WO2021149356A1 - マラリア検査方法及びマラリア検査装置 - Google Patents
マラリア検査方法及びマラリア検査装置 Download PDFInfo
- Publication number
- WO2021149356A1 WO2021149356A1 PCT/JP2020/044275 JP2020044275W WO2021149356A1 WO 2021149356 A1 WO2021149356 A1 WO 2021149356A1 JP 2020044275 W JP2020044275 W JP 2020044275W WO 2021149356 A1 WO2021149356 A1 WO 2021149356A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- malaria
- image
- sample
- plasmodium
- blood sample
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/483—Physical analysis of biological material
- G01N33/487—Physical analysis of biological material of liquid biological material
- G01N33/49—Blood
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the present invention relates to a malaria inspection method and a malaria inspection apparatus.
- a method for detecting Plasmodium As a method for detecting Plasmodium, a method of extracting the gene of Plasmodium from a blood sample and amplifying the gene of Plasmodium by Polymerase Chain Reaction (PCR) and a method of detecting by immunochromatography using an antigen-antibody reaction are known. There is. Of these, the method of extracting a gene from a blood sample and amplifying the gene by Polymerase Chain Reaction (PCR) requires an infrastructure for the operation of extracting the gene from the blood sample, the amplification reaction, and the need for a stable power source. Use is restricted in poorly prepared emerging countries.
- PCR Polymerase Chain Reaction
- the detection method by immunochromatography using the antigen-antibody reaction shows the results in a relatively short time of about 15 minutes, but it is a qualitative test as to whether or not there is a suspicion of being infected with Plasmodium malaria, and it is quantitative. Necessary information cannot be obtained due to lack of sex and false positives. Therefore, a method of observing a blood sample stained by Giemsa staining with a microscope has been studied (see, for example, Patent Document 1).
- the method of observing a blood sample stained by Gimza staining with a microscope requires a skillful technique for the tester to directly observe the cells, and the test time for each sample is 30 minutes to 1 hour, which is a large scale. It is not suitable as a screening test.
- An object of the present invention is to provide a malaria inspection method and a malaria inspection apparatus capable of easily and accurately quantifying the number of Plasmodium malaria.
- the malaria test method of the present invention is used.
- the first image acquisition step of acquiring an image of a sample in which leukocytes have been removed by 99.9% or more in a blood sample collected from a subject and a treatment for visualizing Plasmodium present in the blood sample has been performed.
- a quantitative step of quantitatively measuring the number of the malaria protozoa based on the image acquired in the first image acquisition step, and a quantitative step. Have.
- the malaria inspection device of the present invention is A first image acquisition means for acquiring an image in which leukocytes and platelets have been removed by 99.9% or more from the blood sample and processed for visualizing the Plasmodium present in the blood sample.
- the number of Plasmodium malaria can be easily and accurately quantified.
- FIG. 3C is a cross-sectional view taken along the line CC of FIG. 3A. It is a figure which showed the white blood cell count before and after the filtering. It is a flowchart which shows the flow of inspection.
- This is an example of a low resolution image. This is an example of a low resolution image.
- This is an example of a high-resolution image.
- This is an example of a high-resolution image.
- This is an example of an image showing the morphology of Plasmodium malaria.
- This is an example of an image showing the morphology of Plasmodium malaria.
- This is an example of an image showing the morphology of Plasmodium malaria.
- FIG. 1 is an external view of the inspection device 10 according to the present embodiment.
- the inspection device 10 is used in a state in which an analytical tool 20 holding a sample containing nuclear-stained red blood cells is loaded.
- the test device 10 is a device that uses the above sample to test for the presence or absence of malaria protozoa in erythrocytes, that is, whether or not the malaria protozoa invades the erythrocytes, parasitizes the erythrocytes, and is infected with malaria. ..
- the inspection device 10 is a device for determining the type of malaria protozoan when infected.
- the inspection device 10 includes a housing 11, an insertion unit 12, a display unit 13, an operation unit 14, an image acquisition unit 15, a control unit 16, a storage unit 17, a power supply unit 18, and the like. It has.
- the housing 11 is formed in a size and shape that allows a user such as a medical worker to perform diagnostic work by hand, and is made of, for example, resin. In this embodiment, as shown in FIG. 1, it is formed in a flat rectangular parallelepiped shape.
- An insertion unit 12 for inserting the analysis tool 20 into the housing 11 is provided on the side surface of the housing 11, and a display unit 13 and an operation unit 14 are provided on the upper surface thereof.
- the insertion portion 12 is an opening corresponding to the shape of the analysis tool 20, and the analysis tool 20 is inserted.
- the display unit 13 is composed of a color liquid crystal display or the like, and displays various screens for displaying captured images and diagnostic results according to a display control signal input from the control unit 16.
- the operation unit 14 includes a touch panel provided on the screen of the display unit 13 and various hard keys arranged around the screen of the display unit 13.
- the operation unit 14 detects the XY coordinates of the pressed force point by a voltage value, and the operation signal associated with the detected position is detected by the control unit 16. Output to.
- the image acquisition unit 15 acquires image data of the sample on the analysis tool 20.
- the image acquisition unit 15 is configured to include an irradiation means, an imaging means, an imaging means, and the like.
- the irradiation means is composed of a light source, a filter, and the like, and irradiates the sample on the analytical tool 20 inserted in the insertion unit 12 with light.
- the imaging means is composed of an eyepiece, an objective lens, or the like, and forms a transmitted light, a reflected light, or a fluorescence emitted from a sample on the analysis tool 20 by the irradiated light.
- the imaging means includes a CCD (Charge Coupled Device) sensor or the like, and images an image formed on the imaging surface by the imaging means to generate digital image data.
- CCD Charge Coupled Device
- the image acquisition unit 15 is provided with a bright-field unit that combines irradiation means and imaging means suitable for bright-field observation, and a fluorescence unit that combines irradiation means and imaging means suitable for fluorescence observation, and switches the unit. This makes it possible to switch between bright field and fluorescence.
- the image acquisition unit 15 can capture an image by switching the resolution. Specifically, low-resolution (to the extent that the fluorescence spot can be measured, for example, those having 5 Mpixels or more) and high-resolution (to the extent that the morphology of the protozoan can be understood, for example, those having 50 Mpixels or more) can be taken.
- the control unit 16 is configured to include a CPU (Central Processing Unit), a RAM (Random Access Memory), etc., and executes various processes in cooperation with various programs stored in the storage unit 17 to execute various processes of the inspection device 10. Control the operation comprehensively.
- the control unit 16 has a function of executing image analysis processing in cooperation with a program stored in the storage unit 17, quantitatively measuring the number of Plasmodium, and determining the type of Plasmodium. Realize.
- the storage unit 17 is composed of, for example, an HDD (Hard Disk Drive), a semiconductor non-volatile memory, or the like. As described above, various programs, various data, and the like are stored in the storage unit 17.
- HDD Hard Disk Drive
- semiconductor non-volatile memory or the like.
- the power supply unit 18 supplies electric power for realizing the operation of the inspection device 10.
- the power supply unit 18 is composed of, for example, a rechargeable lithium ion battery. Further, the power supply unit 18 may be configured by a dry battery or an AC power supply connection unit.
- the analytical tool 20 is a device capable of separating red blood cells from a blood sample containing human blood as a main component when a blood sample is poured into the blood sample.
- the blood sample is, for example, a sample obtained by diluting blood collected from a subject with a predetermined diluent and containing a predetermined staining solution.
- a buffer solution for example, a buffer solution, an isotonic solution, a culture solution, or the like, which does not denature the cells contained in the biological sample.
- a blood coagulation inhibitor may be used, for example, EDTA can be used.
- heparin-based anticoagulants are not preferable because they affect the staining when Giemsa staining is performed.
- staining solution for example, 4', 6-diamidino-2 -phenylindole dihydrochlorid (DAPI), acridine orange, Hoechst 33342, etc. are used as fluorescent dyes that can bind to DNA.
- DAPI 6-diamidino-2 -phenylindole dihydrochlorid
- SYTO59 registered trademark
- SYTO59 registered trademark
- the nucleic acid of Plasmodium malaria infected with erythrocytes is fluorescently stained, and fluorescence is emitted from this nucleic acid. It should be noted that this staining solution emits fluorescence having a wavelength of 640 nm to 660 nm when excited by excitation light having a wavelength of 600 nm to 635 nm.
- the analytical tool 20 is, for example, an inlet path 21 for pouring a blood sample, a filter 22 provided in the inlet path 21, a diffusion path 23 for diffusing a blood sample flowing from the inlet path 21, and a diffusion path 23. It is configured to include a holding unit 24 that holds the blood sample in a uniform state.
- the entrance path 21 is formed in a cylindrical shape having a diameter of, for example, about 5 mm.
- the filter 22 removes 99.9% or more (more preferably 99.99% or more) of leukocytes from the blood sample poured from the inlet pathway 21.
- the filter 22 has an asymmetric capture structure formed of a plurality of fibrous substances that captures leukocytes.
- the fibrous substance is made of, for example, a silicon oxide containing silicon oxide as a main component, and is preferably made of silicon dioxide in an amorphous state.
- the thickness of the fibrous substance is about 0.01 ⁇ m to 1 ⁇ m.
- the fibrous materials are densely intertwined with each other. Some fibrous substances are branched in irregular directions. In addition, the fibrous substances are curved and intertwined with each other.
- the trap can be effectively removed from the blood sample. That is, leukocytes and those having a maximum diameter larger than the voids between the fibrous substances are captured by the fibrous substances as traps.
- the erythrocytes that can pass through the voids between the fibrous substances pass between the fibrous substances, so that the non-object trapping structure can extract the erythrocytes.
- the erythrocytes Even if the voids between the fibrous substances are narrower than the size of the erythrocytes, the erythrocytes have a deformable ability to be easily deformed, so that the erythrocytes can pass through the voids and the erythrocytes can be extracted.
- the non-object trapping structure may be made of a porous material in addition to the fibrous material.
- the porous material is, for example, nitrocellulose, polyvinylidene fluoride (PVDF), agarose. Alternatively, it may be formed by forming a large number of through holes in an inorganic material substrate such as silicon, glass, or ceramic.
- the non-object trapping structure may have a fibrous material and the above-mentioned porous material.
- the blood sample may be filtered by the filter 22 separate from the analysis tool 20 in advance, and the filtered sample may be poured into the inlet path 21. good.
- the diffusion path 23 is provided so as to communicate with the inlet path 21, and its height is about 2 mm. Since the white blood cells are about 2 mm, the white blood cells in the blood sample that could not be completely removed by the filter 22 can be removed by the diffusion route 23.
- the holding portion 24 is provided so as to communicate with the diffusion path 23, and its height is about 5 to 7 ⁇ m. Since the red blood cells are about 5 to 7 ⁇ m, the red blood cells in the blood sample are uniformly held by the holding unit 24. However, in order to bring out the capillary force required for diffusion of the blood sample, it is also effective to select a configuration of 100-1000 ⁇ m. Further, a cyclic olefin polymer (COC, COP, etc.) is provided on the bottom surface of the holding portion 24, and has a function of efficiently detecting a fluorescence signal.
- COC cyclic olefin polymer
- the detection sensitivity by immunochromatography is equivalent to 200 parasites / ⁇ l in terms of the number of Plasmodium per ⁇ l, but only 55% of malaria-infected persons can be detected.
- the blood sample before pouring into the analytical tool 20 contained a predetermined staining solution, but a dried staining solution was attached to the holding portion 24, thereby causing red blood cells.
- the configuration may be such that nuclear staining is performed.
- FIG. 5 is a flowchart showing the flow of inspection using the inspection device 10.
- leukocytes are removed from the blood sample by 99.9% or more to separate erythrocytes, and the Plasmodium malaria is visualized by performing nuclear staining of the Plasmodium infected with the erythrocytes.
- Plasmodium malaria based on a sample preparation step (step S1) to prepare a sample that has been processed to obtain a low-resolution image, a first image acquisition step (step S2) to acquire a low-resolution image from the sample, and a low-resolution image.
- the sample preparation step is performed by the tester preparing a blood sample and pouring it into the above-mentioned analytical tool 20.
- the first image acquisition step is executed by the tester inserting the analytical tool 20 holding the sample into the insertion unit 12 of the inspection device 10 and instructing the operation unit 14 to start the inspection.
- the image acquisition unit 15 acquires a low-resolution (for example, 5 M pixel) image of the sample (red blood cells after staining).
- a low-resolution image for example, 5 M pixel
- the fluorescence image shown in FIG. 6A and the bright field image (morphological image) shown in FIG. 6B are acquired.
- the fluorescence image is an image in which the nucleic acid of Plasmodium malaria is represented by a fluorescence bright spot.
- the bright-field image is an image showing the morphology of red blood cells in a sample and including the same range as the fluorescence image.
- the quantification step is a step of quantitatively measuring the number of Plasmodium malaria by analyzing the acquired low-resolution image.
- the control unit 16 acquires the morphology and number of red blood cells from the bright field image (morphological image).
- the control unit 16 measures a fluorescence labeling signal such as the number of bright spots of fluorescence or emission brightness corresponding to Plasmodium malaria in the fluorescence image. This makes it possible to obtain a quantified value of the number of Plasmodium malaria in erythrocytes.
- the second image acquisition step may be executed when the number of Plasmodium in erythrocytes exceeds a predetermined amount by analyzing a low-resolution image.
- the control unit 16 acquires a high-resolution image of the sample (to the extent that the morphology of the protozoan can be understood) by the image acquisition unit 15. As the high-resolution image, the fluorescence image shown in FIG. 7A is acquired, but a bright-field image can also be acquired if necessary.
- the control unit 16 performs predetermined image processing on the acquired fluorescence image (see FIG. 7B) to identify the morphology of the malaria protozoan.
- the determination step is a step of determining the type of Plasmodium based on the morphology of the Plasmodium malaria when the morphology of the Plasmodium is acquired in the image acquisition step.
- the control unit 16 includes, for example, a standard image including a plurality of images prepared in advance, which imitate different morphologies depending on the type of Plasmodium, as shown in FIGS. 8A to 8D, and the result of the second image acquisition step.
- the type of Plasmodium malaria is determined by comparing with the image.
- the inspection device 10 of the present embodiment is more convenient because it is battery-powered and does not require an external power source.
- treatment is performed to remove 99.9% or more of leukocytes from the blood sample collected from the subject and to visualize the malaria protozoa present in the blood sample.
- a sample preparation step in which white blood cells are removed from a blood sample by 99.9% or more to separate erythrocytes, and a sample is prepared to visualize the malaria protozoa infected with the erythrocytes. It has step S1). By preparing such a sample, the number of Plasmodium malaria can be easily and accurately quantified.
- the Plasmodium malaria is visualized by staining the nucleus of the Plasmodium infected with erythrocytes in the sample preparation step. Therefore, the Plasmodium malaria can be easily visualized.
- the staining solution for staining the nucleus of Plasmodium infected with erythrocytes contains a fluorescent dye. Therefore, the number of Plasmodium malaria can be easily quantified.
- the dyeing solution contains a plurality of types of fluorescent dyes. Therefore, it is possible to identify multiple species of Plasmodium malaria.
- the fluorescent dye is any of 4', 6 -diamidino-2 -phenylindole dihydrochlorid (DAPI), acridine orange, and Hoechst 33342. By using such a fluorescent dye, the number of Plasmodium malaria can be preferably quantified.
- the staining solution for staining the nucleus of Plasmodium malaria infected with erythrocytes in the sample preparation step is SYTO59 (registered trademark).
- SYTO59 registered trademark
- the sample is subjected to the second image acquisition step (step 4) of acquiring a high-resolution image having a resolution higher than a predetermined value and the high-resolution image acquired in the second image acquisition step. It has a determination step (step 5) of identifying the morphology of Plasmodium based on it and determining the type of Plasmodium. Therefore, since the type of malaria is known, it is possible to determine an effective treatment policy.
- the determination step determines the type of Plasmodium by comparing the standard image prepared in advance with the morphology of the Plasmodium identified from the high-resolution image.
- the standard image includes a plurality of images that imitate different morphologies depending on the type of Plasmodium. Therefore, it is possible to more accurately determine the type of malaria by performing the determination by comparing with the standard image.
- red blood cells are separated by passing a blood sample through a filter that removes 99.9% or more of white blood cells. Therefore, a sample can be prepared by a relatively simple method.
- an apparatus for executing the malaria inspection method of the present invention if a low-resolution image and a high-resolution image can be acquired and a determination process can be performed, an apparatus other than the inspection apparatus 10 of the above embodiment can be used. There may be.
- the present invention is not limited to the above embodiment and can be changed without departing from the gist thereof. Wear.
- platelets may be removed from the blood sample. This makes it possible to identify the number of Plasmodium more accurately.
- the present invention can be used for malaria inspection methods and malaria inspection devices.
- Inspection device 11 Housing 12 Insertion unit 13 Display unit 14 Operation unit 15 Image acquisition unit 16 Control unit (first image acquisition means, second image acquisition means, quantitative means) 17 Storage unit 18 Power supply unit 20 Analytical tool 21 Inlet route 22 Filter 23 Diffusion route 24 Holding unit
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Biomedical Technology (AREA)
- Pathology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Immunology (AREA)
- Hematology (AREA)
- Urology & Nephrology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Ecology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
容易かつ正確にマラリア原虫数の定量を行う。 血液試料から白血球及び血小板を99.9%以上除去して赤血球が分離され、当該赤血球に感染したマラリア原虫の核染色された検体を作成する検体作成工程と、前記検体から画像を取得する第1画像取得工程と、前記第1画像取得工程で取得した画像に基づいて、前記マラリア原虫の数を定量的に計測する定量工程と、を有する。
Description
本発明は、マラリア検査方法及びマラリア検査装置に関する。
マラリア原虫を検出する方法として、血液試料からマラリア原虫の遺伝子を抽出しPolymerase Chain Reaction(PCR)によりマラリア原虫の遺伝子を増幅する方法や、抗原抗体反応を利用したイムノクロマトグラフィーによる検出方法が知られている。
このうち、血液試料から遺伝子を抽出しPolymerase Chain Reaction(PCR)により遺伝子増幅する方法は、血液試料から遺伝子を抽出する操作や増幅反応に時間がかかることや安定した電源を必要とするためインフラが整っていない新興国では使用が制限される。また、抗原抗体反応を利用したイムノクロマトグラフィーによる検出方法は、15分程度と比較的短時間で結果がわかるが、マラリア原虫に感染している疑いがあるかどうかといった定性的な試験であり、定量性に欠け擬陽性が出るため必要な情報が得られない。
そこで、ギムザ染色により染色した血液試料を顕微鏡で観察する方法が検討されている(例えば、特許文献1参照)。
このうち、血液試料から遺伝子を抽出しPolymerase Chain Reaction(PCR)により遺伝子増幅する方法は、血液試料から遺伝子を抽出する操作や増幅反応に時間がかかることや安定した電源を必要とするためインフラが整っていない新興国では使用が制限される。また、抗原抗体反応を利用したイムノクロマトグラフィーによる検出方法は、15分程度と比較的短時間で結果がわかるが、マラリア原虫に感染している疑いがあるかどうかといった定性的な試験であり、定量性に欠け擬陽性が出るため必要な情報が得られない。
そこで、ギムザ染色により染色した血液試料を顕微鏡で観察する方法が検討されている(例えば、特許文献1参照)。
しかしながら、ギムザ染色により染色した血液試料を顕微鏡で観察する方法では、試験者が細胞を直接観察するため熟練した技術が必要であり、1検体あたりの検査時間が30分から1時間を要するため大規模なスクリーニング試験としては不向きである。
本発明の課題は、容易かつ正確にマラリア原虫数の定量を行うことのできるマラリア検査方法及びマラリア検査装置を提供することである。
上記課題を解決するため、本発明のマラリア検査方法は、
被検者から採取した血液試料において白血球が99.9%以上除去され、且つ前記血液試料に存在するマラリア原虫を可視化するための処理が施された検体の画像を取得する第1画像取得工程と、
前記第1画像取得工程で取得した画像に基づいて、前記マラリア原虫の数を定量的に計測する定量工程と、
を有する。
被検者から採取した血液試料において白血球が99.9%以上除去され、且つ前記血液試料に存在するマラリア原虫を可視化するための処理が施された検体の画像を取得する第1画像取得工程と、
前記第1画像取得工程で取得した画像に基づいて、前記マラリア原虫の数を定量的に計測する定量工程と、
を有する。
また、本発明のマラリア検査装置は、
血液試料から白血球及び血小板が99.9%以上除去され、且つ前記血液試料に存在するマラリア原虫を可視化するための処理が施された画像を取得する第1画像取得手段と、
前記第1画像取得手段で取得した画像に基づいて、前記マラリア原虫の数を定量的に計測する定量手段と、
を備える。
血液試料から白血球及び血小板が99.9%以上除去され、且つ前記血液試料に存在するマラリア原虫を可視化するための処理が施された画像を取得する第1画像取得手段と、
前記第1画像取得手段で取得した画像に基づいて、前記マラリア原虫の数を定量的に計測する定量手段と、
を備える。
本発明によれば、容易かつ正確にマラリア原虫数の定量を行うことができる。
以下、本発明の実施形態について、図面を参照して詳細に説明する。
[構成]
図1は、本実施形態に係る検査装置10の外観図である。
図1に示すように、検査装置10は、核染色された赤血球を含む検体を保持した分析用具20が装填された状態で使用される。
検査装置10は、上記検体を用いて、赤血球中のマラリア原虫の有無、すなわち、マラリア原虫が赤血球に侵入し、赤血球中に寄生し、マラリアに病気感染しているか否かを検査する装置である。また、検査装置10は、感染している場合のマラリア原虫の種類を判定する装置である。
図1は、本実施形態に係る検査装置10の外観図である。
図1に示すように、検査装置10は、核染色された赤血球を含む検体を保持した分析用具20が装填された状態で使用される。
検査装置10は、上記検体を用いて、赤血球中のマラリア原虫の有無、すなわち、マラリア原虫が赤血球に侵入し、赤血球中に寄生し、マラリアに病気感染しているか否かを検査する装置である。また、検査装置10は、感染している場合のマラリア原虫の種類を判定する装置である。
図1及び図2に示すように、検査装置10は、例えば、筐体11、挿入部12、表示部13、操作部14、画像取得部15、制御部16、記憶部17、電源部18等を備えている。
筐体11は、医療従事者などの使用者が手にとって診断作業を行える程度の大きさ及び形に形成されており、例えば、樹脂からなる。本実施形態では、図1に示すように、扁平な直方体状に形成されている。
筐体11の側面には、筐体11の内部に分析用具20を挿入するための挿入部12が設けられており、その上面には、表示部13および操作部14が設けられている。
筐体11の側面には、筐体11の内部に分析用具20を挿入するための挿入部12が設けられており、その上面には、表示部13および操作部14が設けられている。
挿入部12は、分析用具20の形状に対応した開口であり、分析用具20が挿入される。
表示部13は、カラー液晶ディスプレイなどで構成され、制御部16から入力される表示制御信号に従って、撮影画像や診断結果を表示する各種画面を表示する。
操作部14は、表示部13の画面上に設けられるタッチパネルと、表示部13の画面周囲に配置される各種ハードキーと、を備えて構成されている。操作部14は、タッチパネルや各種ハードキーが手指やタッチペン等で押下された場合、押下された力点のXY座標を電圧値で検出し、検出された位置に対応付けられた操作信号を制御部16に出力する。
画像取得部15は、分析用具20上の検体の画像データを取得する。
画像取得部15は、照射手段、結像手段、撮像手段等を備えて構成されている。照射手段は、光源、フィルター等により構成され、挿入部12に挿入された分析用具20上の検体に光を照射する。結像手段は、接眼レンズ、対物レンズ等により構成され、照射した光により分析用具20上の検体から発せられる透過光、反射光、又は蛍光を結像する。撮像手段は、CCD(Charge Coupled Device)センサー等を備え、結像手段により結像面に結像される像を撮像してデジタル画像データを生成する。
画像取得部15は、明視野観察に適した照射手段及び結像手段を組み合わせた明視野ユニット、蛍光観察に適した照射手段及び結像手段を組み合わせた蛍光ユニットが備えられており、ユニットを切り替えることにより明視野/蛍光を切り替えることが可能である。
また、画像取得部15は、解像度を切り替えて画像を撮影することができる。具体的には、低解像度(蛍光スポットを計測できる程度、例えば5Mピクセル以上のもの)および高解像度(原虫の形態がわかる程度、例えば50Mピクセル以上のもの)の画像を撮影することができる。
画像取得部15は、照射手段、結像手段、撮像手段等を備えて構成されている。照射手段は、光源、フィルター等により構成され、挿入部12に挿入された分析用具20上の検体に光を照射する。結像手段は、接眼レンズ、対物レンズ等により構成され、照射した光により分析用具20上の検体から発せられる透過光、反射光、又は蛍光を結像する。撮像手段は、CCD(Charge Coupled Device)センサー等を備え、結像手段により結像面に結像される像を撮像してデジタル画像データを生成する。
画像取得部15は、明視野観察に適した照射手段及び結像手段を組み合わせた明視野ユニット、蛍光観察に適した照射手段及び結像手段を組み合わせた蛍光ユニットが備えられており、ユニットを切り替えることにより明視野/蛍光を切り替えることが可能である。
また、画像取得部15は、解像度を切り替えて画像を撮影することができる。具体的には、低解像度(蛍光スポットを計測できる程度、例えば5Mピクセル以上のもの)および高解像度(原虫の形態がわかる程度、例えば50Mピクセル以上のもの)の画像を撮影することができる。
制御部16は、CPU(Central Processing Unit)、RAM(Random Access Memory)等を備えて構成され、記憶部17に記憶されている各種プログラムとの協働により各種処理を実行し、検査装置10の動作を統括的に制御する。例えば、制御部16は、記憶部17に記憶されているプログラムとの協働により画像解析処理を実行し、マラリア原虫の数を定量的に測定し、また、マラリア原虫の種類を判定する機能を実現する。
記憶部17は、例えばHDD(Hard Disk Drive)や半導体の不揮発性メモリー等で構成されている。記憶部17には、前述のように各種プログラムや各種データ等が記憶されている。
電源部18は、検査装置10の動作を実現するための電力を供給する。電源部18は、たとえば充電可能なリチウムイオン電池によって構成される。また、電源部18を乾電池あるいはAC電源接続部によって構成してもよい。
図3A~図3Cは、分析用具20を示す図である。
分析用具20は、ヒトの血液を主成分とする血液試料が流しこまれると、その血液試料から赤血球を分離することのできる器具である。
分析用具20は、ヒトの血液を主成分とする血液試料が流しこまれると、その血液試料から赤血球を分離することのできる器具である。
血液試料とは、例えば、被検者から採取した血液を所定の希釈液で希釈し、所定の染色液が含まれたものなどである。
希釈液としては、例えば、緩衝液、等張液、培養液、など、生体試料に含まれる細胞が変性しないものを用いる。また、血液凝固阻止剤を用いてもよく、例えばEDTAを用いることができる。ただし、ヘパリン系の血液凝固阻止剤はギムザ染色を行った場合の染色に影響を与えるので好ましくない。
染色液としては、例えば、DNAと結合しうる蛍光色素として4',6 -diamidino-2 -phenylindole dihydrochlorid(DAPI)、アクリジンオレンジ、Hoechst 33342などが用いられる。あるいは、赤血球中のマラリア原虫DNAの染色液として、SYTO59(登録商標)を用いることもできる。
また、染色液としてSYTO59(登録商標)を用いた場合は、赤血球に感染したマラリア原虫の核酸が蛍光染色され、この核酸から蛍光が発せられる。なお、この染色液では、波長600nm~635nmでの励起光で励起した際に、640nm~660nmの波長の蛍光を発する。
分析用具20は、例えば、血液試料を流しこむ入口経路21と、入口経路21に備えられたフィルター22と、入口経路21から流れてきた血液試料を拡散させる拡散経路23と、拡散経路23で拡散された血液試料を均一な状態で保持する保持部24と、を備えて構成されている。
入口経路21には、適量の血液試料が流し込まれる。入口経路21は、例えば、直径5mm程度の円筒形状に形成されている。
フィルター22は、入口経路21から流しこまれた血液試料から白血球を99.9%以上(より好ましくは、99.99%以上)除去するものである。
具体的に、フィルター22は、白血球を捕捉する、複数の繊維状物質により形成される非対象物捕捉構造物を有する。
繊維状物質は、例えば、酸化珪素を主成分としたシリコン酸化物からなり、好ましくはアモルファス状態の二酸化シリコンからなる。繊維状物質の太さは0.01μm~1μm程度である。繊維状物質は互いに絡み合うように密集している。繊維状物質は不規則な方向へ枝分かれしているものが混在している。また、繊維状物質は、それぞれ湾曲して絡み合っている。
繊維状物質と繊維状物質との間の空隙はその最短距離が、白血球などの捕捉物よりも小さいことで、血液試料から捕捉物を効果的に除去することができる。すなわち、白血球や、その最大直径が繊維状物質間の空隙よりも大きいものが捕捉物として繊維状物質により捕捉される。一方、繊維状物質間の空隙を通過可能である赤血球が繊維状物質間を通過していくことにより、非対象物捕捉構造物は赤血球を抽出することが可能である。なお、繊維状物質間の空隙が赤血球の大きさよりも狭いものであったとしても、赤血球は容易に変形できる変形能を有するため、赤血球がこの空隙を通過し、赤血球を抽出することができる。
具体的に、フィルター22は、白血球を捕捉する、複数の繊維状物質により形成される非対象物捕捉構造物を有する。
繊維状物質は、例えば、酸化珪素を主成分としたシリコン酸化物からなり、好ましくはアモルファス状態の二酸化シリコンからなる。繊維状物質の太さは0.01μm~1μm程度である。繊維状物質は互いに絡み合うように密集している。繊維状物質は不規則な方向へ枝分かれしているものが混在している。また、繊維状物質は、それぞれ湾曲して絡み合っている。
繊維状物質と繊維状物質との間の空隙はその最短距離が、白血球などの捕捉物よりも小さいことで、血液試料から捕捉物を効果的に除去することができる。すなわち、白血球や、その最大直径が繊維状物質間の空隙よりも大きいものが捕捉物として繊維状物質により捕捉される。一方、繊維状物質間の空隙を通過可能である赤血球が繊維状物質間を通過していくことにより、非対象物捕捉構造物は赤血球を抽出することが可能である。なお、繊維状物質間の空隙が赤血球の大きさよりも狭いものであったとしても、赤血球は容易に変形できる変形能を有するため、赤血球がこの空隙を通過し、赤血球を抽出することができる。
非対象物捕捉構造物は、繊維状物質以外にも、多孔性材料で形成されていてもよい。多孔性材料とは、例えば、ニトロセルロース、ポリフッ化ビニリデン(PVDF)、アガロースである。あるいは、シリコン、ガラス、セラミック等の無機材料基板に多数の貫通孔を形成することで形成してもよい。
あるいは、非対象物捕捉構造物は、繊維状物質と上記の多孔性材料とを有していてもよい。
あるいは、非対象物捕捉構造物は、繊維状物質と上記の多孔性材料とを有していてもよい。
なお、ここでは入口経路21にフィルター22が備えられることとしたが、事前に、分析用具20とは別体のフィルター22により血液試料を濾過し、濾過後の試料を入口経路21に流しこんでもよい。
拡散経路23は、入口経路21と連通して設けられ、その高さは2mm程度である。白血球が2mm程度であることから、フィルター22にて除去しきれなかった血液試料中の白血球は、拡散経路23にて除去することができる。
保持部24は、拡散経路23と連通して設けられ、その高さは5~7μm程度である。赤血球が5~7μm程度であることから、血液試料中の赤血球は、保持部24にて均一に保持される。ただし、血液サンプルの拡散に必要な毛細管力を引き出すためには、100-1000μmの構成を選択することも有効である。
また、保持部24の底面には環状オレフィンポリマー(COC、COP等)が設けられており、蛍光信号を効率よく検出する機能を有する。
また、保持部24の底面には環状オレフィンポリマー(COC、COP等)が設けられており、蛍光信号を効率よく検出する機能を有する。
このような分析用具20を用いることで、被検者がマラリアに感染している場合、血液試料からほとんどの白血球が除去され、マラリアの原因微生物であるマラリア原虫が寄生した赤血球が血液試料から分離され、保持部24には、原虫DNAを蛍光色素で染色した状態の検体が付着した状態となっている。白血球は核を有していることから、前記DNAと結合しうる蛍光色素などにより染色される。そのため、測定試料に白血球が含まれると、白血球の核が染色され、マラリア原虫として検出されてしまう恐れがあり、マラリア原虫の識別に影響し、検出感度および定量性の低下要因となる。
この分析用具20を用いることで、ノイズの原因となる白血球を99.9%以上除去することができ、白血球の核が染色され、マラリア原虫として検出されることが抑制されるため、マラリア原虫の検出感度が向上する。また、分析用具20の保持部24は、白血球が到達できない構造であるため、精度よく赤血球を分離できる。非特許文献によるとイムノクロマトグラフィーによる検出感度は1 μlあたりのマラリア原虫数に換算すると200 parasites/μl相当であるが、マラリア感染者の55%しか検出できない。この換算値において20 parasites/μl相当であればマラリア感染者の83%を検出でき、2 parasites/ μl相当であれば95%を検出できる。前記白血球を99.9%以上除去するとノイズの影響によるシグナルを10 parasites/μl相当以下にできるため、検出感度の高い検査方法を提供できるさらに、好ましくは前記白血球を99.99%以上除去するとノイズの影響によるシグナルを1 parasite/μl相当以下にできるため、マラリア原虫の高感度検出が可能である。
(非特許文献:Slater et al. Nature volume 528, pagesS94-S101(2015))。
この分析用具20を用いることで、ノイズの原因となる白血球を99.9%以上除去することができ、白血球の核が染色され、マラリア原虫として検出されることが抑制されるため、マラリア原虫の検出感度が向上する。また、分析用具20の保持部24は、白血球が到達できない構造であるため、精度よく赤血球を分離できる。非特許文献によるとイムノクロマトグラフィーによる検出感度は1 μlあたりのマラリア原虫数に換算すると200 parasites/μl相当であるが、マラリア感染者の55%しか検出できない。この換算値において20 parasites/μl相当であればマラリア感染者の83%を検出でき、2 parasites/ μl相当であれば95%を検出できる。前記白血球を99.9%以上除去するとノイズの影響によるシグナルを10 parasites/μl相当以下にできるため、検出感度の高い検査方法を提供できるさらに、好ましくは前記白血球を99.99%以上除去するとノイズの影響によるシグナルを1 parasite/μl相当以下にできるため、マラリア原虫の高感度検出が可能である。
(非特許文献:Slater et al. Nature volume 528, pagesS94-S101(2015))。
[フィルターによる白血球除去の実施例]
一般的なセルカウンターにより白血球数を計測すると、前記フィルターによりヒト全血試料を処理するとフィルター処理前後で図4に示すように白血球数が減少し、検出限界以下となった。
一般的なセルカウンターにより白血球数を計測すると、前記フィルターによりヒト全血試料を処理するとフィルター処理前後で図4に示すように白血球数が減少し、検出限界以下となった。
なお、ここでは、分析用具20に流しこむ前の血液試料に所定の染色液が含まれることとしたが、保持部24に染色液を乾燥させたものを付着されておき、これにより、赤血球の核染色が行われる構成とすることもできる。
[検査]
図5は、検査装置10を用いた検査の流れを示すフローチャートである。
図5に示すように、検査装置10を用いた検査は、血液試料から白血球を99.9%以上除去して赤血球が分離され、当該赤血球に感染したマラリア原虫の核染色を行うことでマラリア原虫を可視化するための処理が施された検体を作成する検体作成工程(ステップS1)と、検体から低解像度画像を取得する第1画像取得工程(ステップS2)と、低解像度画像に基づいて、マラリア原虫の数を定量的に計測する定量工程(ステップS3)と、検体に対して、第1画像取得工程で取得した画像よりも解像度の高い高解像度画像を取得する第2画像取得工程(ステップS4)と、高解像度画像に基づいてマラリア原虫の形態を識別し、マラリア原虫の種類を判定する判定工程(ステップS5)と、を有する。
図5は、検査装置10を用いた検査の流れを示すフローチャートである。
図5に示すように、検査装置10を用いた検査は、血液試料から白血球を99.9%以上除去して赤血球が分離され、当該赤血球に感染したマラリア原虫の核染色を行うことでマラリア原虫を可視化するための処理が施された検体を作成する検体作成工程(ステップS1)と、検体から低解像度画像を取得する第1画像取得工程(ステップS2)と、低解像度画像に基づいて、マラリア原虫の数を定量的に計測する定量工程(ステップS3)と、検体に対して、第1画像取得工程で取得した画像よりも解像度の高い高解像度画像を取得する第2画像取得工程(ステップS4)と、高解像度画像に基づいてマラリア原虫の形態を識別し、マラリア原虫の種類を判定する判定工程(ステップS5)と、を有する。
検体作成工程は、試験者が血液試料を調整し、上記した分析用具20に流し込むことにより行われる。
第1画像取得工程は、試験者が、検体を保持した分析用具20を、検査装置10の挿入部12に挿入し、操作部14により検査の開始指示を行うことで実行される。
制御部16は、開始指示を受け付けると、画像取得部15により、検体(染色後の赤血球)の低解像度(例えば、5Mピクセル)の画像を取得する。
低解像度画像としては、図6Aに示す蛍光画像と、図6Bに示す明視野画像(形態画像)が取得される。蛍光画像は、マラリア原虫の核酸を蛍光輝点で表す画像である。明視野画像は、検体における赤血球の形態を表すとともに蛍光画像と同一範囲を含む画像である。
制御部16は、開始指示を受け付けると、画像取得部15により、検体(染色後の赤血球)の低解像度(例えば、5Mピクセル)の画像を取得する。
低解像度画像としては、図6Aに示す蛍光画像と、図6Bに示す明視野画像(形態画像)が取得される。蛍光画像は、マラリア原虫の核酸を蛍光輝点で表す画像である。明視野画像は、検体における赤血球の形態を表すとともに蛍光画像と同一範囲を含む画像である。
定量工程は、取得した低解像度画像を解析して、マラリア原虫の数を定量的に計測する工程である。
制御部16は、明視野画像(形態画像)から、赤血球の形態および数を取得する。また、制御部16は、蛍光画像においてマラリア原虫に対応する蛍光の輝点数又は発光輝度などの蛍光標識シグナルを計測する。
これにより、赤血球内にあるマラリア原虫の数を定量化した値を取得することが可能となる。
制御部16は、明視野画像(形態画像)から、赤血球の形態および数を取得する。また、制御部16は、蛍光画像においてマラリア原虫に対応する蛍光の輝点数又は発光輝度などの蛍光標識シグナルを計測する。
これにより、赤血球内にあるマラリア原虫の数を定量化した値を取得することが可能となる。
第2画像取得工程は、低解像度の画像の解析により、赤血球内にあるマラリア原虫の数が所定量以上となった場合に、実行されることとしても良い。
制御部16は、画像取得部15により、検体の高解像度(原虫の形態がわかる程度)の画像を取得する。
高解像度画像としては、図7Aに示す蛍光画像が取得されるが、必要に応じて明視野画像を取得することもできる。また、互いに異なる波長を有する蛍光色素を複数使用してマラリア原虫の核酸を染色すると、マラリア原虫の種に応じた特徴的な染色画像を得ることができるため、これを利用してマラリア原虫の種を判別することが可能である。
制御部16は、取得した蛍光画像に、所定の画像処理を施し(図7B参照)、マラリア原虫の形態を識別する。
制御部16は、画像取得部15により、検体の高解像度(原虫の形態がわかる程度)の画像を取得する。
高解像度画像としては、図7Aに示す蛍光画像が取得されるが、必要に応じて明視野画像を取得することもできる。また、互いに異なる波長を有する蛍光色素を複数使用してマラリア原虫の核酸を染色すると、マラリア原虫の種に応じた特徴的な染色画像を得ることができるため、これを利用してマラリア原虫の種を判別することが可能である。
制御部16は、取得した蛍光画像に、所定の画像処理を施し(図7B参照)、マラリア原虫の形態を識別する。
判定工程は、画像取得工程にて、マラリア原虫の形態を取得した場合に、その形態に基づいて、マラリア原虫の種類を判定する工程である。
制御部16は、例えば、図8A~図8Dに示すような、予め準備された、マラリア原虫の種類に応じて異なる形態を模した複数の画像を含む標準画像と、第2画像取得工程の結果画像とを比較することにより、マラリア原虫の種類を判定する。
制御部16は、例えば、図8A~図8Dに示すような、予め準備された、マラリア原虫の種類に応じて異なる形態を模した複数の画像を含む標準画像と、第2画像取得工程の結果画像とを比較することにより、マラリア原虫の種類を判定する。
かかる検査装置10を用いた検査では、画像に基づいてマラリア原虫の数を定量的に計測するため、正確なマラリア原虫数の定量を行うことができる。
また、マラリアの診断には、マラリア原虫の数を検出するだけでは十分とは言えず、マラリアの種類が分からなければ、有効な治療方針を決定することはできないところ、画像に基づいてマラリア原虫の種類を判定するため、有効な治療方針を決定することができる。
特に、マラリアが蔓延しているアフリカのような先進国において、高度な検査情報を得なくても、簡便かつ迅速な方法で、上記したような診断が可能となる。
さらに、本実施形態の検査装置10であれば、バッテリー駆動で外部からの電源を必要としないため、より利便性が良い。
また、マラリアの診断には、マラリア原虫の数を検出するだけでは十分とは言えず、マラリアの種類が分からなければ、有効な治療方針を決定することはできないところ、画像に基づいてマラリア原虫の種類を判定するため、有効な治療方針を決定することができる。
特に、マラリアが蔓延しているアフリカのような先進国において、高度な検査情報を得なくても、簡便かつ迅速な方法で、上記したような診断が可能となる。
さらに、本実施形態の検査装置10であれば、バッテリー駆動で外部からの電源を必要としないため、より利便性が良い。
[効果]
以上のように、本実施形態のマラリア検査方法によれば、被検者から採取した血液試料において白血球が99.9%以上除去され、且つ前記血液試料に存在するマラリア原虫を可視化するための処理が施された検体の画像を取得する第1画像取得工程(ステップS2)と、第1画像取得工程で取得した画像に基づいて、マラリア原虫の数を定量的に計測する定量工程(ステップS3)と、を有する。
このため、容易かつ正確なマラリア原虫数の定量を行うことができる。
また、本実施形態によれば、血液試料から白血球を99.9%以上除去して赤血球が分離され、当該赤血球に感染したマラリア原虫を可視化するための処理が施された検体を作成する検体作成工程(ステップS1)を有する。
このような検体を作成することで、容易かつ正確なマラリア原虫数の定量を行うことができる。
以上のように、本実施形態のマラリア検査方法によれば、被検者から採取した血液試料において白血球が99.9%以上除去され、且つ前記血液試料に存在するマラリア原虫を可視化するための処理が施された検体の画像を取得する第1画像取得工程(ステップS2)と、第1画像取得工程で取得した画像に基づいて、マラリア原虫の数を定量的に計測する定量工程(ステップS3)と、を有する。
このため、容易かつ正確なマラリア原虫数の定量を行うことができる。
また、本実施形態によれば、血液試料から白血球を99.9%以上除去して赤血球が分離され、当該赤血球に感染したマラリア原虫を可視化するための処理が施された検体を作成する検体作成工程(ステップS1)を有する。
このような検体を作成することで、容易かつ正確なマラリア原虫数の定量を行うことができる。
また、本実施形態によれば、検体作成工程において、血液試料から白血球を99.99%以上除去する。
このような検体を用いることで、より正確なマラリア原虫数の定量を行うことができる。
また、本実施形態によれば、検体作成工程において、赤血球に感染したマラリア原虫の核を染色することにより、マラリア原虫を可視化する。
このため、容易にマラリア原虫を可視化することができる。
このような検体を用いることで、より正確なマラリア原虫数の定量を行うことができる。
また、本実施形態によれば、検体作成工程において、赤血球に感染したマラリア原虫の核を染色することにより、マラリア原虫を可視化する。
このため、容易にマラリア原虫を可視化することができる。
また、本実施形態によれば、検体作成工程において、赤血球に感染したマラリア原虫の核を染色する際の染色液は、蛍光色素を含む。
このため、マラリア原虫数の定量が容易となる。
また、本実施形態によれば、染色液は、複数種類の蛍光色素を含む。
このため、複数種のマラリア原虫の特定が可能となる。
また、本実施形態によれば、蛍光色素は、4',6 -diamidino-2 -phenylindole dihydrochlorid(DAPI)、アクリジンオレンジ、Hoechst 33342のいずれかである。
このような蛍光色素を用いることで、マラリア原虫数の定量が好適に実現できる。
また、本実施形態によれば、検体作成工程において、赤血球に感染したマラリア原虫の核を染色する際の染色液は、SYTO59(登録商標)である。
このような蛍光色素を用いることで、マラリア原虫数の定量が好適に実現できる。
このため、マラリア原虫数の定量が容易となる。
また、本実施形態によれば、染色液は、複数種類の蛍光色素を含む。
このため、複数種のマラリア原虫の特定が可能となる。
また、本実施形態によれば、蛍光色素は、4',6 -diamidino-2 -phenylindole dihydrochlorid(DAPI)、アクリジンオレンジ、Hoechst 33342のいずれかである。
このような蛍光色素を用いることで、マラリア原虫数の定量が好適に実現できる。
また、本実施形態によれば、検体作成工程において、赤血球に感染したマラリア原虫の核を染色する際の染色液は、SYTO59(登録商標)である。
このような蛍光色素を用いることで、マラリア原虫数の定量が好適に実現できる。
また、本実施形態によれば、検体に対して、所定値よりも解像度の高い高解像度画像を取得する第2画像取得工程(ステップ4)と、第2画像取得工程で取得した高解像度画像に基づいてマラリア原虫の形態を識別し、マラリア原虫の種類を判定する判定工程(ステップ5)と、を有する。
このため、マラリアの種類が分かるので、有効な治療方針を決定することが可能となる。
このため、マラリアの種類が分かるので、有効な治療方針を決定することが可能となる。
また、本実施形態によれば、判定工程は、予め準備された標準画像と、高解像度画像から識別されたマラリア原虫の形態とを比較することで、マラリア原虫の種類を判定する。
また、標準画像は、マラリア原虫の種類に応じて異なる形態を模した複数の画像を含む。
このため、標準画像との比較で判定が行われることで、より正確なマラリアの種類の判定が可能となる。
また、標準画像は、マラリア原虫の種類に応じて異なる形態を模した複数の画像を含む。
このため、標準画像との比較で判定が行われることで、より正確なマラリアの種類の判定が可能となる。
また、本実施形態によれば、検体作成工程は、血液試料を、白血球を99.9%以上除去するフィルターに通過させることで、赤血球が分離される。
このため、比較的簡単な方法により、検体を作成することができる。
このため、比較的簡単な方法により、検体を作成することができる。
例えば、本発明のマラリア検査方法を実行する装置としては、低解像度画像及び高解像度画像を取得可能であり、また、判定処理を行えるものであれば、上記実施形態の検査装置10以外の装置であっても良い。
以上、本発明に係る実施形態に基づいて具体的に説明したが、本発明は上記実施形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
きる。
また、血液試料から、白血球以外に血小板を除去してもよい。これにより、より正確にマラリア原虫数を特定できる。
きる。
また、血液試料から、白血球以外に血小板を除去してもよい。これにより、より正確にマラリア原虫数を特定できる。
この発明は、マラリア検査方法及びマラリア検査装置に利用することができる。
10 検査装置
11 筐体
12 挿入部
13 表示部
14 操作部
15 画像取得部
16 制御部(第1画像取得手段、第2画像取得手段、定量手段)
17 記憶部
18 電源部
20 分析用具
21 入口経路
22 フィルター
23 拡散経路
24 保持部
11 筐体
12 挿入部
13 表示部
14 操作部
15 画像取得部
16 制御部(第1画像取得手段、第2画像取得手段、定量手段)
17 記憶部
18 電源部
20 分析用具
21 入口経路
22 フィルター
23 拡散経路
24 保持部
Claims (16)
- 被検者から採取した血液試料において白血球が99.9%以上除去され、且つ前記血液試料に存在するマラリア原虫を可視化するための処理が施された検体の画像を取得する第1画像取得工程と、
前記第1画像取得工程で取得した画像に基づいて、前記マラリア原虫の数を定量的に計測する定量工程と、
を有するマラリア検査方法。 - 前記検体が、前記血液試料において白血球が99.99%以上除去されたものである請求項1記載のマラリア検査方法。
- 前記血液試料に存在するマラリア原虫は、核が染色されていることにより可視化されている請求項1又は2に記載のマラリア検査方法。
- 前記被検者から採取した血液試料から白血球を99.9%以上除去し、前記血液試料に存在するマラリア原虫を可視化するための処理を施して前記検体を作成する検体作成工程
を更に有する請求項1記載のマラリア検査方法。 - 前記検体作成工程において、血液試料から白血球を99.99%以上除去する請求項4記載のマラリア検査方法。
- 前記検体作成工程において、前記血液試料に存在するマラリア原虫の核を染色することにより、マラリア原虫を可視化する請求項4又は5に記載のマラリア検査方法。
- 前記検体作成工程において、前記血液試料に存在するマラリア原虫の核を、蛍光色素を含む染色剤を用いて染色することにより、マラリア原虫を可視化する請求項6記載のマラリア検査方法。
- 前記染色剤は、互いに異なる波長を有する複数種類の蛍光色素を含む請求項7記載のマラリア検査方法。
- 前記蛍光色素は、4',6 -diamidino-2 -phenylindole dihydrochlorid(DAPI)、アクリジンオレンジ、Hoechst 33342のいずれかである請求項7又は8に記載のマラリア検査方法。
- 前記検体作成工程において、前記血液試料に存在するマラリア原虫の核を、SYTO59(登録商標)を用いて染色することにより、マラリア原虫を可視化する請求項4記載のマラリア検査方法。
- 前記第1画像取得工程は、マラリア原虫の存在を蛍光輝点で表す蛍光画像、及び、前記検体における赤血球の形態を表すとともに前記蛍光画像と同一範囲を含む形態画像を取得する請求項7から10のいずれか一項に記載のマラリア検査方法。
- 前記検体に対して、前記第1画像取得工程で取得した画像よりも解像度の高い高解像度画像を取得する第2画像取得工程と、
前記高解像度画像に基づいてマラリア原虫の形態を識別し、前記マラリア原虫の種類を判定する判定工程と、
を有する請求項4から11のいずれか一項に記載のマラリア検査方法。 - 前記判定工程は、予め準備された標準画像と、前記高解像度画像から識別されたマラリア原虫の形態とを比較することで、前記マラリア原虫の種類を判定する請求項12記載のマラリア検査方法。
- 前記標準画像は、マラリア原虫の種類に応じて異なる形態を模した複数の画像を含む請求項13記載のマラリア検査方法。
- 前記検体作成工程は、血液試料を、白血球を除去するフィルターに通過させる請求項4から14のいずれか一項に記載のマラリア検査方法。
- 血液試料から白血球及び血小板が99.9%以上除去され、且つ前記血液試料に存在するマラリア原虫を可視化するための処理が施された検体の画像を取得する第1画像取得手段と、
前記第1画像取得手段で取得した画像に基づいて、前記マラリア原虫の数を定量的に計測する定量手段と、
を備えるマラリア検査装置。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020007284A JP2023015426A (ja) | 2020-01-21 | 2020-01-21 | マラリア検査方法及びマラリア検査装置 |
JP2020-007284 | 2020-01-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021149356A1 true WO2021149356A1 (ja) | 2021-07-29 |
Family
ID=76993365
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/044275 WO2021149356A1 (ja) | 2020-01-21 | 2020-11-27 | マラリア検査方法及びマラリア検査装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023015426A (ja) |
WO (1) | WO2021149356A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040241677A1 (en) * | 2003-05-29 | 2004-12-02 | Lin Jeffrey S | Techniques for automated diagnosis of cell-borne anomalies with digital optical microscope |
JP2007024844A (ja) * | 2005-07-21 | 2007-02-01 | Sysmex Corp | 血液分析方法及び血液分析装置 |
WO2012057029A1 (ja) * | 2010-10-25 | 2012-05-03 | 株式会社カネカ | 新規白血球除去フィルター |
WO2012137506A1 (ja) * | 2011-04-08 | 2012-10-11 | パナソニック株式会社 | 診断キット及び診断方法 |
WO2015163211A1 (ja) * | 2014-04-21 | 2015-10-29 | コニカミノルタ株式会社 | 生体物質定量方法、画像処理装置、病理診断支援システム及び画像処理プログラム |
WO2016194338A1 (ja) * | 2015-06-04 | 2016-12-08 | パナソニック株式会社 | 画像処理方法および画像処理装置 |
WO2017154750A1 (ja) * | 2016-03-11 | 2017-09-14 | パナソニック株式会社 | 液体試料検査用ディスク及びそれに用いるフィルタカートリッジ、ディスク本体、測定用プレート、試料検出プレート、蛍光検出システム及び蛍光検出方法 |
WO2019063548A1 (en) * | 2017-09-29 | 2019-04-04 | Siemens Healthcare Gmbh | SPECIFIC DETECTION OF MALARIA BY DIGITAL HOLOGRAPHIC MICROSCOPY |
-
2020
- 2020-01-21 JP JP2020007284A patent/JP2023015426A/ja active Pending
- 2020-11-27 WO PCT/JP2020/044275 patent/WO2021149356A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040241677A1 (en) * | 2003-05-29 | 2004-12-02 | Lin Jeffrey S | Techniques for automated diagnosis of cell-borne anomalies with digital optical microscope |
JP2007024844A (ja) * | 2005-07-21 | 2007-02-01 | Sysmex Corp | 血液分析方法及び血液分析装置 |
WO2012057029A1 (ja) * | 2010-10-25 | 2012-05-03 | 株式会社カネカ | 新規白血球除去フィルター |
WO2012137506A1 (ja) * | 2011-04-08 | 2012-10-11 | パナソニック株式会社 | 診断キット及び診断方法 |
WO2015163211A1 (ja) * | 2014-04-21 | 2015-10-29 | コニカミノルタ株式会社 | 生体物質定量方法、画像処理装置、病理診断支援システム及び画像処理プログラム |
WO2016194338A1 (ja) * | 2015-06-04 | 2016-12-08 | パナソニック株式会社 | 画像処理方法および画像処理装置 |
WO2017154750A1 (ja) * | 2016-03-11 | 2017-09-14 | パナソニック株式会社 | 液体試料検査用ディスク及びそれに用いるフィルタカートリッジ、ディスク本体、測定用プレート、試料検出プレート、蛍光検出システム及び蛍光検出方法 |
WO2019063548A1 (en) * | 2017-09-29 | 2019-04-04 | Siemens Healthcare Gmbh | SPECIFIC DETECTION OF MALARIA BY DIGITAL HOLOGRAPHIC MICROSCOPY |
Also Published As
Publication number | Publication date |
---|---|
JP2023015426A (ja) | 2023-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6952683B2 (ja) | 身体試料中の実体を検出する方法および装置 | |
JP5129347B2 (ja) | 液体試料中の粒子を分析するための方法及び装置 | |
US10648897B2 (en) | Method and apparatus for the identification and handling of particles | |
US10061973B2 (en) | Method and apparatus for automated platelet identification within a whole blood sample from microscopy images | |
US9046473B2 (en) | Method and apparatus for detecting the presence of intraerythrocytic parasites | |
RU2402006C1 (ru) | Устройство, способ и компьютерная программа для измерений | |
JP5597248B2 (ja) | 生物学的及び化学的収集及び検出 | |
JP2013068631A (ja) | 蛍光消光及び/又は蛍光退色を用いて個々の細胞又は粒状物質を分析するための方法及び装置 | |
US9933415B2 (en) | Internal focus reference beads for imaging cytometry | |
US20040243318A1 (en) | Microbe examining device and method | |
WO2021149356A1 (ja) | マラリア検査方法及びマラリア検査装置 | |
JP2006275771A (ja) | 細胞画像解析装置 | |
WO2019031807A2 (ko) | 플라즈모닉 효과를 이용한 질병의 진단 방법 및 질병 진단용 슬라이드 | |
JP4503370B2 (ja) | 有形成分分析装置及び方法 | |
EP2975383A1 (en) | Method and device for analyzing a fluid medium such as a blood sample | |
JP5302054B2 (ja) | Dnaが断片化されたアポトーシス細胞の検出方法、細胞画像解析装置、及びプログラム | |
KR101902429B1 (ko) | 혈액의 병원체를 검출하는 방법 및 장치 | |
EP4137795A1 (en) | Fluorescence image analysis method, fluorescence image analyser, fluoresence image analysis program | |
Lee et al. | Counting Platelets: a Novel Image Analysis Algorithm for Detecting and Counting Platelet Adhesion on an Assay Pattern | |
JP2006055161A (ja) | 微生物検出方法 | |
JP2006158207A (ja) | 微生物検出方法及び微生物計測装置 | |
JP2007218640A (ja) | アスベスト検出方法及びアスベスト検出装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20915716 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
NENP | Non-entry into the national phase |
Ref country code: JP |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20915716 Country of ref document: EP Kind code of ref document: A1 |