JPH05174260A - Beam sensor system - Google Patents

Beam sensor system

Info

Publication number
JPH05174260A
JPH05174260A JP34479791A JP34479791A JPH05174260A JP H05174260 A JPH05174260 A JP H05174260A JP 34479791 A JP34479791 A JP 34479791A JP 34479791 A JP34479791 A JP 34479791A JP H05174260 A JPH05174260 A JP H05174260A
Authority
JP
Japan
Prior art keywords
light
light emitting
projector
infrared
emitting element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP34479791A
Other languages
Japanese (ja)
Other versions
JP3132871B2 (en
Inventor
Houei Sugiyama
朋英 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atsumi Electric Co Ltd
Original Assignee
Atsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Atsumi Electric Co Ltd filed Critical Atsumi Electric Co Ltd
Priority to JP34479791A priority Critical patent/JP3132871B2/en
Publication of JPH05174260A publication Critical patent/JPH05174260A/en
Application granted granted Critical
Publication of JP3132871B2 publication Critical patent/JP3132871B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Geophysics And Detection Of Objects (AREA)
  • Burglar Alarm Systems (AREA)

Abstract

PURPOSE:To drastically reduce the power consumption of a projector. CONSTITUTION:A projector 20 is provided with a light emitting element 22 emitting an alarm infrared beam 36, a light receiving element 23 receiving an infrared beam 37 from a light emitting element 33 of a light receiver, a light emitting amount control means 24 and a light emission driving circuit 25, the light receiver 30, a light receiving element 32 receiving an infrared beam 36 from the light emitting element 22 and the light emitting element 33 emitting a preriminarily set amount of infrared beam 37. The light emitting amount control means 24 detects the level of a light receiving signal to be outputted from the light receiving element 23 and controls the light emission driving circuit 25 corresponding to the light receiving signal level to control the light emitting amount light of the light emitting element 22.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ビームセンサシステム
に係り、特にそのAGC方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a beam sensor system and, more particularly, to an AGC method thereof.

【0002】[0002]

【従来の技術】従来、赤外線ビームを投光する投光器
と、該投光器から投光された赤外線ビームを受光する受
光器とが対向されて配置されてなるビームセンサシステ
ムが知られているが、このようなビームセンサシステム
においては、受光器側の感度マージンを十分に確保する
ために、投光器からは受光器における発報レベル、即ち
侵入者を警戒するに必要な最小限の赤外線ビーム量の40
〜 150倍の光量を投光しているのが通常である。例えば
いま、受光器では受光信号が 5mV以下になったときに
侵入者有りと判断して発報するものとすると、即ち発報
レベルが 5mVとすると、投光器からは、通常の状態で
は 200mV〜 750mV程度の受光信号が得られるような
ビーム量を投光している。このように非常に大きな赤外
線ビームを投光するのは霧や雨等により赤外線に対する
環境が悪化し、投光される赤外線ビームが減衰しても良
好に侵入者検知を行うことができるようにするためであ
るが、その場合、図4に示すように当該ビームセンサシ
ステムの警戒領域の近傍に壁面等の赤外線を反射する物
体10がある場合には、霧や雨がなく、赤外線に対する
環境が良好なときには物体10からの反射光11の光量
も非常に強いものとなり、投光器Tから受光器Rに直進
する赤外線ビーム12が侵入者により遮断されても反射
光11の光量が大きいために発報しない場合が生じる。
2. Description of the Related Art Conventionally, there is known a beam sensor system in which a projector for projecting an infrared beam and a photoreceiver for receiving the infrared beam projected from the projector are arranged to face each other. In such a beam sensor system, in order to secure a sufficient sensitivity margin on the light receiver side, the light emitter emits a warning level at the light receiver, that is, a minimum infrared beam amount of 40 which is necessary for alerting an intruder.
It usually emits ~ 150 times as much light. For example, suppose now that the photodetector judges that an intruder is present when the light reception signal becomes 5 mV or less and issues an alarm, that is, if the alarm level is 5 mV, then from the projector, the normal condition is 200 mV to 750 mV. The beam is projected so that a light receiving signal of a certain degree can be obtained. Projecting a very large infrared beam in this way makes it possible to detect intruders satisfactorily even if the environment for infrared rays deteriorates due to fog, rain, etc. and the projected infrared beam is attenuated. This is because in that case, as shown in FIG. 4, when there is an object 10 such as a wall surface that reflects infrared rays in the vicinity of the caution area of the beam sensor system, there is no fog or rain, and the environment for infrared rays is good. In such a case, the amount of the reflected light 11 from the object 10 is also very strong, and even if the infrared beam 12 traveling straight from the projector T to the light receiver R is blocked by the intruder, the amount of the reflected light 11 is large, and therefore no alarm is issued. There are cases.

