WO2021149614A1 - Wire rope flaw detection device - Google Patents

Wire rope flaw detection device Download PDF

Info

Publication number
WO2021149614A1
WO2021149614A1 PCT/JP2021/001272 JP2021001272W WO2021149614A1 WO 2021149614 A1 WO2021149614 A1 WO 2021149614A1 JP 2021001272 W JP2021001272 W JP 2021001272W WO 2021149614 A1 WO2021149614 A1 WO 2021149614A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire rope
learning
learning model
feature quantities
unit
Prior art date
Application number
PCT/JP2021/001272
Other languages
French (fr)
Japanese (ja)
Inventor
孝 吉岡
友実 堀
隆彦 増▲崎▼
孝太郎 福井
貴耶 谷口
泰弘 遠山
敬純 小部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202180009627.1A priority Critical patent/CN114981651A/en
Priority to JP2021573127A priority patent/JP7275324B2/en
Publication of WO2021149614A1 publication Critical patent/WO2021149614A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields

Definitions

  • the present invention relates to a wire rope flaw detector.
  • Patent Document a wire rope flaw detector having a magnetizer that magnetically saturates the wire rope and a magnetic sensor that detects a leakage magnetic flux leaking from the wire rope due to a damaged portion of the wire rope.
  • the conventional wire rope flaw detector even if the SN ratio is improved by shortening the distance between the wire rope and the magnetic sensor, there are restrictions such as the assembly accuracy of the wire rope and the magnetic sensor. Therefore, the conventional wire rope flaw detector has a limit in reducing the distance between the wire rope and the magnetic sensor.
  • the present invention has been made to solve the above problems, and an object of the present invention is to obtain a wire rope flaw detector capable of more reliably improving the SN ratio.
  • the wire rope flaw detector includes a magnetizer that generates a magnetic flux that passes through a part of the wire rope, and a magnetic sensor that generates a signal corresponding to the leakage magnetic flux leaking from the wire rope as a sensor signal.
  • the control unit includes a control unit that processes the sensor signal, and the control unit extracts a filter unit that extracts a frequency component of the sensor signal and a plurality of feature quantities based on a plurality of values constituting the frequency component.
  • a plurality of frequency components extracted by the filter unit are configured in a trained learning model in which the calculation unit and the trained learning model in which the correlation between the plurality of feature quantities and the state of the wire rope included in the wire rope is machine-learned.
  • the learning model when a plurality of feature quantities extracted by the calculation unit are input based on the value of the above has a learning unit for determining the presence or absence of damage to the wire rope by executing the calculation process. There is.
  • the SN ratio can be improved more reliably.
  • FIG. It is an exploded perspective view which shows the probe of the wire rope flaw detector according to Embodiment 1.
  • FIG. It is explanatory drawing which shows the flaw detection principle by the probe of FIG. It is an enlarged view of the part A of FIG. It is a figure explaining more concretely an example of the positional relationship between the leakage magnetic flux and a coil of FIG. It is a figure explaining more concretely an example of the positional relationship between a leakage magnetic flux leaking from a wire rope whose diameter is smaller than that of the wire rope of FIG. 4 and a coil.
  • It is a block diagram which shows the functional structure example of the control part of FIG. It is a figure which shows an example of the frequency characteristic of the filter part of FIG.
  • FIG. 6 is a flowchart illustrating processing by the control unit when the learning unit of FIG. 6 is configured as a support vector machine.
  • FIG. 6 is a diagram showing a concept of performing machine learning using a learning data set when the learning unit of FIG.
  • FIG. 5 is a block diagram showing a functional configuration example of a control unit that processes a signal corresponding to a leakage magnetic flux leaking from a wire rope according to a third embodiment. It is a figure which shows an example of the frequency characteristic of the filter part of FIG. It is a figure which shows the waveform example of the time domain of the mother wavelet by the wavelet transform part of FIG. It is a figure which shows the waveform example of the frequency domain of the mother wavelet by the wavelet transform part of FIG.
  • FIG. 16 As another example of the frequency characteristics of the filter unit of FIG. 16, it is a conceptual diagram of the center frequency at the time of 1/3 octave. It is a figure which shows an example of the distribution of the frequency component extracted from the input signal by the filter part of FIG. It is a figure which shows an example of the sequence yk (n) generated by the filter part at the time t1 of FIG. It is a figure which shows an example of the sequence yk (n) generated by the filter part at the time t2 of FIG. It is a flowchart explaining the process by the control part of FIG. It is a figure explaining the hardware configuration example. It is a figure explaining another hardware configuration example. 25 is a diagram showing a system configuration example in which at least one of the control units of FIGS.
  • FIG. 25 is a diagram showing a system configuration example in which at least one of the control units of FIGS. 6 and 16 is incorporated into the determination device 401 as a specific example of FIG. 25 or FIG. 26 to supply the processing contents of the determination device to the data logger.
  • 25 is a diagram showing a system configuration example in which at least one of the control units of FIGS. 6 and 16 is incorporated into the determination panel as a specific example of FIG. 25 or FIG.
  • FIG. 1 is an exploded perspective view showing a probe 1 of the wire rope flaw detector according to the first embodiment.
  • the probe 1 includes a probe main body 3 and a cover 5.
  • the cover 5 is made of a non-magnetic material.
  • the cover 5 covers the probe body 3.
  • the cover 5 protects the probe body 3.
  • the cover 5 is provided with a groove 51.
  • the cross section of the groove 51 is formed in a U shape.
  • the groove portion 51 has a first end portion 51_1 and a second end portion 51_2.
  • the probe main body 3 includes a magnetizer 11 and a magnetic sensor 13.
  • the magnetizer 11 has a back yoke 111, a first permanent magnet 112_1, a second permanent magnet 112_2, a first pole piece 113_1, and a second pole piece 113_2.
  • the back yoke 111 is made of a ferromagnetic material.
  • the back yoke 111 has a first yoke end portion 111_1, a second yoke end portion 111_2, and a yoke central portion 111_3.
  • One end of the back yoke 111 in the longitudinal direction is a first yoke end 111_1.
  • the other end of the back yoke 111 in the longitudinal direction is a second yoke end 111_2.
  • the yoke central portion 111_3 is located between the first yoke end portion 111_1 and the second yoke end portion 111_2.
  • a first pole piece 113_1 is fixed to the first yoke end 111_1 via a first permanent magnet 112_1.
  • a second pole piece 113_2 is fixed to the second yoke end 111_2 via a second permanent magnet 112_2.
  • the first permanent magnet 112_1 and the second permanent magnet 112_2 are arranged apart from each other in the longitudinal direction of the back yoke 111.
  • the first pole piece 113_1 and the second pole piece 113_1 are arranged apart from each other in the longitudinal direction of the back yoke 111.
  • the first pole piece 113_1 is made of a ferromagnetic material.
  • the first pole piece 113_1 is provided with a first pole piece groove 113_1.
  • the cross section of the first pole piece groove portion 113_11 is formed in a U shape.
  • the first pole piece groove portion 113_1 is fixed to the cover 5 at a position on the back side of the first end portion 51_1.
  • the second pole piece 113_2 is made of a ferromagnetic material.
  • the second pole piece 113_2 is provided with a second pole piece groove 113_21.
  • the cross section of the second pole piece groove portion 113_21 is formed in a U shape.
  • the second pole piece groove portion 113_21 is fixed to the cover 5 at a position on the back side of the second end portion 51_2.
  • the first permanent magnet 112_1 is arranged between the first pole piece 113_1 and the first yoke end portion 111_1.
  • the first permanent magnet 112_1 has one magnetic pole surface oriented toward the first pole piece 113_1 and the other magnetic pole surface directed toward the first yoke end 111_1.
  • the first permanent magnet 112_1 generates a magnetomotive force.
  • the second permanent magnet 112_2 is arranged between the second pole piece 113_2 and the second yoke end 111_2.
  • the second permanent magnet 112_2 is arranged with one magnetic pole surface facing the second yoke end 111_2 and the other magnetic pole surface facing the second pole piece 113_2.
  • the second permanent magnet 112_2 generates a magnetomotive force.
  • the magnetic sensor 13 has a sensor body 13A and a mounting portion 13B.
  • the mounting portion 13B is mounted on the yoke central portion 111_3.
  • the mounting portion 13B is made of a non-magnetic material.
  • the sensor body 13A is arranged between the first pole piece 113_1 and the second pole piece 113_2.
  • the sensor body 13A has a base portion 132, a coil holder 133, a first coil 131_1, and a second coil 131_2.
  • the base portion 132 is attached to the attachment portion 13B.
  • the coil holder 133 is attached to the base portion 132.
  • the coil holder 133 is made of a ferromagnetic material.
  • the first coil 131_1 and the second coil 131_2 are attached to the coil holder 133.
  • FIG. 2 is an explanatory diagram showing the flaw detection principle by the probe 1 of FIG.
  • the wire rope flaw detector includes a probe 1 and a control unit 9 that receives a signal from the probe 1.
  • the outline of the cover 5 is shown by a chain double-dashed line. Further, in FIG. 2, for convenience of illustration, the cross-sectional shape portion of the groove portion 51 is shown by hatching.
  • the polar direction of the first permanent magnet 112_1 is the direction from the first yoke end 111_1 to the first pole piece 113_1.
  • the polarity direction of the second permanent magnet 112_2 is the direction from the second pole piece 113_2 toward the second yoke end portion 111_2.
  • the polarity of the first permanent magnet 112_1 is opposite to the polarity of the second permanent magnet 112_2. Therefore, in the state where the wire rope 2 is arranged in the groove 51, the magnetic flux F passing through the magnetic circuit F_C composed of a part of the wire rope 2 and the magnetizer 11 is transferred to the first permanent magnet 112_1 and the second permanent magnet. 112_2 occurs.
  • the magnetizer 11 generates a magnetic flux F that passes through a part of the wire rope 2.
  • the magnetic sensor 13 generates a signal corresponding to the leakage magnetic flux L_F leaking from the wire rope 2 among the magnetic flux F as a sensor signal.
  • the control unit 9 processes the sensor signal generated from the magnetic sensor 13. A detailed description of the magnetic flux F and the leakage magnetic flux L_F will be described later with reference to FIGS. 3, 4, and 5.
  • the first permanent magnet 112_1 and the second permanent magnet 112_2 are collectively referred to as the permanent magnet 112. Further, the first pole piece 113_1 and the second pole piece 113_2 are collectively referred to as a pole piece 113. Further, the first coil 131_1 and the second coil 131_2 are collectively referred to as the coil 131.
  • FIG. 3 is an enlarged view of part A of FIG. As shown in FIG. 3, if there is a damaged portion B_W in the portion of the wire rope 2 through which the magnetic flux F passes, a part of the magnetic flux F leaks from the wire rope 2 as a leakage magnetic flux L_F around the damaged portion B_W. ..
  • FIG. 4 is a diagram for more specifically explaining an example of the positional relationship between the leakage magnetic flux L_F of FIG. 3 and the coil 131.
  • the first coil 131_1 and the second coil 131_2 are interlinked with the leakage magnetic flux L_F. Therefore, an induced voltage, which is a signal corresponding to the leakage magnetic flux L_F, is generated in the first coil 131_1 and the second coil 131_2 as sensor signals.
  • the wire rope 2 is composed of a core rope and a plurality of strands 21 twisted around the core rope at a constant pitch ⁇ . Therefore, on the outer peripheral portion of the wire rope 2, a plurality of convex portions arranged in the length direction of the wire rope 2 are formed at a constant pitch ⁇ . Further, the strand 21 is formed by twisting a plurality of strands into a single layer or multiple layers. Therefore, if the wire contained in the wire rope 2 is thin, the diameter of the wire rope 2 is reduced.
  • FIG. 5 is a diagram for more specifically explaining an example of the positional relationship between the leakage magnetic flux L_F leaking from the wire rope 2S having a diameter smaller than that of the wire rope 2 of FIG. 4 and the coil 131.
  • the amount of magnetic flux L_F is reduced. Therefore, the control unit 9 in FIG. 2 distinguishes whether the sensor signal generated from the magnetic sensor 13 is caused by the magnetic flux F due to noise or the magnetic flux F due to the damaged part B_W. Difficult to put on.
  • control unit 9 of FIG. 2 is a machine for the correlation between a plurality of feature quantities based on a plurality of values constituting the frequency component of the sensor signal and the state of the wire rope included in the wire rope. After learning, it is judged whether or not the wire is damaged.
  • the wire rope 2 is composed of strands 21 twisted at a constant pitch ⁇ . Therefore, the probe 1 detects noise caused by the outer peripheral portion of the wire rope 2 at least every pitch ⁇ . Further, the wire rope 2S is also configured by being twisted at a pitch ⁇ S in the same manner. Therefore, a plurality of convex portions arranged in the length direction of the wire rope 2S are similarly formed on the outer peripheral portion of the wire rope 2S at a constant pitch ⁇ S. Therefore, the probe 1 detects noise caused by the outer peripheral portion of the wire rope 2S at least for each pitch ⁇ S.
  • FIG. 6 is a block diagram showing a functional configuration example of the control unit 9 of FIG. As shown in FIG. 6, the control unit 9 includes a measuring instrument 91, a synthesizer 92, a filter unit 93, and a processing unit 94.
  • the measuring instrument 91 has a first measuring instrument 91_1 and a second measuring instrument 91_2.
  • the first measuring instrument 91_1 is connected to both ends of the first coil 131_1.
  • the second measuring instrument 91_2 is connected to both ends of the second coil 131_2.
  • the first coil 131_1 is located upstream of the second coil 131_2 in the specific direction W_D of the wire rope 2S.
  • the leakage magnetic flux L_F leaks from the wire rope 2 around the damaged portion B_W.
  • the leakage magnetic flux L_F is interlinked with the first coil 131_1 and then with the second coil 131_2. Therefore, the time at which the peak of the induced voltage generated at both ends of the first coil 131_1 occurs is shifted by the delay time ⁇ from the time at which the peak of the induced voltage generated at both ends of the second coil 131_1 occurs.
  • the delay time ⁇ is represented by a value obtained by dividing the distance P between the centers of the first coil 131_1 and the second coil 131_2 by the moving speed ⁇ of the probe 1.
  • the first measuring instrument 91_1 detects the induced voltage, which is a signal corresponding to the leakage magnetic flux L_F leaking from the wire rope 2S, as the sensor signal f1 (t ⁇ ). Further, the second measuring instrument 91_2 detects the induced voltage, which is a signal corresponding to the leakage magnetic flux L_F leaking from the wire rope 2S, as the sensor signal f2 (t).
  • the synthesizer 92 superimposes the sensor signal f1 (t ⁇ ) detected by the first measuring instrument 91_1 and the sensor signal f2 (t) detected by the second measuring instrument 91_1 to form the sensor signal x. (T) is generated. Specifically, the synthesizer 92 detects the sensor signal f1 (t ⁇ ) detected by the first measuring instrument 91_1 with the sensor signal f1 (t) delayed by the time ⁇ and the second measuring instrument 91_2. The generated sensor signal f2 (t) is superimposed. As a result, the sensor signal x (t) becomes a signal obtained by combining the peaks of the induced voltage generated across the first coil 131_1 and the peaks of the induced voltage generated across the second coil 131_2.
  • the amplitude of the sampled signal is real. Therefore, the discrete signal, which is a sampled signal, is represented as a sequence of real values ⁇ x (0), x (1), x (2), ... ⁇ , So it is represented as a sequence x (n). To.
  • the sequence x (n) is supplied to the filter unit 93 as an input signal x (n).
  • sequence x (n) is referred to as an input signal x (n) of the filter unit 93.
  • the filter unit 93 extracts the frequency component of the input signal x (n) that samples the sensor signal x (t).
  • the filter unit 93 has a plurality of FIR (Finite Impulse Response) filters 931 as a plurality of bandpass filters, and a plurality of absolute value units 932.
  • FIR Finite Impulse Response
  • FIG. 7 is a diagram showing an example of the frequency characteristics of the filter unit 93 of FIG. As shown in FIG. 7, the number of taps, the gain, and the bandwidth b are constant in each of the plurality of FIR filters 931.
  • the plurality of FIR filters 931 have a plurality of bands different from each other as individual pass bands. That is, the plurality of FIR filters 931 have different pass bands different from each other. Therefore, the filter unit 93 extracts the frequency component of the input signal x (n) in each of the plurality of bands different from each other.
  • the plurality of absolute value units 932 obtain the absolute values of the frequency components of the input signals x (n) supplied from the plurality of FIR filters 931.
  • the input signal x (n) is a sequence of real values ⁇ x (0), x (1), x (2), ... ⁇ As described above. Therefore, the plurality of absolute value units 932 are quantized by dividing the input signal x (n) by a quantization unit and rounding off to obtain a sequence yk (n) of integer values.
  • k is a value in ascending order from 1 to N.
  • N is a natural number.
  • the plurality of FIR filters 931 extract the frequency component of the real value x (0) in each of a plurality of bands different from each other.
  • the absolute value unit 932 performs the above calculation on the frequency component of the real value x (0) for each individual pass band, so that the integer values y1 (0), y2 (0), ..., And yN (0) Ask for.
  • integer values y1 (0), y2 (0), ... And yN (0) are referred to as a sequence of integer values ⁇ y1 (0), y2 (0), ... And yN (0) ⁇ . It is expressed as a sequence yk (0).
  • the filter unit 93 performs the same processing on the real value x (1) to obtain yk (1).
  • the filter unit 93 performs the same processing on the real value x (2) and later, and obtains yk (2) and later. From the above description, the filter unit 93 obtains the sequence yk (n) from the input signal x (n).
  • FIG. 8 is a diagram showing an example of the distribution of frequency components extracted from the input signal x (n) by the filter unit 93 of FIG.
  • the moving speed ⁇ of the wire rope 2S is trapezoidally controlled, for example. Therefore, when the wire rope 2S is moving at a constant velocity, the periodic fluctuation of the input signal x (n) due to the shape of the outer peripheral portion of the wire rope 2S is constant. Periodic variation of the input signal x (n) due to the shape on the outer peripheral portion of the wire rope 2S occurs for each pitch ⁇ S of the strand 21S as described above. Therefore, the constant periodic fluctuation of the input signal x (n) occurs at a specific frequency.
  • the frequency component of the constant periodic fluctuation of the input signal x (n) can be regarded as the noise frequency component f_n of the input signal x (n) among the frequency components of the input signal x (n).
  • the input signal x (n) is a signal synthesized by the synthesizer 92 according to the leakage magnetic flux L_F
  • the signal generated during the local minute time ⁇ t and the input signal x (n) in the time domain. ) Is equivalent. Therefore, when the input signal x (n) is a signal synthesized by the synthesizer 92 according to the leakage magnetic flux L_F, the shorter the minute time ⁇ t, the more the frequency component of the input signal x (n) appears in the band. The number increases.
  • the distribution of the frequency components of the input signal x (n) becomes a distribution over a plurality of bands. Therefore, among the frequency components of the input signal x (n), the damaged frequency component f_s of the input signal x (n) also appears in a band other than the band in which the noise frequency component f_n of the input signal x (n) appears.
  • the distribution of frequency components is composed of a sequence yk (n).
  • the sequence yk (n) is composed of integer values y1 (n), y2 (n), ..., And yN (n). Therefore, the distribution of frequency components is composed of a plurality of values y1 (n) to yN (n).
  • the crest factor is a value obtained by calculating the ratio of the maximum value to the effective value.
  • the processing unit 94 has a calculation unit 941 and a learning unit 943.
  • the calculation unit 941 extracts a plurality of feature quantities based on a plurality of values y1 (n) to yN (n). Specifically, the calculation unit 941 extracts a plurality of feature quantities from a plurality of values y1 (n) to yN (n) by a plurality of statistical calculations.
  • the plurality of feature quantities are representative values that characterize the frequency components of the input signal x (n).
  • the statistical operation is, for example, an operation for finding the median value.
  • the median value is a value located at the center when the integer values y1 (n), y2 (n), ..., And yN (n) constituting the sequence yk (n) are arranged in ascending order.
  • statistical calculations include, for example, maximum value, minimum value, range, average value, standard deviation, effective value, crest factor, differentiation, and difference calculation.
  • the range is a value obtained by an operation for obtaining the difference between the maximum value and the minimum value.
  • FIG. 9 is a diagram showing an example of the sequence yk (n) generated by the filter unit 93 at the time t1 of FIG.
  • the value y9 (n) at the time indicates the minimum value. Therefore, the range can be obtained by the difference between the value y8 (n) and the value y9 (n).
  • FIG. 10 is a diagram showing an example of the sequence yk (n) generated by the filter unit 93 at the time t2 of FIG.
  • the median value in addition to the median value, the average value, the standard deviation, and the derivative or the difference are shown.
  • the learning unit 943 inputs a plurality of feature quantities based on a plurality of values y1 (n) to yN (n) into the learning model 961.
  • the learning model 961 when a plurality of feature quantities are input executes arithmetic processing.
  • the learning unit 943 determines whether or not the wire rope included in the wire rope 2S is damaged from the execution result of the arithmetic processing of the learning model 961.
  • machine learning is performed on the correlation between a plurality of features based on a plurality of values y1 (n) to yN (n) constituting the frequency component and the state of the wire contained in the wire rope 2S. It has already been learned.
  • the learning unit 943 inputs a plurality of feature quantities into a learning model 961 in which at least one of the plurality of first feature quantities and the plurality of second feature quantities is used as a learning data set, and executes arithmetic processing. From the output of the model 961, it is determined whether or not the wire rope 2S is damaged.
  • the plurality of first feature quantities are a set of a plurality of values that characterize the presence of damage to the wire contained in the wire rope 2S.
  • the plurality of second feature quantities are a set of a plurality of values that characterize that there is no damage to the wire contained in the wire rope 2S.
  • the damage to the wire contained in the wire rope 2S is the physical damage caused to at least a part of the wire rope 2S.
  • Physical damage is, for example, damage to at least one of wire breakage, partial wire breakage, and scratch marks on the wire.
  • damage to the wire contained in the wire rope 2S will be appropriately referred to as damage to the wire.
  • FIG. 11 is a diagram showing a concept of performing machine learning using a learning data set when the learning unit 943 of FIG. 6 is configured as a support vector machine 943_1.
  • the support vector machine 943_1 sets a plurality of first feature quantities and a plurality of second feature quantities as inputs as an example of machine learning of supervised learning.
  • the learning unit 943 of FIG. 6 can classify the preset feature space into a first region and a second region by an identification hyperplane. It is configured as machine 943_1.
  • the first region is a region including a plurality of first feature quantities.
  • the first region is a region including the first support vector SV_1 which is a part of the plurality of first feature quantities.
  • the second region is a region including a plurality of second feature quantities.
  • the second region is a region including the second support vector SV_2, which is a part of the plurality of second feature quantities.
  • the plurality of first feature quantity is represented by the sequence gamma 'q.
  • q is 1, 2, ..., a N e.
  • Ne is the number of samples with damage to the wire.
  • Series gamma 'q are multiple values ⁇ '1 (n), ⁇ '2 (n ), and a... And ⁇ 'M (n).
  • ⁇ '1 (n) is assigned the maximum value in the sequence yk (n). Further, the minimum value in the sequence yk (n) is assigned to ⁇ '2 (n).
  • sequence gamma 'q is constructed from the values computed value is assigned by a plurality of statistical operation.
  • the plurality of second features are represented by the sequence ⁇ p.
  • p is 1, 2, ..., No. N o is the number of samples although the damage of the wire is not.
  • the sequence ⁇ p is composed of a plurality of values ⁇ 1 (n), ⁇ 2 (n), ..., And ⁇ M (n).
  • ⁇ 1 (n) is assigned the maximum value in the sequence yk (n). Further, the minimum value in the sequence yk (n) is assigned to ⁇ 2 (n). In this way, the sequence ⁇ p is composed of values to which the values calculated by a plurality of statistical operations are assigned.
  • the sequence ⁇ p includes the second support vector SV_2, where a part of the plurality of second features is the second support vector SV_2.
  • w T ⁇ p + b -1.
  • support vector machine 943_1 is within a value constituting the series gamma 'q, sets the closest to one of the values that constitute the sequence gamma p to the first support vector SV_1. Also, support vector machine 943_1 is within a value constituting the sequence gamma p, sets the closest to one of the values that constitute the series gamma 'q in the second support vector SV_2.
  • the support vector machine 943_1 obtains w T and b having a distance d1 and a distance d2.
  • the support vector machine 943_1 calculates the identification hyperplane by finding such w T and b.
  • the support vector machine 943_1 generates a learning model 961_1 by mapping both a plurality of first feature quantities and a plurality of second feature quantities to the feature space as a training data set and calculating an identification hyperplane.
  • the support vector machine 943_1 considers that the wire is damaged when the output of the learning model 961-1 when a plurality of features are input to the learning model 961-1 corresponds to the one classified in the first region. judge. Further, the support vector machine 943_1 determines that there is no damage to the strands when the output of the learning model 961_1 when a plurality of feature quantities are input to the learning model 961_1 corresponds to those classified into the second region.
  • FIG. 12 is a flowchart illustrating processing by the control unit 9 when the learning unit 943 of FIG. 6 is configured as the support vector machine 943_1.
  • the processes of steps S11 to S13 are learning processes.
  • the processes of steps S14 and S15 are feature extraction processes.
  • the processes of steps S16 to S20 are strand determination processes.
  • the process of step S21 and step S22 is a period determination process.
  • step S11 the support vector machine 943_1 determines whether or not the training data set has been input.
  • the support vector machine 943_1 shifts the current processing to the processing in step S12.
  • the process of step S11 is continued.
  • step S12 the support vector machine 943_1 determines whether or not both the plurality of first feature quantities and the plurality of second feature quantities are included in the training data set.
  • the current process shifts to the process of step S13.
  • the support vector machine 943_1 determines that the training data set does not include both the plurality of first feature quantities and the plurality of second feature quantities, the current process is returned to the process of step S11.
  • step S13 the support vector machine 943_1 calculates a discriminant hyperplane that can be classified into a first region and a second region by performing machine learning using the learning data set, and generates a learning model 961_1.
  • the support vector machine 943_1 shifts the current process to the process of step S14.
  • step S14 the calculation unit 941 determines whether or not the frequency component of the sensor signal x (t) has been extracted.
  • the calculation unit 941 shifts the current process to the process of step S15.
  • the calculation unit 941 repeats the process of step S14. That is, the process of step S14 is a process in which the calculation unit 941 determines whether or not the frequency component of the sensor signal x (t) has been extracted by the filter unit 93.
  • step S15 the calculation unit 941 extracts a plurality of feature quantities from a plurality of values y1 (n) to yN (n) constituting the frequency component by a plurality of statistical calculations.
  • the calculation unit 941 shifts the current processing to the processing in step S16.
  • step S16 the support vector machine 943_1 inputs a plurality of feature quantities into the learning model 961-1.
  • the support vector machine 943_1 shifts the current process to the process of step S17.
  • step S17 the support vector machine 943_1 determines whether or not the output of the learning model 961_1 corresponds to a plurality of feature quantities classified into the first region.
  • the support vector machine 943_1 shifts the current processing to the processing in step S18.
  • the support vector machine 943_1 determines that the output of the learning model 961_1 does not correspond to the one in which a plurality of feature quantities are classified into the first region, the support vector machine 943_1 moves the current processing to the processing in step S19.
  • step S18 the support vector machine 943_1 determines that the wire is damaged.
  • the support vector machine 943_1 shifts the current process to the process of step S21.
  • step S19 the support vector machine 943_1 determines whether or not the output of the learning model 961_1 corresponds to a plurality of feature quantities classified into the second region.
  • the support vector machine 943_1 shifts the current processing to the processing in step S20.
  • the support vector machine 943_1 determines that the output of the learning model 961_1 does not correspond to the one in which a plurality of feature quantities are classified into the second region, the support vector machine 943_1 shifts the current processing to the processing in step S21.
  • step S20 the support vector machine 943_1 determines that the wire is not damaged.
  • the support vector machine 943_1 shifts the current process to the process of step S21.
  • step S21 the filter unit 93 determines whether or not to end the determination of the presence or absence of damage to the wire.
  • the filter unit 93 ends the current process.
  • the filter unit 93 shifts the current process to the process of step S22.
  • the filter unit 93 determines whether or not the speed of the wire rope 2S corresponds to the constant velocity moving period.
  • the filter unit 93 returns the current process to the process of step S14.
  • the filter unit 93 determines that the speed of the wire rope 2S does not correspond to the constant velocity movement period, the filter unit 93 continues the process of step S22.
  • FIG. 13 is a diagram showing a concept of performing machine learning using a learning data set when the learning unit 943 of FIG. 6 is configured as an autoencoder 943_2.
  • the learning unit 943 of FIG. 6 is configured as an autoencoder 943_2 that suppresses the error between the input and the output to a constant amount by the weighting coefficient wf, the weighting coefficient wg, and the weighting coefficient wh.
  • the autoencoder 943_2 sets a plurality of second feature quantities as inputs as an example of machine learning by unsupervised learning.
  • the autoencoder 943_2 has a hierarchical structure formed by laminating a part of the autoencoder 962_1, a part of the autoencoder 962_2, and the final layer 965.
  • the autoencoder 962_1 has an encoder 963_1 and a decoder 964_1.
  • a sigmoid function is used as the activation function.
  • the autoencoder 943_2 sets the input of the encoder 963_1 to the input of the autoencoder 962_1.
  • the autoencoder 943_2 sets the output of the encoder 963_1 to the input of the decoder 964_1.
  • the autoencoder 943_2 sets the output of the decoder 964_1 to the output of the autoencoder 962_1.
  • the autoencoder 943_2 calculates the weighting coefficient wf, the weighting coefficient wg, and the weighting coefficient wh by learning so that the same one input to the autoencoder 962_1 is reconstructed on the output side of the autoencoder 962_1.
  • the autoencoder 943_2 sets the output of the encoder 963_1, which is a part of the autoencoder 962_1, to the input of the autoencoder 962_2.
  • the autoencoder 962_2 has an encoder 963_2 and a decoder 964_2.
  • a sigmoid function is used as the activation function.
  • the autoencoder 943_2 sets the input of the encoder 963_2 to the input of the autoencoder 962_2.
  • the autoencoder 943_2 sets the output of the encoder 963_2 to the input of the decoder 964_2.
  • the autoencoder 943_2 sets the output of the decoder 964_2 to the output of the autoencoder 962_2. Similar to the autoencoder 962_2, the autoencoder 943_2 learns the weighting coefficient wf, the weighting coefficient wg, and the weighting coefficient wh so that the same input to the autoencoder 962_2 is reproduced on the output side of the autoencoder 962_2. Calculate.
  • the autoencoder 943_2 sets the output of the encoder 963_2, which is a part of the autoencoder 962_2, to the input of the final layer 965. Therefore, the autoencoder 943_2 sets the output of the encoder 963_1 to the input of the encoder 963_2.
  • the autoencoder 943_2 adds a final layer 965 to the output side of the encoder 963_2. For the final layer 965, the softmax function is used as the activation function.
  • the autoencoder 943_2 sets the learning model 961_2 by finely adjusting the weighting coefficient wf, the weighting coefficient wg, and the weighting coefficient wh in the hierarchical structure of the encoder 963_1, the encoder 963_2, and the final layer 965 by using the error back propagation method. Generate.
  • the autoencoder 943_2 learns by calculating the weighting coefficient wf, the weighting coefficient wg, and the weighting coefficient wh by using a plurality of second feature quantities for each of the input and the output of the autoencoder 943_2 as a learning data set.
  • the autoencoder 943_2 determines that there is no damage to the strands when the output of the learning model 961_2 when a plurality of feature quantities are input to the learning model 961_2 can reconstruct the plurality of feature quantities.
  • the autoencoder 943_2 determines that the wire is damaged when the output of the learning model 961_2 when a plurality of feature quantities are input to the learning model 961_2 cannot reconstruct the plurality of feature quantities.
  • the autoencoder 943_2 sets the difference between the plurality of feature quantities and the output of the learning model 961_2 when the plurality of feature quantities are input to the learning model 961_2 as the reconstruction error.
  • the autoencoder 943_2 calculates the root mean square error by square averaging the reconstruction error. When the root mean square error exceeds the error tolerance, the autoencoder 943_2 determines that the output of the learning model 961_2 could not reconstruct a plurality of features. When the root mean square error is equal to or less than the error tolerance, the autoencoder 943_2 determines that the output of the learning model 961_2 has been able to reconstruct a plurality of features.
  • the error tolerance is a value set according to a plurality of feature quantities.
  • FIG. 14 is a flowchart illustrating processing by the control unit 9 when the learning unit 943 of FIG. 6 is configured as an autoencoder 943_2.
  • the processing of steps S41 to S43 is a learning process.
  • the processes of steps S44 and S45 are feature extraction processes.
  • the processes of steps S46 to S49 are strand determination processes.
  • the processing of step S50 and step S51 is a period determination processing.
  • the learning process feature amount extraction process, wire line determination process, and period determination process
  • the period determination process is the same as the processes of steps S21 and S22 of FIG. Therefore, the description thereof will be omitted.
  • step S41 the autoencoder 943_2 determines whether or not the training data set has been input.
  • the autoencoder 943_2 shifts the current process to the process of step S42.
  • the autoencoder 943_2 determines that the learning data set has not been input, the autoencoder 943_2 continues the process of step S41.
  • step S42 the autoencoder 943_2 determines whether or not the learning data set contains a plurality of second feature quantities.
  • the autoencoder 943_2 shifts the current process to the process of step S43.
  • the autoencoder 943_2 determines that the training data set does not include the plurality of second feature quantities, the autoencoder 943_2 returns the current processing to the processing in step S41.
  • step S43 the autoencoder 943_2 calculates the weighting coefficient wf, the weighting coefficient wg, and the weighting coefficient wh that suppress the error between the input and the output to a certain amount by performing machine learning using the learning data set, and is a learning model. Generate 961-2. The autoencoder 943_2 shifts the current process to the process of step S44.
  • step S44 the calculation unit 941 determines whether or not the frequency component of the sensor signal x (t) has been extracted. When the calculation unit 941 determines that the frequency component of the sensor signal x (t) has been extracted, the calculation unit 941 shifts the current process to the process of step S45. When the calculation unit 941 determines that the frequency component of the sensor signal x (t) has not been extracted, the calculation unit 941 continues the process of step S44.
  • step S45 the calculation unit 941 extracts a plurality of feature quantities from a plurality of values y1 (n) to yN (n) constituting the frequency component by a plurality of statistical calculations.
  • the calculation unit 941 shifts the current processing to the processing in step S46.
  • step S46 the autoencoder 943_2 inputs a plurality of feature quantities into the learning model 961_2.
  • the autoencoder 943_2 shifts the current process to the process of step S47.
  • step S47 the autoencoder 943_2 determines whether or not the output of the learning model 961_2 has been able to reconstruct a plurality of feature quantities.
  • the autoencoder shifts the current process to the process of step S48.
  • the autoencoder 943_2 determines that the output of the learning model 961_2 has not been able to reconstruct a plurality of feature quantities
  • the autoencoder shifts the current process to the process of step S49.
  • step S48 the autoencoder 943_2 determines that there is no damage to the wire.
  • the autoencoder 943_2 shifts the current process to the process of step S50.
  • step S49 the autoencoder 943_2 determines that the wire is damaged.
  • the autoencoder 943_2 shifts the current process to the process of step S50.
  • the wire rope flaw detector includes a magnetizer 11, a magnetic sensor 13, and a control unit 9.
  • the magnetizer 11 generates a magnetic flux F that passes through a part of the wire rope 2S.
  • the magnetic sensor 13 generates a signal corresponding to the leakage magnetic flux L_F leaking from the wire rope 2S in the magnetic flux F as a sensor signal x (t).
  • the control unit 9 processes the sensor signal x (t).
  • the control unit 9 has a filter unit 93 for extracting the frequency component of the sensor signal x (t), a calculation unit 941, and a learning unit 943.
  • the learning unit 943 generates a trained learning model 961 as a preliminary step for determining whether or not there is damage to the wire.
  • the trained learning model 961 performs machine learning on the correlation between a plurality of features based on a plurality of values y1 (n) to yN (n) constituting the frequency component and the state of the wire rope included in the wire rope 2S. Is going.
  • the learning unit 943 determines whether or not there is damage to the strands by executing arithmetic processing in the learning model 961 when a plurality of feature quantities are input to the learned learning model 961.
  • the plurality of feature quantities are extracted based on a plurality of values y1 (n) to yN (n) constituting the frequency components extracted at a timing different from the previous step of determining the presence or absence of damage to the strands. There is.
  • the processing unit 94 performs arithmetic processing of the learning model 961 when the input of a plurality of feature quantities based on the plurality of values y1 (n) to yN (n) constituting the frequency component is used as the learned learning model 961.
  • the presence or absence of damage to the wire is determined from the execution result.
  • the learning model 961 is machine learning about the correlation between a plurality of features based on a plurality of values y1 (n) to yN (n) constituting the frequency component and the state of the wire rope included in the wire rope 2S. Have been learned.
  • the learning model 961 can input a plurality of features based on a plurality of values y1 (n) to yN (n) constituting the frequency component to the wire rope 2S without performing a complicated calculation. It is possible to output the prediction result of predicting the state.
  • the processing unit 94 can determine the presence or absence of damage to the strands in a state where the noise frequency component f_n is concealed by the output from the learning model 961 input based on the frequency component in the frequency domain.
  • the wire rope flaw detector can more reliably improve the SN ratio.
  • the calculation unit 941 extracts a plurality of feature quantities from a plurality of values y1 (n) to yN (n) by a plurality of statistical calculations.
  • the learning unit 943 uses at least one of a plurality of first feature quantities that characterize the presence of damage to the strands and a plurality of second feature quantities that characterize the absence of damage to the strands as a learning data set. From the output of the learning model 961, it is determined whether or not the wire is damaged.
  • the learning unit 943 is a learning model 961 when a plurality of feature quantities are input to the learning model 961 in which at least one of the plurality of first feature quantities and the plurality of second feature quantities is used as a learning data set. Based on the output of, it is judged whether or not the wire is damaged.
  • the plurality of first feature quantities characterize that there is damage to the wire.
  • the plurality of second feature quantities are characterized by no damage to the strands.
  • the learning unit 943 can clearly determine the presence or absence of damage to the strands from a side surface different from the leakage magnetic flux L_F in the time domain. Therefore, the wire rope flaw detector can more reliably improve the signal-to-noise ratio.
  • the learning unit 943 can classify the preset feature space into a first region including a plurality of first feature quantities and a second region including a plurality of second feature quantities by an identification hyperplane. It is configured as a support vector machine 943_1.
  • the support vector machine 943_1 generates a learning model 961_1 by mapping both a plurality of first feature quantities and a plurality of second feature quantities to a feature space as a training data set and calculating an identification hyperplane.
  • the support vector machine 943_1 can classify by the learning model 961_1 on the identification hyperplane whether a plurality of features correspond to the case where the wire is damaged or the case where the wire is not damaged. Therefore, the wire rope flaw detector can improve the generalization ability for determining the presence or absence of damage to the wire.
  • the support vector machine 943_1 determines that the wire is damaged when the output of the learning model 961_1 when a plurality of feature quantities are input to the learning model 961_1 corresponds to the one classified in the first region.
  • the support vector machine 943_1 determines that there is no damage to the strands when the output of the learning model 961_1 when a plurality of feature quantities are input to the learning model 961_1 corresponds to those classified into the second region.
  • the support vector machine 943_1 determines the presence or absence of wire damage according to whether the output of the learning model 961_1 corresponds to a plurality of feature quantities classified into either the first region or the second region. do. Therefore, the support vector machine 943_1 can determine whether or not the wire is damaged depending on which region it belongs to. Therefore, the wire rope flaw detector can replace the determination process of presence / absence of damage to the wire with a simple classification process, so that erroneous determination can be reduced.
  • the learning unit 943 is configured as an autoencoder 943_2 that suppresses the error between the input and the output to a certain amount by the weighting coefficient wf, the weighting coefficient wg, and the weighting coefficient wh.
  • the autoencoder 943_2 uses a plurality of second features as a training data set for each of the input and output of the autoencoder 943_2 to calculate the weighting coefficient wf, the weighting coefficient wg, and the weighting coefficient wh, thereby calculating the training model 961_2. To generate.
  • the autoencoder 943_2 can indicate by output whether a plurality of features correspond to the case where the wire is damaged or the case where the wire is not damaged. Therefore, the autoencoder 943_2 can reduce the number of dimensions by weighting each of the plurality of feature quantities and determine the presence or absence of damage to the strands.
  • the wire rope flaw detector can reduce the amount of calculation required for determination, and emphasizes the feature amount that contributes to the determination of the presence or absence of damage to the wire among a plurality of feature amounts. It is possible to improve the accuracy of determining the presence or absence of damage.
  • the autoencoder 943_2 determines that there is no damage to the strands when the output of the learning model 961_2 when a plurality of feature quantities are input to the learning model 961_2 can reconstruct the plurality of feature quantities.
  • the autoencoder 943_2 determines that the wire is damaged when the output of the learning model 961_2 when a plurality of feature quantities are input to the learning model 961_2 cannot reconstruct the plurality of feature quantities.
  • the autoencoder 943_2 determines whether or not the wire is damaged depending on whether or not the output of the learning model 961_2 can reconstruct a plurality of feature quantities. Therefore, the wire rope flaw detector can determine the presence or absence of damage to the wire even if each of the plurality of features has a non-linear relationship.
  • the autoencoder 943_2 may execute the following processing when it is determined by the learning model 961_2 that the wire is damaged.
  • the autoencoder 943_2 estimates by sparse optimization which input dimension is responsible for determining that the wire is damaged. As a result, the autoencoder 943_2 can use the estimation result for a more detailed analysis of the broken portion of the wire rope 2.
  • the filter unit 93 has a plurality of bandpass filters having a plurality of bands different from each other as individual pass bands. Therefore, the filter unit 93 can extract frequency components of a plurality of bands different from each other. Therefore, the wire rope flaw detector can analyze the induced voltage generated by the magnetic sensor 13 as the sensor signal x (t) in the frequency domain.
  • the calculation unit 941 performs a plurality of statistical calculations to obtain at least one of a total value, an average value, and a median of a plurality of values y1 (n) to yN (n) constituting the frequency component of the plurality of feature quantities. Ask for at least one.
  • the calculation unit 941 does not compare all of the plurality of values y1 (n) to yN (n) constituting the frequency component, but has a plurality of different representatives corresponding to a plurality of types of statistical calculations. Extract the values as multiple features.
  • the wire rope flaw detector uses a plurality of feature quantities as a plurality of representative values extracted from various aspects, the accuracy of determining the presence or absence of damage to the wire can be particularly significantly improved.
  • Embodiment 2 In the second embodiment, the description of the same or equivalent configuration and function as the first embodiment is omitted.
  • the second embodiment is different from the first embodiment in that either one of the learning model 961_1 and the learning model 961_2 of the first embodiment is already stored in the learning unit 943.
  • Other configurations are the same as those in the first embodiment. That is, the other configurations are the same as or equivalent to those of the first embodiment, and these parts are designated by the same reference numerals.
  • FIG. 15 is a flowchart illustrating processing by the control unit 9 in the second embodiment.
  • the learning process including the processes of steps S11 to S13 as described with reference to FIG. 12 is unnecessary.
  • the learning process including the processes of steps S41 to S43 as described with reference to FIG. 14 is unnecessary.
  • the period determination process including the processes of steps S21 and S22 as described with reference to FIG. 12 is omitted.
  • the period determination process including the processes of steps S50 and S51 as described with reference to FIG. 14 is omitted.
  • steps S61 and S62 are feature extraction processes.
  • the processing of step S61 and step S62 is the same as the processing of step S44 and step S45. Therefore, the description thereof will be omitted.
  • step S63 and steps S65 to S67 are wire line determination processes.
  • the processes of steps S63 and steps S65 to S67 are the same as the processes of steps S46 to S49. Therefore, the description thereof will be omitted.
  • the processes of steps S65 to S67 are executed by the learning model 961_2 generated from the autoencoder 943_2.
  • step S63 and steps S68 to S71 are wire line determination processes.
  • the processes of steps S63 and steps S68 to S71 are the same as the processes of steps S16 to S20. Therefore, the description thereof will be omitted.
  • the processes of steps S68 to S71 are executed by the learning model 961_1 generated from the support vector machine 943_1.
  • step S64 the control unit 9 determines whether the learning model 961 is the learning model 961_2 generated by the autoencoder 943_2 or the learning model 961_1 generated by the support vector machine 943_1.
  • the process of step S64 proceeds to the process of step S65.
  • the process of step S64 proceeds to the process of step S68.
  • the sensor signal x (t) is input as an input to the control unit 9, and the wire is damaged as an output from the control unit 9.
  • the judgment result of the presence or absence of is output.
  • either one of the learning model 961_1 and the learning model 961_2 can be used for failure diagnosis of the wire rope 2S.
  • Embodiment 3 In the third embodiment, the description of the same or equivalent configuration and function as those of the first embodiment and the second embodiment is omitted.
  • the third embodiment is different from the first and second embodiments in that the bandpass filters of the first and second embodiments are realized by wavelet transform.
  • Other configurations are the same as those of the first embodiment and the second embodiment. That is, the other configurations are the same as or equivalent to those of the first embodiment, and these parts are designated by the same reference numerals.
  • FIG. 16 is a block diagram showing a functional configuration example of the control unit 9 that processes a signal corresponding to the leakage magnetic flux L_F leaking from the wire rope 2S according to the third embodiment.
  • the filter unit 193 uses a wavelet transform unit 1931 as a bandpass filter to generate a distribution of frequency components of the sensor signal x (t) by performing a wavelet transform on the sensor signal x (t). I have.
  • FIG. 17 is a diagram showing an example of the frequency characteristics of the filter unit 193 of FIG.
  • the bandpass filter is realized by the basis function of the wavelet transform processed by the wavelet transform unit 1931. As shown in FIG. 17, each of the bandwidth b k of the plurality of bands, the center frequency omega ck bandwidth becomes narrower lower.
  • FIG. 18 is a diagram showing an example of a waveform in the time domain of the mother wavelet by the wavelet transform unit 1931 of FIG.
  • the mother wavelet is expressed by the equation (1).
  • the daughter wavelet is expressed by the following equation (2).
  • the scale of the daughter wavelet is expressed by the following equation (3).
  • the daughter wavelet represented by the formula (2) can increase or decrease the amplitude of the waveform shown in FIG. 18 according to the scale represented by the formula (3). Further, the daughter wavelet represented by the equation (2) can translate the waveform shown in FIG. 18 in the time axis direction according to the scale represented by the equation (3).
  • s 0 is a constant of scale.
  • sk is a scale function that takes k as an argument and is multiplied by s 0.
  • the Fourier transform of the mother wavelet and daughter wavelet is explained as follows.
  • the Fourier transform equation of the mother wavelet is expressed by the following equation (4).
  • the Fourier transform of the daughter wavelet is expressed in Eq. (5).
  • FIG. 19 is a diagram showing an example of waveforms in the frequency domain of the mother wavelet by the wavelet transform unit 1931 of FIG.
  • the frequency characteristic of Morlet Wavelet among the frequency components of the input signal x (n), the frequency of the pass band specified by the center frequency omega 0 of bandwidth b k and bandwidth b k It becomes a bandpass filter to pass.
  • the center frequency ⁇ ck in FIG. 19 is expressed by the following equation (6).
  • the center frequency ⁇ ck is expressed by the value obtained by dividing ⁇ 0 / s 0 by the power of the root of 2 to the power of m.
  • m is a natural number.
  • the center frequency ⁇ ck is expressed by the value obtained by dividing ⁇ 0 / s 0 by 2.
  • the bandwidth bc is expressed by the value obtained by doubling the square root of the natural logarithm of 2 and dividing by s 0 by dividing by 2.
  • FIG. 20 is a conceptual diagram of the center frequency ⁇ ck at 1/3 octave as another example of the frequency characteristics of the filter unit 193 of FIG.
  • the center frequency ⁇ ck can be expressed by a value obtained by dividing ⁇ 0 / s 0 by the power of the cube root of 2.
  • Equation (11) expresses the difference in magnitude between the center frequency ⁇ ck and the center frequency ⁇ ck + 1 of two bands adjacent to each other based on the equation (8). From equation (11), the center frequency ⁇ ck becomes 2-1 / m each time k is incremented by 1.
  • Equation (12) expresses the difference in magnitude between the bandwidth b k and the bandwidth b k + 1 of two adjacent bands based on the equation (9). From equation (12), for each k increases 1, the bandwidth b k will 2 -1 / m.
  • FIG. 21 is a diagram showing an example of the distribution of frequency components extracted from the signal corresponding to the leakage magnetic flux L_F by the filter unit 193 of FIG.
  • FIG. 22 is a diagram showing an example of the sequence yk (n) generated by the filter unit 193 at the time t1 of FIG.
  • FIG. 23 is a diagram showing an example of the sequence yk (n) generated by the filter unit 193 at the time t2 of FIG.
  • FIG. 24 is a flowchart illustrating processing by the control unit 9 of FIG.
  • the process of step S81 is a learning process.
  • the processes of steps S82 to S84 are feature extraction processes.
  • the process of step S85 is a wire determination process.
  • the process of step S86 is a period determination process.
  • the learning process, feature amount extraction process, wire determination process, and period determination process are as follows. That is, the learning process, the wire line determination process, and the period determination process are a series of processes including the processes of steps S11 to S13, the processes of steps S16 to S20, and the processes of steps S21 and S22 in FIG.
  • the learning process, the wire line determination process, and the period determination process are a series of processes including the processes of steps S41 to S43, the processes of steps S46 to S49, and the processes of steps S50 and S51 in FIG. Therefore, the learning process, the wire line determination process, and the period determination process are a series of processes of any one of the above. Therefore, those explanations are omitted.
  • step S82 the synthesizer 92 inputs the input signal x (n) corresponding to the sensor signal x (t) to the filter unit 193.
  • the synthesizer 92 shifts the current process to the process of step S83.
  • step S83 the filter unit 193 extracts the frequency component of the input signal x (n) by the wavelet transform unit 1931.
  • the filter unit 193 shifts the current process to the process of step S84.
  • the description of the process executed by the absolute value unit 932 between the process of step S83 and the process of step S84 will be omitted.
  • step S84 the calculation unit 941 extracts a plurality of feature quantities from a plurality of values y1 (n) to yN (n) composed of frequency components extracted by the wavelet transform unit 1931 by a plurality of statistical calculations.
  • the calculation unit 941 shifts the current processing to the processing in step S85.
  • each of the bandwidth b k of the plurality of bands, the center frequency omega ck bandwidth becomes narrower lower. Therefore, the lower the center frequency ⁇ ck of the band, the higher the frequency resolution and the lower the time resolution. The higher the center frequency ⁇ ck of the band, the lower the frequency resolution and the higher the time resolution. Therefore, the wire rope flaw detector can more accurately detect where the sudden fluctuation occurred on the time axis, and can more accurately determine the frequency of the slow fluctuation, which enables efficient analysis.
  • the filter unit 193 extracts a frequency component from the sensor signal x (t) by executing a wavelet transform on the sensor signal x (t). Since the wavelet is a local function, there is a high correlation between the wavelet and the detection of the locally generated wire damage portion B_W. Therefore, the filter unit 193 can emphasize the damaged frequency component f_s among the frequency components. Therefore, the wire rope flaw detector can emphasize the frequency component of the induced voltage generated when the wire is damaged, so that the SN ratio can be particularly significantly improved.
  • the functions of each part of the wire rope flaw detector are realized by the processing circuit. That is, the wire rope flaw detector includes a processing circuit for executing the synthesizer 92, the filter unit 93, the filter unit 193, the calculation unit 941 and the learning unit 943. Even if the processing circuit is dedicated hardware, it is also called a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microprocessor, processor, DSP) that executes a program stored in the memory. It may be.
  • a CPU Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microprocessor, processor, DSP
  • FIG. 25 is a diagram illustrating a hardware configuration example.
  • the processing circuit 201 is connected to the bus 202.
  • the processing circuit 201 corresponds to, for example, a single circuit, a composite circuit, a programmed processor, an ASIC, an FPGA, or a combination thereof.
  • Each of the functions of each part of the wire rope flaw detector may be realized by the processing circuit 201, or the functions of each part may be collectively realized by the processing circuit 201.
  • FIG. 26 is a diagram illustrating another hardware configuration example.
  • the processor 203 and the memory 204 are connected to the bus 202.
  • the processing circuit is a CPU
  • the functions of each part of the wire rope flaw detector are realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is written as a program and stored in memory 204.
  • the processing circuit realizes the functions of each part by reading and executing the program stored in the memory 204. That is, when the wire rope flaw detector is executed by the processing circuit, the steps of controlling the synthesizer 92, the filter unit 93, the filter unit 193, the calculation unit 941 and the learning unit 943 are eventually executed. It has a memory 204 for storing a program.
  • the memory 204 includes, for example, a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, or a magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD, or the like. Applicable.
  • each part of the wire rope flaw detector may be realized by dedicated hardware, and some of the functions may be realized by software or firmware.
  • the filter unit 93 and the filter unit 193 can realize their functions by a processing circuit as dedicated hardware.
  • the arithmetic unit 941 and the learning unit 943 can realize their functions by the processing circuit reading and executing the program stored in the memory 204.
  • the processing circuit can realize each of the above functions by hardware, software, firmware, or a combination thereof.
  • an example of realizing each of the above functions will be specifically described as follows.
  • FIG. 27 is a diagram showing a system configuration example in which at least one of the control units 9 of FIGS. 6 and 16 is incorporated into the terminal device 501 and used as a specific example of FIG. 25 or FIG.
  • the probe 1 detects damage to the wire rope 2S.
  • the wire rope 2S for example, suspends an elevator car.
  • the wire rope 2S may be used for a crane.
  • the probe 1 detects damage to the wire while moving with respect to the wire rope 2S, for example, along a specific direction W_D.
  • the probe 1 supplies, for example, a sensor signal x (t), which is an analog signal, to the AD converter 301 via a cable.
  • the AD converter 301 converts an analog signal into a digital signal.
  • the digital signal converted by the AD converter 301 is input to the terminal device 501.
  • As the terminal device 501 for example, a personal computer is used.
  • the terminal device 501 determines whether or not the wire is damaged by performing various signal processing on the digital signal input from the AD converter 301.
  • the terminal device 501 displays the determination result of the presence or absence of damage to the wire.
  • FIG. 28 shows a system configuration example in which the processing content of the determination device 401 is supplied to the data logger 601 by incorporating at least one of the control units 9 of FIGS. 6 and 16 into the determination device 401 as a specific example of FIG. 25 or FIG. It is a figure which shows.
  • the probe 1 supplies, for example, a sensor signal x (t) composed of an analog signal to the determination device 401 via a cable.
  • the determination device 401 is equipped with a microcomputer.
  • the determination device 401 is dedicated hardware.
  • the determination device 401 converts an analog signal into a digital signal.
  • the determination device 401 determines whether or not the wire is damaged by performing various signal processing on the converted digital signal. In addition, the determination device 401 notifies the determination result of the presence or absence of damage to the wire.
  • the determination device 401 can supply various internally processed signals to an external device as analog signals or digital signals.
  • a data logger 601 is used as the external device.
  • the data logger 601 can display a waveform by inputting an analog signal or a digital signal from the determination device 401. Further, the data logger 601 can record the processing contents of the determination device 401.
  • FIG. 29 shows a system configuration in which at least one of the control units 9 of FIGS. 6 and 16 is incorporated into the determination device 401 as a specific example of FIG. 25 or 26 to supply the processing contents of the determination device 401 to the elevator control panel 701. It is a figure which shows an example.
  • the elevator control panel 701 can transmit monitoring information such as which wire rope 2 of which property is broken to the central monitoring center.
  • the wire rope flaw detector has been described based on the first and second embodiments, but the present invention is not limited to this.
  • the learning unit 943 calculates a learning model 961 applicable to other data and then determines the presence or absence of a strand in the target data
  • the present invention is particularly limited to this. It is not something that is done.
  • the learning unit 943 may determine the presence or absence of a wire by the Mahalanobis distance MD after defining the unit space by the calculation of the MT method.
  • the learning unit 943 defines a unit space when the MT method is used.
  • the learning unit 943 calculates the distance from the center of the unit space to the target data as the Mahalanobis distance MD.
  • the learning unit 943 determines that the Mahalanobis distance MD is short as normal.
  • the learning unit 943 determines that the Mahalanobis distance MD is long as abnormal.
  • the learning unit 943 when there is no damage to the wire, the sensor signal x (t) and a plurality of values y1 (n) to yN (The presence or absence of damage to the wire is determined using the correlation with n).
  • the calculation unit 941 calculates a standardized value obtained by standardizing each of the sensor signal x (t) and the plurality of values y1 (n) to yN (n). The calculation unit 941 calculates the standardized value by (raw data-average value) / standard deviation. Next, the calculation unit 941 calculates the correlation matrix R with the set of standardized values as the unit space. Next, the calculation unit 941 calculates the inverse matrix R -1 of the correlation matrix R. The calculated inverse matrix R -1 is held by the learning unit 943.
  • the calculation unit 941 includes a sensor signal x (t) of the target data to be subject to the presence or absence of damage to the wire, and a plurality of values y1 (n) to which constitute a frequency component of the sensor signal x (t).
  • a matrix Y is generated in which each of yN (n) is standardized in the same manner as described above.
  • the learning unit 943 multiplies the matrix Y that standardizes the target data, the inverse matrix R -1 calculated in advance, and the transposed matrix Y T of the matrix Y that standardizes the target data to obtain the number of items.
  • the Mahalanobis distance MD is calculated.
  • the learning unit 943 determines whether or not the wire is damaged by comparing the preset threshold distance with the Mahalanobis distance MD.
  • the number of items is the number of parameters used in the standardization calculation, and in the above example, it is 1 + N.
  • control unit 9 uses the correlation between various data to derive the correspondence between the input data and the presence or absence of damage to the strands. As a result, the control unit 9 can reliably determine the presence or absence of damage to the strands based on the derived correspondence even when other input data is input. Therefore, the wire rope flaw detector can achieve a high generalization ability.
  • 2,2S wire rope 11 magnetometer, 13 magnetic sensor, 9 control unit, 93,193 filter unit, 94 processing unit, 941 arithmetic unit, 943 learning unit, 943_1 support vector machine, 943_2 autoencoder, 961,961_1,961_2 Learning model.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

