JP4733944B2 - Optical transmitter - Google Patents

Optical transmitter Download PDF

Info

Publication number
JP4733944B2
JP4733944B2 JP2004246581A JP2004246581A JP4733944B2 JP 4733944 B2 JP4733944 B2 JP 4733944B2 JP 2004246581 A JP2004246581 A JP 2004246581A JP 2004246581 A JP2004246581 A JP 2004246581A JP 4733944 B2 JP4733944 B2 JP 4733944B2
Authority
JP
Japan
Prior art keywords
current
emitting element
light emitting
light
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004246581A
Other languages
Japanese (ja)
Other versions
JP2006066592A (en
Inventor
雅樹 野田
正道 野上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004246581A priority Critical patent/JP4733944B2/en
Publication of JP2006066592A publication Critical patent/JP2006066592A/en
Application granted granted Critical
Publication of JP4733944B2 publication Critical patent/JP4733944B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Semiconductor Lasers (AREA)

Description

本発明は、光送信器に関するものであり、特に、光出力の調整範囲、光出力動作の安定性、および光送信器に具備される発光素子の劣化検出精度を改善した光送信器に関するものである。   The present invention relates to an optical transmitter, and more particularly, to an optical transmitter with improved optical output adjustment range, stability of optical output operation, and deterioration detection accuracy of a light emitting element included in the optical transmitter. is there.

光送信器は、光通信システムなどのフロントエンドに備えられ、電気信号を光信号に変換する役目を担う。通常、光通信システムの安定化のためには、光送信器から発せられる光信号の出力強度は環境温度や時間の経過にかかわらず常に一定値であることが望ましく、光出力を自動的に一定値に制御するAPC(Automatic Power Control)方式が一般的によく用いられている。   The optical transmitter is provided in a front end of an optical communication system or the like, and plays a role of converting an electrical signal into an optical signal. Usually, to stabilize an optical communication system, it is desirable that the output intensity of an optical signal emitted from an optical transmitter is always a constant value regardless of the environmental temperature or the passage of time, and the optical output is automatically constant. In general, an APC (Automatic Power Control) method of controlling to a value is often used.

従来、この種の、APC方式による光送信器に関する文献として、下記特許文献1にその開示例が存在する。この文献には、APC方式における光出力モニタ回路の回路構成が示されており、また同文献の従来例としては最もシンプルな回路構成も示されている。   Conventionally, as a document related to this type of APC-based optical transmitter, there is a disclosure example in Patent Document 1 below. This document shows the circuit configuration of an optical output monitor circuit in the APC system, and also shows the simplest circuit configuration as a conventional example of the document.

この従来技術にかかる光出力モニタ回路にあっては、受光素子のアノード端子とグランドとの間に可変抵抗が配設され、受光素子で発生する電流を電圧に変換するようにしている。また、発光素子の光出力と受光素子の電流の変換効率とにかかる個々のばらつきを考慮するため、抵抗値を可変として電流/電圧変換の倍率を変化させ、適応可能なダイナミックレンジを拡大している。   In this conventional optical output monitor circuit, a variable resistor is disposed between the anode terminal of the light receiving element and the ground so as to convert a current generated in the light receiving element into a voltage. Also, in order to take into account individual variations in the light output of the light emitting element and the current conversion efficiency of the light receiving element, the resistance value can be made variable and the current / voltage conversion magnification can be changed to expand the applicable dynamic range. Yes.

特開平8−298337号公報JP-A-8-298337

しかしながら、上記特許文献1に示される光送信器では、発光素子の光出力と受光素子の電流の変換効率が大きいものに対しては可変抵抗を小さな値に、逆に変換効率が小さいものに対しては可変抵抗を大きな値にすることで光送信器の光出力を調整するようにしている。この場合、受光素子の電流と抵抗値との積が一定値となる関係式が成り立つ。つまり、受光素子の電流と抵抗値とは反比例の関係にある。したがって、発光素子の光出力と受光素子の電流の変換効率が大きい場合には、抵抗値の誤差に対して光出力の変化が非常に敏感となり、自ずと調整可能なダイナミックレンジが制限されるという課題があった。   However, in the optical transmitter shown in Patent Document 1, the variable resistance is set to a small value for the one with high conversion efficiency between the light output of the light emitting element and the current of the light receiving element, and conversely, the conversion efficiency is low. In other words, the optical output of the optical transmitter is adjusted by increasing the variable resistance. In this case, a relational expression is established in which the product of the current of the light receiving element and the resistance value is a constant value. That is, the current of the light receiving element and the resistance value are in an inversely proportional relationship. Therefore, when the conversion efficiency between the light output of the light emitting element and the current of the light receiving element is large, the change of the light output becomes very sensitive to the error of the resistance value, and the dynamic range that can be adjusted by itself is limited. was there.

また、この従来技術にかかる光送信器では、APC動作時において発光素子の光出力が経年劣化によって低下した場合には、発光素子駆動回路の駆動電流を大きくすることで光送信器の光出力を一定値に保持しようと動作する。しかしながら、経年劣化度合が大きく発光素子駆動回路の駆動能力を超えるような場合には、所望の駆動電流を発光素子に流すことができず、光出力が低下してしまう。この場合、受光素子の電流も所望値に対して不足するため、受光素子の電流と抵抗値の積が初期値より小さくなり、APCループが不安定となるという課題があった。   In addition, in the optical transmitter according to this prior art, when the optical output of the light emitting element decreases due to aging during APC operation, the optical output of the optical transmitter is increased by increasing the drive current of the light emitting element driving circuit. Operates to keep a constant value. However, when the degree of aging is large and the driving capability of the light emitting element driving circuit is exceeded, a desired driving current cannot be supplied to the light emitting element, and the light output is reduced. In this case, since the current of the light receiving element is insufficient with respect to the desired value, the product of the current of the light receiving element and the resistance value becomes smaller than the initial value, and there is a problem that the APC loop becomes unstable.