【0003】そこで、従来のビームセンサシステムにお
いては、図4において物体10からの反射光11を無視
でき、直進する赤外線ビーム12が遮断されたときには
常に発報するように、受光器の信号処理回路系にはAG
C回路が設けられるのが通常である。
Therefore, in the conventional beam sensor system, the reflected light 11 from the object 10 in FIG. 4 can be neglected, and the signal processing circuit of the light receiver is arranged so as to always issue a warning when the infrared beam 12 traveling straight ahead is blocked. AG in the system
A C circuit is usually provided.

【0004】図5は従来のAGC回路の概略の構成例を
示す図であり、フォトトランジスタ等からなる受光素子
1の出力信号は増幅器2に入力されて増幅された後、侵
入者の有無の識別の用に供するために図示しない信号処
理回路に供給されると共に、AGC回路3に供給され
る。AGC回路3は、増幅器2の出力信号のレベルを検
出して利得制御用の制御信号を生成するレベル検出回路
4と、このレベル検出回路4で生成された制御信号を所
定の時間だけ遅延する遅延回路5とで構成されている。
従って、レベル検出回路4で生成された制御信号は遅延
回路5で所定の時間だけ遅延されて増幅器2に供給さ
れ、増幅器2の利得制御が行われる。
FIG. 5 is a diagram showing a schematic configuration example of a conventional AGC circuit, in which an output signal of a light receiving element 1 composed of a phototransistor or the like is input to an amplifier 2 and amplified, and then the presence or absence of an intruder is identified. The signal is supplied to a signal processing circuit (not shown) for the purpose of being used, and is also supplied to the AGC circuit 3. The AGC circuit 3 detects the level of the output signal of the amplifier 2 and generates a control signal for gain control, and a delay that delays the control signal generated by the level detection circuit 4 for a predetermined time. And the circuit 5.
Therefore, the control signal generated by the level detection circuit 4 is delayed by the delay circuit 5 for a predetermined time and supplied to the amplifier 2 to control the gain of the amplifier 2.

【0005】これによって投光器から受光器に直進する
赤外線ビームの受光信号のレベルは常に一定に保たれる
ことになり、図4に示すように物体10からの反射光1
1がある場合においても、当該反射光11の信号レベル
はAGC回路3により発報レベル以下に抑制することが
できるので、直進する赤外線ビーム12が遮断された場
合には必ず発報されることになる。
As a result, the level of the received light signal of the infrared beam traveling straight from the projector to the receiver is always kept constant, and the reflected light 1 from the object 10 as shown in FIG.
Even if there is 1, the signal level of the reflected light 11 can be suppressed to a level lower than the alarming level by the AGC circuit 3, so that when the infrared beam 12 traveling straight is interrupted, it is always alarmed. Become.

