WO2021149234A1 - Led display panel and method for producing led display panel - Google Patents

Led display panel and method for producing led display panel Download PDF

Info

Publication number
WO2021149234A1
WO2021149234A1 PCT/JP2020/002437 JP2020002437W WO2021149234A1 WO 2021149234 A1 WO2021149234 A1 WO 2021149234A1 JP 2020002437 W JP2020002437 W JP 2020002437W WO 2021149234 A1 WO2021149234 A1 WO 2021149234A1
Authority
WO
WIPO (PCT)
Prior art keywords
gap filling
filling layer
display panel
substrate
led element
Prior art date
Application number
PCT/JP2020/002437
Other languages
French (fr)
Japanese (ja)
Inventor
中野 勇三
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2020522392A priority Critical patent/JP6735957B1/en
Priority to PCT/JP2020/002437 priority patent/WO2021149234A1/en
Publication of WO2021149234A1 publication Critical patent/WO2021149234A1/en

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes

Definitions

  • This disclosure relates to an LED display panel and a method for manufacturing the LED display panel.
  • the LED display panel constituting the LED (Light Emitting Diode) display device includes a plurality of LED elements arranged in a square manner, and displays video information by blinking control for each LED element.
  • LED display devices have come to be widely used for outdoor and indoor advertisement display, etc. due to technological development and cost reduction of LED elements.
  • LED display devices have been mainly used for displaying moving images such as natural images and graphics.
  • the viewing distance has become shorter due to the narrowing of the pixel pitch, and LED display devices have also been used for displaying still images in conference rooms and surveillance systems.
  • LED display devices in surveillance applications often display personal computer images that are close to still images.
  • the mainstream LED element part used in the LED display device is an SMD (Surface Mount Device) type LED element.
  • the SMD type LED element is packaged and contains an LED and a resin for sealing the LED.
  • the LED is mounted in a cavity molded of ceramic or resin, and is sealed with resin from above.
  • Conventionally, such SMD type LED elements are widely used in large display devices having a pixel pitch of 3 mm or more.
  • Patent Document 1 discloses a dot matrix light emitting display (LED display device).
  • the dot-matrix light emitting display body includes a large number of LED elements arranged vertically and horizontally, and a mask plate having a mortar-shaped through hole whose inner surface functions as a light reflecting surface formed around each LED element.
  • the inside of the through hole is sealed with a translucent resin, and a surface condensing plate is arranged above the LED element and the mortar-shaped hole.
  • the surface condensing plate is provided with a through hole corresponding to the position of the LED element, and a convex lens is provided at the upper opening of the through hole.
  • This dot matrix light emitting display realizes desired orientation characteristics, enhances light utilization efficiency, and improves contrast.
  • Patent Document 2 discloses a light emitting device (LED display device).
  • the light emitting device includes a plurality of LED elements arranged two-dimensionally on a substrate, and a reflection case provided with a plurality of holes corresponding to the plurality of LED elements.
  • An alignment mark is provided on the reflective case, and the positions of the substrate provided with the LED element and the reflective case provided with the holes can be aligned with high accuracy. This light emitting device improves the orientation characteristics and reduces the uneven brightness.
  • Patent Document 3 discloses a technique for increasing the contrast of a display panel (LED display device).
  • an LED element substrate in which a plurality of LED elements are arranged two-dimensionally and a transparent substrate in which a black matrix is formed are arranged so as to face each other.
  • an opening is arranged at a position where it overlaps with each LED element in a plane.
  • the distance between the LED element substrate and the transparent substrate is defined by a spacer.
  • the interval is sealed with a sealing resin. Since the distance between the LED element substrate and the transparent substrate is shortened, the contrast of the display panel is improved.
  • the LED display device in order to replace or repair the LED element in which a problem such as non-lighting has occurred, it is necessary to separate the LED element and its surrounding parts or members. .. However, since the LED element is adhered to the surrounding parts and members, it cannot be easily separated.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide an LED display panel in which the LED element portion and its surrounding parts or members can be easily separated.
  • the LED display panel includes a substrate, a plurality of LED element portions, a gap filling layer, an adhesion reducing layer, and a surface protection substrate.
  • the plurality of LED element units are mounted on the substrate in a discrete and matrix manner.
  • the gap filling layer is provided between the plurality of LED element portions.
  • the surface protection substrate has light transmission and covers the gap filling layer and the plurality of LED element portions.
  • the surface protection substrate includes a gap filling layer and an adhesive layer in contact with a plurality of LED element portions. The adhesive force of the adhesive layer is larger than the adhesive force between the gap filling layer and the plurality of LED element portions and the adhesive force between the gap filling layer and the substrate.
  • an LED display panel in which the LED element portion and its surrounding parts or members can be easily separated.
  • FIG. 1 It is a top view which shows the structure of the LED display device in Embodiment 1.
  • FIG. It is sectional drawing which shows the structure of the LED display panel in Embodiment 1.
  • FIG. It is a partial cross-sectional view which shows the detailed structure of the region C shown in FIG.
  • It is a flowchart which shows the manufacturing method of the LED display panel in Embodiment 1.
  • It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 1.
  • FIG. It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 1.
  • FIG. It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 1.
  • FIG. It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 1.
  • FIG. It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 1.
  • FIG. 1 It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 1.
  • FIG. It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 1.
  • FIG. 2 It is a flowchart which shows the manufacturing method by repairing the LED display panel in Embodiment 1.
  • FIG. It is a figure which shows the outline of the manufacturing method by repairing the LED display panel in Embodiment 1.
  • FIG. It is a figure which shows the outline of the manufacturing method by repairing the LED display panel in Embodiment 1.