本発明は、上記の課題に鑑みてなされたものであって、光出力調整の広ダイナミックレンジ特性や動作の安定性を確保し、また、発光素子の劣化検出精度を改善した光送信器を提供することを目的とする。   The present invention has been made in view of the above problems, and provides an optical transmitter that ensures a wide dynamic range characteristic of light output adjustment and stability of operation, and improves deterioration detection accuracy of a light emitting element. The purpose is to do.

上述した課題を解決し、目的を達成するため、本発明にかかる光送信器は、発光素子と、前記発光素子の光出力を受光し、該受光した光出力の強度に比例する電流を発生する受光素子と、並列接続された抵抗と可変電流源とを有し、前記受光素子で発生する電流を電圧に変換する電流/電圧変換器と、前記電流/電圧変換器が出力する電圧信号と基準電圧源が出力する電圧信号とを比較して増幅する比較増幅器と、前記比較増幅器が出力する電圧信号に基づいて駆動電流を可変する発光素子駆動回路と、前記受光素子に並列に接続される電流源を有する自動光出力制御ループ安定化回路と、を備え、前記自動光出力制御ループ安定化回路は、前記受光素子が前記電流/電圧変換器に供給する電流の不足分を補償するように動作することを特徴とする。 In order to solve the above-described problems and achieve the object, an optical transmitter according to the present invention receives a light emitting element and a light output of the light emitting element, and generates a current proportional to the intensity of the received light output. A current / voltage converter for converting a current generated by the light receiving element into a voltage, a voltage signal output by the current / voltage converter, and a reference; A comparison amplifier that compares and amplifies the voltage signal output from the voltage source, a light emitting element drive circuit that varies the drive current based on the voltage signal output from the comparison amplifier, and a current connected in parallel to the light receiving element comprising an automatic optical output control loop stabilization circuit having a source, wherein the automatic optical power control loop stabilization circuitry, operates as the light receiving element to compensate for the shortage of the current supplied to the current / voltage converter Features to do To.

この発明によれば、自動光出力制御ループ安定化回路は、受光素子に並列に接続される電流源を有し、この電流源は、受光素子が電流/電圧変換器に対して供給する電流の不足分を補償するように動作するので、電流/電圧変換器の出力電圧が基準電圧源の出力電圧に維持される。 According to the present invention, the automatic light output control loop stabilization circuit has a current source connected in parallel to the light receiving element, and this current source is a current source that the light receiving element supplies to the current / voltage converter. Since it operates to compensate for the shortage, the output voltage of the current / voltage converter is maintained at the output voltage of the reference voltage source.

本発明にかかる光送信器によれば、受光素子が電流/電圧変換器に対して供給する電流の不足分が自動光出力制御ループ安定化回路に具備される電流源によって補償されるので、自動光出力制御ループの安定性を向上させることができるという効果を奏する。 According to the optical transmitter of the present invention, the shortage of the current supplied to the current / voltage converter by the light receiving element is compensated by the current source provided in the automatic light output control loop stabilization circuit. There is an effect that the stability of the light output control loop can be improved.

以下に、本発明にかかる光送信器の実施の形態を図面に基づいて詳細に説明する。なお、この実施の形態により本発明が限定されるものではない。また、以下に示す回路構成は、その一例を示すものであり、本発明の技術的意義を逸脱しない範囲内で種々の変形が可能である。   Embodiments of an optical transmitter according to the present invention will be described below in detail with reference to the drawings. In addition, this invention is not limited by this embodiment. The circuit configuration shown below shows an example, and various modifications can be made without departing from the technical significance of the present invention.

実施の形態1.
図1は、本発明の実施の形態1にかかる光送信器の構成を示すブロック図である。同図に示す光送信器は、発光デバイスとしての発光素子1と、発光素子1の光出力を受光し、この受光した光強度に比例する電流を発生させる受光デバイスとしての受光素子2と、受光素子2で発生する電流を電圧に変換する電流/電圧変換器3と、電流/電圧変換器3が出力する電圧信号と基準電圧源4が出力する電圧信号とを比較して増幅する比較増幅器5と、比較増幅器5が出力する電圧信号に基づいて出力電流を可変する発光素子駆動回路6と、受光素子2に並列に接続される自動光出力制御ループ安定化回路7と、を備えるように構成されている。また、電流/電圧変換器3は、プルダウン抵抗31と、電流値を可変制御する吸い込み型電流源32と、を具備してなり、これらのプルダウン抵抗31と吸い込み型電流源32とは、並列接続されている。一方、自動光出力制御ループ安定化回路7は電流源71を具備している。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a configuration of the optical transmitter according to the first exemplary embodiment of the present invention. The optical transmitter shown in the figure includes a light emitting element 1 as a light emitting device, a light receiving element 2 as a light receiving device that receives a light output of the light emitting element 1 and generates a current proportional to the received light intensity, and a light receiving device. A current / voltage converter 3 that converts a current generated in the element 2 into a voltage, and a comparison amplifier 5 that compares and amplifies the voltage signal output from the current / voltage converter 3 and the voltage signal output from the reference voltage source 4. And a light emitting element driving circuit 6 that varies an output current based on a voltage signal output from the comparison amplifier 5 and an automatic light output control loop stabilization circuit 7 connected in parallel to the light receiving element 2. Has been. The current / voltage converter 3 includes a pull-down resistor 31 and a sink current source 32 that variably controls the current value. The pull-down resistor 31 and the sink current source 32 are connected in parallel. Has been. On the other hand, the automatic light output control loop stabilization circuit 7 includes a current source 71.

