JP2008160126A - Cooling structure of electronic component - Google Patents

Cooling structure of electronic component Download PDF

Info

Publication number
JP2008160126A
JP2008160126A JP2007329433A JP2007329433A JP2008160126A JP 2008160126 A JP2008160126 A JP 2008160126A JP 2007329433 A JP2007329433 A JP 2007329433A JP 2007329433 A JP2007329433 A JP 2007329433A JP 2008160126 A JP2008160126 A JP 2008160126A
Authority
JP
Japan
Prior art keywords
group
cooling structure
electronic component
heat
thermoconductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007329433A
Other languages
Japanese (ja)
Inventor
Masaya Arakawa
雅弥 荒川
Suketaka Sakurai
祐貴 櫻井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2007329433A priority Critical patent/JP2008160126A/en
Publication of JP2008160126A publication Critical patent/JP2008160126A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cooling structure of an electronic component provided with a thermoconductive silicone rubber molding as a thermoconductive material between the thermal electronic component and a thermal dissipation member, which molding has almost no plasticizer added, has a low hardness and a strength, and can be stably manufactured. <P>SOLUTION: The cooling structure is that of an electronic component provided with the thermoconductive material between a thermal boundary surface of the heat generating electronic component and the thermal dissipation member. The thermoconductive material is composed of the thermoconductive silicone molding obtained by curing and molding a composition containing 100 parts by weight of (a) an organopolysiloxane having an alkenyl group in one molecule, 200 to 3,000 parts by weight of (b) a thermoconductive filler, an amount of (c) an organohydrogenpolysiloxane having one or two hydrogen atoms directly bonded to silicon atoms on the average in one molecule, the amount corresponding to 0.1 to 5 equivalents of hydrogen atoms directly bonded to silicon atoms based on the alkenyl group in the (a) component, and 0.1 to 500 ppm of (d) a platinum group curing catalyst to the (a) component in terms of platinum group element. Thereby provided is the cooling structure of an electronic component having as a thermoconductive material the thermoconductive silicone molding having an excellent thermoconductivity, a low hardness and a high strength, and little oil-bleeding. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、電子部品の冷却のために、発熱性電子部品の熱境界面とヒートシンク又は回路基板等の熱放散部材との間に熱伝達材料を介装した電子部品の冷却構造に関する。   The present invention relates to an electronic component cooling structure in which a heat transfer material is interposed between a heat boundary surface of a heat-generating electronic component and a heat dissipation member such as a heat sink or a circuit board for cooling the electronic component.

パーソナルコンピューター、デジタルビデオディスク、携帯電話等の電子機器に使用されるCPU、ドライバICやメモリー等のLSIチップは、高性能化・高速化・小型化・高集積化に伴い、それ自身が大量の熱を発生するようになり、その熱によるチップの温度上昇はチップの動作不良、破壊を引き起こす。そのため、動作中のチップの温度上昇を抑制するための多くの熱放散方法及びそれに使用する熱放散部材が提案されている。   LSI chips such as CPUs, driver ICs, and memories used in electronic devices such as personal computers, digital video disks, and mobile phones are becoming more and more themselves as performance, speed, size, and integration increase. Heat is generated, and the temperature rise of the chip due to the heat causes malfunction and destruction of the chip. Therefore, many heat dissipating methods for suppressing the temperature rise of the chip during operation and heat dissipating members used therefor have been proposed.

従来、電子機器等においては、動作中のチップの温度上昇を抑えるために、アルミニウムや銅等の熱伝導率の高い金属板を用いたヒートシンクが使用されている。このヒートシンクは、そのチップが発生する熱を伝導し、その熱を外気との温度差によって表面から放出する。   Conventionally, in an electronic device or the like, a heat sink using a metal plate having a high thermal conductivity such as aluminum or copper is used in order to suppress a temperature rise of a chip during operation. The heat sink conducts heat generated by the chip and releases the heat from the surface due to a temperature difference from the outside air.

ここで、チップから発生する熱をヒートシンクに効率よく伝えるために、ヒートシンクをチップに密着させる必要があるが、各チップの高さの違いや組み付け加工による公差があるため、柔軟性を有するシートや、グリースをチップとヒートシンクとの間に介装させ、このシート又はグリースを介してチップからヒートシンクへの熱伝導を実現している。   Here, in order to efficiently transfer the heat generated from the chip to the heat sink, it is necessary to closely attach the heat sink to the chip, but because there is a difference in height of each chip and tolerance due to assembly processing, a flexible sheet or The grease is interposed between the chip and the heat sink, and heat conduction from the chip to the heat sink is realized through this sheet or grease.

シートはグリースに比べ取り扱い性に優れており、熱伝導性シリコーンゴム等で形成された熱伝導シート(熱伝導性シリコーンゴムシート)は様々な分野に用いられている。   Sheets are superior in handling properties compared to grease, and heat conductive sheets (heat conductive silicone rubber sheets) formed of heat conductive silicone rubber or the like are used in various fields.

これら熱伝導シートは、チップ及びヒートシンクに対する密着性を向上させるため、低硬度であることを要求されることが多い。しかしながら、高い熱伝導性を得るためには熱伝導性フィラーをシリコーンゴム成形物中に大量に充填する必要があり、フィラーが大量に充填されたシリコーンゴム成形物はその硬度が非常に高くなってしまうという相反する傾向を示す。   These heat conductive sheets are often required to have low hardness in order to improve adhesion to the chip and the heat sink. However, in order to obtain high thermal conductivity, it is necessary to fill the silicone rubber molding with a large amount of heat conductive filler, and the silicone rubber molding with a large amount of filler filled has a very high hardness. It shows a contradictory tendency to end up.

この場合、大量の可塑剤を添加することで成形物の硬度を低下させることが可能であるが、大量の可塑剤を添加した結果、成形物の硬度の低下は実現できても、成形物そのものの強度低下による取り扱い性の低下、実装後に添加した可塑剤が成形物より滲み出し、実装部周辺を汚染してしまうオイルブリードの問題等が指摘されていた。
なお、本発明に関連する先行文献として、下記のものが挙げられる。
登録実用新案公報第3023821号
In this case, it is possible to reduce the hardness of the molded product by adding a large amount of plasticizer, but as a result of adding a large amount of plasticizer, a decrease in the hardness of the molded product can be realized, the molded product itself It has been pointed out that there is a problem of oil bleed, which is caused by a decrease in handling property due to a decrease in strength and a plasticizer added after mounting oozes out from a molded product and contaminates the periphery of the mounting part.
In addition, the following are mentioned as prior literature relevant to the present invention.
Registered Utility Model Publication No. 3023821

本発明は、上記事情に鑑みてなされたものであり、発熱性電子部品と熱放散部材との間に熱伝達材料として可塑剤をほとんど添加せず、かつ低硬度で強度があり、安定的に製造することが可能な熱伝導性シリコーンゴム成形物を介装した電子部品の冷却構造を提供することを目的とする。   The present invention has been made in view of the above circumstances, hardly adds a plasticizer as a heat transfer material between the heat-generating electronic component and the heat dissipation member, has low hardness and strength, and is stable. It is an object of the present invention to provide a cooling structure for an electronic component that includes a thermally conductive silicone rubber molding that can be manufactured.

本発明者は、上記目的を達成するため鋭意検討した結果、熱伝達材料として用いられる熱伝導性シリコーンゴム成形物を得るための組成物として一分子中にアルケニル基を含有するオルガノポリシロキサン、熱伝導性充填剤、一分子中に平均で1個以上3個未満の、ケイ素原子に直接結合した水素原子(Si−H基)を有するオルガノハイドロジェンポリシロキサン、白金族系硬化触媒をそれぞれ特定量配合すると、可塑剤をほとんど添加せず、かつ低硬度で強度があり、安定的に成形物を得ることができることを知見し、本発明をなすに至ったものである。   As a result of intensive studies to achieve the above object, the present inventor has obtained an organopolysiloxane containing an alkenyl group in one molecule as a composition for obtaining a thermally conductive silicone rubber molded product used as a heat transfer material, Specific amounts of conductive fillers, organohydrogenpolysiloxanes with hydrogen atoms (Si-H groups) directly bonded to silicon atoms, on average 1 to less than 3 per molecule, and platinum group curing catalysts When blended, it was found that almost no plasticizer was added, the hardness was low, the strength was high, and a molded product could be stably obtained, and the present invention was achieved.

従って、本発明は、
発熱性電子部品の熱境界面と熱放散部材との間に熱伝達材料を介装してなる電子部品の冷却構造であって、前記熱伝達材料が、
(a)一分子中にアルケニル基を含有するオルガノポリシロキサン 100重量部
(b)熱伝導性充填剤 200〜3000重量部
(c)一分子中に平均で1個以上3個未満の、ケイ素原子に直接結合した水素原子を有するオルガノハイドロジェンポリシロキサン
(a)成分中のアルケニル基に対して、ケイ素原子
に直接結合した水素原子が0.1〜5当量となる量
(d) 白金族系硬化触媒
(a)成分に対して白金族元素換算で0.1〜500ppm
を含有する組成物を硬化・成形してなる熱伝導性シリコーンゴム成形物からなることを特徴とする電子部品の冷却構造を提供する。
Therefore, the present invention
A cooling structure for an electronic component comprising a heat transfer material interposed between a heat boundary surface of the heat-generating electronic component and a heat dissipation member, wherein the heat transfer material is
(A) Organopolysiloxane containing an alkenyl group in one molecule 100 parts by weight (b) Thermally conductive filler 200-3000 parts by weight (c) Silicon atoms having an average of 1 or more and less than 3 in one molecule Organohydrogenpolysiloxane having a hydrogen atom directly bonded to
(A) silicon atom relative to alkenyl group in component
The amount of hydrogen atoms directly bound to 0.1 to 5 equivalents (d) platinum group curing catalyst
(A) 0.1-500 ppm in terms of platinum group element
An electronic component cooling structure comprising a thermally conductive silicone rubber molded product obtained by curing and molding a composition containing the above.

本発明によれば、優れた熱伝導性をもち、低硬度で、強度が強く、オイルブリードが少ない熱伝導性シリコーン成形物を熱伝達材料とした電子部品の冷却構造を与える。   ADVANTAGE OF THE INVENTION According to this invention, the cooling structure of the electronic component which used the heat conductive silicone molding which has the outstanding heat conductivity, is low hardness, is strong, and has few oil bleeds as a heat transfer material is given.

本発明の(a)成分は、一分子中にアルケニル基を含有するオルガノポリシロキサンであり、アルケニル基は、一分子中に少なくとも2個含有することが好ましい。また、主鎖部分が基本的にジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状のものが好ましい。オルガノポリシロキサンは、分子構造の一部に分枝状の構造を含んだものであってもよく、また環状体であってもよいが、硬化物の機械的強度等、物性の点から直鎖状のジオルガノポリシロキサンが好ましい。アルケニル基は、分子鎖の両末端にのみ存在していても、或いは分子鎖の両末端及び分子鎖の途中に存在していてもよい。   The component (a) of the present invention is an organopolysiloxane containing an alkenyl group in one molecule, and preferably contains at least two alkenyl groups in one molecule. Further, it is preferable that the main chain part is basically composed of repeating diorganosiloxane units, and the molecular chain both ends are blocked with a triorganosiloxy group. Organopolysiloxane may contain a branched structure in a part of its molecular structure or may be a cyclic body, but it is linear from the viewpoint of physical properties such as mechanical strength of the cured product. A diorganopolysiloxane in the form of a powder is preferred. The alkenyl group may be present only at both ends of the molecular chain, or may be present at both ends of the molecular chain and in the middle of the molecular chain.

(a)成分の具体例として、下記一般式(1)で表されるオルガノポリシロキサンが挙げられる。

Figure 2008160126
(式中、R1は独立に脂肪族不飽和結合を含有しない炭素数1〜10、好ましくは1〜6の非置換又は置換の1価炭化水素基であり、Xはアルケニル基であり、n,mは0又は1以上の整数である。) Specific examples of the component (a) include organopolysiloxanes represented by the following general formula (1).
Figure 2008160126
(In the formula, R 1 independently represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms not containing an aliphatic unsaturated bond, X represents an alkenyl group, and n , M is 0 or an integer of 1 or more.)

式中、R1の脂肪族不飽和結合を含有しない炭素数1〜10の非置換又は置換の1価炭化水素基としては、例えばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、また、これらの基の水素原子の一部又は全部を、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換した基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等が挙げられ、好ましくは、メチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基、フェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基等が挙げられる。 In the formula, an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms that does not contain an aliphatic unsaturated bond represented by R 1 includes, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl Group, tert-butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and other alkyl groups, cyclopentyl group, cyclohexyl group, cycloheptyl group and other cycloalkyl groups, phenyl group, Aryl groups such as tolyl group, xylyl group, naphthyl group, aralkyl groups such as benzyl group, phenylethyl group, phenylpropyl group, methylbenzyl group, etc. A group substituted with a halogen atom such as bromine, cyano group, etc., for example, chloromethyl group, 2-bromoethyl group, 3-chloro Propyl group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5,6,6,6-nonafluorohexyl group Preferably, an unsubstituted or substituted methyl group, ethyl group, propyl group, chloromethyl group, bromoethyl group, 3,3,3-trifluoropropyl group, cyanoethyl group, phenyl group, chlorophenyl group, fluorophenyl group, etc. A phenyl group etc. are mentioned.

Xのアルケニル基としては、例えばビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等の炭素数2〜8のものが挙げられ、中でもビニル基、アリル基等が好ましく、特にビニル基が好ましい。   Examples of the alkenyl group of X include those having 2 to 8 carbon atoms such as vinyl group, allyl group, propenyl group, isopropenyl group, butenyl group, hexenyl group, cyclohexenyl group, etc. Among them, vinyl group, allyl group, etc. And a vinyl group is particularly preferable.

n,mは0又は1以上の整数であるが、10≦n+m≦10,000を満足する整数が好ましく、特に50≦n+m≦2,000を満足する整数が好ましく、更に100≦n+m≦1,000かつ0≦m/(n+m)≦0.1を満足する整数が好ましい。   n and m are integers of 0 or 1 or more, preferably an integer satisfying 10 ≦ n + m ≦ 10,000, particularly preferably an integer satisfying 50 ≦ n + m ≦ 2,000, and more preferably 100 ≦ n + m ≦ 1, 000 and an integer satisfying 0 ≦ m / (n + m) ≦ 0.1 are preferable.

なお、オルガノポリシロキサンは、複数の異なる粘度のものを併用してもよい。   Organopolysiloxanes having a plurality of different viscosities may be used in combination.

(b)成分の熱伝導性充填剤としては、非磁性の銅、アルミニウム等の金属、アルミナ、シリカ、マグネシア、ベンガラ、ベリリア、チタニア、ジルコニア等の金属酸化物、窒化アルミニウム、窒化ケイ素、窒化ホウ素等の窒化物、人工ダイヤモンドあるいは炭化ケイ素等が好ましい。   Component (b) includes thermally conductive fillers such as non-magnetic metals such as copper and aluminum, metal oxides such as alumina, silica, magnesia, bengara, beryllia, titania and zirconia, aluminum nitride, silicon nitride and boron nitride. Nitride such as, artificial diamond or silicon carbide is preferable.

これら熱伝導性充填剤は、平均粒径が0.1〜100μmが好ましく、特に0.5〜50μmが好ましく、更に0.5〜30μmが好ましい。これら充填剤は1種単独で用いてもよいし、2種以上を混合して用いてもよい。また、平均粒径の異なる粒子を2種以上用いることも可能である。   These heat conductive fillers preferably have an average particle size of 0.1 to 100 μm, particularly preferably 0.5 to 50 μm, and more preferably 0.5 to 30 μm. These fillers may be used individually by 1 type, and may mix and use 2 or more types. Two or more kinds of particles having different average particle diameters can be used.

上記(b)成分の配合量は、(a)成分100重量部に対し200〜3000重量部であり、特には300〜1500重量部であることが好ましい。   The blending amount of the component (b) is 200 to 3000 parts by weight, particularly 300 to 1500 parts by weight, with respect to 100 parts by weight of the component (a).

(c)成分は、一分子中に平均で1個以上3個未満の、ケイ素原子に直接結合した水素原子を有するオルガノハイドロジェンポリシロキサンである。ケイ素原子に直接結合する水素原子(すなわち、Si−H基)は、一分子中に平均で1.5〜2.5個が好ましく、更に1.8〜2.2個が好ましい。Si−H基の数が1個未満の場合、硬化しないおそれがあり、Si−H基の数が3個以上だと、所望の軟らかさを得ることが困難になる。但し、Si−H基の数は一分子レベルにおいて適応されるものではなく、平均での値であり、3個以上のSi−H基を有する分子やSi−H基を有さない分子が、ある程度存在してもよい。   Component (c) is an organohydrogenpolysiloxane having an average of 1 or more and less than 3 hydrogen atoms directly bonded to silicon atoms in one molecule. The number of hydrogen atoms (that is, Si—H groups) directly bonded to the silicon atom is preferably 1.5 to 2.5 on average per molecule, and more preferably 1.8 to 2.2. When the number of Si—H groups is less than 1, there is a possibility that the composition does not cure. When the number of Si—H groups is 3 or more, it is difficult to obtain a desired softness. However, the number of Si—H groups is not adapted at a single molecule level, and is an average value. A molecule having three or more Si—H groups or a molecule having no Si—H groups is It may exist to some extent.

オルガノハイドロジェンポリシロキサンとしては、下記平均組成式(2)〜(4)で表されるオルガノハイドロジェンポリシロキサンが挙げられる。   Examples of the organohydrogenpolysiloxane include organohydrogenpolysiloxanes represented by the following average composition formulas (2) to (4).

Figure 2008160126
(式中、R2は独立に脂肪族不飽和結合を含有しない炭素数1〜10、好ましくは1〜6の非置換又は置換の1価炭化水素基であり、o,q,sは0以上の正数、p,r,tはそれぞれ、1≦p<3、r<2、t<1を満たす正数である。)
Figure 2008160126
(In the formula, R 2 independently represents an unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms, preferably 1 to 6 carbon atoms not containing an aliphatic unsaturated bond, and o, q and s are 0 or more. Are positive numbers that satisfy 1 ≦ p <3, r <2, and t <1, respectively.)

2の脂肪族不飽和結合を含有しない炭素数1〜10の非置換又は置換の1価炭化水素基としては、たとえばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert−ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基、ナフチル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、メチルベンジル基等のアラルキル基、また、これらの基の水素原子の一部又は全部を、フッ素、塩素、臭素等のハロゲン原子、シアノ基等で置換した基、例えば、クロロメチル基、2−ブロモエチル基、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、クロロフェニル基、フルオロフェニル基、シアノエチル基、3,3,4,4,5,5,6,6,6−ノナフルオロヘキシル基等が挙げられ、好ましくは、メチル基、エチル基、プロピル基、クロロメチル基、ブロモエチル基、3,3,3−トリフルオロプロピル基、シアノエチル基等の炭素数1〜6、特に好ましくは1〜3の非置換又は置換のアルキル基、及びフェニル基、クロロフェニル基、フルオロフェニル基等の非置換又は置換のフェニル基が挙げられる。また、上記平均組成式(2)〜(4)で表されるオルガノハイドロジェンポリシロキサンは、それぞれ1種単独でも、2種以上を併用してもよい。 Examples of the unsubstituted or substituted monovalent hydrocarbon group having 1 to 10 carbon atoms which does not contain an aliphatic unsaturated bond represented by R 2 include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert group -Butyl group, pentyl group, neopentyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group and other alkyl groups, cyclopentyl group, cyclohexyl group, cycloheptyl group and other cycloalkyl groups, phenyl group, tolyl group, Aryl group such as xylyl group and naphthyl group, aralkyl group such as benzyl group, phenylethyl group, phenylpropyl group and methylbenzyl group, and some or all of hydrogen atoms of these groups may be substituted with fluorine, chlorine, bromine, etc. Groups substituted by halogen atoms, cyano groups, etc., such as chloromethyl, 2-bromoethyl, 3-chloropropyl Pyr group, 3,3,3-trifluoropropyl group, chlorophenyl group, fluorophenyl group, cyanoethyl group, 3,3,4,4,5,5,6,6,6-nonafluorohexyl group , Preferably a methyl group, an ethyl group, a propyl group, a chloromethyl group, a bromoethyl group, a 3,3,3-trifluoropropyl group, a cyanoethyl group, etc. Alternatively, a substituted alkyl group and an unsubstituted or substituted phenyl group such as a phenyl group, a chlorophenyl group, and a fluorophenyl group can be given. The organohydrogenpolysiloxanes represented by the above average composition formulas (2) to (4) may be used alone or in combination of two or more.

o,q,sは0以上の正数、p,r,tはそれぞれ、1≦p<3、r<2、t<1を満たす正数である。これらの数値は(c)成分の平均組成式での数値を示しているものであり、各分子レベルについては制限されるものでない。   o, q, and s are positive numbers of 0 or more, and p, r, and t are positive numbers that satisfy 1 ≦ p <3, r <2, and t <1, respectively. These numerical values show numerical values in the average composition formula of the component (c), and are not limited for each molecular level.

(c)成分の添加量は、(a)成分中のアルケニル基に対して、ケイ素原子に直接結合した水素原子が0.1〜5当量となる量であり、好ましくは0.3〜3当量となる量、更に好ましくは0.5〜2当量となる量である。0.1当量未満及び5当量を超えると、所望の低硬度の成形物を得ることができない。   Component (c) is added in such an amount that hydrogen atoms directly bonded to silicon atoms are 0.1 to 5 equivalents, preferably 0.3 to 3 equivalents, relative to the alkenyl group in component (a). In an amount of 0.5 to 2 equivalents. When the amount is less than 0.1 equivalent and exceeds 5 equivalent, a desired low-hardness molded product cannot be obtained.

(d)成分の白金族系硬化触媒は、(a)成分のアルケニル基と、(c)成分のSi−H基の付加反応を促進するための触媒であり、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられる。その具体例としては、例えば、白金(白金黒を含む)、ロジウム、パラジウム等の白金族金属単体、H2PtCl4・nH2O、H2PtCl6・nH2O、NaHPtCl6・nH2O、KaHPtCl6・nH2O、Na2PtCl6・nH2O、K2PtCl4・nH2O、PtCl4・nH2O、PtCl2、Na2HPtCl4・nH2O(但し、式中、nは0〜6の整数であり、好ましくは0又は6である)等の塩化白金、塩化白金酸及び塩化白金酸塩、アルコール変性塩化白金酸(米国特許第3,220,972号明細書参照)、塩化白金酸とオレフィンとのコンプレックス(米国特許第3,159,601号明細書、同第3,159,662号明細書、同第3,775,452号明細書参照)、白金黒、パラジウム等の白金族金属をアルミナ、シリカ、カーボン等の担体に担持させたもの、ロジウム−オレフィンコンプレックス、クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒)等が挙げられ、塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサン等の白金系触媒が好ましく、特にビニル基含有環状シロキサンとのコンプレックス等が好ましい。 The component (d) platinum group curing catalyst is a catalyst for accelerating the addition reaction of the component (a) alkenyl group and the component (c) Si—H group, and is used as a catalyst for the hydrosilylation reaction. Well-known catalysts are mentioned. Specific examples thereof include platinum group metals such as platinum (including platinum black), rhodium and palladium, H 2 PtCl 4 · nH 2 O, H 2 PtCl 6 · nH 2 O, NaHPtCl 6 · nH 2 O. , KaHPtCl 6 · nH 2 O, Na 2 PtCl 6 · nH 2 O, K 2 PtCl 4 · nH 2 O, PtCl 4 · nH 2 O, PtCl 2 , Na 2 HPtCl 4 · nH 2 O (where, n is an integer of 0-6, preferably 0 or 6), such as platinum chloride, chloroplatinic acid and chloroplatinate, alcohol-modified chloroplatinic acid (see US Pat. No. 3,220,972) ), A complex of chloroplatinic acid and olefin (see US Pat. Nos. 3,159,601, 3,159,662, and 3,775,452), platinum black, Platinum group metals such as palladium Can be supported on a carrier such as alumina, silica, carbon, rhodium-olefin complex, chlorotris (triphenylphosphine) rhodium (Wilkinson catalyst), platinum chloride, chloroplatinic acid or chloroplatinate and vinyl. A platinum-based catalyst such as a group-containing siloxane is preferable, and a complex with a vinyl group-containing cyclic siloxane is particularly preferable.

(d)成分の配合量は、(a)成分に対して白金族元素換算で0.1〜500ppmであり、好ましくは0.5〜200ppm、更に好ましくは1.0〜100ppm程度がよい。   (D) The compounding quantity of a component is 0.1-500 ppm in conversion of a platinum group element with respect to (a) component, Preferably it is 0.5-200 ppm, More preferably, about 1.0-100 ppm is good.

本発明の組成物には、本発明の目的を損なわない範囲で、熱伝導性充填剤の表面処理剤、硬化速度を調整するための反応抑制剤、着色のための顔料・染料、難燃性付与剤、金型やセパレーターフィルムから型離れを良くするための内添離型剤等、機能を向上させるための様々な添加剤を添加することが可能である。   The composition of the present invention includes a surface treatment agent for a thermally conductive filler, a reaction inhibitor for adjusting the curing rate, a pigment / dye for coloring, and a flame retardancy, as long as the object of the present invention is not impaired. It is possible to add various additives for improving the function, such as an imparting agent, an internal mold release agent for improving mold release from a mold or a separator film.

組成物を硬化・成形する条件としては、公知の付加反応硬化型シリコーンゴム組成物と同様でよく、例えば常温でも十分硬化するが、必要に応じて加熱してもよい。   The conditions for curing and molding the composition may be the same as those of a known addition reaction curable silicone rubber composition. For example, the composition is cured sufficiently at room temperature, but may be heated as necessary.

成形物は、電子機器等の熱伝導シートとして有効に利用できる。この場合、本発明の成形物の硬度は、アスカーC硬度として5〜40、特に10〜40であることが好ましい。   The molded product can be effectively used as a heat conductive sheet for electronic devices and the like. In this case, the hardness of the molded product of the present invention is preferably 5 to 40, particularly 10 to 40 as Asker C hardness.

以下、実施例及び比較例を示して本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記例中の部は重量部を、Meはメチル基を示す。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not restrict | limited to the following Example. In addition, the part in a following example shows a weight part, and Me shows a methyl group.

[実施例1]
粘度600mm/sの末端をビニル基で封止したジメチルオルガノポリシロキサン500gに平均粒径1μmのアルミナ1000gと平均粒径4μmのアルミナ1000gを、品川式万能撹拌機に仕込み60分間混合した。得られた混合物を更に3本ロールにかけ、均一な液状ベース(I)を得た。
液状ベース(I)500gに2%塩化白金酸2−エチルヘキサノール溶液を0.3gと50%エチニルシクロヘキサノールトルエン溶液0.2gを添加して均一に混合した。
更に、下記平均組成式(5)で表されるオルガノハイドロジェンポリシロキサン15gを添加し、均一に混合し組成物Aを得た。
[Example 1]
1000 g of alumina having an average particle diameter of 1 μm and 1000 g of alumina having an average particle diameter of 4 μm were charged into a 500 g dimethylorganopolysiloxane having a viscosity of 600 mm / s sealed with a vinyl group and mixed for 60 minutes. The obtained mixture was further applied to three rolls to obtain a uniform liquid base (I).
To 500 g of liquid base (I), 0.3 g of 2% chloroplatinic acid 2-ethylhexanol solution and 0.2 g of 50% ethynylcyclohexanol toluene solution were added and mixed uniformly.
Furthermore, 15 g of organohydrogenpolysiloxane represented by the following average composition formula (5) was added and mixed uniformly to obtain a composition A.

Figure 2008160126
Figure 2008160126

[比較例1]
実施例1で得られた液状ベース(I)500gに2%塩化白金酸2−エチルヘキサノール溶液を0.3gと50%エチニルシクロヘキサノールトルエン溶液0.2gを添加して均一に混合した。
更に、下記平均組成式(6)で表されるオルガノハイドロジェンポリシロキサン15gを添加し、均一に混合し組成物Bを得た。
[Comparative Example 1]
To 500 g of the liquid base (I) obtained in Example 1, 0.3 g of a 2% chloroplatinic acid 2-ethylhexanol solution and 0.2 g of a 50% ethynylcyclohexanol toluene solution were added and mixed uniformly.
Furthermore, 15 g of organohydrogenpolysiloxane represented by the following average composition formula (6) was added and mixed uniformly to obtain a composition B.

Figure 2008160126
Figure 2008160126

[比較例2]
実施例1で得られた液状ベース(I)500gに2%塩化白金酸2−エチルヘキサノール溶液を0.3gと50%エチニルシクロヘキサノールトルエン溶液0.2gを添加して均一に混合した。
更に上記平均組成式(6)で表されるオルガノハイドロジェンポリシロキサン7.5gを添加し、均一に混合し組成物Cを得た。
[Comparative Example 2]
To 500 g of the liquid base (I) obtained in Example 1, 0.3 g of a 2% chloroplatinic acid 2-ethylhexanol solution and 0.2 g of a 50% ethynylcyclohexanol toluene solution were added and mixed uniformly.
Furthermore, 7.5 g of organohydrogenpolysiloxane represented by the above average composition formula (6) was added and mixed uniformly to obtain a composition C.

[比較例3]
粘度600mm/sの末端をビニル基で封止したジメチルオルガノポリシロキサン350gと粘度300mm/sの両末端をトリメチルシリル基で封鎖したジメチルオルガノシロキサン150gに、平均粒径1μmのアルミナ1000gと平均粒径4μmのアルミナ1000gを、品川式万能撹拌機に仕込み60分間混合した。得られた混合物を更に3本ロールにかけ、均一な液状ベース(II)を得た。
液状ベース(II)500gに2%塩化白金酸2−エチルヘキサノール溶液0.3gと50%エチニルシクロヘキサノールトルエン溶液0.2gを添加して均一に混合した。
更に、上記平均組成式(6)で表されるオルガノハイドロジェンポリシロキサン5gを添加し、均一に混合し組成物Dを得た。
[Comparative Example 3]
350 g of dimethylorganopolysiloxane with ends having a viscosity of 600 mm / s sealed with vinyl groups and 150 g of dimethylorganosiloxane with both ends having a viscosity of 300 mm / s blocked with trimethylsilyl groups, 1000 g of alumina with an average particle size of 1 μm and an average particle size of 4 μm 1000 g of alumina was charged into a Shinagawa universal agitator and mixed for 60 minutes. The obtained mixture was further applied to three rolls to obtain a uniform liquid base (II).
To 500 g of liquid base (II), 0.3 g of a 2% chloroplatinic acid 2-ethylhexanol solution and 0.2 g of a 50% ethynylcyclohexanol toluene solution were added and mixed uniformly.
Furthermore, 5 g of organohydrogenpolysiloxane represented by the above average composition formula (6) was added and mixed uniformly to obtain a composition D.

実施例及び比較例で得られた組成物A〜Dそれぞれを2.0mm厚に120℃×10分間の条件で加熱硬化させ、得られたシートを用いて、JIS K 6249に準じて、引張り強さ、切断時伸び、引裂き強さを測定した。また、熱抵抗を下記方法で測定した。結果を表1に示す。   Each of the compositions A to D obtained in Examples and Comparative Examples was heat-cured to a thickness of 2.0 mm under the conditions of 120 ° C. × 10 minutes, and using the obtained sheet, the tensile strength was determined according to JIS K 6249. The elongation at break and the tear strength were measured. Moreover, the thermal resistance was measured by the following method. The results are shown in Table 1.

熱抵抗の測定
トランジスタTO−3型のアルミニウム製ケースの中にヒーターを埋め込んだモデルヒーター(設置面積7cm2)とヒートシンク(フラット型60F 230×70mm:LEX製)の間にサンプルシートを設置し、300gf/cm2の荷重で圧着させ、モデルヒーターに28Wの電力を印加させた。モデルヒーターの温度T1(℃)とヒートシンクの温度T2(℃)を熱電対で測定し、下記式からサンプルの熱抵抗を求めた。
R(℃/W)=(T1−T2)/28
Measurement of thermal resistance A sample sheet is placed between a model heater (installation area 7 cm 2 ) in which a heater is embedded in a transistor TO-3 type aluminum case and a heat sink (flat type 60F 230 × 70 mm: made by LEX). Crimping was performed with a load of 300 gf / cm 2 , and 28 W of power was applied to the model heater. The temperature T1 (° C.) of the model heater and the temperature T2 (° C.) of the heat sink were measured with a thermocouple, and the thermal resistance of the sample was obtained from the following equation.
R (° C./W)=(T1-T2)/28

実施例及び比較例で得られた組成物A〜Dを、6mm厚に120℃×10分の硬化条件で加熱硬化させ、下記方法で硬化物の硬度を測定し、オイルブリードの有無を確認した。結果を表1に示す。   Compositions A to D obtained in Examples and Comparative Examples were heat-cured to a thickness of 6 mm under curing conditions of 120 ° C. × 10 minutes, the hardness of the cured product was measured by the following method, and the presence or absence of oil bleed was confirmed. . The results are shown in Table 1.

硬度の測定
硬度は6mm厚の成形物を2枚重ね、高分子計器製アスカ−C型硬度計を用い、1kgの荷重をかけて測定した。
オイルブリードの有無の確認
硬度測定後の成形物をろ紙上に配置し、120℃の雰囲気下に24時間放置し、ろ紙上へのオイルの移行の有無を目視で確認した。
Measurement of Hardness The hardness was measured by applying 2 kg of 6 mm thick molded articles and using a polymer meter Asuka-C type hardness tester under a load of 1 kg.
Confirmation of presence or absence of oil bleed The molded product after the hardness measurement was placed on a filter paper and left in an atmosphere of 120 ° C. for 24 hours, and the presence or absence of oil transfer onto the filter paper was visually confirmed.

Figure 2008160126
Figure 2008160126

Claims (5)

発熱性電子部品の熱境界面と熱放散部材との間に熱伝達材料を介装してなる電子部品の冷却構造であって、前記熱伝達材料が、
(a)一分子中にアルケニル基を含有するオルガノポリシロキサン 100重量部
(b)熱伝導性充填剤 200〜3000重量部
(c)一分子中に平均で1個以上3個未満の、ケイ素原子に直接結合した水素原子を有するオルガノハイドロジェンポリシロキサン
(a)成分中のアルケニル基に対して、ケイ素原子
に直接結合した水素原子が0.1〜5当量となる量
(d) 白金族系硬化触媒
(a)成分に対して白金族元素換算で0.1〜500ppm
を含有する組成物を硬化・成形してなる熱伝導性シリコーンゴム成形物からなることを特徴とする電子部品の冷却構造。
A cooling structure for an electronic component comprising a heat transfer material interposed between a heat boundary surface of the heat-generating electronic component and a heat dissipation member, wherein the heat transfer material is
(A) Organopolysiloxane containing an alkenyl group in one molecule 100 parts by weight (b) Thermally conductive filler 200-3000 parts by weight (c) Silicon atoms having an average of 1 or more and less than 3 in one molecule Organohydrogenpolysiloxane having a hydrogen atom directly bonded to
(A) silicon atom relative to alkenyl group in component
The amount of hydrogen atoms directly bound to 0.1 to 5 equivalents (d) platinum group curing catalyst
(A) 0.1-500 ppm in terms of platinum group element
A cooling structure for an electronic component, comprising a thermally conductive silicone rubber molded product obtained by curing and molding a composition containing the above.
(b)成分の熱伝導性充填剤が、金属、金属酸化物、窒化物、人工ダイヤモンド及び炭化ケイ素からなる群から選ばれる1種又は2種以上の熱伝導性充填剤であることを特徴とする請求項1記載の冷却構造。   The heat conductive filler as component (b) is one or more heat conductive fillers selected from the group consisting of metals, metal oxides, nitrides, artificial diamond and silicon carbide. The cooling structure according to claim 1. 金属が銅及び/又はアルミニウムであることを特徴とする請求項2記載の冷却構造。   The cooling structure according to claim 2, wherein the metal is copper and / or aluminum. 金属酸化物がアルミナ、シリカ、マグネシア、ベンガラ、ベリリア、チタニア、及びジルコニアからなる群から選ばれる1種又は2種以上であることを特徴とする請求項2記載の冷却構造。   The cooling structure according to claim 2, wherein the metal oxide is one or more selected from the group consisting of alumina, silica, magnesia, bengara, beryllia, titania, and zirconia. 窒化物が窒化アルミニウム、窒化ケイ素、及び窒化ホウ素からなる群から選ばれる1種又は2種以上であることを特徴とする請求項2記載の冷却構造。   The cooling structure according to claim 2, wherein the nitride is one or more selected from the group consisting of aluminum nitride, silicon nitride, and boron nitride.
JP2007329433A 2007-12-21 2007-12-21 Cooling structure of electronic component Pending JP2008160126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007329433A JP2008160126A (en) 2007-12-21 2007-12-21 Cooling structure of electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007329433A JP2008160126A (en) 2007-12-21 2007-12-21 Cooling structure of electronic component

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2002163827A Division JP2004010691A (en) 2002-06-05 2002-06-05 Thermally conductive silicone rubber molding

Publications (1)

Publication Number Publication Date
JP2008160126A true JP2008160126A (en) 2008-07-10

Family

ID=39660626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007329433A Pending JP2008160126A (en) 2007-12-21 2007-12-21 Cooling structure of electronic component

Country Status (1)

Country Link
JP (1) JP2008160126A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2187404A1 (en) * 2008-11-17 2010-05-19 Nitto Denko Corporation Thermally conductive sheet and method of producing the same
JP2015201573A (en) * 2014-04-09 2015-11-12 富士高分子工業株式会社 heat dissipation sheet
WO2021140694A1 (en) 2020-01-06 2021-07-15 富士高分子工業株式会社 Thermally conductive silicone gel composition
WO2023243711A1 (en) * 2022-06-17 2023-12-21 積水化学工業株式会社 Heat-conductive composition and heat-conductive member

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323821U (en) * 1989-07-17 1991-03-12
JPH04359060A (en) * 1991-06-03 1992-12-11 Shin Etsu Chem Co Ltd Silicone composition excellent in thermal conductivity
JPH0570693A (en) * 1991-09-13 1993-03-23 Shin Etsu Chem Co Ltd Silicone gel composition excellent in vibration-proof characteristic
JPH05105814A (en) * 1991-01-24 1993-04-27 Shin Etsu Chem Co Ltd Curable silicone composition and cured product thereof
JPH07266356A (en) * 1994-03-29 1995-10-17 Shin Etsu Chem Co Ltd Heat conductive composite sheet
JPH08295737A (en) * 1995-04-24 1996-11-12 Internatl Business Mach Corp <Ibm> Heat-conductive compliant sheet
JPH1142730A (en) * 1997-07-15 1999-02-16 Bergquist Co:The Thermal conductivity interface for electronic device
JP2000001616A (en) * 1998-06-17 2000-01-07 Shin Etsu Chem Co Ltd Silicone rubber composition having thermal conductivity and its production
JP2000204259A (en) * 1999-01-11 2000-07-25 Shin Etsu Chem Co Ltd Heat radiation member
JP2002327116A (en) * 2001-05-01 2002-11-15 Shin Etsu Chem Co Ltd Thermoconductive silicone composition and semiconductor device
JP2004526822A (en) * 2001-01-30 2004-09-02 ハネウエル・インターナシヨナル・インコーポレーテツド Compliant crosslinkable thermal interface material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0323821U (en) * 1989-07-17 1991-03-12
JPH05105814A (en) * 1991-01-24 1993-04-27 Shin Etsu Chem Co Ltd Curable silicone composition and cured product thereof
JPH04359060A (en) * 1991-06-03 1992-12-11 Shin Etsu Chem Co Ltd Silicone composition excellent in thermal conductivity
JPH0570693A (en) * 1991-09-13 1993-03-23 Shin Etsu Chem Co Ltd Silicone gel composition excellent in vibration-proof characteristic
JPH07266356A (en) * 1994-03-29 1995-10-17 Shin Etsu Chem Co Ltd Heat conductive composite sheet
JPH08295737A (en) * 1995-04-24 1996-11-12 Internatl Business Mach Corp <Ibm> Heat-conductive compliant sheet
JPH1142730A (en) * 1997-07-15 1999-02-16 Bergquist Co:The Thermal conductivity interface for electronic device
JP2000001616A (en) * 1998-06-17 2000-01-07 Shin Etsu Chem Co Ltd Silicone rubber composition having thermal conductivity and its production
JP2000204259A (en) * 1999-01-11 2000-07-25 Shin Etsu Chem Co Ltd Heat radiation member
JP2004526822A (en) * 2001-01-30 2004-09-02 ハネウエル・インターナシヨナル・インコーポレーテツド Compliant crosslinkable thermal interface material
JP2002327116A (en) * 2001-05-01 2002-11-15 Shin Etsu Chem Co Ltd Thermoconductive silicone composition and semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2187404A1 (en) * 2008-11-17 2010-05-19 Nitto Denko Corporation Thermally conductive sheet and method of producing the same
JP2015201573A (en) * 2014-04-09 2015-11-12 富士高分子工業株式会社 heat dissipation sheet
WO2021140694A1 (en) 2020-01-06 2021-07-15 富士高分子工業株式会社 Thermally conductive silicone gel composition
KR20220124617A (en) 2020-01-06 2022-09-14 후지고분시고오교오가부시끼가이샤 Thermally conductive silicone gel composition
WO2023243711A1 (en) * 2022-06-17 2023-12-21 積水化学工業株式会社 Heat-conductive composition and heat-conductive member
WO2023243712A1 (en) * 2022-06-17 2023-12-21 積水化学工業株式会社 Thermally conductive composition and thermally conductive member
JP7414246B1 (en) 2022-06-17 2024-01-16 積水化学工業株式会社 Thermal conductive composition and thermally conductive member
JP7455343B1 (en) 2022-06-17 2024-03-26 積水化学工業株式会社 Thermal conductive composition and thermally conductive member

Similar Documents

Publication Publication Date Title
JP5283346B2 (en) Thermally conductive cured product and method for producing the same
JP5015436B2 (en) Thermally conductive silicone elastomer, thermal conductive medium and thermally conductive silicone elastomer composition
JP5233325B2 (en) Thermally conductive cured product and method for producing the same
JP5304588B2 (en) Thermally conductive silicone composition and cured product thereof
JP5534837B2 (en) Thermally conductive silicone rubber composition
JP5154010B2 (en) Thermally conductive silicone rubber composition
TWI822954B (en) Thermal conductive silicone composition and manufacturing method thereof, and thermally conductive silicone hardened material
JP6314915B2 (en) Heat dissipation putty sheet
WO2016017495A1 (en) Thermally conductive silicone composition, and thermally conductive silicone moudled article
TWI788587B (en) Thermally conductive silicon oxide composition and its hardened product
JP5472055B2 (en) Thermally conductive silicone grease composition
JP2008143980A (en) Composition for heat radiation silicone gel and heat radiation silicone sheet obtained by curing the same
JP2009203373A (en) Thermoconductive silicone composition
JP2020002236A (en) Heat-conductive silicone composition, heat-conductive silicone sheet, and method of manufacturing the same
JP2018193491A (en) Thermal conductive silicone rubber composite sheet
JP6981914B2 (en) Thermally conductive silicone composition and its cured product
TW202200711A (en) Thermally conductive silicone composition and cured product of same
JP4463117B2 (en) Flame-retardant and heat-conductive silicone molded article and method for producing the same
JP5131648B2 (en) Thermally conductive silicone composition and thermally conductive silicone molding using the same
JP2008160126A (en) Cooling structure of electronic component
KR100592009B1 (en) Thermally Conductive Silicone Compositions and Forms thereof
JP2004010691A (en) Thermally conductive silicone rubber molding
JP7264850B2 (en) Thermally conductive silicone composition, cured product thereof, and heat dissipation sheet
JP7290118B2 (en) Thermally conductive silicone adhesive composition
JP4299324B2 (en) Thermally conductive silicone composition and thermally conductive silicone molded article

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100901

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101124