部24への検出信号の伝達率βsenの変化量を取得し、基準信号Vrefの値と伝達率βsenの変化量とを用いて、伝達率βsenの変化を打ち消す方向に送信素子制御信号Voutを変化させる。この送信素子制御回路11の動作を実現するために、図4に示す例では、差分信号増幅器12を用いる。なお、以下で説明する差分信号増幅器12の構成は、差分信号増幅器12を実現するための一例であり、他の形式、或いは、回路構成の様々な増幅回路を用いることができる。 As shown in FIG. 4, the sensor control circuit 10 includes a transmission element control circuit 11. The transmission element control circuit 11 acquires the amount of change in the transmission rate βsen of the detection signal from the light emitting unit 23 to the light receiving unit 24 by the monitor signal Vrec, and uses the value of the reference signal Vref and the amount of change in the transmission rate βsen. , The transmission element control signal Vout is changed in the direction of canceling the change of the transmission rate βsen. In order to realize the operation of the transmission element control circuit 11, the difference signal amplifier 12 is used in the example shown in FIG. The configuration of the difference signal amplifier 12 described below is an example for realizing the difference signal amplifier 12, and other types or various amplifier circuits having a circuit configuration can be used.
 差分信号増幅器12は、増幅器OP、第1のインピーダンス素子(例えば、抵抗R1)、第2のインピーダンス素子(例えば、抵抗R2)を有する。なお、インピーダンス素子は、抵抗単体のみに限られず、コンデンサ、抵抗とコンデンサを含む回路、或いは、その他様々な形態のインピーダンスを有する素子及び回路を含む。増幅器OPは、入力される2つの信号の電圧差を増幅して出力する増幅器である。定電圧源は、基準信号Vrefを出力する。この基準信号Vrefは、増幅器OPの正転入力端子に与えられる。抵抗R2は、増幅器OPの出力端子と反転入力端子との間に接続される。また、抵抗R1は、一端にモニタ信号Vrecが与えられ、他端が増幅器OPの反転入力端子に接続される。センサ制御回路10における増幅器OPを用いた差分信号増幅器12のゲインは、抵抗R1及び抵抗R2の抵抗値を調整することで変更することができる。また、増幅器OPの出力信号が送信素子制御信号Voutとなる。 The difference signal amplifier 12 has an amplifier OP, a first impedance element (for example, resistor R1), and a second impedance element (for example, resistor R2). The impedance element is not limited to a single resistor, but includes a capacitor, a circuit including a resistor and a capacitor, or other elements and circuits having various forms of impedance. The amplifier OP is an amplifier that amplifies and outputs the voltage difference between two input signals. The constant voltage source outputs the reference signal Vref. This reference signal Vref is given to the forward rotation input terminal of the amplifier OP. The resistor R2 is connected between the output terminal of the amplifier OP and the inverting input terminal. Further, a monitor signal Vrec is given to one end of the resistor R1, and the other end is connected to the inverting input terminal of the amplifier OP. The gain of the difference signal amplifier 12 using the amplifier OP in the sensor control circuit 10 can be changed by adjusting the resistance values of the resistors R1 and R2. Further, the output signal of the amplifier OP becomes the transmission element control signal Vout.
 ここで、差分信号増幅器12における送信素子制御信号Voutの信号レベルの決定式について説明する。送信素子制御信号Voutは、(1)式により算出される。
Vout≒Vref×(R1+R2)/R1-Vrec×(R2/R1)
    =Vref+(Vref-Vrec)×(R2/R1) ・・・ (1)
つまり、差分信号増幅器12は、基準信号Vrefの値と、モニタ信号Vrecの値との差分を抵抗R1、R2との比を乗じた値を基準信号Vrefの値に加算した値を送信素子制御信号Voutの信号レベルとする。
Here, a formula for determining the signal level of the transmission element control signal Vout in the difference signal amplifier 12 will be described. The transmission element control signal Vout is calculated by the equation (1).
Vout ≒ Vref × (R1 + R2) / R1-Vrec × (R2 / R1)
= Vref + (Vref-Vrec) × (R2 / R1) ・ ・ ・ (1)
That is, the difference signal amplifier 12 adds the value obtained by multiplying the difference between the value of the reference signal Vref and the value of the monitor signal Vrec by the ratio of the resistors R1 and R2 to the value of the reference signal Vref, and adds the value to the transmission element control signal. Let it be the signal level of Vout.
 発光部23は、発光素子Dtran、抵抗R4を有する。発光素子Dtranは、アノードに送信素子制御信号Voutが与えられ、カソードが抵抗R4を介して接地ノードに接続される。発光素子Dtranは、流れる電流により発光量が変化する。発光部23では、発光素子Dtranに流れる電流を抵抗R4を用いて設定する。なお、図4で示した発光部23の回路構成は一例で有り他の回路構成であっても構わない。 The light emitting unit 23 has a light emitting element Dtran and a resistor R4. In the light emitting element Dtran, a transmission element control signal Vout is given to the anode, and the cathode is connected to the ground node via the resistor R4. The amount of light emitted from the light emitting element Dtran changes depending on the flowing current. In the light emitting unit 23, the current flowing through the light emitting element Dtran is set by using the resistor R4. The circuit configuration of the light emitting unit 23 shown in FIG. 4 is an example, and other circuit configurations may be used.
 受光部24は、受光素子Trec、抵抗R5を有する。受光素子Trecは、コレクタに電源電圧VCCが与えられ、エミッタが抵抗R5を介して接地ノードに接続される。受光素子Trecは、受光量の大きさに応じた大きさの電流をエミッタから出力する。この受光素子Trecのエミッタから出力される電流を抵抗R5を用いて電圧に変換することでモニタ信号Vrecの信号レベルが決定される。つまり、モニタ信号Vrecの信号レベルは、検出信号の伝達率βsenが変動して、受光量が変動することに応じて変動するため、このモニタ信号Vrecによりセンサ制御回路10は伝達率βsenの変動量を把握することができる。なお、図4で示した受光部24の回路構成は、フォトトランジスタを使用した一例であり、他の回路構成(例えば、フォトダイオードを使用した構成)であっても構わない。 The light receiving unit 24 has a light receiving element Trec and a resistor R5. In the light receiving element Trec, a power supply voltage VCS is applied to the collector, and the emitter is connected to the ground node via the resistor R5. The light receiving element Trec outputs a current having a magnitude corresponding to the magnitude of the light receiving amount from the emitter. The signal level of the monitor signal Vrec is determined by converting the current output from the emitter of the light receiving element Trec into a voltage using the resistor R5. That is, since the signal level of the monitor signal Vrec fluctuates according to the fluctuation of the transmission rate βsen of the detection signal and the fluctuation of the received light amount, the sensor control circuit 10 changes the transmission rate βsen by this monitor signal Vrec. Can be grasped. The circuit configuration of the light receiving unit 24 shown in FIG. 4 is an example using a phototransistor, and may be another circuit configuration (for example, a configuration using a photodiode).
 実施の形態1にかかる差分信号増幅器12では、増幅器OPの正転入力端子と反転入力端子は、仮想短絡により同電位になる。つまり、増幅器OPは、モニタ信号Vrecの値によらず、正転入力端子に与えられる基準信号Vrefの値に反転入力端子の反転入力電圧Vmが一致するように動作する。より具体的には、差分信号増幅器12は、モニタ信号Vrecが変化した場合、反転入力電圧Vmが基準信号Vrefの値に一致するように送信素子制御信号Voutを変動させる。このような動作により、送信素子制御回路11は、モニタ信号Vrecにより発光部23から受信素子22への検出信号の伝達率βsenの変化量を取得し、基準信号Vrefの値と伝達率βsenの変化量とを用いて、伝達率βsenの変化を打ち消す方向に送信素子制御信号Voutを変化させるという機能を実現する。 In the difference signal amplifier 12 according to the first embodiment, the forward rotation input terminal and the inverting input terminal of the amplifier OP have the same potential due to a virtual short circuit. That is, the amplifier OP operates so that the inverting input voltage Vm of the inverting input terminal matches the value of the reference signal Vref given to the forward rotation input terminal regardless of the value of the monitor signal Vrec. More specifically, the difference signal amplifier 12 changes the transmission element control signal Vout so that the inverting input voltage Vm matches the value of the reference signal Vref when the monitor signal Vrec changes. By such an operation, the transmitting element control circuit 11 acquires the amount of change in the transmission rate βsen of the detection signal from the light emitting unit 23 to the receiving element 22 by the monitor signal Vrec, and changes the value of the reference signal Vref and the transmission rate βsen. The function of changing the transmission element control signal Vout in the direction of canceling the change of the transmission rate βsen is realized by using the amount.
 続いて、実施の形態1にかかるセンサシステム1の動作特性について説明する。そこで、図5に実施の形態1にかかるセンサ制御回路10の動作特性を説明するグラフを示す。図5で示したグラフは、横軸に受光部24及び発光部23と被検出物100との距離を示し、縦軸に送信素子制御信号Voutの大きさを示したものである。また、図5に示すグラフでは、抵抗R1を一定にした状態で抵抗R2の値を4通りに変化させた曲線を示した。 Subsequently, the operating characteristics of the sensor system 1 according to the first embodiment will be described. Therefore, FIG. 5 shows a graph for explaining the operating characteristics of the sensor control circuit 10 according to the first embodiment. In the graph shown in FIG. 5, the horizontal axis shows the distance between the light receiving unit 24 and the light emitting unit 23 and the object to be detected 100, and the vertical axis shows the magnitude of the transmitting element control signal Vout. Further, in the graph shown in FIG. 5, a curve in which the value of the resistor R2 is changed in four ways while the resistor R1 is constant is shown.
