WO2021149431A1 - Thermally conductive silicone adhesive composition - Google Patents

Thermally conductive silicone adhesive composition Download PDF

Info

Publication number
WO2021149431A1
WO2021149431A1 PCT/JP2020/047621 JP2020047621W WO2021149431A1 WO 2021149431 A1 WO2021149431 A1 WO 2021149431A1 JP 2020047621 W JP2020047621 W JP 2020047621W WO 2021149431 A1 WO2021149431 A1 WO 2021149431A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
groups
thermally conductive
integer
Prior art date
Application number
PCT/JP2020/047621
Other languages
French (fr)
Japanese (ja)
Inventor
展明 松本
晶 坂本
太一 北川
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2021149431A1 publication Critical patent/WO2021149431A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • C08L83/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J183/00Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
    • C09J183/04Polysiloxanes
    • C09J183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks

Definitions

  • the present invention relates to a thermally conductive silicone adhesive composition.
  • the transformer parts composed of the core and coil are inserted into the heat dissipation case, and the highly fluid heat conductive silicone potting composition is poured into the heat dissipation case to make every corner of the gap between the heat generation parts and the heat dissipation case.
  • a method of burying and connecting a heat generating component and a cooling component to secure a heat dissipation path is used (Patent Documents 1 to 3).
  • Patent Documents 1 to 3 since a large amount of heat is also generated from the electronic component for control, it is necessary to remove the heat in order to prevent the electronic component from failing.
  • the mounting location of electronic components varies depending on the purpose of function, and it can be a harsh environment.
  • Patent Documents 4 to 6 a heat-dissipating gel or a low-hardness thermally conductive silicone adhesive
  • Patent Document 7 a condensation-type low-hardness thermally conductive silicone material having a low viscosity at the time of discharge, which facilitates application and thickens with moisture, has also been proposed (Patent Document 7).
  • Patent Document 7 a condensation-type low-hardness thermally conductive silicone material having a low viscosity at the time of discharge, which facilitates application and thickens with moisture, has also been proposed.
  • Patent Document 7 a condensation-type low-hardness thermally conductive silicone material having a low viscosity at the time of discharge, which facilitates application and thickens with moisture
  • Patent Documents 8 and 9 have excellent adhesive strength, if they cannot follow the movement of heat-dissipating parts due to temperature changes, the adhesive cracks and a heat-dissipating path is secured. There was a problem that it could not be done. This is partly due to the lack of elongation of the high hardness thermally conductive silicone adhesive, but in general it is necessary to soften the material in order to obtain a material with high elongation, and as a result, the adhesive strength is increased. There was a technical problem that it was lowered and easily peeled off.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thermally conductive silicone adhesive composition having high adhesiveness, giving a cured product having high elongation and high hardness.
  • thermally conductive silicone adhesive composition can achieve the above object, and have completed the present invention.
  • the present invention 1.
  • (A) Organopolysiloxane having a viscosity at 25 ° C. of 0.3 to 50 Pa ⁇ s, having at least two alkenyl groups bonded to silicon atoms in one molecule, and having no organoxisilyl group: 100.
  • Mass part (B) Organopolysiloxane having a viscosity at 25 ° C.
  • R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms
  • R 2 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, respectively.
  • n is an integer of 2 to 100, and a is an integer of 1 to 3.
  • D One or both of the organohydrogensiloxanes represented by the following general formulas (2-1) and (2-2), (In the formula, R 3 is an alkyl group having 1 to 6 carbon atoms independently, and R 4 is an epoxy group independently bonded to a silicon atom via a carbon atom or a carbon atom and an oxygen atom. i is an integer of 2 or more, j is an integer of 1 or more, and i + j is an integer of 4 to 12.
  • the arrangement order of the siloxane units may be arbitrary.
  • X is It is a divalent hydrocarbon group that may contain an ether bond, and k is an independently integer of 3 to 11).
  • E Organohydrogenpolysiloxane represented by the following general formula (3), (In the formula, R 5 is an alkyl group having 1 to 6 carbon atoms independently, and q is an integer of 5 to 1,000 carbon atoms.)
  • F Thermally conductive filler: 500 to 3,000 parts by mass, and (G) platinum group metal-based catalyst. [Total number of Si—H groups] / [Total number of alkenyl groups] is 0.6 to 2.0, and [Number of Si—H groups in (D) component] / [(E) component.
  • the number of Si—H groups] is 0.1 to 4.0, a thermally conductive silicone adhesive composition, 2.
  • 3. A cured product of the thermally conductive silicone adhesive composition according to 1 or 2.
  • 4. 3.
  • the cured product according to 3 or 4 having a type A durometer hardness of 60 or more is provided.
  • the thermally conductive silicone adhesive composition of the present invention provides a cured product having excellent extensibility and adhesiveness. Therefore, the present invention can follow, for example, even if the gap between the heat generating component and the cooling member is large, does not break the material, and is difficult to peel off from the interface of the base material of the component or member, and is expensive. It is possible to provide a high-hardness thermally conductive silicone adhesive composition that provides a reliable cured product.
  • the thermally conductive silicone adhesive composition of the present invention (A) Organopolysiloxane having at least two alkenyl groups in one molecule, (B) Organopolysiloxane with both ends sealed with a trialkoxysilyl group, (C) Organopolysiloxane, one end of which is sealed with an alkoxysilyl group or the like. (D) Cyclic organohydrogensiloxane, (E) A linear organohydrogenpolysiloxane having Si—H groups at both ends, (F) Thermally conductive filler, (G) Contains a platinum group metal catalyst.
  • the component (A) is an organopolysiloxane having at least two alkenyl groups bonded to a silicon atom in one molecule and no organoxisilyl group.
  • the component (A) is distinguished from the component (B) and the component (C) in that it does not have an organoxisilyl group.
  • the viscosity of the component (A) at 25 ° C. is 0.3 to 50 Pa ⁇ s, preferably 0.4 to 10 Pa ⁇ s, and more preferably 0.6 to 5 Pa ⁇ s. If the viscosity at 25 ° C. is less than 0.3 Pa ⁇ s, the elongation of the composition becomes poor, and if it exceeds 50 Pa ⁇ s, the viscosity of the composition becomes high and the workability deteriorates.
  • the viscosity is a value measured by a rotational viscometer (the same applies hereinafter).
  • the component (A) is not particularly limited as long as it satisfies the above viscosity and alkenyl group content, and a known organopolysiloxane can be used.
  • the molecular structure include linear, branched chain, linear with partial branch, dendrimer (dendrimer) and the like, and preferably linear and linear with partial branch. ..
  • the component (A) may be a single polymer having these molecular structures, a copolymer having these molecular structures, or a mixture containing two or more kinds of these polymers.
  • a linear diorganopolysiloxane in which the main chain basically consists of repeating diorganosiloxane units and both ends of the molecular chain are sealed with a triorganosyloxy group or a silanol-containing group is preferable.
  • the molecular structure of the organopolysiloxane of the component (A) is linear or branched, the position of the silicon atom to which the alkenyl group is bonded in the molecule of the organopolysiloxane is at the end of the molecular chain and in the middle of the molecular chain.
  • Either one of (bifunctional diorganosiloxane unit located at the non-terminal of the molecular chain or trifunctional monoorganosylsesquioxane unit) may be located at both of them when there are two or more of them. Particularly preferable in terms of flexibility, it is a linear diorganopolysiloxane containing an alkenyl group bonded to silicon atoms at both ends of the molecular chain.
  • the alkenyl group bonded to the silicon atom preferably has 2 to 10 carbon atoms, more preferably 2 to 8 carbon atoms, and examples thereof include vinyl, allyl, 1-butenyl, and 1-hexenyl groups. Among these, a vinyl group is preferable from the viewpoint of ease of synthesis and cost.
  • the number of alkenyl groups in one molecule of the component (A) is preferably 2 to 10.
  • Examples of the organic group bonded to the silicon atom other than the alkenyl group include a monovalent hydrocarbon group having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, excluding the aliphatic unsaturated bond.
  • Examples of such a monovalent hydrocarbon group include an alkyl group such as methyl, ethyl, n-propyl, n-butyl, n-hexyl and n-dodecyl group, an aryl group such as a phenyl group, and a 2-phenylethyl group. , 2-Phenylpropyl group and other aralkyl groups and the like.
  • trifluoromethyl, 2-bromoethyl, chloromethyl, 3,3,3-trifluoropropyl group, etc. in which some or all of the hydrogen atoms of these hydrocarbon groups are replaced with halogen atoms such as chlorine, fluorine and bromine.
  • Halogen-substituted monovalent hydrocarbon groups and the like an alkyl group having 1 to 6 carbon atoms is preferable, and 90% or more of the total number of organic groups other than the alkenyl group bonded to the silicon atom in the component (A) is taken from the viewpoint of ease of synthesis and cost. Is preferably a methyl group.
  • the component (A) does not contain an organoxysilyl group, and examples of the organoxy group include an alkoxy group, an alkoxyalkoxy group, an alkenyloxy group, and an asyloxy group.
  • examples of the alkoxy group include those having 1 to 10 carbon atoms, particularly 1 to 6, particularly 1 to 3, and examples thereof include a methoxy group and an ethoxy group.
  • examples of the alkoxyalkoxy group include those having 1 to 6 carbon atoms, particularly 1 to 3 carbon atoms in each alkoxy group, and examples thereof include a methoxyethoxy group and a methoxypropoxy group.
  • alkenyloxy group examples include those having 2 to 6 carbon atoms, and examples thereof include a vinyloxy group and an aryloxy group.
  • examples of the asyloxy group include those having 1 to 10 carbon atoms, and examples thereof include an acetyloxy group and an octanoyloxy group.
  • component (A) examples include dimethylpolysiloxane having both ends of the molecular chain and dimethylvinylsiloxy group-blocking, methylphenylvinylsiloxy group-blocking dimethylpolysiloxane at both ends of the molecular chain, and dimethylsiloxane and methylphenyl having both-terminal dimethylvinylsiloxy group blocking.
  • Siloxane copolymer dimethylvinyl siloxy group-sealed dimethylsiloxane / methylvinylsiloxane copolymer at both ends of the molecular chain, dimethylsiloxane / methylvinylsiloxane copolymer containing silanol groups at both ends of the molecular chain, dimethylsiloxane containing silanol groups at both ends of the molecular chain -Methylvinylsiloxane-Methylphenylsiloxane copolymer, trimethylsiloxy group-blocking dimethylsiloxane at both ends of the molecular chain dimethylsiloxane-Methylvinylsiloxane copolymer, dimethylvinylsiloxy group-blocking methyl at both ends of the molecular chain (3,3,3-trifluoropropyl) ) Polysiloxane, formula: (CH 3 ) 3 si
  • the component (B) is an organopolysiloxane having both ends sealed with a trialkoxysilyl group, and has a role of lowering the viscosity of the composition and enabling high filling of the thermally conductive filler.
  • the component (B) is distinguished from the component (A) in that it has an alkoxy group at both ends.
  • the viscosity of the component (B) at 25 ° C. is 0.3 to 50 Pa ⁇ s, preferably 0.4 to 10 Pa ⁇ s, and more preferably 0.5 to 5 Pa ⁇ s.
  • the viscosity at 25 ° C. is less than 0.3 Pa ⁇ s, it causes oil bleeding and the adhesiveness deteriorates, and when it exceeds 50 Pa ⁇ s, the composition becomes highly viscous and the workability deteriorates.
  • Each alkoxy group forming a trialkoxysilyl group at both ends is preferably independently having 1 to 6 carbon atoms, particularly 1 to 4, and examples of the trialkoxysilyl group include a trimethoxysilyl group and a triethoxysilyl group. Can be mentioned.
  • the component (B) is not particularly limited except for the structure at both ends, and the substituents bonded to the silicon atom other than both ends include methyl, ethyl, n-propyl, n-butyl, n-pentyl and n-hexyl.
  • An alkyl group such as a group, a cycloalkyl group such as a cyclohexyl group, an alkenyl group such as a vinyl group or an allyl group, a monovalent hydrocarbon group having 1 to 8 carbon atoms such as an aryl group such as a phenyl group or a trill group, or one of these.
  • Examples thereof include a chloromethyl group in which a part or all of the hydrogen atoms of the valent hydrocarbon group are replaced with halogen atoms such as chlorine, fluorine and bromine, and a halogenated hydrocarbon group such as a trifluoromethyl group.
  • the component (B) is preferably an organopolysiloxane represented by the following formula (4).
  • R 6 is an alkyl group having 1 to 6 carbon atoms independently, and specific examples thereof include methyl, ethyl, n-propyl, and n-butyl groups.
  • R 6 an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group and an ethyl group are more preferable.
  • R 7 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, respectively, and specifically, methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, and so on.
  • Alkyl groups such as n-heptyl groups, aryl groups such as phenyl groups and tolyl groups, and chloromethyl, 3-, in which some or all of the hydrogen atoms of these groups are replaced with halogen atoms such as chlorine, fluorine and bromine. Examples thereof include halogenated hydrocarbon groups such as chloropropyl and trifluoromethyl groups.
  • R 7 an alkyl group having 1 to 6 carbon atoms is preferable, and a methyl group and an ethyl group are particularly preferable.
  • r is an integer such that the viscosity of the organopolysiloxane represented by the formula (4) at 25 ° C. is 0.3 to 50 Pa ⁇ s.
  • the blending amount of the component (B) is 1 to 100 parts by mass, preferably 1 to 50 parts by mass, more preferably 1 to 10 parts by mass, and particularly preferably 6 to 6 to 100 parts by mass with respect to 100 parts by mass of the component (A). It is 10 parts by mass. If it is less than 1 part by mass, the viscosity of the composition becomes high, and if it exceeds 100 parts by mass, the adhesiveness deteriorates.
  • the component (B) may be used alone or in combination of two or more.
  • the component (C) is an organopolysiloxane represented by the following general formula (1).
  • R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10, preferably 1 to 6, and more preferably 1 to 3, respectively having 1 to 10 carbon atoms, and for example, alkyl, alkenyl, and so on.
  • Aryl, aralkyl, alkyl halides, cyanoalkyl groups and the like can be mentioned.
  • the alkyl group may be linear, branched or cyclic. Examples of the linear alkyl group include methyl, ethyl, n-propyl, n-hexyl, n-octyl group and the like.
  • Examples of the branched chain alkyl group include isopropyl, isobutyl, tert-butyl, 2-ethylhexyl group and the like.
  • Examples of the cyclic alkyl group include a cyclopentyl group and a cyclohexyl group.
