WO2021085156A1 - Wire rope flaw detection device - Google Patents

Wire rope flaw detection device Download PDF

Info

Publication number
WO2021085156A1
WO2021085156A1 PCT/JP2020/038888 JP2020038888W WO2021085156A1 WO 2021085156 A1 WO2021085156 A1 WO 2021085156A1 JP 2020038888 W JP2020038888 W JP 2020038888W WO 2021085156 A1 WO2021085156 A1 WO 2021085156A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire rope
frequency
unit
flaw detector
frequency component
Prior art date
Application number
PCT/JP2020/038888
Other languages
French (fr)
Japanese (ja)
Inventor
孝 吉岡
友実 堀
隆彦 増▲崎▼
孝太郎 福井
貴耶 谷口
泰弘 遠山
敬純 小部
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN202080074075.8A priority Critical patent/CN114616464A/en
Priority to JP2021554342A priority patent/JP7241907B2/en
Publication of WO2021085156A1 publication Critical patent/WO2021085156A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/83Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws by investigating stray magnetic fields

Definitions

  • the present invention relates to a wire rope flaw detector.
  • Patent Document a wire rope flaw detector having a magnetizer that magnetically saturates the wire rope and a magnetic sensor that detects a leakage magnetic flux leaking from the wire rope due to a damaged portion of the wire rope.
  • the conventional wire rope flaw detector has restrictions such as assembly accuracy between the wire rope and the magnetic sensor. Therefore, in the conventional wire rope flaw detector, there is a limit in reducing the distance between the wire rope and the magnetic sensor.
  • the present invention has been made to solve the above problems, and an object of the present invention is to obtain a wire rope flaw detector capable of more reliably improving the SN ratio.
  • the wire rope flaw detector includes a magnetizer that generates a magnetic flux that passes through a part of the wire rope, and a magnetic sensor that generates a signal corresponding to the leakage magnetic flux leaking from the wire rope as a sensor signal.
  • the control unit includes a control unit that processes the sensor signal, and the control unit includes a filter unit that extracts a frequency component of the sensor signal and a wire rope included in the wire rope based on the distribution of the frequency component. It has a processing unit for determining the presence or absence of damage.
  • the SN ratio can be improved more reliably.
  • FIG. 1 It is an exploded perspective view which shows the probe of the wire rope flaw detector according to Embodiment 1 of this invention. It is explanatory drawing which shows the flaw detection principle by the probe of FIG. It is an enlarged view of the part A of FIG. It is a figure explaining an example of the positional relationship between the leakage magnetic flux and a coil of FIG. 3 more concretely. It is a figure explaining more concretely an example of the positional relationship between a leakage magnetic flux leaking from a wire rope whose diameter is smaller than that of the wire rope of FIG. 4 and a coil. It is a block diagram which shows the functional structure example of the control part of FIG. It is a figure which shows an example of the frequency characteristic of the filter part of FIG.
  • FIG. 5 is a block diagram showing a functional configuration example of a control unit that processes a signal corresponding to a leakage magnetic flux leaking from a wire rope according to a second embodiment of the present invention. It is a figure which shows an example of the frequency characteristic of the filter part of FIG.
  • FIG. 21 is a diagram showing a system configuration example in which at least one of the control units of FIGS. 6 and 12 is incorporated into a terminal device and used as a specific example of FIG. 21 or FIG.
  • FIG. 21 or FIG. 22 it is a figure which shows the system configuration example which supplies the processing content of the determination device to a data logger by incorporating at least one control part of FIG. 6 and FIG.
  • FIG. 21 or FIG. 22 it is a figure which shows the system configuration example which supplies the processing content of the determination device to an elevator control panel by incorporating at least one control part of FIG. 6 and FIG.
  • FIG. 1 is an exploded perspective view showing probe 1 of the wire rope flaw detector according to the first embodiment of the present invention.
  • the probe 1 includes a probe main body 3 and a cover 5.
  • the cover 5 is made of a non-magnetic material.
  • the cover 5 covers the probe body 3.
  • the cover 5 protects the probe body 3.
  • the cover 5 is provided with a groove 51.
  • the cross section of the groove 51 is formed in a U shape.
  • the groove portion 51 has a first end portion 51_1 and a second end portion 51_2.
  • the probe main body 3 includes a magnetizer 11 and a magnetic sensor 13.
  • the magnetizer 11 has a back yoke 111, a first permanent magnet 112_1, a second permanent magnet 112_2, a first pole piece 113_1, and a second pole piece 113_2.
  • the back yoke 111 is made of a ferromagnetic material.
  • the back yoke 111 has a first yoke end portion 111_1, a second yoke end portion 111_2, and a yoke central portion 111_3.
  • One end of the back yoke 111 in the longitudinal direction is a first yoke end 111_1.
  • the other end of the back yoke 111 in the longitudinal direction is a second yoke end 111_2.
  • the yoke central portion 111_3 is located between the first yoke end portion 111_1 and the second yoke end portion 111_2.
  • a first pole piece 113_1 is fixed to the first yoke end 111_1 via a first permanent magnet 112_1.
  • a second pole piece 113_2 is fixed to the second yoke end 111_2 via a second permanent magnet 112_2.
  • the first permanent magnet 112_1 and the second permanent magnet 112_2 are arranged apart from each other in the longitudinal direction of the back yoke 111.
  • the first pole piece 113_1 and the second pole piece 113_1 are arranged apart from each other in the longitudinal direction of the back yoke 111.
  • the first pole piece 113_1 is made of a ferromagnetic material.
  • the first pole piece 113_1 is provided with a first pole piece groove 113_1.
  • the cross section of the first pole piece groove portion 113_11 is formed in a U shape.
  • the first pole piece groove portion 113_1 is fixed to the cover 5 at a position on the back side of the first end portion 51_1.
  • the second pole piece 113_2 is made of a ferromagnetic material.
  • the second pole piece 113_2 is provided with a second pole piece groove 113_21.
  • the cross section of the second pole piece groove portion 113_21 is formed in a U shape.
  • the second pole piece groove portion 113_21 is fixed to the cover 5 at a position on the back side of the second end portion 51_2.
  • the first permanent magnet 112_1 is arranged between the first pole piece 113_1 and the first yoke end portion 111_1.
  • the first permanent magnet 112_1 has one magnetic pole surface oriented toward the first pole piece 113_1 and the other magnetic pole surface directed toward the first yoke end 111_1.
  • the first permanent magnet 112_1 generates a magnetomotive force.
  • the second permanent magnet 112_2 is arranged between the second pole piece 113_2 and the second yoke end 111_2.
  • the second permanent magnet 112_2 is arranged with one magnetic pole surface facing the second yoke end 111_2 and the other magnetic pole surface facing the second pole piece 113_2.
  • the second permanent magnet 112_2 generates a magnetomotive force.
  • the magnetic sensor 13 has a sensor body 13A and a mounting portion 13B.
  • the mounting portion 13B is mounted on the yoke central portion 111_3.
  • the mounting portion 13B is made of a non-magnetic material.
  • the sensor body 13A is arranged between the first pole piece 113_1 and the second pole piece 113_2.
  • the sensor body 13A has a base portion 132, a coil holder 133, a first coil 131_1, and a second coil 131_2.
  • the base portion 132 is attached to the attachment portion 13B.
  • the coil holder 133 is attached to the base portion 132.
  • the coil holder 133 is made of a ferromagnetic material.
  • the first coil 131_1 and the second coil 131_2 are attached to the coil holder 133.
  • FIG. 2 is an explanatory diagram showing the flaw detection principle by the probe 1 of FIG.
  • the wire rope flaw detector includes a probe 1 and a control unit 9 that receives a signal from the probe 1.
  • the outline of the cover 5 is shown by a chain double-dashed line. Further, in FIG. 2, for convenience of illustration, the cross-sectional shape portion of the groove portion 51 is shown by hatching.
  • the direction of the polarity of the first permanent magnet 112_1 is the direction from the first yoke end 111_1 to the first pole piece 113_1. Further, in the example of FIG. 2, the polarity direction of the second permanent magnet 112_2 is the direction from the second pole piece 113_2 toward the second yoke end portion 111_2.
  • the polarity of the first permanent magnet 112_1 is opposite to the polarity of the second permanent magnet 112_2. Therefore, in the state where the wire rope 2 is arranged in the groove 51, the magnetic flux F passing through the magnetic circuit F_C composed of a part of the wire rope 2 and the magnetizer 11 is transferred to the first permanent magnet 112_1 and the second permanent magnet. 112_2 occurs.
  • the magnetizer 11 generates a magnetic flux F that passes through a part of the wire rope 2.
  • the magnetic sensor 13 generates a signal corresponding to the leakage magnetic flux L_F leaking from the wire rope 2 among the magnetic flux F as a sensor signal.
  • the control unit 9 processes the sensor signal generated from the magnetic sensor 13. The details of the magnetic flux F and the leakage magnetic flux L_F will be described later.
  • first permanent magnet 112_1 and the second permanent magnet 112_2 are collectively referred to, they are referred to as the permanent magnet 112.
  • first pole piece 113_1 and the second pole piece 113_2 are collectively referred to, they are referred to as the pole piece 113.
  • first coil 131_1 and the second coil 131_2 are collectively referred to, they are referred to as a coil 131.
  • FIG. 3 is an enlarged view of part A of FIG. As shown in FIG. 3, if there is a damaged portion B_W in the portion of the wire rope 2 through which the magnetic flux F passes, a part of the magnetic flux F leaks from the wire rope 2 as a leakage magnetic flux L_F around the damaged portion B_W. ..
  • FIG. 4 is a diagram for more specifically explaining an example of the positional relationship between the leakage magnetic flux L_F of FIG. 3 and the coil 131.
  • the first coil 131_1 and the second coil 131_2 are interlinked with the leakage magnetic flux L_F. Therefore, an induced voltage, which is a signal corresponding to the leakage magnetic flux L_F, is generated in the first coil 131_1 and the second coil 131_2 as sensor signals.
  • the wire rope 2 is composed of a core rope and a plurality of strands 21 twisted around the core rope at a constant pitch ⁇ . Therefore, on the outer peripheral portion of the wire rope 2, a plurality of convex portions arranged in the length direction of the wire rope 2 are formed at a constant pitch ⁇ . Further, the strand 21 is formed by twisting a plurality of strands into a single layer or multiple layers. Therefore, if the wire contained in the wire rope 2 is thin, the diameter of the wire rope 2 is reduced.
  • FIG. 5 is a diagram for more specifically explaining an example of the positional relationship between the leakage magnetic flux L_F leaking from the wire rope 2S having a diameter smaller than that of the wire rope 2 of FIG. 4 and the coil 131.
  • the wire rope 2 of FIG. 4 moves with respect to the probe 1 as compared with the case of moving with respect to the probe 1.
  • the amount of leakage magnetic flux L_F interlinking with the first coil 131_1 and the second coil 131_2 is reduced. Therefore, it is difficult for the control unit 9 of FIG.
  • control unit 9 of FIG. 2 determines whether or not the wire rope included in the wire rope 2S is damaged based on the distribution of the frequency component of the sensor signal.
  • the wire rope 2 is composed of strands 21 twisted at a constant pitch ⁇ . Therefore, the probe 1 detects noise caused by the outer peripheral portion of the wire rope 2 at least every pitch ⁇ . Further, the wire rope 2S is also configured by being twisted at a pitch ⁇ S in the same manner. Therefore, a plurality of convex portions arranged in the length direction of the wire rope 2S are similarly formed on the outer peripheral portion of the wire rope 2S at a constant pitch ⁇ S. Therefore, the probe 1 detects noise caused by the outer peripheral portion of the wire rope 2S at least for each pitch ⁇ S.
  • FIG. 6 is a block diagram showing a functional configuration example of the control unit 9 of FIG. As shown in FIG. 6, the control unit 9 includes a measuring instrument 91, a synthesizer 92, a filter unit 93, and a processing unit 94.
  • the measuring instrument 91 has a first measuring instrument 91_1 and a second measuring instrument 91_2.
  • the first measuring instrument 91_1 is connected to both ends of the first coil 131_1.
  • the second measuring instrument 91_2 is connected to both ends of the second coil 131_2.
  • the first coil 131_1 is located upstream of the second coil 131_2 in the specific direction W_D of the wire rope 2S.
  • the leakage magnetic flux L_F leaks from the wire rope 2 around the damaged portion B_W.
  • the leakage magnetic flux L_F is interlinked with the first coil 131_1 and then with the second coil 131_2. Therefore, the time at which the peak of the induced voltage generated at both ends of the first coil 131_1 occurs is higher than the time at which the peak of the induced voltage generated at both ends of the second coil 131_1 occurs at the first coil 131_1 and the first coil 131_1.
  • the distance P between the centers of the coils 131_2 of 2 is deviated by the delay time ⁇ represented by the value obtained by dividing the distance P between the centers of the coils 131_2 by the moving speed ⁇ of the wire rope 2S.
  • the first measuring instrument 91_1 detects the induced voltage, which is a signal corresponding to the leakage magnetic flux L_F leaking from the wire rope 2S, as the sensor signal f1 (t ⁇ ). Further, the second measuring instrument 91_2 detects the induced voltage, which is a signal corresponding to the leakage magnetic flux L_F leaking from the wire rope 2S, as the sensor signal f2 (t).
  • the synthesizer 92 superimposes the sensor signal f1 (t ⁇ ) detected by the first measuring instrument 91_1 and the sensor signal f2 (t) detected by the second measuring instrument 91_1 to form the sensor signal x. (T) is generated. Specifically, the synthesizer 92 detects the sensor signal f1 (t ⁇ ) detected by the first measuring instrument 91_1 with the sensor signal f1 (t) delayed by the time ⁇ and the second measuring instrument 91_2. The generated sensor signal f2 (t) is superimposed. As a result, the sensor signal x (t) becomes a signal obtained by combining the peaks of the induced voltage generated across the first coil 131_1 and the peaks of the induced voltage generated across the second coil 131_2.
  • the amplitude of the sampled signal is real. Therefore, the discrete signal, which is a sampled signal, is represented as a sequence of real values ⁇ x (0), x (1), x (2), ... ⁇ , So it is represented as a sequence x (n). To.
  • the sequence x (n) is supplied to the filter unit 93 as an input signal x (n).
  • sequence x (n) will be referred to as an input signal x (n) of the filter unit 93.
  • the filter unit 93 extracts the frequency component of the input signal x (n) that samples the sensor signal x (t).
  • the filter unit 93 has a plurality of FIR (Finite Impulse Response) filters 931 as a plurality of bandpass filters, and a plurality of absolute value units 932.
  • FIR Finite Impulse Response
  • FIG. 7 is a diagram showing an example of the frequency characteristics of the filter unit 93 of FIG. As shown in FIG. 7, the number of taps, the gain, and the bandwidth b are constant in each of the plurality of FIR filters 931.
  • the plurality of FIR filters 931 have a plurality of bands different from each other as individual pass bands. That is, the plurality of FIR filters 931 have different pass bands different from each other. Therefore, the filter unit 93 extracts the frequency component of the input signal x (n) in each of the plurality of bands different from each other.
  • the plurality of absolute value units 932 obtain the absolute values of the frequency components of the input signals x (n) supplied from the plurality of FIR filters 931.
  • the input signal x (n) is a sequence of real values ⁇ x (0), x (1), x (2), ... ⁇ As described above. Therefore, the plurality of absolute value units 932 quantize the input signal x (n) by dividing it by the quantization unit and rounding it off to obtain a sequence yk (n) of integer values.
  • k is a value in ascending order from 1 to N.
  • N is a natural number.
  • the plurality of FIR filters 931 extract the frequency component of the real value x (0) in each of a plurality of bands different from each other.
  • the absolute value unit 932 obtains the absolute value of the frequency component of the real value x (0) for each individual pass band, and then the integer values y1 (0), y2 (0), ..., And yN (0). Ask for.
  • integer values y1 (0), y2 (0), ... And yN (0) are referred to as a sequence of integer values ⁇ y1 (0), y2 (0), ... And yN (0) ⁇ . It is expressed as a sequence yk (0).
  • the filter unit 93 performs the same processing on the real value x (1) to obtain yk (1).
  • the filter unit 93 performs the same processing on the real value x (2) and later, and obtains yk (2) and later. From the above description, the filter unit 93 obtains the sequence yk (n) from the input signal x (n).
  • FIG. 8 is a diagram showing an example of the distribution of frequency components extracted from the input signal x (n) by the filter unit 93 of FIG.
  • the moving speed ⁇ of the wire rope 2S is trapezoidally controlled, for example. Therefore, when the wire rope 2S is moving at a constant velocity, the periodic fluctuation of the input signal x (n) due to the shape of the outer peripheral portion of the wire rope 2S is constant. Periodic variation of the input signal x (n) due to the shape on the outer peripheral portion of the wire rope 2S occurs for each pitch ⁇ S of the strand 21S as described above. Therefore, the constant periodic fluctuation of the input signal x (n) occurs at a specific frequency.
  • the frequency component of the constant periodic fluctuation of the input signal x (n) can be regarded as the noise frequency component f_n of the input signal x (n) among the frequency components of the input signal x (n).
  • the input signal x (n) is a signal synthesized by the synthesizer 92 according to the leakage magnetic flux L_F
  • the signal generated during the local minute time ⁇ t and the input signal x (n) in the time domain. ) Is equivalent. Therefore, when the input signal x (n) is a signal synthesized by the synthesizer 92 according to the leakage magnetic flux L_F, the shorter the minute time ⁇ t, the more the frequency component of the input signal x (n) appears in the band. The number increases.
  • the distribution of the frequency components of the input signal x (n) becomes a distribution over a plurality of bands. Therefore, among the frequency components of the input signal x (n), the damaged frequency component f_s of the input signal x (n) also appears in a band other than the band in which the noise frequency component f_n of the input signal x (n) appears.
  • the distribution of frequency components is composed of a sequence yk (n).
  • the sequence yk (n) is composed of integer values y1 (n), y2 (n), ..., And yN (n). Therefore, the distribution of frequency components is composed of a plurality of values y1 (n) to yN (n).
  • the processing unit 94 has a calculation unit 941 and a determination unit 943.
  • the processing unit 94 determines whether or not the wire rope included in the wire rope 2S is damaged based on the distribution of the frequency components of the input signal x (n) extracted by the filter unit 93.
  • the calculation unit 941 extracts a feature amount by statistical calculation from a plurality of values constituting the distribution of the frequency components of the input signal x (n) over a plurality of bands.
  • the feature amount is a representative value that characterizes the distribution of the frequency component of the input signal x (n).
  • the statistical operation is, for example, an operation for obtaining the median value m (n).
  • the median m (n) is a value located at the center when the integer values y1 (n), y2 (n), ..., And yN (n) constituting the sequence yk (n) are arranged in ascending order. is there.
  • FIG. 9 is a diagram showing an example of the sequence yk (n) generated by the filter unit 93 at the time t1 of FIG.
  • FIG. 10 is a diagram showing an example of the sequence yk (n) generated by the filter unit 93 at the time t2 of FIG.
  • the determination unit 943 determines whether or not the wire rope included in the wire rope 2S is damaged based on the feature amount. Specifically, the determination unit 943 determines whether or not the wire rope included in the wire rope 2S is damaged by comparing the feature amount extracted by the calculation unit 941 with the set threshold value. More specifically, the determination unit 943 determines that the wire rope 2S is damaged when the feature amount exceeds the set threshold value. On the other hand, when the feature amount is equal to or less than the set threshold value, the determination unit 943 determines that the wire rope 2S is not damaged.
  • the damage to the wire contained in the wire rope 2S is the physical damage caused to at least a part of the wire rope 2S.
  • Physical damage is, for example, damage to at least one of wire breakage, partial wire breakage, and scratch marks on the wire.
  • damage to the wire contained in the wire rope 2S will be appropriately referred to as damage to the wire.
  • the set threshold value differs depending on the value obtained by statistical calculation.
  • the statistical calculation in addition to the calculation of the median value m (n), for example, the maximum value, the minimum value, the range, the average value, the standard deviation, the effective value, the crest factor, and the kurtosis are obtained. There is an operation.
  • the range is the value obtained by the calculation for finding the difference between the maximum value and the minimum value.
  • the crest factor is a value obtained by calculation for obtaining the ratio of the maximum value to the effective value.
  • Different setting threshold values are set in the determination unit 96 according to the value obtained by the above statistical calculation.
  • FIG. 11 is a flowchart illustrating processing by the control unit 9 of FIG.
  • the synthesizer 92 inputs the input signal x (n) corresponding to the sensor signal x (t) to the filter unit 93.
  • the filter unit 93 extracts the frequency component of the input signal x (n) with a plurality of bandpass filters.
  • the calculation unit 941 performs a statistical calculation on the sequence yk (n) composed of the frequency components extracted by the plurality of bandpass filters.
  • the determination unit 943 determines whether or not the feature amount extracted by the statistical calculation exceeds the set threshold value.
  • step S15 the determination unit 943 determines that the wire is damaged, and ends the process.
  • step S16 the determination unit 943 determines that there is no damage to the wire, and ends the process.
  • the process of step S14 is a process assuming that the values obtained by the statistical calculation are, for example, the maximum value, the median value m (n), the average value, the standard deviation, the execution value, and the crest factor. Therefore, when the value obtained by the statistical calculation is other than, for example, the maximum value, the median value m (n), the average value, the standard deviation, the execution value, and the crest factor, the determination unit 943 performs the process of step S14. Performs a different comparison process.
  • the determination unit 943 determines whether or not the feature amount extracted by the statistical calculation is less than the set threshold value. In this way, even when the value yk (n) constituting the noise frequency component f_n is larger than the value yk (n) constituting the damage frequency component f_s, the control unit 9 may or may not damage the wire. Can be determined. That is, the determination unit 943 changes the magnitude relationship between the feature amount and the setting threshold value in the comparison process according to the value obtained by the statistical calculation.
  • the wire rope flaw detector uses a magnetometer 11 that generates a magnetic flux F that passes through a part of the wire rope 2S, and a sensor signal x that corresponds to the leakage magnetic flux L_F that leaks from the wire rope 2S among the magnetic flux F. It includes a magnetic sensor 13 generated as (t) and a control unit 9 for processing the sensor signal x (t).
  • the control unit 9 includes a filter unit 93 that extracts the frequency component of the sensor signal x (t), and a processing unit 94 that determines whether or not the wire rope included in the wire rope 2S is damaged based on the distribution of the frequency component. ,have.
  • the control unit 9 can identify whether the damage frequency component f_s is superimposed as well as the noise frequency component f_n. Therefore, in the control unit 9, the difference between the noise frequency component f_n and the damaged frequency component f_s becomes clear in the frequency domain even if the SN ratio is low due to the low induced voltage generated in the magnetic sensor 13 in the time domain. The SN ratio can be increased.
  • the wire rope flaw detector can more reliably improve the SN ratio by determining the presence or absence of wire damage based on the distribution of frequency components.
  • the filter unit 93 extracts frequency components in each of a plurality of bands different from each other. Therefore, the filter unit 93 can generate a distribution of frequency components including various frequency components in the frequency axis direction.
  • the damaged frequency component f_s exists in a wider range in the frequency axis direction than the noise frequency component f_n in the frequency domain. Therefore, the filter unit 93 can more reliably make the damaged frequency component f_s appear by generating a distribution of frequency components including various frequency components in the frequency axis direction.
  • the processing unit 94 can execute the determination processing for the presence or absence of damage to the strands in the frequency domain.
  • the processing unit 94 is based on a calculation unit 941 that extracts a feature amount by statistical calculation from a plurality of values y1 (n) to yN (n) constituting a distribution of frequency components over a plurality of bands, and a feature amount. It has a determination unit 943 for determining the presence or absence of damage to the wire. Therefore, the processing unit 94 does not need to compare all of the plurality of values y1 (n) to yN (n), so that the amount of calculation can be reduced. Therefore, the processing unit 94 can significantly reduce the calculation cost of the comparison processing.
  • the calculation unit 941 constitutes a plurality of distributions of frequency components when the wire rope 2S is extracted by the filter unit 93 while the wire rope 2S is moving at a constant velocity with respect to the probe 1.
  • Features are extracted from the values y1 (n) to yN (n) by statistical calculation.
  • the value yk (n) detected during the acceleration period and the deceleration period of the wire rope 2S is not used for extracting the feature amount
  • the value yk (n) detected during the constant velocity movement period of the wire rope 2S is the feature amount. It is adopted for the extraction of.
  • the control unit 9 can clarify the periodic fluctuation of the induced voltage caused by the outer shape of the strand 21S.
  • control unit 9 can clearly distinguish between the noise frequency component f_n and the damaged frequency component f_s among the frequency components. Therefore, the control unit 9 can improve the accuracy of determining whether or not the wire rope included in the wire rope 2S is damaged.
  • the determination unit 943 determines whether or not the wire is damaged by comparing the feature amount with the set threshold value. Therefore, the determination unit 943 can reduce the amount of data for performing the determination process. Therefore, the determination unit 943 can shorten the calculation time required for the determination process.
  • the filter unit 93 has a plurality of bandpass filters in which a plurality of bands different from each other are set as individual pass bands. Therefore, the filter unit 93 can extract frequency components of a plurality of bands different from each other.
  • the damaged frequency component f_s exists in a wider range in the frequency axis direction than the noise frequency component f_n in the frequency domain. Therefore, the filter unit 93 can surely make the damaged frequency component f_s appear by generating the distribution of the frequency component including various frequency components in the frequency axis direction.
  • the control unit 9 can analyze the induced voltage generated by the magnetic sensor 13 as the sensor signal x (t) in the frequency domain.
  • Embodiment 2 In the second embodiment, the description of the same or equivalent configuration and function as the first embodiment will be omitted.
  • the second embodiment is different from the first embodiment in that the bandpass filter of the first embodiment is realized by the wavelet transform.
  • Other configurations are the same as those in the first embodiment. That is, the other configurations are the same as or equivalent to those of the first embodiment, and these parts are designated by the same reference numerals.
  • FIG. 12 is a block diagram showing a functional configuration example of the control unit 9 that processes a signal corresponding to the leakage magnetic flux L_F leaking from the wire rope 2S according to the second embodiment of the present invention.
  • the filter unit 193 uses a wavelet transform unit 1931 as a bandpass filter to generate a distribution of frequency components of the sensor signal x (t) by performing a wavelet transform on the sensor signal x (t). I have.
  • FIG. 13 is a diagram showing an example of the frequency characteristics of the filter unit 193 of FIG.
  • the bandpass filter is realized by the basis function of the wavelet transform processed by the wavelet transform unit 1931. As shown in FIG. 13, each of the bandwidth b k of the plurality of bands, the center frequency omega ck bandwidth becomes narrower lower.
  • FIG. 14 is a diagram showing an example of a waveform in the time domain of the mother wavelet by the wavelet transform unit 1931 of FIG.
  • the mother wavelet is expressed by the following equation (1).
  • the daughter wavelet is expressed by the following equation (2).
  • the scale of the daughter wavelet is expressed by the following equation (3).
  • the daughter wavelet represented by the formula (2) can increase or decrease the amplitude of the waveform shown in FIG. 14 according to the scale represented by the formula (3). Further, the daughter wavelet represented by the equation (2) can translate the waveform shown in FIG. 14 in the time axis direction according to the scale represented by the equation (3).
  • s 0 is a constant of scale.
  • sk is a scale function that takes k as an argument and is multiplied by s 0.
  • the Fourier transform of the mother wavelet and the daughter wavelet will be described.
  • the Fourier transform equation of the mother wavelet is expressed by the following equation (4).
  • the Fourier transform of the daughter wavelet is expressed in Eq. (5).
  • FIG. 15 is a diagram showing an example of waveforms in the frequency domain of the mother wavelet by the wavelet transform unit 1931 of FIG.
  • the frequency characteristic of Morlet Wavelet among the frequency components of the input signal x (n), the frequency of the pass band specified by the center frequency omega 0 of bandwidth b k and bandwidth b k It becomes a bandpass filter to pass.
  • the center frequency ⁇ ck in FIG. 15 is expressed by the following equation (6).
  • the center frequency ⁇ ck is expressed by the value obtained by dividing ⁇ 0 / s 0 by the power of the root of 2 to the power of m.
  • m is a natural number.
  • the center frequency ⁇ ck is expressed by the value obtained by dividing ⁇ 0 / s 0 by 2.
  • the bandwidth bc is expressed by the value obtained by doubling the square root of the natural logarithm of 2 and dividing by s 0 by dividing by 2.
  • FIG. 16 is a conceptual diagram of the center frequency ⁇ ck at the time of 1/3 octave as another example of the frequency characteristics of the filter unit 193 of FIG.
  • the center frequency ⁇ ck can be expressed by a value obtained by dividing ⁇ 0 / s 0 by the power of the cube root of 2.
  • Equation (11) expresses the difference in magnitude between the center frequency ⁇ ck and the center frequency ⁇ ck + 1 of two bands adjacent to each other based on the equation (8). From equation (11), the center frequency ⁇ ck becomes 2-1 / m each time k is incremented by 1.
  • Equation (12) expresses the difference in magnitude between the bandwidth b k and the bandwidth b k + 1 of two adjacent bands based on the equation (9). From equation (12), for each k increases 1, the bandwidth b k will 2 -1 / m.
  • FIG. 17 is a diagram showing an example of the distribution of the frequency component extracted from the signal corresponding to the leakage magnetic flux L_F by the filter unit 193 of FIG.
  • FIG. 18 is a diagram showing an example of the sequence yk (n) generated by the filter unit 193 at the time t1 of FIG.
  • FIG. 19 is a diagram showing an example of the sequence yk (n) generated by the filter unit 193 at the time t2 of FIG.
  • FIG. 20 is a flowchart illustrating processing by the control unit 9 of FIG. Since the processes of steps S31 and S34 to S36 are the same as the processes of steps S11 and S14 to S16 shown in FIG. 11 of the first embodiment, their description will be omitted.
  • the filter unit 193 extracts the frequency component by the wavelet transform unit 1931.
  • the calculation unit 941 performs a statistical calculation on the sequence yk (n) composed of the frequency components extracted by the wavelet transform unit 1931.
  • each of the bandwidth b k of the plurality of bands, the center frequency omega ck bandwidth becomes narrower lower. Therefore, the lower the center frequency ⁇ ck of the band, the higher the frequency resolution and the lower the time resolution. The higher the center frequency ⁇ ck of the band, the lower the frequency resolution and the higher the time resolution. Therefore, it is possible to more accurately detect where the sudden fluctuation occurred on the time axis, and to determine the frequency of the slow fluctuation more accurately, which enables efficient analysis.
  • the filter unit 193 extracts a frequency component from the sensor signal x (t) by executing a wavelet transform on the sensor signal x (t). Since the wavelet is a local function, there is a high correlation between the wavelet and the detection of the locally generated wire damage portion B_W. Therefore, the damaged frequency component f_s among the frequency components can be emphasized. Therefore, since the frequency component of the induced voltage generated when the wire is damaged can be emphasized, the SN ratio can be particularly improved.
  • the functions of each part of the wire rope flaw detector are realized by the processing circuit. That is, the wire rope flaw detector includes a processing circuit for executing the synthesizer 92, the filter unit 93, the filter unit 193, the calculation unit 941 and the determination unit 943. Even if the processing circuit is dedicated hardware, it is also called a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microprocessor, processor, DSP) that executes a program stored in the memory. It may be.
  • a CPU Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microprocessor, processor, DSP
  • FIG. 21 is a diagram illustrating a hardware configuration example.
  • the processing circuit 201 is connected to the bus 202.
  • the processing circuit 201 corresponds to, for example, a single circuit, a composite circuit, a programmed processor, an ASIC, an FPGA, or a combination thereof.
  • the functions of each part of the wire rope flaw detector may be realized by the processing circuit 201, or the functions of each part may be collectively realized by the processing circuit 201.
  • FIG. 22 is a diagram illustrating another hardware configuration example.
  • the processor 203 and the memory 204 are connected to the bus 202.
  • the processing circuit is a CPU
  • the functions of each part of the wire rope flaw detector are realized by software, firmware, or a combination of software and firmware.
  • the software or firmware is written as a program and stored in memory 204.
  • the processing circuit realizes the functions of each part by reading and executing the program stored in the memory 204. That is, when the wire rope flaw detector is executed by the processing circuit, the steps of controlling the synthesizer 92, the filter unit 93, the filter unit 193, the calculation unit 941 and the determination unit 943 are eventually executed. It has a memory 204 for storing a program.
  • the memory 204 includes, for example, non-volatile or volatile semiconductor memories such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs, and the like. Applicable.
  • each part of the wire rope flaw detector may be realized by dedicated hardware, and some may be realized by software or firmware.
  • the filter unit 93 and the filter unit 193 realize their functions with a processing circuit as dedicated hardware, and the processing circuit reads and executes a program stored in the memory 204 for the calculation unit 941 and the determination unit 943. By doing so, it is possible to realize the function.
  • the processing circuit can realize each of the above-mentioned functions by hardware, software, firmware, or a combination thereof. Next, an example of realizing each of the above-mentioned functions will be specifically described.
  • FIG. 23 is a diagram showing a system configuration example in which at least one of the control units 9 of FIGS. 6 and 12 is incorporated into the terminal device 501 and used as a specific example of FIG. 21 or FIG.
  • the probe 1 detects damage to the wire rope 2S.
  • the wire rope 2S for example, suspends an elevator car.
  • the wire rope 2S may be used for a crane.
  • the wire rope 2S detects damage to the wire while moving with respect to the probe 1 along, for example, the specific direction W_D.
  • the probe 1 supplies, for example, a sensor signal x (t), which is an analog signal, to the AD converter 301 via a cable.
  • the AD converter 301 converts an analog signal into a digital signal.
  • the digital signal converted by the AD converter 301 is input to the terminal device 501.
  • As the terminal device 501 for example, a personal computer is used.
  • the terminal device 501 determines whether or not the wire is damaged by performing various signal processing on the digital signal input from the AD converter 301.
  • the terminal device 501 displays the determination result of the presence or absence of damage to the wire.
  • FIG. 24 shows a system configuration example in which the processing content of the determination device 401 is supplied to the data logger 601 by incorporating at least one of the control units 9 of FIGS. 6 and 12 into the determination device 401 as a specific example of FIG. 21 or FIG. It is a figure which shows.
  • the probe 1 supplies, for example, a sensor signal x (t) composed of an analog signal to the determination device 401 via a cable.
  • the determination device 401 is equipped with a microcomputer.
  • the determination device 401 is dedicated hardware.
  • the determination device 401 converts an analog signal into a digital signal.
  • the determination device 401 determines whether or not the wire is damaged by performing various signal processing on the converted digital signal. In addition, the determination device 401 notifies the determination result of the presence or absence of damage to the wire.
  • the determination device 401 can supply various internally processed signals to an external device as analog signals or digital signals.
  • a data logger 601 is used as the external device.
  • the data logger 601 can display a waveform by inputting an analog signal or a digital signal from the determination device 401. Further, the data logger 601 can record the processing contents of the determination device 401.
  • FIG. 25 shows a system configuration in which the processing content of the determination device 401 is supplied to the elevator control panel 701 by incorporating at least one of the control units 9 of FIGS. 6 and 12 into the determination device 401 as a specific example of FIG. 21 or FIG. It is a figure which shows an example.
  • the elevator control panel 701 can transmit monitoring information such as which wire rope 2 of which property is broken to the central monitoring center.
  • the wire rope flaw detector has been described above based on the first and second embodiments, but the present invention is not limited to this.
  • the upper limit frequency and the lower limit frequency in the frequency band are fixed within a certain range regardless of the moving speed ⁇ of the wire rope 2S and the diameter of the wire rope 2S.
  • the upper limit frequency and the lower limit frequency in the frequency band may be determined based on at least one of the moving speed ⁇ of the wire rope 2S and the diameter of the wire rope 2S.
  • the faster the moving speed ⁇ of the wire rope 2S the higher the frequency component becomes the frequency component that contributes to the determination. Therefore, as the moving speed ⁇ of the wire rope 2S becomes faster, the upper limit frequency and the lower limit frequency in the frequency band are shifted to higher than the preset default range, so that the frequency band is more suitable.
  • the frequency component can be used for the determination.
  • the diameter of the wire rope 2S becomes smaller, a higher frequency component becomes a frequency component that contributes to the determination. Therefore, as the diameter of the wire rope 2S becomes smaller, the upper limit frequency and the lower limit frequency in the frequency band are shifted to higher than the preset default range, so that the frequency component of the more suitable frequency band is obtained. Can be used for determination.
  • the lower frequency component becomes the frequency component that contributes to the determination. Therefore, as the moving speed ⁇ of the wire rope 2 becomes slower, the upper limit frequency and the lower limit frequency in the frequency band are shifted to be lower than the preset default range, so that the frequency band is more suitable.
  • the frequency component can be used for the determination.
  • the diameter of the wire rope 2S becomes larger, the lower frequency component becomes the frequency component that contributes to the determination. Therefore, as the diameter of the wire rope 2S becomes larger, the upper limit frequency and the lower limit frequency in the frequency band are shifted to lower than the preset default range, so that the frequency component of the more suitable frequency band is obtained. Can be used for determination.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