  • FIG. It is a figure which shows the outline of the manufacturing method by repairing the LED display panel in Embodiment 1.
  • FIG. It is a figure which shows the outline of the manufacturing method by repairing the LED display panel in Embodiment 1.
  • FIG. It is a figure which shows the outline of the manufacturing method by repairing the LED display panel in Embodiment 1.
  • FIG. It is a figure which shows the outline of the manufacturing method by
  • FIG. It is a figure which shows an example of the light distribution characteristic in one LED display panel. It is a figure which shows an example of the light distribution characteristic in the LED display device which includes a plurality of LED display panels. It is sectional drawing which shows the structure of the LED display panel in Embodiment 2.
  • FIG. It is a flowchart which shows the manufacturing method of the LED display panel in Embodiment 2. It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 2. It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 2. It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 2. It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 2. It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 2. It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 2.
  • FIG. It is a figure which shows the outline of the manufacturing method by repairing the LED display panel in Embodiment 2. It is a figure which shows another example of the manufacturing method by repairing the LED display panel in Embodiment 2.
  • FIG. It is sectional drawing which shows the structure of the LED display panel in Embodiment 3.
  • FIG. It is sectional drawing which shows the structure of the LED display panel in the modification of Embodiment 3.
  • FIG. 1 is a plan view showing the configuration of the LED (Light Emitting Diode) display device 100 according to the first embodiment.
  • the LED display device 100 includes a plurality of LED display panels 10 arranged in a matrix, and the plurality of LED display panels 10 constitute one large screen. Further, the LED display panel 10 includes a plurality of LED element units 2, and the plurality of LED element units 2 are arranged in a matrix.
  • FIG. 2 is a cross-sectional view showing the configuration of the LED display panel 10 according to the first embodiment.
  • FIG. 2 shows a cross section of the line segment AB shown in FIG.
  • FIG. 3 is a partial cross-sectional view showing a detailed configuration of the region C shown in FIG.
  • the LED display panel 10 includes a substrate 1, a plurality of LED element portions 2, an adhesion reducing layer (not shown), an ultraviolet blocking layer (not shown), and a gap filling layer 3.
  • the substrate 1 is, for example, an epoxy substrate containing glass fiber.
  • the plurality of LED element units 2 are arranged discretely and in a matrix on the substrate 1.
  • Each of the plurality of LED element units 2 includes a packaged rectangular chip component, and is, for example, a surface mount (SMD: Surface Mount Device) type LED element.
  • the LED element unit 2 has a light emitting surface, and is mounted so that the surface opposite to the light emitting surface faces the substrate 1.
  • the LED element unit 2 is composed of a three-color LED composed of a red LED 2R, a green LED 2G, and a blue LED 2B, and a sealing resin 2A for sealing the three color LEDs.
  • Each of the three-color LEDs is arranged so as to emit light in the direction opposite to that of the substrate 1.
  • the three-color LEDs are arranged side by side to form one pixel unit.
  • the sealing resin 2A has light transmission and covers the three-color LED.
  • the sealing resin 2A is, for example, a thermosetting resin.
  • the thermosetting resin includes, for example, an epoxy resin and the like.
  • the ultraviolet blocking layer is formed on the surface of the substrate 1 on which the LED element portion 2 is mounted.
  • the UV blocking layer is formed of, for example, an acrylic resin containing titanium oxide dispersed at the nano level.
  • the adhesive reduction layer is formed between the LED element portion 2 and the gap filling layer 3 and between the substrate 1 exposed from between the plurality of LED element portions 2 and the gap filling layer 3.
  • the adhesion reducing layer is formed on the ultraviolet blocking layer.
  • the adhesive reduction layer is formed by a so-called light release coat or a resin adhesion inhibitor.
  • the adhesive reduction layer contains, for example, a fluorine compound, a silicon compound, a silicon fluoride compound, and the like.
  • the adhesive reduction layer reduces the adhesiveness of the gap filling layer 3. Specifically, the adhesive reduction layer weakens the adhesiveness between the LED element portion 2 and the gap filling layer 3 and the adhesiveness between the substrate 1 and the gap filling layer 3.
  • the gap filling layer 3 is provided between the plurality of LED element portions 2.
  • a gap filling layer 3 is also provided around the LED element portion 2.
  • the gap filling layer 3 in the first embodiment is black. Although the details will be described later, since the gap filling layer 3 is black, the gap filling layer 3 realizes the same function as the black matrix. Further, the gap filling layer 3 has a function of protecting the LED element portion 2.
  • the gap filling layer 3 has a property that the volume expands more than the plurality of LED element portions 2 by heating from the outside. For example, when the LED display panel 10 is heated, the gap filling layer 3 expands more than the LED element portion 2. As the gap filling layer 3 expands due to heating, the gap filling layer 3 is easily peeled off from the substrate 1 and the LED element portion 2. In particular, when the adhesive reduction layer is formed, the gap filling layer 3 is easily peeled off.
  • the gap filling layer 3 contains the gap filling material 30 and the heat-expandable fine particles 31 mixed in the gap filling material 30.
  • the gap filler 30 is preferably an elastic resin or a resin that is softened by heating. Alternatively, the gap filler 30 is preferably a slightly adhesive resin.
  • the gap filler 30 is, for example, a resin containing urethane acrylate.
  • the heat-expandable fine particles 31 have a larger coefficient of thermal expansion than the gap filler 30.
  • the gap-filled layer 3 containing no heat-expandable fine particles 31 and the gap-filled layer 3 containing the heat-expandable fine particles 31 are heated at the same temperature, the gap-filled layer 3 containing the heat-expandable fine particles 31 , The volume expands more than the gap filling layer 3 that does not contain the thermally expandable fine particles 31.
