WO2021149629A1 - 姿勢診断システム、姿勢診断方法及び姿勢診断用データセット - Google Patents

姿勢診断システム、姿勢診断方法及び姿勢診断用データセット Download PDF

Info

Publication number
WO2021149629A1
WO2021149629A1 PCT/JP2021/001449 JP2021001449W WO2021149629A1 WO 2021149629 A1 WO2021149629 A1 WO 2021149629A1 JP 2021001449 W JP2021001449 W JP 2021001449W WO 2021149629 A1 WO2021149629 A1 WO 2021149629A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
artificial intelligence
person
measured
skeleton
Prior art date
Application number
PCT/JP2021/001449
Other languages
English (en)
French (fr)
Inventor
崇 ▲浜▼道
Original Assignee
Posen株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posen株式会社 filed Critical Posen株式会社
Publication of WO2021149629A1 publication Critical patent/WO2021149629A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis

Definitions

  • the present invention relates to a posture diagnosis system using artificial intelligence (AI), a posture diagnosis method, and a data set for posture diagnosis.
  • AI artificial intelligence
  • Patent Documents 1 to 4 disclose inventions in which a person to be measured is attached with a marker, an index position is set, and physical characteristics are measured.
  • the operator aligns the reference icon with the reference position on the image to determine the index position based on the position of the reference icon on the image.
  • Patent Document 4 states that it is possible to set an index position simply and without requiring physical expertise, and it is also possible to omit the work of attaching a marker.
  • Patent Document 5 discloses an invention in which an image of a person to be measured is analyzed to detect a physical feature point serving as an index position. The invention described in Patent Document 5 extracts physical feature points by extracting the body and each part of the body by image analysis and analyzing the relationship between the parts.
  • Japanese Unexamined Patent Publication No. 8-235340 Japanese Unexamined Patent Publication No. 2004-261376 Japanese Unexamined Patent Publication No. 2004-163990 JP-A-2007-94450 Japanese Unexamined Patent Publication No. 10-11940
  • the present invention has been made in view of the above problems, and an object of the present invention is a posture diagnosis system, a posture diagnosis system, which has excellent operability and can easily diagnose the distortion of the skeleton of a subject by using artificial intelligence.
  • the purpose is to provide a data set for method and posture diagnosis.
  • the posture diagnosis system has an image data acquisition unit that acquires an image or moving image data of the body of a person to be measured, and artificial intelligence based on the image or moving image data.
  • a skeletal data generation unit that identifies a plurality of parts of the body of the person to be measured and generates skeletal data, and based on the skeletal data, the artificial intelligence detects the distortion of the skeletal body of the person to be measured and the distortion data.
  • It has a strain data generation unit for generating the strain data, and a data set generation unit for generating a data set by associating the skeletal data and the strain data with symptom data related to the physical symptom and / or physical condition of the person to be measured. It is characterized by that.
  • the data set generation unit can further associate the personal information of the person to be measured with the distortion data and the symptom data to generate the data set.
  • the skeleton data generation unit directly identifies the part and then artificially specifies the part. It is possible to cause the artificial intelligence to generate the skeleton data, and / or to have the artificial intelligence generate the skeleton data after directly changing any specific identification of the body part of the subject to be measured by the artificial intelligence. can.
  • the skeleton data generation unit obtains the image or moving image data at arbitrary time by the data acquisition unit such as an image, thereby transmitting the skeleton data to the artificial intelligence in time series. Further, the skeletal data generated at an arbitrary time by the artificial intelligence is compared with other skeletal data generated after a lapse of a predetermined time from the time, and the subject is compared. It can have a diagnostic unit for diagnosing changes in posture over time.
  • the distortion data generation unit acquires the image or moving image data at arbitrary time by the image or the like data acquisition unit, thereby transmitting the distortion data to the artificial intelligence in time series.
  • the diagnostic unit compares the distortion data generated at an arbitrary time by the artificial intelligence with other distortion data generated after a lapse of a predetermined time from the time, and the subject is generated. It is possible to diagnose the change over time in the posture distortion of the measurer.
  • the image data acquisition unit acquires the image or moving image data obtained by photographing a state in which an arbitrary joint of the body of the person to be measured is moved, and the diagnosis unit is Based on the skeletal data generated based on the image or moving image data, the artificial intelligence is used to calculate the value of the movable range angle of the joint, and further, the value of the calculated movable range angle is used as the movable range of the joint.
  • the movable range of the joint is diagnosed by comparing with the reference value of the angle, and the data set generation unit generates the data set by associating the symptom data with the calculated movable range angle value. There can be.
  • the artificial intelligence can further have a symptomatology estimation unit that estimates the physical symptom and / or physical condition of the person to be measured using the data set.
  • an image or moving image data of the body of the person to be measured is acquired, and based on the image or moving image data, artificial intelligence of the person to be measured is obtained.
  • Skeletal data is generated by identifying a plurality of parts of the body, and based on the skeleton data, the artificial intelligence detects the strain of the skeleton of the person to be measured and generates strain data, and the skeleton data and the strain data are used.
  • the data set is generated by associating the physical symptom and / or symptom data related to the physical condition of the person to be measured.
  • the data set can be generated by further associating the personal information of the person to be measured with the distortion data and the symptom data.
  • the part when there is a part not specified by the artificial intelligence among a plurality of parts of the body of the person to be measured, the part is directly specified and then the skeletal data is applied to the artificial intelligence.
  • the skeletal data can be generated by the artificial intelligence and / or after directly changing any specific identification of the body part of the subject to be measured by the artificial intelligence.
  • the artificial intelligence by acquiring the image or moving image data at arbitrary time intervals, the artificial intelligence generates the skeleton data in time series, and further, the artificial intelligence performs at an arbitrary time.
  • the generated skeletal data By comparing the generated skeletal data with other skeletal data generated after a predetermined time has elapsed from the time, it is possible to diagnose the change in the posture of the person to be measured with time.
  • the artificial intelligence by acquiring the image or moving image data at arbitrary time intervals, the artificial intelligence generates the distortion data in time series, and further, the artificial intelligence is arbitrary. It is also possible to compare the strain data generated at the time with other strain data generated after a predetermined time has elapsed from the time, and diagnose the change over time in the posture strain of the person to be measured.
  • the image or moving image data is a photograph of a state in which an arbitrary joint of the body of the person to be measured is moved, and the artificial intelligence is generated based on the image or moving image data.
  • the value of the range of motion angle of the joint is calculated, and the value of the calculated range of motion angle is compared with the reference value of the range of motion angle of the joint to determine the range of motion of the joint. Is diagnosed, and the data set can be generated by associating the symptom data with the calculated range of motion angle value.
  • the artificial intelligence can estimate the physical symptomatology and / or physical condition of the subject using the data set.
  • the posture diagnosis data set according to the present invention is characterized in that it is prepared by the posture diagnosis method in order to solve the above-mentioned problems.
  • artificial intelligence since artificial intelligence generates skeletal data that identifies a plurality of parts of a person to be measured based on image or moving image data, it is measured in advance in order to acquire the image or moving image data of the person to be measured. It is possible to omit the work of attaching a marker to the index position for the person. In addition, the user can omit the operation for setting the index position with respect to the image or moving image data of the person to be measured. Furthermore, since artificial intelligence generates distortion of the skeleton of the subject as distortion data based on the skeleton data, for example, treatment such as improvement and correction of the distortion of the skeleton of the subject by digitizing the distortion data. Can be assisted.
  • a data set is generated in which the skeletal data and the strain data are associated with the physical symptoms and / or the symptom data related to the physical condition of the subject, it is possible to detect the strain of the skeleton of the subject with high accuracy. It is also possible to estimate the physical symptom and / or physical condition of the person to be measured with high accuracy.
  • the posture diagnosis system and the posture diagnosis method of the present embodiment will be described below.
  • the embodiments shown below exemplify a posture diagnosis system and a posture diagnosis method for embodying the technical idea of the present invention.
  • the present invention is not intended to specify the posture diagnosis system and the posture diagnosis method of the embodiment. Therefore, it can be equally applied to the posture diagnosis system and the posture diagnosis method of other embodiments included in the claims.
  • the form of function distribution on the server side and the user terminal side in the posture diagnosis system and the posture diagnosis method illustrated in the present embodiment is not limited to the cases described below, and is within the range in which the same effects and functions can be achieved. , Can be functionally or physically dispersed or integrated in any unit.
  • FIG. 1 is an explanatory diagram showing an outline of a posture diagnosis system according to the present embodiment.
  • the posture diagnosis system of the present embodiment is configured such that the user terminal 10 and the server 20 are connected to each other so as to be able to communicate with each other via the network 30.
  • the communication includes remote communication such as wired / wireless communication via the network 30 and the like.
  • the user terminal 10 is connected to the network 30 so that one or more users can communicate with each other.
  • the hardware configuration of the user terminal 10 includes at least a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a display unit, a camera, a communication control interface, and an input unit.
  • a CPU Central Processing Unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • display unit a display unit
  • camera a communication control interface
  • communication control interface a communication control interface
  • the CPU performs various arithmetic processes and the like in order to control the entire user terminal 10. More specifically, the CPU controls the operation of each component of the user terminal 10 by reading a computer program from the ROM and executing the RAM using the RAM as a work area. The CPU acquires an image (moving image or still image) taken by the camera and generates an image to be displayed on the display unit.
  • the ROM is a writable non-volatile memory, and stores various programs and various data to be retained even when the power of the user terminal 10 is turned off.
  • RAM is a writable volatile memory that temporarily stores running programs, data, and the like.
  • the display unit displays an image (moving image or still image) under the control of the CPU.