  • Examples of the alkenyl group include vinyl, allyl, 1-butenyl, 1-hexenyl group and the like.
  • Examples of the aryl group include a phenyl group and a tolyl group.
  • Examples of the aralkyl group include a 2-phenylethyl group and a 2-methyl-2-phenylethyl group.
  • alkyl halide group examples include 3,3,3-trifluoropropyl, 2- (nonafluorobutyl) ethyl, 2- (heptadecafluorooctyl) ethyl group and the like.
  • cyanoalkyl group examples include a cyanoethyl group and the like.
  • R 1 a methyl group, a phenyl group, and a vinyl group are preferable.
  • R 2 is an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, respectively.
  • alkyl group for example, like the one exemplified in R 1 , linear, branched or cyclic carbon atoms 1 to 10, preferably 1 to 6, more preferably 1 to 3 unsubstituted or substituted.
  • Alkyl group of, and specific examples thereof include the same.
  • alkoxyalkyl group include those having an alkoxy group and an alkyl group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, and examples thereof include a methoxyethyl group and a methoxypropyl group.
  • Examples of the alkenyl group include those having 2 to 6 carbon atoms, and examples thereof include a vinyl group and an allyl group.
  • Examples of the acyl group include those having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and examples thereof include an acetyl group and an octanoyl group.
  • R 2 an alkyl group is preferable, and a methyl group and an ethyl group are particularly preferable.
  • n is an integer of 2 to 100, preferably an integer of 5 to 80. If n is less than 2, oil bleeding is likely to occur from the composition, and the adhesive strength decreases with time. If n exceeds 100, the viscosity of the composition becomes high and the workability becomes poor.
  • a is an integer of 1 to 3, preferably 3.
  • the viscosity of the component (C) at 25 ° C. is preferably 0.005 to 10 Pa ⁇ s, and particularly preferably 0.005 to 1 Pa ⁇ s. Within such a range, oil bleeding of the cured product can be suppressed, and the handleability of the adhesive composition is excellent.
  • an organopolysiloxane represented by the following average formula can be mentioned.
  • the blending amount of the component (C) is 1 to 100 parts by mass, preferably 5 to 50 parts by mass, and more preferably 12 to 50 parts by mass with respect to 100 parts by mass of the component (A). If it is less than 1 part by mass, a low-viscosity composition cannot be obtained, and if it exceeds 100 parts by mass, the adhesiveness of the composition deteriorates.
  • the component (C) may be used alone or in combination of two or more.
  • Component (D) is either or both of the organohydrogensiloxanes represented by the following general formulas (2-1) and (2-2), and has a role of exhibiting high adhesiveness.
  • R 3 is an alkyl group having 1 to 6 carbon atoms independently, and examples thereof include methyl, ethyl, n-propyl, n-butyl, n-pentyl, and n-hexyl groups. Among these, those having 1 to 3 carbon atoms are preferable, and 90 mol% or more of the total number of R 3 is more preferably a methyl group from the viewpoint of ease of synthesis and cost.
  • R 4 is an epoxy group that is independently bonded to a silicon atom via a carbon atom or a carbon atom and an oxygen atom.
  • examples of such a group include an epoxy group-containing organic group such as 3-glycidoxypropyl, 3-glycidoxyethyl, and 3,4-epoxycyclohexylethyl group.
  • i is an integer of 2 or more
  • j is an integer of 1 or more
  • i + j is an integer of 4 to 12, preferably an integer of 4 to 8, more preferably an integer of 4 to 6, and further. It is preferably 4.
  • X is a divalent hydrocarbon group which may contain an ether bond, and is preferably a group containing a bisphenol A residue represented by the following formula (5).
  • k is independently an integer of 3 to 11, preferably an integer of 3 to 7, more preferably an integer of 3 to 5, and even more preferably 3.
  • the sequence order of the siloxane units in the formula (2-1) may be arbitrary, and may be random, block, or alternate.
  • component (D) an organohydrogensiloxane represented by the following structural formula can be mentioned.
  • the component (D) may be used alone or in combination of two or more.
  • the component (E) is an organohydrogenpolysiloxane represented by the following general formula (3), and plays a role of improving the elongation of the composition after curing while having high adhesiveness.
  • R 5 is an alkyl group having 1 to 6 carbon atoms independently, and examples thereof include methyl, ethyl, n-propyl, n-butyl, and n-hexyl groups. Among these, those having 1 to 3 carbon atoms are preferable, and 90% or more of the total number of R 5 is more preferably a methyl group from the viewpoint of ease of synthesis and cost.
  • q is an integer of 5 to 1,000, preferably an integer of 10 to 100. When q is less than 5, it is difficult to use it for electronic parts because organohydrogenpolysiloxane tends to be a volatile component, and when q value exceeds 1,000, the viscosity of organohydrogenpolysiloxane is high. It becomes difficult to handle.
  • component (E) examples include organohydrogenpolysiloxane represented by the following average formula.
  • the component (E) may be used alone or in combination of two or more.
  • the blending amount of the components (D) and (E) is based on the total number of alkenyl groups in the components (A) and, in some cases, the components (B) and (C), and the amount of Si in the components (D) and (E).
  • the ratio of the total number of H groups that is, the [total number of Si—H groups] / [total number of alkenyl groups] is 0.6 to 2.0, preferably 0.7 to 1.5. Is the amount that becomes. If the above ratio is less than 0.6, the cured product cannot form a sufficient crosslinked structure, and mechanical properties and adhesiveness cannot be obtained. If it exceeds 2.0, the elongation decreases.
  • the blending ratio of the component (D) and the component (E) is 0.1. It is in the range of about 4.0, preferably 0.2 to 3.0. If the blending ratio is less than 0.1, the adhesiveness is low, and if it exceeds 4.0, the elongation of the cured product is lowered.
  • the component (F) is a heat conductive filler and has a role of imparting heat conductivity to the composition (cured product).
  • the heat conductive filler include aluminum powder, copper powder, silver powder, nickel powder, gold powder, alumina powder, zinc oxide powder, magnesium oxide powder, aluminum nitride powder, boron nitride powder, silicon nitride powder, and diamond powder. , Carbon powder, indium, gallium and the like.
  • the component (F) may be used alone or in combination of two or more.
  • the average particle size of the thermally conductive filler is preferably 0.1 to 100 ⁇ m, more preferably 0.5 to 90 ⁇ m from the viewpoint of filling property and uniformity.
  • the shape of the thermally conductive filler may be irregular, spherical, or any shape.
  • the average particle size can be determined as the volume average value D 50 (that is, the particle size or the median diameter when the cumulative volume becomes 50%) in the particle size distribution measurement by the laser light diffraction method.
  • the thermally conductive filler preferably has a thermal conductivity (25 ° C.) of 10 W / m ⁇ K or more. With such a heat conductive filler, sufficient heat conductivity can be imparted to the cured product.
  • the thermal conductivity is a value based on JIS R 1611: 2010.
  • the blending amount of the component (F) is 500 to 3,000 parts by mass, preferably 1,000 to 2,000 parts by mass with respect to 100 parts by mass of the component (A). If the blending amount of the component (F) is less than 500 parts by mass, the desired thermal conductivity cannot be imparted to the cured product, and if it exceeds 3,000 parts by mass, the composition does not become liquid and is handled. Inferior in sex.
  • the component (G) is a platinum group metal-based catalyst.
  • the platinum group metal-based catalyst causes an addition reaction between the alkenyl group in the component (A) and, in some cases, the components (B) and (C) and the Si—H group in the components (D) and (E). Any catalyst may be used as long as it promotes it, and among them, a catalyst selected from platinum and a platinum compound is preferable.
  • Such a catalyst examples include platinum (including platinum black), rhodium, palladium and other platinum group metals alone, H 2 PtCl 4 ⁇ nH 2 O, H 2 PtCl 6 ⁇ nH 2 O, NaHP PtCl 6 ⁇ nH 2 O, KHPtCl 6 ⁇ nH 2 O, Na 2 PtCl 6 ⁇ nH 2 O, K 2 PtCl 4 ⁇ nH 2 O, PtCl 4 ⁇ nH 2 O, PtCl 2 , Na 2 HPtCl 4 ⁇ nH 2 O (However, in the formula N is an integer of 0 to 6, preferably 0 or 6), such as platinum chloride, chloroplatinic acid and chloroplatinate, alcohol-modified chloroplatinic acid, complex of chloroplatinic acid and olefin, platinum.
  • Platinum group metals such as black and palladium supported on carriers such as alumina, silica and carbon, rhodium-olefin complex, chlorotris (triphenylphosphine) rhodium (Wilkinson catalyst), platinum chloride, platinum chloride acid or chloride. Examples thereof include a complex of chloroplatinate and a vinyl group-containing siloxane. These platinum group metal-based catalysts may be used alone or in combination of two or more.
  • the blending amount of the component (G) may be an effective amount as a catalyst, and may be appropriately adjusted according to a desired curing rate. From the viewpoint of curing speed and cost, the total mass of the components (A) to (F) is preferably 0.1 to 10,000 ppm, more preferably 10,000 to 10,000 ppm based on the mass converted to platinum group metal atoms. Is.
  • a reaction control agent may be added as the component (H) to the thermally conductive silicone adhesive composition of the present invention in order to suppress the progress of the curing reaction at room temperature and prolong the shelf life and pot life. ..
  • the reaction control agent may be any as long as it can suppress the catalytic activity of the component (G), for example, an acetylene compound such as 1-ethynyl-1-cyclohexanol and 3-butin-1-ol, and triallyl. Examples thereof include nitrogen-containing compounds such as isocyanurate and triallyl isocyanurate derivatives, organic phosphorus compounds such as triphenylphosphine, oxime compounds, and organic chloro compounds.
  • acetylene alcohol which is not corrosive to metals, is preferable. These may be diluted with an organic solvent such as toluene, xylene, or isopropyl alcohol in order to improve the dispersibility in the composition.
  • the component (H) may be used alone or in combination of two or more.
  • the blending amount is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the component (A), more preferably, from the viewpoint of achieving both storage stability and curability of the composition. Is 0.05 to 1 part by mass.
  • additives may be added to the heat conductive silicone adhesive composition of the present invention as long as the object of the present invention is not impaired.
  • additives include hindered phenolic antioxidants, reinforcing and non-reinforcing fillers such as calcium carbonate, and polyethers as thixotropy improvers.
  • a colorant such as a pigment or a dye may be added.
  • the thermally conductive silicone adhesive composition of the present invention is known to contain components (A) to (G), components (H) as required, and other components using a gate mixer, a kneader, a planetary mixer, or the like. It can be prepared by mixing by the method.
  • the thermally conductive silicone adhesive of the present invention comprises a first agent composed of (A), (B), (C), (F), (G) components, and if necessary, other components, and (A). , (B), (C), (D), (E), (F) components and, if necessary, other components are prepared separately, and the first agent and the second agent are prepared before use. May be used as a two-part composition in which the above is mixed. In addition, there may be a component commonly used in the first agent and the second agent. By using such a two-dosage form for the composition, storage stability can be further ensured.
  • the viscosity of the thermally conductive silicone adhesive composition of the present invention at 25 ° C. is preferably 50 to 400 Pa ⁇ s, more preferably 100 to 300 Pa ⁇ s, from the viewpoint of dispersibility and workability of the thermally conductive filler. s.
  • the curing conditions of the heat conductive silicone adhesive composition of the present invention are not particularly limited, and can be the same conditions as those of conventionally known silicone gels. Further, the thermally conductive silicone adhesive composition of the present invention can be cured by heat from a heat-generating component after coating, but it may be positively cured by heating.
  • the heat curing conditions are preferably 60 to 150 ° C., more preferably 80 to 120 ° C., preferably 0.1 to 3 hours, more preferably 0.5 to 2 hours.
  • the mechanical properties of the cured product of the thermally conductive silicone adhesive composition of the present invention are that the elongation at cutting specified in JIS K 6251: 2017 is 30% or more, and the shear tensile adhesive strength specified in JIS K 6850: 1999. Is preferably 0.5 MPa or more. If it has such mechanical characteristics, it can follow the gap between the heat generating component and the cooling component without breaking even by temperature stress, and the reliability of the entire component can be dramatically improved.
  • the cured product of the heat conductive silicone adhesive composition of the present invention preferably has a hardness of 60 or more as measured by a type A durometer specified in JIS K6253-3: 2012. If it exhibits such hardness, curing has proceeded sufficiently, and it is possible to exhibit high adhesiveness.
  • Component (B) -B-1 Dimethylpolysiloxane having both ends sealed with a trimethoxysilyl group and a viscosity of 1.0 Pa ⁇ s at 25 ° C.
  • Component (C) C-1 Organopolysiloxane represented by the following general formula (viscosity at 25 ° C.: 35 mPa ⁇ s)
  • Component (D) -D-1 Organohydrogensiloxane represented by the following structural formula -D-2: Organohydrogensiloxane represented by the following structural formula -D-3: Organohydrogensiloxane represented by the following structural formula -D-4 (comparative component): Organohydrogensiloxane represented by the following structural formula
  • G-1 Didimethylpolysiloxane solution of platinum-divinyltetramethyldisiloxane complex (dissolved in the same dimethylpolysiloxane as A-1 above. Platinum content: 1% by mass)
  • the viscosity of the thermally conductive silicone adhesive composition at 25 ° C. was measured at a rotation speed of 10 rpm using a PC-10AA viscometer (manufactured by Malcolm Co., Ltd.).
  • the thermally conductive silicone adhesive composition was press-cured at 110 ° C. for 10 minutes. Three obtained silicone sheets having a thickness of 2.0 mm were stacked, and the hardness was measured by a type A durometer specified in JIS K 6253-3: 2012.
  • a heat conductive silicone adhesive composition is placed between a pair of 1.0 mm thick aluminum (JIS H 4000 A1050P) plates and a pair of 2.0 mm thick PBT (Duranex 3300, manufactured by Polyplastics Co., Ltd.) plates.
  • the composition was heated at 110 ° C. for 10 minutes in a state of being sandwiched so as to have a thickness of 2.0 mm and an adhesive area of 25 mm ⁇ 10 mm, and the composition was cured to prepare an adhesive test piece.
  • the shear tensile adhesive strength of the obtained test piece was measured according to JIS K 6850: 1999.
  • the thermally conductive silicone adhesive composition was press-cured at 110 ° C. for 10 minutes.
  • the thermal conductivity of the obtained cured product was measured at an ambient temperature of 25 ° C. using a hot disk method thermophysical characteristic measuring device TPA-501 (manufactured by Kyoto Electronics Industry Co., Ltd.) in accordance with ISO 22007-2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