 図5に示すように、実施の形態1にかかるセンサシステム1では、受光部24及び発光部23と被検出物100との距離が大きくなるに従って送信素子制御信号Voutが大きくなることがわかる。また、送信素子制御信号Voutの大きさは、受光部24及び発光部23と被検出物100との距離が大きくなると上限値(例えば、電源電圧)に達する。そして、図5に示すように、抵抗R2を変化させると、送信素子制御信号Voutが線形で変化する範囲及び送信素子制御信号Voutの変化の傾きを、変えることができることがわかる。 As shown in FIG. 5, in the sensor system 1 according to the first embodiment, it can be seen that the transmission element control signal Vout increases as the distance between the light receiving unit 24 and the light emitting unit 23 and the object to be detected 100 increases. Further, the magnitude of the transmission element control signal Vout reaches an upper limit value (for example, power supply voltage) when the distance between the light receiving unit 24 and the light emitting unit 23 and the object to be detected 100 increases. Then, as shown in FIG. 5, it can be seen that by changing the resistor R2, the range in which the transmission element control signal Vout changes linearly and the slope of the change in the transmission element control signal Vout can be changed.
 図1から図5を参照した説明より、実施の形態1にかかるセンサシステム1では、被検出物100が検出信号を遮る量或いは被検出物100と受信素子22又は送信素子21との距離が変化した場合、検出信号の伝達率βsenが変化する。そして、実施の形態1にかかるセンサ制御回路10は、送信素子制御回路11において、モニタ信号Vrecにより検出信号の伝達率βsenの変化量を取得し、基準信号Vrefの値と伝達率βsenの変化量とを用いて、伝達率βsenの変化を打ち消す方向に送信素子制御信号Voutを変化させる。これにより、実施の形態1にかかるセンサシステム1では、例えば、被検出物100により受信素子22における受信量が低下した場合には、当該受信量の低下を補うように送信素子21の送信強度を増加させる制御を行うことができる。つまり、実施の形態1にかかるセンサシステム1では、被検出物100の検出を待機する待機状態における送信素子21の消費電力を抑制しながら、被検出物100の検出を行うことができる。 From the description with reference to FIGS. 1 to 5, in the sensor system 1 according to the first embodiment, the amount of the detected object 100 blocking the detection signal or the distance between the detected object 100 and the receiving element 22 or the transmitting element 21 changes. If so, the transmission rate β-sen of the detection signal changes. Then, the sensor control circuit 10 according to the first embodiment acquires the change amount of the transmission rate βsen of the detection signal by the monitor signal Vrec in the transmission element control circuit 11, and changes the value of the reference signal Vref and the transmission rate βsen. And, the transmission element control signal Vout is changed in the direction of canceling the change of the transmission rate βsen. As a result, in the sensor system 1 according to the first embodiment, for example, when the received amount in the receiving element 22 is reduced by the object to be detected 100, the transmission intensity of the transmitting element 21 is increased so as to compensate for the decrease in the received amount. Control to increase can be performed. That is, in the sensor system 1 according to the first embodiment, the detected object 100 can be detected while suppressing the power consumption of the transmitting element 21 in the standby state waiting for the detection of the detected object 100.
 また、実施の形態1にかかるセンサシステム1では、例えば、センサ回路部20として反射型のセンサを用いる場合において、センサ回路部20と被検出物100との距離に応じて、送信素子制御信号Voutを変化させることができる。実施の形態1にかかるセンサシステム1のこの特性を利用することで、定常状態では距離が近く、検出すべきタイミングでは距離が遠くなるような被検出物100の変化を検出する距離センサの消費電力を低減することができる。具体的には、実施の形態1にかかるセンサシステム1を利用した前述の距離センサでは、間欠的に発生する被検出物100とセンサ回路部20との距離が遠いときは消費電力の低減効果は少ないが、長い時間継続して定常的に発生する被検出物100とセンサ回路部20との距離が近いときは消費電力が低減されるため、センサシステム1の利用される時間全体を見ると消費電力が大幅に低減できる。このような距離センサは、例えば、ピアノの鍵盤の押下げ量を検出するセンサ等への利用が考えられる。 Further, in the sensor system 1 according to the first embodiment, for example, when a reflection type sensor is used as the sensor circuit unit 20, the transmission element control signal Vout depends on the distance between the sensor circuit unit 20 and the object to be detected 100. Can be changed. By utilizing this characteristic of the sensor system 1 according to the first embodiment, the power consumption of the distance sensor that detects a change in the object to be detected 100 such that the distance is short in the steady state and the distance is long at the timing to be detected. Can be reduced. Specifically, in the above-mentioned distance sensor using the sensor system 1 according to the first embodiment, when the distance between the object to be detected 100 and the sensor circuit unit 20 that are intermittently generated is long, the effect of reducing the power consumption is obtained. Although it is small, the power consumption is reduced when the distance between the object to be detected 100 and the sensor circuit unit 20, which are constantly generated for a long time, is short, so that the total usage time of the sensor system 1 is consumed. Power can be significantly reduced. Such a distance sensor can be used, for example, as a sensor for detecting the amount of pressing of a piano keyboard.
 また、実施の形態1にかかるセンサシステム1では、受信素子22における受信量が低下した場合に、その低下量を補うように送信素子21の送信強度を高める。これにより、実施の形態1にかかるセンサシステム1では、被検出物100と受信素子22との距離が近くなっても受信量が飽和することを防止する。また、距離が離れた場合には送信側の出力が飽和しない範囲で受信レベルを保つ事ができ、受信信号が小さくなりすぎて検出出来ない事をも防止する。つまり、実施の形態1にかかるセンサシステム1では、検出範囲を従来のセンサシステムよりも広くすることができる。 Further, in the sensor system 1 according to the first embodiment, when the reception amount in the reception element 22 decreases, the transmission intensity of the transmission element 21 is increased so as to compensate for the decrease. As a result, in the sensor system 1 according to the first embodiment, it is possible to prevent the received amount from being saturated even if the distance between the object to be detected 100 and the receiving element 22 becomes short. In addition, when the distance is long, the reception level can be maintained within a range in which the output on the transmitting side is not saturated, and it is possible to prevent the received signal from becoming too small to be detected. That is, in the sensor system 1 according to the first embodiment, the detection range can be made wider than that of the conventional sensor system.
 実施の形態2
 実施の形態2では、実施の形態1にかかるセンサ制御回路10の変形例となるセンサ制御回路30について説明する。そこで、図6に実施の形態2にかかるセンサ制御回路30において反射型のセンサ回路部20を適用したセンサシステム2のブロック図とその出力特性グラフを示す。
Embodiment 2
In the second embodiment, the sensor control circuit 30 which is a modification of the sensor control circuit 10 according to the first embodiment will be described. Therefore, FIG. 6 shows a block diagram of the sensor system 2 to which the reflection type sensor circuit unit 20 is applied in the sensor control circuit 30 according to the second embodiment and an output characteristic graph thereof.
 図6に示すように、実施の形態2にかかるセンサ制御回路30は、実施の形態1にかかるセンサ制御回路10における基準信号Vrefを直流成分と交流成分とを含む基準信号Vrefに置き換えたものである。このように基準信号として直流成分と交流信号とを含む基準信号を用いることで、実施の形態2にかかるセンサシステム2では、直流成分と交流成分とを含む信号を帰還させる系となる。 As shown in FIG. 6, the sensor control circuit 30 according to the second embodiment replaces the reference signal Vref in the sensor control circuit 10 according to the first embodiment with a reference signal Vref including a DC component and an AC component. be. By using the reference signal including the DC component and the AC signal as the reference signal in this way, the sensor system 2 according to the second embodiment becomes a system for feeding back the signal including the DC component and the AC component.
 また、図6の下図に示すように、実施の形態2にかかるセンサ制御回路30の出力特性は、発光部23及び受光部24と被検出物100との距離が遠くなるほど直流成分と交流成分の両方が大きくなる。 Further, as shown in the lower figure of FIG. 6, the output characteristics of the sensor control circuit 30 according to the second embodiment show that the DC component and the AC component become longer as the distance between the light emitting unit 23 and the light receiving unit 24 and the object to be detected 100 increases. Both get bigger.