  • Examples of the display unit include a display, a monitor, a touch panel, and the like composed of a liquid crystal or an organic EL (ElectroLuminescence) or the like.
  • the camera can be used for photographing the person to be measured.
  • the communication control interface controls data transmission to the outside of the user terminal 10 and data reception from the outside.
  • the user terminal 10 is communicably connected to the network 30 via a communication control interface.
  • the input unit accepts input operations by the user.
  • Examples of the input unit include a key input unit, a touch panel, a control pad (for example, a touch pad, etc.), a mouse, a keyboard, a microphone, and the like.
  • the user terminal 10 is a mobile terminal device such as a mobile phone, a smartphone, a PHS or a PDA, or an information processing device such as a desktop type or notebook type personal computer. Further, it is preferable that the user terminal 10 is equipped with a posture diagnosis application or the like in order to realize the posture diagnosis system of the present embodiment. Further, the user terminal 10 may be equipped with an Internet browser or the like.
  • the server 20 is realized by a workstation, a personal computer, or other computer device.
  • various networks such as the Internet, a dedicated line, a WAN (Wide Area Network), a power line network, a wireless network, a public line network, and a mobile phone network can be used.
  • FIG. 2 is a block diagram showing the configuration of the user terminal 10.
  • the user terminal 10 includes at least a terminal control unit 11, an input / output control unit 12, a terminal-side communication control unit 13, and a terminal storage unit 14.
  • the terminal control unit 11 has a control program such as an OS, a program that defines various processing procedures, and an internal memory for storing required data.
  • the terminal control unit 11 performs information processing for executing various processes by these programs and the like.
  • the terminal control unit 11 includes at least a photographing unit 15, a data transmitting unit 16, and a data receiving unit 17 in terms of functional concept.
  • the photographing unit 15 is a photographing means for photographing the body of the person to be measured.
  • the photographing unit 15 is realized by a camera as hardware.
  • Image or moving image data (hereinafter, referred to as "image or the like data”) is generated by photographing the person to be measured by the photographing unit 15.
  • image or the like data is generated by photographing the person to be measured by the photographing unit 15.
  • the data such as images, for example, the front surface, the right side surface, the left side surface and the back surface of the whole body in the standing posture of the subject, and the right side surface and the left side surface of the whole body in the sitting posture are photographed.
  • the data such as an image includes a photograph of a state in which an arbitrary joint of the person to be measured is moved.
  • the "state in which the joint is movable" is the maximum possible by causing the subject to perform movements such as flexion, extension, adduction, abduction, internal rotation, and external rotation in various joints. It means that it includes a state in which it is moved to the limit and is stationary.
  • the data transmission unit 16 transmits the image data generated by the shooting unit 15 to the server 20.
  • information and personal information regarding the physical symptomatology and / or physical condition (hereinafter, referred to as "physical symptomatology") of the subject stored in the terminal storage unit 14 are transmitted to the server 20.
  • the information on the physical symptoms and the like includes, for example, information on the posture of the person to be measured, more specifically, information on normal, stoop, warped waist, receiving waist, flat back (flat back) or swayback. included. It also includes information on torticollis, scoliosis, stiff neck, stiff shoulders, hip pain, low back pain, sciatica, osteoarthritis, O-legs, X-legs, knee pain, hip pain and the like. Examples of personal information include gender, age, height, weight, and the like.
  • the input / output control unit 12 controls the display unit, the camera, the input unit, and the like.
  • the terminal-side communication control unit 13 is realized by a communication control interface connected to a communication device (not shown) such as an antenna or a router connected to a communication line or a telephone line, and is formed between the server 20 and the network 30. Perform communication control. That is, the terminal-side communication control unit 13 controls data communication with the server 20 or the like via a communication line.
  • a communication device not shown
  • the terminal-side communication control unit 13 controls data communication with the server 20 or the like via a communication line.
  • the terminal storage unit 14 is, for example, a large-capacity storage means such as an HDD or SSD, and / or a storage means such as a small-capacity high-speed memory (for example, a cache memory) configured by using SRAM (Static Random Access Memory) or the like. Is.
  • the terminal storage unit 14 can store various databases, files, or tables.
  • the terminal storage unit 14 can store, for example, information on physical symptoms and personal information.
  • FIG. 3 is a block diagram showing the configuration of the server 20.
  • the server 20 includes at least a control unit 21, a server-side communication control unit 22, and a storage unit 23 in terms of functional concept.
  • the control unit 21 has a control program such as an OS, a program that defines various processing procedures, and an internal memory for storing required data.
  • the control unit 21 performs information processing for executing various processes by these programs and the like.
  • the control unit 21 functionally conceptually includes an image data acquisition unit 211, a skeleton data generation unit 212, a distortion data generation unit 213, a diagnosis unit 218, a data set generation unit 214, a symptom estimation unit 215, a data transmission unit 216, and the like. It includes at least a coordinate information editing unit 219.
  • the skeleton data generation unit 212, the distortion data generation unit 213, the diagnosis unit 218, the data set generation unit 214, and the symptomatology estimation unit 215 can be realized by artificial intelligence 217.
  • Artificial intelligence 217 can include, for example, machine learning, deep learning, neural networks, decision trees, or random forests.
  • the image data acquisition unit 211 receives the image data transmitted from the data transmission unit 16 of the user terminal 10.
  • the skeleton data generation unit 212 uses artificial intelligence 217 to identify a plurality of parts of the body of the person to be measured based on data such as images and generate skeleton data.
  • data such as an image is transmitted from the user terminal 10 at arbitrary time intervals
  • the skeleton data generation unit 212 generates skeleton data in time series.
  • the skeletal data includes the position coordinates of each part of the body of the subject and the data regarding the grid lines obtained by connecting the arbitrary parts to each other.
  • the skeletal data includes the subject's head, neck, right shoulder, right elbow, and right wrist.
  • left shoulder, left elbow, left wrist, left hand, chest, chest and hips, left hip, pelvis, right hip, left hip, left knee, left ankle, left foot, right hip, right knee, right ankle, right foot, etc. Contains information about the position coordinates of the part.
  • the data such as images are the right side view or the left side view of the whole body in the standing posture and the sitting posture of the subject, the subject's head, neck, shoulders, elbows, hips, knees, ears, Contains information on the position coordinates of each part such as the greater trochanter, acromion, and patella.
  • the distortion data generation unit 213 detects the distortion of the skeleton of the person to be measured based on the skeleton data by the artificial intelligence 217 and generates the distortion data.
  • the distortion data generation unit 213 Generate distortion data in chronological order.
  • the strain data includes, for example, shoulder horizontal angle, waist horizontal angle, right knee angle, left knee angle, greater trochanter-acromial angle, greater trochanter-posterior patella angle, ear drop position, acromion position, and acromial angle. Includes numerical values related to child position, posterior position of the patella, etc.
  • the diagnostic unit 218 compares, for example, the skeleton data generated at an arbitrary time by artificial intelligence 217 with other skeleton data generated after a predetermined time has elapsed from the time, and determines the posture of the person to be measured. Diagnose changes over time. By the diagnosis based on the skeletal data by the diagnosis unit 218, the subject can confirm the change in posture with time. Further, the diagnostic unit 218 compares the distortion data generated at an arbitrary time by the artificial intelligence 217 with other distortion data generated after a predetermined time has elapsed from the time, and compares the posture of the person to be measured. It also diagnoses changes in strain over time. By the diagnosis based on the strain data by the diagnosis unit 218, the subject can confirm the change with time regarding the posture strain. As a result, the person to be measured can, for example, create a treatment plan related to correction of posture distortion and the like.
  • the diagnosis unit 218 also diagnoses the range of motion of various joints of the subject by using artificial intelligence 217, for example. More specifically, it is the skeletal data generated based on the data such as images, and the value of the range of motion angle in the joint based on the one in which the joint of the person to be measured is moved as much as possible. Is calculated. Further, the calculated range of motion angle value is compared with the reference data, and the range of motion of the joint of the subject is diagnosed according to the degree of the difference. As a result, the subject can confirm, for example, the degree of improvement in the range of motion of the joint after the rehabilitation treatment.
  • the skeleton data generated based on the data such as the image in which the subject does not move the joint and the data such as the image in the state in which the joint is moved are generated. It may be performed by comparing with the skeletal data obtained.
  • the range of motion angle of the joint is, for example, in the case of a shoulder joint, the humerus of the person to be measured is moved with the vertical line to the ground passing through the acromion of the person to be measured in a standing state as a basic axis.
  • the reference data means data including information on the value (reference value) of the range of motion angle of each joint, and is, for example, in exercise such as flexion of each joint indicated by the Japanese Society of Orthopedic Surgery or the Japanese Society of Rehabilitation Medicine.
  • the value of the range of motion angle and the like can be cited as reference data.
  • the data set generation unit 214 uses artificial intelligence 217 to display skeletal data, strain data, and the value of the range of motion angle of an arbitrary joint (hereinafter referred to as "range of motion data") with the physical symptoms of the person to be measured and / or.
  • a data set is generated by associating symptom data related to a physical condition (hereinafter referred to as "physical symptom, etc.”).
  • the generation of the data set makes it possible to detect the distortion of the skeleton of the subject by the artificial intelligence 217 based on the skeleton data, the distortion data and the range of motion data with high accuracy.
  • artificial intelligence 217 makes it possible to estimate the physical symptomatology and / or physical condition of the person to be measured with high accuracy.
  • the data set generation unit 214 can generate a data set by associating the personal information of the person to be measured with the symptom data in addition to the skeletal data, the strain data and the movable range data.
  • the skeleton data and distortion data may include data generated in time series.
  • the symptomatology estimation unit 215 estimates the physical symptoms of the person to be measured using the data set created by the artificial intelligence 217. Further, the symptom estimation unit 215 may estimate the physical symptom of the person to be measured based on the skeleton data, the strain data, the movable range data and / or the personal information.