  • the volume expansion coefficient of the heat-expandable fine particles 31 is preferably 50 times or more the volume expansion coefficient of the gap filler 30.
  • the degree of expansion of the gap filling layer 3 due to heating is adjusted by, for example, the volume expansion rate or the mixing amount of the heat-expandable fine particles 31.
  • the heat-expandable fine particles 31 are, for example, a heat-expandable capsule 31A.
  • the heat-expandable capsule 31A has a shell structure containing a low boiling point hydrocarbon.
  • the outer shell of the shell structure is made of a polymer material, and is, for example, a resin containing acrylic.
  • the heat-expandable capsule 31A as the heat-expandable fine particles 31 is kneaded with the resin containing urethane acrylate as the gap-filling material 30.
  • FIG. 4 is a flowchart showing a method of manufacturing the LED display panel 10 according to the first embodiment.
  • 5 to 9 are diagrams showing an outline of a method for manufacturing the LED display panel 10 according to the first embodiment.
  • step S11 the substrate 1 on which the LED element portion 2 is surface-mounted is prepared.
  • the surfaces of the substrate 1 and the LED element portion 2 are lightly peeled and coated. That is, an adhesive reduction layer containing a fluorine compound or the like is formed on their surfaces.
  • the substrate 1 is mounted on the mold 9 so that the light emitting surface of the LED element portion 2 faces upward (FIG. 5).
  • step S12 the gap filler 30 containing the heat-expandable fine particles 31 is poured between and around the LED element 2 (FIG. 6).
  • the heat-expandable fine particles 31 are heat-expandable capsules 31A
  • the gap filler 30 is a gel-like resin.
  • the heat-expandable capsule 31A is kneaded into the gel-like resin.
  • the gel-like resin is a slightly adhesive resin and contains urethane acrylate. Further, the gel-like resin has a property of being cured by ultraviolet rays and moisture.
  • step S13 the gel-like resin, that is, the gap filling material 30, is poured to the height of the light emitting surface of the LED element portion 2 (FIG. 7).
  • step S14 with the substrate 1 mounted on the mold 9, ultraviolet rays are irradiated from the surface side of the substrate 1.
  • the ultraviolet rays change the gel-like resin into a semi-cured state.
  • the semi-cured resin changes to a completely cured state by absorbing moisture (humidity) in the environment.
  • complete curing means that the fluidity of the resin after the treatment is lower than the fluidity of the gel-like resin before the treatment.
  • the gel-like resin is cured by ultraviolet rays and changes into an elastic resin.
  • an elastic gap filling layer 3 is formed between and around the LED element portions 2 (FIG. 8). In other words, the outer peripheral protection structure of the LED element portion 2 is formed.
  • step S15 the substrate 1 is removed from the mold 9 (FIG. 9).
  • the LED display panel 10 is completed by the above manufacturing process. After that, a plurality of LED display panels 10 manufactured in the same process are connected in a matrix to complete the LED display device 100 having one large screen.
  • FIG. 10 is a flowchart showing a manufacturing method by repairing the LED display panel 10 according to the first embodiment.
  • 11 to 14 are diagrams showing an outline of a manufacturing method by repairing the LED display panel 10 according to the first embodiment.
  • step S21 the LED display panel 10 is prepared.
  • the LED display panel 10 manufactured by the manufacturing method shown in FIG. 4 is prepared (FIG. 11).
  • step S22 the LED display panel 10 is heated from the surface side thereof.
  • the LED display panel 10 is heated by, for example, the radiant heat of a heater or the hot air of a dryer.
  • the heating temperature is preferably equal to or lower than the temperature at which the gas inside the heat-expandable capsule 31A starts to leak due to excessive expansion.
  • the volume of the heat-expandable capsule 31A expands.
  • the volume of the resin which is the gap filling material 30 increases as the heat-expandable capsule 31A expands. That is, the gap filling layer 3 expands (FIG. 12).
  • step S23 the gap filling layer 3 whose volume has expanded is peeled off from the substrate 1 and the LED element portion 2 (FIG. 13).
  • step S24 the individual LED element portions 2 are exposed (FIG. 14).
  • a part of the substrate 1 exposed by peeling the gap filling layer 3 or at least a part of the LED element parts 2 of the plurality of LED element parts 2 is repaired.
  • repair includes replacement or repair.
  • the defective LED element portion is replaced with a normal LED element portion.
  • the defective part is repaired.
  • the LED display panel 10 is manufactured again through the process shown in FIG.
  • the above-mentioned gap filler 30 is a resin containing urethane acrylate and cured by ultraviolet rays and moisture, but is not limited thereto.
  • the gap filler 30 may be an ultraviolet curable resin containing epoxy, acrylic or urethane acrylate.
  • the LED display panel 10 includes a substrate 1, a plurality of LED element portions 2, and a gap filling layer 3.
  • the plurality of LED element units 2 are mounted on the substrate 1 in a discrete and matrix manner.
  • the gap filling layer 3 is provided between the plurality of LED element portions 2.
  • the volume of the gap filling layer 3 expands more than that of the plurality of LED element portions 2 due to external heating.
  • the gap filling layer 3 contains the gap filling material 30 and the heat-expandable fine particles 31 mixed in the gap filling material 30.
  • the heat-expandable fine particles 31 have a larger coefficient of thermal expansion than the gap filler 30.
  • the LED display panel 10 when the LED display panel 10 is heated, the gap filling layer 3 expands and becomes easily peelable. That is, the LED display panel 10 in which the LED element portion 2 and the surrounding parts or members can be easily separated is realized. Conventionally, when a defect occurs in the LED element portion, it is necessary to replace or repair the LED display panel including not only the defective LED element portion but also the normal LED element portion. On the other hand, in the LED display panel 10 according to the first embodiment, as a result of the gap filling layer 3 being peeled off, the individual LED element portions 2 are exposed and can be replaced or repaired. The LED display panel 10 makes it possible to replace or repair only the defective LED element unit 2.
  • the LED display panel 10 Even when the entire LED display panel 10 is replaced, the normal LED element unit 2 and the like included in the LED display panel 10 are used, for example, as parts for repair service.
  • the LED display panel 10 according to the first embodiment is excellent in recyclability. Further, since the LED element portion 2 and the surrounding parts or members can be easily separated, the repair work time is shortened and the repair cost is reduced.
  • the gap filling layer 3 is easily peeled off. That is, the LED display panel 10 in which the LED element portion 2 and the surrounding parts or members can be easily separated is realized. Further, when the gap filling layer 3 contains a resin slightly adhesive to the plurality of LED element portions 2 and the substrate 1, the gap filling layer 3 is more easily peeled off.
  • the above-mentioned LED display panel 10 is prepared, the LED display panel 10 is heated from the outside, the gap filling layer 3 is expanded, and the gap filling layer whose volume is expanded is expanded. 3 is peeled off from the substrate 1 and the plurality of LED element portions 2, and at least a part of the LED element portions 2 exposed by the peeling of the gap filling layer 3 is repaired. ..
  • Such a manufacturing method of the LED display panel 10 makes it possible to replace or repair only the LED element portion 2 in which a defect has occurred. Further, even when the LED display panel 10 is replaced, the normal LED element unit 2 and the like included in the LED display panel 10 are used as, for example, parts for repair service. As described above, the method for manufacturing the LED display panel 10 in the first embodiment makes it possible to manufacture the LED display panel 10 having excellent recyclability.
  • the gap filling layer 3 of the LED display panel 10 in the first embodiment is black.
  • FIG. 15 is a diagram showing an example of light distribution characteristics in one LED display panel 10.
  • FIG. 16 is a diagram showing an example of light distribution characteristics in the LED display device 100 including a plurality of LED display panels 10.
  • the side surfaces of the individual LED element portions 2 constituting the pixel units 2C and 2E are equally shielded by the black gap filling layer 3. Therefore, the light distribution characteristics of the emitted light L30 of the pixel unit 2E arranged at the left and right ends of FIG. 15, that is, the outermost periphery of the LED display panel 10, are the light distribution of the emitted light L40 of the pixel unit 2C arranged inside the pixel unit 2E. Similar to properties.
  • the LED display device 100 provides a large screen with a more integrated feeling by making it difficult for the user to visually recognize the seams of the LED display panel 10.
  • the black matrix function is realized only by pouring a black gel-like resin between the LED element portions 2 as the gap filling material 30.
  • FIG. 17 is a cross-sectional view showing the configuration of the LED display panel 11 according to the second embodiment.
  • the LED display panel 11 according to the second embodiment further includes the surface protection substrate 4 in the LED display panel 10 shown as the first embodiment.
  • the surface protection substrate 4 has light transmission and thermal conductivity.
  • the surface protection substrate 4 is provided so as to cover the gap filling layer 3 and the light emitting surface of the LED element portion 2.
  • the surface protection substrate 4 in the second embodiment includes a thin transparent glass substrate 40 as a substrate main body, an optical adhesive film 41 as an adhesive layer, and a surface treatment layer (not shown).
  • the thickness of the thin transparent glass substrate 40 is, for example, 0.3 mm or less.
  • the optical adhesive film 41 is attached to the back surface of the thin transparent glass substrate 40.
  • the optical adhesive film 41 is in contact with the gap filling layer 3 and the plurality of LED element portions 2.
  • the adhesive force of the optical adhesive film 41 is the adhesive force between the gap filling layer 3 and the plurality of LED element portions 2 via the adhesive reducing layer, and the adhesive force between the gap filling layer 3 and the substrate 1 via the adhesive reducing layer. Greater than.
  • the gap filling layer 3 in the second embodiment contains an elastic resin having a slight adhesiveness to the plurality of LED element portions 2 and the substrate 1.
  • the optical adhesive film 41 is, for example, an ultraviolet curable film.
  • the optical adhesive film 41 is made of a resin containing, for example, epoxy, acrylic or urethane acrylate. These optical adhesive films 41 have good thermal conductivity and do not interfere with the heat dissipation of the LED element portion 2.
  • the thickness of the optical adhesive film 41 is, for example, 0.25 mm or less.
  • the surface treatment layer is formed on the surface of the thin transparent glass substrate 40.
  • the surface treatment layer is formed by a reflection reduction treatment, an antistatic treatment, a hard coat treatment, or the like.
  • a non-reflective coating, a diffusion film, or the like is formed as a surface treatment layer by the reflection reduction treatment.
  • FIG. 18 is a flowchart showing a manufacturing method of the LED display panel 11 according to the second embodiment.
  • 19 to 24 are diagrams showing an outline of the manufacturing method of the LED display panel 11 according to the second embodiment.
  • step S31 the substrate 1 on which the LED element portion 2 is surface-mounted is prepared.
  • the surfaces of the substrate 1 and the LED element portion 2 are lightly peeled and coated. That is, an adhesive reduction layer containing a fluorine compound or the like is formed on their surfaces.
  • the substrate 1 is mounted on the mold 9 so that the light emitting surface of the LED element portion 2 faces upward (FIG. 19).
  • step S32 the gap filler 30 containing the heat-expandable fine particles 31 is poured between and around the LED element 2 (FIG. 20).
  • the gel-like resin in which the heat-expandable capsule 31A is kneaded is poured.
  • the resin on the gel is a slightly adhesive resin and contains urethane acrylate. Further, the gel-like resin has a property of being cured by ultraviolet rays and moisture.
  • step S33 the gel-like resin, that is, the gap filling material 30, is poured to the height of the light emitting surface of the LED element portion 2.
  • ultraviolet rays are irradiated from the surface side of the substrate 1 (FIG. 21). The ultraviolet rays change the gel-like resin into a semi-cured state.
  • step S34 the surface protection substrate 4 is covered so that the optical adhesive film 41 faces the light emitting surface of the LED element portion 2 and the gap filling layer 3 (FIG. 22).
  • step S35 ultraviolet rays are irradiated from the surface side of the surface protection substrate 4.
  • the ultraviolet rays cause the optical adhesive film 41 to be adhered and fixed to the LED element portion 2 and the gap filling layer 3. In this way, the surface protection structure of the LED element portion 2 is formed (FIG. 23).
  • step S36 the substrate 1 is removed from the mold 9 (FIG. 24).
  • the LED display panel 11 is completed by the above manufacturing process. After that, a plurality of LED display panels 11 manufactured by the same process are connected in a matrix to complete the LED display device 100 having one large screen.
  • an ultraviolet curable optical adhesive film 41 was used as the adhesive layer of the surface protection substrate 4.
  • the structure of the adhesive layer is not limited to that, and may be, for example, a structure in which a liquid resin is cured by ultraviolet rays.
  • the liquid ultraviolet curable resin is directly poured onto the surface of the substrate 1 in the mold 9.
  • the thin transparent glass substrate 40 is put on the resin.
  • ultraviolet rays are irradiated from the surface side of the thin transparent glass substrate 40.
  • the liquid resin is cured by the ultraviolet rays, so that the surface protection substrate 4 is adhered and fixed to the LED element portion 2 and the gap filling layer 3.
  • FIG. 25 is a flowchart showing a manufacturing method by repairing the LED display panel 11 in the second embodiment.
  • 26 to 29 are diagrams showing an outline of a manufacturing method by repairing the LED display panel 11 in the second embodiment.
  • step S41 the LED display panel 11 is prepared.
  • the LED display panel 11 manufactured by the manufacturing method shown in FIG. 18 is prepared (FIG. 26).
  • step S42 the LED display panel 11 is heated from the surface side thereof.
  • the LED display panel 11 is heated by, for example, the radiant heat of a heater or the hot air of a dryer. By this heating, the volume of the heat-expandable capsule 31A expands, and eventually the gap filling layer 3 expands. As a result, the surface protection substrate 4 floats up from the LED element portion 2 (FIG. 27).
  • step S43 the surface protection substrate 4 lifted from the LED element portion 2 is peeled off from the gap filling layer 3 (FIG. 28).
  • step S44 the gap filling layer 3 whose volume has expanded is peeled off from the substrate 1 and the LED element portion 2 (FIG. 29).
  • step S45 the individual LED element portions 2 are exposed (FIG. 30).
  • a part of the substrate 1 exposed by peeling the gap filling layer 3 or at least a part of the LED element parts 2 of the plurality of LED element parts 2 is repaired.
  • the defective LED element portion is replaced with a normal LED element portion.
  • the defective part may be repaired.
  • the LED display panel 11 is manufactured again through the process shown in FIG.
  • FIG. 31 is a diagram showing another example of the manufacturing method by repairing the LED display panel 11 in the second embodiment.
  • the adhesive force of the optical adhesive film 41 is larger than the adhesive force between the gap filling layer 3 and the plurality of LED element portions 2 and the adhesive force between the gap filling layer 3 and the substrate 1. Therefore, in the above steps S43 and S44, the surface protection substrate 4 and the gap filling layer 3 can be peeled together from the substrate 1 and the LED element portion 2.
  • the LED display panel 11 includes a substrate 1, a plurality of LED element portions 2, a gap filling layer 3, and a surface protection substrate 4.
  • the plurality of LED element units 2 are mounted on the substrate 1 in a discrete and matrix manner.
  • the gap filling layer 3 is provided between the plurality of LED element portions 2.
  • the adhesion reducing layer is formed between the plurality of LED element portions 2 and the gap filling layer 3, and between the substrate 1 exposed from between the plurality of LED element portions 2 and the gap filling layer 3.
  • the surface protection substrate 4 includes a gap filling layer 3 and an adhesive layer (optical adhesive film 41) in contact with a plurality of LED element portions 2.
  • the adhesive force of the optical adhesive film 41 is larger than the adhesive force between the gap filling layer 3 and the plurality of LED element portions 2 and the adhesive force between the gap filling layer 3 and the substrate 1.
  • the surface protection substrate 4 and the gap filling layer 3 can be peeled together from the substrate 1 and the LED element portion 2, so that the manufacturing process by repair becomes easy.
  • the LED display panel 11 in the second embodiment includes the surface protection substrate 4.
  • the surface protection substrate 4 has an LED element portion 2 arranged on the outermost periphery of the LED display panel 11 adjacent to the LED. It prevents the element portion 2 from colliding with the element portion 2 and being damaged.
  • the surface protection substrate 4 in the second embodiment includes a substrate main body (thin plate transparent glass substrate 40) and an adhesive layer (optical adhesive film 41).
  • the adhesive layer is more easily deformed than the substrate body. Therefore, the following effects are obtained in the manufacturing method of the LED display panel 11.
  • step S42 the surface protection substrate 4 is heated in order from one end to the other end.