This wire rope flaw detection device comprises a magnetizer, magnetic sensor, and control unit. The magnetizer generates magnetic flux that passes through a portion of a wire rope. The magnetic sensor generates, as a sensor signal, a signal corresponding to leakage magnetic flux that is the magnetic flux that has leaked from the wire rope. The control unit includes a filter unit and processing unit. The control unit processes the sensor signal. The filter unit extracts frequency components of the sensor signal. The processing unit determines whether there is a flaw in a wire in the wire rope on the basis of the distribution of the frequency components extracted by the filter unit.

Description

ワイヤロープ探傷装置Wire rope flaw detector
 この発明は、ワイヤロープ探傷装置に関する。 The present invention relates to a wire rope flaw detector.
 従来、ワイヤロープを磁気飽和させる磁化器と、ワイヤロープの損傷部に起因してワイヤロープから漏洩する漏洩磁束を検出する磁気センサとを有するワイヤロープ探傷装置が知られている(例えば、特許文献1参照)。 Conventionally, a wire rope flaw detector having a magnetizer that magnetically saturates the wire rope and a magnetic sensor that detects a leakage magnetic flux leaking from the wire rope due to a damaged portion of the wire rope is known (for example, Patent Document). 1).
特開平09-210968号公報Japanese Unexamined Patent Publication No. 09-210966
 ワイヤロープから漏洩する漏洩磁束の量は、ワイヤロープが細くなるほど少なくなる。よって、特許文献1に示されている従来のワイヤロープ探傷装置では、ワイヤロープが細くなるほど、磁気センサに達する漏洩磁束の量が少なくなって磁気センサの出力が低下する。この結果、従来のワイヤロープ探傷装置のSN比は低下する。 The amount of leakage magnetic flux leaking from the wire rope decreases as the wire rope becomes thinner. Therefore, in the conventional wire rope flaw detector shown in Patent Document 1, the thinner the wire rope, the smaller the amount of leakage magnetic flux reaching the magnetic sensor, and the lower the output of the magnetic sensor. As a result, the signal-to-noise ratio of the conventional wire rope flaw detector is reduced.
 また、ワイヤロープ探傷装置のSN比を向上させるためには、ワイヤロープと磁気センサとの距離を縮めることが考えられる。しかし、従来のワイヤロープ探傷装置では、ワイヤロープと磁気センサとの組立精度等の制約がある。よって、従来のワイヤロープ探傷装置では、ワイヤロープと磁気センサとの距離を縮めることに限界がある。 Further, in order to improve the SN ratio of the wire rope flaw detector, it is conceivable to shorten the distance between the wire rope and the magnetic sensor. However, the conventional wire rope flaw detector has restrictions such as assembly accuracy between the wire rope and the magnetic sensor. Therefore, in the conventional wire rope flaw detector, there is a limit in reducing the distance between the wire rope and the magnetic sensor.
 この発明は、上記のような課題を解決するためになされたものであり、SN比をより確実に向上させることができるワイヤロープ探傷装置を得ることを目的とする。 The present invention has been made to solve the above problems, and an object of the present invention is to obtain a wire rope flaw detector capable of more reliably improving the SN ratio.
 この発明に係るワイヤロープ探傷装置は、ワイヤロープの一部を通る磁束を発生する磁化器と、前記磁束のうち前記ワイヤロープから漏洩する漏洩磁束に応じた信号をセンサ信号として発生する磁気センサと、前記センサ信号を処理する制御部と、を備え、前記制御部は、前記センサ信号の周波数成分を抽出するフィルタ部と、前記周波数成分の分布に基づき、前記ワイヤロープに含まれている素線の損傷の有無を判定する処理部と、を有している。 The wire rope flaw detector according to the present invention includes a magnetizer that generates a magnetic flux that passes through a part of the wire rope, and a magnetic sensor that generates a signal corresponding to the leakage magnetic flux leaking from the wire rope as a sensor signal. The control unit includes a control unit that processes the sensor signal, and the control unit includes a filter unit that extracts a frequency component of the sensor signal and a wire rope included in the wire rope based on the distribution of the frequency component. It has a processing unit for determining the presence or absence of damage.
 この発明に係るワイヤロープ探傷装置によれば、SN比をより確実に向上させることができる。 According to the wire rope flaw detector according to the present invention, the SN ratio can be improved more reliably.
この発明の実施の形態1によるワイヤロープ探傷装置のプローブを示す分解斜視図である。It is an exploded perspective view which shows the probe of the wire rope flaw detector according to Embodiment 1 of this invention. 図1のプローブによる探傷原理を示す説明図である。It is explanatory drawing which shows the flaw detection principle by the probe of FIG. 図2のA部拡大図である。It is an enlarged view of the part A of FIG. 図3の漏洩磁束とコイルとの位置関係の一例をより具体的に説明する図である。It is a figure explaining an example of the positional relationship between the leakage magnetic flux and a coil of FIG. 3 more concretely. 図4のワイヤロープよりも小径化されたワイヤロープから漏洩する漏洩磁束とコイルとの位置関係の一例をより具体的に説明する図である。It is a figure explaining more concretely an example of the positional relationship between a leakage magnetic flux leaking from a wire rope whose diameter is smaller than that of the wire rope of FIG. 4 and a coil. 図2の制御部の機能構成例を示すブロック図である。It is a block diagram which shows the functional structure example of the control part of FIG. 図6のフィルタ部の周波数特性の一例を示す図である。It is a figure which shows an example of the frequency characteristic of the filter part of FIG. 図6のフィルタ部が入力信号から抽出した周波数成分の分布の一例を示す図である。It is a figure which shows an example of the distribution of the frequency component extracted from the input signal by the filter part of FIG. 図8の時刻t1のときにフィルタ部によって生成された数列yk(n)の一例を示す図である。It is a figure which shows an example of the sequence yk (n) generated by the filter part at the time t1 of FIG. 図8の時刻t2のときにフィルタ部によって生成された数列yk(n)の一例を示す図である。It is a figure which shows an example of the sequence yk (n) generated by the filter part at the time t2 of FIG. 図6の制御部による処理を説明するフローチャートである。It is a flowchart explaining the process by the control part of FIG. この発明の実施の形態2によるワイヤロープから漏洩する漏洩磁束に応じた信号を処理する制御部の機能構成例を示すブロック図である。FIG. 5 is a block diagram showing a functional configuration example of a control unit that processes a signal corresponding to a leakage magnetic flux leaking from a wire rope according to a second embodiment of the present invention. 図12のフィルタ部の周波数特性の一例を示す図である。It is a figure which shows an example of the frequency characteristic of the filter part of FIG. 図12のウェーブレット変換部によるマザーウェーブレットの時間領域の波形例を示す図である。It is a figure which shows the waveform example of the time domain of the mother wavelet by the wavelet transform part of FIG. 図12のウェーブレット変換部によるマザーウェーブレットの周波数領域の波形例を示す図である。It is a figure which shows the waveform example of the frequency domain of the mother wavelet by the wavelet transform part of FIG. 図12のフィルタ部の周波数特性の他の一例として1/3オクターブのときの中心周波数の概念図である。As another example of the frequency characteristics of the filter unit of FIG. 12, it is a conceptual diagram of the center frequency at the time of 1/3 octave. 図12のフィルタ部が入力信号から抽出した周波数成分の分布の一例を示す図である。It is a figure which shows an example of the distribution of the frequency component extracted from the input signal by the filter part of FIG. 図17の時刻t1のときにフィルタ部によって生成された数列yk(n)の一例を示す図である。It is a figure which shows an example of the sequence yk (n) generated by the filter part at the time t1 of FIG. 図17の時刻t2のときにフィルタ部によって生成された数列yk(n)の一例を示す図である。It is a figure which shows an example of the sequence yk (n) generated by the filter part at the time t2 of FIG. 図12の制御部による処理を説明するフローチャートである。It is a flowchart explaining the process by the control part of FIG. ハードウェア構成例を説明する図である。It is a figure explaining the hardware configuration example. 他のハードウェア構成例を説明する図である。It is a figure explaining another hardware configuration example. 図21又は図22の具体例として図6及び図12の少なくとも一方の制御部を端末装置に組み込んで使用するシステム構成例を示す図である。21 is a diagram showing a system configuration example in which at least one of the control units of FIGS. 6 and 12 is incorporated into a terminal device and used as a specific example of FIG. 21 or FIG. 図21又は図22の具体例として図6及び図12の少なくとも一方の制御部を判定器に組み込むことにより、判定器の処理内容をデータロガーに供給するシステム構成例を示す図である。As a specific example of FIG. 21 or FIG. 22, it is a figure which shows the system configuration example which supplies the processing content of the determination device to a data logger by incorporating at least one control part of FIG. 6 and FIG. 図21又は図22の具体例として図6及び図12の少なくとも一方の制御部を判定器に組み込むことにより、判定器の処理内容をエレベータ制御盤に供給するシステム構成例を示す図である。As a specific example of FIG. 21 or FIG. 22, it is a figure which shows the system configuration example which supplies the processing content of the determination device to an elevator control panel by incorporating at least one control part of FIG. 6 and FIG.
 実施の形態1.
 図1は、この発明の実施の形態1によるワイヤロープ探傷装置のプローブ1を示す分解斜視図である。プローブ1は、プローブ本体3と、カバー5とを備えている。
Embodiment 1.
FIG. 1 is an exploded perspective view showing probe 1 of the wire rope flaw detector according to the first embodiment of the present invention. The probe 1 includes a probe main body 3 and a cover 5.
 カバー5は、非磁性体から構成されている。カバー5は、プローブ本体3を覆っている。これにより、カバー5は、プローブ本体3を保護する。カバー5には、溝部51が設けられている。溝部51の断面は、U字形に形成されている。溝部51は、第1の端部51_1と第2の端部51_2とを有している。 The cover 5 is made of a non-magnetic material. The cover 5 covers the probe body 3. As a result, the cover 5 protects the probe body 3. The cover 5 is provided with a groove 51. The cross section of the groove 51 is formed in a U shape. The groove portion 51 has a first end portion 51_1 and a second end portion 51_2.
 プローブ本体3は、磁化器11と、磁気センサ13とを備えている。 The probe main body 3 includes a magnetizer 11 and a magnetic sensor 13.
 磁化器11は、バックヨーク111と、第1の永久磁石112_1と、第2の永久磁石112_2と、第1のポールピース113_1と、第2のポールピース113_2とを有している。 The magnetizer 11 has a back yoke 111, a first permanent magnet 112_1, a second permanent magnet 112_2, a first pole piece 113_1, and a second pole piece 113_2.
 バックヨーク111は、強磁性体から構成されている。バックヨーク111は、第1のヨーク端部111_1と、第2のヨーク端部111_2と、ヨーク中央部111_3とを有している。バックヨーク111の長手方向一端部は、第1のヨーク端部111_1となっている。バックヨーク111の長手方向他端部は、第2のヨーク端部111_2となっている。ヨーク中央部111_3は、第1のヨーク端部111_1と第2のヨーク端部111_2との間に位置している。 The back yoke 111 is made of a ferromagnetic material. The back yoke 111 has a first yoke end portion 111_1, a second yoke end portion 111_2, and a yoke central portion 111_3. One end of the back yoke 111 in the longitudinal direction is a first yoke end 111_1. The other end of the back yoke 111 in the longitudinal direction is a second yoke end 111_2. The yoke central portion 111_3 is located between the first yoke end portion 111_1 and the second yoke end portion 111_2.
 第1のヨーク端部111_1には、第1のポールピース113_1が第1の永久磁石112_1を介して固定されている。第2のヨーク端部111_2には、第2のポールピース113_2が第2の永久磁石112_2を介して固定されている。これにより、第1の永久磁石112_1と第2の永久磁石112_2とは、バックヨーク111の長手方向で互いに離して配置されている。また、第1のポールピース113_1と第2のポールピース113_2とは、バックヨーク111の長手方向で互いに離して配置されている。 A first pole piece 113_1 is fixed to the first yoke end 111_1 via a first permanent magnet 112_1. A second pole piece 113_2 is fixed to the second yoke end 111_2 via a second permanent magnet 112_2. As a result, the first permanent magnet 112_1 and the second permanent magnet 112_2 are arranged apart from each other in the longitudinal direction of the back yoke 111. Further, the first pole piece 113_1 and the second pole piece 113_1 are arranged apart from each other in the longitudinal direction of the back yoke 111.
 第1のポールピース113_1は、強磁性体から構成されている。第1のポールピース113_1には、第1のポールピース溝部113_11が設けられている。第1のポールピース溝部113_11の断面は、U字形に形成されている。第1のポールピース溝部113_11は、第1の端部51_1の裏側の位置でカバー5に固定されている。 The first pole piece 113_1 is made of a ferromagnetic material. The first pole piece 113_1 is provided with a first pole piece groove 113_1. The cross section of the first pole piece groove portion 113_11 is formed in a U shape. The first pole piece groove portion 113_1 is fixed to the cover 5 at a position on the back side of the first end portion 51_1.
 第2のポールピース113_2は、強磁性体から構成されている。第2のポールピース113_2には、第2のポールピース溝部113_21が設けられている。第2のポールピース溝部113_21の断面は、U字形に形成されている。第2のポールピース溝部113_21は、第2の端部51_2の裏側の位置でカバー5に固定されている。 The second pole piece 113_2 is made of a ferromagnetic material. The second pole piece 113_2 is provided with a second pole piece groove 113_21. The cross section of the second pole piece groove portion 113_21 is formed in a U shape. The second pole piece groove portion 113_21 is fixed to the cover 5 at a position on the back side of the second end portion 51_2.
 第1の永久磁石112_1は、第1のポールピース113_1と、第1のヨーク端部111_1との間に配置されている。第1の永久磁石112_1は、一方の磁極面を第1のポールピース113_1に向けて配置され、他方の磁極面を第1のヨーク端部111_1に向けて配置されている。第1の永久磁石112_1としては、例えば、ネオジム磁石が用いられている。第1の永久磁石112_1は、起磁力を発生する。 The first permanent magnet 112_1 is arranged between the first pole piece 113_1 and the first yoke end portion 111_1. The first permanent magnet 112_1 has one magnetic pole surface oriented toward the first pole piece 113_1 and the other magnetic pole surface directed toward the first yoke end 111_1. As the first permanent magnet 112_1, for example, a neodymium magnet is used. The first permanent magnet 112_1 generates a magnetomotive force.
 第2の永久磁石112_2は、第2のポールピース113_2と第2のヨーク端部111_2との間に配置されている。第2の永久磁石112_2は、一方の磁極面を第2のヨーク端部111_2に向けて配置され、他方の磁極面を第2のポールピース113_2に向けて配置されている。第2の永久磁石112_2としては、例えば、ネオジム磁石が用いられている。第2の永久磁石112_2は、起磁力を発生する。 The second permanent magnet 112_2 is arranged between the second pole piece 113_2 and the second yoke end 111_2. The second permanent magnet 112_2 is arranged with one magnetic pole surface facing the second yoke end 111_2 and the other magnetic pole surface facing the second pole piece 113_2. As the second permanent magnet 112_2, for example, a neodymium magnet is used. The second permanent magnet 112_2 generates a magnetomotive force.
 磁気センサ13は、センサ本体13Aと、取り付け部13Bとを有している。 The magnetic sensor 13 has a sensor body 13A and a mounting portion 13B.
 取り付け部13Bは、ヨーク中央部111_3に取り付けられている。取り付け部13Bは、非磁性体から構成されている。 The mounting portion 13B is mounted on the yoke central portion 111_3. The mounting portion 13B is made of a non-magnetic material.
 センサ本体13Aは、第1のポールピース113_1と、第2のポールピース113_2との間に配置されている。センサ本体13Aは、ベース部132と、コイルホルダ133と、第1のコイル131_1と、第2のコイル131_2とを有している。 The sensor body 13A is arranged between the first pole piece 113_1 and the second pole piece 113_2. The sensor body 13A has a base portion 132, a coil holder 133, a first coil 131_1, and a second coil 131_2.
 ベース部132は、取り付け部13Bに取り付けられている。コイルホルダ133は、ベース部132に取り付けられている。コイルホルダ133は、強磁性体から構成されている。第1のコイル131_1及び第2のコイル131_2は、コイルホルダ133に取り付けられている。 The base portion 132 is attached to the attachment portion 13B. The coil holder 133 is attached to the base portion 132. The coil holder 133 is made of a ferromagnetic material. The first coil 131_1 and the second coil 131_2 are attached to the coil holder 133.
 図2は、図1のプローブ1による探傷原理を示す説明図である。ワイヤロープ探傷装置は、プローブ1と、プローブ1からの信号を受ける制御部9とを備えている。 FIG. 2 is an explanatory diagram showing the flaw detection principle by the probe 1 of FIG. The wire rope flaw detector includes a probe 1 and a control unit 9 that receives a signal from the probe 1.
 図2においては、図示の都合上、カバー5の輪郭が二点鎖線で示されている。また、図2においては、図示の都合上、溝部51の断面形状部分がハッチングで示されている。ワイヤロープ探傷装置によってワイヤロープ2の探傷検査が行われるときには、溝部51の長手方向に沿った特定方向W_Dにワイヤロープ2がプローブ1に対して移動する。プローブ1は、ワイヤロープ2を溝部51に接触させながら計測を実施する。 In FIG. 2, for convenience of illustration, the outline of the cover 5 is shown by a chain double-dashed line. Further, in FIG. 2, for convenience of illustration, the cross-sectional shape portion of the groove portion 51 is shown by hatching. When the wire rope flaw detection device performs a flaw detection inspection of the wire rope 2, the wire rope 2 moves with respect to the probe 1 in a specific direction W_D along the longitudinal direction of the groove 51. The probe 1 performs measurement while bringing the wire rope 2 into contact with the groove 51.
 図2の一例では、第1の永久磁石112_1の極性の向きが第1のヨーク端部111_1から第1のポールピース113_1に向かう向きとなっている。また、図2の一例では、第2の永久磁石112_2の極性の向きが第2のポールピース113_2から第2のヨーク端部111_2に向かう向きとなっている。 In the example of FIG. 2, the direction of the polarity of the first permanent magnet 112_1 is the direction from the first yoke end 111_1 to the first pole piece 113_1. Further, in the example of FIG. 2, the polarity direction of the second permanent magnet 112_2 is the direction from the second pole piece 113_2 toward the second yoke end portion 111_2.