つぎに、図1に示す光送信器を構成する各構成部の接続関係を説明する。同図において、発光素子1は、アノード端子が電源に接続され、カソード端子が発光素子駆動回路6に接続されている。受光素子2は、カソード端子が電源に接続され、アノード端子が電流/電圧変換器3の入力端(プルダウン抵抗31と吸い込み型電流源32との接続点の一端)に接続されている。自動光出力制御ループ安定化回路7の電流源71は、受光素子2の両端に並列に接続されている。   Next, the connection relationship of the components constituting the optical transmitter shown in FIG. 1 will be described. In the figure, the light emitting element 1 has an anode terminal connected to a power source and a cathode terminal connected to a light emitting element driving circuit 6. The light receiving element 2 has a cathode terminal connected to a power supply and an anode terminal connected to an input end of the current / voltage converter 3 (one end of a connection point between the pull-down resistor 31 and the suction current source 32). The current source 71 of the automatic light output control loop stabilization circuit 7 is connected in parallel to both ends of the light receiving element 2.

つぎに、図1に示した光送信器の動作について説明する。ただし、以下の説明では、まず、自動光出力制御ループ安定化回路7が存在しない場合の動作について説明し、その後、この自動光出力制御ループ安定化回路7を含む場合の動作について説明する。   Next, the operation of the optical transmitter shown in FIG. 1 will be described. However, in the following description, the operation when the automatic light output control loop stabilization circuit 7 does not exist will be described first, and then the operation when the automatic light output control loop stabilization circuit 7 is included will be described.

(自動光出力制御ループ安定化回路7が存在しない場合の動作)
図1において、発光素子1は、発光素子駆動回路6から駆動電流の供給を受けて発光する。受光素子2は、発光素子1の背面光などを受光し、この受光量に応じた電流に変換する。このとき、受光素子2で発生する電流は発光素子1の光出力の強度に比例する。電流/電圧変換器3は、受光素子2で発生する電流を電圧に変換するとともに、変換後の電圧信号を比較増幅器5に出力する。比較増幅器5は、電流/電圧変換器3が出力する電圧信号と、基準電圧源4の出力電圧とを比較し、その比較結果に基づいて光送信器の光出力が所定の設定値に収束するように発光素子駆動回路6の駆動電流を制御するための制御信号を発光素子駆動回路6に出力する。なお、この制御技術は自動光出力制御(APC)と呼ばれるものであり、電流/電圧変換器3が出力する電圧信号が基準電圧源4の出力電圧と略等しい値になるような光出力の自動制御が行われる。
(Operation when there is no automatic light output control loop stabilization circuit 7)
In FIG. 1, the light emitting element 1 emits light upon receiving a drive current from the light emitting element driving circuit 6. The light receiving element 2 receives the back light of the light emitting element 1 and converts it into a current corresponding to the amount of light received. At this time, the current generated in the light receiving element 2 is proportional to the light output intensity of the light emitting element 1. The current / voltage converter 3 converts the current generated in the light receiving element 2 into a voltage and outputs the converted voltage signal to the comparison amplifier 5. The comparison amplifier 5 compares the voltage signal output from the current / voltage converter 3 with the output voltage of the reference voltage source 4, and the optical output of the optical transmitter converges to a predetermined set value based on the comparison result. Thus, a control signal for controlling the drive current of the light emitting element driving circuit 6 is output to the light emitting element driving circuit 6. This control technique is called automatic light output control (APC), and the light output is automatic so that the voltage signal output from the current / voltage converter 3 becomes substantially equal to the output voltage of the reference voltage source 4. Control is performed.

ここで、光送信器に対する光出力設定の原理について説明する。一般的に、発光素子1の光出力と受光素子2の電流の変換効率は10倍程度のばらつきを有しているので、光送信器として所望の光出力を得るためには、個々の光送信器に対して個別の調整が必要となる。一方、この実施の形態の光送信器に備えられている電流/電圧変換器3は、自動光出力制御が収束している状態では、電流/電圧変換器3の出力電圧と基準電圧源4の出力電圧とは等しくなっている。したがって、電流/電圧変換器3のプルダウン抵抗31には基準電圧値を抵抗値で割った固定電流が流れることとなる。また、プルダウン抵抗31に流れる電流値と電流源32の吸い込み電流値とを加算したものが受光素子2の電流値であり、受光素子2の電流値と発光素子1の光出力とは比例関係にあるので、電流源32の吸い込み電流値を調整することにより、光送信器の光出力を設定することができる。   Here, the principle of optical output setting for the optical transmitter will be described. Generally, the conversion efficiency between the light output of the light-emitting element 1 and the current of the light-receiving element 2 has a variation of about 10 times. Therefore, in order to obtain a desired light output as an optical transmitter, individual optical transmission Individual adjustments are required for the vessel. On the other hand, the current / voltage converter 3 provided in the optical transmitter of this embodiment is configured such that the output voltage of the current / voltage converter 3 and the reference voltage source 4 are in a state where the automatic optical output control is converged. It is equal to the output voltage. Therefore, a fixed current obtained by dividing the reference voltage value by the resistance value flows through the pull-down resistor 31 of the current / voltage converter 3. Further, the sum of the current value flowing through the pull-down resistor 31 and the sink current value of the current source 32 is the current value of the light receiving element 2, and the current value of the light receiving element 2 and the light output of the light emitting element 1 are in a proportional relationship. Therefore, the optical output of the optical transmitter can be set by adjusting the sink current value of the current source 32.