 図5に示す例では、センサ回路部20として可視光信号を検出信号として直流成分のみを用いる例を示したが、センサ回路部20の送信素子或いは受信素子として直流成分と交流成分とを含む信号により駆動することが可能な素子を利用する場合は、図6に示すように基準信号に交流成分と直流成分とを含める信号を用いることが可能である。 In the example shown in FIG. 5, an example in which only the DC component is used as the detection signal of the visible light signal is shown as the sensor circuit unit 20, but the signal including the DC component and the AC component is used as the transmission element or the reception element of the sensor circuit unit 20. When an element that can be driven by the above is used, it is possible to use a signal that includes an AC component and a DC component in the reference signal as shown in FIG.
 なお、図6では、直流成分と交流成分とを含む基準信号を利用したが、直流を伝送しない媒体の場合は交流成分のみを含む基準信号を用いることも可能である。つまり、基準信号として、どのような成分を含めるかは、検出信号を伝送する媒体及びセンサ回路部20として利用するセンサの特性により決定することができる。 Although FIG. 6 uses a reference signal containing a direct current component and an AC component, it is also possible to use a reference signal containing only an AC component in the case of a medium that does not transmit direct current. That is, what kind of component is included as the reference signal can be determined by the characteristics of the medium for transmitting the detection signal and the sensor used as the sensor circuit unit 20.
 このように、交流成分が直流成分に重畳された基準信号を用いることで、直流成分による出力と、交流成分による出力(交流信号の振幅、実効値、Peak to peak値等の大きさ)の2つ得られる。例えば、防犯用途として、侵入を検知したことを、照明を点灯させて侵入者に知らせることで侵入を思い止まらせるセンサーライトの様な用途への応用が考えられる。本案を使うことで、侵入を思いとどまらせる検知状況を侵入者に知らせるのに直流での検知(照明の明るさ変化で侵入者へ通知)を、複数の照明のどこで検知したかの防犯システムへの通知を周波数の異なる交流成分での検知を使う応用が考えられる。 In this way, by using the reference signal in which the AC component is superimposed on the DC component, the output by the DC component and the output by the AC component (amplitude of the AC signal, effective value, peak to peak value, etc.) are 2 You can get one. For example, as a crime prevention application, it is conceivable to apply it to an application such as a sensor light that discourages intrusion by turning on a light to notify an intruder that an intrusion has been detected. By using this proposal, to notify the intruder of the detection status that discourages intrusion, DC detection (notification to the intruder by the change in the brightness of the lighting) is applied to the security system where multiple lights are detected. An application that uses detection of AC components with different frequencies for notification is conceivable.
 このような照明機能とセンサ機能を併せ持つ「センサ付き防犯照明機器」を複数台使用する場合、送信部である照明は、交流信号と直流信号の両方の信号で駆動される。このとき、直流成分による明るさの変化で侵入検出を知らせることで、検出されていることを意識され、侵入を思い止まらせることができる。一方、侵入抑止(防犯)目的で侵入者の有無を照明機器を用いて上位システムに通知するには、交流信号について、複数の「センサ付き防犯照明機器」で機器毎に異なる周波数としておき、それぞれの出力の交流成分のみをミキシングして、ミキシング後の交流成分をFDM(Frequency Division Multiplexing)で多重化して1本の伝送路でCPU等の上位システムへ通知する等の用途が考えられる。 When using a plurality of "security lighting devices with sensors" that have both such lighting and sensor functions, the lighting that is the transmitter is driven by both AC and DC signals. At this time, by notifying the intrusion detection by the change in brightness due to the DC component, it is possible to be aware of the detection and to discourage the intrusion. On the other hand, in order to notify the host system of the presence or absence of an intruder using a lighting device for the purpose of intrusion prevention (security), the AC signal is set to a different frequency for each device in multiple "security lighting devices with sensors". It is conceivable that only the AC component of the output of the above is mixed, the AC component after mixing is multiplexed by FDM (Frequency Division Multiplexing), and the higher system such as the CPU is notified by one transmission line.
 なお、基準信号Vrefに含ませる交流成分としては、振幅と周波数が一定の信号のみならず、音楽信号のように振幅も周波数も変動する信号も利用することができる。また、この交流成分の振幅と周波数についてはどちらか一方のみが一定であっても構わない。 As the AC component included in the reference signal Vref, not only a signal having a constant amplitude and frequency but also a signal having a fluctuating amplitude and frequency such as a music signal can be used. Further, only one of the amplitude and frequency of this AC component may be constant.
 実施の形態3
 実施の形態3では、実施の形態1にかかるセンサ制御回路10の変形例となるセンサ制御回路40について説明する。そこで、図7に実施の形態3にかかるセンサ制御回路40において反射型のセンサ回路部20を適用したセンサシステム3のブロック図とその出力特性グラフを示す。
Embodiment 3
In the third embodiment, the sensor control circuit 40 which is a modification of the sensor control circuit 10 according to the first embodiment will be described. Therefore, FIG. 7 shows a block diagram of the sensor system 3 to which the reflection type sensor circuit unit 20 is applied in the sensor control circuit 40 according to the third embodiment and an output characteristic graph thereof.
 図7に示すように、実施の形態3にかかるセンサ制御回路40は、実施の形態1にかかるセンサ制御回路10における基準信号Vrefとして直流成分(図中のDC)と交流成分(図中のAC)とを含む信号を用いる。また、センサ制御回路40は、送信素子制御回路11を送信素子制御回路41に置き換える。そして、送信素子制御回路41は、差分信号増幅器12に加えて直流成分除去回路42を追加したものである。直流成分除去回路42は、受光部24から得られる信号の直流成分を除去して、差分信号増幅器12に与えるモニタ信号Vrecを生成する。 As shown in FIG. 7, the sensor control circuit 40 according to the third embodiment has a DC component (DC in the figure) and an AC component (AC in the figure) as a reference signal Vref in the sensor control circuit 10 according to the first embodiment. ) And a signal including. Further, the sensor control circuit 40 replaces the transmission element control circuit 11 with the transmission element control circuit 41. The transmission element control circuit 41 is the one in which the DC component removal circuit 42 is added in addition to the difference signal amplifier 12. The DC component removing circuit 42 removes the DC component of the signal obtained from the light receiving unit 24 to generate a monitor signal Vrec to be given to the difference signal amplifier 12.
 このように基準信号として直流成分と交流成分とが合成された信号を用い、かつ、モニタ信号Vrecの交流成分のみを帰還させることで、実施の形態3にかかるセンサシステム3では、送信素子制御信号Voutに含まれる交流成分のみが変動する系を構成できる。例えば、交流信号だけを伝送する事が出来ずに直流信号と交流信号とで伝送した場合であっても、あたかも交流信号だけを伝送したのと同等の効果がある、また、実施の形態3では、実施の形態2の「センサ付き防犯照明」との比較で言えば、侵入者を捕まえる目的で侵入者に通知せずに侵入を検知させる為に、照明の明るさを変化させる事なくセンシング出来る点が異なる。 By using a signal obtained by synthesizing a DC component and an AC component as a reference signal and returning only the AC component of the monitor signal Vrec, the sensor system 3 according to the third embodiment has a transmission element control signal. It is possible to construct a system in which only the AC component contained in Vout fluctuates. For example, even if it is not possible to transmit only the AC signal and the DC signal and the AC signal are transmitted, the effect is the same as if only the AC signal is transmitted, and in the third embodiment, the effect is the same. In comparison with the "security lighting with sensor" of the second embodiment, in order to detect the intrusion without notifying the intruder for the purpose of catching the intruder, sensing can be performed without changing the brightness of the lighting. The point is different.
 図7の下図に示した出力特性グラフを参照すると、実施の形態3にかかるセンサシステム3の送信素子制御信号Voutの直流成分は、発光部23、受光部24と被検出物100との距離によらず一定である。一方、実施の形態3にかかるセンサシステム3の送信素子制御信号Voutの交流成分は、発光部23、受光部24と被検出物100との距離が離れるほど大きくなる。これは、直流成分除去回路42により、送信素子制御信号Voutの交流成分のみが帰還されるためである。 With reference to the output characteristic graph shown in the lower figure of FIG. 7, the DC component of the transmission element control signal Vout of the sensor system 3 according to the third embodiment is the distance between the light emitting unit 23, the light receiving unit 24, and the object to be detected 100. It is constant regardless. On the other hand, the AC component of the transmission element control signal Vout of the sensor system 3 according to the third embodiment becomes larger as the distance between the light emitting unit 23 and the light receiving unit 24 and the object to be detected 100 increases. This is because only the AC component of the transmission element control signal Vout is fed back by the DC component removing circuit 42.