 つまり、第1の永久磁石112_1の極性は、第2の永久磁石112_2の極性と逆向きとなっている。よって、ワイヤロープ2が溝部51に配置された状態では、ワイヤロープ2の一部と磁化器11とから構成された磁気回路F_Cを通る磁束Fを第1の永久磁石112_1及び第2の永久磁石112_2が発生する。 That is, the polarity of the first permanent magnet 112_1 is opposite to the polarity of the second permanent magnet 112_2. Therefore, in the state where the wire rope 2 is arranged in the groove 51, the magnetic flux F passing through the magnetic circuit F_C composed of a part of the wire rope 2 and the magnetizer 11 is transferred to the first permanent magnet 112_1 and the second permanent magnet. 112_2 occurs.
 これにより、ワイヤロープ2が溝部51に配置された状態では、ワイヤロープ2のうち、第1のポールピース113_1に対向する部分と、第2のポールピース113_2に対向する部分との間の区間Wでワイヤロープ2が磁化される。ワイヤロープ2では、第1の永久磁石112_1及び第2の永久磁石112_2による磁束Fがワイヤロープ2の長手方向に沿って通る。つまり、磁化器11は、ワイヤロープ2の一部を通る磁束Fを発生する。 As a result, when the wire rope 2 is arranged in the groove 51, the section W between the portion of the wire rope 2 facing the first pole piece 113_1 and the portion facing the second pole piece 113_2 The wire rope 2 is magnetized at. In the wire rope 2, the magnetic flux F generated by the first permanent magnet 112_1 and the second permanent magnet 112_2 passes along the longitudinal direction of the wire rope 2. That is, the magnetizer 11 generates a magnetic flux F that passes through a part of the wire rope 2.
 磁気センサ13は、磁束Fのうちワイヤロープ2から漏洩する漏洩磁束L_Fに応じた信号をセンサ信号として発生する。制御部9は、磁気センサ13から発生するセンサ信号を処理する。なお、磁束F及び漏洩磁束L_Fの詳細については後述する。 The magnetic sensor 13 generates a signal corresponding to the leakage magnetic flux L_F leaking from the wire rope 2 among the magnetic flux F as a sensor signal. The control unit 9 processes the sensor signal generated from the magnetic sensor 13. The details of the magnetic flux F and the leakage magnetic flux L_F will be described later.
 以下、第1の永久磁石112_1及び第2の永久磁石112_2を総称する場合、永久磁石112と称する。また、第1のポールピース113_1及び第2のポールピース113_2を総称する場合、ポールピース113と称する。また、第1のコイル131_1及び第2のコイル131_2を総称する場合、コイル131と称する。 Hereinafter, when the first permanent magnet 112_1 and the second permanent magnet 112_2 are collectively referred to, they are referred to as the permanent magnet 112. Further, when the first pole piece 113_1 and the second pole piece 113_2 are collectively referred to, they are referred to as the pole piece 113. Further, when the first coil 131_1 and the second coil 131_2 are collectively referred to, they are referred to as a coil 131.
 次に、ワイヤロープ探傷装置による漏洩磁束L_Fの検出原理について具体的に説明する。図3は、図2のA部拡大図である。図3に示すように、ワイヤロープ2のうち、磁束Fが通っている部分に損傷部B_Wがあると、損傷部B_Wの周囲でワイヤロープ2から磁束Fの一部が漏洩磁束L_Fとして漏洩する。 Next, the detection principle of the leakage magnetic flux L_F by the wire rope flaw detector will be specifically described. FIG. 3 is an enlarged view of part A of FIG. As shown in FIG. 3, if there is a damaged portion B_W in the portion of the wire rope 2 through which the magnetic flux F passes, a part of the magnetic flux F leaks from the wire rope 2 as a leakage magnetic flux L_F around the damaged portion B_W. ..
 図4は、図3の漏洩磁束L_Fとコイル131との位置関係の一例をより具体的に説明する図である。ワイヤロープ2をプローブ1に対して移動させた場合、第1のコイル131_1及び第2のコイル131_2は、漏洩磁束L_Fと鎖交する。よって、漏洩磁束L_Fに応じた信号である誘起電圧が、センサ信号として第1のコイル131_1及び第2のコイル131_2に発生する。 FIG. 4 is a diagram for more specifically explaining an example of the positional relationship between the leakage magnetic flux L_F of FIG. 3 and the coil 131. When the wire rope 2 is moved with respect to the probe 1, the first coil 131_1 and the second coil 131_2 are interlinked with the leakage magnetic flux L_F. Therefore, an induced voltage, which is a signal corresponding to the leakage magnetic flux L_F, is generated in the first coil 131_1 and the second coil 131_2 as sensor signals.
 ところで、ワイヤロープ2は、心綱と、心綱の周りに一定のピッチλで撚り合わされた複数のストランド21とから構成されている。よって、ワイヤロープ2の外周部には、一定のピッチλでワイヤロープ2の長さ方向へ並ぶ複数の凸部が形成されている。また、ストランド21は、複数本の素線を単層又は多層に撚り合わせて構成されている。よって、ワイヤロープ2に含まれている素線が細ければ、ワイヤロープ2の径が小径化される。 By the way, the wire rope 2 is composed of a core rope and a plurality of strands 21 twisted around the core rope at a constant pitch λ. Therefore, on the outer peripheral portion of the wire rope 2, a plurality of convex portions arranged in the length direction of the wire rope 2 are formed at a constant pitch λ. Further, the strand 21 is formed by twisting a plurality of strands into a single layer or multiple layers. Therefore, if the wire contained in the wire rope 2 is thin, the diameter of the wire rope 2 is reduced.
 図5は、図4のワイヤロープ2よりも小径化されたワイヤロープ2Sから漏洩する漏洩磁束L_Fとコイル131との位置関係の一例をより具体的に説明する図である。図5に示すように、図4のワイヤロープ2よりも小径化されたワイヤロープ2Sがプローブ1に対して移動する場合、図4のワイヤロープ2がプローブ1に対して移動する場合よりも、第1のコイル131_1及び第2のコイル131_2に鎖交する漏洩磁束L_Fの磁束量が少なくなる。よって、図2の制御部9は、磁気センサ13から発生するセンサ信号が、ノイズによる磁束Fによるものと、損傷部B_Wによる磁束Fによるものとの何れであるかの区別をつけにくい。そこで、本実施の形態においては、図2の制御部9は、センサ信号の周波数成分の分布に基づき、ワイヤロープ2Sに含まれている素線の損傷の有無を判定する。 FIG. 5 is a diagram for more specifically explaining an example of the positional relationship between the leakage magnetic flux L_F leaking from the wire rope 2S having a diameter smaller than that of the wire rope 2 of FIG. 4 and the coil 131. As shown in FIG. 5, when the wire rope 2S having a diameter smaller than that of the wire rope 2 of FIG. 4 moves with respect to the probe 1, the wire rope 2 of FIG. 4 moves with respect to the probe 1 as compared with the case of moving with respect to the probe 1. The amount of leakage magnetic flux L_F interlinking with the first coil 131_1 and the second coil 131_2 is reduced. Therefore, it is difficult for the control unit 9 of FIG. 2 to distinguish whether the sensor signal generated from the magnetic sensor 13 is due to the magnetic flux F due to noise or the magnetic flux F due to the damaged portion B_W. Therefore, in the present embodiment, the control unit 9 of FIG. 2 determines whether or not the wire rope included in the wire rope 2S is damaged based on the distribution of the frequency component of the sensor signal.
 なお、上記で説明したように、ワイヤロープ2は、ストランド21が一定のピッチλで撚り合わされて構成されている。よって、プローブ1は、ワイヤロープ2の外周部に起因するノイズを少なくともピッチλ毎に検出する。また、ワイヤロープ2Sも同様にピッチλSで撚り合わされて構成されている。よって、ワイヤロープ2Sの外周部には、一定のピッチλSでワイヤロープ2Sの長さ方向へ並ぶ複数の凸部が同様に形成されている。したがって、プローブ1は、ワイヤロープ2Sの外周部に起因するノイズを少なくともピッチλS毎に検出する。 As described above, the wire rope 2 is composed of strands 21 twisted at a constant pitch λ. Therefore, the probe 1 detects noise caused by the outer peripheral portion of the wire rope 2 at least every pitch λ. Further, the wire rope 2S is also configured by being twisted at a pitch λS in the same manner. Therefore, a plurality of convex portions arranged in the length direction of the wire rope 2S are similarly formed on the outer peripheral portion of the wire rope 2S at a constant pitch λS. Therefore, the probe 1 detects noise caused by the outer peripheral portion of the wire rope 2S at least for each pitch λS.
 図6は、図2の制御部9の機能構成例を示すブロック図である。図6に示すように、制御部9は、測定器91と、合成器92と、フィルタ部93と、処理部94とを有している。 FIG. 6 is a block diagram showing a functional configuration example of the control unit 9 of FIG. As shown in FIG. 6, the control unit 9 includes a measuring instrument 91, a synthesizer 92, a filter unit 93, and a processing unit 94.
 測定器91は、第1の測定器91_1と、第2の測定器91_2とを有している。第1の測定器91_1は、第1のコイル131_1の両端に接続されている。第2の測定器91_2は、第2のコイル131_2の両端に接続されている。この例では、第1のコイル131_1は、第2のコイル131_2よりもワイヤロープ2Sの特定方向W_Dの上流側に位置している。 The measuring instrument 91 has a first measuring instrument 91_1 and a second measuring instrument 91_2. The first measuring instrument 91_1 is connected to both ends of the first coil 131_1. The second measuring instrument 91_2 is connected to both ends of the second coil 131_2. In this example, the first coil 131_1 is located upstream of the second coil 131_2 in the specific direction W_D of the wire rope 2S.
 図6に示すように、損傷部B_Wが第1のポールピース113_1と第2のポールピース113_2との間に進入したとき、損傷部B_Wの周囲でワイヤロープ2から漏洩磁束L_Fが漏洩する。漏洩磁束L_Fは、第1のコイル131_1に鎖交し、その後第2のコイル131_2に鎖交する。よって、第1のコイル131_1の両端に発生する誘起電圧のピークが発生する時刻は、第2のコイル131_2の両端に発生する誘起電圧のピークが発生する時刻と比べ、第1のコイル131_1と第2のコイル131_2の中心間の距離Pをワイヤロープ2Sの移動速度νで除した値で表される遅延時間τだけずれる。 As shown in FIG. 6, when the damaged portion B_W enters between the first pole piece 113_1 and the second pole piece 113_1, the leakage magnetic flux L_F leaks from the wire rope 2 around the damaged portion B_W. The leakage magnetic flux L_F is interlinked with the first coil 131_1 and then with the second coil 131_2. Therefore, the time at which the peak of the induced voltage generated at both ends of the first coil 131_1 occurs is higher than the time at which the peak of the induced voltage generated at both ends of the second coil 131_1 occurs at the first coil 131_1 and the first coil 131_1. The distance P between the centers of the coils 131_2 of 2 is deviated by the delay time τ represented by the value obtained by dividing the distance P between the centers of the coils 131_2 by the moving speed ν of the wire rope 2S.
 よって、第1の測定器91_1は、ワイヤロープ2Sから漏洩する漏洩磁束L_Fに応じた信号である誘起電圧をセンサ信号f1(t-τ)として検出する。また、第2の測定器91_2は、ワイヤロープ2Sから漏洩する漏洩磁束L_Fに応じた信号である誘起電圧をセンサ信号f2(t)として検出する。 Therefore, the first measuring instrument 91_1 detects the induced voltage, which is a signal corresponding to the leakage magnetic flux L_F leaking from the wire rope 2S, as the sensor signal f1 (t−τ). Further, the second measuring instrument 91_2 detects the induced voltage, which is a signal corresponding to the leakage magnetic flux L_F leaking from the wire rope 2S, as the sensor signal f2 (t).
 合成器92は、第1の測定器91_1で検出されたセンサ信号f1(t-τ)と、第2の測定器91_2で検出されたセンサ信号f2(t)とを重ね合わせることによりセンサ信号x(t)を生成する。具体的には、合成器92は、第1の測定器91_1で検出されたセンサ信号f1(t-τ)を時間τだけ遅らせたセンサ信号f1(t)と、第2の測定器91_2で検出されたセンサ信号f2(t)とを重ね合わせる。この結果、センサ信号x(t)は、第1のコイル131_1の両端に発生する誘起電圧のピークと、第2のコイル131_2の両端に発生する誘起電圧のピークとを合わせた信号となる。 The synthesizer 92 superimposes the sensor signal f1 (t−τ) detected by the first measuring instrument 91_1 and the sensor signal f2 (t) detected by the second measuring instrument 91_1 to form the sensor signal x. (T) is generated. Specifically, the synthesizer 92 detects the sensor signal f1 (t−τ) detected by the first measuring instrument 91_1 with the sensor signal f1 (t) delayed by the time τ and the second measuring instrument 91_2. The generated sensor signal f2 (t) is superimposed. As a result, the sensor signal x (t) becomes a signal obtained by combining the peaks of the induced voltage generated across the first coil 131_1 and the peaks of the induced voltage generated across the second coil 131_2.
 合成器92は、センサ信号x(t)を一定の周期Tsで標本化する。標本化した信号は、周期Tsごとの信号となるため、周期Tsを単位として、時間を整数nで表すことができる。つまり、センサ信号x(t)のアナログ時間と標本化した信号の時間との関係は、t=n・Tsとなる。標本化した信号の振幅は実数値である。よって、標本化した信号である離散信号は、実数値の数列{x(0),x(1),x(2),・・・}として表されるため、数列x(n)と表すことにする。数列x(n)は、入力信号x(n)としてフィルタ部93に供給される。 The synthesizer 92 samples the sensor signal x (t) at a constant period Ts. Since the sampled signal is a signal for each period Ts, the time can be represented by an integer n with the period Ts as a unit. That is, the relationship between the analog time of the sensor signal x (t) and the time of the sampled signal is t = n · Ts. The amplitude of the sampled signal is real. Therefore, the discrete signal, which is a sampled signal, is represented as a sequence of real values {x (0), x (1), x (2), ...}, So it is represented as a sequence x (n). To. The sequence x (n) is supplied to the filter unit 93 as an input signal x (n).
 以下、数列x(n)をフィルタ部93の入力信号x(n)と称する。 Hereinafter, the sequence x (n) will be referred to as an input signal x (n) of the filter unit 93.
 フィルタ部93は、センサ信号x(t)を標本化した入力信号x(n)の周波数成分を抽出する。フィルタ部93は、複数のバンドパスフィルタとしての複数のFIR(Finite Impulse Response)フィルタ931と、複数の絶対値部932とを有している。 The filter unit 93 extracts the frequency component of the input signal x (n) that samples the sensor signal x (t). The filter unit 93 has a plurality of FIR (Finite Impulse Response) filters 931 as a plurality of bandpass filters, and a plurality of absolute value units 932.
 図7は、図6のフィルタ部93の周波数特性の一例を示す図である。図7に示すように、複数のFIRフィルタ931のそれぞれでは、タップ数、ゲイン及び帯域幅bが一定である。複数のFIRフィルタ931は、互いに異なる複数の帯域を個別の通過帯域としている。つまり、複数のFIRフィルタ931は、互いに異なる個別の通過帯域を持つ。よって、フィルタ部93は、互いに異なる複数の帯域のそれぞれにおいて入力信号x(n)の周波数成分を抽出する。 FIG. 7 is a diagram showing an example of the frequency characteristics of the filter unit 93 of FIG. As shown in FIG. 7, the number of taps, the gain, and the bandwidth b are constant in each of the plurality of FIR filters 931. The plurality of FIR filters 931 have a plurality of bands different from each other as individual pass bands. That is, the plurality of FIR filters 931 have different pass bands different from each other. Therefore, the filter unit 93 extracts the frequency component of the input signal x (n) in each of the plurality of bands different from each other.
 複数の絶対値部932は、図6に示すように、複数のFIRフィルタ931から供給された入力信号x(n)の周波数成分の絶対値を求める。ここで、入力信号x(n)は、上記で説明したように、実数値の数列{x(0),x(1),x(2),・・・}である。そこで、複数の絶対値部932は、入力信号x(n)を量子化単位で除して四捨五入することで量子化し、整数値の数列yk(n)を求める。ただし、kは1からNまで昇順した値となる。また、Nは自然数である。 As shown in FIG. 6, the plurality of absolute value units 932 obtain the absolute values of the frequency components of the input signals x (n) supplied from the plurality of FIR filters 931. Here, the input signal x (n) is a sequence of real values {x (0), x (1), x (2), ...} As described above. Therefore, the plurality of absolute value units 932 quantize the input signal x (n) by dividing it by the quantization unit and rounding it off to obtain a sequence yk (n) of integer values. However, k is a value in ascending order from 1 to N. Also, N is a natural number.
 例えば、複数のFIRフィルタ931に実数値のx(0)が入力されたときには、複数のFIRフィルタ931は、互いに異なる複数の帯域のそれぞれにおいて実数値のx(0)の周波数成分を抽出する。絶対値部932は、個別の通過帯域ごとの実数値のx(0)の周波数成分の絶対値を求めた後に整数値のy1(0),y2(0),・・・及びyN(0)を求める。 For example, when a real value x (0) is input to the plurality of FIR filters 931, the plurality of FIR filters 931 extract the frequency component of the real value x (0) in each of a plurality of bands different from each other. The absolute value unit 932 obtains the absolute value of the frequency component of the real value x (0) for each individual pass band, and then the integer values y1 (0), y2 (0), ..., And yN (0). Ask for.
 以下、整数値のy1(0),y2(0),・・・及びyN(0)は、整数値の数列{y1(0),y2(0),・・・及びyN(0)}として数列yk(0)と表す。 Hereinafter, the integer values y1 (0), y2 (0), ... And yN (0) are referred to as a sequence of integer values {y1 (0), y2 (0), ... And yN (0)}. It is expressed as a sequence yk (0).
 フィルタ部93は、実数値のx(1)も同様の処理を行い、yk(1)を求める。フィルタ部93は、実数値のx(2)以降も同様の処理を行い、yk(2)以降を求める。以上の説明から、フィルタ部93は、入力信号x(n)から数列yk(n)を求める。 The filter unit 93 performs the same processing on the real value x (1) to obtain yk (1). The filter unit 93 performs the same processing on the real value x (2) and later, and obtains yk (2) and later. From the above description, the filter unit 93 obtains the sequence yk (n) from the input signal x (n).
 図8は、図6のフィルタ部93が入力信号x(n)から抽出した周波数成分の分布の一例を示す図である。図8に示すように、ワイヤロープ2Sの移動速度νは、例えば、台形制御されている。よって、ワイヤロープ2Sが等速移動を行っている場合には、ワイヤロープ2Sの外周部の形状に起因する入力信号x(n)の周期変動が一定となる。ワイヤロープ2Sの外周部に形状に起因する入力信号x(n)の周期変動は、上記で説明したように、ストランド21SのピッチλS毎に生じる。よって、入力信号x(n)の一定の周期変動は、特定の周波数で発生する。 FIG. 8 is a diagram showing an example of the distribution of frequency components extracted from the input signal x (n) by the filter unit 93 of FIG. As shown in FIG. 8, the moving speed ν of the wire rope 2S is trapezoidally controlled, for example. Therefore, when the wire rope 2S is moving at a constant velocity, the periodic fluctuation of the input signal x (n) due to the shape of the outer peripheral portion of the wire rope 2S is constant. Periodic variation of the input signal x (n) due to the shape on the outer peripheral portion of the wire rope 2S occurs for each pitch λS of the strand 21S as described above. Therefore, the constant periodic fluctuation of the input signal x (n) occurs at a specific frequency.