このような光出力の自動制御は、例えば、発光素子1の光出力が経年劣化によって低下したような場合に実行される。このような場合、発光素子駆動回路6の駆動電流を増加させる方向への制御が行われて光送信器の光出力が一定値に保持される。   Such automatic control of the light output is executed, for example, when the light output of the light emitting element 1 is lowered due to aging. In such a case, control in the direction of increasing the drive current of the light emitting element drive circuit 6 is performed, and the optical output of the optical transmitter is held at a constant value.

背景技術の項で述べたように、上述の特許文献1に示されている光送信器では、電流/電圧変換器が可変抵抗のみで構成されており、可変抵抗の設定抵抗値と光送信器の光出力とは反比例の関係にあるので、発光素子1の光出力や受光素子2の電流の変換効率が大きく、設定抵抗値を小さな値にする必要がある場合には、設定抵抗値の誤差に対して光出力の変化が非常に敏感となり、自ずと調整可能なダイナミックレンジが制限されるという問題点があった。   As described in the background art section, in the optical transmitter disclosed in Patent Document 1 described above, the current / voltage converter is composed of only a variable resistor, and the set resistance value of the variable resistor and the optical transmitter Therefore, when the conversion efficiency of the light output of the light-emitting element 1 and the current of the light-receiving element 2 is large and the set resistance value needs to be small, an error in the set resistance value However, the change of the light output becomes very sensitive, and there is a problem that the adjustable dynamic range is limited.

一方、この実施の形態による光送信器では、電流源32の設定電流値と光送信器の光出力とが比例関係にあるので、発光素子1の光出力と受光素子2の電流の変換効率のばらつきに因らず、設定電流値の誤差に対する光出力の変化を常時一定に維持することができ、光出力調整のダイナミックレンジ特性を改善することができる。   On the other hand, in the optical transmitter according to this embodiment, since the set current value of the current source 32 and the optical output of the optical transmitter are in a proportional relationship, the conversion efficiency of the light output of the light emitting element 1 and the current of the light receiving element 2 is improved. Regardless of the variation, the change in the light output with respect to the error in the set current value can always be maintained constant, and the dynamic range characteristics of the light output adjustment can be improved.

(自動光出力制御ループ安定化回路7が存在する場合の動作)
つぎに、自動光出力制御ループ安定化回路7が存在する場合の動作について説明する。いま、発光素子1の経年劣化度合が大きく発光素子駆動回路6に要求される駆動電流が発光素子駆動回路6の駆動能力を超えるような場合を考える。この場合、発光素子駆動回路6は、所望の駆動電流を発光素子1に出力させることができず、光送信器の光出力が低下してしまうこととなる。このとき、発光素子1の光出力を受光する受光素子2の電流も所望値に比して不足するため、電流/電圧変換器3の出力電圧が基準電圧源4の出力電圧に到達できないので、自動光出力制御ループが収束せずに不安定となるおそれがある。
(Operation when automatic light output control loop stabilization circuit 7 exists)
Next, the operation when the automatic light output control loop stabilization circuit 7 exists will be described. Now, let us consider a case where the light-emitting element 1 has a large degree of deterioration over time and the drive current required for the light-emitting element drive circuit 6 exceeds the drive capability of the light-emitting element drive circuit 6. In this case, the light emitting element driving circuit 6 cannot output a desired driving current to the light emitting element 1, and the optical output of the optical transmitter is reduced. At this time, since the current of the light receiving element 2 that receives the light output of the light emitting element 1 is insufficient as compared with a desired value, the output voltage of the current / voltage converter 3 cannot reach the output voltage of the reference voltage source 4. The automatic light output control loop may not be converged and may become unstable.

一方、この実施の形態の光送信器では、自動光出力制御が収束しない場合には、自動光出力制御ループ安定化回路7が動作し、受光素子2の電流不足分を補うように電流源71からの電流を電流/電圧変換器3に対して供給するようにしているので、自動光出力制御が収束せずに不安定になるといった状態に陥るのを防止することができる。したがって、発光素子1の光出力が経年劣化等により低下し、発光素子駆動回路6の駆動能力以上の駆動電流が必要となった場合でも、自動光出力制御ループの安定性を向上させることができ、光出力調整の広ダイナミックレンジ特性や動作の安定性を確保することができる。   On the other hand, in the optical transmitter of this embodiment, when the automatic light output control does not converge, the automatic light output control loop stabilization circuit 7 operates to compensate the current shortage of the light receiving element 2. Is supplied to the current / voltage converter 3, it is possible to prevent the automatic light output control from falling into a state where it does not converge and becomes unstable. Therefore, the stability of the automatic light output control loop can be improved even when the light output of the light emitting element 1 decreases due to aging or the like and a driving current exceeding the driving capability of the light emitting element driving circuit 6 is required. Wide dynamic range characteristics of light output adjustment and operational stability can be ensured.

一方、この実施の形態の光送信器では、自動光出力制御が収束しない場合には、自動光出力制御ループ安定化回路7が動作し、受光素子2の電流不足分を補うように電流源71からの電流を電流/電圧変換器3に対して供給することができる。したがって、発光素子1の光出力が経年劣化等により低下し、発光素子駆動回路6の駆動能力以上の駆動電流が必要となった場合でも、自動光出力制御ループの安定性を向上させることができ、光出力調整の広ダイナミックレンジ特性や動作の安定性を確保することができる。   On the other hand, in the optical transmitter of this embodiment, when the automatic light output control does not converge, the automatic light output control loop stabilization circuit 7 operates to compensate the current shortage of the light receiving element 2. Can be supplied to the current / voltage converter 3. Therefore, the stability of the automatic light output control loop can be improved even when the light output of the light emitting element 1 decreases due to aging or the like and a driving current exceeding the driving capability of the light emitting element driving circuit 6 is required. Wide dynamic range characteristics of light output adjustment and operational stability can be ensured.