  • the data transmission unit 216 transmits skeleton data, distortion data, range of motion data, information on physical symptoms estimated by artificial intelligence 217, and the like to the user terminal 10.
  • the coordinate information editing unit 219 generates position coordinate information indicating the contacted position of the touch panel, for example, when the input unit of the user terminal 10 is a touch panel.
  • the skeleton data generation unit 212 cannot identify an arbitrary part of the body of the person to be measured by the artificial intelligence 217, the person to be measured (or the user) identifies the part by touch panel operation. This makes it possible to generate position coordinate information regarding the position of the portion.
  • the skeleton data generation unit 212 can generate skeleton data based on the image data and the position coordinate information generated by the user's identification by the artificial intelligence 217.
  • the coordinate information editing unit 219 also changes the position coordinate information of a specific part generated by the skeleton data generation unit 212 by the artificial intelligence 217.
  • the position coordinate information regarding the position of the portion can be changed.
  • the skeleton data generation unit 212 can generate more accurate skeleton data based on the image data and the position coordinate information generated by the user's identification by the artificial intelligence 217.
  • the server-side communication control unit 22 is realized by a communication control interface connected to a communication device (not shown) such as an antenna or a router connected to a communication line, a telephone line, or the like, and is connected to a user terminal 10 and a network 30. Perform communication control in. That is, the server-side communication control unit 22 controls data communication with the user terminal 10 or the like via a communication line.
  • a communication device not shown
  • the server-side communication control unit 22 controls data communication with the user terminal 10 or the like via a communication line.
  • a plurality of storage areas are defined in the storage unit 23, and various databases, files, or tables for recording various information can be stored in the storage unit 23.
  • the storage unit 23 is, for example, a large-capacity storage means such as an HDD or SSD, and / or a storage means such as a small-capacity high-speed memory (for example, a cache memory) configured by using SRAM or the like.
  • the storage unit 23 can store various databases, files, or tables.
  • the storage unit 23 includes at least the data set database 231.
  • the data set database 231 is a storage means for storing the data set.
  • the storage unit 23 also stores the above-mentioned reference data including information on the range of motion of each joint of the human body.
  • FIG. 4 is a flowchart showing an example of processing of the posture diagnosis system of the present embodiment.
  • the user photographs the person to be measured by the photographing unit 15 in the terminal control unit 11 of the user terminal 10.
  • the image taken by the photographing unit 15 may be a still image or a moving image.
  • the data transmission unit 16 of the user terminal 10 transmits the image data generated by the shooting unit 15 to the server 20.
  • the data transmission unit 16 transmits information and personal information regarding the physical symptoms of the person to be measured and the like stored in the terminal storage unit 14 to the server 20.
  • the image data transmitted from the user terminal 10 is received by the image data acquisition unit 211 of the server 20 (image data acquisition step S1).
  • the information and personal information regarding the physical symptoms and the like of the person to be measured are the information that the person to be measured has previously input to the user terminal 10.
  • the skeleton data generation unit 212 generates the skeleton data of the person to be measured by the artificial intelligence 217 (skeleton data generation step S2).
  • the skeleton data includes the position coordinates of each part 41 of the body of the subject 40 and the data regarding the grid line 42 obtained by connecting the arbitrary parts 41 to each other.
  • the generated skeleton data generation unit 212 can be stored in the storage unit 23.
  • FIG. 5 is skeleton data generated by the skeleton data generation unit 212, and is an explanatory diagram showing each part of the body of the person to be measured and a grid line connecting the parts.
  • the strain data generation unit 213 When the skeleton data is generated, the strain data generation unit 213 generates strain data related to the strain of the skeleton of the person to be measured based on the skeleton data (strain data generation step S3). Further, the data transmission unit 216 transmits the distortion data to the user terminal 10. When the distortion data is transmitted, the data receiving unit (not shown) of the user terminal 10 receives the distortion data and then displays it on the display unit. Since the distortion data is, for example, information quantified according to the degree of posture distortion, the subject can easily confirm the distortion of his / her skeleton.
  • the data set generation unit 214 creates a data set by associating the skeletal data and the strain data with symptom data such as physical symptoms (data set creation step S4). At this time, personal information may also be associated. Further, the data set generation unit 214 stores the created data set in the data set database 231 of the storage unit 23.
  • the symptom estimation unit 215 may estimate the physical symptom of the person to be measured.
  • the symptom estimation unit 215 estimates the physical symptom of the person to be measured based on the skeleton data and the distortion data sent from the user terminal 10 using the data set stored in the data set database 231. conduct.
  • the estimation of physical symptoms and the like includes the posture of the subject and stiff shoulders.
  • Information such as the estimated physical symptoms is transmitted to the user terminal 10 by the data transmission unit 216 of the server 20. When information such as physical symptoms is transmitted from the data transmission unit 216, the information is received by the reception unit of the user terminal 10. As a result, the person to be measured can confirm his / her own physical symptoms estimated by the artificial intelligence 217.
  • the posture diagnosis method of the present embodiment can also diagnose the posture of the person to be measured and the change over time in the strain thereof.
  • the skeleton data generation unit 212 generates skeleton data in time series based on image data or the like transmitted from the user terminal 10 at arbitrary time intervals by artificial intelligence 217.
  • the distortion data generation unit 213 also generates distortion data in time series based on the skeleton data generated in time series.
  • the diagnostic unit 218 compares the skeleton data generated at an arbitrary time with other skeleton data generated after a predetermined time has elapsed from the time, thereby. Diagnose changes in the posture of the subject over time.
  • the comparison between the skeleton data can be performed using, for example, image data representing the skeleton data as shown in FIG. That is, the image data including the skeleton data generated at an arbitrary time and other image data including other skeleton data generated after a predetermined time has elapsed from the time have been superposed or arranged in parallel.
  • the diagnostic unit 218 compares the distortion data generated at an arbitrary time with other distortion data generated after a predetermined time has elapsed from the time, and this To diagnose changes in the posture strain of the subject over time.
  • FIG. 6 is a flowchart showing another example of the processing of the posture diagnosis system of the present embodiment.
  • the data of the user terminal 10 transmits the image data generated by the photographing unit 15 to the server 20.
  • the data transmission unit 16 also transmits information and personal information regarding the physical symptoms of the person to be measured and the like stored in the terminal storage unit 14 to the server 20.
  • the image data transmitted from the user terminal 10 is received by the image data acquisition unit 211 of the server 20.
  • the skeleton data generation unit 212 identifies the part of the body of the person to be measured based on the image or the like data by the artificial intelligence 217 (part identification). Step S11).
  • step S12 when it is determined by the person to be measured (or the user) that the skeletal data generation unit 212 has not been able to identify any part of the body of the person to be measured (step S12), the person to be measured (or use).
  • the person) identifies the portion by operating the touch panel, and the coordinate information editing unit 219 generates position coordinate information regarding the position of the portion (position coordinate information generation step S13).
  • step S14 When all the parts of the body of the person to be measured are specified by the skeleton data generation unit 212, the process proceeds to step S14 described later, and it is determined whether or not the position shift occurs in the identification of the parts.
  • the skeletal data generation unit 212 identifies all the parts of the body of the person to be measured, but when the position shift occurs in any part (step S14), the person to be measured operates the touch panel to perform the part.
  • the coordinate information editing unit 219 changes the position coordinate information regarding the position of the portion (position coordinate information change step S15). If all parts of the body of the subject are accurately identified by the skeleton data generation unit 212 and no positional deviation occurs, the skeleton data generation unit 212 generates skeleton data (skeleton data generation step S2). ..
  • the strain data generation unit 213 When the skeleton data is generated, the strain data generation unit 213 generates strain data related to the strain of the skeleton of the subject based on the skeleton data (strain data generation step S3), and the data transmission unit 216 generates strain data as in the above case. Distortion data is transmitted to the user terminal 10. Further, the data set generation unit 214 creates a data set by associating the skeleton data and the strain data with symptom data such as physical symptoms (data set preparation step S4), and stores the data set in the storage unit 23.
  • the posture diagnosis method of the present embodiment can also diagnose the range of motion of any joint of the subject.
  • the data such as an image transmitted from the data transmission unit 16 of the user terminal 10 is a photograph of a state in which an arbitrary joint of the person to be measured is moved.
  • the image data acquisition unit 211 acquires the image data (image data acquisition step S1)
  • the skeleton data generation unit 212 uses artificial intelligence 217 to move any joint of the person to be measured. (Skeletal data generation step S2).
  • the diagnostic unit 218 calculates the value of the range of motion angle (range of motion data) in the joint (range of motion angle calculation step S21). Further, the diagnosis unit 218 calls the reference data regarding the reference value of the range of motion angle of the joint from the storage unit 23 and compares it with the calculated value of the range of motion angle. Then, the diagnosis unit 218 diagnoses the range of motion of the joint of the subject according to the degree of difference between the calculated range of motion angle value and the reference value (diagnosis step S22). The range of motion of a joint can be diagnosed, for example, based on information quantified according to the degree of difference from the reference value. Further, the digitized information may be transmitted to the user terminal 10 by the data transmission unit 216. This allows the person to be measured to confirm, for example, how much range of motion they have compared to the joint reference value. Further, for example, by confirming the difference from the reference value before and after the treatment, the improvement effect by the treatment can be confirmed.
  • the data set generation unit 214 creates a data set by associating the range of motion data with the symptom data such as physical symptoms (as in the above case).
  • Data set creation step S4 stored in the storage unit 23.
  • data on the difference between the calculated range of motion angle value and the reference value may be included.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Dentistry (AREA)
  • Biomedical Technology (AREA)
  • Veterinary Medicine (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Image Analysis (AREA)