 図7に示す例では、センサ回路部20として可視光信号を検出信号として用いる例を示したが、センサ回路部20の送信素子或いは受信素子として交流成分のみを含む信号により駆動することが可能な素子(例えば、音を検出信号として使う場合のスピーカーとマイク等)を利用する場合は、図7に示すような直流成分除去回路42を用いることなく、基準信号に含まれる交流成分のみを含む信号を用い、差分信号増幅器12は、±電源で出力が接地ノードを基準に±両方向に変化する構成とする。つまり、基準信号には、直流信号のみ、直流信号と交流信号を合成した信号、交流信号のみと、センサシステムの用途と仕様に応じて様々な信号源を用いることができる。 In the example shown in FIG. 7, an example in which a visible light signal is used as a detection signal is shown as the sensor circuit unit 20, but the sensor circuit unit 20 can be driven by a signal containing only an AC component as a transmission element or a reception element. When using an element (for example, a speaker and a microphone when sound is used as a detection signal), a signal containing only the AC component included in the reference signal without using the DC component removing circuit 42 as shown in FIG. The difference signal amplifier 12 is configured such that the output of the difference signal amplifier 12 changes in both directions ± with reference to the ground node with ± power supply. That is, as the reference signal, various signal sources can be used, such as a DC signal only, a signal obtained by combining a DC signal and an AC signal, and an AC signal only, depending on the application and specifications of the sensor system.
 実施の形態4
 実施の形態4では、実施の形態3にかかるセンサ制御回路40の変形例となるセンサ制御回路50について説明する。そこで、図8に実施の形態4にかかるセンサ制御回路50において反射型のセンサ回路部20を適用したセンサシステム4のブロック図を示す。
Embodiment 4
In the fourth embodiment, the sensor control circuit 50 which is a modification of the sensor control circuit 40 according to the third embodiment will be described. Therefore, FIG. 8 shows a block diagram of the sensor system 4 to which the reflection type sensor circuit unit 20 is applied in the sensor control circuit 50 according to the fourth embodiment.
 図8に示すように、実施の形態4にかかるセンサ制御回路50は、実施の形態1にかかる送信素子制御回路11に代えて送信素子制御回路51を有する。送信素子制御回路51は、差分信号増幅器12に直接フィードバック回路52を加えたものである。また、実施の形態4にかかるセンサ制御回路50では、出力信号として他の実施の形態の送信素子制御信号Voutに相当する送信素子制御信号Vout1と、送信素子制御信号Vout1の交流成分の大きさに比例して信号レベルが変化する検出結果信号Vout2を出力する。また、実施の形態4にかかる直接フィードバック回路52は、送信素子制御信号Vout1の交流成分の大きさに比例して信号レベルが変化する帰還信号を生成して、差分信号増幅器12の反転入力端子側にフィードバックする。 As shown in FIG. 8, the sensor control circuit 50 according to the fourth embodiment has a transmission element control circuit 51 instead of the transmission element control circuit 11 according to the first embodiment. The transmission element control circuit 51 is a difference signal amplifier 12 plus a direct feedback circuit 52. Further, in the sensor control circuit 50 according to the fourth embodiment, the size of the transmission element control signal Vout1 corresponding to the transmission element control signal Vout of another embodiment and the magnitude of the AC component of the transmission element control signal Vout1 are used as output signals. The detection result signal Vout2 whose signal level changes proportionally is output. Further, the direct feedback circuit 52 according to the fourth embodiment generates a feedback signal whose signal level changes in proportion to the magnitude of the AC component of the transmission element control signal Vout1, and is on the inverting input terminal side of the difference signal amplifier 12. Give feedback to.
 直接フィードバック回路52は、フィルタ回路53、振幅検出回路54、増幅器55を有する。フィルタ回路53は、送信素子制御信号Vout1の交流成分を抽出する。なお、フィルタ回路53は、送信素子制御信号Vout1の交流成分を抽出する場合には、ハイパスフィルタ、バンドパスフィルタ等を利用することができる。一方、送信素子制御信号Vout1の直流成分を抽出する場合には、フィルタ回路53としてローパスフィルタを利用する。図8に示す例では、交流成分を抽出するため、フィルタ回路53として、ハイパスフィルタ或いはバンドパスフィルタを利用する。 The direct feedback circuit 52 includes a filter circuit 53, an amplitude detection circuit 54, and an amplifier 55. The filter circuit 53 extracts the AC component of the transmission element control signal Vout1. The filter circuit 53 can use a high-pass filter, a band-pass filter, or the like when extracting the AC component of the transmission element control signal Vout1. On the other hand, when extracting the DC component of the transmission element control signal Vout1, a low-pass filter is used as the filter circuit 53. In the example shown in FIG. 8, a high-pass filter or a band-pass filter is used as the filter circuit 53 in order to extract the AC component.
 振幅検出回路54は、フィルタ回路53で抽出された交流成分の振幅の大きさに応じた直流成分を有する検出結果信号Vout2を生成する。増幅器55は、検出結果信号Vout2を予め設定されたゲインkにより増幅又は減衰させて帰還信号Vfbを生成する。このVfbは、直流成分除去回路42が出力するモニタ信号Vrecと合成され、差分信号増幅器12の反転入力端子に入力される。 The amplitude detection circuit 54 generates a detection result signal Vout2 having a DC component corresponding to the magnitude of the amplitude of the AC component extracted by the filter circuit 53. The amplifier 55 amplifies or attenuates the detection result signal Vout2 by a preset gain k to generate a feedback signal Vfb. This Vfb is combined with the monitor signal Vrec output by the DC component removing circuit 42, and is input to the inverting input terminal of the difference signal amplifier 12.
 ここで、実施の形態4にかかるセンサ制御回路50の動作について説明する。そこで、図9に実施の形態4にかかるセンサ制御回路50の出力特性グラフを示す。図9に示すグラフでは、送信素子制御信号Voutの交流成分の信号の振れ幅の範囲を斜線のハッチングで示した。図9に示すように、実施の形態4にかかるセンサ制御回路50では、交流成分に関しては、発光部23及び受光部24と被検出物100との距離に応じて振れ幅が大きくなる。これは、センサ制御回路50が発光部23及び受光部24を介して基準信号の交流成分を帰還させる信号経路を有するためである。 Here, the operation of the sensor control circuit 50 according to the fourth embodiment will be described. Therefore, FIG. 9 shows an output characteristic graph of the sensor control circuit 50 according to the fourth embodiment. In the graph shown in FIG. 9, the range of the fluctuation width of the signal of the AC component of the transmission element control signal Vout is shown by hatching with diagonal lines. As shown in FIG. 9, in the sensor control circuit 50 according to the fourth embodiment, the swing width of the AC component increases according to the distance between the light emitting unit 23 and the light receiving unit 24 and the object to be detected 100. This is because the sensor control circuit 50 has a signal path for feeding back the AC component of the reference signal via the light emitting unit 23 and the light receiving unit 24.
 そして、実施の形態4にかかるセンサ制御回路50では、送信素子制御信号Voutの交流成分の大きさの変化に応じて検出結果信号Vout2を直接フィードバック回路52で生成する。つまり、検出結果信号Vout2は、発光部23及び受光部24と被検出物100との距離に応じて信号レベルが高くなる。そして、センサ制御回路50では、増幅器55のゲインkを1とした場合、検出結果信号Vout2と基準信号Vrefとの差分値を反転増幅することで送信素子制御信号Vout1の直流成分が生成される。なお、増幅器55のゲインkは、フィードバックする検出結果信号Vout2の帰還量及び直接フィードバック回路52全体のゲインを考慮して1以外の値の適切な値を選ぶことができる。 Then, in the sensor control circuit 50 according to the fourth embodiment, the detection result signal Vout2 is directly generated by the feedback circuit 52 according to the change in the magnitude of the AC component of the transmission element control signal Vout. That is, the signal level of the detection result signal Vout2 increases according to the distance between the light emitting unit 23 and the light receiving unit 24 and the object to be detected 100. Then, in the sensor control circuit 50, when the gain k of the amplifier 55 is set to 1, the DC component of the transmission element control signal Vout1 is generated by inverting and amplifying the difference value between the detection result signal Vout2 and the reference signal Vref. The gain k of the amplifier 55 can be selected as an appropriate value other than 1 in consideration of the feedback amount of the detection result signal Vout2 to be fed back and the gain of the entire direct feedback circuit 52.
 このような制御を行うことで、実施の形態4にかかるセンサシステム4では、発光部23及び受光部24と被検出物100との距離に応じて振幅を大きくしたとしても、発光部23の交流信号に基づく発光強度が飽和することを防止することができる。一方、実施の形態4にかかるセンサシステム4では、送信素子制御信号Vout1の直流成分については、発光部23及び受光部24と被検出物100との距離に応じて信号レベルが低下するため、例えば、送信素子21として発光部23を利用した場合は被検出物100とセンサ回路部20との距離が近づくにつれて目視できる発光量が増加することになる。 By performing such control, in the sensor system 4 according to the fourth embodiment, even if the amplitude is increased according to the distance between the light emitting unit 23 and the light receiving unit 24 and the object to be detected 100, the alternating current of the light emitting unit 23 It is possible to prevent the emission intensity based on the signal from being saturated. On the other hand, in the sensor system 4 according to the fourth embodiment, the signal level of the DC component of the transmission element control signal Vout1 decreases according to the distance between the light emitting unit 23 and the light receiving unit 24 and the object to be detected, for example. When the light emitting unit 23 is used as the transmitting element 21, the amount of light emitted that can be visually observed increases as the distance between the object to be detected 100 and the sensor circuit unit 20 decreases.