In this wire rope flaw detection device, a magnetizer produces magnetic flux that passes through a portion of a wire rope. A magnetic sensor generates, as a sensor signal, a signal corresponding to leakage magnetic flux that is the magnetic flux that has leaked from the wire rope. A filter unit extracts frequency components of the sensor signal. A computation unit extracts a plurality of feature values based on the plurality of values of the frequency components. A learning unit determines whether there is a flaw in a wire included in the wire rope through computation processing by a learning model that has carried out machine learning of the correlation between the plurality of feature values and the state of the wires included in the wire rope and has had the plurality of feature values input therein.

Description

ワイヤロープ探傷装置Wire rope flaw detector
 この発明は、ワイヤロープ探傷装置に関する。 The present invention relates to a wire rope flaw detector.
 従来、ワイヤロープを磁気飽和させる磁化器と、ワイヤロープの損傷部に起因してワイヤロープから漏洩する漏洩磁束を検出する磁気センサとを有するワイヤロープ探傷装置が知られている(例えば、特許文献1参照)。 Conventionally, a wire rope flaw detector having a magnetizer that magnetically saturates the wire rope and a magnetic sensor that detects a leakage magnetic flux leaking from the wire rope due to a damaged portion of the wire rope is known (for example, Patent Document). 1).
特開平09-210968号公報Japanese Unexamined Patent Publication No. 09-210966
 ワイヤロープから漏洩する漏洩磁束の量は、ワイヤロープが細くなるほど少なくなる。よって、特許文献1に示されている従来のワイヤロープ探傷装置は、ワイヤロープが細くなるほど、磁気センサに達する漏洩磁束の量が少なくなって磁気センサの出力が低下する。この結果、従来のワイヤロープ探傷装置のSN比は低下する。 The amount of leakage magnetic flux leaking from the wire rope decreases as the wire rope becomes thinner. Therefore, in the conventional wire rope flaw detector shown in Patent Document 1, the thinner the wire rope, the smaller the amount of leakage magnetic flux reaching the magnetic sensor, and the lower the output of the magnetic sensor. As a result, the signal-to-noise ratio of the conventional wire rope flaw detector is reduced.
 また、従来のワイヤロープ探傷装置は、ワイヤロープと磁気センサとの距離を縮めることでSN比を向上させようとしても、ワイヤロープと磁気センサとの組立精度等の制約がある。よって、従来のワイヤロープ探傷装置は、ワイヤロープと磁気センサとの距離を縮めることに限界がある。 Further, in the conventional wire rope flaw detector, even if the SN ratio is improved by shortening the distance between the wire rope and the magnetic sensor, there are restrictions such as the assembly accuracy of the wire rope and the magnetic sensor. Therefore, the conventional wire rope flaw detector has a limit in reducing the distance between the wire rope and the magnetic sensor.
 この発明は、上記のような課題を解決するためになされたものであり、SN比をより確実に向上させることができるワイヤロープ探傷装置を得ることを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to obtain a wire rope flaw detector capable of more reliably improving the SN ratio.
 この発明に係るワイヤロープ探傷装置は、ワイヤロープの一部を通る磁束を発生する磁化器と、前記磁束のうち前記ワイヤロープから漏洩する漏洩磁束に応じた信号をセンサ信号として発生する磁気センサと、前記センサ信号を処理する制御部と、を備え、前記制御部は、前記センサ信号の周波数成分を抽出するフィルタ部と、前記周波数成分を構成する複数の値に基づく複数の特徴量を抽出する演算部と、前記複数の特徴量と前記ワイヤロープに含まれる素線の状態との相関関係について機械学習を行った学習済みの学習モデルに、前記フィルタ部により抽出された周波数成分を構成する複数の値に基づき前記演算部により抽出された複数の特徴量を入力したときの前記学習モデルが演算処理を実行することで、前記素線の損傷の有無を判定する学習部と、を有している。 The wire rope flaw detector according to the present invention includes a magnetizer that generates a magnetic flux that passes through a part of the wire rope, and a magnetic sensor that generates a signal corresponding to the leakage magnetic flux leaking from the wire rope as a sensor signal. The control unit includes a control unit that processes the sensor signal, and the control unit extracts a filter unit that extracts a frequency component of the sensor signal and a plurality of feature quantities based on a plurality of values constituting the frequency component. A plurality of frequency components extracted by the filter unit are configured in a trained learning model in which the calculation unit and the trained learning model in which the correlation between the plurality of feature quantities and the state of the wire rope included in the wire rope is machine-learned. The learning model when a plurality of feature quantities extracted by the calculation unit are input based on the value of the above has a learning unit for determining the presence or absence of damage to the wire rope by executing the calculation process. There is.
 この発明に係るワイヤロープ探傷装置によれば、SN比をより確実に向上させることができる。 According to the wire rope flaw detector according to the present invention, the SN ratio can be improved more reliably.
実施の形態1によるワイヤロープ探傷装置のプローブを示す分解斜視図である。It is an exploded perspective view which shows the probe of the wire rope flaw detector according to Embodiment 1. FIG. 図1のプローブによる探傷原理を示す説明図である。It is explanatory drawing which shows the flaw detection principle by the probe of FIG. 図2のA部拡大図である。It is an enlarged view of the part A of FIG. 図3の漏洩磁束とコイルとの位置関係の一例をより具体的に説明する図である。It is a figure explaining more concretely an example of the positional relationship between the leakage magnetic flux and a coil of FIG. 図4のワイヤロープよりも小径化されたワイヤロープから漏洩する漏洩磁束とコイルとの位置関係の一例をより具体的に説明する図である。It is a figure explaining more concretely an example of the positional relationship between a leakage magnetic flux leaking from a wire rope whose diameter is smaller than that of the wire rope of FIG. 4 and a coil. 図2の制御部の機能構成例を示すブロック図である。It is a block diagram which shows the functional structure example of the control part of FIG. 図6のフィルタ部の周波数特性の一例を示す図である。It is a figure which shows an example of the frequency characteristic of the filter part of FIG. 図6のフィルタ部が入力信号から抽出した周波数成分の分布の一例を示す図である。It is a figure which shows an example of the distribution of the frequency component extracted from the input signal by the filter part of FIG. 図6の時刻t1のときにフィルタ部によって生成された数列yk(n)の一例を示す図である。It is a figure which shows an example of the sequence yk (n) generated by the filter part at the time t1 of FIG. 図6の時刻t2のときにフィルタ部によって生成された数列yk(n)の一例を示す図である。It is a figure which shows an example of the sequence yk (n) generated by the filter part at the time t2 of FIG. 図6の学習部がサポートベクトルマシンとして構成されているときに学習用データセットを用いて機械学習を行う概念を示す図である。It is a figure which shows the concept of performing machine learning using a learning data set when the learning part of FIG. 6 is configured as a support vector machine. 図6の学習部がサポートベクトルマシンとして構成されているときの制御部による処理を説明するフローチャートである。6 is a flowchart illustrating processing by the control unit when the learning unit of FIG. 6 is configured as a support vector machine. 図6の学習部がオートエンコーダとして構成されているときに学習用データセットを用いて機械学習を行う概念を示す図である。FIG. 6 is a diagram showing a concept of performing machine learning using a learning data set when the learning unit of FIG. 6 is configured as an autoencoder. 図6の学習部がオートエンコーダとして構成されているときの制御部による処理を説明するフローチャートである。6 is a flowchart illustrating processing by the control unit when the learning unit of FIG. 6 is configured as an autoencoder. 実施の形態2において制御部による処理を説明するフローチャートである。It is a flowchart explaining the process by a control part in Embodiment 2. 実施の形態3によるワイヤロープから漏洩する漏洩磁束に応じた信号を処理する制御部の機能構成例を示すブロック図である。FIG. 5 is a block diagram showing a functional configuration example of a control unit that processes a signal corresponding to a leakage magnetic flux leaking from a wire rope according to a third embodiment. 図16のフィルタ部の周波数特性の一例を示す図である。It is a figure which shows an example of the frequency characteristic of the filter part of FIG. 図16のウェーブレット変換部によるマザーウェーブレットの時間領域の波形例を示す図である。It is a figure which shows the waveform example of the time domain of the mother wavelet by the wavelet transform part of FIG. 図16のウェーブレット変換部によるマザーウェーブレットの周波数領域の波形例を示す図である。It is a figure which shows the waveform example of the frequency domain of the mother wavelet by the wavelet transform part of FIG. 図16のフィルタ部の周波数特性の他の一例として1/3オクターブのときの中心周波数の概念図である。As another example of the frequency characteristics of the filter unit of FIG. 16, it is a conceptual diagram of the center frequency at the time of 1/3 octave. 図16のフィルタ部が入力信号から抽出した周波数成分の分布の一例を示す図である。It is a figure which shows an example of the distribution of the frequency component extracted from the input signal by the filter part of FIG. 図16の時刻t1のときにフィルタ部によって生成された数列yk(n)の一例を示す図である。It is a figure which shows an example of the sequence yk (n) generated by the filter part at the time t1 of FIG. 図16の時刻t2のときにフィルタ部によって生成された数列yk(n)の一例を示す図である。It is a figure which shows an example of the sequence yk (n) generated by the filter part at the time t2 of FIG. 図16の制御部による処理を説明するフローチャートである。It is a flowchart explaining the process by the control part of FIG. ハードウェア構成例を説明する図である。It is a figure explaining the hardware configuration example. 他のハードウェア構成例を説明する図である。It is a figure explaining another hardware configuration example. 図25又は図26の具体例として図6及び図16の少なくとも一方の制御部を端末装置に組み込んで使用するシステム構成例を示す図である。25 is a diagram showing a system configuration example in which at least one of the control units of FIGS. 6 and 16 is incorporated into a terminal device as a specific example of FIG. 図25又は図26の具体例として図6及び図16の少なくとも一方の制御部を判定器401に組み込むことにより、判定器の処理内容をデータロガーに供給するシステム構成例を示す図である。25 is a diagram showing a system configuration example in which at least one of the control units of FIGS. 6 and 16 is incorporated into the determination device 401 as a specific example of FIG. 25 or FIG. 26 to supply the processing contents of the determination device to the data logger. 図25又は図26の具体例として図6及び図16の少なくとも一方の制御部を判定器に組み込むことにより、判定器の処理内容をエレベータ制御盤に供給するシステム構成例を示す図である。25 is a diagram showing a system configuration example in which at least one of the control units of FIGS. 6 and 16 is incorporated into the determination panel as a specific example of FIG. 25 or FIG.
 実施の形態1.
 図1は、実施の形態1によるワイヤロープ探傷装置のプローブ1を示す分解斜視図である。プローブ1は、プローブ本体3と、カバー5とを備えている。
Embodiment 1.
FIG. 1 is an exploded perspective view showing a probe 1 of the wire rope flaw detector according to the first embodiment. The probe 1 includes a probe main body 3 and a cover 5.
 カバー5は、非磁性体から構成されている。カバー5は、プローブ本体3を覆っている。これにより、カバー5は、プローブ本体3を保護する。カバー5は、溝部51が設けられている。溝部51の断面は、U字形に形成されている。溝部51は、第1の端部51_1と、第2の端部51_2とを有している。 The cover 5 is made of a non-magnetic material. The cover 5 covers the probe body 3. As a result, the cover 5 protects the probe body 3. The cover 5 is provided with a groove 51. The cross section of the groove 51 is formed in a U shape. The groove portion 51 has a first end portion 51_1 and a second end portion 51_2.
 プローブ本体3は、磁化器11と、磁気センサ13とを備えている。 The probe main body 3 includes a magnetizer 11 and a magnetic sensor 13.
 磁化器11は、バックヨーク111と、第1の永久磁石112_1と、第2の永久磁石112_2と、第1のポールピース113_1と、第2のポールピース113_2とを有している。 The magnetizer 11 has a back yoke 111, a first permanent magnet 112_1, a second permanent magnet 112_2, a first pole piece 113_1, and a second pole piece 113_2.
 バックヨーク111は、強磁性体から構成されている。バックヨーク111は、第1のヨーク端部111_1と、第2のヨーク端部111_2と、ヨーク中央部111_3とを有している。バックヨーク111の長手方向一端部は、第1のヨーク端部111_1となっている。バックヨーク111の長手方向他端部は、第2のヨーク端部111_2となっている。ヨーク中央部111_3は、第1のヨーク端部111_1と第2のヨーク端部111_2との間に位置している。 The back yoke 111 is made of a ferromagnetic material. The back yoke 111 has a first yoke end portion 111_1, a second yoke end portion 111_2, and a yoke central portion 111_3. One end of the back yoke 111 in the longitudinal direction is a first yoke end 111_1. The other end of the back yoke 111 in the longitudinal direction is a second yoke end 111_2. The yoke central portion 111_3 is located between the first yoke end portion 111_1 and the second yoke end portion 111_2.
 第1のヨーク端部111_1には、第1のポールピース113_1が第1の永久磁石112_1を介して固定されている。第2のヨーク端部111_2には、第2のポールピース113_2が第2の永久磁石112_2を介して固定されている。これにより、第1の永久磁石112_1と第2の永久磁石112_2とは、バックヨーク111の長手方向で互いに離して配置されている。また、第1のポールピース113_1と第2のポールピース113_2とは、バックヨーク111の長手方向で互いに離して配置されている。 A first pole piece 113_1 is fixed to the first yoke end 111_1 via a first permanent magnet 112_1. A second pole piece 113_2 is fixed to the second yoke end 111_2 via a second permanent magnet 112_2. As a result, the first permanent magnet 112_1 and the second permanent magnet 112_2 are arranged apart from each other in the longitudinal direction of the back yoke 111. Further, the first pole piece 113_1 and the second pole piece 113_1 are arranged apart from each other in the longitudinal direction of the back yoke 111.
 第1のポールピース113_1は、強磁性体から構成されている。第1のポールピース113_1には、第1のポールピース溝部113_11が設けられている。第1のポールピース溝部113_11の断面は、U字形に形成されている。第1のポールピース溝部113_11は、第1の端部51_1の裏側の位置でカバー5に固定されている。 The first pole piece 113_1 is made of a ferromagnetic material. The first pole piece 113_1 is provided with a first pole piece groove 113_1. The cross section of the first pole piece groove portion 113_11 is formed in a U shape. The first pole piece groove portion 113_1 is fixed to the cover 5 at a position on the back side of the first end portion 51_1.
 第2のポールピース113_2は、強磁性体から構成されている。第2のポールピース113_2には、第2のポールピース溝部113_21が設けられている。第2のポールピース溝部113_21の断面は、U字形に形成されている。第2のポールピース溝部113_21は、第2の端部51_2の裏側の位置でカバー5に固定されている。 The second pole piece 113_2 is made of a ferromagnetic material. The second pole piece 113_2 is provided with a second pole piece groove 113_21. The cross section of the second pole piece groove portion 113_21 is formed in a U shape. The second pole piece groove portion 113_21 is fixed to the cover 5 at a position on the back side of the second end portion 51_2.
 第1の永久磁石112_1は、第1のポールピース113_1と、第1のヨーク端部111_1との間に配置されている。第1の永久磁石112_1は、一方の磁極面を第1のポールピース113_1に向けて配置され、他方の磁極面を第1のヨーク端部111_1に向けて配置されている。第1の永久磁石112_1としては、例えば、ネオジム磁石が用いられている。第1の永久磁石112_1は、起磁力を発生する。 The first permanent magnet 112_1 is arranged between the first pole piece 113_1 and the first yoke end portion 111_1. The first permanent magnet 112_1 has one magnetic pole surface oriented toward the first pole piece 113_1 and the other magnetic pole surface directed toward the first yoke end 111_1. As the first permanent magnet 112_1, for example, a neodymium magnet is used. The first permanent magnet 112_1 generates a magnetomotive force.
 第2の永久磁石112_2は、第2のポールピース113_2と第2のヨーク端部111_2との間に配置されている。第2の永久磁石112_2は、一方の磁極面を第2のヨーク端部111_2に向けて配置され、他方の磁極面を第2のポールピース113_2に向けて配置されている。第2の永久磁石112_2としては、例えば、ネオジム磁石が用いられている。第2の永久磁石112_2は、起磁力を発生する。 The second permanent magnet 112_2 is arranged between the second pole piece 113_2 and the second yoke end 111_2. The second permanent magnet 112_2 is arranged with one magnetic pole surface facing the second yoke end 111_2 and the other magnetic pole surface facing the second pole piece 113_2. As the second permanent magnet 112_2, for example, a neodymium magnet is used. The second permanent magnet 112_2 generates a magnetomotive force.
 磁気センサ13は、センサ本体13Aと、取り付け部13Bとを有している。 The magnetic sensor 13 has a sensor body 13A and a mounting portion 13B.
 取り付け部13Bは、ヨーク中央部111_3に取り付けられている。取り付け部13Bは、非磁性体から構成されている。 The mounting portion 13B is mounted on the yoke central portion 111_3. The mounting portion 13B is made of a non-magnetic material.
 センサ本体13Aは、第1のポールピース113_1と、第2のポールピース113_2との間に配置されている。センサ本体13Aは、ベース部132と、コイルホルダ133と、第1のコイル131_1と、第2のコイル131_2とを有している。 The sensor body 13A is arranged between the first pole piece 113_1 and the second pole piece 113_2. The sensor body 13A has a base portion 132, a coil holder 133, a first coil 131_1, and a second coil 131_2.
 ベース部132は、取り付け部13Bに取り付けられている。コイルホルダ133は、ベース部132に取り付けられている。コイルホルダ133は、強磁性体から構成されている。第1のコイル131_1及び第2のコイル131_2は、コイルホルダ133に取り付けられている。 The base portion 132 is attached to the attachment portion 13B. The coil holder 133 is attached to the base portion 132. The coil holder 133 is made of a ferromagnetic material. The first coil 131_1 and the second coil 131_2 are attached to the coil holder 133.
 図2は、図1のプローブ1による探傷原理を示す説明図である。ワイヤロープ探傷装置は、プローブ1と、プローブ1からの信号を受ける制御部9とを備えている。 FIG. 2 is an explanatory diagram showing the flaw detection principle by the probe 1 of FIG. The wire rope flaw detector includes a probe 1 and a control unit 9 that receives a signal from the probe 1.
 図2においては、図示の都合上、カバー5の輪郭が二点鎖線で示されている。また、図2においては、図示の都合上、溝部51の断面形状部分がハッチングで示されている。ワイヤロープ探傷装置によってワイヤロープ2の探傷検査が行われるときには、溝部51の長手方向に沿った特定方向W_Dにワイヤロープ2がプローブ1に対して移動する。プローブ1は、ワイヤロープ2を溝部51に接触させながら計測を実施する。 In FIG. 2, for convenience of illustration, the outline of the cover 5 is shown by a chain double-dashed line. Further, in FIG. 2, for convenience of illustration, the cross-sectional shape portion of the groove portion 51 is shown by hatching. When the wire rope flaw detection device performs a flaw detection inspection of the wire rope 2, the wire rope 2 moves with respect to the probe 1 in a specific direction W_D along the longitudinal direction of the groove 51. The probe 1 performs measurement while bringing the wire rope 2 into contact with the groove 51.
 図2の一例では、第1の永久磁石112_1の極性の向きが第1のヨーク端部111_1から第1のポールピース113_1に向かう向きとなっている。また、図2の一例では、第2の永久磁石112_2の極性の向きが第2のポールピース113_2から第2のヨーク端部111_2に向かう向きとなっている。 In the example of FIG. 2, the polar direction of the first permanent magnet 112_1 is the direction from the first yoke end 111_1 to the first pole piece 113_1. Further, in one example of FIG. 2, the polarity direction of the second permanent magnet 112_2 is the direction from the second pole piece 113_2 toward the second yoke end portion 111_2.
 つまり、第1の永久磁石112_1の極性は、第2の永久磁石112_2の極性と逆向きとなっている。よって、ワイヤロープ2が溝部51に配置された状態では、ワイヤロープ2の一部と磁化器11とから構成された磁気回路F_Cを通る磁束Fを第1の永久磁石112_1及び第2の永久磁石112_2が発生する。 That is, the polarity of the first permanent magnet 112_1 is opposite to the polarity of the second permanent magnet 112_2. Therefore, in the state where the wire rope 2 is arranged in the groove 51, the magnetic flux F passing through the magnetic circuit F_C composed of a part of the wire rope 2 and the magnetizer 11 is transferred to the first permanent magnet 112_1 and the second permanent magnet. 112_2 occurs.
 これにより、ワイヤロープ2が溝部51に配置された状態では、ワイヤロープ2のうち、第1のポールピース113_1に対向する部分と、第2のポールピース113_2に対向する部分との間の区間Wでワイヤロープ2が磁化される。ワイヤロープ2では、第1の永久磁石112_1及び第2の永久磁石112_2による磁束Fがワイヤロープ2の長手方向に沿って通る。つまり、磁化器11は、ワイヤロープ2の一部を通る磁束Fを発生する。 As a result, when the wire rope 2 is arranged in the groove 51, the section W between the portion of the wire rope 2 facing the first pole piece 113_1 and the portion facing the second pole piece 113_2 The wire rope 2 is magnetized at. In the wire rope 2, the magnetic flux F generated by the first permanent magnet 112_1 and the second permanent magnet 112_2 passes along the longitudinal direction of the wire rope 2. That is, the magnetizer 11 generates a magnetic flux F that passes through a part of the wire rope 2.
 磁気センサ13は、磁束Fのうちワイヤロープ2から漏洩する漏洩磁束L_Fに応じた信号をセンサ信号として発生する。制御部9は、磁気センサ13から発生するセンサ信号を処理する。なお、磁束F及び漏洩磁束L_Fの詳細な説明は、図3、図4及び図5を用いて後述される。 The magnetic sensor 13 generates a signal corresponding to the leakage magnetic flux L_F leaking from the wire rope 2 among the magnetic flux F as a sensor signal. The control unit 9 processes the sensor signal generated from the magnetic sensor 13. A detailed description of the magnetic flux F and the leakage magnetic flux L_F will be described later with reference to FIGS. 3, 4, and 5.
 以下、第1の永久磁石112_1及び第2の永久磁石112_2は、永久磁石112と総称される。また、第1のポールピース113_1及び第2のポールピース113_2は、ポールピース113と総称される。また、第1のコイル131_1及び第2のコイル131_2は、コイル131と総称される。 Hereinafter, the first permanent magnet 112_1 and the second permanent magnet 112_2 are collectively referred to as the permanent magnet 112. Further, the first pole piece 113_1 and the second pole piece 113_2 are collectively referred to as a pole piece 113. Further, the first coil 131_1 and the second coil 131_2 are collectively referred to as the coil 131.
 次に、ワイヤロープ探傷装置による漏洩磁束L_Fの検出原理は、図3、図4及び図5を用いて説明される。図3は、図2のA部拡大図である。図3に示すように、ワイヤロープ2のうち、磁束Fが通っている部分に損傷部B_Wがあると、損傷部B_Wの周囲でワイヤロープ2から磁束Fの一部が漏洩磁束L_Fとして漏洩する。 Next, the principle of detecting the leakage magnetic flux L_F by the wire rope flaw detector will be described with reference to FIGS. 3, 4, and 5. FIG. 3 is an enlarged view of part A of FIG. As shown in FIG. 3, if there is a damaged portion B_W in the portion of the wire rope 2 through which the magnetic flux F passes, a part of the magnetic flux F leaks from the wire rope 2 as a leakage magnetic flux L_F around the damaged portion B_W. ..
 図4は、図3の漏洩磁束L_Fとコイル131との位置関係の一例をより具体的に説明する図である。ワイヤロープ2をプローブ1に対して移動させた場合、第1のコイル131_1及び第2のコイル131_2は、漏洩磁束L_Fと鎖交する。よって、漏洩磁束L_Fに応じた信号である誘起電圧が、センサ信号として第1のコイル131_1及び第2のコイル131_2に発生する。 FIG. 4 is a diagram for more specifically explaining an example of the positional relationship between the leakage magnetic flux L_F of FIG. 3 and the coil 131. When the wire rope 2 is moved with respect to the probe 1, the first coil 131_1 and the second coil 131_2 are interlinked with the leakage magnetic flux L_F. Therefore, an induced voltage, which is a signal corresponding to the leakage magnetic flux L_F, is generated in the first coil 131_1 and the second coil 131_2 as sensor signals.
 ところで、ワイヤロープ2は、心綱と、心綱の周りに一定のピッチλで撚り合わされた複数のストランド21とから構成されている。よって、ワイヤロープ2の外周部には、一定のピッチλでワイヤロープ2の長さ方向へ並ぶ複数の凸部が形成されている。また、ストランド21は、複数本の素線を単層又は多層に撚り合わせて構成されている。よって、ワイヤロープ2に含まれている素線が細ければ、ワイヤロープ2の径が小径化される。 By the way, the wire rope 2 is composed of a core rope and a plurality of strands 21 twisted around the core rope at a constant pitch λ. Therefore, on the outer peripheral portion of the wire rope 2, a plurality of convex portions arranged in the length direction of the wire rope 2 are formed at a constant pitch λ. Further, the strand 21 is formed by twisting a plurality of strands into a single layer or multiple layers. Therefore, if the wire contained in the wire rope 2 is thin, the diameter of the wire rope 2 is reduced.
 図5は、図4のワイヤロープ2よりも小径化されたワイヤロープ2Sから漏洩する漏洩磁束L_Fとコイル131との位置関係の一例をより具体的に説明する図である。図5のワイヤロープ2Sがプローブ1に対して移動する場合、図4のワイヤロープ2がプローブ1に対して移動する場合よりも、第1のコイル131_1及び第2のコイル131_2に鎖交する漏洩磁束L_Fの磁束量が少なくなる。よって、図2の制御部9は、磁気センサ13から発生するセンサ信号が、ノイズによる磁束Fに起因したものと、損傷部B_Wによる磁束Fに起因したものと、のいずれであるかの区別をつけにくい。そこで、本実施の形態においては、図2の制御部9は、センサ信号の周波数成分を構成する複数の値に基づく複数の特徴量とワイヤロープに含まれる素線の状態との相関関係について機械学習させてから素線の損傷の有無を判定する。 FIG. 5 is a diagram for more specifically explaining an example of the positional relationship between the leakage magnetic flux L_F leaking from the wire rope 2S having a diameter smaller than that of the wire rope 2 of FIG. 4 and the coil 131. Leakage interlinking with the first coil 131_1 and the second coil 131_2 when the wire rope 2S of FIG. 5 moves with respect to the probe 1 than when the wire rope 2 of FIG. 4 moves with respect to the probe 1. The amount of magnetic flux L_F is reduced. Therefore, the control unit 9 in FIG. 2 distinguishes whether the sensor signal generated from the magnetic sensor 13 is caused by the magnetic flux F due to noise or the magnetic flux F due to the damaged part B_W. Difficult to put on. Therefore, in the present embodiment, the control unit 9 of FIG. 2 is a machine for the correlation between a plurality of feature quantities based on a plurality of values constituting the frequency component of the sensor signal and the state of the wire rope included in the wire rope. After learning, it is judged whether or not the wire is damaged.
 なお、上記で説明したように、ワイヤロープ2は、ストランド21が一定のピッチλで撚り合わされて構成されている。よって、プローブ1は、ワイヤロープ2の外周部に起因するノイズを少なくともピッチλ毎に検出する。また、ワイヤロープ2Sも同様にピッチλSで撚り合わされて構成されている。よって、ワイヤロープ2Sの外周部には、一定のピッチλSでワイヤロープ2Sの長さ方向へ並ぶ複数の凸部が同様に形成されている。したがって、プローブ1は、ワイヤロープ2Sの外周部に起因するノイズを少なくともピッチλS毎に検出する。 As described above, the wire rope 2 is composed of strands 21 twisted at a constant pitch λ. Therefore, the probe 1 detects noise caused by the outer peripheral portion of the wire rope 2 at least every pitch λ. Further, the wire rope 2S is also configured by being twisted at a pitch λS in the same manner. Therefore, a plurality of convex portions arranged in the length direction of the wire rope 2S are similarly formed on the outer peripheral portion of the wire rope 2S at a constant pitch λS. Therefore, the probe 1 detects noise caused by the outer peripheral portion of the wire rope 2S at least for each pitch λS.