なお、この実施の形態の自動光出力制御ループ安定化回路7では、上述のように、受光素子2から電流/電圧変換器3に供給される電流の不足分を補償するように動作させているが、その一方で、受光素子2で発生する電流が不十分であり、かつ、電流/電圧変換器3の出力電圧が基準電圧源4の出力電圧に達しないとき、すなわち、自動光出力制御(APC)が収束せず、制御ループが不安定となる場合にのみ動作させるようにしてもよい。このような制御を行うことで、エネルギー消費効率を改善することができる。   The automatic light output control loop stabilization circuit 7 of this embodiment is operated so as to compensate for the shortage of the current supplied from the light receiving element 2 to the current / voltage converter 3 as described above. On the other hand, when the current generated in the light receiving element 2 is insufficient and the output voltage of the current / voltage converter 3 does not reach the output voltage of the reference voltage source 4, that is, automatic light output control ( The operation may be performed only when (APC) does not converge and the control loop becomes unstable. By performing such control, energy consumption efficiency can be improved.

以上説明したように、この実施の形態の光送信器によれば、自動光出力制御ループ安定器の電流源は、受光素子によって電流/電圧変換器に供給される電流の不足分を補償するように動作するので、自動光出力制御ループの安定性を向上させることができ、光出力調整の広ダイナミックレンジ特性や動作の安定性を確保することができる。   As described above, according to the optical transmitter of this embodiment, the current source of the automatic optical output control loop stabilizer compensates for the shortage of the current supplied to the current / voltage converter by the light receiving element. Therefore, the stability of the automatic light output control loop can be improved, and the wide dynamic range characteristic of the light output adjustment and the stability of the operation can be ensured.

実施の形態2.
図2は、本発明の実施の形態2にかかる光送信器の構成を示すブロック図である。同図において、図1と同一な部分については、同一符号を付して示している。図2において、自動光出力制御ループ安定化回路7は、直列接続される電流源71と抵抗72とを備えている。また、基準電圧源81と比較器82とを具備する発光素子劣化検出回路8が備えられ、発光素子劣化検出回路8の入力端が、自動光出力制御ループ安定化回路7を構成する電流源71と抵抗72との接続点に結線されている。
Embodiment 2. FIG.
FIG. 2 is a block diagram showing the configuration of the optical transmitter according to the second embodiment of the present invention. In the figure, the same parts as those in FIG. 1 are denoted by the same reference numerals. In FIG. 2, the automatic light output control loop stabilization circuit 7 includes a current source 71 and a resistor 72 connected in series. In addition, a light emitting element deterioration detection circuit 8 including a reference voltage source 81 and a comparator 82 is provided, and an input terminal of the light emitting element deterioration detection circuit 8 is a current source 71 constituting the automatic light output control loop stabilization circuit 7. And a resistor 72 are connected to a connection point.

つぎに、図3に示した光送信器の動作について説明する。同図において、発光素子劣化検出回路8は、入力電圧と基準電圧源81の出力電圧との比較を実行し、その比較結果に基づいて「High」もしくは「Low」のアラーム信号を出力する。発光素子劣化検出回路8への入力電圧は、自動光出力制御が正常に動作している場合には基準電圧源4の出力電圧が維持される。一方、発光素子1の光出力が経年劣化等により低下する場合には、自動光出力制御ループ安定化回路7が動作し、電流源71が供給する電流によって抵抗72に電圧降下が生じるので、電流源71と抵抗72との接続点の電圧は基準電圧源4の出力電圧よりも大きな値となる。したがって、基準電圧源81の出力電圧を、基準電圧源4の出力電圧よりも高い値に設定することで、発光素子1の光出力低下を検出可能な構成することができる。例えば、基準電圧源81の出力電圧を、基準電圧源4の出力電圧よりも10%程度高い値に設定することができる。   Next, the operation of the optical transmitter shown in FIG. 3 will be described. In the figure, the light emitting element deterioration detection circuit 8 compares the input voltage with the output voltage of the reference voltage source 81 and outputs an alarm signal of “High” or “Low” based on the comparison result. The input voltage to the light emitting element deterioration detection circuit 8 is maintained at the output voltage of the reference voltage source 4 when the automatic light output control is operating normally. On the other hand, when the light output of the light-emitting element 1 decreases due to aging or the like, the automatic light output control loop stabilization circuit 7 operates, and a voltage drop occurs in the resistor 72 due to the current supplied by the current source 71. The voltage at the connection point between the source 71 and the resistor 72 is larger than the output voltage of the reference voltage source 4. Therefore, by setting the output voltage of the reference voltage source 81 to a value higher than the output voltage of the reference voltage source 4, it is possible to detect a decrease in the light output of the light emitting element 1. For example, the output voltage of the reference voltage source 81 can be set to a value about 10% higher than the output voltage of the reference voltage source 4.

このように、この実施の形態の光送信器によれば、発光素子劣化検出回路の入力端が、可変電流源と抵抗との接続点に結線されるような構成としているので、実施の形態1の効果に加え、自動光出力制御ループ安定性を損なうことなく発光素子の劣化を検出することができる。   Thus, according to the optical transmitter of this embodiment, since the input end of the light emitting element deterioration detection circuit is connected to the connection point between the variable current source and the resistor, Embodiment 1 In addition to the above effect, it is possible to detect the deterioration of the light emitting element without impairing the stability of the automatic light output control loop.