This thermally conductive silicone adhesive composition comprises: (A) an organopolysiloxane which has an alkenyl group and does not have an organoxysilyl group; (B) an organopolysiloxane blocked with trialkoxysilyl groups at both terminals; (C) an organopolysiloxane blocked with an alkoxy group at one terminal; (D) a predetermined cyclic organohydrogensiloxane; (E) a predetermined linear organohydrogen polysiloxane; (F) a thermally conductive filling material; and (G) a platinum group metal-based catalyst, wherein [total number of Si-H groups]/[total number of alkenyl groups] is a predetermined ratio, and [number of Si-H groups in (D) component]/[number of Si-H groups in (E) component] is a predetermined ratio.

Description

熱伝導性シリコーン接着剤組成物Thermally conductive silicone adhesive composition
 本発明は、熱伝導性シリコーン接着剤組成物に関する。 The present invention relates to a thermally conductive silicone adhesive composition.
 近年カーエレクトロニクス分野において電動化・自動化・省エネルギー化に関する技術開発が大変盛んになっている。例えば、電動化する際に必要となる車載充電器の中にはトランスやチョークコイル等の部品が搭載されており、これらトランスやチョークコイルは、コアやコイルから構成されている。コアやコイルからは熱が発生するため、この熱を取り除く必要があるが、発熱部は入り組んだ複雑な形状をしており、放熱経路を確保することが難しい。 In recent years, technological development related to electrification, automation, and energy saving has become very active in the field of car electronics. For example, parts such as a transformer and a choke coil are mounted in an in-vehicle charger required for electrification, and these transformers and choke coils are composed of a core and a coil. Since heat is generated from the core and coil, it is necessary to remove this heat, but the heat generating part has a complicated and complicated shape, and it is difficult to secure a heat dissipation path.
 そこで、コアやコイルから構成されているトランス部品ごと放熱ケースに挿入し、その放熱ケース内に高流動性の熱伝導性シリコーンポッティング組成物を流し込み、発熱部品と放熱ケースとの隙間を隅々まで埋めて発熱部品と冷却部品を繋ぎ、放熱経路を確保する手法が用いられている(特許文献1~3)。
 また、制御用の電子部品からも大量の熱が発生するため、電子部品の故障を防ぐために、熱を取り除く必要がある。電子部品の搭載場所は機能目的に応じて様々であり、過酷な環境にもなり得る。
Therefore, the transformer parts composed of the core and coil are inserted into the heat dissipation case, and the highly fluid heat conductive silicone potting composition is poured into the heat dissipation case to make every corner of the gap between the heat generation parts and the heat dissipation case. A method of burying and connecting a heat generating component and a cooling component to secure a heat dissipation path is used (Patent Documents 1 to 3).
In addition, since a large amount of heat is also generated from the electronic component for control, it is necessary to remove the heat in order to prevent the electronic component from failing. The mounting location of electronic components varies depending on the purpose of function, and it can be a harsh environment.
 従って、厳しい環境の中でも発熱部品と放熱ケースとの隙間から抜け落ちることのない材料を選定することが肝要である。例えば、プリント基板上の電子部品にストレスを与えたくない場合は、放熱ゲルや低硬度の熱伝導性シリコーン接着剤を選択することが一般的である(特許文献4~6)。また、吐出時には低粘度で塗布を容易にし、湿気で増粘する縮合型の低硬度熱伝導性シリコーン材料も提案されている(特許文献7)。しかしながら、上述した材料は何れも接着力が十分ではなかった。 Therefore, it is important to select a material that will not fall out from the gap between the heat generating parts and the heat dissipation case even in a harsh environment. For example, when it is not desired to give stress to electronic components on a printed circuit board, it is common to select a heat-dissipating gel or a low-hardness thermally conductive silicone adhesive (Patent Documents 4 to 6). Further, a condensation-type low-hardness thermally conductive silicone material having a low viscosity at the time of discharge, which facilitates application and thickens with moisture, has also been proposed (Patent Document 7). However, none of the above-mentioned materials had sufficient adhesive strength.
 一方、高硬度の熱伝導性シリコーン接着剤(特許文献8及び9)は接着力に優れるものの、温度変化による放熱部品の動きに追随できなくなると、接着剤に亀裂が発生して放熱経路が確保できなくなるという問題があった。これは高硬度熱伝導性シリコーン接着剤の伸びが不足していることが一因であるが、一般的に高伸長の材料を得るには材料を柔らかくする必要があり、その結果として接着力が低下し、剥離し易くなってしまうという技術的な課題が存在していた。 On the other hand, although high-hardness thermally conductive silicone adhesives (Patent Documents 8 and 9) have excellent adhesive strength, if they cannot follow the movement of heat-dissipating parts due to temperature changes, the adhesive cracks and a heat-dissipating path is secured. There was a problem that it could not be done. This is partly due to the lack of elongation of the high hardness thermally conductive silicone adhesive, but in general it is necessary to soften the material in order to obtain a material with high elongation, and as a result, the adhesive strength is increased. There was a technical problem that it was lowered and easily peeled off.
特許第5304623号公報Japanese Patent No. 5304623 特許第5853989号公報Japanese Patent No. 5853989 特許第6217588号公報Japanese Patent No. 6217588 特許第4130091号公報Japanese Patent No. 4130091 特許第5783128号公報Japanese Patent No. 5783128 特許第5843368号公報Japanese Patent No. 5843368 特許第5733087号公報Japanese Patent No. 5733087 特許第4557136号公報Japanese Patent No. 4557136 特許第4588285号公報Japanese Patent No. 4588285
 本発明は、上記事情に鑑みなされたもので、高い接着性を有し、高伸長、高硬度な硬化物を与える熱伝導性シリコーン接着剤組成物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a thermally conductive silicone adhesive composition having high adhesiveness, giving a cured product having high elongation and high hardness.
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、下記の熱伝導性シリコーン接着剤組成物が上記目的を達成できることを見出し、本発明を完成した。 As a result of diligent studies to achieve the above object, the present inventors have found that the following thermally conductive silicone adhesive composition can achieve the above object, and have completed the present invention.
 すなわち、本発明は、
1. (A)25℃における粘度が0.3~50Pa・sであり、珪素原子と結合するアルケニル基を1分子中に少なくとも2個有し、かつ、オルガノキシシリル基を有しないオルガノポリシロキサン: 100質量部、
(B)25℃における粘度が0.3~50Pa・sであり、両末端がトリアルコキシシリル基で封鎖されたオルガノポリシロキサン: 1~100質量部、
(C)下記一般式(1)で示されるオルガノポリシロキサン: 1~100質量部、
Figure JPOXMLDOC01-appb-C000004
(式中、R1はそれぞれ独立に炭素数1~10の非置換又は置換の一価炭化水素基であり、R2はそれぞれ独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基である。nは2~100の整数であり、aは1~3の整数である。)
(D)下記一般式(2-1)及び(2-2)で示されるオルガノハイドロジェンシロキサンのいずれか一方又は両方、
Figure JPOXMLDOC01-appb-C000005
(式中、R3はそれぞれ独立に炭素数1~6のアルキル基であり、R4はそれぞれ独立に炭素原子又は炭素原子と酸素原子を介して珪素原子に結合しているエポキシ基である。iは2以上の整数であり、jは1以上の整数であり、i+jは4~12の整数である。式(2-1)において、シロキサン単位の配列順は任意であってよい。Xはエーテル結合を含んでいてもよい2価炭化水素基であり、kはそれぞれ独立に3~11の整数である。)
(E)下記一般式(3)で示されるオルガノハイドロジェンポリシロキサン、
Figure JPOXMLDOC01-appb-C000006
(式中、R5はそれぞれ独立に炭素数1~6のアルキル基であり、qは5~1,000の整数である。)
(F)熱伝導性充填材: 500~3,000質量部、及び
(G)白金族金属系触媒
を含有し、
[Si-H基の合計個数]/[アルケニル基の合計個数]が0.6~2.0であり、[(D)成分中のSi-H基の個数]/[(E)成分中のSi-H基の個数]が0.1~4.0である熱伝導性シリコーン接着剤組成物、
2. 更に、(H)反応制御剤を、(A)成分100質量部に対して、0.01~5.0質量部含有する1記載の熱伝導性シリコーン接着剤組成物、
3. 1又は2記載の熱伝導性シリコーン接着剤組成物の硬化物、
4. 切断時伸びが30%以上であり、かつ剪断引張接着強さが0.5MPa以上である3記載の硬化物、
5. タイプAデュロメーター硬度が60以上である3又は4記載の硬化物
を提供する。
That is, the present invention
1. 1. (A) Organopolysiloxane having a viscosity at 25 ° C. of 0.3 to 50 Pa · s, having at least two alkenyl groups bonded to silicon atoms in one molecule, and having no organoxisilyl group: 100. Mass part,
(B) Organopolysiloxane having a viscosity at 25 ° C. of 0.3 to 50 Pa · s and both ends sealed with a trialkoxysilyl group: 1 to 100 parts by mass,
(C) Organopolysiloxane represented by the following general formula (1): 1 to 100 parts by mass,
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and R 2 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, respectively. n is an integer of 2 to 100, and a is an integer of 1 to 3.)
(D) One or both of the organohydrogensiloxanes represented by the following general formulas (2-1) and (2-2),
Figure JPOXMLDOC01-appb-C000005
(In the formula, R 3 is an alkyl group having 1 to 6 carbon atoms independently, and R 4 is an epoxy group independently bonded to a silicon atom via a carbon atom or a carbon atom and an oxygen atom. i is an integer of 2 or more, j is an integer of 1 or more, and i + j is an integer of 4 to 12. In the formula (2-1), the arrangement order of the siloxane units may be arbitrary. X is It is a divalent hydrocarbon group that may contain an ether bond, and k is an independently integer of 3 to 11).
(E) Organohydrogenpolysiloxane represented by the following general formula (3),
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 5 is an alkyl group having 1 to 6 carbon atoms independently, and q is an integer of 5 to 1,000 carbon atoms.)
(F) Thermally conductive filler: 500 to 3,000 parts by mass, and (G) platinum group metal-based catalyst.
[Total number of Si—H groups] / [Total number of alkenyl groups] is 0.6 to 2.0, and [Number of Si—H groups in (D) component] / [(E) component. The number of Si—H groups] is 0.1 to 4.0, a thermally conductive silicone adhesive composition,
2. The thermally conductive silicone adhesive composition according to 1, further comprising (H) a reaction control agent in an amount of 0.01 to 5.0 parts by mass with respect to 100 parts by mass of the component (A).
3. 3. A cured product of the thermally conductive silicone adhesive composition according to 1 or 2.
4. 3. The cured product according to 3, which has an elongation at the time of cutting of 30% or more and a shear tensile adhesive strength of 0.5 MPa or more.
5. The cured product according to 3 or 4 having a type A durometer hardness of 60 or more is provided.
 本発明の熱伝導性シリコーン接着剤組成物は、伸長性及び接着性に優れた硬化物を与える。このため、本発明は、例えば、発熱部品と冷却部材との隙間が大きくても追随することが可能であり、しかも材料破断もせず、部品や部材等の基材界面からも剥離し難く、高い信頼性を有する硬化物を与える高硬度熱伝導性シリコーン接着剤組成物を提供することができる。 The thermally conductive silicone adhesive composition of the present invention provides a cured product having excellent extensibility and adhesiveness. Therefore, the present invention can follow, for example, even if the gap between the heat generating component and the cooling member is large, does not break the material, and is difficult to peel off from the interface of the base material of the component or member, and is expensive. It is possible to provide a high-hardness thermally conductive silicone adhesive composition that provides a reliable cured product.
 以下、本発明をより詳細に説明する。
〔熱伝導性シリコーン接着剤組成物〕
 本発明の熱伝導性シリコーン接着剤組成物は、
(A)1分子中に少なくとも2個のアルケニル基を有するオルガノポリシロキサン、
(B)両末端がトリアルコキシシリル基で封鎖されたオルガノポリシロキサン、
(C)片末端がアルコキシシリル基等で封鎖されたオルガノポリシロキサン、
(D)環状オルガノハイドロジェンシロキサン、
(E)両末端にSi-H基を有する直鎖状オルガノハイドロジェンポリシロキサン、
(F)熱伝導性充填材、
(G)白金族金属系触媒
を含有する。
Hereinafter, the present invention will be described in more detail.
[Thermal conductive silicone adhesive composition]
The thermally conductive silicone adhesive composition of the present invention
(A) Organopolysiloxane having at least two alkenyl groups in one molecule,
(B) Organopolysiloxane with both ends sealed with a trialkoxysilyl group,
(C) Organopolysiloxane, one end of which is sealed with an alkoxysilyl group or the like.
(D) Cyclic organohydrogensiloxane,
(E) A linear organohydrogenpolysiloxane having Si—H groups at both ends,
(F) Thermally conductive filler,
(G) Contains a platinum group metal catalyst.
〔(A)成分〕
 (A)成分は、珪素原子と結合するアルケニル基を1分子中に少なくとも2個有し、かつ、オルガノキシシリル基を有しないオルガノポリシロキサンである。(A)成分は、オルガノキシシリル基を有しない点で(B)成分及び(C)成分とは区別される。
[(A) component]
The component (A) is an organopolysiloxane having at least two alkenyl groups bonded to a silicon atom in one molecule and no organoxisilyl group. The component (A) is distinguished from the component (B) and the component (C) in that it does not have an organoxisilyl group.
 (A)成分の25℃における粘度は0.3~50Pa・sであり、好ましくは0.4~10Pa・sであり、更に好ましくは0.6~5Pa・sである。25℃における粘度が0.3Pa・s未満では、組成物の伸びが悪くなり、50Pa・sを超過すると、組成物の粘度が高くなり、作業性が悪化してしまう。なお、本発明において、粘度は回転粘度計による測定値である(以下同じ)。 The viscosity of the component (A) at 25 ° C. is 0.3 to 50 Pa · s, preferably 0.4 to 10 Pa · s, and more preferably 0.6 to 5 Pa · s. If the viscosity at 25 ° C. is less than 0.3 Pa · s, the elongation of the composition becomes poor, and if it exceeds 50 Pa · s, the viscosity of the composition becomes high and the workability deteriorates. In the present invention, the viscosity is a value measured by a rotational viscometer (the same applies hereinafter).
 (A)成分としては、上記粘度とアルケニル基含有量を満たすものであれば特に限定されず、公知のオルガノポリシロキサンを使用することができる。その分子構造としては、例えば、直鎖状、分岐鎖状、一部分岐を有する直鎖状、樹枝状(デンドリマー状)等が挙げられ、好ましくは直鎖状、一部分岐を有する直鎖状である。(A)成分は、これらの分子構造を有する単一の重合体、これらの分子構造を有する共重合体、又はこれらの重合体の2種以上を含む混合物であってもよい。 The component (A) is not particularly limited as long as it satisfies the above viscosity and alkenyl group content, and a known organopolysiloxane can be used. Examples of the molecular structure include linear, branched chain, linear with partial branch, dendrimer (dendrimer) and the like, and preferably linear and linear with partial branch. .. The component (A) may be a single polymer having these molecular structures, a copolymer having these molecular structures, or a mixture containing two or more kinds of these polymers.