Abstract

操作性に優れ、人工知能を用いて簡便に被測定者の骨格の歪みを診断することが可能な姿勢診断システム、姿勢診断方法及び姿勢診断用データセットを提供する。本発明に係る姿勢診断システムは、被測定者の身体を撮影した画像又は動画データを取得する画像等データ取得部と、前記画像又は動画データに基づき、人工知能により前記被測定者の身体の複数の部位を特定して骨格データを生成させる骨格データ生成部と、前記骨格データに基づき、前記人工知能により前記被測定者の骨格の歪みを検出して歪みデータを生成させる歪みデータ生成部と、前記骨格データ及び歪みデータに、前記被測定者の身体的症状及び/又は身体的状態に関する症状データを関連付けてデータセットを生成するデータセット生成部と、を有することを特徴とする。

Description

姿勢診断システム、姿勢診断方法及び姿勢診断用データセット
 本発明は、人工知能(AI)を用いた姿勢診断システム、姿勢診断方法及び姿勢診断用データセットに関する。
 従来、画像又は動画像から身体の形状・姿勢・サイズ・その他の身体的特徴を測定するための様々な測定装置が提案されている。この種の測定装置に於いては、例えば関節など、測定の指標となる位置を画像又は動画像から指定する必要がある。
 例えば、特許文献1~4には、被測定者にマーカーを付して指標位置を設定し、身体的特徴を測定する発明が開示されている。特に、特許文献4は、オペレータが画像上の参照位置に参照用アイコンを位置合わせすることで、画像上における参照用アイコンの位置に基づいて指標位置を決定する。これにより、特許文献4では、簡便かつ身体的な専門的知識を要することなく指標位置を設定することが可能であり、またマーカーを付す作業の省略も可能になるとされている。さらに、特許文献5には、被測定者を撮影した画像を解析して、指標位置となる身体的特徴点を検出する発明が開示されている。特許文献5に記載の発明は、画像解析により、身体及び身体の各部を抽出して各部間の関係を解析することで、身体的特徴点を抽出するものである。
 しかし、特許文献1~3に記載の発明では、画像や動画像を撮影する前に、指標位置に予めマーカーを付す必要がある。また、特許文献4に記載の発明ではマーカーを付す作業を省略できるものの、オペレータが画像上の参照位置に参照用アイコンを位置合わせする必要がある。そのため、これらの発明では、人の身体的特徴を測定する際に、煩雑な操作が必要である上、身体に関する専門的知識も必要となるという問題がある。さらに、特許文献5に記載の発明では、撮影する被測定者の個人データを予め用意する必要があり、撮影した画像からだけでは正確な指標位置を検出することは困難である。また、撮影した画像から指標位置を決定するに際にも、複数枚の静止画及び動画など多量の解析データがないと指標位置の検出が困難であるという問題がある。
特開平8-235340号公報 特開2004-261376号公報 特開2004-163990号公報 特開2007-94450号公報 特開平10-111940号公報
 本発明は前記問題点に鑑みなされたものであり、その目的は、操作性に優れ、人工知能を用いて簡便に被測定者の骨格の歪みを診断することが可能な姿勢診断システム、姿勢診断方法及び姿勢診断用データセットを提供することにある。
 本発明に係る姿勢診断システムは、前記の課題を解決するために、被測定者の身体を撮影した画像又は動画データを取得する画像等データ取得部と、前記画像又は動画データに基づき、人工知能により前記被測定者の身体の複数の部位を特定して骨格データを生成させる骨格データ生成部と、前記骨格データに基づき、前記人工知能により前記被測定者の骨格の歪みを検出して歪みデータを生成させる歪みデータ生成部と、前記骨格データ及び歪みデータに、前記被測定者の身体的症状及び/又は身体的状態に関する症状データを関連付けてデータセットを生成するデータセット生成部と、を有することを特徴とする。
 前記の構成に於いて、前記データセット生成部は、さらに前記被測定者の個人情報を、前記歪みデータ及び症状データに関連付けて前記データセットを生成することができる。
 前記の構成に於いて、前記骨格データ生成部は、前記被測定者の身体の複数の部位のうち、前記人工知能が特定しない部位が存在する場合に、当該部位を直接特定した後、前記人工知能に前記骨格データを生成させ、及び/又は前記人工知能による前記被測定者の身体の部位の特定のうち、任意の特定を直接変更した後、前記人工知能に前記骨格データを生成させることができる。
 前記の構成に於いて、前記骨格データ生成部は、前記画像等データ取得部が前記画像又は動画データの取得を任意の時間毎に行うことにより、前記人工知能に、前記骨格データを時系列で生成させるものであり、さらに、前記人工知能により、任意の時刻に生成された骨格データと、当該時刻から所定の時間経過後に生成された他の骨格データとを比較して、前記被測定者の姿勢の経時的変化を診断させる診断部を有することができる。
 前記の構成に於いて、前記歪みデータ生成部は、前記画像等データ取得部が前記画像又は動画データの取得を任意の時間毎に行うことにより、前記人工知能に、前記歪みデータを時系列で生成させるものであり、前記診断部は、前記人工知能により、任意の時刻に生成された歪みデータと、当該時刻から所定の時間経過後に生成された他の歪みデータとを比較して、前記被測定者の姿勢の歪みの経時的変化を診断させることができる。
 前記の構成に於いて、前記画像等データ取得部は、前記被測定者の身体の任意の関節を可動させた状態を撮影した前記画像又は動画データを取得するものであり、前記診断部は、当該画像又は動画データに基づき生成された骨格データに基づいて、前記人工知能により、前記関節の可動域角度の値を算出させ、さらに、前記算出した可動域角度の値を、前記関節の可動域角度の基準値と比較して当該関節の可動域を診断させるものであり、前記データセット生成部は、前記算出した可動域角度の値に前記症状データを関連付けて前記データセットを生成するものであることができる。
 前記の構成に於いて、前記人工知能により、前記データセットを用いて前記被測定者の身体的症状及び/又は身体的状態を推定する症状推定部をさらに有することができる。
 本発明に係る姿勢診断方法は、前記の課題を解決するために、被測定者の身体を撮影した画像又は動画データを取得し、前記画像又は動画データに基づき、人工知能が前記被測定者の身体の複数の部位を特定して骨格データを生成し、前記骨格データに基づき、前記人工知能が前記被測定者の骨格の歪みを検出して歪みデータを生成し、前記骨格データ及び歪みデータに、前記被測定者の身体的症状及び/又は身体的状態に関する症状データを関連付けてデータセットを生成することを特徴とする。
 前記の構成に於いては、さらに前記被測定者の個人情報を、前記歪みデータ及び症状データに関連付けて前記データセットを生成することができる。
 前記の構成に於いては、前記被測定者の身体の複数の部位のうち、前記人工知能が特定しない部位が存在する場合に、当該部位を直接特定した後、前記人工知能に前記骨格データを生成させ、及び/又は前記人工知能による前記被測定者の身体の部位の特定のうち、任意の特定を直接変更した後、前記人工知能に前記骨格データを生成させることができる。
 前記の構成に於いては、前記画像又は動画データの取得を任意の時間毎に行うことにより、前記人工知能が前記骨格データを時系列で生成し、さらに、前記人工知能が、任意の時刻に生成された骨格データと、当該時刻から所定の時間経過後に生成された他の骨格データとを比較して、前記被測定者の姿勢の経時的変化を診断することができる。
 また、前記の構成に於いては、前記画像又は動画データの取得を任意の時間毎に行うことにより、前記人工知能が前記歪みデータを時系列で生成し、さらに、前記人工知能が、任意の時刻に生成された歪みデータと、当該時刻から所定の時間経過後に生成された他の歪みデータとを比較して、前記被測定者の姿勢の歪みの経時的変化を診断することもできる。
 さらに前記の構成に於いて、前記画像又は動画データは、前記被測定者の身体の任意の関節を可動させた状態を撮影したものであり、前記人工知能が、当該画像又は動画データに基づき生成された骨格データに基づいて、前記関節の可動域角度の値を算出し、さらに、前記算出した可動域角度の値を、前記関節の可動域角度の基準値と比較して当該関節の可動域を診断し、前記算出した可動域角度の値に前記症状データを関連付けて前記データセットを生成することができる。 
 前記の構成に於いては、前記人工知能が、前記データセットを用いて前記被測定者の身体的症状及び/又は身体的状態を推定することができる。
 本発明に係る姿勢診断用データセットは、前記の課題を解決するために、前記姿勢診断方法により作製されたものであることを特徴とする。