実施の形態3.
図3は、本発明の実施の形態3にかかる光送信器の構成を示すブロック図である。同図において、図1と同一な部分については、同一符号を付して示している。図3において、自動光出力制御ループ安定化回路7は電流源71を備えている。また、基準電圧源81と比較器82とを具備する発光素子劣化検出回路8が備えられ、発光素子劣化検出回路8の入力端が、抵抗9を介して受光素子2のアノード端子に接続されている。
Embodiment 3 FIG.
FIG. 3 is a block diagram showing a configuration of the optical transmitter according to the third embodiment of the present invention. In the figure, the same parts as those in FIG. 1 are denoted by the same reference numerals. In FIG. 3, the automatic light output control loop stabilization circuit 7 includes a current source 71. In addition, a light emitting element deterioration detecting circuit 8 including a reference voltage source 81 and a comparator 82 is provided, and an input terminal of the light emitting element deterioration detecting circuit 8 is connected to an anode terminal of the light receiving element 2 through a resistor 9. Yes.

つぎに、図4に示した光送信器の動作について説明する。発光素子劣化検出回路8への入力電圧は、自動光出力制御が正常に動作している場合には基準電圧源4の出力電圧が維持される。一方、発光素子1の光出力が経年劣化等により低下する場合には、自動光出力制御ループ安定化回路7が動作し、電流源71が供給する電流によって抵抗9に電圧降下が生じるので、発光素子劣化検出回路8に接続されている電流/電圧変換器3と抵抗72との接続点の電圧は基準電圧源4の出力電圧よりも小さな値となる。したがって、基準電圧源81の出力電圧を、基準電圧源4の出力電圧よりも低い値に設定することで、発光素子1の光出力低下を検出可能な構成することができる。例えば、基準電圧源81の出力電圧を、基準電圧源4の出力電圧よりも10%程度低い値に設定することができる。   Next, the operation of the optical transmitter shown in FIG. 4 will be described. The input voltage to the light emitting element deterioration detection circuit 8 is maintained at the output voltage of the reference voltage source 4 when the automatic light output control is operating normally. On the other hand, when the light output of the light emitting element 1 decreases due to aging or the like, the automatic light output control loop stabilization circuit 7 operates, and a voltage drop occurs in the resistor 9 due to the current supplied by the current source 71. The voltage at the connection point between the current / voltage converter 3 connected to the element deterioration detection circuit 8 and the resistor 72 is smaller than the output voltage of the reference voltage source 4. Therefore, by setting the output voltage of the reference voltage source 81 to a value lower than the output voltage of the reference voltage source 4, it is possible to detect a decrease in the light output of the light emitting element 1. For example, the output voltage of the reference voltage source 81 can be set to a value about 10% lower than the output voltage of the reference voltage source 4.

ここで、実施の形態2および実施の形態3の各発光素子劣化検出回路の機能の差異について説明する。   Here, differences in functions of the light emitting element deterioration detection circuits of the second embodiment and the third embodiment will be described.

図2に示す実施の形態2の光送信器では、発光素子の劣化により自動光出力制御ループ安定化回路7が動作し始めると、抵抗72の両端に生じた電圧差を発光素子劣化検出回路8が検出し、発光素子の劣化を示すアラームが発出される。   In the optical transmitter according to the second embodiment shown in FIG. 2, when the automatic light output control loop stabilization circuit 7 starts to operate due to deterioration of the light emitting element, the voltage difference generated between both ends of the resistor 72 is detected as the light emitting element deterioration detecting circuit 8. Is detected and an alarm indicating the deterioration of the light emitting element is issued.

いま、実回路で電流源71を構成する場合、電流源71の端子間電圧としては、例えば0.5V以上確保できないと電流源71は正常動作しなくなる。上述のように、発光素子の劣化が検出される場合では、自動光出力制御ループ安定化回路7を構成する電流源71の端子間電圧が小さくなるので、自動光出力制御ループ安定化回路7を構成する抵抗72の抵抗値をあまり大きくすることができない。   When the current source 71 is configured with an actual circuit, the current source 71 does not operate normally unless the voltage between the terminals of the current source 71 can be secured, for example, 0.5 V or more. As described above, when the deterioration of the light emitting element is detected, the voltage between the terminals of the current source 71 constituting the automatic light output control loop stabilization circuit 7 becomes small. The resistance value of the configuring resistor 72 cannot be increased too much.

一方、図3に示す実施の形態3の光送信器では、発光素子の劣化により自動光出力制御ループ安定化回路7が動作し始めると、抵抗9の両端に生じた電圧差を発光素子劣化検出回路8が検出し、発光素子の劣化を示すアラームが発出される。この場合、実施の形態2の動作とは異なり、自動光出力制御ループ安定化回路7を構成する電流源71の端子間電圧は変化しないので、抵抗9の値は電流源71の動作には影響しない。   On the other hand, in the optical transmitter according to the third embodiment shown in FIG. 3, when the automatic light output control loop stabilization circuit 7 starts to operate due to the deterioration of the light emitting element, the voltage difference generated between both ends of the resistor 9 is detected. The circuit 8 detects and an alarm indicating the deterioration of the light emitting element is issued. In this case, unlike the operation of the second embodiment, the voltage between the terminals of the current source 71 constituting the automatic light output control loop stabilization circuit 7 does not change, so the value of the resistor 9 affects the operation of the current source 71. do not do.