 例えば、図8に示すように、入力信号x(n)のノイズ周波数成分f_nは、ワイヤロープ2Sが等速移動を行っている場合には、k=6及びk=8のときの帯域に出現する。 For example, as shown in FIG. 8, the noise frequency component f_n of the input signal x (n) appears in the bands when k = 6 and k = 8 when the wire rope 2S is moving at a constant velocity. To do.
 したがって、入力信号x(n)の一定の周期変動の周波数成分は、入力信号x(n)の周波数成分のうち、入力信号x(n)のノイズ周波数成分f_nとみなすことができる。 Therefore, the frequency component of the constant periodic fluctuation of the input signal x (n) can be regarded as the noise frequency component f_n of the input signal x (n) among the frequency components of the input signal x (n).
 また、入力信号x(n)が漏洩磁束L_Fに応じて合成器92により合成された信号である場合には、時間領域では局所的な微少時間Δtの間に生じた信号と入力信号x(n)が等価である。よって、入力信号x(n)が漏洩磁束L_Fに応じて合成器92により合成された信号である場合には、微少時間Δtが短いほど、入力信号x(n)の周波数成分が出現する帯域の数が増える。 Further, when the input signal x (n) is a signal synthesized by the synthesizer 92 according to the leakage magnetic flux L_F, the signal generated during the local minute time Δt and the input signal x (n) in the time domain. ) Is equivalent. Therefore, when the input signal x (n) is a signal synthesized by the synthesizer 92 according to the leakage magnetic flux L_F, the shorter the minute time Δt, the more the frequency component of the input signal x (n) appears in the band. The number increases.
 例えば、図8に示すように、入力信号x(n)の損傷周波数成分f_sは、k=3、k=4、k=5、k=6、k=7、k=8及びk=9のときの帯域にそれぞれ出現する。 For example, as shown in FIG. 8, the damage frequency component f_s of the input signal x (n) is k = 3, k = 4, k = 5, k = 6, k = 7, k = 8 and k = 9. Appears in each band of time.
 この結果、入力信号x(n)の周波数成分の分布は、複数の帯域にわたる分布となる。したがって、入力信号x(n)の周波数成分のうち、入力信号x(n)の損傷周波数成分f_sは、入力信号x(n)のノイズ周波数成分f_nが出現する帯域以外の帯域にも出現する。 As a result, the distribution of the frequency components of the input signal x (n) becomes a distribution over a plurality of bands. Therefore, among the frequency components of the input signal x (n), the damaged frequency component f_s of the input signal x (n) also appears in a band other than the band in which the noise frequency component f_n of the input signal x (n) appears.
 なお、周波数成分の分布は、数列yk(n)から構成されている。数列yk(n)は、上記で説明したように、整数値のy1(n),y2(n),・・・及びyN(n)から構成されている。よって、周波数成分の分布は、複数の値y1(n)~yN(n)から構成されている。 The distribution of frequency components is composed of a sequence yk (n). As described above, the sequence yk (n) is composed of integer values y1 (n), y2 (n), ..., And yN (n). Therefore, the distribution of frequency components is composed of a plurality of values y1 (n) to yN (n).
 処理部94は、図6に示すように、演算部941と、判定部943とを有している。処理部94は、フィルタ部93で抽出された入力信号x(n)の周波数成分の分布に基づいて、ワイヤロープ2Sに含まれている素線の損傷の有無を判定する。 As shown in FIG. 6, the processing unit 94 has a calculation unit 941 and a determination unit 943. The processing unit 94 determines whether or not the wire rope included in the wire rope 2S is damaged based on the distribution of the frequency components of the input signal x (n) extracted by the filter unit 93.
 演算部941は、複数の帯域にわたる入力信号x(n)の周波数成分の分布を構成する複数の値から統計的演算によって特徴量を抽出する。特徴量は、入力信号x(n)の周波数成分の分布を特徴付ける代表値である。統計的演算は、例えば、中央値m(n)を求める演算である。中央値m(n)は、数列yk(n)を構成する整数値のy1(n),y2(n),・・・及びyN(n)を昇順に並べたときに中央に位置する値である。 The calculation unit 941 extracts a feature amount by statistical calculation from a plurality of values constituting the distribution of the frequency components of the input signal x (n) over a plurality of bands. The feature amount is a representative value that characterizes the distribution of the frequency component of the input signal x (n). The statistical operation is, for example, an operation for obtaining the median value m (n). The median m (n) is a value located at the center when the integer values y1 (n), y2 (n), ..., And yN (n) constituting the sequence yk (n) are arranged in ascending order. is there.
 図9は、図8の時刻t1のときにフィルタ部93によって生成された数列yk(n)の一例を示す図である。図9の一例では、数列yk(n)を構成する複数の値y1(n)~yN(n)のうち、k=1~5,7及び9のときの値y1(n)~y5(n)、y7(n)及びy9(n)がゼロであり、k=6及び8のときの値y6(n)及びy8(n)がゼロよりも大きな値となる。よって、数列yk(n)を構成する複数の値y1(n)~yN(n)を昇順に並べたときに中央に位置する値はゼロとなる。 FIG. 9 is a diagram showing an example of the sequence yk (n) generated by the filter unit 93 at the time t1 of FIG. In an example of FIG. 9, among a plurality of values y1 (n) to yN (n) constituting the sequence yk (n), the values y1 (n) to y5 (n) when k = 1 to 5, 7 and 9 ), Y7 (n) and y9 (n) are zero, and the values y6 (n) and y8 (n) when k = 6 and 8 are larger than zero. Therefore, when a plurality of values y1 (n) to yN (n) constituting the sequence yk (n) are arranged in ascending order, the value located at the center becomes zero.
 図10は、図8の時刻t2のときにフィルタ部93によって生成された数列yk(n)の一例を示す図である。図10の一例では、数列yk(n)を構成する複数の値y1(n)~yN(n)を昇順に並べたときに中央に位置する値は、k=5のときの値となる。よって、中央値m(n)は、k=5のときの値が採用される。ここで、時刻t2のときには、図8に示すように、入力信号x(n)の周波数成分の分布は、損傷周波数成分f_sを含む。そこで、判定部943は、周波数成分の分布に損傷周波数成分f_sが含まれているか否かを判定するための設定閾値を、0以上且つk=5のときの値y5(n)未満に設定する。 FIG. 10 is a diagram showing an example of the sequence yk (n) generated by the filter unit 93 at the time t2 of FIG. In one example of FIG. 10, when a plurality of values y1 (n) to yN (n) constituting the sequence yk (n) are arranged in ascending order, the value located at the center is the value when k = 5. Therefore, as the median value m (n), the value when k = 5 is adopted. Here, at time t2, as shown in FIG. 8, the distribution of the frequency component of the input signal x (n) includes the damaged frequency component f_s. Therefore, the determination unit 943 sets the setting threshold value for determining whether or not the damage frequency component f_s is included in the frequency component distribution to be 0 or more and less than the value y5 (n) when k = 5. ..
 判定部943は、特徴量に基づいて、ワイヤロープ2Sに含まれる素線の損傷の有無を判定する。具体的には、判定部943は、演算部941により抽出された特徴量と設定閾値とを比較することにより、ワイヤロープ2Sに含まれる素線の損傷の有無を判定する。より具体的には、判定部943は、特徴量が設定閾値を超える場合、ワイヤロープ2Sに含まれる素線の損傷が有ると判定する。一方、判定部943は、特徴量が設定閾値以下である場合、ワイヤロープ2Sに含まれる素線の損傷が無いと判定する。 The determination unit 943 determines whether or not the wire rope included in the wire rope 2S is damaged based on the feature amount. Specifically, the determination unit 943 determines whether or not the wire rope included in the wire rope 2S is damaged by comparing the feature amount extracted by the calculation unit 941 with the set threshold value. More specifically, the determination unit 943 determines that the wire rope 2S is damaged when the feature amount exceeds the set threshold value. On the other hand, when the feature amount is equal to or less than the set threshold value, the determination unit 943 determines that the wire rope 2S is not damaged.
 ここで、ワイヤロープ2Sに含まれる素線の損傷とは、ワイヤロープ2Sの少なくとも一部に生じた物理的な損傷のことである。物理的な損傷とは、例えば、素線の断線、素線の部分断線及び素線の擦過痕の少なくとも一つの損傷のことである。 Here, the damage to the wire contained in the wire rope 2S is the physical damage caused to at least a part of the wire rope 2S. Physical damage is, for example, damage to at least one of wire breakage, partial wire breakage, and scratch marks on the wire.
 以下、ワイヤロープ2Sに含まれる素線の損傷は、適宜、素線の損傷と称する。 Hereinafter, damage to the wire contained in the wire rope 2S will be appropriately referred to as damage to the wire.
 なお、設定閾値は、統計的演算によって求められる値に応じて異なる。具体的には、統計的演算は、中央値m(n)を求める演算の他には、例えば、最大値、最小値、範囲、平均値、標準偏差、実効値、クレストファクタ、尖度を求める演算がある。また、統計的演算によって求められる値のうち、範囲は、最大値と最小値との差を求める演算により得られる値である。また、統計的演算によって求められる値のうち、クレストファクタは、実効値に対する最大値の比を求める演算により得られる値である。判定部96には、上記のような統計的演算によって求められる値に応じて異なる設定閾値が設定される。 Note that the set threshold value differs depending on the value obtained by statistical calculation. Specifically, in the statistical calculation, in addition to the calculation of the median value m (n), for example, the maximum value, the minimum value, the range, the average value, the standard deviation, the effective value, the crest factor, and the kurtosis are obtained. There is an operation. Further, among the values obtained by the statistical calculation, the range is the value obtained by the calculation for finding the difference between the maximum value and the minimum value. Further, among the values obtained by statistical calculation, the crest factor is a value obtained by calculation for obtaining the ratio of the maximum value to the effective value. Different setting threshold values are set in the determination unit 96 according to the value obtained by the above statistical calculation.
 図11は、図6の制御部9による処理を説明するフローチャートである。ステップS11において、合成器92は、センサ信号x(t)に対応する入力信号x(n)をフィルタ部93に入力する。ステップS12において、フィルタ部93は、複数のバンドパスフィルタで入力信号x(n)の周波数成分を抽出する。ステップS13において、演算部941は、複数のバンドパスフィルタで抽出された周波数成分から構成される数列yk(n)に対して統計的演算を行う。ステップS14において、判定部943は、統計的演算により抽出された特徴量が設定閾値を超えるか否かを判定する。判定部943は、統計的演算により抽出された特徴量が設定閾値を超えると判定する場合、ステップS15の処理に移行する。ステップS15において、判定部943は、素線の損傷が有ると判定し、処理を終了する。一方、判定部943は、統計的演算により抽出された特徴量が設定閾値を超えない、すなわち、設定閾値以下であると判定する場合、ステップS16の処理に移行する。ステップS16において、判定部943は、素線の損傷が無いと判定し、処理を終了する。 FIG. 11 is a flowchart illustrating processing by the control unit 9 of FIG. In step S11, the synthesizer 92 inputs the input signal x (n) corresponding to the sensor signal x (t) to the filter unit 93. In step S12, the filter unit 93 extracts the frequency component of the input signal x (n) with a plurality of bandpass filters. In step S13, the calculation unit 941 performs a statistical calculation on the sequence yk (n) composed of the frequency components extracted by the plurality of bandpass filters. In step S14, the determination unit 943 determines whether or not the feature amount extracted by the statistical calculation exceeds the set threshold value. When the determination unit 943 determines that the feature amount extracted by the statistical calculation exceeds the set threshold value, the determination unit 943 shifts to the process of step S15. In step S15, the determination unit 943 determines that the wire is damaged, and ends the process. On the other hand, when the determination unit 943 determines that the feature amount extracted by the statistical calculation does not exceed the set threshold value, that is, is equal to or less than the set threshold value, the determination unit 943 shifts to the process of step S16. In step S16, the determination unit 943 determines that there is no damage to the wire, and ends the process.
 なお、ステップS14の処理は、統計的演算によって求められる値が、例えば、最大値、中央値m(n)、平均値、標準偏差、実行値、クレストファクタを想定した処理である。よって、統計的演算によって求められる値が、例えば、最大値、中央値m(n)、平均値、標準偏差、実行値、クレストファクタ以外である場合、判定部943は、上記ステップS14の処理とは異なる比較処理を実行する。 The process of step S14 is a process assuming that the values obtained by the statistical calculation are, for example, the maximum value, the median value m (n), the average value, the standard deviation, the execution value, and the crest factor. Therefore, when the value obtained by the statistical calculation is other than, for example, the maximum value, the median value m (n), the average value, the standard deviation, the execution value, and the crest factor, the determination unit 943 performs the process of step S14. Performs a different comparison process.
 例えば、統計的演算によって求められる値として最小値を想定する場合、ステップS14において、判定部943は、統計的演算により抽出された特徴量が設定閾値未満か否かを判定する。このようにすれば、損傷周波数成分f_sを構成する値yk(n)と比べ、ノイズ周波数成分f_nを構成する値yk(n)が大きい場合にも、制御部9は、素線の損傷の有無の判定が可能となる。つまり、判定部943は、統計的演算によって求められる値に応じて、特徴量と、設定閾値との比較処理の大小関係を変更する。 For example, when assuming the minimum value as the value obtained by the statistical calculation, in step S14, the determination unit 943 determines whether or not the feature amount extracted by the statistical calculation is less than the set threshold value. In this way, even when the value yk (n) constituting the noise frequency component f_n is larger than the value yk (n) constituting the damage frequency component f_s, the control unit 9 may or may not damage the wire. Can be determined. That is, the determination unit 943 changes the magnitude relationship between the feature amount and the setting threshold value in the comparison process according to the value obtained by the statistical calculation.
 以上の説明から、ワイヤロープ探傷装置は、ワイヤロープ2Sの一部を通る磁束Fを発生する磁化器11と、磁束Fのうちワイヤロープ2Sから漏洩する漏洩磁束L_Fに応じた信号をセンサ信号x(t)として発生する磁気センサ13と、センサ信号x(t)を処理する制御部9と、を備えている。制御部9は、センサ信号x(t)の周波数成分を抽出するフィルタ部93と、周波数成分の分布に基づき、ワイヤロープ2Sに含まれている素線の損傷の有無を判定する処理部94と、を有している。 From the above description, the wire rope flaw detector uses a magnetometer 11 that generates a magnetic flux F that passes through a part of the wire rope 2S, and a sensor signal x that corresponds to the leakage magnetic flux L_F that leaks from the wire rope 2S among the magnetic flux F. It includes a magnetic sensor 13 generated as (t) and a control unit 9 for processing the sensor signal x (t). The control unit 9 includes a filter unit 93 that extracts the frequency component of the sensor signal x (t), and a processing unit 94 that determines whether or not the wire rope included in the wire rope 2S is damaged based on the distribution of the frequency component. ,have.
 よって、測定器91によって検出される磁束Fが損傷部B_Wの周辺から漏洩する漏洩磁束L_Fである場合には、センサ信号x(t)の周波数成分は、周波数軸方向に広がる周波数成分の分布となる。このため、制御部9は、ノイズ周波数成分f_nだけでなく損傷周波数成分f_sが重畳されたものであるかを識別できる。したがって、制御部9は、時間領域においては磁気センサ13に発生した誘起電圧が低いことでSN比が低かったとしても周波数領域においてはノイズ周波数成分f_nと損傷周波数成分f_sとの差が明確となってSN比を高くすることができる。 Therefore, when the magnetic flux F detected by the measuring instrument 91 is the leakage magnetic flux L_F leaking from the periphery of the damaged portion B_W, the frequency component of the sensor signal x (t) is the distribution of the frequency component spreading in the frequency axis direction. Become. Therefore, the control unit 9 can identify whether the damage frequency component f_s is superimposed as well as the noise frequency component f_n. Therefore, in the control unit 9, the difference between the noise frequency component f_n and the damaged frequency component f_s becomes clear in the frequency domain even if the SN ratio is low due to the low induced voltage generated in the magnetic sensor 13 in the time domain. The SN ratio can be increased.
 換言すれば、ワイヤロープ探傷装置は、周波数成分の分布に基づき、素線の損傷の有無を判定することにより、SN比をより確実に向上させることができる。 In other words, the wire rope flaw detector can more reliably improve the SN ratio by determining the presence or absence of wire damage based on the distribution of frequency components.
 また、フィルタ部93は、互いに異なる複数の帯域のそれぞれにおいて周波数成分を抽出する。よって、フィルタ部93は、周波数軸方向にさまざまな周波数成分を含む周波数成分の分布を生成することができる。損傷周波数成分f_sは、周波数領域ではノイズ周波数成分f_nよりも周波数軸方向に広範囲に存在する。したがって、フィルタ部93は、周波数軸方向にさまざまな周波数成分を含む周波数成分の分布を生成することにより、損傷周波数成分f_sをより確実に出現させることができる。これにより、処理部94は、周波数領域で素線の損傷の有無の判定処理を実行することができる。 Further, the filter unit 93 extracts frequency components in each of a plurality of bands different from each other. Therefore, the filter unit 93 can generate a distribution of frequency components including various frequency components in the frequency axis direction. The damaged frequency component f_s exists in a wider range in the frequency axis direction than the noise frequency component f_n in the frequency domain. Therefore, the filter unit 93 can more reliably make the damaged frequency component f_s appear by generating a distribution of frequency components including various frequency components in the frequency axis direction. As a result, the processing unit 94 can execute the determination processing for the presence or absence of damage to the strands in the frequency domain.