 図6は、図2の制御部9の機能構成例を示すブロック図である。図6に示すように、制御部9は、測定器91と、合成器92と、フィルタ部93と、処理部94とを有している。 FIG. 6 is a block diagram showing a functional configuration example of the control unit 9 of FIG. As shown in FIG. 6, the control unit 9 includes a measuring instrument 91, a synthesizer 92, a filter unit 93, and a processing unit 94.
 測定器91は、第1の測定器91_1と、第2の測定器91_2とを有している。第1の測定器91_1は、第1のコイル131_1の両端に接続されている。第2の測定器91_2は、第2のコイル131_2の両端に接続されている。この例では、第1のコイル131_1は、第2のコイル131_2よりもワイヤロープ2Sの特定方向W_Dの上流側に位置している。 The measuring instrument 91 has a first measuring instrument 91_1 and a second measuring instrument 91_2. The first measuring instrument 91_1 is connected to both ends of the first coil 131_1. The second measuring instrument 91_2 is connected to both ends of the second coil 131_2. In this example, the first coil 131_1 is located upstream of the second coil 131_2 in the specific direction W_D of the wire rope 2S.
 図6に示すように、損傷部B_Wが第1のポールピース113_1と第2のポールピース113_2との間に進入したとき、損傷部B_Wの周囲でワイヤロープ2から漏洩磁束L_Fが漏洩する。漏洩磁束L_Fは、第1のコイル131_1に鎖交し、その後第2のコイル131_2に鎖交する。よって、第1のコイル131_1の両端に発生する誘起電圧のピークが発生する時刻は、第2のコイル131_2の両端に発生する誘起電圧のピークが発生する時刻と比べ、遅延時間τだけずれる。遅延時間τは、第1のコイル131_1と第2のコイル131_2の中心間の距離Pをプローブ1の移動速度νで除した値で表される。 As shown in FIG. 6, when the damaged portion B_W enters between the first pole piece 113_1 and the second pole piece 113_1, the leakage magnetic flux L_F leaks from the wire rope 2 around the damaged portion B_W. The leakage magnetic flux L_F is interlinked with the first coil 131_1 and then with the second coil 131_2. Therefore, the time at which the peak of the induced voltage generated at both ends of the first coil 131_1 occurs is shifted by the delay time τ from the time at which the peak of the induced voltage generated at both ends of the second coil 131_1 occurs. The delay time τ is represented by a value obtained by dividing the distance P between the centers of the first coil 131_1 and the second coil 131_2 by the moving speed ν of the probe 1.
 よって、第1の測定器91_1は、ワイヤロープ2Sから漏洩する漏洩磁束L_Fに応じた信号である誘起電圧をセンサ信号f1(t-τ)として検出する。また、第2の測定器91_2は、ワイヤロープ2Sから漏洩する漏洩磁束L_Fに応じた信号である誘起電圧をセンサ信号f2(t)として検出する。 Therefore, the first measuring instrument 91_1 detects the induced voltage, which is a signal corresponding to the leakage magnetic flux L_F leaking from the wire rope 2S, as the sensor signal f1 (t−τ). Further, the second measuring instrument 91_2 detects the induced voltage, which is a signal corresponding to the leakage magnetic flux L_F leaking from the wire rope 2S, as the sensor signal f2 (t).
 合成器92は、第1の測定器91_1で検出されたセンサ信号f1(t-τ)と、第2の測定器91_2で検出されたセンサ信号f2(t)とを重ね合わせることによりセンサ信号x(t)を生成する。具体的には、合成器92は、第1の測定器91_1で検出されたセンサ信号f1(t-τ)を時間τだけ遅らせたセンサ信号f1(t)と、第2の測定器91_2で検出されたセンサ信号f2(t)とを重ね合わせる。この結果、センサ信号x(t)は、第1のコイル131_1の両端に発生する誘起電圧のピークと、第2のコイル131_2の両端に発生する誘起電圧のピークとを合わせた信号となる。 The synthesizer 92 superimposes the sensor signal f1 (t−τ) detected by the first measuring instrument 91_1 and the sensor signal f2 (t) detected by the second measuring instrument 91_1 to form the sensor signal x. (T) is generated. Specifically, the synthesizer 92 detects the sensor signal f1 (t−τ) detected by the first measuring instrument 91_1 with the sensor signal f1 (t) delayed by the time τ and the second measuring instrument 91_2. The generated sensor signal f2 (t) is superimposed. As a result, the sensor signal x (t) becomes a signal obtained by combining the peaks of the induced voltage generated across the first coil 131_1 and the peaks of the induced voltage generated across the second coil 131_2.
 合成器92は、センサ信号x(t)を一定の周期Tsで標本化する。標本化した信号は、周期Tsごとの信号となるため、周期Tsを単位として、時間を整数nで表すことができる。つまり、センサ信号x(t)のアナログ時間と標本化した信号の時間との関係は、t=n・Tsとなる。標本化した信号の振幅は実数値である。よって、標本化した信号である離散信号は、実数値の数列{x(0),x(1),x(2),・・・}として表されるため、数列x(n)と表すことにする。数列x(n)は、入力信号x(n)としてフィルタ部93に供給される。 The synthesizer 92 samples the sensor signal x (t) at a constant period Ts. Since the sampled signal is a signal for each period Ts, the time can be represented by an integer n with the period Ts as a unit. That is, the relationship between the analog time of the sensor signal x (t) and the time of the sampled signal is t = n · Ts. The amplitude of the sampled signal is real. Therefore, the discrete signal, which is a sampled signal, is represented as a sequence of real values {x (0), x (1), x (2), ...}, So it is represented as a sequence x (n). To. The sequence x (n) is supplied to the filter unit 93 as an input signal x (n).
 以下、数列x(n)は、フィルタ部93の入力信号x(n)と称される。 Hereinafter, the sequence x (n) is referred to as an input signal x (n) of the filter unit 93.
 フィルタ部93は、センサ信号x(t)を標本化した入力信号x(n)の周波数成分を抽出する。フィルタ部93は、複数のバンドパスフィルタとしての複数のFIR(Finite Impulse Response)フィルタ931と、複数の絶対値部932とを有している。 The filter unit 93 extracts the frequency component of the input signal x (n) that samples the sensor signal x (t). The filter unit 93 has a plurality of FIR (Finite Impulse Response) filters 931 as a plurality of bandpass filters, and a plurality of absolute value units 932.
 図7は、図6のフィルタ部93の周波数特性の一例を示す図である。図7に示すように、複数のFIRフィルタ931のそれぞれでは、タップ数、ゲイン及び帯域幅bが一定である。複数のFIRフィルタ931は、互いに異なる複数の帯域を個別の通過帯域としている。つまり、複数のFIRフィルタ931は、互いに異なる個別の通過帯域を持つ。よって、フィルタ部93は、互いに異なる複数の帯域のそれぞれにおいて入力信号x(n)の周波数成分を抽出する。 FIG. 7 is a diagram showing an example of the frequency characteristics of the filter unit 93 of FIG. As shown in FIG. 7, the number of taps, the gain, and the bandwidth b are constant in each of the plurality of FIR filters 931. The plurality of FIR filters 931 have a plurality of bands different from each other as individual pass bands. That is, the plurality of FIR filters 931 have different pass bands different from each other. Therefore, the filter unit 93 extracts the frequency component of the input signal x (n) in each of the plurality of bands different from each other.
 複数の絶対値部932は、図6に示すように、複数のFIRフィルタ931から供給された入力信号x(n)の周波数成分の絶対値を求める。ここで、入力信号x(n)は、上記で説明したように、実数値の数列{x(0),x(1),x(2),・・・}である。そこで、複数の絶対値部932は、入力信号x(n)を量子化単位で除して四捨五入することで量子化し、整数値の数列yk(n)を求める。ただし、kは1からNまで昇順した値となる。また、Nは自然数である。 As shown in FIG. 6, the plurality of absolute value units 932 obtain the absolute values of the frequency components of the input signals x (n) supplied from the plurality of FIR filters 931. Here, the input signal x (n) is a sequence of real values {x (0), x (1), x (2), ...} As described above. Therefore, the plurality of absolute value units 932 are quantized by dividing the input signal x (n) by a quantization unit and rounding off to obtain a sequence yk (n) of integer values. However, k is a value in ascending order from 1 to N. Also, N is a natural number.
 例えば、複数のFIRフィルタ931に実数値のx(0)が入力されたときには、複数のFIRフィルタ931は、互いに異なる複数の帯域のそれぞれにおいて実数値のx(0)の周波数成分を抽出する。絶対値部932は、個別の通過帯域ごとの実数値のx(0)の周波数成分に上記演算をすることで整数値のy1(0),y2(0),・・・及びyN(0)を求める。 For example, when a real value x (0) is input to the plurality of FIR filters 931, the plurality of FIR filters 931 extract the frequency component of the real value x (0) in each of a plurality of bands different from each other. The absolute value unit 932 performs the above calculation on the frequency component of the real value x (0) for each individual pass band, so that the integer values y1 (0), y2 (0), ..., And yN (0) Ask for.
 以下、整数値のy1(0),y2(0),・・・及びyN(0)は、整数値の数列{y1(0),y2(0),・・・及びyN(0)}として数列yk(0)と表す。 Hereinafter, the integer values y1 (0), y2 (0), ... And yN (0) are referred to as a sequence of integer values {y1 (0), y2 (0), ... And yN (0)}. It is expressed as a sequence yk (0).
 フィルタ部93は、実数値のx(1)も同様の処理を行い、yk(1)を求める。フィルタ部93は、実数値のx(2)以降も同様の処理を行い、yk(2)以降を求める。以上の説明から、フィルタ部93は、入力信号x(n)から数列yk(n)を求める。 The filter unit 93 performs the same processing on the real value x (1) to obtain yk (1). The filter unit 93 performs the same processing on the real value x (2) and later, and obtains yk (2) and later. From the above description, the filter unit 93 obtains the sequence yk (n) from the input signal x (n).
 図8は、図6のフィルタ部93が入力信号x(n)から抽出した周波数成分の分布の一例を示す図である。図8に示すように、ワイヤロープ2Sの移動速度νは、例えば、台形制御されている。よって、ワイヤロープ2Sが等速移動を行っている場合には、ワイヤロープ2Sの外周部の形状に起因する入力信号x(n)の周期変動が一定となる。ワイヤロープ2Sの外周部に形状に起因する入力信号x(n)の周期変動は、上記で説明したように、ストランド21SのピッチλS毎に生じる。よって、入力信号x(n)の一定の周期変動は、特定の周波数で発生する。 FIG. 8 is a diagram showing an example of the distribution of frequency components extracted from the input signal x (n) by the filter unit 93 of FIG. As shown in FIG. 8, the moving speed ν of the wire rope 2S is trapezoidally controlled, for example. Therefore, when the wire rope 2S is moving at a constant velocity, the periodic fluctuation of the input signal x (n) due to the shape of the outer peripheral portion of the wire rope 2S is constant. Periodic variation of the input signal x (n) due to the shape on the outer peripheral portion of the wire rope 2S occurs for each pitch λS of the strand 21S as described above. Therefore, the constant periodic fluctuation of the input signal x (n) occurs at a specific frequency.
 例えば、図8に示すように、入力信号x(n)のノイズ周波数成分f_nは、ワイヤロープ2Sが等速移動を行っている場合には、k=6及びk=8のときの帯域に出現する。 For example, as shown in FIG. 8, the noise frequency component f_n of the input signal x (n) appears in the bands when k = 6 and k = 8 when the wire rope 2S is moving at a constant velocity. do.
 したがって、入力信号x(n)の一定の周期変動の周波数成分は、入力信号x(n)の周波数成分のうち、入力信号x(n)のノイズ周波数成分f_nとみなすことができる。 Therefore, the frequency component of the constant periodic fluctuation of the input signal x (n) can be regarded as the noise frequency component f_n of the input signal x (n) among the frequency components of the input signal x (n).
 また、入力信号x(n)が漏洩磁束L_Fに応じて合成器92により合成された信号である場合には、時間領域では局所的な微少時間Δtの間に生じた信号と入力信号x(n)が等価である。よって、入力信号x(n)が漏洩磁束L_Fに応じて合成器92により合成された信号である場合には、微少時間Δtが短いほど、入力信号x(n)の周波数成分が出現する帯域の数が増える。 Further, when the input signal x (n) is a signal synthesized by the synthesizer 92 according to the leakage magnetic flux L_F, the signal generated during the local minute time Δt and the input signal x (n) in the time domain. ) Is equivalent. Therefore, when the input signal x (n) is a signal synthesized by the synthesizer 92 according to the leakage magnetic flux L_F, the shorter the minute time Δt, the more the frequency component of the input signal x (n) appears in the band. The number increases.
 例えば、図8に示すように、入力信号x(n)の損傷周波数成分f_sは、k=3、k=4、k=5、k=6、k=7、k=8及びk=9のときの帯域にそれぞれ出現する。 For example, as shown in FIG. 8, the damage frequency component f_s of the input signal x (n) is k = 3, k = 4, k = 5, k = 6, k = 7, k = 8 and k = 9. Appears in each band of time.
 この結果、入力信号x(n)の周波数成分の分布は、複数の帯域にわたる分布となる。したがって、入力信号x(n)の周波数成分のうち、入力信号x(n)の損傷周波数成分f_sは、入力信号x(n)のノイズ周波数成分f_nが出現する帯域以外の帯域にも出現する。 As a result, the distribution of the frequency components of the input signal x (n) becomes a distribution over a plurality of bands. Therefore, among the frequency components of the input signal x (n), the damaged frequency component f_s of the input signal x (n) also appears in a band other than the band in which the noise frequency component f_n of the input signal x (n) appears.
 ところで、入力信号x(n)の損傷周波数成分f_sは、本来はk=1及びk=2のときも出現している。しかし、ここではk=1及びk=2のときまで考慮する必要がない。よって、図8の一例では、k=1及びk=2のときには、入力信号x(n)の損傷周波数成分f_sは各種信号処理の過程で遮断されている。 By the way, the damaged frequency component f_s of the input signal x (n) originally appears even when k = 1 and k = 2. However, here, it is not necessary to consider until k = 1 and k = 2. Therefore, in one example of FIG. 8, when k = 1 and k = 2, the damaged frequency component f_s of the input signal x (n) is cut off in the process of various signal processing.
 なお、周波数成分の分布は、数列yk(n)から構成されている。数列yk(n)は、上記で説明したように、整数値のy1(n),y2(n),・・・及びyN(n)から構成されている。よって、周波数成分の分布は、複数の値y1(n)~yN(n)から構成されている。 The distribution of frequency components is composed of a sequence yk (n). As described above, the sequence yk (n) is composed of integer values y1 (n), y2 (n), ..., And yN (n). Therefore, the distribution of frequency components is composed of a plurality of values y1 (n) to yN (n).
 また、図8の中段側及び下段側に示すように、k=6及びk=7のときのそれぞれの数列yk(n)を経時的に並べることが可能である。図8の中段側においては、制御部9が、k=6のときの数列yk(n)からクレストファクタを求めている一例が示されている。クレストファクタは、実効値に対する最大値の比を求める演算により得られる値である。また、図8の下段側においては、制御部9が、k=7のときの数列yk(n)から微分又は差分を求めている一例が示されている。 Further, as shown in the middle side and the lower side of FIG. 8, each sequence yk (n) when k = 6 and k = 7 can be arranged over time. On the middle side of FIG. 8, an example is shown in which the control unit 9 obtains the crest factor from the sequence yk (n) when k = 6. The crest factor is a value obtained by calculating the ratio of the maximum value to the effective value. Further, on the lower side of FIG. 8, an example is shown in which the control unit 9 obtains the derivative or the difference from the sequence yk (n) when k = 7.
 処理部94は、図6に示すように、演算部941と、学習部943とを有している。 As shown in FIG. 6, the processing unit 94 has a calculation unit 941 and a learning unit 943.
 演算部941は、複数の値y1(n)~yN(n)に基づく複数の特徴量を抽出する。具体的には、演算部941は、複数の値y1(n)~yN(n)から複数の統計的演算によって複数の特徴量を抽出する。複数の特徴量は、入力信号x(n)の周波数成分を特徴付ける代表値である。統計的演算は、例えば、中央値を求める演算である。中央値は、数列yk(n)を構成する整数値のy1(n),y2(n),・・・及びyN(n)を昇順に並べたときに中央に位置する値である。また、統計的演算は、例えば、最大値、最小値、範囲、平均値、標準偏差、実効値、クレストファクタ、微分及び差分の演算がある。また、統計的演算のうち、範囲は、最大値と最小値との差を求める演算により得られる値である。 The calculation unit 941 extracts a plurality of feature quantities based on a plurality of values y1 (n) to yN (n). Specifically, the calculation unit 941 extracts a plurality of feature quantities from a plurality of values y1 (n) to yN (n) by a plurality of statistical calculations. The plurality of feature quantities are representative values that characterize the frequency components of the input signal x (n). The statistical operation is, for example, an operation for finding the median value. The median value is a value located at the center when the integer values y1 (n), y2 (n), ..., And yN (n) constituting the sequence yk (n) are arranged in ascending order. In addition, statistical calculations include, for example, maximum value, minimum value, range, average value, standard deviation, effective value, crest factor, differentiation, and difference calculation. Further, among the statistical operations, the range is a value obtained by an operation for obtaining the difference between the maximum value and the minimum value.
 図9は、図6の時刻t1のときにフィルタ部93によって生成された数列yk(n)の一例を示す図である。図9の一例では、数列yk(n)を構成する複数の値y1(n)~yN(n)のうち、k=8のときの値y8(n)が最大値を示し、k=9のときの値y9(n)が最小値を示す。よって、範囲は、値y8(n)と値y9(n)との差分で求まる。 FIG. 9 is a diagram showing an example of the sequence yk (n) generated by the filter unit 93 at the time t1 of FIG. In an example of FIG. 9, among a plurality of values y1 (n) to yN (n) constituting the sequence yk (n), the value y8 (n) when k = 8 indicates the maximum value, and k = 9. The value y9 (n) at the time indicates the minimum value. Therefore, the range can be obtained by the difference between the value y8 (n) and the value y9 (n).
 図10は、図6の時刻t2のときにフィルタ部93によって生成された数列yk(n)の一例を示す図である。図10の一例では、数列yk(n)を構成する複数の値y1(n)~yN(n)を昇順に並べたときに中央に位置する値は、k=5のときの値となる。また、図10においては、中央値の他には、平均値、標準偏差並びに微分若しくは差分が示されている。 FIG. 10 is a diagram showing an example of the sequence yk (n) generated by the filter unit 93 at the time t2 of FIG. In one example of FIG. 10, when a plurality of values y1 (n) to yN (n) constituting the sequence yk (n) are arranged in ascending order, the value located at the center is the value when k = 5. Further, in FIG. 10, in addition to the median value, the average value, the standard deviation, and the derivative or the difference are shown.
 学習部943は、図6に示すように、学習モデル961に複数の値y1(n)~yN(n)に基づく複数の特徴量を入力する。複数の特徴量が入力されたときの学習モデル961は、演算処理を実行する。学習部943は、学習モデル961の演算処理の実行結果からワイヤロープ2Sに含まれる素線の損傷の有無を判定する。学習モデル961は、周波数成分を構成する複数の値y1(n)~yN(n)に基づく複数の特徴量と、ワイヤロープ2Sに含まれる素線の状態との相関関係について機械学習が行われた学習済みのものである。 As shown in FIG. 6, the learning unit 943 inputs a plurality of feature quantities based on a plurality of values y1 (n) to yN (n) into the learning model 961. The learning model 961 when a plurality of feature quantities are input executes arithmetic processing. The learning unit 943 determines whether or not the wire rope included in the wire rope 2S is damaged from the execution result of the arithmetic processing of the learning model 961. In the learning model 961, machine learning is performed on the correlation between a plurality of features based on a plurality of values y1 (n) to yN (n) constituting the frequency component and the state of the wire contained in the wire rope 2S. It has already been learned.
 学習部943は、複数の第1特徴量と、複数の第2特徴量とのうち、少なくとも一方を学習用データセットとした学習モデル961に複数の特徴量を入力して演算処理を実行した学習モデル961の出力からワイヤロープ2Sの素線の損傷の有無を判定する。ここで、複数の第1特徴量は、ワイヤロープ2Sに含まれる素線の損傷が有ることを特徴付ける複数の値の集合である。また、複数の第2特徴量は、ワイヤロープ2Sに含まれる素線の損傷が無いことを特徴付ける複数の値の集合である。 The learning unit 943 inputs a plurality of feature quantities into a learning model 961 in which at least one of the plurality of first feature quantities and the plurality of second feature quantities is used as a learning data set, and executes arithmetic processing. From the output of the model 961, it is determined whether or not the wire rope 2S is damaged. Here, the plurality of first feature quantities are a set of a plurality of values that characterize the presence of damage to the wire contained in the wire rope 2S. Further, the plurality of second feature quantities are a set of a plurality of values that characterize that there is no damage to the wire contained in the wire rope 2S.
 また、ワイヤロープ2Sに含まれる素線の損傷とは、ワイヤロープ2Sの少なくとも一部に生じた物理的な損傷のことである。物理的な損傷とは、例えば、素線の断線、素線の部分断線及び素線の擦過痕の少なくとも一つの損傷のことである。 Further, the damage to the wire contained in the wire rope 2S is the physical damage caused to at least a part of the wire rope 2S. Physical damage is, for example, damage to at least one of wire breakage, partial wire breakage, and scratch marks on the wire.
 以下、ワイヤロープ2Sに含まれる素線の損傷は、適宜、素線の損傷と称する。 Hereinafter, damage to the wire contained in the wire rope 2S will be appropriately referred to as damage to the wire.
<サポートベクトルマシン>
 図11は、図6の学習部943がサポートベクトルマシン943_1として構成されているときに学習用データセットを用いて機械学習を行う概念を示す図である。サポートベクトルマシン943_1は、教師あり学習の機械学習の一例として、複数の第1特徴量及び複数の第2特徴量を入力に設定する。
<Support vector machine>
FIG. 11 is a diagram showing a concept of performing machine learning using a learning data set when the learning unit 943 of FIG. 6 is configured as a support vector machine 943_1. The support vector machine 943_1 sets a plurality of first feature quantities and a plurality of second feature quantities as inputs as an example of machine learning of supervised learning.
 具体的には、図6の学習部943は、図11に示すように、予め設定された特徴空間の中を、第1領域と、第2領域と、に識別超平面により分類可能なサポートベクトルマシン943_1として構成されている。 Specifically, as shown in FIG. 11, the learning unit 943 of FIG. 6 can classify the preset feature space into a first region and a second region by an identification hyperplane. It is configured as machine 943_1.
 ここで、第1領域は、複数の第1特徴量を含む領域である。具体的には、第1領域は、複数の第1特徴量の一部である第1サポートベクトルSV_1を含む領域である。第2領域は、複数の第2特徴量を含む領域である。具体的には、第2領域は、複数の第2特徴量の一部である第2サポートベクトルSV_2を含む領域である。識別超平面は、図11に示すように、例えば、wTΓ+b=0で表すことができる関数である。 Here, the first region is a region including a plurality of first feature quantities. Specifically, the first region is a region including the first support vector SV_1 which is a part of the plurality of first feature quantities. The second region is a region including a plurality of second feature quantities. Specifically, the second region is a region including the second support vector SV_2, which is a part of the plurality of second feature quantities. The discriminating hyperplane is, for example, a function that can be represented by w T Γ + b = 0, as shown in FIG.
 より具体的には、複数の第1特徴量は、数列Γ’qで表される。qは1,2,・・・,Neである。Neは、素線の損傷が有るもののサンプル数である。数列Γ’qは、複数の値γ’1(n)、γ’2(n)、・・・及びγ’M(n)から構成されている。 More specifically, the plurality of first feature quantity is represented by the sequence gamma 'q. q is 1, 2, ..., a N e. Ne is the number of samples with damage to the wire. Series gamma 'q are multiple values γ'1 (n), γ'2 (n ), and a... And γ'M (n).
 例えば、γ’1(n)には数列yk(n)の中の最大値が割り当てられる。また、γ’2(n)には数列yk(n)の中の最小値が割り当てられる。このように、数列Γ’qは、複数の統計的演算により演算された値が割り当てられた値から構成されている。 For example, γ'1 (n) is assigned the maximum value in the sequence yk (n). Further, the minimum value in the sequence yk (n) is assigned to γ'2 (n). Thus, the sequence gamma 'q is constructed from the values computed value is assigned by a plurality of statistical operation.
 よって、識別超平面となり得るwTΓ+b=0がある特徴空間上では、複数の第1特徴量の一部を第1サポートベクトルSV_1としたとき、数列Γ’qは、第1サポートベクトルSV_1を含む式として、例えば、wTΓ’q+b=1で表される。 Therefore, the identification in the hyperplane capable of becoming characterized space there is w T Γ + b = 0, when a portion of the plurality of first feature quantity and the first support vector SV_1, series gamma 'q is the first support vector SV_1 as an expression containing, for example, represented by w T Γ 'q + b = 1.
 つまり、サポートベクトルマシン943_1は、数列Γ’qを上記特徴空間に写像したものをwTΓ’q+b=1の関数で表す。 In other words, support vector machine 943_1 represents 'what the q mapped onto the feature space w T gamma' sequence gamma function of q + b = 1.
 一方、複数の第2特徴量は、数列Γpで表される。pは1,2,・・・,Noである。Noは、素線の損傷が無いもののサンプル数である。数列Γpは、複数の値γ1(n)、γ2(n)、・・・及びγM(n)から構成されている。 On the other hand, the plurality of second features are represented by the sequence Γ p. p is 1, 2, ..., No. N o is the number of samples although the damage of the wire is not. The sequence Γ p is composed of a plurality of values γ1 (n), γ2 (n), ..., And γM (n).
 例えば、γ1(n)には数列yk(n)の中の最大値が割り当てられる。また、γ2(n)には数列yk(n)の中の最小値が割り当てられる。このように、数列Γpは、複数の統計的演算により演算された値が割り当てられた値から構成されている。 For example, γ1 (n) is assigned the maximum value in the sequence yk (n). Further, the minimum value in the sequence yk (n) is assigned to γ2 (n). In this way, the sequence Γ p is composed of values to which the values calculated by a plurality of statistical operations are assigned.
 よって、識別超平面となり得るwTΓ+b=0がある特徴空間上では、複数の第2特徴量の一部を第2サポートベクトルSV_2としたとき、数列Γpは、第2サポートベクトルSV_2を含む式として、例えば、wTΓp+b=-1で表される。 Therefore, on a feature space with w T Γ + b = 0, which can be an identification hyperplane , the sequence Γ p includes the second support vector SV_2, where a part of the plurality of second features is the second support vector SV_2. As an equation, for example, it is expressed by w T Γ p + b = -1.
 つまり、サポートベクトルマシン943_1は、数列Γpを上記特徴空間に写像したものをwTΓp+b=-1の関数で表す。 That is, the support vector machine 943_1 represents a mapping of the sequence Γ p to the above feature space by a function of w T Γ p + b = -1.
 なお、サポートベクトルマシン943_1は、数列Γ’qを構成する値の中で、数列Γpを構成する値の1つに最も近いものを第1サポートベクトルSV_1に設定する。また、サポートベクトルマシン943_1は、数列Γpを構成する値の中で、数列Γ’qを構成する値の1つに最も近いものを第2サポートベクトルSV_2に設定する。 Incidentally, support vector machine 943_1 is within a value constituting the series gamma 'q, sets the closest to one of the values that constitute the sequence gamma p to the first support vector SV_1. Also, support vector machine 943_1 is within a value constituting the sequence gamma p, sets the closest to one of the values that constitute the series gamma 'q in the second support vector SV_2.
 また、サポートベクトルマシン943_1は、距離d1及び距離d2になるwT及びbを求める。ここで、距離d1は、wTΓ+b=0が第1サポートベクトルSV_1と最も離れた距離である。一方、距離d2は、wTΓ+b=0が第2サポートベクトルSV_2と最も離れた距離である。サポートベクトルマシン943_1は、このようなwT及びbを求めることにより識別超平面を演算する。 Further, the support vector machine 943_1 obtains w T and b having a distance d1 and a distance d2. Here, the distance d1 is the distance at which w T Γ + b = 0 is the farthest from the first support vector SV_1. On the other hand, the distance d2 is the distance at which w T Γ + b = 0 is the farthest from the second support vector SV_2. The support vector machine 943_1 calculates the identification hyperplane by finding such w T and b.
 つまり、サポートベクトルマシン943_1は、学習用データセットとして複数の第1特徴量及び複数の第2特徴量の両方を特徴空間に写像して識別超平面を演算することで学習モデル961_1を生成する。 That is, the support vector machine 943_1 generates a learning model 961_1 by mapping both a plurality of first feature quantities and a plurality of second feature quantities to the feature space as a training data set and calculating an identification hyperplane.