【0006】ところで、AGC回路の応答速度について
は次のような条件が必要である。いまAGC回路の応答
速度が非常に速いものとすると、赤外線ビームが侵入者
により遮断された場合、受光信号のレベルが低下するの
で、AGC回路3は増幅器2の増幅度をあげるように機
能する。このとき、図4に示すような反射光11あるい
は他の投光器からの赤外線ビームの入射等の外乱が存在
しない場合には問題ないが、例えば図4に示すように反
射光11が存在する場合には、当該反射光11の受光信
号が増幅器2によって即座に増幅されて発報レベルを越
えてしまい、その結果侵入者があるにも拘らず発報しな
いという事態が生じる。
By the way, the following conditions are required for the response speed of the AGC circuit. Assuming that the response speed of the AGC circuit is very fast, the level of the received light signal is lowered when the infrared beam is blocked by an intruder, so that the AGC circuit 3 functions to increase the amplification degree of the amplifier 2. At this time, there is no problem if there is no disturbance such as reflected light 11 as shown in FIG. 4 or incidence of an infrared beam from another projector, but if there is reflected light 11 as shown in FIG. In this case, the received light signal of the reflected light 11 is immediately amplified by the amplifier 2 and exceeds the notification level, and as a result, there is a situation in which the notification is not issued despite the presence of an intruder.

【0007】そこでAGC回路の応答速度を調整するた
めに設けられるのが遅延回路5であり、この遅延回路5
により制御信号を 500msec〜1sec程度の時間遅らせてい
るのが通常である。この遅延時間は侵入者が赤外線ビー
ムを横切る時間が忍び足で侵入した場合でも 300msec程
度であることに基づいているものであり、この遅延回路
5を設けることによって図4に示すような反射光がある
場合においても確実に侵入者を検知することができる。
なお、霧や雨の場合には赤外線が吸収され、受光信号レ
ベルが低下するが、急激な降雨の場合にも受光信号レベ
ルが1/3まで低下するのに3sec程度かかることが測定の
結果確認されているので、上記の遅延時間をもたせたと
しても、AGC回路は霧や雨には良好に応答するもので
ある。
Therefore, the delay circuit 5 is provided to adjust the response speed of the AGC circuit.
Therefore, the control signal is usually delayed by about 500 msec to 1 sec. This delay time is based on the fact that the time taken by an intruder to traverse the infrared beam is about 300 msec even if the intruder invades with a sneaky foot. By providing this delay circuit 5, reflected light as shown in FIG. Even in the case, the intruder can be detected with certainty.
In addition, in the case of fog or rain, infrared rays are absorbed and the received light signal level drops, but even in the case of sudden rainfall, it takes about 3 seconds for the received light signal level to drop to 1/3. Therefore, even if the above delay time is provided, the AGC circuit responds well to fog and rain.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、従来の
ビームセンサシステムにおいては投光器からは常に発報
レベルの40〜 150倍程度の非常に大きな光量の赤外線ビ
ームを投光しなければならないので、消費電力が大きい
という問題があった。この問題は特に停電時に顕著に現
れる。即ち、通常投光器の電源は投光器とは別体で構成
される電源装置から供給されるが、停電時に備えてバッ
クアップ用の電池が内蔵されるのが一般的であり、その
とき投光器の消費電力が大きい場合には内蔵される電池
によるバックアップ時間が短いものとなるからである。
However, in the conventional beam sensor system, it is necessary to always project an infrared beam of a very large amount of light which is 40 to 150 times as high as the warning level from the projector, so that the power consumption is low. There was a problem that was large. This problem is especially noticeable during a power failure. That is, the power of the floodlight is normally supplied from a power supply device that is separate from the floodlight, but it is common to have a backup battery built-in in case of power failure, and at that time, the power consumption of the floodlight is reduced. This is because if it is large, the backup time by the built-in battery will be short.