 また、処理部94は、複数の帯域にわたる周波数成分の分布を構成する複数の値y1(n)~yN(n)から統計的演算によって特徴量を抽出する演算部941と、特徴量に基づいて、素線の損傷の有無を判定する判定部943とを有している。よって、処理部94は、複数の値y1(n)~yN(n)の全てを比較対象とする必要がないため、計算量を削減できる。したがって、処理部94は、比較処理の計算コストを顕著に下げることができる。 Further, the processing unit 94 is based on a calculation unit 941 that extracts a feature amount by statistical calculation from a plurality of values y1 (n) to yN (n) constituting a distribution of frequency components over a plurality of bands, and a feature amount. It has a determination unit 943 for determining the presence or absence of damage to the wire. Therefore, the processing unit 94 does not need to compare all of the plurality of values y1 (n) to yN (n), so that the amount of calculation can be reduced. Therefore, the processing unit 94 can significantly reduce the calculation cost of the comparison processing.
 なお、上記で説明したように、演算部941は、ワイヤロープ2Sがプローブ1に対して等速で移動している間にフィルタ部93により抽出されたときの周波数成分の分布を構成する複数の値y1(n)~yN(n)から統計的演算により特徴量を抽出する。 As described above, the calculation unit 941 constitutes a plurality of distributions of frequency components when the wire rope 2S is extracted by the filter unit 93 while the wire rope 2S is moving at a constant velocity with respect to the probe 1. Features are extracted from the values y1 (n) to yN (n) by statistical calculation.
 よって、ワイヤロープ2Sの加速期間及び減速期間に検知された値yk(n)は特徴量の抽出に採用されず、ワイヤロープ2Sの等速移動期間に検知された値yk(n)が特徴量の抽出に採用される。このように特徴量を抽出する期間を限定する結果、制御部9は、ストランド21Sの外形により生じる誘起電圧の周期変動を明確にできる。 Therefore, the value yk (n) detected during the acceleration period and the deceleration period of the wire rope 2S is not used for extracting the feature amount, and the value yk (n) detected during the constant velocity movement period of the wire rope 2S is the feature amount. It is adopted for the extraction of. As a result of limiting the period for extracting the feature amount in this way, the control unit 9 can clarify the periodic fluctuation of the induced voltage caused by the outer shape of the strand 21S.
 このような理由により、制御部9は、周波数成分のうちノイズ周波数成分f_nと損傷周波数成分f_sとを明確に区別できる。したがって、制御部9は、ワイヤロープ2Sに含まれる素線の損傷の有無の判定精度を向上させることができる。 For this reason, the control unit 9 can clearly distinguish between the noise frequency component f_n and the damaged frequency component f_s among the frequency components. Therefore, the control unit 9 can improve the accuracy of determining whether or not the wire rope included in the wire rope 2S is damaged.
 また、判定部943は、特徴量と設定閾値とを比較することにより、素線の損傷の有無を判定する。よって、判定部943は、判定処理を行うデータ量を少なくすることができる。したがって、判定部943は、判定処理に要する計算時間を短縮させることができる。 Further, the determination unit 943 determines whether or not the wire is damaged by comparing the feature amount with the set threshold value. Therefore, the determination unit 943 can reduce the amount of data for performing the determination process. Therefore, the determination unit 943 can shorten the calculation time required for the determination process.
 また、フィルタ部93は、互いに異なる複数の帯域を個別の通過帯域とする複数のバンドパスフィルタを有している。よって、フィルタ部93は、互いに異なる複数の帯域の周波数成分を抽出できる。損傷周波数成分f_sは、周波数領域ではノイズ周波数成分f_nよりも周波数軸方向に広範囲に存在する。したがって、フィルタ部93は、周波数軸方向にさまざまな周波数成分を含む周波数成分の分布を生成することにより、損傷周波数成分f_sを確実に出現させることができる。これにより、制御部9は、磁気センサ13で生じた誘起電圧をセンサ信号x(t)として周波数領域で分析することができる。 Further, the filter unit 93 has a plurality of bandpass filters in which a plurality of bands different from each other are set as individual pass bands. Therefore, the filter unit 93 can extract frequency components of a plurality of bands different from each other. The damaged frequency component f_s exists in a wider range in the frequency axis direction than the noise frequency component f_n in the frequency domain. Therefore, the filter unit 93 can surely make the damaged frequency component f_s appear by generating the distribution of the frequency component including various frequency components in the frequency axis direction. As a result, the control unit 9 can analyze the induced voltage generated by the magnetic sensor 13 as the sensor signal x (t) in the frequency domain.
 実施の形態2.
 実施の形態2において、実施の形態1と同一又は同等の構成及び機能については、その説明を省略する。実施の形態2は、実施の形態1のバンドパスフィルタがウェーブレット変換で実現される点が実施の形態1と異なる。他の構成は、実施の形態1と同様である。つまり、その他の構成は実施の形態1と同一又は同等の構成であり、これらの部分には同一符号を付している。
Embodiment 2.
In the second embodiment, the description of the same or equivalent configuration and function as the first embodiment will be omitted. The second embodiment is different from the first embodiment in that the bandpass filter of the first embodiment is realized by the wavelet transform. Other configurations are the same as those in the first embodiment. That is, the other configurations are the same as or equivalent to those of the first embodiment, and these parts are designated by the same reference numerals.
 図12は、この発明の実施の形態2によるワイヤロープ2Sから漏洩する漏洩磁束L_Fに応じた信号を処理する制御部9の機能構成例を示すブロック図である。図12に示すように、フィルタ部193は、バンドパスフィルタとして、センサ信号x(t)にウェーブレット変換を実行することによりセンサ信号x(t)の周波数成分の分布を生成するウェーブレット変換部1931を備えている。 FIG. 12 is a block diagram showing a functional configuration example of the control unit 9 that processes a signal corresponding to the leakage magnetic flux L_F leaking from the wire rope 2S according to the second embodiment of the present invention. As shown in FIG. 12, the filter unit 193 uses a wavelet transform unit 1931 as a bandpass filter to generate a distribution of frequency components of the sensor signal x (t) by performing a wavelet transform on the sensor signal x (t). I have.
 図13は、図12のフィルタ部193の周波数特性の一例を示す図である。バンドパスフィルタは、ウェーブレット変換部1931で処理されるウェーブレット変換の基底関数により実現されるものである。図13に示すように、複数の帯域のそれぞれの帯域幅bkは、帯域の中心周波数ωckが低くなるほど狭くなっている。 FIG. 13 is a diagram showing an example of the frequency characteristics of the filter unit 193 of FIG. The bandpass filter is realized by the basis function of the wavelet transform processed by the wavelet transform unit 1931. As shown in FIG. 13, each of the bandwidth b k of the plurality of bands, the center frequency omega ck bandwidth becomes narrower lower.
 次に、ウェーブレット変換の基底関数の一例として、Morlet Waveletについて説明する。図14は、図12のウェーブレット変換部1931によるマザーウェーブレットの時間領域の波形例を示す図である。マザーウェーブレットは次の式(1)に表される。 Next, Mollet Wavelet will be described as an example of the basis function of the wavelet transform. FIG. 14 is a diagram showing an example of a waveform in the time domain of the mother wavelet by the wavelet transform unit 1931 of FIG. The mother wavelet is expressed by the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ドーターウェーブレットは次の式(2)に表される。ドーターウェーブレットのスケールは、次の式(3)に表される。式(2)に表されるドーターウェーブレットは、式(3)に表されるスケールに応じて、図14に示す波形の振幅を拡大又は縮小することができる。また、式(2)に表されるドーターウェーブレットは、式(3)に表されるスケールに応じて、図14に示す波形を時間軸方向に平行移動することができる。ここで、s0はスケールの定数である。skは、kを引数とし、且つs0が乗算されるスケールの関数である。 The daughter wavelet is expressed by the following equation (2). The scale of the daughter wavelet is expressed by the following equation (3). The daughter wavelet represented by the formula (2) can increase or decrease the amplitude of the waveform shown in FIG. 14 according to the scale represented by the formula (3). Further, the daughter wavelet represented by the equation (2) can translate the waveform shown in FIG. 14 in the time axis direction according to the scale represented by the equation (3). Here, s 0 is a constant of scale. sk is a scale function that takes k as an argument and is multiplied by s 0.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 次に、マザーウェーブレット及びドーターウェーブレットをフーリエ変換したものについて説明する。まず、マザーウェーブレットをフーリエ変換した式は次の式(4)に表される。一方、ドーターウェーブレットをフーリエ変換したものは式(5)に表される。 Next, the Fourier transform of the mother wavelet and the daughter wavelet will be described. First, the Fourier transform equation of the mother wavelet is expressed by the following equation (4). On the other hand, the Fourier transform of the daughter wavelet is expressed in Eq. (5).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 図15は、図12のウェーブレット変換部1931によるマザーウェーブレットの周波数領域の波形例を示す図である。図15に示すように、Morlet Waveletの周波数特性は、入力信号x(n)の周波数成分のうち、帯域幅bkと帯域幅bkの中心周波数ω0とで特定される通過帯域の周波数を通過させるバンドパスフィルタとなる。図15の中心周波数ωckは、次の式(6)に表される。式(6)に表されるように、中心周波数ωckは、ω0/s0を2のm乗根の累乗で除した値で表現される。ここで、上記で説明したように、mは自然数である。 FIG. 15 is a diagram showing an example of waveforms in the frequency domain of the mother wavelet by the wavelet transform unit 1931 of FIG. As shown in FIG. 15, the frequency characteristic of Morlet Wavelet, among the frequency components of the input signal x (n), the frequency of the pass band specified by the center frequency omega 0 of bandwidth b k and bandwidth b k It becomes a bandpass filter to pass. The center frequency ω ck in FIG. 15 is expressed by the following equation (6). As expressed in equation (6), the center frequency ω ck is expressed by the value obtained by dividing ω 0 / s 0 by the power of the root of 2 to the power of m. Here, as explained above, m is a natural number.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 また、図15の帯域幅bkは、次の式(7)に表される。 Also, the bandwidth b k in FIG. 15 is expressed by the following equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 ここで、m=1の場合の式(6)及び式(7)について説明する。まず、次の式(8)は、式(6)において、m=1のときの式である。式(8)の記載から、中心周波数ωckは、ω0/s0を2で除した値で表現される。 Here, the equations (6) and (7) when m = 1 will be described. First, the following equation (8) is an equation when m = 1 in the equation (6). From the description of equation (8), the center frequency ω ck is expressed by the value obtained by dividing ω 0 / s 0 by 2.
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 一方、次の式(9)は、式(7)において、m=1のときの式である。式(9)の記載から、帯域幅bkは、2の自然対数の平方根を2倍してs0で除した値を2で除した値で表現される。 On the other hand, the following equation (9) is the equation when m = 1 in the equation (7). From the description of equation (9), the bandwidth bc is expressed by the value obtained by doubling the square root of the natural logarithm of 2 and dividing by s 0 by dividing by 2.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 よって、互いに隣接する2つの帯域のうち、一方の帯域の帯域幅bkと、一方の帯域よりも中心周波数ωckの低い他方の帯域の帯域幅bk+1との関係は、Δk=1/m=1/1=1であるので、bk+1=2-Δk・bk=bk+1=2-1・bkの関係を満たしている。したがって、m=1の場合、一方の帯域の帯域幅bkと、他方の帯域の帯域幅bk+1との関係は、1オクターブとなる。 Therefore, the relationship between the bandwidth b k of one of the two adjacent bands and the bandwidth b k + 1 of the other band having a lower center frequency ω ck than that of one band is Δk = 1. Since / m = 1/1 = 1 , the relationship of b k + 1 = 2-Δk · b k = b k + 1 = 2 -1 · b k is satisfied. Thus, for m = 1, the relationship between the bandwidth b k, the bandwidth b k + 1 of the other band of one band is 1 octave.
 具体的には、式(8)において、k=0のとき、中心周波数ωckは、周波数ω0/s0となる。また、式(9)において、k=0のとき、帯域幅bkは、次の式(10)に表される。よって、式(8)及び式(9)から、kが1増す毎に、中心周波数ωck及び帯域幅bkは、1/2になる。 Specifically, in the equation (8), when k = 0, the center frequency ω ck becomes the frequency ω 0 / s 0 . Further, in the equation (9), when k = 0, the bandwidth bc is expressed by the following equation (10). Therefore, from equations (8) and (9), for each k increases 1, the center frequency omega ck and bandwidth b k becomes 1/2.
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 また、mが1以外の自然数となるとき、互いに隣接する2つの帯域のうち、一方の帯域の帯域幅bkと、一方の帯域よりも中心周波数ωckの低い他方の帯域の帯域幅bk+1との関係は、Δk=1/mであるので、bk+1=2-Δk・bk=bk+1=2-1/m・bkの関係を満たしている。よって、mが1以外の場合、一方の帯域の帯域幅bkと、他方の帯域の帯域幅bk+1との関係は、1/mオクターブとなる。次にm=3の場合のときの中心周波数ωckについて説明する。 Further, when the m is a natural number other than 1, of the two bands which are adjacent to each other, and bandwidth b k of the one band, the band width b k of the lower other band center frequencies omega ck than one band Since the relationship with +1 is Δk = 1 / m, the relationship of b k + 1 = 2- Δk · b k = b k + 1 = 2-1 / m · b k is satisfied. Thus, if m is not 1, the relationship between the bandwidth b k, the bandwidth b k + 1 of the other band of one band becomes 1 / m octave. Next, the center frequency ω ck when m = 3 will be described.
 図16は、図12のフィルタ部193の周波数特性の他の一例として1/3オクターブのときの中心周波数ωckの概念図である。図16に示すように、中心周波数ωckは、ω0/s0を2の3乗根の累乗で除した値で表現することができる。 FIG. 16 is a conceptual diagram of the center frequency ω ck at the time of 1/3 octave as another example of the frequency characteristics of the filter unit 193 of FIG. As shown in FIG. 16, the center frequency ω ck can be expressed by a value obtained by dividing ω 0 / s 0 by the power of the cube root of 2.
 上記の説明から、互いに隣接する2つの帯域の中心周波数ωckと中心周波数ωck+1とは、次の式(11)に表される。式(11)は、式(8)に基づき、互いに隣接する2つの帯域の中心周波数ωckと中心周波数ωck+1との大きさの違いを表したものである。式(11)から、kが1増す毎に、中心周波数ωckは、2-1/mになる。 From the above description, the center frequency ω ck and the center frequency ω ck + 1 of the two bands adjacent to each other are expressed by the following equation (11). Equation (11) expresses the difference in magnitude between the center frequency ω ck and the center frequency ω ck + 1 of two bands adjacent to each other based on the equation (8). From equation (11), the center frequency ω ck becomes 2-1 / m each time k is incremented by 1.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 また、互いに隣接する2つの帯域のそれぞれにおける帯域幅bkと帯域幅bk+1とは、次の式(12)に表される。式(12)は、式(9)に基づき、互いに隣接する2つの帯域の帯域幅bkと帯域幅bk+1との大きさの違いを表したものである。式(12)から、kが1増す毎に、帯域幅bkは、2-1/mになる。 Further, the bandwidth b k and the bandwidth b k + 1 in each of the two adjacent bands are expressed by the following equation (12). Equation (12) expresses the difference in magnitude between the bandwidth b k and the bandwidth b k + 1 of two adjacent bands based on the equation (9). From equation (12), for each k increases 1, the bandwidth b k will 2 -1 / m.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 図17は、図12のフィルタ部193が漏洩磁束L_Fに応じた信号から抽出した周波数成分の分布の一例を示す図である。図17の一例は、互いに隣接する2つの帯域の帯域幅bk及び中心周波数ωck以外は、図8の一例と同様である。よって、図17の説明については省略する。 FIG. 17 is a diagram showing an example of the distribution of the frequency component extracted from the signal corresponding to the leakage magnetic flux L_F by the filter unit 193 of FIG. An example of FIG. 17, except bandwidth b k and the center frequency omega ck two bands adjacent to each other, is similar to an example of FIG. 8. Therefore, the description of FIG. 17 will be omitted.
 図18は、図17の時刻t1のときにフィルタ部193によって生成された数列yk(n)の一例を示す図である。図18の一例では、数列yk(n)を構成する複数の値y1(n)~yN(n)のうち、k=1~3,5及び7のときの値y1(n)~y3(n)、y5(n)及びy7(n)がゼロであり、k=4及び6のときの値y4(n)及びy6(n)がゼロよりも大きな値となる。よって、数列yk(n)を構成する複数の値y1(n)~yN(n)を昇順に並べたときに中央に位置する値はゼロとなる。 FIG. 18 is a diagram showing an example of the sequence yk (n) generated by the filter unit 193 at the time t1 of FIG. In an example of FIG. 18, among a plurality of values y1 (n) to yN (n) constituting the sequence yk (n), the values y1 (n) to y3 (n) when k = 1 to 3, 5 and 7 ), Y5 (n) and y7 (n) are zero, and the values y4 (n) and y6 (n) when k = 4 and 6 are larger than zero. Therefore, when a plurality of values y1 (n) to yN (n) constituting the sequence yk (n) are arranged in ascending order, the value located at the center becomes zero.
 図19は、図17の時刻t2のときにフィルタ部193によって生成された数列yk(n)の一例を示す図である。図19の一例では、数列yk(n)を構成する複数の値y1(n)~yN(n)を昇順に並べたときに中央に位置する値は、k=5のときの値となる。よって、中央値m(n)は、k=5のときの値が採用される。ここで、時刻t2のときには、図17に示すように、入力信号x(n)の周波数成分の分布には、損傷周波数成分f_sが含まれている。そこで、判定部943は、k=5のときの値y5(n)を周波数成分の分布に損傷周波数成分f_sが含まれているか否かを判定する設定閾値に設定する。 FIG. 19 is a diagram showing an example of the sequence yk (n) generated by the filter unit 193 at the time t2 of FIG. In one example of FIG. 19, when a plurality of values y1 (n) to yN (n) constituting the sequence yk (n) are arranged in ascending order, the value located at the center is the value when k = 5. Therefore, as the median value m (n), the value when k = 5 is adopted. Here, at time t2, as shown in FIG. 17, the distribution of the frequency component of the input signal x (n) includes the damaged frequency component f_s. Therefore, the determination unit 943 sets the value y5 (n) when k = 5 as a setting threshold value for determining whether or not the damaged frequency component f_s is included in the frequency component distribution.