 具体的には、サポートベクトルマシン943_1は、複数の特徴量を学習モデル961_1に入力したときの学習モデル961_1の出力が、第1領域に分類したものに該当する場合、素線の損傷が有ると判定する。また、サポートベクトルマシン943_1は、複数の特徴量を学習モデル961_1に入力したときの学習モデル961_1の出力が、第2領域に分類したものに該当する場合、素線の損傷が無いと判定する。 Specifically, the support vector machine 943_1 considers that the wire is damaged when the output of the learning model 961-1 when a plurality of features are input to the learning model 961-1 corresponds to the one classified in the first region. judge. Further, the support vector machine 943_1 determines that there is no damage to the strands when the output of the learning model 961_1 when a plurality of feature quantities are input to the learning model 961_1 corresponds to those classified into the second region.
 図12は、図6の学習部943がサポートベクトルマシン943_1として構成されているときの制御部9による処理を説明するフローチャートである。なお、ステップS11~ステップS13の処理は、学習処理である。ステップS14及びステップS15の処理は、特徴量抽出処理である。ステップS16~ステップS20の処理は、素線判定処理である。ステップS21及びステップS22の処理は、期間判定処理である。 FIG. 12 is a flowchart illustrating processing by the control unit 9 when the learning unit 943 of FIG. 6 is configured as the support vector machine 943_1. The processes of steps S11 to S13 are learning processes. The processes of steps S14 and S15 are feature extraction processes. The processes of steps S16 to S20 are strand determination processes. The process of step S21 and step S22 is a period determination process.
<学習処理>
 ステップS11において、サポートベクトルマシン943_1は、学習用データセットが入力されたか否かを判定する。サポートベクトルマシン943_1は、学習用データセットが入力されたと判定する場合、現在の処理をステップS12の処理に移行する。サポートベクトルマシン943_1は、学習用データセットが入力されていないと判定する場合、ステップS11の処理を継続する。
<Learning process>
In step S11, the support vector machine 943_1 determines whether or not the training data set has been input. When the support vector machine 943_1 determines that the training data set has been input, the support vector machine 943_1 shifts the current processing to the processing in step S12. When the support vector machine 943_1 determines that the training data set has not been input, the process of step S11 is continued.
 ステップS12において、サポートベクトルマシン943_1は、学習用データセットに複数の第1特徴量及び複数の第2特徴量の両方が含まれるか否かを判定する。サポートベクトルマシン943_1は、学習用データセットに複数の第1特徴量及び複数の第2特徴量の両方が含まれると判定する場合、現在の処理をステップS13の処理に移行する。サポートベクトルマシン943_1は、学習用データセットに複数の第1特徴量及び複数の第2特徴量の両方が含まれないと判定する場合、現在の処理をステップS11の処理に戻す。 In step S12, the support vector machine 943_1 determines whether or not both the plurality of first feature quantities and the plurality of second feature quantities are included in the training data set. When the support vector machine 943_1 determines that the training data set includes both the plurality of first feature quantities and the plurality of second feature quantities, the current process shifts to the process of step S13. When the support vector machine 943_1 determines that the training data set does not include both the plurality of first feature quantities and the plurality of second feature quantities, the current process is returned to the process of step S11.
 ステップS13において、サポートベクトルマシン943_1は、学習用データセットを用いて機械学習を行うことで第1領域と第2領域とに分類可能な識別超平面を演算して学習モデル961_1を生成する。サポートベクトルマシン943_1は、現在の処理をステップS14の処理に移行させる。 In step S13, the support vector machine 943_1 calculates a discriminant hyperplane that can be classified into a first region and a second region by performing machine learning using the learning data set, and generates a learning model 961_1. The support vector machine 943_1 shifts the current process to the process of step S14.
<特徴量抽出処理>
 ステップS14において、演算部941は、センサ信号x(t)の周波数成分が抽出されたか否かを判定する。演算部941は、センサ信号x(t)の周波数成分が抽出されたと判定する場合、現在の処理をステップS15の処理に移行する。演算部941は、センサ信号x(t)の周波数成分が抽出されていないと判定する場合、ステップS14の処理を繰り返す。つまり、ステップS14の処理は、フィルタ部93によりセンサ信号x(t)の周波数成分が抽出されたか否かを演算部941が判定する処理である。
<Feature extraction process>
In step S14, the calculation unit 941 determines whether or not the frequency component of the sensor signal x (t) has been extracted. When the calculation unit 941 determines that the frequency component of the sensor signal x (t) has been extracted, the calculation unit 941 shifts the current process to the process of step S15. When the calculation unit 941 determines that the frequency component of the sensor signal x (t) has not been extracted, the calculation unit 941 repeats the process of step S14. That is, the process of step S14 is a process in which the calculation unit 941 determines whether or not the frequency component of the sensor signal x (t) has been extracted by the filter unit 93.
 ステップS15において、演算部941は、周波数成分を構成する複数の値y1(n)~yN(n)から複数の統計的演算により複数の特徴量を抽出する。演算部941は、現在の処理をステップS16の処理に移行させる。 In step S15, the calculation unit 941 extracts a plurality of feature quantities from a plurality of values y1 (n) to yN (n) constituting the frequency component by a plurality of statistical calculations. The calculation unit 941 shifts the current processing to the processing in step S16.
<素線判定処理>
 ステップS16において、サポートベクトルマシン943_1は、複数の特徴量を学習モデル961_1に入力する。サポートベクトルマシン943_1は、現在の処理をステップS17の処理に移行する。ステップS17において、サポートベクトルマシン943_1は、学習モデル961_1の出力が、複数の特徴量を第1領域に分類したものに該当するか否かを判定する。サポートベクトルマシン943_1は、学習モデル961_1の出力が、複数の特徴量を第1領域に分類したものに該当すると判定する場合、現在の処理をステップS18の処理に移行する。サポートベクトルマシン943_1は、学習モデル961_1の出力が、複数の特徴量を第1領域に分類したものに該当しないと判定する場合、現在の処理をステップS19の処理に移動する。
<Strand wire judgment processing>
In step S16, the support vector machine 943_1 inputs a plurality of feature quantities into the learning model 961-1. The support vector machine 943_1 shifts the current process to the process of step S17. In step S17, the support vector machine 943_1 determines whether or not the output of the learning model 961_1 corresponds to a plurality of feature quantities classified into the first region. When the support vector machine 943_1 determines that the output of the learning model 961_1 corresponds to the one in which a plurality of feature quantities are classified into the first region, the support vector machine 943_1 shifts the current processing to the processing in step S18. When the support vector machine 943_1 determines that the output of the learning model 961_1 does not correspond to the one in which a plurality of feature quantities are classified into the first region, the support vector machine 943_1 moves the current processing to the processing in step S19.
 ステップS18において、サポートベクトルマシン943_1は、素線の損傷が有ると判定する。サポートベクトルマシン943_1は、現在の処理をステップS21の処理に移行させる。ステップS19において、サポートベクトルマシン943_1は、学習モデル961_1の出力が、複数の特徴量を第2領域に分類したものに該当するか否かを判定する。サポートベクトルマシン943_1は、学習モデル961_1の出力が、複数の特徴量を第2領域に分類したものに該当すると判定する場合、現在の処理をステップS20の処理に移行する。サポートベクトルマシン943_1は、学習モデル961_1の出力が、複数の特徴量を第2領域に分類したものに該当しないと判定する場合、現在の処理をステップS21の処理に移行させる。 In step S18, the support vector machine 943_1 determines that the wire is damaged. The support vector machine 943_1 shifts the current process to the process of step S21. In step S19, the support vector machine 943_1 determines whether or not the output of the learning model 961_1 corresponds to a plurality of feature quantities classified into the second region. When the support vector machine 943_1 determines that the output of the learning model 961_1 corresponds to a plurality of feature quantities classified into the second region, the support vector machine 943_1 shifts the current processing to the processing in step S20. When the support vector machine 943_1 determines that the output of the learning model 961_1 does not correspond to the one in which a plurality of feature quantities are classified into the second region, the support vector machine 943_1 shifts the current processing to the processing in step S21.
 ステップS20において、サポートベクトルマシン943_1は、素線の損傷が無いと判定する。サポートベクトルマシン943_1は、現在の処理をステップS21の処理に移行させる。 In step S20, the support vector machine 943_1 determines that the wire is not damaged. The support vector machine 943_1 shifts the current process to the process of step S21.
<期間判定処理>
 ステップS21において、フィルタ部93は、素線の損傷の有無の判定を終了させるか否かを判定する。フィルタ部93は、素線の損傷の有無の判定を終了させると判定する場合、現在の処理を終了する。フィルタ部93は、素線の損傷の有無の判定を終了させないと判定する場合、現在の処理をステップS22の処理に移行する。フィルタ部93は、ワイヤロープ2Sの速度が等速移動期間に該当するか否かを判定する。フィルタ部93は、ワイヤロープ2Sの速度が等速移動期間に該当すると判定する場合、現在の処理をステップS14の処理に戻させる。フィルタ部93は、ワイヤロープ2Sの速度が等速移動期間に該当しないと判定する場合、ステップS22の処理を継続する。
<Period judgment processing>
In step S21, the filter unit 93 determines whether or not to end the determination of the presence or absence of damage to the wire. When the filter unit 93 determines that the determination of the presence or absence of damage to the wire is completed, the filter unit 93 ends the current process. When the filter unit 93 determines that the determination of the presence or absence of damage to the wire is not completed, the filter unit 93 shifts the current process to the process of step S22. The filter unit 93 determines whether or not the speed of the wire rope 2S corresponds to the constant velocity moving period. When the filter unit 93 determines that the speed of the wire rope 2S corresponds to the constant velocity movement period, the filter unit 93 returns the current process to the process of step S14. When the filter unit 93 determines that the speed of the wire rope 2S does not correspond to the constant velocity movement period, the filter unit 93 continues the process of step S22.
<オートエンコーダ>
 図13は、図6の学習部943がオートエンコーダ943_2として構成されているときに学習用データセットを用いて機械学習を行う概念を示す図である。
<Autoencoder>
FIG. 13 is a diagram showing a concept of performing machine learning using a learning data set when the learning unit 943 of FIG. 6 is configured as an autoencoder 943_2.
 具体的には、図6の学習部943は、図13に示すように、入力と出力との誤差を重み係数wf、重み係数wg及び重み係数whにより一定量に抑えるオートエンコーダ943_2として構成されている。オートエンコーダ943_2は、教師なし学習による機械学習の一例として、複数の第2特徴量を入力に設定する。 Specifically, as shown in FIG. 13, the learning unit 943 of FIG. 6 is configured as an autoencoder 943_2 that suppresses the error between the input and the output to a constant amount by the weighting coefficient wf, the weighting coefficient wg, and the weighting coefficient wh. There is. The autoencoder 943_2 sets a plurality of second feature quantities as inputs as an example of machine learning by unsupervised learning.
 より具体的には、オートエンコーダ943_2は、オートエンコーダ962_1の一部と、オートエンコーダ962_2の一部と、最終層965とを積層させて形成された階層構造を有している。 More specifically, the autoencoder 943_2 has a hierarchical structure formed by laminating a part of the autoencoder 962_1, a part of the autoencoder 962_2, and the final layer 965.
 まず、オートエンコーダ962_1は、エンコーダ963_1と、デコーダ964_1とを有している。オートエンコーダ962_1は、活性化関数として例えばシグモイド関数が使用される。オートエンコーダ943_2は、エンコーダ963_1の入力をオートエンコーダ962_1の入力に設定する。オートエンコーダ943_2は、エンコーダ963_1の出力をデコーダ964_1の入力に設定する。オートエンコーダ943_2は、デコーダ964_1の出力をオートエンコーダ962_1の出力に設定する。オートエンコーダ943_2は、オートエンコーダ962_1に入力したものと同じものがオートエンコーダ962_1の出力側で再構成されるように、重み係数wf、重み係数wg及び重み係数whを学習により演算する。 First, the autoencoder 962_1 has an encoder 963_1 and a decoder 964_1. For the autoencoder 962_1, for example, a sigmoid function is used as the activation function. The autoencoder 943_2 sets the input of the encoder 963_1 to the input of the autoencoder 962_1. The autoencoder 943_2 sets the output of the encoder 963_1 to the input of the decoder 964_1. The autoencoder 943_2 sets the output of the decoder 964_1 to the output of the autoencoder 962_1. The autoencoder 943_2 calculates the weighting coefficient wf, the weighting coefficient wg, and the weighting coefficient wh by learning so that the same one input to the autoencoder 962_1 is reconstructed on the output side of the autoencoder 962_1.
 次に、オートエンコーダ943_2は、オートエンコーダ962_1の一部であるエンコーダ963_1の出力をオートエンコーダ962_2の入力に設定する。オートエンコーダ962_2は、エンコーダ963_2と、デコーダ964_2とを有している。オートエンコーダ962_2は、活性化関数として例えばシグモイド関数が使用される。オートエンコーダ943_2は、エンコーダ963_2の入力をオートエンコーダ962_2の入力に設定する。オートエンコーダ943_2は、エンコーダ963_2の出力をデコーダ964_2の入力に設定する。オートエンコーダ943_2は、デコーダ964_2の出力をオートエンコーダ962_2の出力に設定する。オートエンコーダ943_2は、オートエンコーダ962_2と同様に、オートエンコーダ962_2に入力したものと同じものがオートエンコーダ962_2の出力側で再生されるように、重み係数wf、重み係数wg及び重み係数whを学習により演算する。 Next, the autoencoder 943_2 sets the output of the encoder 963_1, which is a part of the autoencoder 962_1, to the input of the autoencoder 962_2. The autoencoder 962_2 has an encoder 963_2 and a decoder 964_2. For the autoencoder 962_2, for example, a sigmoid function is used as the activation function. The autoencoder 943_2 sets the input of the encoder 963_2 to the input of the autoencoder 962_2. The autoencoder 943_2 sets the output of the encoder 963_2 to the input of the decoder 964_2. The autoencoder 943_2 sets the output of the decoder 964_2 to the output of the autoencoder 962_2. Similar to the autoencoder 962_2, the autoencoder 943_2 learns the weighting coefficient wf, the weighting coefficient wg, and the weighting coefficient wh so that the same input to the autoencoder 962_2 is reproduced on the output side of the autoencoder 962_2. Calculate.
 次に、オートエンコーダ943_2は、オートエンコーダ962_2の一部であるエンコーダ963_2の出力を最終層965の入力に設定する。よって、オートエンコーダ943_2は、エンコーダ963_1の出力をエンコーダ963_2の入力に設定する。オートエンコーダ943_2は、エンコーダ963_2の出力側に最終層965を追加する。最終層965は、活性化関数としてsoftmax関数が使用される。次に、オートエンコーダ943_2は、エンコーダ963_1、エンコーダ963_2及び最終層965の階層構造に誤差逆伝搬法を利用して重み係数wf、重み係数wg及び重み係数whを微調整することにより学習モデル961_2を生成する。 Next, the autoencoder 943_2 sets the output of the encoder 963_2, which is a part of the autoencoder 962_2, to the input of the final layer 965. Therefore, the autoencoder 943_2 sets the output of the encoder 963_1 to the input of the encoder 963_2. The autoencoder 943_2 adds a final layer 965 to the output side of the encoder 963_2. For the final layer 965, the softmax function is used as the activation function. Next, the autoencoder 943_2 sets the learning model 961_2 by finely adjusting the weighting coefficient wf, the weighting coefficient wg, and the weighting coefficient wh in the hierarchical structure of the encoder 963_1, the encoder 963_2, and the final layer 965 by using the error back propagation method. Generate.
 つまり、オートエンコーダ943_2は、学習用データセットとして複数の第2特徴量をオートエンコーダ943_2の入力及び出力のそれぞれに使用することにより重み係数wf、重み係数wg及び重み係数whを演算することで学習モデル961_2を生成する。 That is, the autoencoder 943_2 learns by calculating the weighting coefficient wf, the weighting coefficient wg, and the weighting coefficient wh by using a plurality of second feature quantities for each of the input and the output of the autoencoder 943_2 as a learning data set. Generate model 961-2.
 また、オートエンコーダ943_2は、複数の特徴量を学習モデル961_2に入力したときの学習モデル961_2の出力が複数の特徴量を再構成できた場合、素線の損傷が無いと判定する。オートエンコーダ943_2は、複数の特徴量を学習モデル961_2に入力したときの学習モデル961_2の出力が複数の特徴量を再構成できなかった場合、素線の損傷が有ると判定する。 Further, the autoencoder 943_2 determines that there is no damage to the strands when the output of the learning model 961_2 when a plurality of feature quantities are input to the learning model 961_2 can reconstruct the plurality of feature quantities. The autoencoder 943_2 determines that the wire is damaged when the output of the learning model 961_2 when a plurality of feature quantities are input to the learning model 961_2 cannot reconstruct the plurality of feature quantities.
 具体的には、オートエンコーダ943_2は、複数の特徴量と、複数の特徴量を学習モデル961_2に入力したときの学習モデル961_2の出力との差分を再構成誤差に設定する。オートエンコーダ943_2は、再構成誤差を二乗平均して二乗平均誤差を演算する。オートエンコーダ943_2は、二乗平均誤差が誤差許容値を超える場合、学習モデル961_2の出力が、複数の特徴量を再構成できなかったと判定する。オートエンコーダ943_2は、二乗平均誤差が誤差許容値以下である場合、学習モデル961_2の出力が、複数の特徴量を再構成できたと判定する。誤差許容値は、複数の特徴量に応じて設定されている値である。 Specifically, the autoencoder 943_2 sets the difference between the plurality of feature quantities and the output of the learning model 961_2 when the plurality of feature quantities are input to the learning model 961_2 as the reconstruction error. The autoencoder 943_2 calculates the root mean square error by square averaging the reconstruction error. When the root mean square error exceeds the error tolerance, the autoencoder 943_2 determines that the output of the learning model 961_2 could not reconstruct a plurality of features. When the root mean square error is equal to or less than the error tolerance, the autoencoder 943_2 determines that the output of the learning model 961_2 has been able to reconstruct a plurality of features. The error tolerance is a value set according to a plurality of feature quantities.
 図14は、図6の学習部943がオートエンコーダ943_2として構成されているときの制御部9による処理を説明するフローチャートである。なお、ステップS41~ステップS43の処理は、学習処理である。ステップS44及びステップS45の処理は、特徴量抽出処理である。ステップS46~ステップS49の処理は、素線判定処理である。ステップS50及びステップS51の処理は、期間判定処理である。学習処理、特徴量抽出処理、素線判定処理及び期間判定処理のうち、期間判定処理は、図12のステップS21及びステップS22の処理と同様である。よって、その説明は省略する。 FIG. 14 is a flowchart illustrating processing by the control unit 9 when the learning unit 943 of FIG. 6 is configured as an autoencoder 943_2. The processing of steps S41 to S43 is a learning process. The processes of steps S44 and S45 are feature extraction processes. The processes of steps S46 to S49 are strand determination processes. The processing of step S50 and step S51 is a period determination processing. Of the learning process, feature amount extraction process, wire line determination process, and period determination process, the period determination process is the same as the processes of steps S21 and S22 of FIG. Therefore, the description thereof will be omitted.
<学習処理>
 ステップS41において、オートエンコーダ943_2は、学習用データセットが入力されたか否かを判定する。オートエンコーダ943_2は、学習用データセットが入力されたと判定する場合、現在の処理をステップS42の処理に移行する。オートエンコーダ943_2は、学習用データセットが入力されていないと判定する場合、ステップS41の処理を継続する。
<Learning process>
In step S41, the autoencoder 943_2 determines whether or not the training data set has been input. When the autoencoder 943_2 determines that the training data set has been input, the autoencoder 943_2 shifts the current process to the process of step S42. When the autoencoder 943_2 determines that the learning data set has not been input, the autoencoder 943_2 continues the process of step S41.
 ステップS42において、オートエンコーダ943_2は、学習用データセットに複数の第2特徴量が含まれているか否かを判定する。オートエンコーダ943_2は、学習用データセットに複数の第2特徴量が含まれていると判定する場合、現在の処理をステップS43の処理に移行する。オートエンコーダ943_2は、学習用データセットに複数の第2特徴量が含まれていないと判定する場合、現在の処理をステップS41の処理に戻す。 In step S42, the autoencoder 943_2 determines whether or not the learning data set contains a plurality of second feature quantities. When the autoencoder 943_2 determines that the learning data set contains a plurality of second feature quantities, the autoencoder 943_2 shifts the current process to the process of step S43. When the autoencoder 943_2 determines that the training data set does not include the plurality of second feature quantities, the autoencoder 943_2 returns the current processing to the processing in step S41.
 ステップS43において、オートエンコーダ943_2は、学習用データセットを用いて機械学習を行うことで入力と出力との誤差を一定量に抑える重み係数wf、重み係数wg及び重み係数whを演算して学習モデル961_2を生成する。オートエンコーダ943_2は、現在の処理をステップS44の処理に移行させる。 In step S43, the autoencoder 943_2 calculates the weighting coefficient wf, the weighting coefficient wg, and the weighting coefficient wh that suppress the error between the input and the output to a certain amount by performing machine learning using the learning data set, and is a learning model. Generate 961-2. The autoencoder 943_2 shifts the current process to the process of step S44.
<特徴量抽出処理>
 ステップS44において、演算部941は、センサ信号x(t)の周波数成分が抽出されたか否かを判定する。演算部941は、センサ信号x(t)の周波数成分が抽出されたと判定する場合、現在の処理をステップS45の処理に移行する。演算部941は、センサ信号x(t)の周波数成分が抽出されていないと判定する場合、ステップS44の処理を継続する。
<Feature extraction process>
In step S44, the calculation unit 941 determines whether or not the frequency component of the sensor signal x (t) has been extracted. When the calculation unit 941 determines that the frequency component of the sensor signal x (t) has been extracted, the calculation unit 941 shifts the current process to the process of step S45. When the calculation unit 941 determines that the frequency component of the sensor signal x (t) has not been extracted, the calculation unit 941 continues the process of step S44.
 ステップS45において、演算部941は、周波数成分を構成する複数の値y1(n)~yN(n)から複数の統計的演算により複数の特徴量を抽出する。演算部941は、現在の処理をステップS46の処理に移行させる。 In step S45, the calculation unit 941 extracts a plurality of feature quantities from a plurality of values y1 (n) to yN (n) constituting the frequency component by a plurality of statistical calculations. The calculation unit 941 shifts the current processing to the processing in step S46.
<素線判定処理>
 ステップS46において、オートエンコーダ943_2は、複数の特徴量を学習モデル961_2に入力する。オートエンコーダ943_2は、現在の処理をステップS47の処理に移行する。ステップS47において、オートエンコーダ943_2は、学習モデル961_2の出力が、複数の特徴量を再構成できたか否かを判定する。オートエンコーダ943_2は、学習モデル961_2の出力が、複数の特徴量を再構成できたと判定する場合、現在の処理をステップS48の処理に移行する。オートエンコーダ943_2は、学習モデル961_2の出力が、複数の特徴量を再構成できていないと判定する場合、現在の処理をステップS49の処理に移行する。
<Strand wire judgment processing>
In step S46, the autoencoder 943_2 inputs a plurality of feature quantities into the learning model 961_2. The autoencoder 943_2 shifts the current process to the process of step S47. In step S47, the autoencoder 943_2 determines whether or not the output of the learning model 961_2 has been able to reconstruct a plurality of feature quantities. When the autoencoder 943_2 determines that the output of the learning model 961_2 has been able to reconstruct a plurality of feature quantities, the autoencoder shifts the current process to the process of step S48. When the autoencoder 943_2 determines that the output of the learning model 961_2 has not been able to reconstruct a plurality of feature quantities, the autoencoder shifts the current process to the process of step S49.
 ステップS48において、オートエンコーダ943_2は、素線の損傷が無いと判定する。オートエンコーダ943_2は、現在の処理をステップS50の処理に移行する。 In step S48, the autoencoder 943_2 determines that there is no damage to the wire. The autoencoder 943_2 shifts the current process to the process of step S50.
 ステップS49において、オートエンコーダ943_2は、素線の損傷が有ると判定する。オートエンコーダ943_2は、現在の処理をステップS50の処理に移行する。 In step S49, the autoencoder 943_2 determines that the wire is damaged. The autoencoder 943_2 shifts the current process to the process of step S50.
 以上の説明から、ワイヤロープ探傷装置は、磁化器11と、磁気センサ13と、制御部9と、を備えている。磁化器11は、ワイヤロープ2Sの一部を通る磁束Fを発生する。磁気センサ13は、磁束Fのうちワイヤロープ2Sから漏洩する漏洩磁束L_Fに応じた信号をセンサ信号x(t)として発生する。制御部9は、センサ信号x(t)を処理する。 From the above description, the wire rope flaw detector includes a magnetizer 11, a magnetic sensor 13, and a control unit 9. The magnetizer 11 generates a magnetic flux F that passes through a part of the wire rope 2S. The magnetic sensor 13 generates a signal corresponding to the leakage magnetic flux L_F leaking from the wire rope 2S in the magnetic flux F as a sensor signal x (t). The control unit 9 processes the sensor signal x (t).
 制御部9は、センサ信号x(t)の周波数成分を抽出するフィルタ部93と、演算部941と、学習部943と、を有している。 The control unit 9 has a filter unit 93 for extracting the frequency component of the sensor signal x (t), a calculation unit 941, and a learning unit 943.
 学習部943は、素線の損傷の有無の判定の前段階として、学習済みの学習モデル961を生成する。学習済みの学習モデル961は、周波数成分を構成する複数の値y1(n)~yN(n)に基づく複数の特徴量とワイヤロープ2Sに含まれる素線の状態との相関関係について機械学習を行っている。 The learning unit 943 generates a trained learning model 961 as a preliminary step for determining whether or not there is damage to the wire. The trained learning model 961 performs machine learning on the correlation between a plurality of features based on a plurality of values y1 (n) to yN (n) constituting the frequency component and the state of the wire rope included in the wire rope 2S. Is going.
 学習部943は、学習済みの学習モデル961に、複数の特徴量を入力したときの学習モデル961が演算処理を実行することで、素線の損傷の有無を判定する。ここで、複数の特徴量は、素線の損傷の有無の判定の前段階とは異なるタイミングで抽出された周波数成分を構成する複数の値y1(n)~yN(n)に基づき抽出されている。 The learning unit 943 determines whether or not there is damage to the strands by executing arithmetic processing in the learning model 961 when a plurality of feature quantities are input to the learned learning model 961. Here, the plurality of feature quantities are extracted based on a plurality of values y1 (n) to yN (n) constituting the frequency components extracted at a timing different from the previous step of determining the presence or absence of damage to the strands. There is.