【0009】本発明は、上記の課題を解決するものであ
って、投光器の消費電力を大幅に低減できるビームセン
サシステムを提供することを目的とするものである。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a beam sensor system capable of significantly reducing the power consumption of the projector.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明のビームセンサシステムは、赤外線を投光
する投光器と、前記投光器から投光される赤外線を受光
する受光器とを備えるビームセンサにおいて、前記受光
器には赤外線投光部を備え、前記投光器には前記受光器
の赤外線投光部から投光される赤外線を受光する赤外線
受光部と、該投光器の受光部における赤外線受光量に応
じて投光器からの赤外線投光量を制御する投光量制御手
段とを備えることを特徴とする。
In order to achieve the above object, a beam sensor system of the present invention comprises a projector for projecting infrared rays and a receiver for receiving infrared rays projected from the projectors. In the beam sensor, the light receiver is provided with an infrared light projecting unit, the light projecting unit receives an infrared light projected from the infrared light projecting unit of the light receiver, and an infrared light receiving unit of the light projecting unit. And a projection amount control means for controlling the projection amount of infrared rays from the projector according to the amount.

【0011】[0011]

【作用】受光器には投光器から投光される警戒用赤外線
ビームを受光する手段に加えて一定の強度の赤外線ビー
ムを投光する投光部を備える。また、投光器には警戒用
赤外線ビームを投光する手段に加えて、前記受光器の投
光部から投光される赤外線ビームを受光する受光部と、
当該受光部からの受光信号のレベルに応じて前記警戒用
赤外線ビームの投光量を制御するための投光制御手段を
備える。これによって受光器で受光する警戒用赤外線ビ
ームの強度は、霧や雨等の環境の変化によらず略一定と
なる。また、警戒用赤外線ビームの強度は従来に比較し
て小さくできるので、消費電力を低減することができ
る。
In the light receiver, in addition to the means for receiving the warning infrared beam projected from the projector, the light receiver is provided with a light projecting unit for projecting an infrared beam having a constant intensity. In addition to the means for projecting a warning infrared beam on the projector, a light receiving unit for receiving the infrared beam projected from the light projecting unit of the light receiver,
Projection control means for controlling the projection amount of the warning infrared beam in accordance with the level of the received light signal from the light receiving unit is provided. As a result, the intensity of the warning infrared beam received by the light receiver becomes substantially constant regardless of environmental changes such as fog and rain. Further, the intensity of the warning infrared beam can be made smaller than that of the conventional one, so that the power consumption can be reduced.

【0012】[0012]

【実施例】以下、図面を参照しつつ実施例を説明する。
図1は、本発明に係るビームセンサシステムを一つの赤
外線ビームで警戒を行ういわゆるシングルビームセンサ
に適用した場合の一実施例の構成を示す図であり、図
中、20は投光器、21は一体型反射鏡、22は発光素
子、23は受光素子、24は投光量制御手段、25は発
光駆動回路、30は受光器、31は一体型反射鏡、32
は受光素子、33は発光素子、34は信号処理手段、3
5は発光駆動回路を示す。
Embodiments will be described below with reference to the drawings.
FIG. 1 is a diagram showing a configuration of an embodiment in which a beam sensor system according to the present invention is applied to a so-called single beam sensor for warning with one infrared beam. In the figure, 20 is a projector and 21 is one. Body reflection mirror, 22 is a light emitting element, 23 is a light receiving element, 24 is a light emitting amount control means, 25 is a light emission drive circuit, 30 is a light receiver, 31 is an integrated reflection mirror, 32
Is a light receiving element, 33 is a light emitting element, 34 is a signal processing means, 3
Reference numeral 5 denotes a light emission drive circuit.

【0013】図1において、投光器20は警戒用の赤外
線ビーム36を投光する発光素子22と、受光器30の
発光素子33から投光される赤外線ビーム37を受光す
るための受光素子23を備えている。そして、発光素子
22と受光素子23はそれぞれ別個の反射鏡の焦点位置
に配置されているが、これらの二つの反射鏡は、ネジ等
で構成される照準合わせ手段により光軸方向が一体で調
整できるようになされている。これが一体型反射鏡21
である。
In FIG. 1, the projector 20 comprises a light emitting element 22 for projecting an infrared ray 36 for warning, and a light receiving element 23 for receiving an infrared beam 37 projected from a light emitting element 33 of a light receiver 30. ing. The light emitting element 22 and the light receiving element 23 are arranged at the focal positions of the respective separate reflecting mirrors, and these two reflecting mirrors are integrally adjusted in the optical axis direction by the aiming means composed of screws or the like. It is made possible. This is an integrated reflector 21
Is.