 図20は、図12の制御部9による処理を説明するフローチャートである。ステップS31及びS34~S36の処理は、実施の形態1の図11に示したステップS11及びS14~S16の処理と同様であるので、それらの説明については省略する。ステップS32において、フィルタ部193は、ウェーブレット変換部1931で周波数成分を抽出する。ステップS33において、演算部941は、ウェーブレット変換部1931で抽出された周波数成分から構成される数列yk(n)に対して統計的演算を行う。 FIG. 20 is a flowchart illustrating processing by the control unit 9 of FIG. Since the processes of steps S31 and S34 to S36 are the same as the processes of steps S11 and S14 to S16 shown in FIG. 11 of the first embodiment, their description will be omitted. In step S32, the filter unit 193 extracts the frequency component by the wavelet transform unit 1931. In step S33, the calculation unit 941 performs a statistical calculation on the sequence yk (n) composed of the frequency components extracted by the wavelet transform unit 1931.
 以上の説明から、このワイヤロープ探傷装置において、複数の帯域のそれぞれの帯域幅bkは、帯域の中心周波数ωckが低くなるほど狭くなっている。よって、帯域の中心周波数ωckが低いほど、周波数分解能が高く且つ時間分解能が低くなる。帯域の中心周波数ωckが高いほど、周波数分解能が低く且つ時間分解能が高くなる。したがって、突発的な変動が時間軸においてどこで起こったかがより正確に検知でき、ゆっくりした変動の周波数をより正確に決定できるため、効率的な分析が可能となる。 From the above description, in the wire rope flaw detector, each of the bandwidth b k of the plurality of bands, the center frequency omega ck bandwidth becomes narrower lower. Therefore, the lower the center frequency ω ck of the band, the higher the frequency resolution and the lower the time resolution. The higher the center frequency ω ck of the band, the lower the frequency resolution and the higher the time resolution. Therefore, it is possible to more accurately detect where the sudden fluctuation occurred on the time axis, and to determine the frequency of the slow fluctuation more accurately, which enables efficient analysis.
 また、互いに隣接する2つの帯域のうち、一方の帯域の帯域幅bkと、一方の帯域よりも中心周波数の低い他方の帯域の帯域幅bk+1との関係は、Δk=1/mとすると、bk+1=2-Δk・bkの関係を満たしている。よって、帯域を2のm乗根で変えることができる。したがって、高周波領域において時間分解能が特に改善し、低周波領域において空間分解能が特に改善する。 Further, the relationship between the bandwidth b k of one of the two adjacent bands and the bandwidth b k + 1 of the other band having a lower center frequency than one band is Δk = 1 / m. Then , the relationship of b k + 1 = 2-Δk · b k is satisfied. Therefore, the band can be changed by the root of 2 m. Therefore, the time resolution is particularly improved in the high frequency region, and the spatial resolution is particularly improved in the low frequency region.
 また、フィルタ部193は、センサ信号x(t)にウェーブレット変換を実行することによりセンサ信号x(t)から周波数成分を抽出する。ウェーブレットは局所的な関数であるため、ウェーブレットと、局所的に発生する素線の損傷部B_Wの検出との相関性が高い。よって、周波数成分のうち損傷周波数成分f_sを強調させることができる。したがって、素線の損傷時に生じる誘起電圧の周波数成分を強調させることができるので、SN比を特に向上させることができる。 Further, the filter unit 193 extracts a frequency component from the sensor signal x (t) by executing a wavelet transform on the sensor signal x (t). Since the wavelet is a local function, there is a high correlation between the wavelet and the detection of the locally generated wire damage portion B_W. Therefore, the damaged frequency component f_s among the frequency components can be emphasized. Therefore, since the frequency component of the induced voltage generated when the wire is damaged can be emphasized, the SN ratio can be particularly improved.
 また、各実施の形態について、ワイヤロープ探傷装置の各部の機能は、処理回路により実現される。すなわち、ワイヤロープ探傷装置は、合成器92、フィルタ部93、フィルタ部193、演算部941及び判定部943を実行するための処理回路を備えている。処理回路は、専用のハードウェアであっても、メモリに格納されるプログラムを実行するCPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、DSPともいう)であってもよい。 Further, for each embodiment, the functions of each part of the wire rope flaw detector are realized by the processing circuit. That is, the wire rope flaw detector includes a processing circuit for executing the synthesizer 92, the filter unit 93, the filter unit 193, the calculation unit 941 and the determination unit 943. Even if the processing circuit is dedicated hardware, it is also called a CPU (Central Processing Unit, central processing unit, processing unit, arithmetic unit, microprocessor, microprocessor, processor, DSP) that executes a program stored in the memory. It may be.
 図21は、ハードウェア構成例を説明する図である。図21においては、処理回路201がバス202に接続されている。処理回路201が専用のハードウェアである場合、処理回路201は、例えば、単一回路、複合回路、プログラム化したプロセッサ、ASIC、FPGA、又はこれらを組み合わせたものが該当する。ワイヤロープ探傷装置の各部の機能それぞれを処理回路201で実現してもよいし、各部の機能をまとめて処理回路201で実現してもよい。 FIG. 21 is a diagram illustrating a hardware configuration example. In FIG. 21, the processing circuit 201 is connected to the bus 202. When the processing circuit 201 is dedicated hardware, the processing circuit 201 corresponds to, for example, a single circuit, a composite circuit, a programmed processor, an ASIC, an FPGA, or a combination thereof. The functions of each part of the wire rope flaw detector may be realized by the processing circuit 201, or the functions of each part may be collectively realized by the processing circuit 201.
 図22は、他のハードウェア構成例を説明する図である。図22においては、プロセッサ203及びメモリ204がバス202に接続されている。処理回路がCPUの場合、ワイヤロープ探傷装置の各部の機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア又はファームウェアはプログラムとして記述され、メモリ204に格納される。処理回路は、メモリ204に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。すなわち、ワイヤロープ探傷装置は、処理回路により実行されるときに、合成器92、フィルタ部93、フィルタ部193、演算部941及び判定部943を制御するステップが結果的に実行されることになるプログラムを格納するためのメモリ204を備えている。また、これらのプログラムは、合成器92、フィルタ部93、フィルタ部193、演算部941及び判定部943を実行する手順や方法をコンピュータに実行させるものであるといえる。ここで、メモリ204とは、例えば、RAM、ROM、フラッシュメモリ、EPROM、EEPROM等の、不揮発性又は揮発性の半導体メモリや、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD等が該当する。 FIG. 22 is a diagram illustrating another hardware configuration example. In FIG. 22, the processor 203 and the memory 204 are connected to the bus 202. When the processing circuit is a CPU, the functions of each part of the wire rope flaw detector are realized by software, firmware, or a combination of software and firmware. The software or firmware is written as a program and stored in memory 204. The processing circuit realizes the functions of each part by reading and executing the program stored in the memory 204. That is, when the wire rope flaw detector is executed by the processing circuit, the steps of controlling the synthesizer 92, the filter unit 93, the filter unit 193, the calculation unit 941 and the determination unit 943 are eventually executed. It has a memory 204 for storing a program. Further, it can be said that these programs cause the computer to execute the procedure and method for executing the synthesizer 92, the filter unit 93, the filter unit 193, the calculation unit 941 and the determination unit 943. Here, the memory 204 includes, for example, non-volatile or volatile semiconductor memories such as RAM, ROM, flash memory, EPROM, EEPROM, magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs, and the like. Applicable.
 なお、ワイヤロープ探傷装置の各部の機能について、一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。例えば、フィルタ部93及びフィルタ部193については専用のハードウェアとしての処理回路でその機能を実現し、演算部941及び判定部943については処理回路がメモリ204に格納されたプログラムを読み出して実行することによってその機能を実現することが可能である。 Note that some of the functions of each part of the wire rope flaw detector may be realized by dedicated hardware, and some may be realized by software or firmware. For example, the filter unit 93 and the filter unit 193 realize their functions with a processing circuit as dedicated hardware, and the processing circuit reads and executes a program stored in the memory 204 for the calculation unit 941 and the determination unit 943. By doing so, it is possible to realize the function.
 このように、処理回路は、ハードウェア、ソフトウェア、ファームウェア、又はこれらの組み合わせによって、上述の各機能を実現することができる。次に、上述の各機能を実現させる一例について具体的に説明する。 In this way, the processing circuit can realize each of the above-mentioned functions by hardware, software, firmware, or a combination thereof. Next, an example of realizing each of the above-mentioned functions will be specifically described.
 図23は、図21又は図22の具体例として図6及び図12の少なくとも一方の制御部9を端末装置501に組み込んで使用するシステム構成例を示す図である。ワイヤロープ探傷装置は、図23に示すように、ワイヤロープ2Sの損傷をプローブ1が検出するものである。ワイヤロープ2Sは、例えば、エレベータのかごを吊り下げるものである。なお、ワイヤロープ2Sは、クレーンに使用されるものであってもよい。 FIG. 23 is a diagram showing a system configuration example in which at least one of the control units 9 of FIGS. 6 and 12 is incorporated into the terminal device 501 and used as a specific example of FIG. 21 or FIG. In the wire rope flaw detector, as shown in FIG. 23, the probe 1 detects damage to the wire rope 2S. The wire rope 2S, for example, suspends an elevator car. The wire rope 2S may be used for a crane.
 ワイヤロープ2Sは、プローブ1に対して例えば特定方向W_Dに沿って移動しているときに素線の損傷を検出する。プローブ1は、ケーブルを介して、例えば、アナログ信号であるセンサ信号x(t)をAD変換器301に供給する。AD変換器301は、アナログ信号をデジタル信号に変換する。AD変換器301により変換されたデジタル信号は、端末装置501に入力される。端末装置501としては、例えば、パソコンが用いられる。端末装置501は、AD変換器301から入力されたデジタル信号に各種信号処理を施すことにより、素線の損傷の有無を判定する。また、端末装置501は、素線の損傷の有無の判定結果を表示する。 The wire rope 2S detects damage to the wire while moving with respect to the probe 1 along, for example, the specific direction W_D. The probe 1 supplies, for example, a sensor signal x (t), which is an analog signal, to the AD converter 301 via a cable. The AD converter 301 converts an analog signal into a digital signal. The digital signal converted by the AD converter 301 is input to the terminal device 501. As the terminal device 501, for example, a personal computer is used. The terminal device 501 determines whether or not the wire is damaged by performing various signal processing on the digital signal input from the AD converter 301. In addition, the terminal device 501 displays the determination result of the presence or absence of damage to the wire.
 図24は、図21又は図22の具体例として図6及び図12の少なくとも一方の制御部9を判定器401に組み込むことにより、判定器401の処理内容をデータロガー601に供給するシステム構成例を示す図である。プローブ1は、ケーブルを介して、例えば、アナログ信号から構成されたセンサ信号x(t)を判定器401に供給する。判定器401は、マイコンが搭載されている。判定器401は、専用ハードウェアである。判定器401は、アナログ信号をデジタル信号に変換する。判定器401は、変換したデジタル信号に各種信号処理を施すことにより、素線の損傷の有無を判定する。また、判定器401は、素線の損傷の有無の判定結果を報知する。 FIG. 24 shows a system configuration example in which the processing content of the determination device 401 is supplied to the data logger 601 by incorporating at least one of the control units 9 of FIGS. 6 and 12 into the determination device 401 as a specific example of FIG. 21 or FIG. It is a figure which shows. The probe 1 supplies, for example, a sensor signal x (t) composed of an analog signal to the determination device 401 via a cable. The determination device 401 is equipped with a microcomputer. The determination device 401 is dedicated hardware. The determination device 401 converts an analog signal into a digital signal. The determination device 401 determines whether or not the wire is damaged by performing various signal processing on the converted digital signal. In addition, the determination device 401 notifies the determination result of the presence or absence of damage to the wire.
 なお、判定器401は、内部で処理した各種信号をアナログ信号又はデジタル信号として外部装置に供給可能である。外部装置としては、例えば、データロガー601が用いられる。データロガー601は、判定器401からアナログ信号又はデジタル信号が入力されることで、波形の表示が可能である。また、データロガー601は、判定器401の処理内容を記録可能である。 Note that the determination device 401 can supply various internally processed signals to an external device as analog signals or digital signals. As the external device, for example, a data logger 601 is used. The data logger 601 can display a waveform by inputting an analog signal or a digital signal from the determination device 401. Further, the data logger 601 can record the processing contents of the determination device 401.
 図25は、図21又は図22の具体例として図6及び図12の少なくとも一方の制御部9を判定器401に組み込むことにより、判定器401の処理内容をエレベータ制御盤701に供給するシステム構成例を示す図である。エレベータ制御盤701は、判定器401からデジタル信号が入力されることで、どの物件のどのワイヤロープ2が断線しているか等の監視情報を中央監視センターへ伝達可能である。 FIG. 25 shows a system configuration in which the processing content of the determination device 401 is supplied to the elevator control panel 701 by incorporating at least one of the control units 9 of FIGS. 6 and 12 into the determination device 401 as a specific example of FIG. 21 or FIG. It is a figure which shows an example. By inputting a digital signal from the determination device 401, the elevator control panel 701 can transmit monitoring information such as which wire rope 2 of which property is broken to the central monitoring center.
 以上、ワイヤロープ探傷装置を実施の形態1及び2に基づいて説明したが、これに限定されるものではない。 The wire rope flaw detector has been described above based on the first and second embodiments, but the present invention is not limited to this.
 実施の形態1及び2においては、ワイヤロープ2Sの移動速度ν及びワイヤロープ2Sの径とは関係なく周波数の帯域における上限の周波数と下限の周波数とを一定の範囲に固定させた一例について説明したが、特にこれに限定されるものではない。例えば、ワイヤロープ2Sの移動速度ν及びワイヤロープ2Sの径の少なくとも一方に基づき、周波数の帯域における上限の周波数と下限の周波数とを決めてもよい。 In the first and second embodiments, an example in which the upper limit frequency and the lower limit frequency in the frequency band are fixed within a certain range regardless of the moving speed ν of the wire rope 2S and the diameter of the wire rope 2S has been described. However, it is not particularly limited to this. For example, the upper limit frequency and the lower limit frequency in the frequency band may be determined based on at least one of the moving speed ν of the wire rope 2S and the diameter of the wire rope 2S.
 具体的には、ワイヤロープ2Sの移動速度νが速くなるほど、より高い周波数成分が判定に寄与する周波数成分となる。よって、ワイヤロープ2Sの移動速度νが速くなるほど、周波数の帯域における上限の周波数と下限の周波数とを予め設定されたデフォルトの範囲よりも高い方にシフトすることで、より適した周波数の帯域の周波数成分を判定に用いることができる。一方、ワイヤロープ2Sの径が細くなるほど、より高い周波数成分が判定に寄与する周波数成分となる。よって、ワイヤロープ2Sの径が細くなるほど、周波数の帯域における上限の周波数と下限の周波数とを予め設定されたデフォルトの範囲よりも高い方にシフトすることで、より適した周波数の帯域の周波数成分を判定に用いることができる。 Specifically, the faster the moving speed ν of the wire rope 2S, the higher the frequency component becomes the frequency component that contributes to the determination. Therefore, as the moving speed ν of the wire rope 2S becomes faster, the upper limit frequency and the lower limit frequency in the frequency band are shifted to higher than the preset default range, so that the frequency band is more suitable. The frequency component can be used for the determination. On the other hand, as the diameter of the wire rope 2S becomes smaller, a higher frequency component becomes a frequency component that contributes to the determination. Therefore, as the diameter of the wire rope 2S becomes smaller, the upper limit frequency and the lower limit frequency in the frequency band are shifted to higher than the preset default range, so that the frequency component of the more suitable frequency band is obtained. Can be used for determination.
 また、ワイヤロープ2Sの移動速度νが遅くなるほど、より低い周波数成分が判定に寄与する周波数成分となる。よって、ワイヤロープ2の移動速度νが遅くなるほど、周波数の帯域における上限の周波数と下限の周波数とを予め設定されたデフォルトの範囲よりも低い方にシフトすることで、より適した周波数の帯域の周波数成分を判定に用いることができる。一方、ワイヤロープ2Sの径が太くなるほど、より低い周波数成分が判定に寄与する周波数成分となる。よって、ワイヤロープ2Sの径が太くなるほど、周波数の帯域における上限の周波数と下限の周波数とを予め設定されたデフォルトの範囲よりも低い方にシフトすることで、より適した周波数の帯域の周波数成分を判定に用いることができる。 Further, as the moving speed ν of the wire rope 2S becomes slower, the lower frequency component becomes the frequency component that contributes to the determination. Therefore, as the moving speed ν of the wire rope 2 becomes slower, the upper limit frequency and the lower limit frequency in the frequency band are shifted to be lower than the preset default range, so that the frequency band is more suitable. The frequency component can be used for the determination. On the other hand, as the diameter of the wire rope 2S becomes larger, the lower frequency component becomes the frequency component that contributes to the determination. Therefore, as the diameter of the wire rope 2S becomes larger, the upper limit frequency and the lower limit frequency in the frequency band are shifted to lower than the preset default range, so that the frequency component of the more suitable frequency band is obtained. Can be used for determination.
 2,2S ワイヤロープ、11 磁化器、13 磁気センサ、9 制御部、93,193 フィルタ部、94 処理部、941 演算部、943 判定部。 2,2S wire rope, 11 magnetometer, 13 magnetic sensor, 9 control unit, 93,193 filter unit, 94 processing unit, 941 calculation unit, 943 judgment unit.