 さらに、実施の形態4では、直接フィードバック回路52で生成した帰還信号Vfbを差分信号増幅器12の反転入力端子にフィードバックしたが、帰還信号Vfbを与える先は、差分信号増幅器12の正転入力端子とすることも出来るし、送信素子制御信号Vout1とすることも出来る。この場合、与える先に応じて、帰還信号Vfbの極性を調整するための構成は当業者であれば容易に想到することが出来る範囲の改良であるため、ここでは説明を省略する。また、実施の形態4の直接フィードバック回路52により構成される直接フィードバック系は、交流成分を直流に変換後に負帰還としているため、直流出力の変化方向が交流出力と逆方向になるが、正帰還で戻す事で直流の変化方向を交流出力と同方向にすることも出来る。 Further, in the fourth embodiment, the feedback signal Vfb directly generated by the feedback circuit 52 is fed back to the inverting input terminal of the difference signal amplifier 12, but the destination to which the feedback signal Vfb is given is the forward rotation input terminal of the difference signal amplifier 12. It can also be used, or it can be a transmission element control signal Vout1. In this case, since the configuration for adjusting the polarity of the feedback signal Vfb according to the destination is an improvement within a range that can be easily conceived by those skilled in the art, description thereof will be omitted here. Further, in the direct feedback system configured by the direct feedback circuit 52 of the fourth embodiment, since the AC component is converted to DC and then negative feedback is provided, the change direction of the DC output is opposite to that of the AC output, but the positive feedback By returning with, the direction of change of direct current can be made the same as that of alternating current output.
 実施の形態5
 実施の形態5では、実施の形態1にかかるセンサ制御回路10の変形例となるセンサ制御回路60について説明する。そこで、図10に実施の形態5にかかるセンサ制御回路60において反射型のセンサ回路部20を適用したセンサシステム5のブロック図を示す。
Embodiment 5
In the fifth embodiment, the sensor control circuit 60 which is a modification of the sensor control circuit 10 according to the first embodiment will be described. Therefore, FIG. 10 shows a block diagram of the sensor system 5 to which the reflection type sensor circuit unit 20 is applied in the sensor control circuit 60 according to the fifth embodiment.
 図10に示すように、実施の形態5にかかるセンサ制御回路60では、実施の形態1にかかる送信素子制御回路11としてデジタル演算回路61を用いる。また、デジタル演算回路61は、アナログデジタル変換回路62、レジスタ63、信号処理部64、デジタルアナログ変換回路65を有する。図10に示す例では、デジタル演算回路61がアナログデジタル変換回路62、レジスタ63、信号処理部64、デジタルアナログ変換回路65を全てパッケージ内に含む形態としたが、アナログデジタル変換回路62、レジスタ63、信号処理部64、デジタルアナログ変換回路65はそれぞれ別個の部品として組み込まれていても良いし、発光部23及び受光部24にデジタルIO(例えば、デジタルアンプにより駆動されるスピーカー及びMEMSマイクなど)を有する場合は、アナログデジタル変換回路62及びデジタルアナログ変換回路65を含めずに直接信号処理部64に接続する事もできる。またデジタル演算回路61では、信号処理部64においてセンサ回路部20を制御するセンサ制御プログラムが実行されるものとする。また、レジスタ63には、基準値が含まれるが、この基準値はレジスタ63を用いずに外部から与えることもできる。さらに、基準値そのものを用いずに実施の形態1にかかる送信素子制御回路11と同等の機能を有するデジタル演算回路61を構成することができる。 As shown in FIG. 10, in the sensor control circuit 60 according to the fifth embodiment, the digital arithmetic circuit 61 is used as the transmission element control circuit 11 according to the first embodiment. Further, the digital arithmetic circuit 61 includes an analog-to-digital conversion circuit 62, a register 63, a signal processing unit 64, and a digital-to-analog conversion circuit 65. In the example shown in FIG. 10, the digital arithmetic circuit 61 includes the analog-to-digital conversion circuit 62, the register 63, the signal processing unit 64, and the digital-to-analog conversion circuit 65 in the package. However, the analog-to-digital conversion circuit 62 and the register 63 are included in the package. , The signal processing unit 64 and the digital-to-analog conversion circuit 65 may be incorporated as separate parts, or a digital IO (for example, a speaker driven by a digital amplifier and a MEMS microphone) may be incorporated in the light emitting unit 23 and the light receiving unit 24. Can be directly connected to the signal processing unit 64 without including the analog-to-digital conversion circuit 62 and the digital-to-analog conversion circuit 65. Further, in the digital arithmetic circuit 61, it is assumed that the signal processing unit 64 executes a sensor control program that controls the sensor circuit unit 20. Further, the register 63 includes a reference value, and this reference value can be given from the outside without using the register 63. Further, the digital arithmetic circuit 61 having the same function as the transmission element control circuit 11 according to the first embodiment can be configured without using the reference value itself.
 アナログデジタル変換回路62は、アナログ値を有するモニタ信号Vrecをデジタル値に変換する。レジスタ63は、基準信号の信号レベルであった基準信号Vrefの値となる基準値を保持する。信号処理部64は、実施の形態1にかかる増幅器OP、抵抗R1及び抵抗R2により構成される差分信号増幅器12で行われる制御を行う。具体的には、受信レベル信号Vrecと基準信号Vrefとの電圧差を実施の形態1にかかる差分信号増幅器12のゲインAで増幅した値を送信素子制御信号Voutの値として演算する。デジタルアナログ変換回路65は、信号処理部64で算出された送信素子制御信号Voutのデジタル値をアナログ値に変換し、当該アナログ値に対応する電圧値を有する送信素子制御信号Voutとして出力する。 The analog-to-digital conversion circuit 62 converts the monitor signal Vrec having an analog value into a digital value. The register 63 holds a reference value that is a value of the reference signal Vref, which is the signal level of the reference signal. The signal processing unit 64 performs the control performed by the difference signal amplifier 12 composed of the amplifier OP, the resistor R1 and the resistor R2 according to the first embodiment. Specifically, the value obtained by amplifying the voltage difference between the reception level signal Vrec and the reference signal Vref with the gain A of the difference signal amplifier 12 according to the first embodiment is calculated as the value of the transmission element control signal Vout. The digital-to-analog conversion circuit 65 converts the digital value of the transmission element control signal Vout calculated by the signal processing unit 64 into an analog value, and outputs the transmission element control signal Vout having a voltage value corresponding to the analog value.
 上記説明より、実施の形態5にかかるセンサシステム5では、デジタル回路によって実施の形態1にかかるセンサ制御回路10と同等の機能を果たすセンサ制御回路60を構成することができることがわかる。また、信号処理部64内の処理を改良することで、実施の形態2~4で説明した制御を実現することも可能である。 From the above description, it can be seen that in the sensor system 5 according to the fifth embodiment, a sensor control circuit 60 that performs the same function as the sensor control circuit 10 according to the first embodiment can be configured by a digital circuit. Further, by improving the processing in the signal processing unit 64, it is possible to realize the control described in the second to fourth embodiments.
 実施の形態6
 実施の形態6では、実施の形態1にかかるセンサシステム1を用いた応用機器となるセンサ組み込み機器について説明する。そこで、図11に実施の形態6にかかるセンサ組み込み機器6のブロック図を示す。図11に示すように、実施の形態6にかかるセンサ組み込み機器6では、発光部23が検出信号を出力する出力素子(例えば、発光素子Dtran)を含み、当該発光素子Dtranに流れる電流の変動に応じて変動するセンサ出力信号を取り出し、センサ出力信号を用いて送信素子以外の他の装置或いは他の素子の制御を行う。
Embodiment 6
In the sixth embodiment, a sensor-embedded device which is an application device using the sensor system 1 according to the first embodiment will be described. Therefore, FIG. 11 shows a block diagram of the sensor embedded device 6 according to the sixth embodiment. As shown in FIG. 11, in the sensor-embedded device 6 according to the sixth embodiment, the light emitting unit 23 includes an output element (for example, a light emitting element Dtran) that outputs a detection signal, and changes in the current flowing through the light emitting element Dtran. The sensor output signal that fluctuates according to the response is taken out, and the sensor output signal is used to control a device other than the transmitting element or another element.
 より具体的には、図11に示すように、発光素子Dtranに流れる電流は、抵抗R4により電圧値に変換されセンサ出力信号となる。そして、図11に示す例では、センサ出力信号をデジタル値に変換するアナログデジタル変換回路を含む信号処理回路70に取り込む。そして、信号処理回路70により様々な制御に当該センサ出力信号を利用する。 More specifically, as shown in FIG. 11, the current flowing through the light emitting element Dtran is converted into a voltage value by the resistor R4 and becomes a sensor output signal. Then, in the example shown in FIG. 11, the sensor output signal is incorporated into a signal processing circuit 70 including an analog-to-digital conversion circuit that converts the sensor output signal into a digital value. Then, the signal processing circuit 70 uses the sensor output signal for various controls.