他方、抵抗9の抵抗値が増加すると、電流/電圧変換器3を構成する電流源32の端子間電圧が小さくなるので、実回路上の動作にかかる検討が必要となる。電流源32を構成する場合、前述のように、電流源32の端子間電圧として、例えば0.5V以上の電圧を確保する必要があり、この電圧が確保できないと電流源32は正常動作しなくなる。しかしながら、電流源32が正常動作できなくなり、電流源32に電流が流れなくなったとしても、比較増幅器5の入力電圧と基準電圧源4の出力電圧とが等しい状態が維持され、自動光出力制御ループの安定動作は保持される。   On the other hand, when the resistance value of the resistor 9 is increased, the voltage between the terminals of the current source 32 constituting the current / voltage converter 3 is reduced, so that it is necessary to examine the operation on the actual circuit. When configuring the current source 32, as described above, it is necessary to secure a voltage of, for example, 0.5 V or more as the voltage between the terminals of the current source 32. If this voltage cannot be secured, the current source 32 will not operate normally. . However, even if the current source 32 cannot operate normally and no current flows through the current source 32, the input voltage of the comparison amplifier 5 and the output voltage of the reference voltage source 4 are maintained equal, and the automatic light output control loop. The stable operation is maintained.

上述の動作により、実施の形態2の構成では、自動光出力制御ループ安定化回路7の正常動作の観点から、抵抗72の抵抗値をあまり大きくすることはできない。一方、実施の形態3の構成では、抵抗9の抵抗値の選択に関する制約はなく、抵抗9の抵抗値を大きくすることにより、コントラストを大きくできるので、発光素子の劣化の程度を精度良く検出することが可能となる。   With the above-described operation, in the configuration of the second embodiment, the resistance value of the resistor 72 cannot be increased too much from the viewpoint of normal operation of the automatic light output control loop stabilization circuit 7. On the other hand, in the configuration of the third embodiment, there is no restriction on the selection of the resistance value of the resistor 9, and the contrast can be increased by increasing the resistance value of the resistor 9, so that the degree of deterioration of the light emitting element can be accurately detected. It becomes possible.

以上説明したように、この実施の形態の光送信器によれば、発光素子劣化検出回路の入力端が、抵抗と電流/電圧変換器との接続点に結線されるような構成としているので、実施の形態1の効果に加え、自動光出力制御ループ安定性を損なうことなく発光素子の劣化を高精度に検出することができる。   As described above, according to the optical transmitter of this embodiment, since the input end of the light emitting element deterioration detection circuit is connected to the connection point between the resistor and the current / voltage converter, In addition to the effect of the first embodiment, it is possible to detect deterioration of the light emitting element with high accuracy without impairing the stability of the automatic light output control loop.

以上のように、本発明にかかる光送信器は、APC方式の光送信器として有用である。   As described above, the optical transmitter according to the present invention is useful as an APC optical transmitter.

本発明の実施の形態1にかかる光送信器の構成を示すブロック図である。It is a block diagram which shows the structure of the optical transmitter concerning Embodiment 1 of this invention. 本発明の実施の形態2にかかる光送信器の構成を示すブロック図である。It is a block diagram which shows the structure of the optical transmitter concerning Embodiment 2 of this invention. 本発明の実施の形態3にかかる光送信器の構成を示すブロック図である。It is a block diagram which shows the structure of the optical transmitter concerning Embodiment 3 of this invention.

符号の説明Explanation of symbols

1 発光素子
2 受光素子
3 電圧変換器
4 基準電圧源
5 比較増幅器
6 発光素子駆動回路
7 自動光出力制御ループ安定化回路
8 発光素子劣化検出回路
9,72 抵抗
31 プルダウン抵抗
32,71 電流源
81 基準電圧源
82 比較器
DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Light receiving element 3 Voltage converter 4 Reference voltage source 5 Comparison amplifier 6 Light emitting element drive circuit 7 Automatic light output control loop stabilization circuit 8 Light emitting element deterioration detection circuit 9, 72 Resistor 31 Pull-down resistor 32, 71 Current source 81 Reference voltage source 82 Comparator

Claims (4)