Claims (8)

  1.  ワイヤロープの一部を通る磁束を発生する磁化器と、
     前記磁束のうち前記ワイヤロープから漏洩する漏洩磁束に応じた信号をセンサ信号として発生する磁気センサと、
     前記センサ信号を処理する制御部と、
    を備え、
     前記制御部は、
     前記センサ信号の周波数成分を抽出するフィルタ部と、
     前記周波数成分の分布に基づき、前記ワイヤロープに含まれている素線の損傷の有無を判定する処理部と、
    を有しているワイヤロープ探傷装置。
    A magnetizer that generates magnetic flux that passes through a part of the wire rope,
    A magnetic sensor that generates a signal corresponding to the leakage magnetic flux leaking from the wire rope as a sensor signal among the magnetic fluxes,
    A control unit that processes the sensor signal and
    With
    The control unit
    A filter unit that extracts the frequency component of the sensor signal and
    Based on the distribution of the frequency component, a processing unit that determines whether or not the wire rope contained in the wire rope is damaged, and a processing unit.
    Has a wire rope flaw detector.
  2.  前記フィルタ部は、互いに異なる複数の帯域のそれぞれにおいて前記周波数成分を抽出する請求項1に記載のワイヤロープ探傷装置。 The wire rope flaw detector according to claim 1, wherein the filter unit extracts the frequency component in each of a plurality of bands different from each other.
  3.  前記処理部は、
     前記複数の帯域にわたる前記周波数成分の分布を構成する複数の値から統計的演算によって特徴量を抽出する演算部と、
     前記特徴量に基づいて、前記素線の損傷の有無を判定する判定部と、
    を有している請求項2に記載のワイヤロープ探傷装置。
    The processing unit
    A calculation unit that extracts features by statistical calculation from a plurality of values constituting the distribution of the frequency components over the plurality of bands.
    A determination unit for determining the presence or absence of damage to the wire based on the feature amount,
    The wire rope flaw detector according to claim 2.
  4.  前記判定部は、前記特徴量と設定閾値とを比較することにより、前記素線の損傷の有無を判定する請求項3に記載のワイヤロープ探傷装置。 The wire rope flaw detector according to claim 3, wherein the determination unit determines whether or not the wire is damaged by comparing the feature amount with the set threshold value.
  5.  前記フィルタ部は、前記複数の帯域を個別の通過帯域とする複数のバンドパスフィルタを有している請求項2から請求項4のいずれか一項に記載のワイヤロープ探傷装置。 The wire rope flaw detector according to any one of claims 2 to 4, wherein the filter unit has a plurality of bandpass filters having the plurality of bands as individual pass bands.
  6.  前記複数の帯域のそれぞれの帯域幅は、前記帯域の中心周波数が低くなるほど狭くなっている請求項2から請求項5のいずれか一項に記載のワイヤロープ探傷装置。 The wire rope flaw detector according to any one of claims 2 to 5, wherein the bandwidth of each of the plurality of bands becomes narrower as the center frequency of the band becomes lower.
  7.  互いに隣接する2つの前記帯域のうち、一方の帯域の帯域幅bkと、前記一方の帯域よりも中心周波数の低い他方の帯域の帯域幅bk+1との関係は、mが自然数で、Δk=1/mとすると、
     bk+1=2-Δk・bkの関係を満たしている請求項6に記載のワイヤロープ探傷装置。
    Of the adjacent two of the bands, and bandwidth b k of the one band, the relationship between the bandwidth b k + 1 of the other band lower center frequency than the band of the one is, m is a natural number, If Δk = 1 / m,
    The wire rope flaw detector according to claim 6, which satisfies the relationship of b k + 1 = 2-Δk · b k.
  8.  前記フィルタ部は、
     前記センサ信号にウェーブレット変換を実行することにより前記センサ信号から前記周波数成分を抽出する請求項6又は7に記載のワイヤロープ探傷装置。
    The filter unit
    The wire rope flaw detector according to claim 6 or 7, wherein the frequency component is extracted from the sensor signal by performing a wavelet transform on the sensor signal.
PCT/JP2020/038888 2019-11-01 2020-10-15 Wire rope flaw detection device WO2021085156A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080074075.8A CN114616464A (en) 2019-11-01 2020-10-15 Cable flaw detection device
JP2021554342A JP7241907B2 (en) 2019-11-01 2020-10-15 Wire rope flaw detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019199679 2019-11-01
JP2019-199679 2019-11-01

Publications (1)

Publication Number Publication Date
WO2021085156A1 true WO2021085156A1 (en) 2021-05-06

Family

ID=75715923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/038888 WO2021085156A1 (en) 2019-11-01 2020-10-15 Wire rope flaw detection device

Country Status (3)

Country Link
JP (1) JP7241907B2 (en)
CN (1) CN114616464A (en)
WO (1) WO2021085156A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164183A (en) * 1978-06-16 1979-12-27 Hitachi Ltd Magnetic flaw detector of rore
WO2013023818A1 (en) * 2011-08-18 2013-02-21 Nv Bekaert Sa Magnetic flux leakage error detection in cords
JP2014130127A (en) * 2012-11-28 2014-07-10 Jfe Steel Corp Magnetic flux leakage inspection device and inspection method
JP2017511476A (en) * 2014-04-02 2017-04-20 ハー・マジェスティ・ザ・クイーン・イン・ライト・オブ・カナダ・アズ・リプリゼンテッド・バイ・ザ・ミニスター・オブ・ナチュラル・リソーシーズ・カナダHer Majesty the Queen in Right of Canada as represented by the Minister of Natural Resources Canada Synthetic rope or cable analysis device and method of use

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6594065B2 (en) * 2015-07-02 2019-10-23 株式会社日立ビルシステム Rope inspection device and rope inspection system
US10514362B2 (en) * 2015-11-02 2019-12-24 Mitsubishi Electric Corporation Wire rope flaw detection device
CN110073209A (en) * 2016-12-13 2019-07-30 三菱电机株式会社 Hawser failure detector
CN108535354B (en) * 2018-04-13 2022-01-25 哈尔滨工业大学深圳研究生院 Damage judgment and positioning method for magnetic flux leakage detection and magnetic emission detection of steel wire rope
CN110320265B (en) * 2019-06-18 2023-03-03 枣庄学院 Detection experiment system and detection method for broken wire of steel wire rope of elevator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164183A (en) * 1978-06-16 1979-12-27 Hitachi Ltd Magnetic flaw detector of rore
WO2013023818A1 (en) * 2011-08-18 2013-02-21 Nv Bekaert Sa Magnetic flux leakage error detection in cords
JP2014130127A (en) * 2012-11-28 2014-07-10 Jfe Steel Corp Magnetic flux leakage inspection device and inspection method
JP2017511476A (en) * 2014-04-02 2017-04-20 ハー・マジェスティ・ザ・クイーン・イン・ライト・オブ・カナダ・アズ・リプリゼンテッド・バイ・ザ・ミニスター・オブ・ナチュラル・リソーシーズ・カナダHer Majesty the Queen in Right of Canada as represented by the Minister of Natural Resources Canada Synthetic rope or cable analysis device and method of use

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HASHIMOTO SATOSHI ET AL.- STRUCTURAL HEALTH MONITORING FOR ELEVATOR: "4 Signal processing", PROCEEDINGS OF AXADEMIC LECTURE CONFERENCE OF COLLEGE OF SCIENCE AND TECHNOLOGY, 2010, pages 777 - 778 *
KANEDA MASAKO ET AL.: "Analysis of actual measurement data by wavelet transform- Defect detection of elevator wire rope by using wavelet analysis", TRANSACTIONS OF THE SOCIETY OF INSTRUMENT AND CONTROL ENGINEERS, vol. 34, no. 10, 1998, pages 1466 - 1471 *
ZHANG ET AL.: "The technology of testing the safety of steel wire ropes", PROC. OF SPIE, vol. 6041, 2005, pages 604129 - 1-604129-5 *

Also Published As

Publication number Publication date
JPWO2021085156A1 (en) 2021-05-06
CN114616464A (en) 2022-06-10
JP7241907B2 (en) 2023-03-17

Similar Documents

Publication Publication Date Title
JP5767564B2 (en) Wire rope inspection equipment
US7594423B2 (en) Knock signal detection in automotive systems
CA2166953C (en) Improvements of linear resolution of electromagnetic wire rope testing instruments
KR101789900B1 (en) Partial discharge measurement apparatus, partial discharge measurement method, and program
JP4295774B2 (en) Wire rope flaw detector
CA2616897C (en) Method for error-free checking of tubes for surface faults
US7982458B2 (en) Wire-rope flaw detector
JP6161819B1 (en) Wire rope flaw detector
US20170038424A1 (en) Partial discharge measurement device
US10801999B2 (en) Rope damage diagnostic testing apparatus
JP6465034B2 (en) Signal analysis apparatus, excitation force measurement system, signal analysis method, and signal analysis program
KR19980033373A (en) Time Series Data Identification Device and Method
WO2021085156A1 (en) Wire rope flaw detection device
WO2020075296A1 (en) State monitoring device
JP7081446B2 (en) Magnetic material inspection device and magnetic material inspection system
JPWO2017145850A1 (en) Inspection device, inspection method, and inspection program
JP7275324B2 (en) Wire rope flaw detector
RU2460995C2 (en) Method and apparatus for nondestructive inspection of ropes made from ferromagnetic steel wire
JP6776676B2 (en) Signal processing device and signal processing method
US9063028B2 (en) Apparatus and method for detection of mechanical inputs
EP2651034B1 (en) Method for determining a trigger level
JP3148466B2 (en) Device for discriminating between helicopter sound and vehicle sound
US20180246065A1 (en) Eddy-current testing method and eddy-current testing device
CN117191935A (en) Wire rope flaw detector and wire rope diagnosis method
RU2017128375A (en) METHOD FOR DIAGNOSTIC OF RADIO ELECTRONIC DEVICES

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20881605

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021554342

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20881605

Country of ref document: EP

Kind code of ref document: A1