 本発明によれば、人工知能が画像又は動画データに基づき、被測定者の複数の部位を特定する骨格データを生成するので、被測定者の画像又は動画データを取得するために、予め被測定者に対し指標位置にマーカーを付す作業を省略することができる。また、ユーザーは被測定者の画像又は動画データに対し、指標位置を設定するための操作も省略することができる。さらに、人工知能が骨格データに基づき、被測定者の骨格の歪みを歪みデータとして生成するので、例えば、歪みデータを数値化等することで被測定者の骨格の歪みの改善及び矯正等の治療を支援することができる。さらに、骨格データ及び歪みデータに、被測定者の身体的症状及び/又は身体的状態に関する症状データを関連付けたデータセットを生成するので、被測定者の骨格の歪みを高精度で検出することができ、また被測定者の身体的症状及び/又は身体的状態を高精度で推定することができる。
本発明の実施の形態に係る姿勢診断システムの概略を示す説明図である。 前記姿勢診断システムにおけるユーザー端末の構成を示すブロック図である。 前記姿勢診断システムにおけるサーバの構成を示すブロック図である。 本発明の実施の形態に係る姿勢診断方法に於ける処理の一例を示すフローチャートである。 本発明の実施の形態に係る姿勢診断システムに於いて生成された骨格データであって、被測定者の身体の各部位と、部位同士を結ぶグリッド線とを表す説明図である。 本発明の実施の形態に係る姿勢診断方法の処理に於ける他の例を示すフローチャートである。 本発明の実施の形態に係る姿勢診断方法の処理に於けるさらに他の例を示すフローチャートである。
 本実施の形態の姿勢診断システム及び姿勢診断方法について、以下に説明する。
 尚、以下に示す実施の形態は、本発明の技術的思想を具体化するための姿勢診断システム及び姿勢診断方法を例示するものである。本発明を実施形態の姿勢診断システム及び姿勢診断方法に特定することを意図するものではない。従って、特許請求の範囲に含まれるその他の実施形態の姿勢診断システム及び姿勢診断方法にも等しく適用することができる。例えば、本実施の形態で例示する姿勢診断システム及び姿勢診断方法におけるサーバ側とユーザー端末側の機能分散の形態は、以下に述べる場合に限られず、同様の効果や機能を果たし得る範囲に於いて、任意の単位で機能的又は物理的に分散し、あるいは統合して構成することができる。
(姿勢診断システム)
 [姿勢診断システムの全体構成]
 先ず、本実施の形態に係る姿勢診断システムの全体構成の一例について、図1に基づき説明する。図1は、本実施の形態に係る姿勢診断システムの概略を示す説明図である。
 本実施の形態の姿勢診断システムは、図1に示すように、ネットワーク30を介して、ユーザー端末10及びサーバ20が相互に通信可能に接続されて構成されている。ここで、通信には、一例として、ネットワーク30を介した有線・無線通信等の遠隔通信等を含む。また、ユーザー端末10は、ネットワーク30に単数又は複数が通信可能に接続される。
 ユーザー端末10のハードウェア構成としては、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、表示部、カメラ、通信制御インターフェース、及び入力部を少なくとも備える。また、これらの各構成要素は、パスを介して相互に通信可能に接続される。
 CPUは、ユーザー端末10の全体を制御するために各種演算処理等を行う。より具体的には、CPUは、ROMからコンピュータプログラムを読み出し、RAMを作業領域に用いて実行することで、ユーザー端末10の各構成要素の動作を制御する。CPUは、カメラで撮影された画像(動画像又は静止画像)を取得し、表示部に表示される画像を生成する。ROMは、書き込み可能な不揮発性のメモリであって、ユーザー端末10の電源がオフにされても保持されるべき各種プログラム・各種データを格納する。RAMは、書き込み可能な揮発性のメモリであって、実行中のプログラムやデータ等を一時的に格納する。
 表示部は、CPUの制御により画像(動画像又は静止画像)を表示する。表示部としては、例えば、液晶又は有機EL(Electro Luminescence)等から構成されるディスプレイ、モニタ、又はタッチパネル等が挙げられる。カメラは、被測定者の撮影に用いることができる。通信制御インターフェースは、ユーザー端末10の外部へのデータ送信の制御や外部からのデータ受信の制御を行う。ユーザー端末10は、通信制御インターフェースを介してネットワーク30と通信可能に接続される。
 入力部は、利用者による入力操作を受け付ける。入力部としては、例えば、キー入力部、タッチパネル、コントロールパッド(例えば、タッチパッド等)、マウス、キーボード、及びマイク等が挙げられる。
 ユーザー端末10は、具体的には、携帯電話、スマートフォン、PHS及びPDA等の携帯端末装置、並びにデスクトップ型又はノート型のパーソナルコンピュータ等の情報処理装置等である。また、ユーザー端末10には、本実施の形態の姿勢診断システムを実現するために、姿勢診断用アプリケーション等が搭載されていることが好ましい。また、ユーザー端末10は、インターネットブラウザ等を搭載していてもよい。
 サーバ20は、具体的には、ワークステーションやパーソナルコンピュータ、その他のコンピュータ装置により実現される。
 ネットワーク30としては、インターネットや専用回線、WAN(Wide Area Network)、電力線ネットワーク、無線ネットワーク、公衆回線網、携帯電話網などの種々のものを用いることができる。
 [姿勢診断システムの詳細構成]
 次に、本実施の形態の姿勢診断システムに関する詳細な構成について説明する。
 <ユーザー端末>
 ユーザー端末10の詳細な構成について、図2に基づき以下に説明する。図2は、ユーザー端末10の構成を示すブロック図である。
 ユーザー端末10は、図2に示すように、端末制御部11、入出力制御部12、端末側通信制御部13及び端末記憶部14を少なくとも備える。
 端末制御部11は、OS等の制御プログラムや、各種の処理手順等を規定したプログラム、及び所要データを格納するための内部メモリを有する。端末制御部11は、これらのプログラム等により、種々の処理を実行するための情報処理を行う。端末制御部11は、機能概念的には撮影部15、データ送信部16、及びデータ受信部17を少なくとも備える。
 撮影部15は、被測定者の身体を撮影する撮影手段である。撮影部15はハードウェアとしてのカメラにより実現される。撮影部15による被測定者の撮影により、画像又は動画データ(以下、「画像等データ」という。)が生成される。画像等データとしては、例えば、被測定者の立位姿勢に於ける全身の正面、右側面、左側面及び背面、並びに、座位姿勢に於ける全身の右側面及び左側面等を撮影したものが挙げられる。また、画像等データには、被測定者の任意の関節を可動させた状態を撮影したものも含まれる。尚、「関節を可動させた状態」とは、被測定者に於ける種々の関節に於いて屈曲、伸展、内転、外転、内旋、外旋等の運動をさせ、可能な限り最大限に可動させて静止した状態を含む意味である。
 データ送信部16は、撮影部15により生成された画像等データをサーバ20に送信する。また、端末記憶部14に保存されている被測定者の身体的症状及び/又は身体的状態(以下、「身体的症状等」という。)に関する情報や個人情報をサーバ20に送信する。
 ここで、身体的症状等に関する情報とは、例えば、被測定者の姿勢に関する情報、より具体的には、正常、猫背、反り腰、受け腰、フラットバック(平背)又はスウェイバックに関する情報が含まれる。また、斜頸、側弯症、首こり、肩こり、股関節疾患、腰痛、坐骨神経痛、変形性関節症、O脚、X脚、膝痛、股関節痛等に関する情報も含まれる。個人情報としては、例えば、性別・年齢・身長・体重等が挙げられる。
 入出力制御部12は、表示部、カメラ、及び入力部等の制御を行う。
 端末側通信制御部13は、通信回線又は電話回線等に接続されるアンテナやルータ等の通信装置(図示せず)に接続される通信制御インターフェースにより実現され、サーバ20とネットワーク30との間における通信制御を行う。すなわち、端末側通信制御部13は、サーバ20等と通信回線を介してデータ通信を制御する。
 端末記憶部14は、例えば、HDDやSSD等の大容量のストレージ手段、及び/又はSRAM(Static Random Access Memory)等を用いて構成される小容量高速メモリ(例えば、キャッシュメモリ)等のストレージ手段である。端末記憶部14は、各種のデータベース、ファイル又はテーブルを格納することができる。端末記憶部14は、例えば、身体的症状等に関する情報や個人情報等を格納することができる。
 <サーバ>
 次に、サーバ20の詳細な構成について、図3に基づき説明する。図3は、サーバ20の構成を示すブロック図である。
 サーバ20は、図3に示すように、機能概念的には制御部21、サーバ側通信制御部22及び記憶部23を少なくとも備える。
 制御部21は、OS等の制御プログラムや、各種の処理手順等を規定したプログラム、及び所要データを格納するための内部メモリを有する。制御部21は、これらのプログラム等により、種々の処理を実行するための情報処理を行う。制御部21は、機能概念的には画像等データ取得部211、骨格データ生成部212、歪みデータ生成部213、診断部218、データセット生成部214、症状推定部215、データ送信部216、及び座標情報編集部219を少なくとも備える。骨格データ生成部212、歪みデータ生成部213、診断部218、データセット生成部214、及び症状推定部215は、人工知能217により実現可能である。人工知能217は、例えば、機械学習、深層学習、ニューラルネットワーク、デシジョンツリー、又はランダムフォレストを備えることができる。
 画像等データ取得部211は、ユーザー端末10のデータ送信部16より送信される画像等データを受信する。
 骨格データ生成部212は、人工知能217により、画像等データに基づき被測定者の身体の複数の部位を特定し骨格データを生成する。画像等データがユーザー端末10から任意の時間毎に送信されてくる場合、骨格データ生成部212は骨格データを時系列で生成する。骨格データは、被測定者の身体の各部位の位置座標、及び任意の部位同士を結ぶことにより得られるグリッド線に関するデータを含む。骨格データは、具体的には、例えば、画像等データが被測定者の立位姿勢に於ける全身の正面図である場合、被測定者の頭、首、右肩、右肘、右手首、右手、左肩、左肘、左手首、左手、胸部、胸腰部、左腰、骨盤部、右腰、左股関節、左膝、左くるぶし、左足、右股関節、右膝、右くるぶし、右足等の各部位の位置座標に関する情報を含む。また、画像等データが被測定者の立位姿勢及び座位姿勢に於ける全身の右側面図又は左側面図である場合、被測定者の頭、首、肩、肘、腰、膝、耳垂、大転子、肩峰、膝蓋骨等の各部位の位置座標に関する情報を含む。
 歪みデータ生成部213は、人工知能217により、骨格データに基づき被測定者の骨格の歪みを検出して歪みデータを生成する。画像等データがユーザー端末10(より詳細には、データ送信部16)から任意の時間毎に送信され、骨格データ生成部212が骨格データを時系列で生成する場合、歪みデータ生成部213は、歪みデータを時系列で生成する。歪みデータは、具体的には、例えば、肩水平角、腰水平角、右膝角、左膝角、耳垂-肩峰角、大転子-膝蓋骨後方角、耳垂位置、肩峰位置、大転子位置、膝蓋骨後方位置等に関する数値を含む。
 診断部218は、例えば、人工知能217により、任意の時刻に生成された骨格データと、当該時刻から所定の時間経過後に生成された他の骨格データとを比較して、被測定者の姿勢の経時的変化を診断する。診断部218による骨格データに基づく診断により、被測定者は姿勢の経時的変化を確認することができる。また、診断部218は、人工知能217により、任意の時刻に生成された歪みデータと、当該時刻から所定の時間経過後に生成された他の歪みデータとを比較して、被測定者の姿勢の歪みの経時的変化も診断する。診断部218による歪みデータに基づく診断により、被測定者は姿勢の歪みに関する経時的変化を確認することができる。その結果、被測定者は、例えば、姿勢の歪みの矯正等に関する治療計画の作成等が可能になる。
 また診断部218は、例えば、人工知能217により、被測定者の各種の関節の可動域についても診断する。より具体的には、画像等データに基づき生成された骨格データであって、被測定者の関節を可能な限りに最大限に可動させたものに基づき、当該関節に於ける可動域角度の値を算出する。さらに、算出した可動域角度の値を基準データと比較し、その差分の程度に応じて被測定者の関節の可動域を診断する。これにより、被測定者は、例えば、リハビリ治療後に於ける関節の可動域の改善程度を確認することができる。尚、可動域角度の値を算出するにあたっては、被測定者が関節を可動させていない状態の画像等データに基づき生成された骨格データと、関節を可動させた状態の画像等データに基づき生成された骨格データとを比較して行ってもよい。
 ここで、関節の可動域角度とは、例えば、肩関節である場合、立位状態の被測定者の肩峰を通過する地面への垂直線を基本軸とし、被測定者の上腕骨を移動軸としたとき、上腕骨が屈曲(前方挙上)する角度の範囲をいう。また、基準データとは、各関節の可動域角度の値(基準値)に関する情報を含むデータを意味し、例えば、日本整形外科学会又は日本リハビリテーション医学会が示す各関節の屈曲等の運動に於ける可動域角度の値等が基準データとして挙げられる。
 データセット生成部214は、人工知能217により、骨格データ、歪みデータ及び任意の関節の可動域角度の値(以下、「可動域データ」という。)に、被測定者の身体的症状及び/又は身体的状態(以下、「身体的症状等」という。)に関する症状データを関連付けてデータセットを生成する。データセットの生成は、骨格データ、歪みデータ及び可動域データに基づいた人工知能217による被測定者の骨格の歪みを、高精度で検出することを可能にする。また、人工知能217により、被測定者の身体的症状及び/又は身体的状態を高精度で推定することを可能にする。データセット生成部214は、骨格データ、歪みデータ及び可動域データの他に、被測定者の個人情報も症状データに関連付けてデータセットを生成することが可能である。尚、骨格データ及び歪みデータには、時系列で生成されるものも含み得る。
 症状推定部215は、人工知能217が作製したデータセットを用いて被測定者の身体的症状等を推定する。また、症状推定部215は、骨格データ、歪みデータ、可動域データ及び/又は個人情報等に基づき、被測定者の身体的症状等を推定するようにしてもよい。
 データ送信部216は、骨格データ、歪みデータ、可動域データ及び人工知能217が推定した身体的症状等に関する情報等をユーザー端末10に送信する。
 座標情報編集部219は、例えば、ユーザー端末10の入力部がタッチパネルである場合に、タッチパネルの接触された位置を示す位置座標情報を生成する。これにより、例えば、骨格データ生成部212が人工知能217により被測定者の身体のうち任意の部位を特定できない場合にも、被測定者(又は、利用者)がタッチパネル操作により当該部位を特定することで、その部位の位置に関する位置座標情報を生成することができる。その結果、骨格データ生成部212は、人工知能217により、画像等データと、利用者が特定することにより生成された位置座標情報とに基づき骨格データを生成することができる。
 また、座標情報編集部219は、骨格データ生成部212が人工知能217により生成した特定の部位の位置座標情報の変更も行う。これにより、例えば、骨格データ生成部212が人工知能217により特定する部位の位置にズレが生じる場合にも、被測定者(又は、利用者)がタッチパネル操作により当該部位の正確な位置を特定することで、その部位の位置に関する位置座標情報を変更することができる。その結果、骨格データ生成部212は、人工知能217により、画像等データと、利用者が特定することにより生成された位置座標情報とに基づき、より正確な骨格データを生成することができる。
 サーバ側通信制御部22は、通信回線や電話回線等に接続されるアンテナやルータ等の通信装置(図示せず)に接続される通信制御インターフェースにより実現され、ユーザー端末10及びネットワーク30との間における通信制御を行う。すなわち、サーバ側通信制御部22は、ユーザー端末10等と通信回線を介してデータの通信を制御する。
 記憶部23は、その内部に複数の記憶領域が定義されており、種々の情報を記録するための各種データベース、ファイル又はテーブルを格納することができる。記憶部23は、例えば、HDDやSSD等の大容量のストレージ手段、及び/又はSRAM等を用いて構成される小容量高速メモリ(例えば、キャッシュメモリ)等のストレージ手段である。記憶部23は、各種のデータベース、ファイル又はテーブルを格納することができる。
 記憶部23は、データセットデータベース231を少なくとも備える。データセットデータベース231は、データセットを記憶する記憶手段である。また、記憶部23には、人体の各関節の可動域に関する情報を含む前述の基準データも格納される。
(姿勢診断方法)
 [姿勢の歪み診断]
 次に、本実施の形態に係る姿勢診断方法について、姿勢診断システムを用いた処理を例にして図4に基づき説明する。図4は、本実施の形態の姿勢診断システムの処理の一例を示すフローチャートである。
 先ず、図4に示すように、利用者がユーザー端末10の端末制御部11における撮影部15により、被測定者を撮影する。撮影部15による撮影は、静止画像でもよく動画像でもよい。
 次に、ユーザー端末10のデータ送信部16は、撮影部15により生成された画像等データをサーバ20に送信する。また、データ送信部16は、端末記憶部14に保存されている被測定者の身体的症状等に関する情報や個人情報をサーバ20に送信する。ユーザー端末10から送信された画像等データはサーバ20の画像等データ取得部211で受信される(画像等データ取得ステップS1)。尚、ここでいう被測定者の身体的症状等に関する情報及び個人情報は、被測定者が予めユーザー端末10に入力した情報である。
 続いて、サーバ20の画像等データ取得部211で画像等データが受信されると、骨格データ生成部212が、人工知能217により被測定者の骨格データを生成する(骨格データ生成ステップS2)。骨格データは、図5に示すように、被測定者40の身体の各部位41の位置座標、及び任意の部位41同士を結ぶことにより得られるグリッド線42に関するデータを含む。生成された骨格データ生成部212は記憶部23に格納することができる。尚、図5は、骨格データ生成部212により生成された骨格データであって、被測定者の身体の各部位と、部位同士を結ぶグリッド線とを表す説明図である。
 骨格データが生成されると、歪みデータ生成部213が骨格データに基づき被測定者の骨格の歪みに関する歪みデータを生成する(歪みデータ生成ステップS3)。さらに、データ送信部216が歪みデータをユーザー端末10に送信する。歪みデータが送信されると、ユーザー端末10のデータ受信部(図示しない)が当該歪みデータを受信した後、表示部に表示される。歪みデータは、例えば、姿勢の歪みの程度に応じて数値化された情報であるため、被測定者は自らの骨格の歪みを容易に確認することができる。
 また、歪みデータが生成されると、データセット生成部214が骨格データ及び歪みデータに、身体的症状等の症状データを関連付けてデータセットを作製する(データセット作製ステップS4)。このとき、個人情報も併せて関連付けを行ってもよい。さらに、データセット生成部214は、作製されたデータセットを記憶部23のデータセットデータベース231に格納する。
 さらに、本実施の形態の姿勢診断方法に於いては、症状推定部215により被測定者の身体的症状等を推定させてもよい。この場合、症状推定部215は、データセットデータベース231に格納されたデータセットを用いて、ユーザー端末10から送られてくる骨格データと歪みデータに基づき、被測定者の身体的症状等の推定を行う。身体的症状等の推定は、被測定者の姿勢や肩こり等を含むものである。推定された身体的症状等の情報は、サーバ20のデータ送信部216により、ユーザー端末10に送信される。身体的症状等の情報がデータ送信部216から送られると、ユーザー端末10の受信部により当該情報が受信される。これにより、被測定者は人工知能217が推定した自らの身体的症状等を確認することができる。
 [姿勢の歪みの時系列診断]
 本実施の形態の姿勢診断方法は、被測定者の姿勢及びその歪みの経時的変化を診断することもできる。この場合、先ず、骨格データ生成部212は、人工知能217により、ユーザー端末10から任意の時間毎に送信されてくる画像等データに基づき、骨格データを時系列で生成する。さらに、歪みデータ生成部213は、時系列で生成された骨格データに基づき、歪みデータも時系列で生成する。
 骨格データが時系列で生成されると、診断部218は、任意の時刻に生成された骨格データと、当該時刻から所定の時間経過後に生成された他の骨格データとを比較し、これにより、被測定者の姿勢の経時的変化を診断する。骨格データ同士の比較は、例えば、図5に示すような骨格データが表された画像データを用いて行うことができる。すなわち、任意の時刻に生成された骨格データを含む画像データと、当該時刻から所定の時間経過後に生成された他の骨格データを含む他の画像データとを重ね合わせたり、並列配置する等して対比することで、被測定者の姿勢の経時的変化を視覚的に容易に把握することができる。
 また、歪みデータが時系列で生成されると、診断部218は、任意の時刻に生成された歪みデータと、当該時刻から所定の時間経過後に生成された他の歪みデータとを比較し、これにより、被測定者の姿勢の歪みの経時的変化を診断する。
 次に、本実施の形態に係る他の姿勢診断方法について、図6に基づき説明する。図6は、本実施の形態の姿勢診断システムの処理の他の例を示すフローチャートである。
 先ず、前述の姿勢診断方法の場合と同様、利用者が、ユーザー端末10の端末制御部11における撮影部15により被測定者を撮影した後(画像等データ取得ステップS1)、ユーザー端末10のデータ送信部16が、撮影部15により生成された画像等データをサーバ20に送信する。また、データ送信部16は、端末記憶部14に保存されている被測定者の身体的症状等に関する情報や個人情報もサーバ20に送信する。ユーザー端末10から送信された画像等データはサーバ20の画像等データ取得部211で受信される。
 続いて、画像等データ取得部211で画像等データが受信されると、骨格データ生成部212が、人工知能217により、画像等データに基づき被測定者の身体の部位の特定を行う(部位特定ステップS11)。
 ここで、被測定者(又は利用者)により、骨格データ生成部212が被測定者の身体のうち任意の部位を特定できていないと判別された場合(ステップS12)、被測定者(又は利用者)がタッチパネル操作により当該部位を特定することで、座標情報編集部219がその部位の位置に関する位置座標情報を生成する(位置座標情報生成ステップS13)。骨格データ生成部212により被測定者の身体の全ての部位が特定されている場合は、後述のステップS14に進み、部位の特定で位置ズレが生じているか否かの判別を行う。
 続いて、骨格データ生成部212が被測定者の身体の全ての部位を特定しているが、任意の部位で位置ズレが生じている場合(ステップS14)、被測定者がタッチパネル操作により当該部位の正確な位置を特定することで、座標情報編集部219がその部位の位置に関する位置座標情報を変更する(位置座標情報変更ステップS15)。骨格データ生成部212により被測定者の身体の全ての部位が正確に特定され、位置ズレが発生していない場合は、骨格データ生成部212による骨格データの生成を行う(骨格データ生成ステップS2)。
 骨格データが生成されると、前述の場合と同様、歪みデータ生成部213が骨格データに基づき被測定者の骨格の歪みに関する歪みデータを生成し(歪みデータ生成ステップS3)、データ送信部216が歪みデータをユーザー端末10に送信する。さらに、データセット生成部214が骨格データ及び歪みデータに、身体的症状等の症状データを関連付けてデータセットを作製し(データセット作製ステップS4)、記憶部23に格納する。
 [関節の可動域の診断]
 また、本実施の形態の姿勢診断方法は、被測定者の任意の関節の可動域を診断することもできる。この場合、ユーザー端末10のデータ送信部16から送信される画像等データは、被測定者の任意の関節を可動させた状態を撮影したものである。画像等データ取得部211が当該画像等データを取得すると(画像等データ取得ステップS1)、骨格データ生成部212は、人工知能217により、被測定者の任意の関節を可動させた状態の骨格データを生成する(骨格データ生成ステップS2)。
 骨格データが時系列で生成されると、診断部218は関節に於ける可動域角度の値(可動域データ)を算出する(可動域角度算出ステップS21)。さらに、診断部218は、関節の可動域角度の基準値に関する基準データを記憶部23から呼び出し、算出した可動域角度の値と比較する。そして、診断部218は、算出した可動域角度の値と基準値との差分の程度に応じて被測定者の関節の可動域を診断する(診断ステップS22)。関節の可動域の診断は、例えば、基準値との差分の程度に応じて数値化された情報に基づき行うことができる。さらに、この数値化された情報は、データ送信部216によりユーザー端末10に送信するようにしてもよい。これにより、被測定者は、例えば、関節基準値と比較してどの程度の可動域を有するのか確認することができる。また、例えば、治療前後での基準値との差分を確認することで、治療による改善効果も確認することができる。
 続いて、被測定者の関節の可動域の診断が終了すると、前述の場合と同様、データセット生成部214が可動域データに、身体的症状等の症状データを関連付けてデータセットを作製し(データセット作製ステップS4)、記憶部23に格納する。尚、データセットの作製に於いては、可動域データの他に、算出した可動域角度の値と基準値との差分に関するデータを含めてもよい。
10 ユーザー端末
11 端末制御部
12 入出力制御部
13 端末側通信制御部
14 端末記憶部
15 撮影部
16 データ送信部
17 データ受信部
20 サーバ
21 制御部
22 サーバ側通信制御部
23 記憶部
211 画像等データ取得部
212 骨格データ生成部
213 データ生成部
214 データセット生成部
215 症状推定部
216 データ送信部
217 人工知能
218 診断部
219 座標情報編集部
231 データセットデータベース
30 ネットワーク
S1 画像等データ取得ステップ
S2 骨格データ生成ステップ
S3 データ生成ステップ
S4 データセット作製ステップ
S11 部位特定ステップ
S13 位置座標情報生成ステップ
S15 位置座標情報変更ステップ
S21 可動域角度算出ステップ
S22 診断ステップ

Claims (15)

  1.  被測定者の身体を撮影した画像又は動画データを取得する画像等データ取得部と、
     前記画像又は動画データに基づき、人工知能により前記被測定者の身体の複数の部位を特定して骨格データを生成させる骨格データ生成部と、
     前記骨格データに基づき、前記人工知能により前記被測定者の骨格の歪みを検出して歪みデータを生成させる歪みデータ生成部と、
     前記骨格データ及び歪みデータに、前記被測定者の身体的症状及び/又は身体的状態に関する症状データを関連付けてデータセットを生成するデータセット生成部と、
    を有する姿勢診断システム。
  2.  前記データセット生成部は、さらに前記被測定者の個人情報を、前記歪みデータ及び症状データに関連付けて前記データセットを生成する、請求項1に記載の姿勢診断システム。
  3.  前記骨格データ生成部は、前記被測定者の身体の複数の部位のうち、前記人工知能が特定しない部位が存在する場合に、当該部位を直接特定した後、前記人工知能に前記骨格データを生成させ、
     及び/又は前記人工知能による前記被測定者の身体の部位の特定のうち、任意の特定を直接変更した後、前記人工知能に前記骨格データを生成させる、請求項1又は2に記載の姿勢診断システム。
  4.  前記骨格データ生成部は、前記画像等データ取得部が前記画像又は動画データの取得を任意の時間毎に行うことにより、前記人工知能に、前記骨格データを時系列で生成させるものであり、
     さらに、前記人工知能により、任意の時刻に生成された骨格データと、当該時刻から所定の時間経過後に生成された他の骨格データとを比較して、前記被測定者の姿勢の経時的変化を診断させる診断部を有する、請求項1~3の何れか1項に記載の姿勢診断システム。
  5.  前記歪みデータ生成部は、前記画像等データ取得部が前記画像又は動画データの取得を任意の時間毎に行うことにより、前記人工知能に、前記歪みデータを時系列で生成させるものであり、
     前記診断部は、前記人工知能により、任意の時刻に生成された歪みデータと、当該時刻から所定の時間経過後に生成された他の歪みデータとを比較して、前記被測定者の姿勢の歪みの経時的変化を診断させる、請求項4に記載の姿勢診断システム。
  6.  前記画像等データ取得部は、前記被測定者の身体の任意の関節を可動させた状態を撮影した前記画像又は動画データを取得するものであり、
     前記診断部は、当該画像又は動画データに基づき生成された骨格データに基づいて、前記人工知能により、前記関節の可動域角度の値を算出させ、さらに、前記算出した可動域角度の値を、前記関節の可動域角度の基準値と比較して当該関節の可動域を診断させるものであり、
     前記データセット生成部は、前記算出した可動域角度の値に前記症状データを関連付けて前記データセットを生成するものである、請求項4又は5に記載の姿勢診断システム。
  7.  前記人工知能により、前記データセットを用いて前記被測定者の身体的症状及び/又は身体的状態を推定する症状推定部をさらに有する、請求項1~6の何れか1項に記載の姿勢診断システム。
  8.  被測定者の身体を撮影した画像又は動画データを取得し、
     前記画像又は動画データに基づき、人工知能が前記被測定者の身体の複数の部位を特定して骨格データを生成し、
     前記骨格データに基づき、前記人工知能が前記被測定者の骨格の歪みを検出して歪みデータを生成し、
     前記骨格データ及び歪みデータに、前記被測定者の身体的症状及び/又は身体的状態に関する症状データを関連付けてデータセットを生成する、
    姿勢診断方法。
  9.  さらに前記被測定者の個人情報を、前記歪みデータ及び症状データに関連付けて前記データセットを生成する、請求項8に記載の姿勢診断方法。
  10.  前記被測定者の身体の複数の部位のうち、前記人工知能が特定しない部位が存在する場合に、当該部位を直接特定した後、前記人工知能に前記骨格データを生成させ、
     及び/又は前記人工知能による前記被測定者の身体の部位の特定のうち、任意の特定を直接変更した後、前記人工知能に前記骨格データを生成させる、請求項8又は9に記載の姿勢診断方法。
  11.  前記画像又は動画データの取得を任意の時間毎に行うことにより、前記人工知能が前記骨格データを時系列で生成し、
     さらに、前記人工知能が、任意の時刻に生成された骨格データと、当該時刻から所定の時間経過後に生成された他の骨格データとを比較して、前記被測定者の姿勢の経時的変化を診断する、請求項8~10の何れか1項に記載の姿勢診断方法。
  12.  前記画像又は動画データの取得を任意の時間毎に行うことにより、前記人工知能が前記歪みデータを時系列で生成し、
     さらに、前記人工知能が、任意の時刻に生成された歪みデータと、当該時刻から所定の時間経過後に生成された他の歪みデータとを比較して、前記被測定者の姿勢の歪みの経時的変化を診断する、請求項11に記載の姿勢診断方法。
  13.  前記画像又は動画データは、前記被測定者の身体の任意の関節を可動させた状態を撮影したものであり、
     前記人工知能が、当該画像又は動画データに基づき生成された骨格データに基づいて、前記関節の可動域角度の値を算出し、さらに、前記算出した可動域角度の値を、前記関節の可動域角度の基準値と比較して当該関節の可動域を診断し、
     前記算出した可動域角度の値に前記症状データを関連付けて前記データセットを生成する、請求項11又は12に記載の姿勢診断方法。
  14.  前記人工知能が、前記データセットを用いて前記被測定者の身体的症状及び/又は身体的状態を推定する、請求項8~13の何れか1項に記載の姿勢診断方法。
  15.  請求項8~14の何れか1項に記載の姿勢診断方法により作製された、姿勢診断用データセット。
PCT/JP2021/001449 2020-01-21 2021-01-18 姿勢診断システム、姿勢診断方法及び姿勢診断用データセット WO2021149629A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-007264 2020-01-21
JP2020007264 2020-01-21

Publications (1)

Publication Number Publication Date
WO2021149629A1 true WO2021149629A1 (ja) 2021-07-29

Family

ID=76992354

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001449 WO2021149629A1 (ja) 2020-01-21 2021-01-18 姿勢診断システム、姿勢診断方法及び姿勢診断用データセット

Country Status (2)

Country Link
JP (1) JP2021115471A (ja)
WO (1) WO2021149629A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240042866A (ko) 2022-09-26 2024-04-02 부산대학교 산학협력단 인공지능 기반의 척추측만증 정보 제공 방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000301A (ja) * 2003-06-10 2005-01-06 Hisamitsu Imoto 身体の姿勢診断支援システム
JP2015036858A (ja) * 2013-08-12 2015-02-23 株式会社東芝 医用情報処理装置、システム及びプログラム
JP3207832U (ja) * 2016-09-07 2016-12-08 一般社団法人日本姿勢検定協会 姿勢検査用具
WO2018087853A1 (ja) * 2016-11-09 2018-05-17 株式会社システムフレンド 立体画像生成システム、立体画像生成方法及び立体画像生成プログラム
WO2019082376A1 (ja) * 2017-10-27 2019-05-02 株式会社アシックス 動作状態評価システム、動作状態評価装置、動作状態評価サーバ、動作状態評価方法、および動作状態評価プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005000301A (ja) * 2003-06-10 2005-01-06 Hisamitsu Imoto 身体の姿勢診断支援システム
JP2015036858A (ja) * 2013-08-12 2015-02-23 株式会社東芝 医用情報処理装置、システム及びプログラム
JP3207832U (ja) * 2016-09-07 2016-12-08 一般社団法人日本姿勢検定協会 姿勢検査用具
WO2018087853A1 (ja) * 2016-11-09 2018-05-17 株式会社システムフレンド 立体画像生成システム、立体画像生成方法及び立体画像生成プログラム
WO2019082376A1 (ja) * 2017-10-27 2019-05-02 株式会社アシックス 動作状態評価システム、動作状態評価装置、動作状態評価サーバ、動作状態評価方法、および動作状態評価プログラム

Also Published As

Publication number Publication date
JP2021115471A (ja) 2021-08-10

Similar Documents

Publication Publication Date Title
Slade et al. An open-source and wearable system for measuring 3D human motion in real-time
Cai et al. Validity and reliability of upper limb functional assessment using the Microsoft Kinect V2 sensor
US10646157B2 (en) System and method for measuring body joint range of motion
Cerveri et al. Finger kinematic modeling and real-time hand motion estimation
EP2805277B1 (en) Method and system for human joint treatment plan and personalized surgery planning using 3-d kinematics, fusion imaging and simulation
Parks et al. Current low-cost video-based motion analysis options for clinical rehabilitation: a systematic review
Matthew et al. Kinematic and kinetic validation of an improved depth camera motion assessment system using rigid bodies
JP2015061579A (ja) 動作情報処理装置
US11547324B2 (en) System and method for human motion detection and tracking
EP3808268B1 (en) System and method for shoulder proprioceptive analysis
Panariello et al. Evaluation of human joint angles in industrial tasks using OpenSim
CN115346670A (zh) 基于姿态识别的帕金森病评级方法、电子设备及介质
WO2021149629A1 (ja) 姿勢診断システム、姿勢診断方法及び姿勢診断用データセット
CN107256390B (zh) 基于手各个部位在三维空间位置变化的手功能评价装置及方法
CN115240247A (zh) 一种用于进行动作和姿态检测的识别方法及系统
Cotton et al. Markerless Motion Capture and Biomechanical Analysis Pipeline
US11694360B2 (en) Calibrating 3D motion capture system for skeletal alignment using x-ray data
JP2005000301A (ja) 身体の姿勢診断支援システム
CN114974506B (zh) 人体姿态数据处理方法及系统
KR20210075451A (ko) 근골격계 증상을 진단하기 위한 전자 장치, 방법, 및 시스템
Cotton et al. Optimizing Trajectories and Inverse Kinematics for Biomechanical Analysis of Markerless Motion Capture Data
Singh et al. Development of a real‐time work‐related postural risk assessment system of farm workers using a sensor‐based artificial intelligence approach
CN113397530B (zh) 一种可进行膝关节功能评估的智能矫正系统和方法
EP4053793A1 (en) System and method for human motion detection and tracking
Bae et al. Can a Deep-Learning Markerless Motion-Capture System Outperform the Gold Standard Marker-Based System? Concurrent Validity, Test-Reliability, and Usability

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744238

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744238

Country of ref document: EP

Kind code of ref document: A1