発光素子と、
前記発光素子の光出力を受光し、該受光した光出力の強度に比例する電流を発生する受光素子と、
並列接続された第1の抵抗と可変電流源とを有し、前記受光素子で発生する電流を電圧に変換する電流/電圧変換器と、
前記電流/電圧変換器が出力する電圧信号と基準電圧源が出力する電圧信号とを比較して増幅する比較増幅器と、
前記比較増幅器が出力する電圧信号に基づいて駆動電流を可変する発光素子駆動回路と、
一端が前記受光素子のカソード端に接続され、他端が前記受光素子のアノード端に接続される電流源を有し、前記受光素子から前記電流/電圧変換器に供給される電流の不足分を前記電流源が補償する動作を行うことにより、前記発光素子、前記受光素子、前記比較増幅器および前記発光素子駆動回路を含む自動光出力制御ループの動作を安定化させる自動光出力制御ループ安定化回路と、
を備えことを特徴とする光送信器。
A light emitting element;
A light receiving element that receives the light output of the light emitting element and generates a current proportional to the intensity of the received light output;
A current / voltage converter having a first resistor and a variable current source connected in parallel, and converting a current generated in the light receiving element into a voltage;
A comparison amplifier that compares and amplifies the voltage signal output from the current / voltage converter and the voltage signal output from the reference voltage source;
A light emitting element driving circuit that varies a driving current based on a voltage signal output from the comparison amplifier;
One end is connected to the cathode end of the light receiving element, and the other end is connected to the anode end of the light receiving element, and a shortage of current supplied from the light receiving element to the current / voltage converter is reduced. An automatic light output control loop stabilization circuit that stabilizes the operation of an automatic light output control loop including the light emitting element, the light receiving element, the comparison amplifier, and the light emitting element driving circuit by performing an operation compensated by the current source When,
Optical transmitter characterized by comprising a.
一端が前記電流源の他端に接続され、他端が前記受光素子のアノード端に接続される第2の抵抗と、
比較器と基準電圧源とを有し、前記電流源と前記第2の抵抗との接続端の電位に基づいて前記発光素子の劣化を検出する発光素子劣化検出回路と、
を備えたことを特徴とする請求項1に記載の光送信器。
A second resistor having one end connected to the other end of the current source and the other end connected to the anode end of the light receiving element;
Have a comparator and a reference voltage source, a light emitting element deterioration detection circuit for detecting the deterioration of the light emitting element based on the potential of the connection end between the second resistor and the current source,
Optical transmitter according to claim 1, characterized in that with a.
前記受光素子のアノード端と前記電流/電圧変換器との間に挿入される第2の抵抗と、
比較器と基準電圧源と、を有し、前記第2の抵抗と前記電流/電圧変換器との接続端の電位に基づいて前記発光素子の劣化を検出する発光素子劣化検出回路と、
を備えたことを特徴とする請求項1に記載の光送信器。
A second resistor inserted between the anode end of the light receiving element and the current / voltage converter;
A comparator and a reference voltage source, have a, a light emitting element deterioration detection circuit, wherein the detecting the deterioration of the light emitting element based on the potential of the connection end between the current / voltage converter and said second resistor,
The optical transmitter according to claim 1, further comprising:
前記自動光出力制御ループ安定化回路は、前記受光素子で発生する電流が不十分であるときのみ動作することを特徴とする請求項1〜3の何れか1項に記載の光送信器。 The optical transmitter according to any one of claims 1 to 3, wherein the automatic optical output control loop stabilization circuit operates only when a current generated in the light receiving element is insufficient.
JP2004246581A 2004-08-26 2004-08-26 Optical transmitter Expired - Fee Related JP4733944B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004246581A JP4733944B2 (en) 2004-08-26 2004-08-26 Optical transmitter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004246581A JP4733944B2 (en) 2004-08-26 2004-08-26 Optical transmitter

Publications (2)

Publication Number Publication Date
JP2006066592A JP2006066592A (en) 2006-03-09
JP4733944B2 true JP4733944B2 (en) 2011-07-27

Family

ID=36112797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004246581A Expired - Fee Related JP4733944B2 (en) 2004-08-26 2004-08-26 Optical transmitter

Country Status (1)

Country Link
JP (1) JP4733944B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5497530B2 (en) * 2010-05-14 2014-05-21 日本電信電話株式会社 Optical transmitter

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6457688A (en) * 1987-08-27 1989-03-03 Sony Corp Semiconductor laser device
JPH0595150A (en) * 1991-06-28 1993-04-16 Toshiba Corp Controller for laser
JPH0595149A (en) * 1991-06-28 1993-04-16 Toshiba Corp Controller for laser
JP3245215B2 (en) * 1992-06-03 2002-01-07 株式会社リコー Semiconductor laser drive control circuit
JP3758750B2 (en) * 1996-07-02 2006-03-22 富士通株式会社 Optical receiver
JPH11330599A (en) * 1998-05-15 1999-11-30 Minolta Co Ltd Semiconductor laser driver
JP3275866B2 (en) * 1999-01-22 2002-04-22 日本電気株式会社 Semiconductor laser driving device and semiconductor laser driving method
JP4083388B2 (en) * 2001-02-26 2008-04-30 株式会社リコー Electronic device, light output control device, and electronic apparatus
JP2003008139A (en) * 2001-06-19 2003-01-10 Olympus Optical Co Ltd Optical output control circuit of semiconductor laser

Also Published As

Publication number Publication date
JP2006066592A (en) 2006-03-09

Similar Documents

Publication Publication Date Title
US7265333B2 (en) Light-receiving circuit
US6362910B1 (en) Optical transmitter having temperature compensating function and optical transmission system
EP2093849A2 (en) Optical transmitter
TWI459693B (en) Switching mode power supply with predicted pwm control
JP2006352360A (en) Optical receiver
US20040022285A1 (en) Laser driver with a safety circuit having digital feedback
JP2005304022A (en) Optical reception circuit
JP2007294682A (en) Optical transmitter
US7760780B2 (en) Laser diode driving device and optical scanning device
JP4205916B2 (en) Extinction ratio compensation laser drive circuit and optical communication device
JP4984755B2 (en) Laser diode drive circuit
JP4471598B2 (en) Light emitting element driving device
JP2006041628A (en) Optical receiving circuit
JP4742455B2 (en) Regulator circuit
JP4733944B2 (en) Optical transmitter
JP4501612B2 (en) Bias control circuit
JP2005039975A (en) Current resonant converter
JP2020102083A (en) Voltage conversion apparatus
JP4657536B2 (en) Semiconductor laser drive device
JP3275866B2 (en) Semiconductor laser driving device and semiconductor laser driving method
JP2007166096A (en) Bias control circuit
JP6303329B2 (en) Optical device drive circuit
JPH07106873A (en) Voltage monitor circuit
JP6682766B2 (en) Submarine repeater, control method for submarine repeater, and control program for submarine repeater
JP3061832B2 (en) Semiconductor laser controller

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110425

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140428

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees