WO2021149769A1 - 生体電池治療具 - Google Patents

生体電池治療具 Download PDF

Info

Publication number
WO2021149769A1
WO2021149769A1 PCT/JP2021/002059 JP2021002059W WO2021149769A1 WO 2021149769 A1 WO2021149769 A1 WO 2021149769A1 JP 2021002059 W JP2021002059 W JP 2021002059W WO 2021149769 A1 WO2021149769 A1 WO 2021149769A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode component
negative electrode
positive electrode
treatment tool
conductive member
Prior art date
Application number
PCT/JP2021/002059
Other languages
English (en)
French (fr)
Inventor
賢司 小蒲
祐介 小蒲
耕平 小蒲
圭亮 小蒲
Original Assignee
株式会社イオンギア
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020007538A external-priority patent/JP6725124B1/ja
Application filed by 株式会社イオンギア filed Critical 株式会社イオンギア
Priority to EP21744060.1A priority Critical patent/EP4094801A4/en
Priority to US17/794,204 priority patent/US20230072693A1/en
Priority to CN202180010101.5A priority patent/CN114945403A/zh
Publication of WO2021149769A1 publication Critical patent/WO2021149769A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0412Specially adapted for transcutaneous electroporation, e.g. including drug reservoirs
    • A61N1/0416Anode and cathode
    • A61N1/042Material of the electrode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/20Applying electric currents by contact electrodes continuous direct currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0428Specially adapted for iontophoresis, e.g. AC, DC or including drug reservoirs
    • A61N1/0432Anode and cathode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M14/00Electrochemical current or voltage generators not provided for in groups H01M6/00 - H01M12/00; Manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a bio-battery treatment tool, specifically, a bio-battery treatment tool that is used in contact with the skin and treats a target site by energizing the subcutaneous tissue with a weak direct current electromotive force.
  • the present inventors have previously proposed a biological battery treatment tool that heals muscle and nerve fatigue by energization stimulation (see Patent Documents 1 and 2).
  • the bio-battery treatment tool forms a bio-battery when it comes into contact with the skin and gives a direct current, and has been demonstrated to be an excellent treatment tool having a therapeutic effect as a home-use treatment tool.
  • reference numeral 1 is a negative electrode (for example, a metal powder mixed in a binder), 2 is a positive electrode (for example, a noble metal or a binder mixed with a noble metal), and 3 is a substance having no ionization tendency. It shows a sex member (for example, carbon), and the conductive member 3 is interposed between the negative electrode 1 and the positive electrode 2.
  • the negative electrode 1 is formed long so that a large amount of current generated by ionization of the negative electrode component flows to the positive electrode.
  • the negative electrode having a structure in which metal powder such as zinc is mixed in the binder has a high electrical resistance value (volume resistance value) of at least 1 meg ⁇ ⁇ cm to 2 meg ⁇ ⁇ cm, so that it is a conductive member.
  • the distance to reach the positive electrode becomes long, and it is practically difficult to reach the positive electrode. As a result, it was difficult to obtain an efficient biobattery treatment tool.
  • this type of bio-battery treatment tool has an extremely thin thickness between the surface of the negative electrode in contact with the living body and the surface facing the surface. Focusing on this, a conductive member was arranged on the surface of the negative electrode facing the surface in contact with the living body, and the current was transmitted to the positive electrode through the conductive member arranged in this way. As a result, the ions reach the conductive member not in the length direction of the negative electrode component but in the thickness direction of the negative electrode component having a short distance.
  • the distance through which the ions pass through the negative electrode can be suppressed to be extremely short, and therefore, even if the electrical resistance value of the negative electrode component is high, the therapeutic effect of this type of biological battery treatment tool can be effectively exhibited.
  • the present invention has been completed.
  • the present invention has been made based on the above findings, and even in a biological battery treatment tool in which a negative electrode component having a high electric resistance value is formed long and the distance from the negative electrode to the positive electrode is long, the negative electrode configuration is formed.
  • the conductive member By arranging and forming the conductive member on the surface side of the member facing the skin contact surface (that is, the surface side not in contact with the skin), the distance required for the ionized negative electrode constituent material to reach the conductive member can be reduced.
  • the present invention has the following configurations in order to solve the above problems.
  • a negative electrode component, a positive electrode component, and a conductive member connected and arranged between the negative electrode component and the positive electrode component are provided, and the negative electrode component and the positive electrode component are in contact with a living body.
  • an energizing circuit is formed between the living body and the negative electrode constituent member and the positive electrode constituent member.
  • the negative electrode component and the positive electrode component each have a skin contact surface in contact with the skin and an opposing surface formed on the surface facing the skin contact surface.
  • a biological battery treatment tool that electrically connects a negative electrode component and a positive electrode component by bridging and connecting the conductive member between the facing surface of the negative electrode component and the facing surface of the positive electrode component.
  • a biological battery treatment tool characterized in that the conductive member and the positive electrode constituent member are made of carbon of the same material.
  • the conductive member bridged and connected between the facing surface of the negative electrode component and the facing surface of the positive electrode component is formed from the positive electrode component on the surface side of the negative electrode component facing the skin contact surface.
  • the negative electrode component has a length of 10 to 200 mm, a thickness of 150 ⁇ m or less, and a “length of the negative electrode component / thickness of the negative electrode component” of 1 or more (1).
  • the biological battery treatment tool according to any one of (6).
  • the "thickness of the negative electrode component” means the thickness of the negative electrode component 11 in the vertical direction with reference to FIG. 2, and the biological battery treatment tool according to the present invention has a "negative electrode structure". Current flows in the "thickness direction of the member”. Further, the "length of the negative electrode constituent member” means the lateral length of the negative electrode constituent member 1 with reference to FIG. 2, and is conductive between the negative electrode and the positive electrode as shown in FIG. In a biological battery treatment tool (with a structure in which a sex member is interposed), a current flows in the "length of the negative electrode component" direction.
  • the "substantially L-shaped” refers to a configuration including a base piece and a rising piece rising from one end of the base piece, and the orientation thereof does not matter. It also includes a bio-battery treatment tool that includes a portion forming a substantially L-shape as well as other portions.
  • the negative electrode component means a member that contains a component constituting a negative electrode and functions as a negative electrode
  • a positive electrode component means a member that contains a component that constitutes a positive electrode and functions as a positive electrode. ..
  • 11 is a negative electrode component
  • 12 is a positive electrode component
  • 13 is a conductive member that electrically connects the negative electrode component and the positive electrode component
  • the upper surface is the skin contact surface side.
  • the negative electrode component 11 and the positive electrode component 12 are arranged apart from each other, and the conductive member 13 is arranged so as to be bridged between the negative electrode component 11 and the positive electrode component 12 on the facing surface side.
  • the negative electrode constituent member 11 and the positive electrode constituent member 12 are arranged apart from each other in FIG.
  • the present invention may have a configuration in which the negative electrode constituent member 11 and the positive electrode constituent member 12 are in contact with each other. It is possible. This is because, in this type of biological battery treatment tool, for example, the electric resistance of the negative electrode constituent member 11 is about 1 to 2 M ⁇ , and the electric resistance value of the conductive member 13 is about 1 to 50 ⁇ . Therefore, even if the negative electrode component 11 and the positive electrode component 12 are brought into contact with each other, the electric resistance value of the negative electrode component 11 is high, so that the ions generated in the negative electrode component 11 are substantially from the negative electrode component 11 ( This is because it moves to the positive electrode constituent member 12 via the conductive member 13 (which has a low electrical resistance value).
  • the negative electrode component 11 means a component in which the negative electrode component contained in this member has a higher ionization tendency than the positive electrode component contained in the positive electrode component 12.
  • the negative electrode component constituting the negative electrode is not particularly limited, and examples of the highly practical material include zinc.
  • the positive electrode component 12 means a member in which the positive electrode component contained in this member has a lower ionization tendency than the negative electrode component contained in the negative electrode component 11.
  • the positive electrode component constituting the positive electrode is not particularly limited, but a noble metal is particularly mentioned as a highly practical material.
  • the "precious metal" according to the present invention includes at least a surface region covered with a noble metal by plating or the like, a positive resin or the like. For example, silver-coated copper powder and the like also fall under the noble metal according to the present invention. Since the positive electrode constituent member 12 can be made of carbon, the positive electrode constituent member 12 can be made of the same material as the conductive member 13 as described later (see FIG. 2B). ).
  • the conductive member 13 is "a member made of a material having conductivity but the material itself does not constitute a positive electrode or a negative electrode of a biological battery or a member containing this material” and further "having conductivity and a material". Although it is a material that can form a positive electrode or a negative electrode of a biological battery, it means a member that does not form a positive electrode or a negative electrode of a biological battery because it does not substantially come into contact with the skin.
  • the material of the conductive member 13 is not particularly limited, and examples of the highly practical material include carbon, a conductive polymer, and the like. In the case of carbon, it is usually formed by, for example, carbon paint, binder, printing and the like. Further, if a gel-like conductive polymer is applied, it has an adhesive effect by itself, and it is not necessary to combine it with an adhesive, a binder, a filler, or the like.
  • "having conductivity" in a conductive member means the electric resistance R [ ⁇ ] obtained by the following equation.
  • R ⁇ ⁇ L / A (R: electrical resistance, L: length [m], A: cross-sectional area [m 2 ])
  • Electrical resistivity [rho [[Omega] m] is preferably 1 ⁇ m less in, more preferably, 10 -2 [Omega] m or less, particularly preferably not more than preferably 10 -4 [Omega] m, in particular, be contained metal, the member 10 - It can also be 5 to 10-8 ⁇ m.
  • the electrical resistivity ⁇ of the human skin which is about 5.0 ⁇ 10 5 ⁇ m.
  • the positive electrode 12 can be made of the same material as the carbon constituting the conductive member 13. For this reason, in FIG. 2B, although the positive electrode constituent member 12 and the conductive member 13 use different reference numerals to distinguish them, they have common hatching.
  • the "skin” means the skin, mucous membrane, etc. of a living body (human body, animal, etc.) in a broad sense, and means a region to which the biological battery therapeutic tool according to the present invention can be attached. There is.
  • the conductive member forming the flow path from the negative electrode component to the positive electrode component is opposed to the skin contact surface (the surface where the negative electrode component and the positive electrode component are in contact with the skin). It is formed on the surface side (referred to as "opposing surface” in the present invention). Therefore, even if the negative electrode constituent member is formed for a long time by using a material having a high electrical resistivity, the electrons (current) due to the ionized negative electrode constituent material can pass through the conductive member formed on the facing surface. Therefore, the distance required for the electron (current) to reach the conductive member can be extremely shortened.
  • this type of bio-battery treatment tool has a negative electrode component formed extremely thin (for example, 150 ⁇ m or less, 100 ⁇ m or less, 50 ⁇ m or less, 10 ⁇ m or less, preferably 10 ⁇ m or less, although it differs slightly depending on the method of use and the like.
  • the distance at which the ionized negative electrode constituent material reaches the conductive member is an extremely short distance corresponding to the thickness of the negative electrode constituent member at the maximum, which is incomparably short with the length of the negative electrode constituent member.
  • the negative electrode component having a high electrical resistivity is not substantially adversely affected.
  • FIG. 1 It is a schematic diagram of the conventional biological battery treatment tool.
  • FIG. 1 shows a case where the positive electrode member and the conductive member are made of different materials
  • FIG. 1 shows a case where the positive electrode member is made of the same material (carbon) as the conductive member.
  • FIG. 1 shows the bio-battery treatment tool of 1st Example which concerns on this invention together with the manufacturing process.
  • (A) is the bio-battery treatment tool of the second embodiment according to the present invention
  • (b) is the bio-battery treatment tool of the third embodiment
  • (c) is the ion current band of the second and third examples. It is explanatory drawing which shows.
  • the printed film thickness of the carbon layer was 10 ⁇ m in the cross-sectional measured value, the same resistance value (surface resistance value) was 40 ⁇ , and the zinc layer printed film thickness was 20 ⁇ m in the cross-sectional measured value.
  • the zinc weight or weight ratio in the applied zinc-blended silicon is calculated to be 1.349 g of zinc and 0.193 g of SI ink.
  • FIG. 3 is a schematic explanatory view showing a manufacturing process of the sheet-shaped biobattery treatment tool according to the first embodiment.
  • a carbon silicon sheet 23 (conductive member) is prepared.
  • the surface side of the figure is the surface side in contact with the skin
  • zinc silicon is formed from above the carbon silicon sheet 23.
  • Print 21 negative electrode component
  • the carbon silicon sheet 23 (conductive member) is left exposed for the rest.
  • the surface on which zinc silicon 21 (negative electrode component) and precious metal silicon 22 (positive electrode component) are formed (the surface side in the lowermost view of FIG. 3) is applied to the skin.
  • ions from the negative electrode constituent material efficiently flow to the anode constituent member through the carbon silicon sheet layer (conductive member) having low electrical resistance on the surface facing the surface in contact with the skin.
  • an electric current effectively flows through the skin in which the positive electrode constituent material and the negative electrode constituent material of the biological battery treatment tool come into contact with each other, and the purpose of the biological battery treatment tool is efficiently achieved.
  • the zinc silicon 21 (negative electrode component) and the noble metal silicon 22 (positive electrode component) are in direct contact with each other, but since the electrical resistance value of the zinc silicon 21 (negative electrode component) is high, the negative electrode is used.
  • the ions from the constituent material substantially flow to the positive electrode constituent member 22 through the carbon silicon sheet layer 23 (conductive member) having low electrical resistance on the surface facing the surface in contact with the skin.
  • FIG. 4A shows an example of a substantially L-shaped biobattery treatment tool including a base piece 41 and a rising piece 42 raised from one end of the base piece.
  • This bio-battery treatment tool is an effective treatment tool for the outer corners of the eyes where the movement of the face, particularly muscles is small, and the surface side in this figure shows the skin contact surface.
  • This biological battery treatment tool includes a wide base piece 41 and a narrow rising piece 42 raised from one end of the base piece 41.
  • 31 is a negative electrode component provided on the base piece 41
  • 32 is a button-shaped positive electrode component provided at the tip of the rising piece 42
  • 35 is an insulating layer (first insulating layer). ..
  • FIG. 5 shows an exploded perspective view of the biological battery treatment tool of FIG. 4 (a).
  • 33 indicates a substantially L-shaped conductive member
  • 33a indicates a base piece of the conductive member
  • 33b indicates a rising piece of the conductive member.
  • a substantially L-shaped second insulating layer 34 covering the conductive member 33 is provided on the left side of the conductive member 33 (the surface side facing the skin contact surface in the biological battery treatment tool). (Base piece 34a, Rising piece 34b).
  • a first insulating layer 35 is provided on the right side of the conductive member 33 (the skin contact surface side in the biological battery treatment tool), and the first insulating layer 35 provides a substantially L-shaped conductive member 33. Covers the rising piece 33b of.
  • the first insulating layer 35 is not covered at the tip of the rising piece 33b of the conductive member 33 (where the positive electrode constituent member 32 is attached).
  • a negative electrode component 31 is provided on the right side of the conductive member 33 (the skin contact surface side in the biological battery treatment tool), and the negative electrode component 31 is a base piece 33a of the substantially L-shaped conductive member 33. Covers the skin contact surface side of the.
  • a button-shaped positive electrode component 32 is attached to the tip of the rising piece 33b of the conductive member 33 (see FIG. 4A).
  • the negative electrode component 31 and the positive electrode component 32 come into contact with the coating, electrons generated from the ionized negative electrode component of the negative electrode component 31 pass through the conductive member 33 to the positive electrode. It enters the component 32 and a desired current passes through the skin. Therefore, even if the negative electrode component 31 has a high electric resistance value, a current flows from the conductive member 33 to the positive electrode component 32 through the thin negative electrode component 31, so that the high electric resistance value of the negative electrode component 31 is high. The problem can be solved and the current can flow efficiently.
  • FIG. 4B shows another example of a substantially L-shaped bio-battery treatment tool, and shows an effective bio-battery treatment tool for a nasolabial fold with large movement of the face, particularly muscles.
  • the basic configuration and action and effect of this bio-battery treatment tool are the same as those of the bio-battery treatment tools shown in FIGS. 4 (a) and 5, except that the spring portion 43 is formed in the middle of the rising piece 42. Then, the rising piece 42 is elastically deformable following the movement of the muscle. With such a configuration, even if the corner of the mouth is moved, the bio-battery treatment tool is elastically deformed correspondingly, and as a result, the function of the invention can be effectively maintained.
  • FIG. 4 (c) is a schematic view showing a region in which an electric current flowing through the skin flows when a substantially L-shaped biobattery treatment tool is in contact with the skin.
  • FIG. 6 is an explanatory diagram showing a manufacturing process of an H-shaped biological battery treatment tool.
  • the H-shaped conductive rubber 40 constituting the conductive member and the positive electrode constituent member is prepared.
  • the negative electrode component 41 is attached to one piece of the H-shaped conductive rubber 40 (the standing piece on the left side when facing the drawing).
  • the insulating layer 42 is attached to the horizontal piece of the H-shaped conductive rubber 40.
  • the insulating layer 42 is additionally mounted except for the circular region).
  • the H-shaped biological battery treatment tool according to the present invention can be obtained.
  • the front side of the drawing is the surface that comes into contact with the skin, and the portion of the conductive rubber 40 that is covered with the insulating layer 42 and the positive electrode constituent member 43 functions as the conductive member, and the insulating layer.
  • Two circular regions not covered by 42 function as the positive electrode component 43.
  • the reference numerals in parentheses indicate the reference numerals of the members on the back surface side of the drawing.
  • FIG. 7 is an explanatory diagram showing a manufacturing process of a disk-shaped biological battery treatment tool.
  • the circular conductive rubber 50 constituting the conductive member and the positive electrode constituent member is prepared.
  • the negative electrode component 51 is attached to the central portion of the conductive rubber 50.
  • the insulating layer 52 is attached to the outer periphery of the negative electrode component 51.
  • the insulating layer 52 is additionally attached.
  • the disk-shaped biological battery treatment tool according to the present invention can be obtained.
  • the front side of the drawing is the surface that comes into contact with the skin, and the portion of the conductive rubber 50 that is covered with the insulating layer 52 and the positive electrode constituent member 53 functions as the conductive member, and the insulating layer.
  • the four circular regions not covered by 52 function as the positive electrode component 43.
  • the reference numerals in parentheses indicate the reference numerals of the members on the back surface side of the drawing.
  • the flat plate-shaped, substantially L-shaped, H-shaped, and disk-shaped bio-battery treatment tools have been described, but the present invention is not specified to these-shaped bio-battery treatment tools. It includes bio-battery treatment tools of various shapes depending on the application, the place of application, and the like.
  • the negative electrode component has a standard unipolar potential lower than that of the positive electrode component of the positive electrode component, but metallic zinc is particularly suitable as the negative electrode component.
  • the positive electrode component constituting the positive electrode component may be a metal having an electrode potential higher than that of the negative electrode component, and may be, for example, gold (Au) silver (Ag), a platinum group, or an alloy thereof.
  • the particle size of the noble metal fine particles is not particularly limited, but from the viewpoint of constituting a large number of biological battery units, the particle size of finer particles is preferable, but from the viewpoint of manufacturing, coarser particles are handled. Cheap.
  • precious metal fine particles having an average particle size in the range of 1 nm to 50 ⁇ m, an average particle size of 20 nm to 15 ⁇ m, an average particle size of 10 ⁇ m to 15 ⁇ m, and an average particle size of 20 nm to 40 nm can be used.
  • the present invention is not limited to these fine particles.
  • carbon is presented as the conductive member, but examples of the material other than carbon include graphite, a salt-containing substance, a conductive polymer material, a conductive polymer, and the like. It is preferable to use a gel-like conductive polymer because it has an adhesive effect by itself, and it is not necessary to add a binder, an adhesive, or the like.
  • Typical substances of the conductive polymer material include polyacetylene, polyaniline, poly (p-phenylene vinylene), polypyrrole, polythiophene, polyaniline, poly (p-phenylene sulfide), PEDOT (polyethylenedioxythiophene) and the like. There are also oligothiophenes and the like.
  • the present invention even in a biological battery treatment tool having a negative electrode component having a high electric resistance value and a long length, generated ions can be efficiently flowed to the negative electrode, and conduction with the length can be achieved.
  • a bio-battery treatment tool capable of obtaining an excellent current stimulating effect having properties is provided at low cost.
  • the electrical resistance value is about 1 to 50 ⁇ ⁇ cm in volume resistance
  • the length of the negative electrode component is 20 to 50 mm
  • the thickness of the negative electrode component is 150 ⁇ m or less
  • the present invention functions particularly effectively when the "thickness of the negative electrode component" is 1 or more, preferably 100 or more.
  • this bio-battery treatment tool promotes blood circulation and purifies locally accumulated waste products in the fields of beauty such as treatment and prevention of stiff shoulders and low back pain, maintenance of beautiful skin, and improvement of skin quality. Can also be used effectively.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Biophysics (AREA)
  • Electrotherapy Devices (AREA)

Abstract

負極か長尺でかつ高抵抗値であっても、電流が有効に流れ、その結果、皮接感がよく、優れた電流刺激効果の得られる生体電池治療具を提供する。 負極構成部材(11)と正極構成部材(12)とを導電性部材(13)に接続して、前記負極構成部材(11)と前記正極構成部材(12)とを皮膚に接触させて、皮膚内に通電回路を形成する生体電池治療具であって、前記導電性部材(13)は、前記負極構成部材(11)の皮膚接触面と対向する面と、正極構成部材(12)の皮膚接触面と対向する面との間において、負極構成部材(11)と正極構成部材(12)とを橋渡接続し、導電性部材(13)及び正極構成部材(12)は、いずれも同一素材のカーボンで形成されている。

Description

生体電池治療具
 この発明は、生体電池治療具、詳しくは、皮膚に接した状態で使用され、微弱な直流起電力の皮下組織への通電刺激により対象部位の処置を行う生体電池治療具に関する。
 近年、慢性的な肩こりや腰痛に悩まされる患者が増加しており、これまでに家庭用治療具として、パップ剤、温灸、金属粒、磁気治療具、低周波治療器などが多数市販されている。これらの治療具は、種々の原理によって患部の血行を促進し、局部的に滞留した老廃物を浄化する効果を示すものである。
 本発明者らは、先に、通電刺激によって筋肉および神経の疲労を癒す生体電池治療具を提案した(特許文献1、2参照)。当該生体電池治療具は、皮膚に接触したときに生体電池を形成して直流電流を与えるものであり、家庭用治療具としての治療効果を有する優れた治療具であることが実証されている。
 しかしながら、これらの家庭用治療具は、改良すべき以下の問題点を有している。
以下、先に提案した生体電池治療具の構成を図1に模式的に示し、改良すべき問題点を説明する。図中、符号1は負極(例えば金属粉をバインダに混在させたもの)、2は正極(例えば貴金属或はバインダに貴金属を混在させたもの)、3はイオン化傾向を有しない物質、からなる導電性部材(例えばカーボン)を示し、この導電性部材3は負極1と正極2との間に介在されている。
この種の生体電池治療具は、負極1を長く形成して、負極成分がイオン化することにより生じた電流が正極に多量に流れるようにしている。しかし、亜鉛などの金属粉をバインダに混入させた構成の負極は、その電気抵抗値(体積抵抗値)が最低でも1メグΩ・cm~2メグΩ・cmという高抵抗のため、導電性部材に到達するまでの距離が長くなり、正極に到達することが実質的に困難である。その結果、効率のよい生体電池治療具を得難かった。
特許第6168639号公報 特許第6153259号公報
 本件発明者らは、この課題を解決するために検討し、この種の生体電池治療具は、負極が生体に接触する面とその面と対向する面との間の厚さが極めて薄いことに着目し、負極のうち生体に接触する面と対向する面に導電性部材を配置し、この様に配置された導電性部材を介して正極に電流を伝達するようにするようにした。このことにより、イオンが負極構成部材の長さ方向ではなく、距離の短い負極構成部材の厚さ方向から導電性部材に到達するようにした。その結果、イオンが負極を通る距離を極めて短く抑えることができ、もって、負極構成部材の電気抵抗値が高くても、この種の生体電池治療具の治療効果を有効に発揮できるようになることを見出し、本発明を完成するに至った。
 本発明は、上記の知見に基づいてなされたもので、電気抵抗値が高い負極構成部材を長く形成して、負極から正極に至るまでの距離が長い生体電池治療具であっても、負極構成部材の皮膚接触面と対向する表面側(即ち、皮膚と接触しない面側)に導電性部材を配置、形成することにより、イオン化した負極構成物質が導電性部材に到達するまでに必要な距離を短くし、そのことにより、負極から正極構成部材まで距離が長くても、イオンが正極に効率よく到達することができる生体電池治療具を提案するものである。
 そして、本発明は上記課題を解決するために以下の構成を備えている。
(1)負極構成部材と、正極構成部材と、これら負極構成部材と正極構成部材との間に接続配置された導電性部材とを備え、前記負極構成部材と前記正極構成部材とを生体に接触させることにより、生体と負極構成部材及び正極構成部材との間に通電回路を形成してなり、
 前記負極構成部材と正極構成部材とは、それぞれ皮膚に接触する皮膚接触面とともにこの皮膚接触面と対向する面に形成された対向面を有し、
 前記負極構成部材の対向面と前記正極構成部材の対向面との間に前記導電性部材を橋渡し接続することにより、負極構成部材と正極構成部材とを電気的に接続している生体電池治療具であって、
 導電性部材及び正極構成部材は、同一材質のカーボンで構成されていることを特徴とする生体電池治療具。
(2)前記負極構成部材の対向面と前記正極構成部材の対向面との間に橋渡し接続される導電性部材は、前記負極構成部材の皮膚接触面と対向する面側において、正極構成部材から最も距離が長い箇所を起点とし、この起点から正極構成部材まで配置されていることを特徴とする(1)に記載の生体電池治療具。
(3)前記導電性部材は、少なくとも前記負極構成部材の皮膚接触面側の全面に被覆形成されていることを特徴とする(1)に記載の生体電池治療具。
(4)前記負極構成部材と正極構成部材とは離間対向して配置されていることを特徴とする(1)乃至(3)のいずれかに記載の生体電池治療具。
(5)前記負極構成部材と正極構成部材とは互いに接して配置されていることを特徴とする(1)乃至(3)のいずれかに記載の生体電池治療具。
(6)前記導電性部材は、正極構成部材と負極構成部材とに接触する領域を除き、皮膚と対向する面の表面に、電気絶縁層が被覆形成されており、この電気絶縁層により導電性部材と皮膚との接触を遮断していることを特徴とする(1)乃至(5)のいずれかに記載の生体電池治療具。
(7)負極構成部材は、その長さが10~200mm、その厚さが150μm以下、「負極構成部材の長さ/負極構成部材の厚さ」が1以上であることを特徴とする(1)乃至(6)のいずれかに記載の生体電池治療具。
(8)負極構成部材は、「負極構成部材の長さ/負極構成部材の厚さ」が100以上であることを特徴とする(7)に記載の生体電池治療具。
 なお、本発明において、「負極構成部材の厚さ」とは、図2を参照すれば、負極構成部材11の上下方向の厚さを言い、本発明に係る生体電池治療具では、「負極構成部材の厚さ方向」に電流が流れる。
また、「負極構成部材の長さ」とは、図2を参照すれば、負極構成部材1の横方向の長さを言い、図1に示す如き従来型の(負極と正極との間に導電性部材が介在されている構成の)生体電池治療具では、「負極構成部材の長さ」方向に電流が流れる。
「略L字状」とは、基片と、この基片の一端部から立ち上がる立上片とを具備する構成を言い、その向きは問わない。また、略L字状を構成する部分とともに他の部分を備えている生体電池治療具も包含する。
負極構成部材とは、負極を構成する成分が含まれていて、負極として機能する部材を意味し、正極構成部材は、正極を構成する成分が含まれていて、正極として機能する部材を意味する。
 まず、図2の模式図に基づいて本発明の基本概念を説明する。
図2(a)中、11は負極構成部材、12は正極構成部材、13は負極構成部材と正極構成部材とを電気的に接続する導電性部材を示し、図中、上面が皮膚接触面側を示し、下面が皮膚接触面側と対向する面(以下、対向面と称する)を示す。
負極構成部材11と正極構成部材12とは互いに離間して配置され、負極構成部材11と正極構成部材12との対向面側には、導電性部材13が橋渡しされて配置されている。
なお、図2では、負極構成部材11と正極構成部材12とは互いに離間して配置されているが、本発明は、負極構成部材11と正極構成部材12とを接触させた構成とすることも可能である。何故なら、この種の生体電池治療具は、例えば、負極構成部材11の電気抵抗が1~2MΩ程度、導電性部材13の電気抵抗値が1~50Ω程度である。
このため、負極構成部材11と正極構成部材12とを接触させても、負極構成部材11の電気抵抗値が高いために、負極構成部材11で生じたイオンは実質的に負極構成部材11から(電気抵抗値の低い)導電性部材13を介して正極構成部材12に移動するためである。
 ここで負極構成部材11は、この部材に含まれる負極成分が、正極構成部材12に含まれる正極成分と比較してイオン化傾向が大きい成分を意味する。負極を構成する負極成分は特に限定されるものではないが、実用性の高い材料として、例えば亜鉛が挙げられる。  
 正極構成部材12は、この部材に含まれる正極成分が、負極構成部材11に含まれる負極成分に対して、それよりもイオン化傾向が小さい部材を意味する。正極を構成する正極成分は特に限定されるものではないが、実用性の高い材料として、特に貴金属が挙げられる。発明に係る「貴金属」とは、少なくとも表面領域がメッキなどにより貴金属で覆われているものや陽樹脂などを含む。例えば、銀コート銅粉等も本発明に係る貴金属に該当する。
なお、正極構成部材12をカーボンで形成することも可能であるので、後述するように、正極構成部材12を導電性部材13と共通する材質とすることも可能である(図2(b)参照)。
 次に、導電性部材13とは、「導電性を有するが、材料自体が生体電池の正極や負極を構成しない材料からなる部材又はこの材料を含む部材」更には「導電性を有し、材料自体は生体電池の正極や負極を構成しうる材料であるが、実質的に皮膚に接触しないため、生体電池の正極や負極を構成しない部材」を意味する。
導電性部材13の材料は特に限定されるものではないが、実用性の高い材料として、特にカーボンや導電性ポリマー等が挙げられる。カーボンの場合、通常、例えば、カーボン塗料、バインダ、印刷などにより形成される。また、ゲル状の導電性ポリマーを適用すれば、それ自体に接着効果があり、粘着剤、バインダ,フィラー等と組み合わせる必要がなくなる。
 本発明において、導電性部材における「導電性を有する」とは、下式で求められる電気抵抗R[Ω]
R=ρ・L/A(R:電気抵抗、L:長さ[m]、A:断面積[m])
における電気抵抗率ρ[Ωm]が、好ましくは1Ωm以下、より好ましくは、10-2Ωm以下、特に好ましくは10-4Ωm以下が望ましく、特に、金属を含有させれば、この部材を10-5~10-8Ωmとすることもできる。ちなみに、人の皮膚の電気抵抗率ρは、約5.0×10Ωmである。
 また、前述したが、図2(b)に示すように、本発明では導電性部材13を構成するカーボンと同じ材料で正極12を構成することが可能である。このことから、図2(b)では、正極構成部材12と導電性部材13とは、両者を区別するために異なる符号を用いているものの、ハッチングを共通化している。
 また、本明細書において、「皮膚」とは、広い意味での生体(人体や動物等)の皮膚、粘膜等を意味し、本発明に係る生体電池治療具の装着可能な領域を意味している。  
 本発明に係る生体電池治療具によれば、負極構成部材から正極構成部材に流れる経路を形成する導電性部材を皮膚接触面(負極構成部材と正極構成部材とが皮膚に接触する面)と対向する表面側(本発明では「対向面」と称する)に形成している。このため電気抵抗率の高い素材を用いて負極構成部材を長く形成しても、イオン化した負極構成物質による電子(電流)は、対向面に形成された導電性部材を通ることができる。このため、電子(電流)は、導電性部材に到達するに必要な距離を極めて短くすることができる。その結果、負極が長く形成されて、負極から正極まで距離が実質的に長い生体電池治療具であっても、電子(電流)がこの導電性部材を通って正極に効率よく到達することができる。
更に詳しく説明すれば、この種の生体電池治療具は、使用方法等により若干異なるが、負極構成部材が極めて薄く形成されており(例えば、150μm以下、100μm以下、50μm以下、10μm以下、好ましくは5~10μm)、イオン化した負極構成物質が導電性部材に到達する距離は、最大でも負極構成部材の厚さ分の極めて短い距離であり、負極構成部材の長さと比較にならないくらい短い。この結果、電気抵抗率の高い負極構成部材による悪影響を実質的に受けることはない。
従来の生体電池治療具の模式図である。 本発明の生体電池治療具の模式図で、(a)は正極部材と導電性部材とが異なる材質の事例、(b)は正極部材が導電性部材と同一材質(カーボン)の事例を示す。 本発明に係る第1の実施例の生体電池治療具を、その製造工程と共に示した模式図である。 (a)は本発明に係る第2の実施例の生体電池治療具、(b)は第3の実施例の生体電池治療具、(c)は第2、第3の実施例のイオン電流帯を示す説明図である。 本発明に係る第2の実施例の生体電池治療具の展開斜視図である。 本発明に係るさらに異なるH形状の生体電池治療具の製造工程を示す説明図である。 本発明に係るさらに異なる円形状の生体電池治療具の製造工程を示す説明図である。
 以下本発明の実施例を説明する。
なお、これら実施例の生体電池治療具における、カーボン層の印刷膜厚は、断面実測値で10μm、同抵抗値(表面抵抗値)は40Ω、亜鉛層印刷膜厚は、断面実測値で20μm、塗布された亜鉛混シリコン中の亜鉛重量もしくは重量比は、計算上、亜鉛1.349g SIインク0.193gである。
 (第1の実施例)
図3は、第1の実施例であるシート状の生体電池治療具の製造工程を示した概略説明図である。
(1)まず、図3の最上部の図に示すように、カーボンシリコンシート23(導電性部材)を用意する。
(2)次いで、図3の上から2番面の図(図の表面側は皮膚と接触する面側)に示すように、皮膚と接触する面側において、カーボンシリコンシート23の上から亜鉛シリコン21(負極構成部材)を印刷する。この場合、残りはカーボンシリコンシート23(導電性部材)を露出したままとする。
(3)次に、図3の上から3番面の図(図の表面側は皮膚と接触する面と対向する面側)に示すように、カーボンシリコンシート23(導電性部材)の皮膚と接触する面と対向する面において、その全面に普通シリコン24(絶縁層)を塗布印刷する。
(4)この後、図3の最下部の図(図の表面側は皮膚と接触する面側)に示すように、カーボンシリコンシート23(導電性部材)が露出している面(図3の2番目の図の上辺部)に貴金属シリコン22(正極構成部材)を塗布印刷する。
 このように構成された生体電池治療具は、亜鉛シリコン21(負極構成部材)と貴金属シリコン22(正極構成部材)が形成されている面(図3の最下部の図における表面側)を皮膚に接触させることにより、負極構成物質からのイオンが、皮膚と接触する面と対向する面にある電気抵抗の低いカーボンシリコンシート層(導電性部材)を通って効率よく陽極構成部材に流れる。この結果、生体電池治療具の正極構成物質と負極構成物質とが接触する皮膚に有効に電流が流れ、生体電池治療具の目的が効率よく達成される。
 なお、この実施例では、亜鉛シリコン21(負極構成部材)と貴金属シリコン22(正極構成部材)とが直接接触しているが、亜鉛シリコン21(負極構成部材)の電気抵抗値が高いため、負極構成物質からのイオンは、実質的に、皮膚と接触する面と対向する面にある電気抵抗の低いカーボンシリコンシート層23(導電性部材)を通って正極構成部材22に流れる。
 (第2の実施例)
図4(a)は、基片41と基片の一端部から立ち上げられた立上片42とを備えた略L字状の生体電池治療具の一例を示す。この生体電池治療具は、顔、特に筋肉の動きの少ない目尻用等に有効な治療具であり、この図の表面側が皮膚接触面を示す。この生体電池治療具は、幅広の基片41と基片41の一端より立上げられた幅狭の立上片42とを備えている。そして、図中31は、基片41に設けられた負極構成部材、32は立上片42の先端に設けられたボタン状の正極構成部材、35は絶縁層(第1の絶縁層)を示す。
 図5は、図4(a)の生体電池治療具の分解斜視図を示す。この図において、33は略L字状の導電性部材を示し、33aが導電性部材の基片、33bが導電性部材の立上片を示す。この導電性部材33の図中左側(生体電池治療具における皮膚接触面と対向する表面側)に、この導電性部材33を被覆する略L字状の第2の絶縁層34が設けられている(基片34a, 立上片34b)。
また、導電性部材33の図中右側(生体電池治療具における皮膚接触面側)に、第1の絶縁層35が設けられ、この第1の絶縁層35により略L字状の導電性部材33の立上片33bを被覆している。ただし、この第1の絶縁層35は、導電性部材33の立上片33bの内、その先端(ここに正極構成部材32が取り付けられる箇所)には被覆されていない。
さらに、導電性部材33の図中右側(生体電池治療具における皮膚接触面側)に、負極構成部材31が設けられ、この負極構成部材31は略L字状の導電性部材33の基片33aの皮膚接触面側を被覆している。
また、導電性部材33の立上片33bの先端には、ボタン状の正極構成部材32が取り付けられている(図4(a)参照)。
 このように構成された生体電池治療具は、負極構成部材31と正極構成部材32とを被覆に接触すると、負極構成部材31のイオン化した負極成分から生じた電子が導電性部材33を通って正極構成部材32に入り、所望の電流が皮膚内を通る。このため、負極構成部材31の電気抵抗値が高くても、薄肉の負極構成部材31を通って導電性部材33から正極構成部材32に電流が流れるので、負極構成部材31の高い電気抵抗値の問題を解消することができ、効率よく電流を流すことができる。
 (第3の実施例)
図4(b)は、略L字状の生体電池治療具の他の例を示し、顔、特に筋肉の動きの大きいほうれい線用等に有効な生体電池治療具を示す。
この生体電池治療具の基本的な構成及び作用効果は、図4(a)、図5の生体電池治療具と同じであるが、相違点は、立上片42の途中にスプリング部43を形成して、この立上片42が筋肉の動きに追従して弾性変形自在となっていることである。このように構成されていることにより、口角部が動かされても、生体電池治療具が対応して弾性変形し、その結果、発明の機能を有効に維持することができる。
 図4(c)は、略L字型の生体電池治療具を皮膚に接した時の、皮膚に流れる電流の流れる領域を示す概略図である。この図からわかるように生体電池治療具をL字状とすることにより、L字状の生体電池治療具に囲まれる広範囲のイオン電流帯を形成することができるという利点を有する。
 (第4の実施例)
 図6は、H形状の生体電池治療具の製造工程を示した説明図である。
 製造工程順に説明すると、導電性部材及び正極構成部材を構成するH形状の導電性ゴム40を用意する。
 次いで、H形状の導電性ゴム40の一方の片(図面の向かって左側の立片)に負極構成部材41を装着する。
 次いで、H形状の導電性ゴム40の横片に絶縁層42を装着する。
 そして、H形状の導電性ゴム40の他方の片(図面の向かって右側の立片)に、導電性ゴム40のうち皮膚と接触して正極構成部材43として機能すべき個所(図では2か所の円形領域)を除き絶縁層42を追加装着する。
このことにより、本発明に係るH形状の生体電池治療具が得られる。
この生体電池治療具は、図面の表側が皮膚と接触する面であり、導電性ゴム40のうち、絶縁層42及び正極構成部材43で覆われている箇所が導電性部材として機能し、絶縁層42で覆われていない2か所の円形領域が正極構成部材43として機能する。
なお、図6中、カッコ内の符号は、図面の裏面側にある部材の符号を示す。
 (第5の実施例)
図7は円盤形状の生体電池治療具の製造工程を示した説明図である。
 製造工程順に説明すると、導電性部材及び正極構成部材を構成する円形状の導電性ゴム50を用意する。
 次いで、導電性ゴム50の中央部分に負極構成部材51を装着する。
 次ぎに、負極構成部材51の外周に絶縁層52を装着する。
 そして、導電性ゴム50が露出している絶縁層52の外周のうち、導電性ゴム50が皮膚と接触して正極構成部材53として機能すべき箇所(図では4か所の円形領域)を除き絶縁層52を追加装着する。
 このことにより、本発明に係る円盤形状の生体電池治療具が得られる。
この生体電池治療具は、図面の表側が皮膚と接触する面であり、導電性ゴム50のうち、絶縁層52及び正極構成部材53で覆われている箇所が導電性部材として機能し、絶縁層52で覆われていない4か所の円形領域が正極構成部材43として機能する。
なお、図6中、カッコ内の符号は、図面の裏面側にある部材の符号を示す。
 なお、上述した実施例では、平板状、略L字状、H形状、円盤形状の生体電池治療具について説明したが、本発明はこれらの形状の生体電池治療具に特定されるものではなく、用途、適用する箇所などに応じて種々の形状の生体電池治療具を包含する。
 ここで、負極構成部材は、正極構成部材の正極成分よりも低い標準単極電位を有するものであるが、負極成分として特に金属亜鉛が好適である。
 また、正極構成部材を構成する正極成分は、負極成分よりも電極電位が高い金属であればよく、例えば、金(Au)銀(Ag)、および白金族並びにその合金などであればよい。貴金属微粒子の粒径は特に限定されるものではないが、多数の生体電池ユニットを構成するという視点からは、より微粒の粒径が好ましいが、製造上の視点からはより粗粒の方が扱いやすい。両者の妥協を図るとすれば、例えば、平均粒径1nm~50μmの範囲、平均粒径20nm~15μm、平均粒径10μm~15μm、平均粒径20nm~40nmなどの貴金属微粒子を用いることができる。ただし、本発明はこれらの微粒子に限定されるものではない。
 また、上記実施例では、導電性部材としてカーボンを提示したが、カーボン以外の材料としては、例えば、グラファイト、塩の含有物、導電性高分子材料・導電性ポリマーなどが挙げられる。ゲル状の導電性ポリマーを用いれは、それ自体で接着効果を持つので、バインダ、粘着剤などを配合する必要がなく、好適である。導電性高分子材料の代表的な物質としてはポリアセチレン、ポリアニリン,ポリ(p-フェニレンビニレン)、ポリピロール、ポリチオフェン、ポリアニリン、ポリ(p-フェニレンスルフィド)、PEDOT(ポリエチレンジオキシチオフェン)などが挙げられる。その他オリゴチオフェン等もある。実際の性質は導体というより半導体の性質も帯びたものもある。その他、金属を加工した所謂ITOも使用可能である。
ただし、これらの導電材料自体が加工もしくは合成または化合されたものであり、安価かつ安定的であるとは言い難い。その様な観点からカーボン(カーボンナノチューブ含む)が最も安価で安定しており、且つ人体に安全な材料といえる。
 この発明により、電気抵抗値が高く、かつ、長さの長い負極構成部材を有する生体電池治療具であっても、発生したイオンを効率よく負極に流すことができ、その長さに伴った導通性を有する優れた電流刺激効果の得られる生体電池治療具が安価に提供される。
具体的には、電気抵抗値が体積抵抗値で1~50Ω・cm程度で、負極構成部材の長さが20~50mm、負極構成部材の厚さが150μm以下、「負極構成部材の長さ/負極構成部材の厚さ」が1以上、好ましくは100以上であるような場合に、本発明は特に有効に機能する。
その結果、この生体電池治療具は、血行を促進し、局部に滞留した老廃物を浄化することにより、肩こりおよび腰痛などの治療および予防、並びに美肌の維持、肌質の改善など美容の分野においても有効に使用することが可能である。
  11,21,31,41,51…負極構成部材、亜鉛シリコン
  12,22,32,43,53…正極構成部材、貴金属シリコン
  13,23,33…導電性部材、カーボンシリコンシート
  24,34(34a,34b),35,42,52…絶縁層、普通シリコン、第1、第2絶縁層
 40,50…導電性ゴム

Claims (8)

  1.  負極構成部材と、正極構成部材と、これら負極構成部材と正極構成部材との間に接続配置された導電性部材とを備え、前記負極構成部材と前記正極構成部材とを生体に接触させることにより、生体と負極構成部材及び正極構成部材との間に通電回路を形成してなり、
     前記負極構成部材と正極構成部材とは、それぞれ皮膚に接触する皮膚接触面とともにこの皮膚接触面と対向する面に形成された対向面を有し、
     前記負極構成部材の対向面と前記正極構成部材の対向面との間に前記導電性部材を橋渡し接続することにより、負極構成部材と正極構成部材とを電気的に接続している生体電池治療具であって、
     導電性部材及び正極構成部材は、同一材質のカーボンで構成されていることを特徴とする生体電池治療具。
  2.  前記負極構成部材の対向面と前記正極構成部材の対向面との間に橋渡し接続される導電性部材は、前記負極構成部材の皮膚接触面と対向する面側において、正極構成部材から最も距離が長い箇所を起点とし、この起点から正極構成部材まで配置されていることを特徴とする請求項1に記載の生体電池治療具。
  3.  前記導電性部材は、少なくとも前記負極構成部材の皮膚接触面側の全面に被覆形成されていることを特徴とする請求項1に記載の生体電池治療具。
  4.  前記負極構成部材と正極構成部材とは離間対向して配置されていることを特徴とする請求項1乃至3のいずれか1項に記載の生体電池治療具。
  5.  前記負極構成部材と正極構成部材とは互いに接して配置されていることを特徴とする請求項1乃至3のいずれか1項に記載の生体電池治療具。
  6.  前記導電性部材は、正極構成部材と負極構成部材とに接触する領域を除き、皮膚と対向する面の表面に、電気絶縁層が被覆形成されており、この電気絶縁層により導電性部材と皮膚との接触を遮断していることを特徴とする請求項1乃至5のいずれか1項に記載の生体電池治療具。
  7.  負極構成部材は、その長さが10~200mm、その厚さが150μm以下、「負極構成部材の長さ/負極構成部材の厚さ」が1以上であることを特徴とする請求項1乃至6のいずれか1項に記載の生体電池治療具。
  8.  負極構成部材は、「負極構成部材の長さ/負極構成部材の厚さ」が100以上であることを特徴とする請求項7に記載の生体電池治療具。
PCT/JP2021/002059 2020-01-21 2021-01-21 生体電池治療具 WO2021149769A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21744060.1A EP4094801A4 (en) 2020-01-21 2021-01-21 MEDICAL DEVICE WITH BIOGALVANIC BATTERY
US17/794,204 US20230072693A1 (en) 2020-01-21 2021-01-21 Biogalvanic battery therapeutic appliance
CN202180010101.5A CN114945403A (zh) 2020-01-21 2021-01-21 生物电池治疗器具

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-007538 2020-01-21
JP2020007538A JP6725124B1 (ja) 2020-01-21 2020-01-21 生体電池治療具
JP2020-095997 2020-06-02
JP2020095997A JP6789469B1 (ja) 2020-01-21 2020-06-02 生体電池治療具

Publications (1)

Publication Number Publication Date
WO2021149769A1 true WO2021149769A1 (ja) 2021-07-29

Family

ID=76992444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/002059 WO2021149769A1 (ja) 2020-01-21 2021-01-21 生体電池治療具

Country Status (5)

Country Link
US (1) US20230072693A1 (ja)
EP (1) EP4094801A4 (ja)
JP (1) JP6789469B1 (ja)
CN (1) CN114945403A (ja)
WO (1) WO2021149769A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6153259B2 (ja) 2013-07-12 2017-06-28 賢司 小蒲 生体電池治療具
WO2018194079A1 (ja) * 2017-04-21 2018-10-25 日本電信電話株式会社 生体組織貼付けパッチ
WO2019146714A1 (ja) * 2018-01-24 2019-08-01 株式会社レーベン 微弱電流シート

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008114918A1 (en) * 2007-03-19 2008-09-25 Rocket Electric Co., Ltd Iontophoresis patch and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6153259B2 (ja) 2013-07-12 2017-06-28 賢司 小蒲 生体電池治療具
JP6168639B2 (ja) 2013-07-12 2017-07-26 賢司 小蒲 生体電池治療具
WO2018194079A1 (ja) * 2017-04-21 2018-10-25 日本電信電話株式会社 生体組織貼付けパッチ
WO2019146714A1 (ja) * 2018-01-24 2019-08-01 株式会社レーベン 微弱電流シート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4094801A4

Also Published As

Publication number Publication date
JP6789469B1 (ja) 2020-11-25
EP4094801A4 (en) 2024-02-07
JP2021115447A (ja) 2021-08-10
EP4094801A1 (en) 2022-11-30
US20230072693A1 (en) 2023-03-09
CN114945403A (zh) 2022-08-26

Similar Documents

Publication Publication Date Title
US5772688A (en) Skin-contact type medical treatment apparatus
US5848985A (en) Skin-contact type medical treatment apparatus
US5354321A (en) Patch arrangement for galvanic treatment
US5380271A (en) Electrotransport agent delivery device and method
JP6168639B2 (ja) 生体電池治療具
CN111888641B (zh) 离子电渗透的给药装置
EP0970719A2 (en) Electrode structure
WO2006041785A3 (en) Ecg/pacing electrodes
JP2012501213A5 (ja)
WO2021149769A1 (ja) 生体電池治療具
CN111035851B (zh) 应用于电刺激按摩仪的电极组件和颈椎电刺激按摩仪
JPS60108053A (ja) 電気治療装置
JP6725124B1 (ja) 生体電池治療具
JP3748278B2 (ja) 皮接治療具
JP5881158B2 (ja) 生体電池治療具
CN2930747Y (zh) 电离子药贴
US1190831A (en) Appliance for treating goiter.
CN211705627U (zh) 应用于电刺激按摩仪的导电组件和颈椎电刺激按摩仪
JP4759694B2 (ja) 美容機器
JP4772458B2 (ja) 生体電池治療具
CN213491529U (zh) 一种导电面膜及导电面膜装置
JP6372888B2 (ja) 生体電池治療具
RU40009U1 (ru) Электродное устройство
JPH09215756A (ja) イオン湿布およびその製造方法
JP2000237323A (ja) 皮接治療具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744060

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021744060

Country of ref document: EP

Effective date: 20220822