  • the volume expands in order from the heat-expandable capsule 31A on the end side of the substrate 1 according to the heating location.
  • step S43 the surface protection substrate 4 is gradually peeled off from the raised end side of the surface protection substrate 4. The difference is that the easily deformable optical adhesive film 41 is attached to the back surface of the thin transparent glass substrate 40, so that the surface protection substrate 4 can be peeled off while being curved. As a result, the peeling step of step S43 can be easily executed.
  • the LED display panel 11 in the second embodiment includes an adhesive reduction layer.
  • the adhesive reduction layer is formed between the plurality of LED element portions 2 and the gap filling layer 3 and between the substrate 1 exposed from between the plurality of LED element portions 2 and the gap filling layer 3, and is formed between the gap filling layers. Reduce the stickiness of 3.
  • the gap filling layer 3 in the second embodiment contains a resin that is slightly adhesive to the plurality of LED element portions 2 and the substrate 1.
  • the gap filling layer 3 is more easily peeled off.
  • the gap filling layer 3 in the second embodiment includes the gap filling material 30 and the heat-expandable fine particles 31 mixed in the gap filling material 30.
  • the heat-expandable fine particles 31 have a larger coefficient of thermal expansion than the gap filler 30.
  • the gap filler 30 in the second embodiment is an elastic resin.
  • the heat-expandable fine particles 31 include an outer shell and a heat-expandable capsule 31A in which the inside of the outer shell is filled with gas.
  • a gap filling layer 3 that easily expands by heating is formed. Further, the degree of expansion of the gap filling layer 3 is adjusted by the characteristics and amount of the heat-expandable capsule 31A mixed in the gap filling material 30.
  • the LED display panel and the method for manufacturing the LED display panel according to the third embodiment will be described.
  • the third embodiment is a subordinate concept of the first and second embodiments, and the LED display panel in the third embodiment includes each configuration of the LED display panel 11 in the second embodiment.
  • the description of the configuration and operation similar to those of the first or second embodiment will be omitted.
  • FIG. 32 is a cross-sectional view showing the configuration of the LED display panel 12 according to the third embodiment.
  • the gap filling layer 3 in the third embodiment includes the high concentration gap filling layer 3A in contact with the surface protection substrate 4.
  • the weight distribution ratio of the heat-expandable capsule 31A contained in the high-concentration gap-filled layer 3A is higher than the weight distribution ratio of the heat-expandable capsule 31A contained in the region closer to the substrate 1 than the high-concentration gap-filled layer 3A.
  • the volume of the high-concentration gap filling layer 3A expands more than the other regions due to the radiation of the heater or the heating by the hot air of the dryer. Therefore, the surface protection substrate 4 can be easily peeled off from the LED element portion 2 and the gap filling layer 3.
  • FIG. 33 is a cross-sectional view showing the configuration of the LED display panel 12A in the modified example of the third embodiment.
  • the gap filling layer 3 includes a high-concentration gap filling layer 3B in contact with the substrate 1.
  • the weight distribution ratio of the heat-expandable capsule 31A contained in the high-concentration gap-filled layer 3B is higher than the weight distribution ratio of the heat-expandable capsule 31A contained in the region closer to the surface protection substrate 4 than the high-concentration gap-filled layer 3B. ..
  • the volume of the high-concentration gap filling layer 3B expands more due to the radiation of the heater or the heating by the hot air of the dryer. Therefore, the gap filling layer 3 can be easily peeled off from the substrate 1.
  • each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Led Device Packages (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

The purpose of the present invention is to provide an LED display panel in which LED elements are easily detachable from components or from members disposed around the LED elements. The LED display panel includes a substrate (1), a plurality of LED elements (2), a gap filling layer (3), an adhesion reducing layer, and a surface protecting substrate (4). The plurality of LED elements (2) are discretely mounted in a matrix on the substrate (1). The gap filling layer (3) is provided between the plurality of LED elements (2). The surface protecting substrate (4) has light transmittance and covers the gap filling layer (3) and the plurality of LED elements (2). The surface protecting substrate (4) includes an adhesive layer (41) which is in contact with the gap filling layer (3) and the plurality of LED elements (2). The adhesive strength of the adhesive layer (41) is greater than the adhesive strength between the gap filling layer (3) and the plurality of LED elements (2) and is greater than the adhesive strength between the gap filling layer (3) and the substrate (1).

Description

LED表示パネルおよびLED表示パネルの製造方法LED display panel and manufacturing method of LED display panel
 本開示は、LED表示パネルおよびLED表示パネルの製造方法に関する。 This disclosure relates to an LED display panel and a method for manufacturing the LED display panel.
 LED(Light Emitting Diode)表示装置を構成するLED表示パネルは、正方配列された複数のLED素子を含み、個々のLED素子に対する点滅制御により映像情報を表示する。 The LED display panel constituting the LED (Light Emitting Diode) display device includes a plurality of LED elements arranged in a square manner, and displays video information by blinking control for each LED element.
 LED表示装置は、LED素子の技術発展および低コスト化により、屋外および屋内の広告表示等に数多く使用されるようになっている。LED表示装置は、従来、自然画およびグラフィックス等の動画像の表示に使用されることが主流であった。しかし、近年では、画素の狭ピッチ化によって視認距離が短くなり、会議室や監視システムなど静止画像の表示にもLED表示装置は使用されている。例えば、監視用途におけるLED表示装置は静止画に近いパソコン画像を表示することが多い。 LED display devices have come to be widely used for outdoor and indoor advertisement display, etc. due to technological development and cost reduction of LED elements. Conventionally, LED display devices have been mainly used for displaying moving images such as natural images and graphics. However, in recent years, the viewing distance has become shorter due to the narrowing of the pixel pitch, and LED display devices have also been used for displaying still images in conference rooms and surveillance systems. For example, LED display devices in surveillance applications often display personal computer images that are close to still images.