 つまり、処理部94は、周波数成分を構成する複数の値y1(n)~yN(n)に基づく複数の特徴量の入力を学習済みの学習モデル961にしたときの学習モデル961の演算処理の実行結果から素線の損傷の有無を判定する。ここで、学習モデル961は、周波数成分を構成する複数の値y1(n)~yN(n)に基づく複数の特徴量とワイヤロープ2Sに含まれる素線の状態との相関関係についての機械学習を学習済みである。 That is, the processing unit 94 performs arithmetic processing of the learning model 961 when the input of a plurality of feature quantities based on the plurality of values y1 (n) to yN (n) constituting the frequency component is used as the learned learning model 961. The presence or absence of damage to the wire is determined from the execution result. Here, the learning model 961 is machine learning about the correlation between a plurality of features based on a plurality of values y1 (n) to yN (n) constituting the frequency component and the state of the wire rope included in the wire rope 2S. Have been learned.
 よって、学習モデル961は、複雑な演算をすることなく、周波数成分を構成する複数の値y1(n)~yN(n)に基づく複数の特徴量の入力からワイヤロープ2Sに含まれる素線の状態を予測した予測結果を出力することができる。 Therefore, the learning model 961 can input a plurality of features based on a plurality of values y1 (n) to yN (n) constituting the frequency component to the wire rope 2S without performing a complicated calculation. It is possible to output the prediction result of predicting the state.
 したがって、時間領域においては磁気センサ13に発生した誘起電圧が低いことでSN比が低かったとしても以下のようになる。処理部94は、周波数領域における周波数成分に基づく入力をされた学習モデル961からの出力により、ノイズ周波数成分f_nを隠蔽した状態で素線の損傷の有無を判定することができる。 Therefore, in the time domain, even if the SN ratio is low due to the low induced voltage generated in the magnetic sensor 13, the result is as follows. The processing unit 94 can determine the presence or absence of damage to the strands in a state where the noise frequency component f_n is concealed by the output from the learning model 961 input based on the frequency component in the frequency domain.
 以上の説明から、ワイヤロープ探傷装置は、SN比をより確実に向上させることができる。 From the above explanation, the wire rope flaw detector can more reliably improve the SN ratio.
 また、演算部941は、複数の値y1(n)~yN(n)から複数の統計的演算により複数の特徴量を抽出する。学習部943は、素線の損傷が有ることを特徴付ける複数の第1特徴量と、素線の損傷が無いことを特徴付ける複数の第2特徴量とのうち、少なくとも一方を学習用データセットとした学習モデル961の出力から素線の損傷の有無を判定する。 Further, the calculation unit 941 extracts a plurality of feature quantities from a plurality of values y1 (n) to yN (n) by a plurality of statistical calculations. The learning unit 943 uses at least one of a plurality of first feature quantities that characterize the presence of damage to the strands and a plurality of second feature quantities that characterize the absence of damage to the strands as a learning data set. From the output of the learning model 961, it is determined whether or not the wire is damaged.
 つまり、学習部943は、複数の第1特徴量と、複数の第2特徴量とのうち、少なくとも一方を学習用データセットとした学習モデル961に複数の特徴量を入力したときの学習モデル961の出力に基づき、素線の損傷の有無を判定する。ここで、複数の第1特徴量は、素線の損傷が有ることを特徴付ける。複数の第2特徴量は、素線の損傷が無いことを特徴付ける。 That is, the learning unit 943 is a learning model 961 when a plurality of feature quantities are input to the learning model 961 in which at least one of the plurality of first feature quantities and the plurality of second feature quantities is used as a learning data set. Based on the output of, it is judged whether or not the wire is damaged. Here, the plurality of first feature quantities characterize that there is damage to the wire. The plurality of second feature quantities are characterized by no damage to the strands.
 よって、学習部943は、時間領域における漏洩磁束L_Fと異なる側面から素線の損傷の有無を明確に判定することができる。したがって、ワイヤロープ探傷装置は、SN比をより確実に向上させることができる。 Therefore, the learning unit 943 can clearly determine the presence or absence of damage to the strands from a side surface different from the leakage magnetic flux L_F in the time domain. Therefore, the wire rope flaw detector can more reliably improve the signal-to-noise ratio.
 また、学習部943は、予め設定された特徴空間の中を、複数の第1特徴量を含む第1領域と、複数の第2特徴量を含む第2領域と、に識別超平面により分類可能なサポートベクトルマシン943_1として構成されている。サポートベクトルマシン943_1は、学習用データセットとして複数の第1特徴量及び複数の第2特徴量の両方を特徴空間に写像して識別超平面を演算することで学習モデル961_1を生成する。 Further, the learning unit 943 can classify the preset feature space into a first region including a plurality of first feature quantities and a second region including a plurality of second feature quantities by an identification hyperplane. It is configured as a support vector machine 943_1. The support vector machine 943_1 generates a learning model 961_1 by mapping both a plurality of first feature quantities and a plurality of second feature quantities to a feature space as a training data set and calculating an identification hyperplane.
 よって、サポートベクトルマシン943_1は、学習モデル961_1により、素線の損傷が有る場合及び素線の損傷が無い場合のいずれに複数の特徴量が該当するかを識別超平面で分類することができる。したがって、ワイヤロープ探傷装置は、素線の損傷の有無を判定するための汎化能力を向上させることができる。 Therefore, the support vector machine 943_1 can classify by the learning model 961_1 on the identification hyperplane whether a plurality of features correspond to the case where the wire is damaged or the case where the wire is not damaged. Therefore, the wire rope flaw detector can improve the generalization ability for determining the presence or absence of damage to the wire.
 また、サポートベクトルマシン943_1は、複数の特徴量を学習モデル961_1に入力したときの学習モデル961_1の出力が、第1領域に分類したものに該当する場合、素線の損傷が有ると判定する。サポートベクトルマシン943_1は、複数の特徴量を学習モデル961_1に入力したときの学習モデル961_1の出力が、第2領域に分類したものに該当する場合、素線の損傷が無いと判定する。 Further, the support vector machine 943_1 determines that the wire is damaged when the output of the learning model 961_1 when a plurality of feature quantities are input to the learning model 961_1 corresponds to the one classified in the first region. The support vector machine 943_1 determines that there is no damage to the strands when the output of the learning model 961_1 when a plurality of feature quantities are input to the learning model 961_1 corresponds to those classified into the second region.
 よって、サポートベクトルマシン943_1は、学習モデル961_1の出力が、複数の特徴量を第1領域及び第2領域のいずれかに分類したものに該当するかに応じて、素線の損傷の有無を判定する。よって、サポートベクトルマシン943_1は、いずれの領域に属するか否かで素線の損傷の有無の判定をすることができる。したがって、ワイヤロープ探傷装置は、素線の損傷の有無の判定処理を単純な分類処理に置換できるので、誤判定を低減させることができる。 Therefore, the support vector machine 943_1 determines the presence or absence of wire damage according to whether the output of the learning model 961_1 corresponds to a plurality of feature quantities classified into either the first region or the second region. do. Therefore, the support vector machine 943_1 can determine whether or not the wire is damaged depending on which region it belongs to. Therefore, the wire rope flaw detector can replace the determination process of presence / absence of damage to the wire with a simple classification process, so that erroneous determination can be reduced.
 また、学習部943は、入力と出力との誤差を重み係数wf、重み係数wg及び重み係数whにより一定量に抑えるオートエンコーダ943_2として構成されている。オートエンコーダ943_2は、学習用データセットとして複数の第2特徴量をオートエンコーダ943_2の入力及び出力のそれぞれに使用することにより重み係数wf、重み係数wg及び重み係数whを演算することで学習モデル961_2を生成する。 Further, the learning unit 943 is configured as an autoencoder 943_2 that suppresses the error between the input and the output to a certain amount by the weighting coefficient wf, the weighting coefficient wg, and the weighting coefficient wh. The autoencoder 943_2 uses a plurality of second features as a training data set for each of the input and output of the autoencoder 943_2 to calculate the weighting coefficient wf, the weighting coefficient wg, and the weighting coefficient wh, thereby calculating the training model 961_2. To generate.
 よって、オートエンコーダ943_2は、素線の損傷が有る場合及び素線の損傷が無い場合のいずれに複数の特徴量が該当するかを出力で示すことができる。したがって、オートエンコーダ943_2は、複数の特徴量のそれぞれが重み付けされることで次元数を減らして素線の損傷の有無の判定をすることができる。 Therefore, the autoencoder 943_2 can indicate by output whether a plurality of features correspond to the case where the wire is damaged or the case where the wire is not damaged. Therefore, the autoencoder 943_2 can reduce the number of dimensions by weighting each of the plurality of feature quantities and determine the presence or absence of damage to the strands.
 以上の説明から、ワイヤロープ探傷装置は、判定に要する計算量を削減することができつつ、複数の特徴量のうち素線の損傷の有無の判定に寄与する特徴量を強調させて素線の損傷の有無の判定精度を向上させることができる。 From the above description, the wire rope flaw detector can reduce the amount of calculation required for determination, and emphasizes the feature amount that contributes to the determination of the presence or absence of damage to the wire among a plurality of feature amounts. It is possible to improve the accuracy of determining the presence or absence of damage.
 また、オートエンコーダ943_2は、複数の特徴量を学習モデル961_2に入力したときの学習モデル961_2の出力が複数の特徴量を再構成できた場合、素線の損傷が無いと判定する。オートエンコーダ943_2は、複数の特徴量を学習モデル961_2に入力したときの学習モデル961_2の出力が複数の特徴量を再構成できなかった場合、素線の損傷が有ると判定する。 Further, the autoencoder 943_2 determines that there is no damage to the strands when the output of the learning model 961_2 when a plurality of feature quantities are input to the learning model 961_2 can reconstruct the plurality of feature quantities. The autoencoder 943_2 determines that the wire is damaged when the output of the learning model 961_2 when a plurality of feature quantities are input to the learning model 961_2 cannot reconstruct the plurality of feature quantities.
 よって、オートエンコーダ943_2は、学習モデル961_2の出力が、複数の特徴量を再構成できたか否かに応じて、素線の損傷の有無を判定する。したがって、ワイヤロープ探傷装置は、複数の特徴量のそれぞれが非線形な関係であっても、素線の損傷の有無を判定することができる。 Therefore, the autoencoder 943_2 determines whether or not the wire is damaged depending on whether or not the output of the learning model 961_2 can reconstruct a plurality of feature quantities. Therefore, the wire rope flaw detector can determine the presence or absence of damage to the wire even if each of the plurality of features has a non-linear relationship.
 なお、オートエンコーダ943_2は、学習モデル961_2により素線の損傷が有ると判定した場合には以下のような処理を実行してもよい。オートエンコーダ943_2は、どの入力次元が要因で素線の損傷が有ると判定したかをスパース最適化により推定する。これにより、オートエンコーダ943_2は、その推定結果をワイヤロープ2の断線箇所のより詳細な分析に用いることができる。 Note that the autoencoder 943_2 may execute the following processing when it is determined by the learning model 961_2 that the wire is damaged. The autoencoder 943_2 estimates by sparse optimization which input dimension is responsible for determining that the wire is damaged. As a result, the autoencoder 943_2 can use the estimation result for a more detailed analysis of the broken portion of the wire rope 2.
 また、フィルタ部93は、互いに異なる複数の帯域を個別の通過帯域とする複数のバンドパスフィルタを有する。よって、フィルタ部93は、互いに異なる複数の帯域の周波数成分を抽出できる。したがって、ワイヤロープ探傷装置は、磁気センサ13で生じた誘起電圧をセンサ信号x(t)として周波数領域で分析することができる。 Further, the filter unit 93 has a plurality of bandpass filters having a plurality of bands different from each other as individual pass bands. Therefore, the filter unit 93 can extract frequency components of a plurality of bands different from each other. Therefore, the wire rope flaw detector can analyze the induced voltage generated by the magnetic sensor 13 as the sensor signal x (t) in the frequency domain.
 また、演算部941は、複数の統計的演算により、周波数成分を構成する複数の値y1(n)~yN(n)の合計値、平均値及び中央値の少なくとも1つを複数の特徴量の少なくとも1つとして求める。 Further, the calculation unit 941 performs a plurality of statistical calculations to obtain at least one of a total value, an average value, and a median of a plurality of values y1 (n) to yN (n) constituting the frequency component of the plurality of feature quantities. Ask for at least one.
 よって、演算部941は、周波数成分を構成する複数の値y1(n)~yN(n)の全てを比較対象とするのではなく、複数の統計的演算の種類に対応して複数の異なる代表値を複数の特徴量として抽出する。 Therefore, the calculation unit 941 does not compare all of the plurality of values y1 (n) to yN (n) constituting the frequency component, but has a plurality of different representatives corresponding to a plurality of types of statistical calculations. Extract the values as multiple features.
 したがって、ワイヤロープ探傷装置は、複数の特徴量を、色々な側面から抽出された複数の代表値とするため、素線の損傷の有無の判定精度を特に顕著に向上させることができる。 Therefore, since the wire rope flaw detector uses a plurality of feature quantities as a plurality of representative values extracted from various aspects, the accuracy of determining the presence or absence of damage to the wire can be particularly significantly improved.
 実施の形態2.
 実施の形態2において、実施の形態1と同一又は同等の構成及び機能の説明は省略される。実施の形態2は、実施の形態1の学習モデル961_1及び学習モデル961_2のいずれか一方が学習部943に既に格納されている点が実施の形態1と異なる。他の構成は、実施の形態1と同様である。つまり、その他の構成は実施の形態1と同一又は同等の構成であり、これらの部分には同一符号を付している。
Embodiment 2.
In the second embodiment, the description of the same or equivalent configuration and function as the first embodiment is omitted. The second embodiment is different from the first embodiment in that either one of the learning model 961_1 and the learning model 961_2 of the first embodiment is already stored in the learning unit 943. Other configurations are the same as those in the first embodiment. That is, the other configurations are the same as or equivalent to those of the first embodiment, and these parts are designated by the same reference numerals.
 図15は、実施の形態2において制御部9による処理を説明するフローチャートである。上記で説明したように、図15のステップS61の処理が開始される前に、学習部943には学習モデル961_1及び学習モデル961_2のいずれか一方が既に格納されている状態となっている。従って、ワイヤロープ2Sの検査時には図12を用いて説明したようなステップS11~ステップS13の処理から構成される学習処理は不要となっている。同様に、ワイヤロープ2Sの検査時には図14を用いて説明したようなステップS41~ステップS43の処理から構成される学習処理は不要となっている。また、図15では、図12を用いて説明したようなステップS21及びステップS22の処理から構成される期間判定処理は省略されている。同様に、図15では、図14を用いて説明したようなステップS50及びステップS51の処理から構成される期間判定処理は省略されている。 FIG. 15 is a flowchart illustrating processing by the control unit 9 in the second embodiment. As described above, before the process of step S61 of FIG. 15 is started, either one of the learning model 961_1 and the learning model 961_2 is already stored in the learning unit 943. Therefore, when inspecting the wire rope 2S, the learning process including the processes of steps S11 to S13 as described with reference to FIG. 12 is unnecessary. Similarly, when inspecting the wire rope 2S, the learning process including the processes of steps S41 to S43 as described with reference to FIG. 14 is unnecessary. Further, in FIG. 15, the period determination process including the processes of steps S21 and S22 as described with reference to FIG. 12 is omitted. Similarly, in FIG. 15, the period determination process including the processes of steps S50 and S51 as described with reference to FIG. 14 is omitted.
 具体的には、ステップS61及びステップS62の処理は、特徴量抽出処理である。ステップS61及びステップS62の処理は、ステップS44及びステップS45の処理と同様である。よって、その説明は省略する。 Specifically, the processes of steps S61 and S62 are feature extraction processes. The processing of step S61 and step S62 is the same as the processing of step S44 and step S45. Therefore, the description thereof will be omitted.
 また、ステップS63及びステップS65~ステップS67の処理は、素線判定処理である。ステップS63及びステップS65~ステップS67の処理は、ステップS46~ステップS49の処理と同様である。よって、その説明は省略する。ここで、ステップS65~ステップS67の処理は、オートエンコーダ943_2から生成された学習モデル961_2によって実行される。 Further, the processes of step S63 and steps S65 to S67 are wire line determination processes. The processes of steps S63 and steps S65 to S67 are the same as the processes of steps S46 to S49. Therefore, the description thereof will be omitted. Here, the processes of steps S65 to S67 are executed by the learning model 961_2 generated from the autoencoder 943_2.
 また、ステップS63及びステップS68~ステップS71の処理は、素線判定処理である。ステップS63及びステップS68~ステップS71の処理は、ステップS16~ステップS20の処理と同様である。よって、その説明は省略する。ここで、ステップS68~ステップS71の処理は、サポートベクトルマシン943_1から生成された学習モデル961_1によって実行される。 Further, the processes of step S63 and steps S68 to S71 are wire line determination processes. The processes of steps S63 and steps S68 to S71 are the same as the processes of steps S16 to S20. Therefore, the description thereof will be omitted. Here, the processes of steps S68 to S71 are executed by the learning model 961_1 generated from the support vector machine 943_1.
 ステップS64において、制御部9は、学習モデル961が、オートエンコーダ943_2によって生成された学習モデル961_2であるか、又はサポートベクトルマシン943_1によって生成された学習モデル961_1であるか、を判定する。学習モデル961がオートエンコーダ943_2によって生成された学習モデル961_2であると制御部9によって判定された場合、ステップS64の処理は、ステップS65の処理に進む。一方、学習モデル961がサポートベクトルマシン943_1から生成された学習モデル961_1であると制御部9によって判定された場合、ステップS64の処理は、ステップS68の処理に進む。 In step S64, the control unit 9 determines whether the learning model 961 is the learning model 961_2 generated by the autoencoder 943_2 or the learning model 961_1 generated by the support vector machine 943_1. When the control unit 9 determines that the learning model 961 is the learning model 961_2 generated by the autoencoder 943_2, the process of step S64 proceeds to the process of step S65. On the other hand, when the control unit 9 determines that the learning model 961 is the learning model 961_1 generated from the support vector machine 943_1, the process of step S64 proceeds to the process of step S68.
 このように、学習モデル961_1及び学習モデル961_2のいずれか一方が使用されることにより、制御部9への入力としてセンサ信号x(t)が入力され、制御部9からの出力として素線の損傷の有無の判定結果が出力される。 By using either the learning model 961_1 or the learning model 961_2 in this way, the sensor signal x (t) is input as an input to the control unit 9, and the wire is damaged as an output from the control unit 9. The judgment result of the presence or absence of is output.
 従って、学習モデル961_1及び学習モデル961_2のいずれか一方をワイヤロープ2Sの故障診断に活用することができる。 Therefore, either one of the learning model 961_1 and the learning model 961_2 can be used for failure diagnosis of the wire rope 2S.
 以上の説明から、学習モデル961_1及び学習モデル961_2のいずれか一方が学習部943に格納されていることにより、センサ信号x(t)が制御部9に入力されれば、制御部9から素線の損傷の有無の判定結果が出力される。これにより、学習モデル961_1及び学習モデル961_2のいずれか一方をワイヤロープ2Sの故障診断に活用することができる。 From the above description, since either one of the learning model 961_1 and the learning model 961_2 is stored in the learning unit 943, if the sensor signal x (t) is input to the control unit 9, the control unit 9 will wire the wire. The judgment result of the presence or absence of damage is output. Thereby, either one of the learning model 961_1 and the learning model 961_2 can be utilized for the failure diagnosis of the wire rope 2S.
 実施の形態3.
 実施の形態3において、実施の形態1及び実施の形態2と同一又は同等の構成及び機能の説明は省略される。実施の形態3は、実施の形態1及び実施の形態2のバンドパスフィルタがウェーブレット変換で実現される点が実施の形態1及び実施の形態2と異なる。他の構成は、実施の形態1及び実施の形態2と同様である。つまり、その他の構成は実施の形態1と同一又は同等の構成であり、これらの部分には同一符号を付している。
Embodiment 3.
In the third embodiment, the description of the same or equivalent configuration and function as those of the first embodiment and the second embodiment is omitted. The third embodiment is different from the first and second embodiments in that the bandpass filters of the first and second embodiments are realized by wavelet transform. Other configurations are the same as those of the first embodiment and the second embodiment. That is, the other configurations are the same as or equivalent to those of the first embodiment, and these parts are designated by the same reference numerals.
 図16は、実施の形態3によるワイヤロープ2Sから漏洩する漏洩磁束L_Fに応じた信号を処理する制御部9の機能構成例を示すブロック図である。図16に示すように、フィルタ部193は、バンドパスフィルタとして、センサ信号x(t)にウェーブレット変換を実行することによりセンサ信号x(t)の周波数成分の分布を生成するウェーブレット変換部1931を備えている。 FIG. 16 is a block diagram showing a functional configuration example of the control unit 9 that processes a signal corresponding to the leakage magnetic flux L_F leaking from the wire rope 2S according to the third embodiment. As shown in FIG. 16, the filter unit 193 uses a wavelet transform unit 1931 as a bandpass filter to generate a distribution of frequency components of the sensor signal x (t) by performing a wavelet transform on the sensor signal x (t). I have.
 図17は、図16のフィルタ部193の周波数特性の一例を示す図である。バンドパスフィルタは、ウェーブレット変換部1931で処理されるウェーブレット変換の基底関数により実現されるものである。図17に示すように、複数の帯域のそれぞれの帯域幅bkは、帯域の中心周波数ωckが低くなるほど狭くなっている。 FIG. 17 is a diagram showing an example of the frequency characteristics of the filter unit 193 of FIG. The bandpass filter is realized by the basis function of the wavelet transform processed by the wavelet transform unit 1931. As shown in FIG. 17, each of the bandwidth b k of the plurality of bands, the center frequency omega ck bandwidth becomes narrower lower.
 次に、ウェーブレット変換の基底関数の一例として、Morlet Waveletが図18を用いて説明される。図18は、図16のウェーブレット変換部1931によるマザーウェーブレットの時間領域の波形例を示す図である。マザーウェーブレットは式(1)に表される。 Next, as an example of the basis function of the wavelet transform, Mollet Wavelet will be described with reference to FIG. FIG. 18 is a diagram showing an example of a waveform in the time domain of the mother wavelet by the wavelet transform unit 1931 of FIG. The mother wavelet is expressed by the equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ドーターウェーブレットは次の式(2)に表される。ドーターウェーブレットのスケールは、次の式(3)に表される。式(2)に表されるドーターウェーブレットは、式(3)に表されるスケールに応じて、図18に示す波形の振幅を拡大又は縮小することができる。また、式(2)に表されるドーターウェーブレットは、式(3)に表されるスケールに応じて、図18に示す波形を時間軸方向に平行移動することができる。ここで、s0はスケールの定数である。skは、kを引数とし、且つs0が乗算されるスケールの関数である。 The daughter wavelet is expressed by the following equation (2). The scale of the daughter wavelet is expressed by the following equation (3). The daughter wavelet represented by the formula (2) can increase or decrease the amplitude of the waveform shown in FIG. 18 according to the scale represented by the formula (3). Further, the daughter wavelet represented by the equation (2) can translate the waveform shown in FIG. 18 in the time axis direction according to the scale represented by the equation (3). Here, s 0 is a constant of scale. sk is a scale function that takes k as an argument and is multiplied by s 0.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 次に、マザーウェーブレット及びドーターウェーブレットをフーリエ変換したものは、次のように説明される。まず、マザーウェーブレットをフーリエ変換した式は次の式(4)に表される。一方、ドーターウェーブレットをフーリエ変換したものは式(5)に表される。 Next, the Fourier transform of the mother wavelet and daughter wavelet is explained as follows. First, the Fourier transform equation of the mother wavelet is expressed by the following equation (4). On the other hand, the Fourier transform of the daughter wavelet is expressed in Eq. (5).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 図19は、図16のウェーブレット変換部1931によるマザーウェーブレットの周波数領域の波形例を示す図である。図19に示すように、Morlet Waveletの周波数特性は、入力信号x(n)の周波数成分のうち、帯域幅bkと帯域幅bkの中心周波数ω0とで特定される通過帯域の周波数を通過させるバンドパスフィルタとなる。図19の中心周波数ωckは、次の式(6)に表される。式(6)に表されるように、中心周波数ωckは、ω0/s0を2のm乗根の累乗で除した値で表現される。ここで、上記で説明したように、mは自然数である。 FIG. 19 is a diagram showing an example of waveforms in the frequency domain of the mother wavelet by the wavelet transform unit 1931 of FIG. As shown in FIG. 19, the frequency characteristic of Morlet Wavelet, among the frequency components of the input signal x (n), the frequency of the pass band specified by the center frequency omega 0 of bandwidth b k and bandwidth b k It becomes a bandpass filter to pass. The center frequency ω ck in FIG. 19 is expressed by the following equation (6). As expressed in equation (6), the center frequency ω ck is expressed by the value obtained by dividing ω 0 / s 0 by the power of the root of 2 to the power of m. Here, as explained above, m is a natural number.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 また、図19の帯域幅bkは、次の式(7)に表される。 Also, the bandwidth b k in FIG. 19 is expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ここで、m=1の場合の式(6)及び式(7)は、次のように説明される。まず、次の式(8)は、式(6)において、m=1のときの式である。式(8)の記載から、中心周波数ωckは、ω0/s0を2で除した値で表現される。 Here, the equations (6) and (7) in the case of m = 1 are explained as follows. First, the following equation (8) is an equation when m = 1 in the equation (6). From the description of equation (8), the center frequency ω ck is expressed by the value obtained by dividing ω 0 / s 0 by 2.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 一方、次の式(9)は、式(7)において、m=1のときの式である。式(9)の記載から、帯域幅bkは、2の自然対数の平方根を2倍してs0で除した値を2で除した値で表現される。 On the other hand, the following equation (9) is the equation when m = 1 in the equation (7). From the description of equation (9), the bandwidth bc is expressed by the value obtained by doubling the square root of the natural logarithm of 2 and dividing by s 0 by dividing by 2.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 よって、式(7)によりΔk=1/mであるため、式(7)は、Δk=1/m=1/1=1のようになる。したがって、互いに隣接する2つの帯域のうち、一方の帯域の帯域幅bkと、一方の帯域よりも中心周波数ωckの低い他方の帯域の帯域幅bk+1との関係は、bk+1=2-Δk・bk=bk+1=2-1・bkの関係を満たしている。したがって、m=1の場合、一方の帯域の帯域幅bkと、他方の帯域の帯域幅bk+1との関係は、1オクターブとなる。 Therefore, since Δk = 1 / m according to the equation (7), the equation (7) becomes Δk = 1 / m = 1/1 = 1. Therefore, the relationship between the bandwidth b k of one of the two adjacent bands and the bandwidth b k + 1 of the other band having a lower center frequency ω ck than that of one band is b k +. The relationship of 1 = 2-Δk · b k = b k + 1 = 2 -1 · b k is satisfied. Thus, for m = 1, the relationship between the bandwidth b k, the bandwidth b k + 1 of the other band of one band is 1 octave.