 抵抗R4により電圧値に変換されたセンサ出力信号は、0Vから電源電圧VCCに近い電圧値(より具体的には、電源電圧VCCから発光素子Dtranのダイオード電圧を引いた電圧)までのダイナミックレンジを有するためアナログデジタル変換回路で変換して利用することに適している。 The sensor output signal converted into a voltage value by the resistor R4 has a dynamic range from 0 V to a voltage value close to the power supply voltage VCS (more specifically, a voltage obtained by subtracting the diode voltage of the light emitting element Dtran from the power supply voltage VCS). Since it has, it is suitable for conversion and use with an analog-digital conversion circuit.
 また、図11に示す例では、実施の形態6にかかるセンサ組み込み機器6ではセンサ制御回路10の送信素子制御信号Voutを用いて送信素子以外の他の装置或いは他の素子の制御を行う。 Further, in the example shown in FIG. 11, the sensor-embedded device 6 according to the sixth embodiment controls a device other than the transmitting element or another element by using the transmitting element control signal Vout of the sensor control circuit 10.
 より具体的には、図11に示す例では、送信素子制御信号Voutをモーター駆動回路71に与えてモーター72を駆動する。これにより、センサ組み込み機器6は、例えば、被検出物100の検出結果に応じてアクチュエータを動作させるような応用例を考える事ができる。 More specifically, in the example shown in FIG. 11, the transmission element control signal Vout is given to the motor drive circuit 71 to drive the motor 72. As a result, the sensor-embedded device 6 can consider, for example, an application example in which the actuator is operated according to the detection result of the object to be detected 100.
 実施の形態7
 実施の形態7では、実施の形態2にかかるセンサシステム2において上位システムに出力する検出結果に関する信号を出力するための別の構成について説明する。そこで、図12に実施の形態7にかかるセンサ組み込み機器7のブロック図を示す。
Embodiment 7
In the seventh embodiment, another configuration for outputting a signal relating to the detection result to be output to the host system in the sensor system 2 according to the second embodiment will be described. Therefore, FIG. 12 shows a block diagram of the sensor embedded device 7 according to the seventh embodiment.
 図12に示すように、実施の形態7にかかるセンサ組み込み機器7では、実施の形態2にかかるセンサ回路部20に代えてセンサ回路部80を有する。そして、センサ回路部80は、発光部23、受光部24に、受光部81が追加されている。センサ回路部80では、受光部81により発光部23の発光量を被検出物100の位置の変化によらずに検出して、検出した受光量に応じて信号レベルが変化する送信モニタ信号を出力する。そして、この受光部81が出力する送信モニタ信号をハイパスフィルタ82或いはローパスフィルタ84を介して出力する。 As shown in FIG. 12, the sensor embedded device 7 according to the seventh embodiment has a sensor circuit unit 80 instead of the sensor circuit unit 20 according to the second embodiment. Then, in the sensor circuit unit 80, a light receiving unit 81 is added to the light emitting unit 23 and the light receiving unit 24. The sensor circuit unit 80 detects the amount of light emitted from the light emitting unit 23 by the light receiving unit 81 regardless of the change in the position of the object to be detected 100, and outputs a transmission monitor signal whose signal level changes according to the detected amount of received light. do. Then, the transmission monitor signal output by the light receiving unit 81 is output via the high-pass filter 82 or the low-pass filter 84.
 より具体的には、実施の形態7にかかるセンサ組み込み機器7では、ハイパスフィルタ82により送信モニタ信号の交流成分を抽出し、抽出した交流成分の振幅に応じた信号レベルを有する直流信号である交流成分送信モニタ信号Vout_ACを出力する。また、実施の形態7にかかるセンサ組み込み機器7では、ローパスフィルタ84により送信モニタ信号の直流成分を抽出し、抽出した直流成分の信号レベルを有する直流信号である直流成分送信モニタ信号Vout_DCを出力する。 More specifically, in the sensor-embedded device 7 according to the seventh embodiment, the AC component of the transmission monitor signal is extracted by the high-pass filter 82, and the AC is a DC signal having a signal level corresponding to the amplitude of the extracted AC component. The component transmission monitor signal Vout_AC is output. Further, in the sensor-embedded device 7 according to the seventh embodiment, the DC component of the transmission monitor signal is extracted by the low-pass filter 84, and the DC component transmission monitor signal Vout_DC, which is a DC signal having the signal level of the extracted DC component, is output. ..
 図12に示すような方法でセンサシステムからの出力結果を得ることで、発光部23の温度特性、或いは、経時変化に起因する特性変化(以下、これらの特性変化を、単に特性変化と称す)の影響を受けることのない出力結果を得ることができる。発光部23に特性変化が生じた場合、センサシステムを構成するセンサ制御回路10、発光部23、受光部24から構成される系の中では、伝達率βsenに発光部23の特性変化に起因する変化成分が含まれるため、センサ制御回路10の出力信号には発光部23の特性変動に起因する変化成分が含まれることになる。しかしながら、実施の形態7にかかるセンサ組み込み機器7では、発光部23の発光量を直接モニタする受光部81を設けることで、この特性変化の影響を受けない出力結果を得ることができる。 By obtaining the output result from the sensor system by the method shown in FIG. 12, the temperature characteristic of the light emitting unit 23 or the characteristic change due to the change with time (hereinafter, these characteristic change is simply referred to as the characteristic change). It is possible to obtain an output result that is not affected by. When the characteristic change occurs in the light emitting unit 23, in the system composed of the sensor control circuit 10, the light emitting unit 23, and the light receiving unit 24 constituting the sensor system, the transmission rate βsen is caused by the characteristic change of the light emitting unit 23. Since the change component is included, the output signal of the sensor control circuit 10 includes the change component due to the characteristic change of the light emitting unit 23. However, in the sensor-embedded device 7 according to the seventh embodiment, by providing the light receiving unit 81 that directly monitors the light emitting amount of the light emitting unit 23, it is possible to obtain an output result that is not affected by this characteristic change.
 また、受光部81が出力する送信モニタ信号の直流成分のみを送信素子制御回路11に帰還させることで発光部23の発光量の経時変化を抑制するAPC制御を行いながら、交流成分によって被検出物を検出することもできる。 Further, by feeding back only the DC component of the transmission monitor signal output by the light receiving unit 81 to the transmission element control circuit 11, APC control for suppressing the change in the amount of light emitted by the light emitting unit 23 over time is performed, and the object to be detected is controlled by the AC component. Can also be detected.
 なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 The present invention is not limited to the above embodiment, and can be appropriately modified without departing from the spirit.
 この出願は、2020年1月29日に出願された日本出願特願2020-12792を基礎とする優先権を主張し、その開示の全てをここに取り込む。 This application claims priority based on Japanese application Japanese Patent Application No. 2020-12792 filed on January 29, 2020, and incorporates all of its disclosures herein.
 1~5 センサシステム
 6、7 センサ組み込み機器
 10、30、40、50、60 センサ制御回路
 11 送信素子制御回路
 12 差分信号増幅器
 20 センサ回路部
 21 送信素子
 22 受信素子
 23 発光部
 24 受光部
 41 送信素子制御回路
 42 直流成分除去回路
 51 送信素子制御回路
 52 直接フィードバック回路
 53 フィルタ回路
 54 振幅検出回路
 55 増幅器
 61 デジタル演算回路
 62 アナログデジタル変換回路
 63 レジスタ
 64 信号処理部
 65 デジタルアナログ変換回路
 70 信号処理回路
 71 モーター駆動回路
 72 モーター
 80 センサ回路部
 81 受光部
 82 ハイパスフィルタ
 83 振幅検出回路
 84 ローパスフィルタ
 100 被検出物
 OP 増幅器
 Vref 基準信号
 Vrec モニタ信号
 Vm 反転入力電圧
 Vfb 帰還信号
 Vout 送信素子制御信号
 R1、R2、R4、R5 抵抗
 Dtran 発光素子
 Trec 受光素子
 Ti 入力端子
 To 出力端子
1 to 5 Sensor system 6, 7 Sensor built-in device 10, 30, 40, 50, 60 Sensor control circuit 11 Transmission element control circuit 12 Difference signal amplifier 20 Sensor circuit unit 21 Transmission element 22 Reception element 23 Light emitting unit 24 Light receiving unit 41 Transmission Element control circuit 42 DC component removal circuit 51 Transmit element control circuit 52 Direct feedback circuit 53 Filter circuit 54 Oscillation detection circuit 55 Amplifier 61 Digital arithmetic circuit 62 Analog-to-digital conversion circuit 63 Register 64 Signal processing unit 65 Digital-to-analog conversion circuit 70 Signal processing circuit 71 Motor drive circuit 72 Motor 80 Sensor circuit part 81 Light receiving part 82 High-pass filter 83 Oscillation detection circuit 84 Low-pass filter 100 Detected object OP Amplifier Vref Reference signal Vrec Monitor signal Vm Inverted input voltage Vfb Feedback signal Vout Transmission element control signal R1, R2 , R4, R5 Resistance Dtran Light emitting element Trec Light receiving element Ti input terminal To output terminal