 LED表示装置に使用されるLED素子部は、SMD(Surface Mount Device:表面実装部品)型のLED素子が主流である。SMD型LED素子は、パッケージ化されており、LEDおよびそのLEDを封止する樹脂を含む。SMD型LED素子において、LEDはセラミックまたは樹脂などで成型されたキャビティの中に実装され、上方から樹脂によって封止されている。そのようなSMD型LED素子は、従来、画素ピッチが3mm以上の大型表示装置に数多く使用されている。 The mainstream LED element part used in the LED display device is an SMD (Surface Mount Device) type LED element. The SMD type LED element is packaged and contains an LED and a resin for sealing the LED. In the SMD type LED element, the LED is mounted in a cavity molded of ceramic or resin, and is sealed with resin from above. Conventionally, such SMD type LED elements are widely used in large display devices having a pixel pitch of 3 mm or more.
 近年、LED素子の低コスト化および小型化に伴い、より高精細化されたSMD型LED表示装置が市場に投入されている。例えば、画素ピッチが2.5mm、1.9mm、1.5mm、1.2mmなどの表示装置が実現されている。さらなる高精細化のため、4画素を構成するLEDが1つのパッケージに封止された4in1タイプのSMD型LED素子が実用化されている。また、LED自体が基板に直接実装されたCOB(Chip On Board)型LED素子も採用されている。これらように、ミニLED素子やマイクロLED素子を採用して高密度化を図った、画素ピッチが1mm以下のLED表示装置の事例も多くなっている。 In recent years, with the cost reduction and miniaturization of LED elements, higher definition SMD type LED display devices have been put on the market. For example, a display device having a pixel pitch of 2.5 mm, 1.9 mm, 1.5 mm, 1.2 mm, or the like has been realized. In order to further improve the definition, a 4in1 type SMD type LED element in which LEDs constituting 4 pixels are sealed in one package has been put into practical use. Further, a COB (Chip On Board) type LED element in which the LED itself is directly mounted on the substrate is also adopted. As described above, there are many cases of LED display devices having a pixel pitch of 1 mm or less, in which a mini LED element or a micro LED element is adopted to increase the density.
 特許文献1には、ドットマトリクス発光表示体(LED表示装置)が開示されている。そのドットマトリクス発光表示体は、縦横に配設された多数のLED素子と、各LED素子の周囲に、内面が光反射面として機能するすり鉢状の透孔が形成されたマスク板とを含む。その透孔内部は透光性樹脂によって封止され、さらに、LED素子およびすり鉢状の孔の上方に表面集光板が配置されている。表面集光板には、LED素子の位置に対応して貫通孔が設けられており、その貫通穴の上方開口部には凸状レンズが設けられている。このドットマトリクス発光表示体は、所望の配向特性を実現し、光利用効率を高め、コントラストを向上させる。 Patent Document 1 discloses a dot matrix light emitting display (LED display device). The dot-matrix light emitting display body includes a large number of LED elements arranged vertically and horizontally, and a mask plate having a mortar-shaped through hole whose inner surface functions as a light reflecting surface formed around each LED element. The inside of the through hole is sealed with a translucent resin, and a surface condensing plate is arranged above the LED element and the mortar-shaped hole. The surface condensing plate is provided with a through hole corresponding to the position of the LED element, and a convex lens is provided at the upper opening of the through hole. This dot matrix light emitting display realizes desired orientation characteristics, enhances light utilization efficiency, and improves contrast.
 また、特許文献2には、発光装置(LED表示装置)が開示されている。その発光装置は、基板の上に2次元状に並べた複数のLED素子と、複数のLED素子にそれぞれ対応した複数の孔が設けられた反射ケースとを含む。反射ケースにはアライメントマークが設けられており、LED素子が設けられた基板と、孔が設けられた反射ケースとの位置が高精度に合わせられる。この発光装置は、配向特性を改善するとともに輝度むらを低減する。 Further, Patent Document 2 discloses a light emitting device (LED display device). The light emitting device includes a plurality of LED elements arranged two-dimensionally on a substrate, and a reflection case provided with a plurality of holes corresponding to the plurality of LED elements. An alignment mark is provided on the reflective case, and the positions of the substrate provided with the LED element and the reflective case provided with the holes can be aligned with high accuracy. This light emitting device improves the orientation characteristics and reduces the uneven brightness.
 また、特許文献3には、表示パネル(LED表示装置)のコントラストを高める技術が開示されている。その表示パネルにおいては、複数のLED素子が2次元状に並べられたLED素子基板と、ブラックマトリクスが形成された透明基板とが互いに対向して配置されている。透明基板には、各LED素子と平面的に重なる位置に開口部が配置されている。LED素子基板と透明基板との間隔はスペーサによって規定される。その間隔は封止樹脂により封止されている。LED素子基板と透明基板との距離が短くなるので、表示パネルのコントラストが向上する。 Further, Patent Document 3 discloses a technique for increasing the contrast of a display panel (LED display device). In the display panel, an LED element substrate in which a plurality of LED elements are arranged two-dimensionally and a transparent substrate in which a black matrix is formed are arranged so as to face each other. On the transparent substrate, an opening is arranged at a position where it overlaps with each LED element in a plane. The distance between the LED element substrate and the transparent substrate is defined by a spacer. The interval is sealed with a sealing resin. Since the distance between the LED element substrate and the transparent substrate is shortened, the contrast of the display panel is improved.