 具体的には、式(8)において、k=0のとき、中心周波数ωckは、周波数ω0/s0となる。また、式(9)において、k=0のとき、帯域幅bkは、次の式(10)に表される。よって、式(8)及び式(9)から、kが1増す毎に、中心周波数ωck及び帯域幅bkは、1/2になる。 Specifically, in the equation (8), when k = 0, the center frequency ω ck becomes the frequency ω 0 / s 0 . Further, in the equation (9), when k = 0, the bandwidth bc is expressed by the following equation (10). Therefore, from equations (8) and (9), for each k increases 1, the center frequency omega ck and bandwidth b k becomes 1/2.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 また、Δk=1/mであるため、mが1以外の自然数となるとき、次の関係が成立する。互いに隣接する2つの帯域のうち、一方の帯域の帯域幅bkと、一方の帯域よりも中心周波数ωckの低い他方の帯域の帯域幅bk+1との関係は、bk+1=2-Δk・bk=bk+1=2-1/m・bkの関係を満たしている。よって、mが1以外の場合、一方の帯域の帯域幅bkと、他方の帯域の帯域幅bk+1との関係は、1/mオクターブとなる。m=3の場合のときの中心周波数ωckは、次のように説明される。 Further, since Δk = 1 / m, the following relationship is established when m is a natural number other than 1. Each other among the two adjacent bands, the relationship between the bandwidth b k of one band, the bandwidth b k + 1 of the other lower band center frequencies omega ck than one band, b k + 1 = The relationship of 2-Δk · b k = b k + 1 = 2-1 / m · b k is satisfied. Thus, if m is not 1, the relationship between the bandwidth b k, the bandwidth b k + 1 of the other band of one band becomes 1 / m octave. The center frequency ω ck when m = 3 is explained as follows.
 図20は、図16のフィルタ部193の周波数特性の他の一例として1/3オクターブのときの中心周波数ωckの概念図である。図20に示すように、中心周波数ωckは、ω0/s0を2の3乗根の累乗で除した値で表現することができる。 FIG. 20 is a conceptual diagram of the center frequency ω ck at 1/3 octave as another example of the frequency characteristics of the filter unit 193 of FIG. As shown in FIG. 20, the center frequency ω ck can be expressed by a value obtained by dividing ω 0 / s 0 by the power of the cube root of 2.
 上記の説明から、互いに隣接する2つの帯域の中心周波数ωckと中心周波数ωck+1とは、次の式(11)に表される。式(11)は、式(8)に基づき、互いに隣接する2つの帯域の中心周波数ωckと中心周波数ωck+1との大きさの違いを表したものである。式(11)から、kが1増す毎に、中心周波数ωckは、2-1/mになる。 From the above description, the center frequency ω ck and the center frequency ω ck + 1 of the two bands adjacent to each other are expressed by the following equation (11). Equation (11) expresses the difference in magnitude between the center frequency ω ck and the center frequency ω ck + 1 of two bands adjacent to each other based on the equation (8). From equation (11), the center frequency ω ck becomes 2-1 / m each time k is incremented by 1.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 また、互いに隣接する2つの帯域のそれぞれにおける帯域幅bkと帯域幅bk+1とは、次の式(12)に表される。式(12)は、式(9)に基づき、互いに隣接する2つの帯域の帯域幅bkと帯域幅bk+1との大きさの違いを表したものである。式(12)から、kが1増す毎に、帯域幅bkは、2-1/mになる。 Further, the bandwidth b k and the bandwidth b k + 1 in each of the two adjacent bands are expressed by the following equation (12). Equation (12) expresses the difference in magnitude between the bandwidth b k and the bandwidth b k + 1 of two adjacent bands based on the equation (9). From equation (12), for each k increases 1, the bandwidth b k will 2 -1 / m.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 図21は、図16のフィルタ部193が漏洩磁束L_Fに応じた信号から抽出した周波数成分の分布の一例を示す図である。図21の一例は、互いに隣接する2つの帯域の帯域幅bk及び中心周波数ωck以外は、図8の一例と同様である。よって、図21の説明は省略される。 FIG. 21 is a diagram showing an example of the distribution of frequency components extracted from the signal corresponding to the leakage magnetic flux L_F by the filter unit 193 of FIG. An example of FIG. 21, except bandwidth b k and the center frequency omega ck two bands adjacent to each other, is similar to an example of FIG. 8. Therefore, the description of FIG. 21 is omitted.
 図22は、図16の時刻t1のときにフィルタ部193によって生成された数列yk(n)の一例を示す図である。図22の一例では、数列yk(n)を構成する複数の値y1(n)~yN(n)のうち、k=6のときの値y6(n)が最大値を示し、k=1,2,3,5及び7のときの値y1(n),y2(n),y3(n),y5(n)及びy7(n)が最小値を示す。よって、範囲は、値y6(n)と値y1(n),y2(n),y3(n),y5(n)及びy7(n)との差分で求まる。 FIG. 22 is a diagram showing an example of the sequence yk (n) generated by the filter unit 193 at the time t1 of FIG. In one example of FIG. 22, among a plurality of values y1 (n) to yN (n) constituting the sequence yk (n), the value y6 (n) when k = 6 indicates the maximum value, and k = 1, The values y1 (n), y2 (n), y3 (n), y5 (n) and y7 (n) when the values are 2, 3, 5 and 7 indicate the minimum values. Therefore, the range is obtained by the difference between the value y6 (n) and the values y1 (n), y2 (n), y3 (n), y5 (n), and y7 (n).
 図23は、図16の時刻t2のときにフィルタ部193によって生成された数列yk(n)の一例を示す図である。図23の一例では、数列yk(n)を構成する複数の値y1(n)~yN(n)を昇順に並べたときに中央に位置する値は、k=5のときの値となる。よって、中央値は、k=5のときの値が採用される。 FIG. 23 is a diagram showing an example of the sequence yk (n) generated by the filter unit 193 at the time t2 of FIG. In one example of FIG. 23, the value located at the center when a plurality of values y1 (n) to yN (n) constituting the sequence yk (n) are arranged in ascending order is the value when k = 5. Therefore, the value when k = 5 is adopted as the median value.
 図24は、図16の制御部9による処理を説明するフローチャートである。なお、ステップS81の処理は、学習処理である。ステップS82~ステップS84の処理は、特徴量抽出処理である。ステップS85の処理は、素線判定処理である。ステップS86の処理は、期間判定処理である。学習処理、特徴量抽出処理、素線判定処理及び期間判定処理のうち、学習処理、素線判定処理及び期間判定処理は、以下のようになる。すなわち、学習処理、素線判定処理及び期間判定処理は、図12において、ステップS11~ステップS13の処理、ステップS16~ステップS20の処理並びにステップS21及びステップS22の処理からなる一連の処理となる。また、学習処理、素線判定処理及び期間判定処理は、図14において、ステップS41~ステップS43の処理、ステップS46~ステップS49の処理並びにステップS50及びステップS51の処理からなる一連の処理となる。よって、学習処理、素線判定処理及び期間判定処理は、上記のいずれか一方の一連の処理である。よって、それらの説明は省略される。 FIG. 24 is a flowchart illustrating processing by the control unit 9 of FIG. The process of step S81 is a learning process. The processes of steps S82 to S84 are feature extraction processes. The process of step S85 is a wire determination process. The process of step S86 is a period determination process. Of the learning process, feature amount extraction process, wire determination process, and period determination process, the learning process, wire determination process, and period determination process are as follows. That is, the learning process, the wire line determination process, and the period determination process are a series of processes including the processes of steps S11 to S13, the processes of steps S16 to S20, and the processes of steps S21 and S22 in FIG. Further, the learning process, the wire line determination process, and the period determination process are a series of processes including the processes of steps S41 to S43, the processes of steps S46 to S49, and the processes of steps S50 and S51 in FIG. Therefore, the learning process, the wire line determination process, and the period determination process are a series of processes of any one of the above. Therefore, those explanations are omitted.
<特徴量抽出処理>
 ステップS82において、合成器92は、センサ信号x(t)に対応する入力信号x(n)をフィルタ部193に入力する。合成器92は、現在の処理をステップS83の処理に移行させる。
<Feature extraction process>
In step S82, the synthesizer 92 inputs the input signal x (n) corresponding to the sensor signal x (t) to the filter unit 193. The synthesizer 92 shifts the current process to the process of step S83.
 ステップS83において、フィルタ部193は、ウェーブレット変換部1931で入力信号x(n)の周波数成分を抽出する。フィルタ部193は、現在の処理をステップS84の処理に移行させる。なお、ステップS83の処理と、ステップS84の処理との間において、絶対値部932が実行する処理の説明は省略する。 In step S83, the filter unit 193 extracts the frequency component of the input signal x (n) by the wavelet transform unit 1931. The filter unit 193 shifts the current process to the process of step S84. The description of the process executed by the absolute value unit 932 between the process of step S83 and the process of step S84 will be omitted.
 ステップS84において、演算部941は、ウェーブレット変換部1931で抽出された周波数成分から構成される複数の値y1(n)~yN(n)から複数の統計的演算により複数の特徴量を抽出する。演算部941は、現在の処理をステップS85の処理に移行させる。 In step S84, the calculation unit 941 extracts a plurality of feature quantities from a plurality of values y1 (n) to yN (n) composed of frequency components extracted by the wavelet transform unit 1931 by a plurality of statistical calculations. The calculation unit 941 shifts the current processing to the processing in step S85.
 以上の説明から、ワイヤロープ探傷装置において、複数の帯域のそれぞれの帯域幅bkは、帯域の中心周波数ωckが低くなるほど狭くなっている。よって、帯域の中心周波数ωckが低いほど、周波数分解能が高く且つ時間分解能が低くなる。帯域の中心周波数ωckが高いほど、周波数分解能が低く且つ時間分解能が高くなる。したがって、ワイヤロープ探傷装置は、突発的な変動が時間軸においてどこで起こったかがより正確に検知でき、ゆっくりした変動の周波数をより正確に決定できるため、効率的な分析が可能となる。 From the above description, in the wire rope flaw detector, each of the bandwidth b k of the plurality of bands, the center frequency omega ck bandwidth becomes narrower lower. Therefore, the lower the center frequency ω ck of the band, the higher the frequency resolution and the lower the time resolution. The higher the center frequency ω ck of the band, the lower the frequency resolution and the higher the time resolution. Therefore, the wire rope flaw detector can more accurately detect where the sudden fluctuation occurred on the time axis, and can more accurately determine the frequency of the slow fluctuation, which enables efficient analysis.
 また、互いに隣接する2つの帯域のうち、一方の帯域の帯域幅bkと、一方の帯域よりも中心周波数の低い他方の帯域の帯域幅bk+1との関係は、Δk=1/mとすると、bk+1=2-Δk・bkの関係を満たしている。よって、帯域を2のm乗根で変えることができる。したがって、高周波領域において時間分解能が特に顕著に改善し、低周波領域において空間分解能が特に顕著に改善する。 Further, the relationship between the bandwidth b k of one of the two adjacent bands and the bandwidth b k + 1 of the other band having a lower center frequency than one band is Δk = 1 / m. Then , the relationship of b k + 1 = 2-Δk · b k is satisfied. Therefore, the band can be changed by the root of 2 m. Therefore, the temporal resolution is particularly remarkably improved in the high frequency region, and the spatial resolution is particularly remarkably improved in the low frequency region.
 また、フィルタ部193は、センサ信号x(t)にウェーブレット変換を実行することによりセンサ信号x(t)から周波数成分を抽出する。ウェーブレットは局所的な関数であるため、ウェーブレットと、局所的に発生する素線の損傷部B_Wの検出との相関性が高い。よって、フィルタ部193は、周波数成分のうち損傷周波数成分f_sを強調させることができる。したがって、ワイヤロープ探傷装置は、素線の損傷時に生じる誘起電圧の周波数成分を強調させることができるので、SN比を特に顕著に向上させることができる。 Further, the filter unit 193 extracts a frequency component from the sensor signal x (t) by executing a wavelet transform on the sensor signal x (t). Since the wavelet is a local function, there is a high correlation between the wavelet and the detection of the locally generated wire damage portion B_W. Therefore, the filter unit 193 can emphasize the damaged frequency component f_s among the frequency components. Therefore, the wire rope flaw detector can emphasize the frequency component of the induced voltage generated when the wire is damaged, so that the SN ratio can be particularly significantly improved.
 また、各実施の形態について、ワイヤロープ探傷装置の各部の機能は、処理回路により実現される。すなわち、ワイヤロープ探傷装置は、合成器92、フィルタ部93、フィルタ部193、演算部941及び学習部943を実行するための処理回路を備えている。処理回路は、専用のハードウェアであっても、メモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSPともいう)であってもよい。 Further, for each embodiment, the functions of each part of the wire rope flaw detector are realized by the processing circuit. That is, the wire rope flaw detector includes a processing circuit for executing the synthesizer 92, the filter unit 93, the filter unit 193, the calculation unit 941 and the learning unit 943. Even if the processing circuit is dedicated hardware, it is also called a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microprocessor, processor, DSP) that executes a program stored in the memory. It may be.
 図25は、ハードウェア構成例を説明する図である。図25においては、処理回路201がバス202に接続されている。処理回路201が専用のハードウェアである場合、処理回路201は、例えば、単一回路、複合回路、プログラム化したプロセッサ、ASIC、FPGA、又はこれらを組み合わせたものが該当する。ワイヤロープ探傷装置の各部の機能のそれぞれは、処理回路201で実現されてもよいし、各部の機能はまとめて処理回路201で実現されてもよい。 FIG. 25 is a diagram illustrating a hardware configuration example. In FIG. 25, the processing circuit 201 is connected to the bus 202. When the processing circuit 201 is dedicated hardware, the processing circuit 201 corresponds to, for example, a single circuit, a composite circuit, a programmed processor, an ASIC, an FPGA, or a combination thereof. Each of the functions of each part of the wire rope flaw detector may be realized by the processing circuit 201, or the functions of each part may be collectively realized by the processing circuit 201.
 図26は、他のハードウェア構成例を説明する図である。図26においては、プロセッサ203及びメモリ204がバス202に接続されている。処理回路がCPUの場合、ワイヤロープ探傷装置の各部の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア又はファームウェアはプログラムとして記述され、メモリ204に格納される。処理回路は、メモリ204に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、ワイヤロープ探傷装置は、処理回路により実行されるときに、合成器92、フィルタ部93、フィルタ部193、演算部941及び学習部943を制御するステップが結果的に実行されることになるプログラムを格納するためのメモリ204を備えている。また、これらのプログラムは、合成器92、フィルタ部93、フィルタ部193、演算部941及び学習部943を実行する手順又は方法をコンピュータに実行させるものであるといえる。ここで、メモリ204とは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性又は揮発性の半導体メモリ又は、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等が該当する。 FIG. 26 is a diagram illustrating another hardware configuration example. In FIG. 26, the processor 203 and the memory 204 are connected to the bus 202. When the processing circuit is a CPU, the functions of each part of the wire rope flaw detector are realized by software, firmware, or a combination of software and firmware. The software or firmware is written as a program and stored in memory 204. The processing circuit realizes the functions of each part by reading and executing the program stored in the memory 204. That is, when the wire rope flaw detector is executed by the processing circuit, the steps of controlling the synthesizer 92, the filter unit 93, the filter unit 193, the calculation unit 941 and the learning unit 943 are eventually executed. It has a memory 204 for storing a program. Further, it can be said that these programs cause the computer to execute the procedure or method for executing the synthesizer 92, the filter unit 93, the filter unit 193, the calculation unit 941 and the learning unit 943. Here, the memory 204 includes, for example, a non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM, EEPROM, or a magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD, or the like. Applicable.
 なお、ワイヤロープ探傷装置の各部の機能は、一部が専用のハードウェアで実現され、他の一部がソフトウェア又はファームウェアで実現されるようにしてもよい。例えば、フィルタ部93及びフィルタ部193は専用のハードウェアとしての処理回路でその機能を実現させることができる。また、演算部941及び学習部943は処理回路がメモリ204に格納されたプログラムを読み出して実行することによってその機能を実現させることが可能である。 Note that some of the functions of each part of the wire rope flaw detector may be realized by dedicated hardware, and some of the functions may be realized by software or firmware. For example, the filter unit 93 and the filter unit 193 can realize their functions by a processing circuit as dedicated hardware. Further, the arithmetic unit 941 and the learning unit 943 can realize their functions by the processing circuit reading and executing the program stored in the memory 204.
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上記の各機能を実現することができる。次に、上記の各機能を実現させる一例は次のように具体的に説明される。 In this way, the processing circuit can realize each of the above functions by hardware, software, firmware, or a combination thereof. Next, an example of realizing each of the above functions will be specifically described as follows.
 図27は、図25又は図26の具体例として図6及び図16の少なくとも一方の制御部9を端末装置501に組み込んで使用するシステム構成例を示す図である。ワイヤロープ探傷装置は、図27に示すように、ワイヤロープ2Sの損傷をプローブ1が検出するものである。ワイヤロープ2Sは、例えば、エレベータのかごを吊り下げるものである。なお、ワイヤロープ2Sは、クレーンに使用されてもよい。 FIG. 27 is a diagram showing a system configuration example in which at least one of the control units 9 of FIGS. 6 and 16 is incorporated into the terminal device 501 and used as a specific example of FIG. 25 or FIG. In the wire rope flaw detector, as shown in FIG. 27, the probe 1 detects damage to the wire rope 2S. The wire rope 2S, for example, suspends an elevator car. The wire rope 2S may be used for a crane.
 プローブ1は、ワイヤロープ2Sに対して例えば特定方向W_Dに沿って移動しているときに素線の損傷を検出する。プローブ1は、ケーブルを介して、例えば、アナログ信号であるセンサ信号x(t)をAD変換器301に供給する。AD変換器301は、アナログ信号をデジタル信号に変換する。AD変換器301により変換されたデジタル信号は、端末装置501に入力される。端末装置501としては、例えば、パソコンが用いられる。端末装置501は、AD変換器301から入力されたデジタル信号に各種信号処理を施すことにより、素線の損傷の有無を判定する。また、端末装置501は、素線の損傷の有無の判定結果を表示する。 The probe 1 detects damage to the wire while moving with respect to the wire rope 2S, for example, along a specific direction W_D. The probe 1 supplies, for example, a sensor signal x (t), which is an analog signal, to the AD converter 301 via a cable. The AD converter 301 converts an analog signal into a digital signal. The digital signal converted by the AD converter 301 is input to the terminal device 501. As the terminal device 501, for example, a personal computer is used. The terminal device 501 determines whether or not the wire is damaged by performing various signal processing on the digital signal input from the AD converter 301. In addition, the terminal device 501 displays the determination result of the presence or absence of damage to the wire.
 図28は、図25又は図26の具体例として図6及び図16の少なくとも一方の制御部9を判定器401に組み込むことにより、判定器401の処理内容をデータロガー601に供給するシステム構成例を示す図である。プローブ1は、ケーブルを介して、例えば、アナログ信号から構成されたセンサ信号x(t)を判定器401に供給する。判定器401は、マイコンが搭載されている。判定器401は、専用ハードウェアである。判定器401は、アナログ信号をデジタル信号に変換する。判定器401は、変換したデジタル信号に各種信号処理を施すことにより、素線の損傷の有無を判定する。また、判定器401は、素線の損傷の有無の判定結果を報知する。 FIG. 28 shows a system configuration example in which the processing content of the determination device 401 is supplied to the data logger 601 by incorporating at least one of the control units 9 of FIGS. 6 and 16 into the determination device 401 as a specific example of FIG. 25 or FIG. It is a figure which shows. The probe 1 supplies, for example, a sensor signal x (t) composed of an analog signal to the determination device 401 via a cable. The determination device 401 is equipped with a microcomputer. The determination device 401 is dedicated hardware. The determination device 401 converts an analog signal into a digital signal. The determination device 401 determines whether or not the wire is damaged by performing various signal processing on the converted digital signal. In addition, the determination device 401 notifies the determination result of the presence or absence of damage to the wire.
 なお、判定器401は、内部で処理した各種信号をアナログ信号又はデジタル信号として外部装置に供給可能である。外部装置としては、例えば、データロガー601が用いられる。データロガー601は、判定器401からアナログ信号又はデジタル信号が入力されることで、波形の表示が可能である。また、データロガー601は、判定器401の処理内容を記録可能である。 Note that the determination device 401 can supply various internally processed signals to an external device as analog signals or digital signals. As the external device, for example, a data logger 601 is used. The data logger 601 can display a waveform by inputting an analog signal or a digital signal from the determination device 401. Further, the data logger 601 can record the processing contents of the determination device 401.
 図29は、図25又は図26の具体例として図6及び図16の少なくとも一方の制御部9を判定器401に組み込むことにより、判定器401の処理内容をエレベータ制御盤701に供給するシステム構成例を示す図である。エレベータ制御盤701は、判定器401からデジタル信号が入力されることで、どの物件のどのワイヤロープ2が断線しているか等の監視情報を中央監視センターへ伝達可能である。 FIG. 29 shows a system configuration in which at least one of the control units 9 of FIGS. 6 and 16 is incorporated into the determination device 401 as a specific example of FIG. 25 or 26 to supply the processing contents of the determination device 401 to the elevator control panel 701. It is a figure which shows an example. By inputting a digital signal from the determination device 401, the elevator control panel 701 can transmit monitoring information such as which wire rope 2 of which property is broken to the central monitoring center.
 以上、ワイヤロープ探傷装置は、実施の形態1及び2に基づいて説明されているが、これに限定されるものではない。 As described above, the wire rope flaw detector has been described based on the first and second embodiments, but the present invention is not limited to this.
 実施の形態1及び2においては、学習部943が、他のデータにも適用可能な学習モデル961を演算してから対象データについて素線の有無を判定する一例について説明したが、特にこれに限定されるものではない。例えば、学習部943は、MT法の演算で単位空間を定義してからマハラノビス距離MDで素線の有無を判定してもよい。 In the first and second embodiments, an example in which the learning unit 943 calculates a learning model 961 applicable to other data and then determines the presence or absence of a strand in the target data has been described, but the present invention is particularly limited to this. It is not something that is done. For example, the learning unit 943 may determine the presence or absence of a wire by the Mahalanobis distance MD after defining the unit space by the calculation of the MT method.
<MT法>
 具体的には、学習部943は、MT法を用いる場合、単位空間を定義する。学習部943は、単位空間の中心から対象データまでの距離をマハラノビス距離MDとして演算する。学習部943は、マハラノビス距離MDが近いものを正常と判定する。一方、学習部943は、マハラノビス距離MDが遠いものを異常と判定する。
<MT method>
Specifically, the learning unit 943 defines a unit space when the MT method is used. The learning unit 943 calculates the distance from the center of the unit space to the target data as the Mahalanobis distance MD. The learning unit 943 determines that the Mahalanobis distance MD is short as normal. On the other hand, the learning unit 943 determines that the Mahalanobis distance MD is long as abnormal.
 より具体的には、学習部943は、素線の損傷が無い場合において、センサ信号x(t)と、センサ信号x(t)の周波数成分を構成する複数の値y1(n)~yN(n)との相関関係を利用して素線の損傷の有無を判定する。 More specifically, in the learning unit 943, when there is no damage to the wire, the sensor signal x (t) and a plurality of values y1 (n) to yN ( The presence or absence of damage to the wire is determined using the correlation with n).
 まず、演算部941は、センサ信号x(t)と、複数の値y1(n)~yN(n)とのそれぞれを規準化した規準化値を演算する。演算部941は、規準化値を(生データ-平均値)/標準偏差により演算する。次に、演算部941は、規準化値の集合を単位空間として相関行列Rを演算する。次に、演算部941は、相関行列Rの逆行列R-1を演算する。演算した逆行列R-1は学習部943により保持される。 First, the calculation unit 941 calculates a standardized value obtained by standardizing each of the sensor signal x (t) and the plurality of values y1 (n) to yN (n). The calculation unit 941 calculates the standardized value by (raw data-average value) / standard deviation. Next, the calculation unit 941 calculates the correlation matrix R with the set of standardized values as the unit space. Next, the calculation unit 941 calculates the inverse matrix R -1 of the correlation matrix R. The calculated inverse matrix R -1 is held by the learning unit 943.
 次に、演算部941は、素線の損傷の有無の対象となる対象データのセンサ信号x(t)と、そのセンサ信号x(t)の周波数成分を構成する複数の値y1(n)~yN(n)とのそれぞれを上記と同様に規準化した行列Yを生成する。次に、学習部943は、対象データを規準化した行列Yと、事前に演算した逆行列R-1と、対象データを規準化した行列Yの転置行列YTとを掛け合わせて項目数で除することで、マハラノビス距離MDを演算する。学習部943は、予め設定された閾値距離と、マハラノビス距離MDとを比較することで、素線の損傷の有無を判定する。ここで、項目数は、規準化の演算に利用したパラメータ数となり、上記の一例では、1+N個となる。 Next, the calculation unit 941 includes a sensor signal x (t) of the target data to be subject to the presence or absence of damage to the wire, and a plurality of values y1 (n) to which constitute a frequency component of the sensor signal x (t). A matrix Y is generated in which each of yN (n) is standardized in the same manner as described above. Next, the learning unit 943 multiplies the matrix Y that standardizes the target data, the inverse matrix R -1 calculated in advance, and the transposed matrix Y T of the matrix Y that standardizes the target data to obtain the number of items. By dividing, the Mahalanobis distance MD is calculated. The learning unit 943 determines whether or not the wire is damaged by comparing the preset threshold distance with the Mahalanobis distance MD. Here, the number of items is the number of parameters used in the standardization calculation, and in the above example, it is 1 + N.
 つまり、制御部9は、各種データ間の相関関係を利用して、入力データと、素線の損傷の有無との対応関係を導く。これにより、制御部9は、他の入力データを入力したときであっても、その導いた対応関係により素線の損傷の有無を確実に判定することができる。したがって、ワイヤロープ探傷装置は、高い汎化能力を実現することができる。 That is, the control unit 9 uses the correlation between various data to derive the correspondence between the input data and the presence or absence of damage to the strands. As a result, the control unit 9 can reliably determine the presence or absence of damage to the strands based on the derived correspondence even when other input data is input. Therefore, the wire rope flaw detector can achieve a high generalization ability.
 2,2S ワイヤロープ、11 磁化器、13 磁気センサ、9 制御部、93,193 フィルタ部、94 処理部、941 演算部、943 学習部、943_1 サポートベクトルマシン、943_2 オートエンコーダ、961,961_1,961_2 学習モデル。 2,2S wire rope, 11 magnetometer, 13 magnetic sensor, 9 control unit, 93,193 filter unit, 94 processing unit, 941 arithmetic unit, 943 learning unit, 943_1 support vector machine, 943_2 autoencoder, 961,961_1,961_2 Learning model.

Claims (11)

  1.  ワイヤロープの一部を通る磁束を発生する磁化器と、
     前記磁束のうち前記ワイヤロープから漏洩する漏洩磁束に応じた信号をセンサ信号として発生する磁気センサと、
     前記センサ信号を処理する制御部と、
    を備え、
     前記制御部は、
     前記センサ信号の周波数成分を抽出するフィルタ部と、
     前記周波数成分を構成する複数の値に基づく複数の特徴量を抽出する演算部と、
     前記複数の特徴量と前記ワイヤロープに含まれる素線の状態との相関関係について機械学習を行った学習済みの学習モデルに、前記フィルタ部により抽出された周波数成分を構成する複数の値に基づき前記演算部により抽出された複数の特徴量を入力したときの前記学習モデルが演算処理を実行することで、前記素線の損傷の有無を判定する学習部と、
    を有しているワイヤロープ探傷装置。
    A magnetizer that generates magnetic flux that passes through a part of the wire rope,
    A magnetic sensor that generates a signal corresponding to the leakage magnetic flux leaking from the wire rope as a sensor signal among the magnetic fluxes,
    A control unit that processes the sensor signal and
    With
    The control unit
    A filter unit that extracts the frequency component of the sensor signal and
    An arithmetic unit that extracts a plurality of features based on a plurality of values constituting the frequency component, and a calculation unit.
    Based on a plurality of values constituting the frequency component extracted by the filter unit, the trained learning model obtained by machine learning about the correlation between the plurality of features and the state of the wire rope contained in the wire rope is used. A learning unit that determines the presence or absence of damage to the wire rope by executing arithmetic processing by the learning model when a plurality of feature quantities extracted by the arithmetic unit are input.
    Has a wire rope flaw detector.
  2.  前記演算部は、複数の統計的演算により前記複数の特徴量を抽出し、
     前記学習部は、前記素線の損傷が有ることを特徴付ける複数の第1特徴量と、前記素線の損傷が無いことを特徴付ける複数の第2特徴量とのうち、少なくとも一方を学習用データセットとした前記学習モデルの出力から前記素線の損傷の有無を判定する請求項1に記載のワイヤロープ探傷装置。
    The calculation unit extracts the plurality of features by a plurality of statistical calculations, and obtains the plurality of features.
    The learning unit sets at least one of a plurality of first feature quantities that characterize the presence of damage to the strands and a plurality of second feature quantities that characterize the absence of damage to the strands for learning. The wire rope flaw detector according to claim 1, wherein the presence or absence of damage to the wire is determined from the output of the learning model.
  3.  前記学習部は、予め設定された特徴空間の中を、前記複数の第1特徴量を含む第1領域と、前記複数の第2特徴量を含む第2領域と、に識別超平面により分類可能なサポートベクトルマシンとして構成され、
     前記サポートベクトルマシンは、前記学習用データセットとして前記複数の第1特徴量及び前記複数の第2特徴量の両方を前記特徴空間に写像して前記識別超平面を演算することで前記学習モデルを生成する請求項2に記載のワイヤロープ探傷装置。
    The learning unit can classify the preset feature space into a first region including the plurality of first feature quantities and a second region including the plurality of second feature quantities by an identification hyperplane. Supported as a support vector machine,
    The support vector machine maps the plurality of first feature quantities and the plurality of second feature quantities to the feature space as the training data set and calculates the identification hyperplane to obtain the learning model. The wire rope flaw detector according to claim 2, which is generated.
  4.  前記サポートベクトルマシンは、前記複数の特徴量を前記学習モデルに入力したときの前記学習モデルの出力が、前記第1領域に分類したものに該当する場合、前記素線の損傷が有ると判定し、前記複数の特徴量を前記学習モデルに入力したときの前記学習モデルの出力が、前記第2領域に分類したものに該当する場合、前記素線の損傷が無いと判定する請求項3に記載のワイヤロープ探傷装置。 The support vector machine determines that the wire is damaged when the output of the learning model when the plurality of features are input to the learning model corresponds to those classified into the first region. The third aspect of claim 3, wherein when the output of the learning model when the plurality of feature quantities are input to the learning model corresponds to those classified into the second region, it is determined that there is no damage to the wire rope. Wire rope flaw detector.
  5.  前記学習部は、入力と出力との誤差を重み係数により一定量に抑えるオートエンコーダとして構成され、
     前記オートエンコーダは、前記学習用データセットとして前記複数の第2特徴量を当該オートエンコーダの入力及び出力のそれぞれに使用することにより前記重み係数を演算することで前記学習モデルを生成する請求項2に記載のワイヤロープ探傷装置。
    The learning unit is configured as an autoencoder that suppresses the error between input and output to a certain amount by a weighting coefficient.
    2. The autoencoder generates the learning model by calculating the weighting coefficient by using the plurality of second feature quantities as the learning data set for each of the input and the output of the autoencoder. The wire rope flaw detector described in.
  6.  前記オートエンコーダは、前記複数の特徴量を前記学習モデルに入力したときの前記学習モデルの出力が前記複数の特徴量を再構成できた場合、前記素線の損傷が無いと判定し、前記複数の特徴量を前記学習モデルに入力したときの前記学習モデルの出力が前記複数の特徴量を再構成できなかった場合、前記素線の損傷が有ると判定する請求項5に記載のワイヤロープ探傷装置。 When the output of the learning model when the plurality of features are input to the learning model can reconstruct the plurality of features, the autoencoder determines that there is no damage to the wire rope, and determines that the plurality of features are not damaged. The wire rope flaw detection according to claim 5, wherein when the output of the learning model when the feature amount of the above is input to the learning model cannot reconstruct the plurality of feature amounts, it is determined that the wire is damaged. Device.
  7.  前記フィルタ部は、互いに異なる複数の帯域を個別の通過帯域とする複数のバンドパスフィルタを有する請求項2から請求項6のいずれか一項に記載のワイヤロープ探傷装置。 The wire rope flaw detector according to any one of claims 2 to 6, wherein the filter unit has a plurality of bandpass filters having a plurality of bands different from each other as individual pass bands.
  8.  前記複数の帯域のそれぞれの帯域幅は、前記帯域の中心周波数が低くなるほど狭くなっている請求項2から請求項6のいずれか一項に記載のワイヤロープ探傷装置。 The wire rope flaw detector according to any one of claims 2 to 6, wherein the bandwidth of each of the plurality of bands becomes narrower as the center frequency of the band becomes lower.
  9.  互いに隣接する2つの前記帯域のうち、一方の帯域の帯域幅bkと、前記一方の帯域よりも中心周波数の低い他方の帯域の帯域幅bk+1との関係は、mが自然数で、Δk=1/mとすると、
     bk+1=2-Δk・bkの関係を満たしている請求項8に記載のワイヤロープ探傷装置。
    Of the adjacent two of the bands, and bandwidth b k of the one band, the relationship between the bandwidth b k + 1 of the other band lower center frequency than the band of the one is, m is a natural number, If Δk = 1 / m,
    b k + 1 = 2 -Δk · b k wire rope flaw detector according related to claim 8 meets the.
  10.  前記フィルタ部は、前記センサ信号にウェーブレット変換を実行することにより前記センサ信号から前記周波数成分を抽出する請求項8又は9に記載のワイヤロープ探傷装置。 The wire rope flaw detector according to claim 8 or 9, wherein the filter unit extracts the frequency component from the sensor signal by performing a wavelet transform on the sensor signal.
  11.  前記演算部は、前記複数の統計的演算により、前記複数の値の合計値、平均値及び中央値の少なくとも1つを前記複数の特徴量の少なくとも1つとして求める請求項2から請求項10のいずれか一項に記載のワイヤロープ探傷装置。 The calculation unit obtains at least one of the total value, the average value, and the median value of the plurality of values as at least one of the plurality of feature quantities by the plurality of statistical calculations, according to claims 2 to 10. The wire rope flaw detector according to any one item.
PCT/JP2021/001272 2020-01-24 2021-01-15 Wire rope flaw detection device WO2021149614A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180009627.1A CN114981651A (en) 2020-01-24 2021-01-15 Wire rope flaw detection device
JP2021573127A JP7275324B2 (en) 2020-01-24 2021-01-15 Wire rope flaw detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020009569 2020-01-24
JP2020-009569 2020-01-24

Publications (1)

Publication Number Publication Date
WO2021149614A1 true WO2021149614A1 (en) 2021-07-29

Family

ID=76992302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/001272 WO2021149614A1 (en) 2020-01-24 2021-01-15 Wire rope flaw detection device

Country Status (3)

Country Link
JP (1) JP7275324B2 (en)
CN (1) CN114981651A (en)
WO (1) WO2021149614A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076167A (en) * 2006-09-20 2008-04-03 Yamaguchi Univ Method of inspecting surface state of object by image processing, and image processing program for it
JP2013096950A (en) * 2011-11-04 2013-05-20 Hitachi Ltd Wire rope inspection device
JP2014130127A (en) * 2012-11-28 2014-07-10 Jfe Steel Corp Magnetic flux leakage inspection device and inspection method
JP2015040846A (en) * 2013-08-23 2015-03-02 Jfeスチール株式会社 Magnetic flux type leakage inspection device and inspection method
CN108333252A (en) * 2018-02-07 2018-07-27 河南科技大学 A kind of wire rope flaw detection system and its magnetic leakage signal detection device
WO2019035279A1 (en) * 2017-08-18 2019-02-21 ローム株式会社 Artificial intelligence algorithm
JP2019078640A (en) * 2017-10-25 2019-05-23 Jfeスチール株式会社 Surface defect detection method and surface defect detector
JP2019194552A (en) * 2018-05-02 2019-11-07 三菱電機株式会社 Wire rope inspection device and method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008076167A (en) * 2006-09-20 2008-04-03 Yamaguchi Univ Method of inspecting surface state of object by image processing, and image processing program for it
JP2013096950A (en) * 2011-11-04 2013-05-20 Hitachi Ltd Wire rope inspection device
JP2014130127A (en) * 2012-11-28 2014-07-10 Jfe Steel Corp Magnetic flux leakage inspection device and inspection method
JP2015040846A (en) * 2013-08-23 2015-03-02 Jfeスチール株式会社 Magnetic flux type leakage inspection device and inspection method
WO2019035279A1 (en) * 2017-08-18 2019-02-21 ローム株式会社 Artificial intelligence algorithm
JP2019078640A (en) * 2017-10-25 2019-05-23 Jfeスチール株式会社 Surface defect detection method and surface defect detector
CN108333252A (en) * 2018-02-07 2018-07-27 河南科技大学 A kind of wire rope flaw detection system and its magnetic leakage signal detection device
JP2019194552A (en) * 2018-05-02 2019-11-07 三菱電機株式会社 Wire rope inspection device and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KANEDA MASAKO ET AL.: "Defect detection of elevator wire rope by using wavelet analysis", TRANSACTIONS OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS, vol. 34, no. 10, 1998, pages 1466 - 1471, XP055842386 *

Also Published As

Publication number Publication date
CN114981651A (en) 2022-08-30
JPWO2021149614A1 (en) 2021-07-29
JP7275324B2 (en) 2023-05-17

Similar Documents

Publication Publication Date Title
JP5145417B2 (en) Signal determination method, signal determination apparatus, program, and signal determination system
US10127905B2 (en) Apparatus and method for generating acoustic model for speech, and apparatus and method for speech recognition using acoustic model
JP5767564B2 (en) Wire rope inspection equipment
Neupane et al. Bearing fault detection using scalogram and switchable normalization-based CNN (SN-CNN)
Espinosa et al. Click-event sound detection in automotive industry using machine/deep learning
KR20200043196A (en) Deep learning based analysis method and device for remaining useful lifetime of equipment or parts using vibration signals
Ren et al. A novel convolutional neural network based on time–frequency spectrogram of arc sound and its application on GTAW penetration classification
JP2010502966A (en) Method and apparatus for monitoring sensor noise
Glowacz Recognition of acoustic signals of synchronous motors with the use of MoFS and selected classifiers
Jin et al. Fully automated peak-picking method for an autonomous stay-cable monitoring system in cable-stayed bridges
CN115408864B (en) Electronic transformer error state self-adaptive prediction method, system and equipment
Pan et al. Cognitive acoustic analytics service for Internet of Things
WO2021149614A1 (en) Wire rope flaw detection device
CN114200350A (en) Three-phase power transformer fault diagnosis and positioning method and device based on vibration information
JP7373358B2 (en) Sound extraction system and sound extraction method
CN105599550B (en) For the device and method for the tire pressure for estimating the vehicles
US20170363670A1 (en) Noise spectrum analysis for electronic device
WO2021085156A1 (en) Wire rope flaw detection device
CN112881839B (en) Transformer diagnosis method based on mutual information of frequency concentration and vibration stability
CN115439667A (en) Transformer mechanical fault diagnosis method and system based on sound field distribution diagram
Chen et al. Research on 3D MFL testing of wire rope based on empirical wavelet transform and SRCNN
Liu et al. Fault detection of rotating machinery based on marine predator algorithm optimized resonance-based sparse signal decomposition and refined composite multiscale fluctuation dispersion entropy
MeiYing et al. Fault diagnosis method of rolling bearings based on VMD and MDSVM
JP7428893B2 (en) Learning device, abnormal eddy current loss estimation device, learning method, abnormal eddy current loss estimation method, and program
Dadula et al. Fuzzy logic system for abnormal audio event detection using Mel frequency cepstral coefficients

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744523

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021573127

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744523

Country of ref document: EP

Kind code of ref document: A1