 具体的には、主鎖が基本的にジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基又はシラノール含有基で封鎖された直鎖状のジオルガノポリシロキサンが好ましい。また、(A)成分のオルガノポリシロキサンの分子構造が直鎖状又は分岐状である場合、このオルガノポリシロキサンの分子中においてアルケニル基が結合する珪素原子の位置は、分子鎖末端及び分子鎖途中(分子鎖非末端に位置する2官能性のジオルガノシロキサン単位又は3官能性のモノオルガノシルセスキオキサン単位)のどちらか一方でも、2個以上のときは両方に位置してもよい。柔軟性の面で特に好ましくは、分子鎖両末端の珪素原子に結合したアルケニル基を含有する直鎖状のジオルガノポリシロキサンである。 Specifically, a linear diorganopolysiloxane in which the main chain basically consists of repeating diorganosiloxane units and both ends of the molecular chain are sealed with a triorganosyloxy group or a silanol-containing group is preferable. When the molecular structure of the organopolysiloxane of the component (A) is linear or branched, the position of the silicon atom to which the alkenyl group is bonded in the molecule of the organopolysiloxane is at the end of the molecular chain and in the middle of the molecular chain. Either one of (bifunctional diorganosiloxane unit located at the non-terminal of the molecular chain or trifunctional monoorganosylsesquioxane unit) may be located at both of them when there are two or more of them. Particularly preferable in terms of flexibility, it is a linear diorganopolysiloxane containing an alkenyl group bonded to silicon atoms at both ends of the molecular chain.
 珪素原子と結合するアルケニル基としては、好ましくは炭素数2~10、より好ましくは2~8のものであり、例えば、ビニル、アリル、1-ブテニル、1-ヘキセニル基等が挙げられる。これらの中でも、合成のし易さ、コストの面からビニル基が好ましい。なお、(A)成分1分子中のアルケニル基の数は2~10個が好ましい。 The alkenyl group bonded to the silicon atom preferably has 2 to 10 carbon atoms, more preferably 2 to 8 carbon atoms, and examples thereof include vinyl, allyl, 1-butenyl, and 1-hexenyl groups. Among these, a vinyl group is preferable from the viewpoint of ease of synthesis and cost. The number of alkenyl groups in one molecule of the component (A) is preferably 2 to 10.
 アルケニル基以外の珪素原子と結合する有機基としては、脂肪族不飽和結合を除く、好ましくは炭素数1~20、より好ましくは1~10の一価炭化水素基が挙げられる。このような一価炭化水素基としては、例えば、メチル、エチル、n-プロピル、n-ブチル、n-ヘキシル、n-ドデシル基等のアルキル基、フェニル基等のアリール基、2-フェニルエチル基、2-フェニルプロピル基等のアラルキル基等が挙げられる。また、これらの炭化水素基の水素原子の一部又は全部を塩素、フッ素、臭素等のハロゲン原子で置換したトリフルオロメチル、2-ブロモエチル、クロロメチル、3,3,3-トリフルオロプロピル基等のハロゲン置換一価炭化水素基などが挙げられる。これらの中でも、炭素数1~6のアルキル基が好ましく、合成のし易さ、コストの面から、(A)成分中の珪素原子と結合するアルケニル基以外の有機基の全数のうち90%以上がメチル基であることが好ましい。 Examples of the organic group bonded to the silicon atom other than the alkenyl group include a monovalent hydrocarbon group having 1 to 20 carbon atoms, more preferably 1 to 10 carbon atoms, excluding the aliphatic unsaturated bond. Examples of such a monovalent hydrocarbon group include an alkyl group such as methyl, ethyl, n-propyl, n-butyl, n-hexyl and n-dodecyl group, an aryl group such as a phenyl group, and a 2-phenylethyl group. , 2-Phenylpropyl group and other aralkyl groups and the like. In addition, trifluoromethyl, 2-bromoethyl, chloromethyl, 3,3,3-trifluoropropyl group, etc. in which some or all of the hydrogen atoms of these hydrocarbon groups are replaced with halogen atoms such as chlorine, fluorine and bromine. Halogen-substituted monovalent hydrocarbon groups and the like. Among these, an alkyl group having 1 to 6 carbon atoms is preferable, and 90% or more of the total number of organic groups other than the alkenyl group bonded to the silicon atom in the component (A) is taken from the viewpoint of ease of synthesis and cost. Is preferably a methyl group.
 なお、(A)成分は、オルガノキシシリル基を含まないものであるが、オルガノキシ基としては、アルコキシ基、アルコキシアルコキシ基、アルケニルオキシ基、アシロキシ基等が挙げられる。アルコキシ基としては、炭素数1~10、特に1~6、とりわけ1~3のものが挙げられ、例えば、メトキシ基、エトキシ基等が挙げられる。アルコキシアルコキシ基としては、各アルコキシ基の炭素数がそれぞれ1~6、特に1~3のものが挙げられ、例えば、メトキシエトキシ基、メトキシプロポキシ基等が挙げられる。アルケニルオキシ基としては、炭素数2~6のものが挙げられ、例えば、ビニロキシ基、アリロキシ基等が挙げられる。アシロキシ基としては、炭素数1~10のものが挙げられ、例えば、アセチルオキシ基、オクタノイルオキシ基等が挙げられる。 The component (A) does not contain an organoxysilyl group, and examples of the organoxy group include an alkoxy group, an alkoxyalkoxy group, an alkenyloxy group, and an asyloxy group. Examples of the alkoxy group include those having 1 to 10 carbon atoms, particularly 1 to 6, particularly 1 to 3, and examples thereof include a methoxy group and an ethoxy group. Examples of the alkoxyalkoxy group include those having 1 to 6 carbon atoms, particularly 1 to 3 carbon atoms in each alkoxy group, and examples thereof include a methoxyethoxy group and a methoxypropoxy group. Examples of the alkenyloxy group include those having 2 to 6 carbon atoms, and examples thereof include a vinyloxy group and an aryloxy group. Examples of the asyloxy group include those having 1 to 10 carbon atoms, and examples thereof include an acetyloxy group and an octanoyloxy group.
 (A)成分としては、例えば、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端メチルフェニルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端シラノール基含有ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端シラノール基含有ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖メチル(3,3,3-トリフルオロプロピル)ポリシロキサン、式:(CH33SiO1/2で表されるシロキサン単位と式:(CH32(CH2=CH)SiO1/2で表されるシロキサン単位と式:CH3SiO3/2で表されるシロキサン単位と式:(CH32SiO2/2で表されるシロキサン単位とからなるオルガノポリシロキサン共重合体などが挙げられ、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサンが特に好ましい。 Examples of the component (A) include dimethylpolysiloxane having both ends of the molecular chain and dimethylvinylsiloxy group-blocking, methylphenylvinylsiloxy group-blocking dimethylpolysiloxane at both ends of the molecular chain, and dimethylsiloxane and methylphenyl having both-terminal dimethylvinylsiloxy group blocking. Siloxane copolymer, dimethylvinyl siloxy group-sealed dimethylsiloxane / methylvinylsiloxane copolymer at both ends of the molecular chain, dimethylsiloxane / methylvinylsiloxane copolymer containing silanol groups at both ends of the molecular chain, dimethylsiloxane containing silanol groups at both ends of the molecular chain -Methylvinylsiloxane-Methylphenylsiloxane copolymer, trimethylsiloxy group-blocking dimethylsiloxane at both ends of the molecular chain dimethylsiloxane-Methylvinylsiloxane copolymer, dimethylvinylsiloxy group-blocking methyl at both ends of the molecular chain (3,3,3-trifluoropropyl) ) Polysiloxane, formula: (CH 3 ) 3 siloxane unit represented by SiO 1/2 and formula: (CH 3 ) 2 (CH 2 = CH) siloxane unit represented by SiO 1/2 and formula: CH 3 Examples include an organopolysiloxane copolymer composed of a siloxane unit represented by SiO 3/2 and a formula: (CH 3 ) 2 a siloxane unit represented by SiO 2/2 , and dimethylvinylsiloxy groups at both ends of the molecular chain. Sealed dimethylpolysiloxane is particularly preferred.
〔(B)成分〕
 (B)成分は、両末端がトリアルコキシシリル基で封鎖されたオルガノポリシロキサンであり、組成物の粘度を下げ、熱伝導性充填材の高充填化を可能とする役割を有する。(B)成分は、両末端にアルコキシ基を有する点で(A)成分とは区別される。
[Component (B)]
The component (B) is an organopolysiloxane having both ends sealed with a trialkoxysilyl group, and has a role of lowering the viscosity of the composition and enabling high filling of the thermally conductive filler. The component (B) is distinguished from the component (A) in that it has an alkoxy group at both ends.
 (B)成分の25℃における粘度は0.3~50Pa・sであり、好ましくは0.4~10Pa・s、より好ましくは0.5~5Pa・sである。25℃における粘度が0.3Pa・s未満のとき、オイルブリードの原因となり接着性が悪くなり、50Pa・sを超過すると、組成物が高粘度となり作業性が悪化してしまう。 The viscosity of the component (B) at 25 ° C. is 0.3 to 50 Pa · s, preferably 0.4 to 10 Pa · s, and more preferably 0.5 to 5 Pa · s. When the viscosity at 25 ° C. is less than 0.3 Pa · s, it causes oil bleeding and the adhesiveness deteriorates, and when it exceeds 50 Pa · s, the composition becomes highly viscous and the workability deteriorates.
 両末端のトリアルコキシシリル基をなす各アルコキシ基は、それぞれ独立に炭素数1~6、特に1~4のものが好ましく、トリアルコキシシリル基としては、トリメトキシシリル基、トリエトキシシリル基等が挙げられる。 Each alkoxy group forming a trialkoxysilyl group at both ends is preferably independently having 1 to 6 carbon atoms, particularly 1 to 4, and examples of the trialkoxysilyl group include a trimethoxysilyl group and a triethoxysilyl group. Can be mentioned.
 (B)成分において、両末端の構造以外は特に限定されず、両末端以外の珪素原子に結合する置換基としては、メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシル基等のアルキル基、シクロヘキシル基等のシクロアルキル基、ビニル基、アリル基等のアルケニル基、フェニル基、トリル基等のアリール基などの炭素数1~8の一価炭化水素基、あるいはこれら一価炭化水素基の水素原子の一部又は全部を塩素、フッ素、臭素等のハロゲン原子で置換したクロロメチル基、トリフルオロメチル基等のハロゲン化炭化水素基などが挙げられる。 The component (B) is not particularly limited except for the structure at both ends, and the substituents bonded to the silicon atom other than both ends include methyl, ethyl, n-propyl, n-butyl, n-pentyl and n-hexyl. An alkyl group such as a group, a cycloalkyl group such as a cyclohexyl group, an alkenyl group such as a vinyl group or an allyl group, a monovalent hydrocarbon group having 1 to 8 carbon atoms such as an aryl group such as a phenyl group or a trill group, or one of these. Examples thereof include a chloromethyl group in which a part or all of the hydrogen atoms of the valent hydrocarbon group are replaced with halogen atoms such as chlorine, fluorine and bromine, and a halogenated hydrocarbon group such as a trifluoromethyl group.
 (B)成分は、具体的には、下記式(4)で示されるオルガノポリシロキサンであることが好ましい。
Figure JPOXMLDOC01-appb-C000007
Specifically, the component (B) is preferably an organopolysiloxane represented by the following formula (4).
Figure JPOXMLDOC01-appb-C000007
 式(4)中、R6はそれぞれ独立に炭素数1~6のアルキル基であり、具体的には、メチル、エチル、n-プロピル、n-ブチル基等が挙げられる。R6としては、炭素数1~3のアルキル基が好ましく、特にメチル基、エチル基がより好ましい。R7はそれぞれ独立に炭素数1~8の非置換又は置換の一価炭化水素基であり、具体的には、メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシル、n-ヘプチル基等のアルキル基、フェニル基、トリル基等のアリール基等や、これらの基の水素原子の一部又は全部を塩素、フッ素、臭素等のハロゲン原子で置換したクロロメチル、3-クロロプロピル、トリフルオロメチル基等のハロゲン化炭化水素基などが挙げられる。R7としては、炭素数1~6のアルキル基が好ましく、特にメチル基、エチル基がより好ましい。rは、式(4)で示されるオルガノポリシロキサンの25℃における粘度が0.3~50Pa・sとなるような整数である。 In the formula (4), R 6 is an alkyl group having 1 to 6 carbon atoms independently, and specific examples thereof include methyl, ethyl, n-propyl, and n-butyl groups. As R 6 , an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group and an ethyl group are more preferable. R 7 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 8 carbon atoms, respectively, and specifically, methyl, ethyl, n-propyl, n-butyl, n-pentyl, n-hexyl, and so on. Alkyl groups such as n-heptyl groups, aryl groups such as phenyl groups and tolyl groups, and chloromethyl, 3-, in which some or all of the hydrogen atoms of these groups are replaced with halogen atoms such as chlorine, fluorine and bromine. Examples thereof include halogenated hydrocarbon groups such as chloropropyl and trifluoromethyl groups. As R 7 , an alkyl group having 1 to 6 carbon atoms is preferable, and a methyl group and an ethyl group are particularly preferable. r is an integer such that the viscosity of the organopolysiloxane represented by the formula (4) at 25 ° C. is 0.3 to 50 Pa · s.
 (B)成分の配合量は、(A)成分100質量部に対して、1~100質量部であり、好ましくは1~50質量部、より好ましくは1~10質量部、特に好ましくは6~10質量部である。1質量部未満では、組成物の粘度が高くなり、100質量部を超えると接着性が悪化する。なお、(B)成分は、1種単独で用いても、2種以上を組み合わせて用いてもよい。 The blending amount of the component (B) is 1 to 100 parts by mass, preferably 1 to 50 parts by mass, more preferably 1 to 10 parts by mass, and particularly preferably 6 to 6 to 100 parts by mass with respect to 100 parts by mass of the component (A). It is 10 parts by mass. If it is less than 1 part by mass, the viscosity of the composition becomes high, and if it exceeds 100 parts by mass, the adhesiveness deteriorates. The component (B) may be used alone or in combination of two or more.
〔(C)成分〕
 (C)成分は、下記一般式(1)で示されるオルガノポリシロキサンである。
Figure JPOXMLDOC01-appb-C000008
[Component (C)]
The component (C) is an organopolysiloxane represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000008
 式(1)中、R1はそれぞれ独立に炭素数1~10、好ましくは1~6、より好ましくは1~3の非置換又は置換の一価炭化水素基であり、例えば、アルキル、アルケニル、アリール、アラルキル、ハロゲン化アルキル、シアノアルキル基等が挙げられる。アルキル基は、直鎖状、分岐鎖状及び環状のいずれでもよい。直鎖状アルキル基としては、例えば、メチル、エチル、n-プロピル、n-ヘキシル、n-オクチル基等が挙げられる。分岐鎖状アルキル基としては、例えば、イソプロピル、イソブチル、tert-ブチル、2-エチルヘキシル基等が挙げられる。環状アルキル基としては、例えば、シクロペンチル基、シクロヘキシル基等が挙げられる。アルケニル基としては、例えば、ビニル、アリル、1-ブテニル、1-ヘキセニル基等が挙げられる。アリール基としては、例えば、フェニル基、トリル基等が挙げられる。アラルキル基としては、例えば、2-フェニルエチル基、2-メチル-2-フェニルエチル基等が挙げられる。ハロゲン化アルキル基としては、例えば、3,3,3-トリフルオロプロピル、2-(ノナフルオロブチル)エチル、2-(ヘプタデカフルオロオクチル)エチル基等が挙げられる。シアノアルキル基としては、例えば、シアノエチル基等が挙げられる。これらの中でも、R1としては、メチル基、フェニル基、ビニル基が好ましい。 In formula (1), R 1 is an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10, preferably 1 to 6, and more preferably 1 to 3, respectively having 1 to 10 carbon atoms, and for example, alkyl, alkenyl, and so on. Aryl, aralkyl, alkyl halides, cyanoalkyl groups and the like can be mentioned. The alkyl group may be linear, branched or cyclic. Examples of the linear alkyl group include methyl, ethyl, n-propyl, n-hexyl, n-octyl group and the like. Examples of the branched chain alkyl group include isopropyl, isobutyl, tert-butyl, 2-ethylhexyl group and the like. Examples of the cyclic alkyl group include a cyclopentyl group and a cyclohexyl group. Examples of the alkenyl group include vinyl, allyl, 1-butenyl, 1-hexenyl group and the like. Examples of the aryl group include a phenyl group and a tolyl group. Examples of the aralkyl group include a 2-phenylethyl group and a 2-methyl-2-phenylethyl group. Examples of the alkyl halide group include 3,3,3-trifluoropropyl, 2- (nonafluorobutyl) ethyl, 2- (heptadecafluorooctyl) ethyl group and the like. Examples of the cyanoalkyl group include a cyanoethyl group and the like. Among these, as R 1 , a methyl group, a phenyl group, and a vinyl group are preferable.
 R2はそれぞれ独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基である。アルキル基としては、例えば、R1において例示したものと同様の、直鎖状、分岐鎖状又は環状の炭素数1~10、好ましくは1~6、より好ましくは1~3の非置換又は置換のアルキル基が挙げられ、具体例も同様のものが挙げられる。アルコキシアルキル基としては、アルコキシ基及びアルキル基の炭素数がそれぞれ1~6、好ましくは1~3のものが挙げられ、例えば、メトキシエチル基、メトキシプロピル基等が挙げられる。アルケニル基としては、炭素数2~6のものが挙げられ、例えば、ビニル基、アリル基等が挙げられる。アシル基としては、炭素数1~10、好ましくは1~6のものが挙げられ、例えば、アセチル基、オクタノイル基等が挙げられる。
 これらの中でも、R2としては、アルキル基が好ましく、特にメチル基、エチル基が好ましい。
R 2 is an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, respectively. As the alkyl group, for example, like the one exemplified in R 1 , linear, branched or cyclic carbon atoms 1 to 10, preferably 1 to 6, more preferably 1 to 3 unsubstituted or substituted. Alkyl group of, and specific examples thereof include the same. Examples of the alkoxyalkyl group include those having an alkoxy group and an alkyl group having 1 to 6 carbon atoms, preferably 1 to 3 carbon atoms, and examples thereof include a methoxyethyl group and a methoxypropyl group. Examples of the alkenyl group include those having 2 to 6 carbon atoms, and examples thereof include a vinyl group and an allyl group. Examples of the acyl group include those having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms, and examples thereof include an acetyl group and an octanoyl group.
Among these, as R 2 , an alkyl group is preferable, and a methyl group and an ethyl group are particularly preferable.
 nは2~100の整数であり、好ましくは5~80の整数である。nが2未満であると、組成物からオイルブリードが発生し易く、経時にて接着力が低下してしまう。nが100を超えると、組成物の粘度が高くなり、作業性に乏しくなってしまう。
 aは1~3の整数であり、好ましくは3である。
n is an integer of 2 to 100, preferably an integer of 5 to 80. If n is less than 2, oil bleeding is likely to occur from the composition, and the adhesive strength decreases with time. If n exceeds 100, the viscosity of the composition becomes high and the workability becomes poor.
a is an integer of 1 to 3, preferably 3.
 (C)成分の25℃における粘度は、0.005~10Pa・sが好ましく、特に0.005~1Pa・sが好ましい。このような範囲であれば、硬化物のオイルブリードを抑制でき、接着剤組成物の取り扱い性に優れる。 The viscosity of the component (C) at 25 ° C. is preferably 0.005 to 10 Pa · s, and particularly preferably 0.005 to 1 Pa · s. Within such a range, oil bleeding of the cured product can be suppressed, and the handleability of the adhesive composition is excellent.
 (C)成分の好適な具体例として、下記平均式で表されるオルガノポリシロキサンを挙げることができる。 As a suitable specific example of the component (C), an organopolysiloxane represented by the following average formula can be mentioned.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 (C)成分の配合量は、(A)成分100質量部に対して、1~100質量部であり、好ましくは5~50質量部、更に好ましくは12~50質量部である。1質量部未満であると、低粘度の組成物が得られず、100質量部を超えると、組成物の接着性が悪化する。なお、(C)成分は、1種単独で用いても、2種以上を組み合わせて用いてもよい。 The blending amount of the component (C) is 1 to 100 parts by mass, preferably 5 to 50 parts by mass, and more preferably 12 to 50 parts by mass with respect to 100 parts by mass of the component (A). If it is less than 1 part by mass, a low-viscosity composition cannot be obtained, and if it exceeds 100 parts by mass, the adhesiveness of the composition deteriorates. The component (C) may be used alone or in combination of two or more.
〔(D)成分〕
 (D)成分は、下記一般式(2-1)及び(2-2)で示されるオルガノハイドロジェンシロキサンのいずれか一方又は両方であり、高接着性を発現させる役割を有する。
[Component (D)]
The component (D) is either or both of the organohydrogensiloxanes represented by the following general formulas (2-1) and (2-2), and has a role of exhibiting high adhesiveness.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 R3はそれぞれ独立に炭素数1~6のアルキル基であり、例えば、メチル、エチル、n-プロピル、n-ブチル、n-ペンチル、n-ヘキシル基等が挙げられる。これらの中でも、炭素数1~3のものが好ましく、合成のし易さ、コストの面からR3の全数のうち90モル%以上がメチル基であることがより好ましい。 R 3 is an alkyl group having 1 to 6 carbon atoms independently, and examples thereof include methyl, ethyl, n-propyl, n-butyl, n-pentyl, and n-hexyl groups. Among these, those having 1 to 3 carbon atoms are preferable, and 90 mol% or more of the total number of R 3 is more preferably a methyl group from the viewpoint of ease of synthesis and cost.
 R4はそれぞれ独立に炭素原子又は炭素原子と酸素原子を介して珪素原子に結合しているエポキシ基である。このような基としては、例えば、3-グリシドキシプロピル、3-グリシドキシエチル、3,4-エポキシシクロヘキシルエチル基等のエポキシ基含有有機基などが挙げられる。 R 4 is an epoxy group that is independently bonded to a silicon atom via a carbon atom or a carbon atom and an oxygen atom. Examples of such a group include an epoxy group-containing organic group such as 3-glycidoxypropyl, 3-glycidoxyethyl, and 3,4-epoxycyclohexylethyl group.
 iは2以上の整数であり、jは1以上の整数であり、i+jは4~12の整数であり、好ましくは4~8の整数であり、より好ましくは4~6の整数であり、更に好ましくは4である。 i is an integer of 2 or more, j is an integer of 1 or more, i + j is an integer of 4 to 12, preferably an integer of 4 to 8, more preferably an integer of 4 to 6, and further. It is preferably 4.
 式(2-2)中、Xはエーテル結合を含んでいてもよい二価炭化水素基であり、好ましくは下記式(5)で表されるビスフェノールA残基を含む基である。 In the formula (2-2), X is a divalent hydrocarbon group which may contain an ether bond, and is preferably a group containing a bisphenol A residue represented by the following formula (5).
Figure JPOXMLDOC01-appb-C000011
(破線は珪素原子との結合手を表す。)
Figure JPOXMLDOC01-appb-C000011
(The broken line represents the bond with the silicon atom.)
 kはそれぞれ独立に3~11の整数であり、好ましくは3~7の整数であり、より好ましくは3~5の整数であり、更に好ましくは3である。
 式(2-1)中のシロキサン単位の配列順は任意であってよく、ランダム、ブロック、交互のいずれであってもよい。
k is independently an integer of 3 to 11, preferably an integer of 3 to 7, more preferably an integer of 3 to 5, and even more preferably 3.
The sequence order of the siloxane units in the formula (2-1) may be arbitrary, and may be random, block, or alternate.
 (D)成分の好適な具体例として、下記構造式で表されるオルガノハイドロジェンシロキサンを挙げることができる。なお、(D)成分は、1種単独で用いても、2種以上を組み合わせて用いてもよい。 As a preferable specific example of the component (D), an organohydrogensiloxane represented by the following structural formula can be mentioned. The component (D) may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
〔(E)成分〕
 (E)成分は、下記一般式(3)で示されるオルガノハイドロジェンポリシロキサンであり、高接着性を有しつつ、組成物の硬化後の伸びを良好にする役割を担う。
Figure JPOXMLDOC01-appb-C000013
[(E) component]
The component (E) is an organohydrogenpolysiloxane represented by the following general formula (3), and plays a role of improving the elongation of the composition after curing while having high adhesiveness.
Figure JPOXMLDOC01-appb-C000013
 R5はそれぞれ独立に炭素数1~6のアルキル基であり、例えば、メチル、エチル、n-プロピル、n-ブチル、n-ヘキシル基等が挙げられる。これらの中でも、炭素数1~3のものが好ましく、合成のし易さ、コストの面からR5の全数のうち90%以上がメチル基であることがより好ましい。
 qは5~1,000の整数であり、好ましくは10~100の整数である。qが5未満であると、オルガノハイドロジェンポリシロキサンが揮発成分となりやすいため、電子部品に用いるのが困難であり、qの値が1,000を超えると、オルガノハイドロジェンポリシロキサンの粘度が高くなり、扱いが難しくなる。
R 5 is an alkyl group having 1 to 6 carbon atoms independently, and examples thereof include methyl, ethyl, n-propyl, n-butyl, and n-hexyl groups. Among these, those having 1 to 3 carbon atoms are preferable, and 90% or more of the total number of R 5 is more preferably a methyl group from the viewpoint of ease of synthesis and cost.
q is an integer of 5 to 1,000, preferably an integer of 10 to 100. When q is less than 5, it is difficult to use it for electronic parts because organohydrogenpolysiloxane tends to be a volatile component, and when q value exceeds 1,000, the viscosity of organohydrogenpolysiloxane is high. It becomes difficult to handle.
 (E)成分の具体例としては、下記平均式で示されるオルガノハイドロジェンポリシロキサンが挙げられる。なお、(E)成分は、1種単独で用いても、2種以上を組み合わせて用いてもよい。 Specific examples of the component (E) include organohydrogenpolysiloxane represented by the following average formula. The component (E) may be used alone or in combination of two or more.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 (D)及び(E)成分の配合量は、(A)成分、場合により更に(B)及び(C)成分中のアルケニル基の合計個数に対する、(D)及び(E)成分中のSi-H基の合計個数の比、即ち、[Si-H基の合計個数]/[アルケニル基の合計個数]が0.6~2.0となる量であり、好ましくは0.7~1.5となる量である。上記の比が0.6未満であると硬化物が十分な架橋構造をとれず、機械特性及び接着性が得られない。2.0を超えると伸びが低下する。 The blending amount of the components (D) and (E) is based on the total number of alkenyl groups in the components (A) and, in some cases, the components (B) and (C), and the amount of Si in the components (D) and (E). The ratio of the total number of H groups, that is, the [total number of Si—H groups] / [total number of alkenyl groups] is 0.6 to 2.0, preferably 0.7 to 1.5. Is the amount that becomes. If the above ratio is less than 0.6, the cured product cannot form a sufficient crosslinked structure, and mechanical properties and adhesiveness cannot be obtained. If it exceeds 2.0, the elongation decreases.
 更に、(D)成分と(E)成分との配合比率は、[(D)成分中のSi-H基の個数]/[(E)成分中のSi-H基の個数]が0.1~4.0となる範囲であり、好ましくは0.2~3.0となる範囲である。この配合比率が0.1未満であると、接着性が低くなり、4.0を超えると、硬化物の伸びが低下する。 Further, as for the blending ratio of the component (D) and the component (E), [the number of Si—H groups in the component (D)] / [the number of Si—H groups in the component (E)] is 0.1. It is in the range of about 4.0, preferably 0.2 to 3.0. If the blending ratio is less than 0.1, the adhesiveness is low, and if it exceeds 4.0, the elongation of the cured product is lowered.
〔(F)成分〕
 (F)成分は、熱伝導性充填材であり、組成物(硬化物)に熱伝導性を付与する役割を有する。熱伝導性充填材としては、例えば、アルミニウム粉末、銅粉末、銀粉末、ニッケル粉末、金粉末、アルミナ粉末、酸化亜鉛粉末、酸化マグネシム粉末、窒化アルミニム粉末、窒化ホウ素粉末、窒化珪素粉末、ダイヤモンド粉末、カーボン粉末、インジウム、ガリウムなどが挙げられる。
 (F)成分は、1種単独で使用しても2種類以上を併用してもよい。
[(F) component]
The component (F) is a heat conductive filler and has a role of imparting heat conductivity to the composition (cured product). Examples of the heat conductive filler include aluminum powder, copper powder, silver powder, nickel powder, gold powder, alumina powder, zinc oxide powder, magnesium oxide powder, aluminum nitride powder, boron nitride powder, silicon nitride powder, and diamond powder. , Carbon powder, indium, gallium and the like.
The component (F) may be used alone or in combination of two or more.
 熱伝導性充填材の平均粒径は、充填性及び均一性の点から、好ましくは0.1~100μm、より好ましくは0.5~90μmである。熱伝導性充填材の形状は、不定形でも球形でも如何なる形状でもよい。なお、平均粒径は、レーザー光回折法による粒度分布測定における体積平均値D50(即ち、累積体積が50%になるときの粒子径又はメジアン径)として求めることができる。 The average particle size of the thermally conductive filler is preferably 0.1 to 100 μm, more preferably 0.5 to 90 μm from the viewpoint of filling property and uniformity. The shape of the thermally conductive filler may be irregular, spherical, or any shape. The average particle size can be determined as the volume average value D 50 (that is, the particle size or the median diameter when the cumulative volume becomes 50%) in the particle size distribution measurement by the laser light diffraction method.
 熱伝導性充填材は、10W/m・K以上の熱伝導率(25℃)を有するものが好ましい。このような熱伝導性充填材であれば、硬化物に十分な熱伝導率を付与できる。なお、熱伝導率はJIS R 1611:2010に基づく値である。 The thermally conductive filler preferably has a thermal conductivity (25 ° C.) of 10 W / m · K or more. With such a heat conductive filler, sufficient heat conductivity can be imparted to the cured product. The thermal conductivity is a value based on JIS R 1611: 2010.
 (F)成分の配合量は、(A)成分100質量部に対して、500~3,000質量部であり、好ましくは1,000~2,000質量部である。(F)成分の配合量が500質量部未満であると、硬化物に所望の熱伝導率を付与することができず、3,000質量部を超えると、組成物が液体状とならず取り扱い性に劣る。 The blending amount of the component (F) is 500 to 3,000 parts by mass, preferably 1,000 to 2,000 parts by mass with respect to 100 parts by mass of the component (A). If the blending amount of the component (F) is less than 500 parts by mass, the desired thermal conductivity cannot be imparted to the cured product, and if it exceeds 3,000 parts by mass, the composition does not become liquid and is handled. Inferior in sex.
〔(G)成分〕
 (G)成分は、白金族金属系触媒である。白金族金属系触媒は、(A)成分、場合により更に(B)及び(C)成分中のアルケニル基と、(D)及び(E)成分中のSi-H基との間の付加反応を促進するものであればよく、中でも、白金及び白金化合物から選ばれる触媒が好ましい。
[(G) component]
The component (G) is a platinum group metal-based catalyst. The platinum group metal-based catalyst causes an addition reaction between the alkenyl group in the component (A) and, in some cases, the components (B) and (C) and the Si—H group in the components (D) and (E). Any catalyst may be used as long as it promotes it, and among them, a catalyst selected from platinum and a platinum compound is preferable.
 このような触媒としては、例えば、白金(白金黒を含む)、ロジウム、パラジウム等の白金族金属単体、H2PtCl4・nH2O、H2PtCl6・nH2O、NaHPtCl6・nH2O、KHPtCl6・nH2O、Na2PtCl6・nH2O、K2PtCl4・nH2O、PtCl4・nH2O、PtCl2、Na2HPtCl4・nH2O(但し、式中のnは0~6の整数であり、好ましくは0又は6である。)等の塩化白金、塩化白金酸及び塩化白金酸塩、アルコール変性塩化白金酸、塩化白金酸とオレフィンとのコンプレックス、白金黒、パラジウム等の白金族金属を、アルミナ、シリカ、カーボン等の担体に担持させたもの、ロジウム-オレフィン錯体、クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒)、塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサンとの錯体等が挙げられる。これらの白金族金属系触媒は、1種単独で使用しても2種以上を組み合わせて使用してもよい。 Examples of such a catalyst include platinum (including platinum black), rhodium, palladium and other platinum group metals alone, H 2 PtCl 4 · nH 2 O, H 2 PtCl 6 · nH 2 O, NaHP PtCl 6 · nH 2 O, KHPtCl 6・ nH 2 O, Na 2 PtCl 6・ nH 2 O, K 2 PtCl 4・ nH 2 O, PtCl 4・ nH 2 O, PtCl 2 , Na 2 HPtCl 4・ nH 2 O (However, in the formula N is an integer of 0 to 6, preferably 0 or 6), such as platinum chloride, chloroplatinic acid and chloroplatinate, alcohol-modified chloroplatinic acid, complex of chloroplatinic acid and olefin, platinum. Platinum group metals such as black and palladium supported on carriers such as alumina, silica and carbon, rhodium-olefin complex, chlorotris (triphenylphosphine) rhodium (Wilkinson catalyst), platinum chloride, platinum chloride acid or chloride. Examples thereof include a complex of chloroplatinate and a vinyl group-containing siloxane. These platinum group metal-based catalysts may be used alone or in combination of two or more.
 (G)成分の配合量は、触媒としての有効量であればよく、所望の硬化速度に応じて適宜調整すればよい。硬化速度及びコストの面から好ましくは上記(A)~(F)成分の合計質量に対し、白金族金属原子に換算した質量基準で0.1~10,000ppm、より好ましくは1~10,000ppmである。 The blending amount of the component (G) may be an effective amount as a catalyst, and may be appropriately adjusted according to a desired curing rate. From the viewpoint of curing speed and cost, the total mass of the components (A) to (F) is preferably 0.1 to 10,000 ppm, more preferably 10,000 to 10,000 ppm based on the mass converted to platinum group metal atoms. Is.
〔(H)成分〕
 本発明の熱伝導性シリコーン接着剤組成物には、室温での硬化反応の進行を抑え、シェルフライフ、ポットライフを延長させるために、(H)成分として、反応制御剤を添加してもよい。反応制御剤としては、(G)成分の触媒活性を抑制することができるものであればよく、例えば、1-エチニル-1-シクロヘキサノール、3-ブチン-1-オール等のアセチレン化合物、トリアリルイソシアヌレート、トリアリルイソシアヌレート誘導体等の含窒素化合物、トリフェニルホスフィン等の有機りん化合物、オキシム化合物、有機クロロ化合物等が挙げられる。これらの中でも、金属への腐食性の無いアセチレンアルコールが好ましい。なお、これらは組成物への分散性を向上させるためにトルエン、キシレン、イソプロピルアルコール等の有機溶剤で希釈して使用してもよい。
 (H)成分は、1種単独で用いても、2種以上を組み合わせて用いてもよい。
[(H) component]
A reaction control agent may be added as the component (H) to the thermally conductive silicone adhesive composition of the present invention in order to suppress the progress of the curing reaction at room temperature and prolong the shelf life and pot life. .. The reaction control agent may be any as long as it can suppress the catalytic activity of the component (G), for example, an acetylene compound such as 1-ethynyl-1-cyclohexanol and 3-butin-1-ol, and triallyl. Examples thereof include nitrogen-containing compounds such as isocyanurate and triallyl isocyanurate derivatives, organic phosphorus compounds such as triphenylphosphine, oxime compounds, and organic chloro compounds. Among these, acetylene alcohol, which is not corrosive to metals, is preferable. These may be diluted with an organic solvent such as toluene, xylene, or isopropyl alcohol in order to improve the dispersibility in the composition.
The component (H) may be used alone or in combination of two or more.
 (H)成分を使用する場合の配合量は、組成物の保存安定性と硬化性を両立する観点から、(A)成分100質量部に対して0.01~5質量部が好ましく、より好ましくは0.05~1質量部である。 When the component (H) is used, the blending amount is preferably 0.01 to 5 parts by mass with respect to 100 parts by mass of the component (A), more preferably, from the viewpoint of achieving both storage stability and curability of the composition. Is 0.05 to 1 part by mass.
〔その他の成分〕
 本発明の熱伝導性シリコーン接着剤組成物には、上記(A)~(H)成分以外に、公知の添加剤を本発明の目的を損なわない範囲で添加してもよい。このような添加剤としては、例えば、ヒンダードフェノール系酸化防止剤、炭酸カルシウム等の補強性、非補強性充填材、チキソトロピー向上剤としてのポリエーテル等が挙げられる。更に、必要に応じて、顔料、染料等の着色剤を添加してもよい。
[Other ingredients]
In addition to the above components (A) to (H), known additives may be added to the heat conductive silicone adhesive composition of the present invention as long as the object of the present invention is not impaired. Examples of such additives include hindered phenolic antioxidants, reinforcing and non-reinforcing fillers such as calcium carbonate, and polyethers as thixotropy improvers. Further, if necessary, a colorant such as a pigment or a dye may be added.
〔熱伝導性シリコーン接着剤組成物の製造方法〕
 本発明の熱伝導性シリコーン接着剤組成物は、(A)~(G)成分及び必要に応じて(H)成分、その他の成分を、ゲートミキサー、ニーダー、プラネタリーミキサー等を用いた公知の方法で混合して調製することができる。
 本発明の熱伝導性シリコーン接着剤は、(A),(B),(C),(F),(G)成分、及び必要に応じてその他の成分からなる第一剤と、(A),(B),(C),(D),(E),(F)成分及び必要に応じてその他の成分からなる第二剤を別々に調製し、使用前に第一剤と第二剤を混合する二剤型の組成物としてもよい。なお、第一剤及び第二剤で共通に使用される成分があってもよい。組成物をこのような二剤型とすることにより、さらに保存安定性が確保できる。
[Manufacturing method of thermally conductive silicone adhesive composition]
The thermally conductive silicone adhesive composition of the present invention is known to contain components (A) to (G), components (H) as required, and other components using a gate mixer, a kneader, a planetary mixer, or the like. It can be prepared by mixing by the method.
The thermally conductive silicone adhesive of the present invention comprises a first agent composed of (A), (B), (C), (F), (G) components, and if necessary, other components, and (A). , (B), (C), (D), (E), (F) components and, if necessary, other components are prepared separately, and the first agent and the second agent are prepared before use. May be used as a two-part composition in which the above is mixed. In addition, there may be a component commonly used in the first agent and the second agent. By using such a two-dosage form for the composition, storage stability can be further ensured.
 本発明の熱伝導性シリコーン接着剤組成物の25℃での粘度は、熱伝導性充填材の分散性、及び作業性の観点から、好ましくは50~400Pa・s、より好ましくは100~300Pa・sである。 The viscosity of the thermally conductive silicone adhesive composition of the present invention at 25 ° C. is preferably 50 to 400 Pa · s, more preferably 100 to 300 Pa · s, from the viewpoint of dispersibility and workability of the thermally conductive filler. s.
 本発明の熱伝導性シリコーン接着剤組成物の硬化条件は、特に制限されるものではなく、従来公知のシリコーンゲルと同様の条件とすることができる。また、本発明の熱伝導性シリコーン接着剤組成物は、塗布後に発熱部品からの熱によって硬化することもできるが、積極的に加熱硬化させてもよい。加熱硬化条件は、好ましくは60~150℃、より好ましくは80~120℃の温度にて、好ましくは0.1~3時間、より好ましくは0.5~2時間である。 The curing conditions of the heat conductive silicone adhesive composition of the present invention are not particularly limited, and can be the same conditions as those of conventionally known silicone gels. Further, the thermally conductive silicone adhesive composition of the present invention can be cured by heat from a heat-generating component after coating, but it may be positively cured by heating. The heat curing conditions are preferably 60 to 150 ° C., more preferably 80 to 120 ° C., preferably 0.1 to 3 hours, more preferably 0.5 to 2 hours.
 本発明の熱伝導性シリコーン接着剤組成物の硬化物の機械特性としては、JIS K 6251:2017に規定の切断時伸びが30%以上、かつJIS K 6850:1999に規定の剪断引張接着強さが0.5MPa以上であることが好ましい。このような機械特性を有するものであれば、温度ストレスによっても破断することなく発熱部品と冷却部品との間のギャップに追随し、部品全体の信頼性を飛躍的に高めることが可能となる。 The mechanical properties of the cured product of the thermally conductive silicone adhesive composition of the present invention are that the elongation at cutting specified in JIS K 6251: 2017 is 30% or more, and the shear tensile adhesive strength specified in JIS K 6850: 1999. Is preferably 0.5 MPa or more. If it has such mechanical characteristics, it can follow the gap between the heat generating component and the cooling component without breaking even by temperature stress, and the reliability of the entire component can be dramatically improved.
 また、本発明の熱伝導性シリコーン接着剤組成物の硬化物は、JIS K 6253-3:2012に規定されているタイプAデュロメータにて測定した硬度が60以上であることが好ましい。このような硬度を示すものであれば硬化が十分に進行しており、高い接着性を発現することが可能となる。 Further, the cured product of the heat conductive silicone adhesive composition of the present invention preferably has a hardness of 60 or more as measured by a type A durometer specified in JIS K6253-3: 2012. If it exhibits such hardness, curing has proceeded sufficiently, and it is possible to exhibit high adhesiveness.
 以下、実施例及び比較例を示し、本発明をより詳細に説明するが、本発明は下記の実施例に制限されるものではない。実施例及び比較例において使用した各成分を以下に示す。なお、各成分の粘度は回転粘度計による測定値である。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. Each component used in Examples and Comparative Examples is shown below. The viscosity of each component is a value measured by a rotational viscometer.
 まず、以下の各成分を用意した。
(A)成分
・A-1:両末端がジメチルビニルシリル基で封鎖され、25℃における粘度が0.6Pa・sのジメチルポリシロキサン
・A-2:両末端がジメチルビニルシリル基で封鎖され、25℃における粘度が1.0Pa・sのジメチルポリシロキサン
・A-3:両末端がジメチルビニルシリル基で封鎖され、25℃における粘度が5.0Pa・sのジメチルポリシロキサン
First, the following components were prepared.
Component (A) A-1: Both ends are sealed with a dimethylvinylsilyl group, and dimethylpolysiloxane having a viscosity at 25 ° C. of 0.6 Pa · s. A-2: Both ends are sealed with a dimethylvinylsilyl group. Didimethylpolysiloxane with a viscosity of 1.0 Pa · s at 25 ° C. A-3: Didimethylpolysiloxane with both ends sealed with a dimethylvinylsilyl group and a viscosity at 25 ° C. of 5.0 Pa · s.
(B)成分
・B-1:両末端がトリメトキシシリル基で封鎖され、25℃における粘度が1.0Pa・sのジメチルポリシロキサン
Component (B) -B-1: Dimethylpolysiloxane having both ends sealed with a trimethoxysilyl group and a viscosity of 1.0 Pa · s at 25 ° C.
(C)成分
・C-1:下記一般式で示されるオルガノポリシロキサン(25℃における粘度:35mPa・s)
Figure JPOXMLDOC01-appb-C000015
Component (C) C-1: Organopolysiloxane represented by the following general formula (viscosity at 25 ° C.: 35 mPa · s)
Figure JPOXMLDOC01-appb-C000015
(D)成分
・D-1:下記構造式で示されるオルガノハイドロジェンシロキサン
Figure JPOXMLDOC01-appb-C000016
・D-2:下記構造式で示されるオルガノハイドロジェンシロキサン
Figure JPOXMLDOC01-appb-C000017
・D-3:下記構造式で示されるオルガノハイドロジェンシロキサン
Figure JPOXMLDOC01-appb-C000018
・D-4(比較成分):下記構造式で示されるオルガノハイドロジェンシロキサン
Figure JPOXMLDOC01-appb-C000019
Component (D) -D-1: Organohydrogensiloxane represented by the following structural formula
Figure JPOXMLDOC01-appb-C000016
-D-2: Organohydrogensiloxane represented by the following structural formula
Figure JPOXMLDOC01-appb-C000017
-D-3: Organohydrogensiloxane represented by the following structural formula
Figure JPOXMLDOC01-appb-C000018
-D-4 (comparative component): Organohydrogensiloxane represented by the following structural formula
Figure JPOXMLDOC01-appb-C000019
(E)成分
・E-1:下記平均構造式で示されるオルガノハイドロジェンポリシロキサン
Figure JPOXMLDOC01-appb-C000020
・E-2(比較成分):下記平均構造式で示されるオルガノハイドロジェンポリシロキサン
Figure JPOXMLDOC01-appb-C000021
Component (E) E-1: Organohydrogenpolysiloxane represented by the following average structural formula
Figure JPOXMLDOC01-appb-C000020
-E-2 (Comparative component): Organohydrogenpolysiloxane represented by the following average structural formula
Figure JPOXMLDOC01-appb-C000021
(F)成分
 下記(i)~(iv)に示す熱伝導性充填材を、下記表1に示す組成となるように混合し、5Lゲートミキサー(商品名:5Lプラネタリミキサー、井上製作所(株)製)を用いて室温にて30分間混合してF-1及びF-2を得た。
 (i)平均粒径80μmのアルミナ粉末:熱伝導率36W/m・K
 (ii)平均粒径40μmのアルミナ粉末:熱伝導率36W/m・K
 (iii)平均粒径10μmのアルミナ粉末:熱伝導率36W/m・K
 (iv)平均粒径1.0μmのアルミナ粉末:熱伝導率36W/m・K
(F) Ingredients The thermally conductive fillers shown in (i) to (iv) below are mixed so as to have the composition shown in Table 1 below, and a 5L gate mixer (trade name: 5L planetary mixer, Inoue Seisakusho Co., Ltd.) F-1 and F-2 were obtained by mixing at room temperature for 30 minutes.
(I) Alumina powder with an average particle size of 80 μm: thermal conductivity 36 W / m · K
(Ii) Alumina powder with an average particle size of 40 μm: thermal conductivity 36 W / m · K
(Iii) Alumina powder with an average particle size of 10 μm: thermal conductivity 36 W / m · K
(Iv) Alumina powder with an average particle size of 1.0 μm: thermal conductivity 36 W / m · K
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
(G)成分
・G-1:白金-ジビニルテトラメチルジシロキサン錯体のジメチルポリシロキサン溶液(上記A-1と同じジメチルポリシロキサンに溶解したもの。白金含有量:1質量%)
Component (G) G-1: Didimethylpolysiloxane solution of platinum-divinyltetramethyldisiloxane complex (dissolved in the same dimethylpolysiloxane as A-1 above. Platinum content: 1% by mass)
(H)成分
・H-1:1-エチニル-1-シクロヘキサノール
・H-2:トリアリルイソシアヌレート
Ingredient (H) ・ H-1: 1-ethynyl-1-cyclohexanol ・ H-2: Triallyl isocyanurate
〔熱伝導性シリコーン接着剤組成物の調製〕
 5Lゲートミキサー(商品名:5Lプラネタリミキサー、井上製作所(株)製)に、(A),(B),(C)成分を入れ、(F)成分を表2に示す配合量で加え、150℃で2時間混合した。次に、(H)成分を表2に示す配合量で加え、25℃にて30分間混合した。その後、更に(G)成分を表2に示す配合量で加え、25℃にて30分間混合した。最後に、(D)及び(E)成分を、表2に示す配合量で加え、25℃にて30分間混合した。得られた各組成物について下記に示す方法にて各物性を測定した。結果を表2に併記する。
[Preparation of thermally conductive silicone adhesive composition]
Ingredients (A), (B), and (C) are added to a 5L gate mixer (trade name: 5L planetary mixer, manufactured by Inoue Seisakusho Co., Ltd.), and the component (F) is added in the blending amount shown in Table 2, and 150 Mix at ° C. for 2 hours. Next, the component (H) was added in the blending amounts shown in Table 2 and mixed at 25 ° C. for 30 minutes. Then, the component (G) was further added in the blending amount shown in Table 2, and mixed at 25 ° C. for 30 minutes. Finally, the components (D) and (E) were added in the blending amounts shown in Table 2 and mixed at 25 ° C. for 30 minutes. The physical characteristics of each of the obtained compositions were measured by the methods shown below. The results are also shown in Table 2.
〔粘度〕
 熱伝導性シリコーン接着剤組成物の25℃における粘度を、PC-10AA粘度計((株)マルコム製)を用いて回転数10rpmで測定した。
〔viscosity〕
The viscosity of the thermally conductive silicone adhesive composition at 25 ° C. was measured at a rotation speed of 10 rpm using a PC-10AA viscometer (manufactured by Malcolm Co., Ltd.).
〔硬度〕
 熱伝導性シリコーン接着剤組成物を、110℃で10分間プレス硬化した。得られた厚さ2.0mmのシリコーンシートを3枚重ね、JIS K 6253-3:2012に規定されるタイプAデュロメータにより硬さを測定した。
〔hardness〕
The thermally conductive silicone adhesive composition was press-cured at 110 ° C. for 10 minutes. Three obtained silicone sheets having a thickness of 2.0 mm were stacked, and the hardness was measured by a type A durometer specified in JIS K 6253-3: 2012.
〔引張り強さ、切断時伸び〕
 熱伝導性シリコーン接着剤組成物を、110℃で10分間プレス硬化した。得られた厚さ2.0mmのシリコーンシートの引張強さ、切断時伸びを、JIS K 6251:2017に従って測定した。
[Tensile strength, elongation at cutting]
The thermally conductive silicone adhesive composition was press-cured at 110 ° C. for 10 minutes. The tensile strength and elongation at cutting of the obtained silicone sheet having a thickness of 2.0 mm were measured according to JIS K 6251: 2017.
〔剪断引張接着強さ〕
 一対の厚み1.0mmのアルミニウム(JIS H 4000 A1050P)板、及び一対の厚み2.0mmのPBT(ジュラネックス3300、ポリプラスチックス(株)製)板の間に、熱伝導性シリコーン接着剤組成物を、厚さが2.0mm、接着面積が25mm×10mmとなるように挟み込んだ状態で、110℃で10分間加熱し、該組成物を硬化させて接着試験片を作製した。得られた試験片の剪断引張接着強さを、JIS K 6850:1999に従って測定した。
[Shear tensile adhesive strength]
A heat conductive silicone adhesive composition is placed between a pair of 1.0 mm thick aluminum (JIS H 4000 A1050P) plates and a pair of 2.0 mm thick PBT (Duranex 3300, manufactured by Polyplastics Co., Ltd.) plates. The composition was heated at 110 ° C. for 10 minutes in a state of being sandwiched so as to have a thickness of 2.0 mm and an adhesive area of 25 mm × 10 mm, and the composition was cured to prepare an adhesive test piece. The shear tensile adhesive strength of the obtained test piece was measured according to JIS K 6850: 1999.
〔熱伝導率〕
 熱伝導性シリコーン接着剤組成物を、110℃で10分間プレス硬化した。得られた硬化物の熱伝導率を、ISO 22007-2に従って、ホットディスク法熱物性測定装置TPA-501(京都電子工業(株)製)を用い、環境温度25℃で測定した。
〔Thermal conductivity〕
The thermally conductive silicone adhesive composition was press-cured at 110 ° C. for 10 minutes. The thermal conductivity of the obtained cured product was measured at an ambient temperature of 25 ° C. using a hot disk method thermophysical characteristic measuring device TPA-501 (manufactured by Kyoto Electronics Industry Co., Ltd.) in accordance with ISO 22007-2.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023

Claims (5)

  1.  (A)25℃における粘度が0.3~50Pa・sであり、珪素原子と結合するアルケニル基を1分子中に少なくとも2個有し、かつ、オルガノキシシリル基を有しないオルガノポリシロキサン: 100質量部、
    (B)25℃における粘度が0.3~50Pa・sであり、両末端がトリアルコキシシリル基で封鎖されたオルガノポリシロキサン: 1~100質量部、
    (C)下記一般式(1)で示されるオルガノポリシロキサン: 1~100質量部、
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1はそれぞれ独立に炭素数1~10の非置換又は置換の一価炭化水素基であり、R2はそれぞれ独立にアルキル基、アルコキシアルキル基、アルケニル基又はアシル基である。nは2~100の整数であり、aは1~3の整数である。)
    (D)下記一般式(2-1)及び(2-2)で示されるオルガノハイドロジェンシロキサンのいずれか一方又は両方、
    Figure JPOXMLDOC01-appb-C000002
    (式中、R3はそれぞれ独立に炭素数1~6のアルキル基であり、R4はそれぞれ独立に炭素原子又は炭素原子と酸素原子を介して珪素原子に結合しているエポキシ基である。iは2以上の整数であり、jは1以上の整数であり、i+jは4~12の整数である。式(2-1)において、シロキサン単位の配列順は任意であってよい。Xはエーテル結合を含んでいてもよい2価炭化水素基であり、kはそれぞれ独立に3~11の整数である。)
    (E)下記一般式(3)で示されるオルガノハイドロジェンポリシロキサン、
    Figure JPOXMLDOC01-appb-C000003
    (式中、R5はそれぞれ独立に炭素数1~6のアルキル基であり、qは5~1,000の整数である。)
    (F)熱伝導性充填材: 500~3,000質量部、及び
    (G)白金族金属系触媒
    を含有し、
    [Si-H基の合計個数]/[アルケニル基の合計個数]が0.6~2.0であり、[(D)成分中のSi-H基の個数]/[(E)成分中のSi-H基の個数]が0.1~4.0である熱伝導性シリコーン接着剤組成物。
    (A) Organopolysiloxane having a viscosity at 25 ° C. of 0.3 to 50 Pa · s, having at least two alkenyl groups bonded to silicon atoms in one molecule, and having no organoxisilyl group: 100. Mass part,
    (B) Organopolysiloxane having a viscosity at 25 ° C. of 0.3 to 50 Pa · s and both ends sealed with a trialkoxysilyl group: 1 to 100 parts by mass,
    (C) Organopolysiloxane represented by the following general formula (1): 1 to 100 parts by mass,
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 1 is independently an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, and R 2 is independently an alkyl group, an alkoxyalkyl group, an alkenyl group or an acyl group, respectively. n is an integer of 2 to 100, and a is an integer of 1 to 3.)
    (D) One or both of the organohydrogensiloxanes represented by the following general formulas (2-1) and (2-2),
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 3 is an alkyl group having 1 to 6 carbon atoms independently, and R 4 is an epoxy group independently bonded to a silicon atom via a carbon atom or a carbon atom and an oxygen atom. i is an integer of 2 or more, j is an integer of 1 or more, and i + j is an integer of 4 to 12. In the formula (2-1), the arrangement order of the siloxane units may be arbitrary. X is It is a divalent hydrocarbon group that may contain an ether bond, and k is an independently integer of 3 to 11).
    (E) Organohydrogenpolysiloxane represented by the following general formula (3),
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, R 5 is an alkyl group having 1 to 6 carbon atoms independently, and q is an integer of 5 to 1,000 carbon atoms.)
    (F) Thermally conductive filler: 500 to 3,000 parts by mass, and (G) platinum group metal-based catalyst.
    [Total number of Si—H groups] / [Total number of alkenyl groups] is 0.6 to 2.0, and [Number of Si—H groups in (D) component] / [(E) component. A thermally conductive silicone adhesive composition having a [number of Si—H groups] of 0.1 to 4.0.
  2.  更に、(H)反応制御剤を、(A)成分100質量部に対して、0.01~5.0質量部含有する請求項1記載の熱伝導性シリコーン接着剤組成物。 The thermally conductive silicone adhesive composition according to claim 1, further comprising (H) a reaction control agent in an amount of 0.01 to 5.0 parts by mass with respect to 100 parts by mass of the component (A).
  3.  請求項1又は2記載の熱伝導性シリコーン接着剤組成物の硬化物。 A cured product of the thermally conductive silicone adhesive composition according to claim 1 or 2.
  4.  切断時伸びが30%以上であり、かつ剪断引張接着強さが0.5MPa以上である請求項3記載の硬化物。 The cured product according to claim 3, which has an elongation at the time of cutting of 30% or more and a shear tensile adhesive strength of 0.5 MPa or more.
  5.  タイプAデュロメーター硬度が60以上である請求項3又は4記載の硬化物。 The cured product according to claim 3 or 4, which has a type A durometer hardness of 60 or more.
PCT/JP2020/047621 2020-01-21 2020-12-21 Thermally conductive silicone adhesive composition WO2021149431A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020007289A JP7290118B2 (en) 2020-01-21 2020-01-21 Thermally conductive silicone adhesive composition
JP2020-007289 2020-01-21

Publications (1)

Publication Number Publication Date
WO2021149431A1 true WO2021149431A1 (en) 2021-07-29

Family

ID=76992574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047621 WO2021149431A1 (en) 2020-01-21 2020-12-21 Thermally conductive silicone adhesive composition

Country Status (2)

Country Link
JP (1) JP7290118B2 (en)
WO (1) WO2021149431A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132192A1 (en) * 2022-01-07 2023-07-13 信越化学工業株式会社 Highly thermally conductive silicone composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032481A1 (en) * 2005-09-15 2007-03-22 Nihon Handa Co., Ltd. Thermosetting silicone rubber composition, electronic component and electronic device
WO2010032870A1 (en) * 2008-09-17 2010-03-25 Dow Corning Toray Co., Ltd. Liquid die bonding agent
JP2011122000A (en) * 2009-12-08 2011-06-23 Shin-Etsu Chemical Co Ltd Silicone composition for high thermal conductivity potting material and method for selecting high thermal conductivity potting material
JP2012067153A (en) * 2010-09-21 2012-04-05 Shin-Etsu Chemical Co Ltd Thermally conductive silicone adhesive composition and thermally conductive silicone elastomer molding
WO2015155950A1 (en) * 2014-04-09 2015-10-15 東レ・ダウコーニング株式会社 Curable organopolysiloxane composition, and protective-agent or adhesive-agent composition for electrical/electronic components
JP2018009127A (en) * 2016-07-15 2018-01-18 信越化学工業株式会社 Silicone gel composition
JP2018193491A (en) * 2017-05-18 2018-12-06 信越化学工業株式会社 Thermal conductive silicone rubber composite sheet

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007031669A (en) * 2005-07-29 2007-02-08 Shin Etsu Polymer Co Ltd Liquid adhesive
JP5019036B2 (en) * 2006-04-03 2012-09-05 信越化学工業株式会社 Silicone rubber adhesive
JP5068988B2 (en) * 2006-12-22 2012-11-07 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 Adhesive polyorganosiloxane composition

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032481A1 (en) * 2005-09-15 2007-03-22 Nihon Handa Co., Ltd. Thermosetting silicone rubber composition, electronic component and electronic device
WO2010032870A1 (en) * 2008-09-17 2010-03-25 Dow Corning Toray Co., Ltd. Liquid die bonding agent
JP2011122000A (en) * 2009-12-08 2011-06-23 Shin-Etsu Chemical Co Ltd Silicone composition for high thermal conductivity potting material and method for selecting high thermal conductivity potting material
JP2012067153A (en) * 2010-09-21 2012-04-05 Shin-Etsu Chemical Co Ltd Thermally conductive silicone adhesive composition and thermally conductive silicone elastomer molding
WO2015155950A1 (en) * 2014-04-09 2015-10-15 東レ・ダウコーニング株式会社 Curable organopolysiloxane composition, and protective-agent or adhesive-agent composition for electrical/electronic components
JP2018009127A (en) * 2016-07-15 2018-01-18 信越化学工業株式会社 Silicone gel composition
JP2018193491A (en) * 2017-05-18 2018-12-06 信越化学工業株式会社 Thermal conductive silicone rubber composite sheet

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023132192A1 (en) * 2022-01-07 2023-07-13 信越化学工業株式会社 Highly thermally conductive silicone composition

Also Published As

Publication number Publication date
JP2021113289A (en) 2021-08-05
JP7290118B2 (en) 2023-06-13

Similar Documents

Publication Publication Date Title
JP5372388B2 (en) Thermally conductive silicone grease composition
JP4646496B2 (en) Thermally conductive silicone composition
JP5304588B2 (en) Thermally conductive silicone composition and cured product thereof
JP6149831B2 (en) Silicone composition
JP6217588B2 (en) Thermally conductive silicone potting composition
JPH0525263B2 (en)
KR102106759B1 (en) Thermally conductive silicone composition
JP6614362B2 (en) Thermally conductive silicone composition
JP2013227374A (en) Thermally-curable heat-conductive silicone grease composition
JP2011178821A (en) Heat conductive silicone composition and cured product of the same
JP6874366B2 (en) Silicone composition and its cured product
JP6933198B2 (en) Thermally conductive silicone composition and its manufacturing method
JP6240593B2 (en) Thermally conductive silicone composition and cured product thereof
TWI824104B (en) High thermal conductivity polysiloxane composition and manufacturing method thereof
JP2001139818A (en) Thermally conductive silicone rubber composition
JP2019131734A (en) Two-liquid addition reaction curable heat release silicone composition and manufacturing method therefor
CN112236482B (en) Heat-conductive silicone composition and method for producing same
JP2019077845A (en) Thermally conductive silicone potting composition
WO2021149431A1 (en) Thermally conductive silicone adhesive composition
CN115667407A (en) Silicone composition with high thermal conductivity
JP2019077843A (en) Thermally conductive silicone potting composition and cured product thereof
JP2008160126A (en) Cooling structure of electronic component
JP7276212B2 (en) Thermally conductive silicone composition and method for producing the same
JP2021046464A (en) Silicone composition, and cured product of the same
JP7088123B2 (en) Method for Producing Thermally Conductive Silicone Composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915732

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915732

Country of ref document: EP

Kind code of ref document: A1