Claims (9)

  1.  被検出物に対して照射する検出信号を送信する送信素子に前記検出信号の送信強度を制御する送信素子制御信号を出力する出力端子と、
     前記検出信号を受信する受信素子が前記検出信号の受信強度の大きさに応じて信号レベルを変動させるモニタ信号が入力される入力端子と、
     前記モニタ信号により取得される前記送信素子から前記受信素子への前記検出信号の伝達率の変化量の大きさを、信号レベルが予め決められた基準信号と前記モニタ信号との差により検出し、前記変化量の大きさに応じて大きさが変化する前記送信素子制御信号を生成する送信素子制御回路と、を有し、
     前記送信素子制御回路は、前記伝達率の変化を打ち消す方向に前記送信素子制御信号を変化させるセンサ制御回路。
    An output terminal that outputs a transmission element control signal that controls the transmission intensity of the detection signal to a transmission element that transmits a detection signal to irradiate the object to be detected.
    An input terminal into which a receiving element that receives the detection signal inputs a monitor signal that fluctuates the signal level according to the magnitude of the reception intensity of the detection signal, and an input terminal.
    The magnitude of the amount of change in the transmission rate of the detection signal from the transmission element to the reception element acquired by the monitor signal is detected by the difference between the reference signal whose signal level is predetermined and the monitor signal. It has a transmission element control circuit that generates the transmission element control signal whose magnitude changes according to the magnitude of the change amount.
    The transmission element control circuit is a sensor control circuit that changes the transmission element control signal in a direction that cancels the change in the transmission rate.
  2.  前記送信素子制御回路は、前記送信素子制御信号を出力する差分信号増幅器を有する請求項1に記載のセンサ制御回路。 The sensor control circuit according to claim 1, wherein the transmission element control circuit includes a difference signal amplifier that outputs the transmission element control signal.
  3.  前記差分信号増幅器は、
     一端に前記モニタ信号が入力される第1のインピーダンス素子と、
     正転入力端子に前記基準信号が入力され、反転入力端子に前記第1のインピーダンス素子の他端が接続され、出力端子から前記送信素子制御信号を出力する増幅器と、
     前記増幅器の前記出力端子と前記反転入力端子との間に接続される第2のインピーダンス素子と、
     を有する請求項2に記載のセンサ制御回路。
    The difference signal amplifier
    A first impedance element to which the monitor signal is input to one end,
    An amplifier in which the reference signal is input to the forward rotation input terminal, the other end of the first impedance element is connected to the inverting input terminal, and the transmission element control signal is output from the output terminal.
    A second impedance element connected between the output terminal and the inverting input terminal of the amplifier,
    The sensor control circuit according to claim 2.
  4.  前記基準信号及び前記モニタ信号は、少なくとも交流成分を含み、
     前記差分信号増幅器は、前記送信素子制御信号に含まれる前記交流成分について、前記基準信号と前記モニタ信号との差分成分の大きさが小さくなるように前記送信素子制御信号を変動させる請求項2又は3に記載のセンサ制御回路。
    The reference signal and the monitor signal contain at least an AC component and contain at least an AC component.
    The difference signal amplifier changes the transmission element control signal of the AC component included in the transmission element control signal so that the magnitude of the difference component between the reference signal and the monitor signal becomes small. 3. The sensor control circuit according to 3.
  5.  前記送信素子制御回路は、
     前記差分信号増幅器が出力する前記送信素子制御信号の前記交流成分を抽出して、抽出した前記交流成分の大きさに応じた直流成分を有する振幅レベル信号を生成し、前記振幅レベル信号を前記差分信号増幅器に帰還信号として与える直接フィードバック回路をさらに有する請求項4に記載のセンサ制御回路。
    The transmitting element control circuit is
    The AC component of the transmission element control signal output by the difference signal amplifier is extracted to generate an amplitude level signal having a DC component corresponding to the magnitude of the extracted AC component, and the amplitude level signal is converted into the difference. The sensor control circuit according to claim 4, further comprising a direct feedback circuit that gives a signal amplifier as a feedback signal.
  6.  前記送信素子制御回路は、デジタル信号処理により、前記モニタ信号から前記伝達率の変化を取得し、前記伝達率の変化を打ち消す方向に前記送信素子制御信号を変化させる信号処理部である請求項1、2、4または5のいずれか1項に記載のセンサ制御回路。 The transmission element control circuit is a signal processing unit that acquires a change in the transmission rate from the monitor signal by digital signal processing and changes the transmission element control signal in a direction that cancels the change in the transmission rate. 2. The sensor control circuit according to any one of 2, 4 or 5.
  7.  前記送信素子及び前記受信素子は、空間を伝搬する媒体を前記検出信号として送受信する請求項1乃至6のいずれか1項に記載のセンサ制御回路。 The sensor control circuit according to any one of claims 1 to 6, wherein the transmitting element and the receiving element transmit and receive a medium propagating in space as the detection signal.
  8.  請求項1乃至7のいずれか1項に記載の前記センサ制御回路、前記送信素子及び前記受信素子を有するセンサ組み込み機器。 A sensor-embedded device having the sensor control circuit, the transmitting element, and the receiving element according to any one of claims 1 to 7.
  9.  前記センサ制御回路の前記送信素子制御信号、前記送信素子において前記検出信号を出力する出力素子に流れる電流の変動に応じて変動するセンサ出力信号、或いは、前記送信素子から前記被検出物の影響を受けずに前記送信素子が出力する検出信号をモニタするモニタ用受信素子の出力の、少なくとも1つを用いて、前記送信素子以外の他の装置或いは他の素子、に対して前記被検出物に起因する前記伝達率の変化に応じた制御を行う請求項8に記載のセンサ組み込み機器。 The influence of the transmission element control signal of the sensor control circuit, the sensor output signal that fluctuates according to the fluctuation of the current flowing through the output element that outputs the detection signal in the transmission element, or the influence of the object to be detected from the transmission element. At least one of the outputs of the monitor receiving element that monitors the detection signal output by the transmitting element without receiving the signal is used to the object to be detected with respect to a device other than the transmitting element or another element. The sensor-embedded device according to claim 8, wherein the control is performed according to the change in the transmission rate caused by the change.
PCT/JP2020/029930 2020-01-29 2020-08-05 Sensor control circuit and device with built-in sensor WO2021152885A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020012792A JP6749717B1 (en) 2020-01-29 2020-01-29 Sensor control circuit and sensor built-in equipment
JP2020-012792 2020-01-29

Publications (1)

Publication Number Publication Date
WO2021152885A1 true WO2021152885A1 (en) 2021-08-05

Family

ID=72240835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/029930 WO2021152885A1 (en) 2020-01-29 2020-08-05 Sensor control circuit and device with built-in sensor

Country Status (2)

Country Link
JP (1) JP6749717B1 (en)
WO (1) WO2021152885A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108978A (en) * 1982-12-14 1984-06-23 Matsushita Electric Ind Co Ltd Passing object detector
JPH04339414A (en) * 1991-05-16 1992-11-26 Omron Corp Photoelectric sensor
JPH0525839U (en) * 1991-09-13 1993-04-02 サンクス株式会社 Photoelectric switch
JPH05174260A (en) * 1991-12-26 1993-07-13 Atsumi Denki Kk Beam sensor system
JPH11330939A (en) * 1998-05-13 1999-11-30 Keyence Corp Optical device, photoelectric switch, fiber type photoelectric switch, and color discrimination sensor
JP2004101446A (en) * 2002-09-11 2004-04-02 Omron Corp Photoelectric sensor
JP2006080896A (en) * 2004-09-09 2006-03-23 Keyence Corp Detection switch, photoelectronic switch and detecting method
JP2006238185A (en) * 2005-02-25 2006-09-07 Keyence Corp Light projection head for photoelectric switch
JP2018170158A (en) * 2017-03-29 2018-11-01 株式会社キーエンス Photoelectronic sensor

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108978A (en) * 1982-12-14 1984-06-23 Matsushita Electric Ind Co Ltd Passing object detector
JPH04339414A (en) * 1991-05-16 1992-11-26 Omron Corp Photoelectric sensor
JPH0525839U (en) * 1991-09-13 1993-04-02 サンクス株式会社 Photoelectric switch
JPH05174260A (en) * 1991-12-26 1993-07-13 Atsumi Denki Kk Beam sensor system
JPH11330939A (en) * 1998-05-13 1999-11-30 Keyence Corp Optical device, photoelectric switch, fiber type photoelectric switch, and color discrimination sensor
JP2004101446A (en) * 2002-09-11 2004-04-02 Omron Corp Photoelectric sensor
JP2006080896A (en) * 2004-09-09 2006-03-23 Keyence Corp Detection switch, photoelectronic switch and detecting method
JP2006238185A (en) * 2005-02-25 2006-09-07 Keyence Corp Light projection head for photoelectric switch
JP2018170158A (en) * 2017-03-29 2018-11-01 株式会社キーエンス Photoelectronic sensor

Also Published As

Publication number Publication date
JP2021117200A (en) 2021-08-10
JP6749717B1 (en) 2020-09-02

Similar Documents

Publication Publication Date Title
TWI592034B (en) Audio apparatus with thermal controlling ability and the controlling method thereof
US20030016838A1 (en) Optical microphone systems and method of operating same
JP2007121145A (en) Photoelectric type dust sensor device, air cleaner and air conditioner
KR20150105889A (en) Apparatus and method for driving vertical cavity surface emitting laser diode
JP2007115908A (en) Optical coupling device
WO2021152885A1 (en) Sensor control circuit and device with built-in sensor
JP2007005753A (en) Power control apparatus of laser module and its method
JP2010286235A (en) Photoelectric sensor
TWI381611B (en) Smart power supply
JP2006229224A (en) Method for determining laser threshold of laser diode
JP4681912B2 (en) Photoelectric switch
JP2006238185A (en) Light projection head for photoelectric switch
JP6427772B2 (en) Battery-powered security device
US6445401B2 (en) Light power modulating system
GB2334096A (en) Attenuation smoke detector with drift compensation
JP5075898B2 (en) Alarm
JP2009205593A (en) Alarm unit
WO2014167899A1 (en) Photoelectric sensor
TWI780933B (en) Adaptive proximity sensing device
US11882404B2 (en) Mobile communications device without physical screen-opening for audio
KR100932323B1 (en) Piezoelectric Generation System and Generation Method
JP6812188B2 (en) Light receiving circuit and photoelectric sensor
JP4733944B2 (en) Optical transmitter
JP2004153758A (en) Light receiver
JP2009134150A (en) Galvano drive unit, galvano driving system, and laser processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916730

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916730

Country of ref document: EP

Kind code of ref document: A1