【0014】受光器30は投光器20に対向して配置さ
れるものであり、投光器20の発光素子22からの警戒
用の赤外線ビーム36を受光するための受光素子32
と、予め定められた一定光量の赤外線ビーム37を投光
器20の受光素子23に向けて投光する発光素子33を
備えており、受光素子32と発光素子33はそれぞれ一
体型反射鏡31を構成する二つの反射鏡の焦点位置に配
置されている。
The light receiver 30 is arranged so as to face the light projector 20, and a light receiving element 32 for receiving a warning infrared beam 36 from the light emitting element 22 of the light projector 20.
And a light emitting element 33 for projecting an infrared beam 37 of a predetermined constant light amount toward the light receiving element 23 of the light projector 20. The light receiving element 32 and the light emitting element 33 respectively form an integral reflecting mirror 31. It is located at the focal point of the two reflectors.

【0015】また、受光器30は、発光素子33を駆動
するための発光駆動回路35と、受光素子32から出力
される受光信号を処理し、侵入者の有無を判断するため
の信号処理手段34を備えている。信号処理手段34
は、上述したAGC回路を備えていないことを除いて従
来の構成と同様であり、この信号処理手段34の出力信
号は図示しない受信機に送られる。また、発光駆動回路
35は従来の投光器における発光駆動回路と同様であ
り、所定の周期のパルスにより発光素子33の発光駆動
を行うものであるが、その発光量は受光器30における
発報レベルの 5〜10倍程度の小さい値に設定されてい
る。従って、発光素子33の消費電力は非常に小さいも
のである。
Further, the light receiver 30 processes a light emitting drive circuit 35 for driving the light emitting element 33 and a light receiving signal output from the light receiving element 32, and a signal processing means 34 for judging the presence or absence of an intruder. Is equipped with. Signal processing means 34
Is similar to the conventional configuration except that the above-mentioned AGC circuit is not provided, and the output signal of this signal processing means 34 is sent to a receiver (not shown). Further, the light emission drive circuit 35 is similar to the light emission drive circuit in the conventional light projector, and drives the light emission of the light emitting element 33 with a pulse having a predetermined cycle. It is set to a small value of 5 to 10 times. Therefore, the power consumption of the light emitting element 33 is very small.

【0016】投光器20は、また投光量制御手段24、
発光駆動回路25を備える。投光量制御手段24は、受
光素子23から出力される受光信号のレベルを検出し、
当該受光信号レベルに応じて発光駆動回路25を制御し
て発光素子22の発光量を制御するものである。例えば
図3に示すように、霧や雨、塵芥等がなく、赤外線に対
する環境が最良の場合には受光信号レベルが最大値V
MAX となり、このときの発光素子22の発光量がL0
あるとすると、霧や降雨のために環境が悪化し、受光信
号レベルが低下するに伴って50で示す特性に沿って発
光量を増加するように制御する。これによって受光器3
0の受光素子32から出力される受光信号のレベルは常
に略一定となる。なお、ここで発光素子22の発光量L
0 は受光器30の発報レベルの 5倍程度に設定される。
従って発光素子22の消費電力は従来のものに比較して
非常に小さいなものとなる。
The projector 20 also includes a projection amount control means 24,
A light emission drive circuit 25 is provided. The light emitting amount control means 24 detects the level of the light receiving signal output from the light receiving element 23,
The light emission drive circuit 25 is controlled according to the received light signal level to control the light emission amount of the light emitting element 22. For example, as shown in FIG. 3, when there is no fog, rain, dust, etc. and the environment for infrared rays is the best, the received light signal level is the maximum value V.
MAX , and assuming that the light emitting amount of the light emitting element 22 at this time is L 0 , the environment is deteriorated due to fog and rainfall, and the light emitting amount is changed according to the characteristic indicated by 50 as the light receiving signal level decreases. Control to increase. This allows the receiver 3
The level of the light receiving signal output from the light receiving element 32 of 0 is always substantially constant. In addition, here, the light emission amount L of the light emitting element 22
0 is set to about 5 times the alarm level of the light receiver 30.
Therefore, the power consumption of the light emitting element 22 is much smaller than that of the conventional one.

【0017】上述したような発光素子22の発光量制御
のためのより詳細な構成例を図2に示す。投光量制御手
段24はレベル検出回路40及び遅延回路41を備え
る。レベル検出回路40は、受光素子23から出力され
る交流信号を直流化して出力するものであり、図5に示
す従来のAGC回路におけるレベル検出回路4と同様の
構成を有している。また、遅延回路41は図5に示す従
来のAGC回路における遅延回路5と同じ機能を果たす
ものであり、その遅延時間は 500msec〜1secに設定され
る。遅延回路41の出力は発光駆動回路25の可変抵抗
手段43に入力される。図では可変抵抗手段43はトラ
ンジスタで構成されているが、このトランジスタは遅延
回路41から出力される直流信号によってその導通度が
制御され、それによて発光ダイオードからなる発光素子
22に供給される電流が制御され、発光量の制御が行わ
れる。なお、図2において44はパルス発生器であり、
このパルス発生器から出力されるパルスによりトランジ
スタ45がオン/オフし、トランジスタ45がオンとな
ったときに発光素子22に電流が供給されて発光するも
のである。
FIG. 2 shows a more detailed configuration example for controlling the light emission amount of the light emitting element 22 as described above. The projection amount control means 24 includes a level detection circuit 40 and a delay circuit 41. The level detection circuit 40 converts the alternating current signal output from the light receiving element 23 into a direct current and outputs it, and has the same configuration as the level detection circuit 4 in the conventional AGC circuit shown in FIG. The delay circuit 41 has the same function as the delay circuit 5 in the conventional AGC circuit shown in FIG. 5, and its delay time is set to 500 msec to 1 sec. The output of the delay circuit 41 is input to the variable resistance means 43 of the light emission drive circuit 25. Although the variable resistance means 43 is composed of a transistor in the figure, the conductivity of the transistor is controlled by the DC signal output from the delay circuit 41, and the current supplied to the light emitting element 22 formed of a light emitting diode is thereby controlled. Is controlled to control the amount of light emission. In FIG. 2, 44 is a pulse generator,
The pulse output from the pulse generator turns on / off the transistor 45, and when the transistor 45 is turned on, current is supplied to the light emitting element 22 to emit light.

【0018】以上、本発明の一実施例について説明した
が、本発明は上記実施例に限定されるものではなく種々
の変形が可能であることは当業者に明かである。例えば
上記実施例では一体型反射鏡を用いるものとしたが、こ
れは受光素子23の受光量と発光素子22の発光量との
間には例えば図3に示すような関係が保たれる必要があ
り、従って発光素子22と受光素子23とは同一の方向
を向いている必要があり、そのためには一体型反射鏡を
用いることによってこの条件を容易に満足することがで
きるためであって、上記の条件を満足できるものであれ
ば一体型である必要はないものである。
Although one embodiment of the present invention has been described above, it is obvious to those skilled in the art that the present invention is not limited to the above embodiment and various modifications can be made. For example, in the above embodiment, the integral reflecting mirror is used, but it is necessary that the relationship between the amount of light received by the light receiving element 23 and the amount of light emitted by the light emitting element 22 be maintained, for example, as shown in FIG. Therefore, it is necessary that the light emitting element 22 and the light receiving element 23 are oriented in the same direction. For that purpose, this condition can be easily satisfied by using the integral reflecting mirror. It is not necessary to be an integrated type as long as the conditions of (1) can be satisfied.

【0019】また、可変抵抗手段43の構成はトランジ
スタの導通度を制御するものに限らず、発光素子に流れ
る電流を制御することができるものであればどのような
回路でもよいものである。更に、投光器の受光素子の受
光信号レベルと発光素子の発光量の関係は、図3の50
で示すような曲線に限らず、直線的であってもよく、ま
た階段状であってもよいものであり、要するに受光信号
レベルが低下したときに発光量を増加させるような特性
であればよいものである。
The configuration of the variable resistance means 43 is not limited to that for controlling the conductivity of the transistor, but may be any circuit as long as it can control the current flowing through the light emitting element. Further, the relationship between the light receiving signal level of the light receiving element of the projector and the light emission amount of the light emitting element is 50 in FIG.
The curve is not limited to the curve shown in FIG. 3 and may be linear or stepwise, that is, any characteristic that increases the amount of light emission when the received light signal level decreases It is a thing.

【0020】[0020]

【発明の効果】以上の説明から明らかなように、本発明
によれば、投光器の発光素子の消費電力を従来のものに
比較して大幅に低減でき、これによって電池による停電
時のバックアップ時間を大幅に向上させることができ
る。また、投光器の発光素子の発光量の制御を、発光素
子に流れる電流を制御することによって行う場合には、
ダイナミックレンジを大きくとれるので、どのような環
境下に設置されるビームセンサシステムにも適用するこ
とができる。また更に、上記実施例ではシングルビーム
センサを例にあげたが、本発明は複数の赤外線ビームを
用いて警戒を行うマルチビームセンサに適用することが
できるものである。
As is apparent from the above description, according to the present invention, the power consumption of the light emitting element of the projector can be greatly reduced as compared with the conventional one, and thereby the backup time at the time of power failure due to the battery is reduced. It can be greatly improved. When controlling the amount of light emitted from the light emitting element of the projector by controlling the current flowing through the light emitting element,
Since it has a large dynamic range, it can be applied to a beam sensor system installed in any environment. Furthermore, although a single beam sensor has been taken as an example in the above-mentioned embodiment, the present invention can be applied to a multi-beam sensor that performs warning using a plurality of infrared beams.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明をシングルビームセンサに適用した場
合の一実施例の構成を示す図である。
FIG. 1 is a diagram showing a configuration of an embodiment when the present invention is applied to a single beam sensor.

【図2】 発光量制御のための回路構成の例を示す図で
ある。
FIG. 2 is a diagram showing an example of a circuit configuration for controlling a light emission amount.

【図3】 本発明による発光量制御を説明するための図
である。
FIG. 3 is a diagram for explaining light emission amount control according to the present invention.

【図4】 AGC回路の必要性を説明するための図であ
る。
FIG. 4 is a diagram for explaining the necessity of an AGC circuit.

【図5】 従来のAGC回路の概略の構成例を示す図で
ある。
FIG. 5 is a diagram showing a schematic configuration example of a conventional AGC circuit.

【符号の説明】[Explanation of symbols]

20…投光器、21…一体型反射鏡、22…発光素子、
23…受光素子、24…投光量制御手段、25…発光駆
動回路、30…受光器、31…一体型反射鏡、32…受
光素子、33…発光素子、34…信号処理手段、35…
発光駆動回路。
20 ... Projector, 21 ... Integrated reflection mirror, 22 ... Light emitting element,
23 ... Light receiving element, 24 ... Emission amount control means, 25 ... Emission drive circuit, 30 ... Photoreceiver, 31 ... Integrated reflecting mirror, 32 ... Light receiving element, 33 ... Light emitting element, 34 ... Signal processing means, 35 ...
Light emission drive circuit.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 赤外線を投光する投光器と、前記投光器
から投光される赤外線を受光する受光器とを備えるビー
ムセンサにおいて、前記受光器には赤外線投光部を備
え、前記投光器には前記受光器の赤外線投光部から投光
される赤外線を受光する赤外線受光部と、該投光器の受
光部における赤外線受光量に応じて投光器からの赤外線
投光量を制御する投光量制御手段とを備えることを特徴
とするビームセンサシステム。
1. A beam sensor comprising: a projector for projecting infrared rays; and a receiver for receiving infrared rays projected from the projector. The beam sensor comprises an infrared projector section, and the projector comprises: An infrared light receiving portion for receiving infrared light emitted from the infrared light emitting portion of the light receiver, and a light emitting amount control means for controlling the infrared light emitting amount from the light emitter according to the infrared light receiving amount of the light receiving portion of the light emitter. Beam sensor system characterized by.
【請求項2】 前記投光量制御手段は前記投光器の赤外
線投光量を制御するための制御信号を所定の時間遅延さ
せる遅延手段を備えることを特徴とする請求項1記載の
ビームセンサシステム。
2. The beam sensor system according to claim 1, wherein the projection amount control means includes a delay means for delaying a control signal for controlling the infrared projection amount of the projector by a predetermined time.
JP34479791A 1991-12-26 1991-12-26 Beam sensor system Expired - Lifetime JP3132871B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34479791A JP3132871B2 (en) 1991-12-26 1991-12-26 Beam sensor system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34479791A JP3132871B2 (en) 1991-12-26 1991-12-26 Beam sensor system

Publications (2)

Publication Number Publication Date
JPH05174260A true JPH05174260A (en) 1993-07-13
JP3132871B2 JP3132871B2 (en) 2001-02-05

Family

ID=18372067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34479791A Expired - Lifetime JP3132871B2 (en) 1991-12-26 1991-12-26 Beam sensor system

Country Status (1)

Country Link
JP (1) JP3132871B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195674A (en) * 2011-03-15 2012-10-11 Omron Corp Multiple optical axis photoelectric sensor
WO2021152885A1 (en) * 2020-01-29 2021-08-05 北野 幹夫 Sensor control circuit and device with built-in sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195674A (en) * 2011-03-15 2012-10-11 Omron Corp Multiple optical axis photoelectric sensor
WO2021152885A1 (en) * 2020-01-29 2021-08-05 北野 幹夫 Sensor control circuit and device with built-in sensor
JP2021117200A (en) * 2020-01-29 2021-08-10 幹夫 北野 Sensor control circuit and sensor built-in apparatus

Also Published As

Publication number Publication date
JP3132871B2 (en) 2001-02-05

Similar Documents

Publication Publication Date Title
US4636643A (en) Fog detecting apparatus for use in vehicle
US6529129B1 (en) Security sensor having disturbance detecting capability
JP3132871B2 (en) Beam sensor system
KR20220143393A (en) Lidar apparatus and control method thereof
JP2004198399A (en) Rain sensor and method for compensating infrared-ray transmittance of the same
JP2006146417A (en) Active device for detecting infrared ray
JP3099248B2 (en) Distance measuring intruder detector
JPH0581575A (en) Ranging type invader detector
JPH1196467A (en) Security sensor provided with interference detection function using stray light
JP3389956B2 (en) Automatic guided vehicle
JP3096609B2 (en) Infrared security alarm
JP2582606Y2 (en) Light beam detector
JPS5830684A (en) Detector of matter
JP3075579B2 (en) Ray smoke detector
JP3244554B2 (en) Mobile body smoke detector
JPS63184041A (en) Extinction type smoke sensor
JPS6196484A (en) Light reflection type substance detector
JPH0531584Y2 (en)
JP2000208012A (en) Object detecting sensor
JPH1186146A (en) Rolling door shutter sensor
JP3088043B2 (en) Dimmable separated smoke detector
JPS63309881A (en) Obstacle detecting device for vehicle
JPH04296641A (en) Light ray type sensor
JPH10334352A (en) Active infrared burglar sensor provided with visual field obstacle monitoring mechanism
JPH0381686A (en) Reflection type human body detecting circuit

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 12