実開平5-52882号公報Jikkenhei No. 5-52882 特開2004-79750号公報Japanese Unexamined Patent Publication No. 2004-79750 特開2015-184542号公報Japanese Unexamined Patent Publication No. 2015-184542
 LED表示装置を構成する複数のLED素子のうち、不点灯などの不具合が発生したLED素子を交換するもしくは修理するためには、そのLED素子とその周囲の部品または部材とを分離する必要がある。しかし、LED素子は、その周囲の部品および部材に接着されているため、容易に分離することができない。 Of the plurality of LED elements constituting the LED display device, in order to replace or repair the LED element in which a problem such as non-lighting has occurred, it is necessary to separate the LED element and its surrounding parts or members. .. However, since the LED element is adhered to the surrounding parts and members, it cannot be easily separated.
 本開示は、上記の課題を解決するためになされたものであり、LED素子部とその周囲の部品または部材との分離が容易なLED表示パネルの提供を目的とする。 The present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide an LED display panel in which the LED element portion and its surrounding parts or members can be easily separated.
 本開示に係るLED表示パネルは、基板、複数のLED素子部、間隙充填層、粘着低減層および表面保護基板を含む。複数のLED素子部は、基板上に、離散的かつマトリクス状に、実装される。間隙充填層は、複数のLED素子部の間に設けられる。表面保護基板は、光透過性を有し、間隙充填層と複数のLED素子部とを覆っている。表面保護基板は、間隙充填層および複数のLED素子部に接する接着層を含む。接着層の粘着力は、間隙充填層と複数のLED素子部との粘着力および間隙充填層と基板との粘着力よりも大きい。 The LED display panel according to the present disclosure includes a substrate, a plurality of LED element portions, a gap filling layer, an adhesion reducing layer, and a surface protection substrate. The plurality of LED element units are mounted on the substrate in a discrete and matrix manner. The gap filling layer is provided between the plurality of LED element portions. The surface protection substrate has light transmission and covers the gap filling layer and the plurality of LED element portions. The surface protection substrate includes a gap filling layer and an adhesive layer in contact with a plurality of LED element portions. The adhesive force of the adhesive layer is larger than the adhesive force between the gap filling layer and the plurality of LED element portions and the adhesive force between the gap filling layer and the substrate.
 本開示によれば、LED素子部とその周囲の部品または部材との分離が容易なLED表示パネルの提供が可能である。 According to the present disclosure, it is possible to provide an LED display panel in which the LED element portion and its surrounding parts or members can be easily separated.
 本開示の目的、特徴、局面、および利点は、以下の詳細な説明と添付図面とによって、より明白になる。 The purposes, features, aspects, and advantages of this disclosure will be made clearer by the following detailed description and accompanying drawings.
実施の形態1におけるLED表示装置の構成を示す平面図である。It is a top view which shows the structure of the LED display device in Embodiment 1. FIG. 実施の形態1におけるLED表示パネルの構成を示す断面図である。It is sectional drawing which shows the structure of the LED display panel in Embodiment 1. FIG. 図2に示される領域Cの詳細な構成を示す部分断面図である。It is a partial cross-sectional view which shows the detailed structure of the region C shown in FIG. 実施の形態1におけるLED表示パネルの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the LED display panel in Embodiment 1. 実施の形態1におけるLED表示パネルの製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 1. FIG. 実施の形態1におけるLED表示パネルの製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 1. FIG. 実施の形態1におけるLED表示パネルの製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 1. FIG. 実施の形態1におけるLED表示パネルの製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 1. FIG. 実施の形態1におけるLED表示パネルの製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 1. FIG. 実施の形態1におけるLED表示パネルの修復による製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method by repairing the LED display panel in Embodiment 1. 実施の形態1におけるLED表示パネルの修復による製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method by repairing the LED display panel in Embodiment 1. FIG. 実施の形態1におけるLED表示パネルの修復による製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method by repairing the LED display panel in Embodiment 1. FIG. 実施の形態1におけるLED表示パネルの修復による製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method by repairing the LED display panel in Embodiment 1. FIG. 実施の形態1におけるLED表示パネルの修復による製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method by repairing the LED display panel in Embodiment 1. FIG. 1つのLED表示パネルにおける配光特性の一例を示す図である。It is a figure which shows an example of the light distribution characteristic in one LED display panel. 複数のLED表示パネルを含むLED表示装置における配光特性の一例を示す図である。It is a figure which shows an example of the light distribution characteristic in the LED display device which includes a plurality of LED display panels. 実施の形態2におけるLED表示パネルの構成を示す断面図である。It is sectional drawing which shows the structure of the LED display panel in Embodiment 2. FIG. 実施の形態2におけるLED表示パネルの製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method of the LED display panel in Embodiment 2. 実施の形態2におけるLED表示パネルの製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 2. 実施の形態2におけるLED表示パネルの製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 2. 実施の形態2におけるLED表示パネルの製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 2. 実施の形態2におけるLED表示パネルの製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 2. 実施の形態2におけるLED表示パネルの製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 2. 実施の形態2におけるLED表示パネルの製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method of the LED display panel in Embodiment 2. 実施の形態2におけるLED表示パネルの修復による製造方法を示すフローチャートである。It is a flowchart which shows the manufacturing method by repairing the LED display panel in Embodiment 2. 実施の形態2におけるLED表示パネルの修復による製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method by repairing the LED display panel in Embodiment 2. 実施の形態2におけるLED表示パネルの修復による製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method by repairing the LED display panel in Embodiment 2. 実施の形態2におけるLED表示パネルの修復による製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method by repairing the LED display panel in Embodiment 2. 実施の形態2におけるLED表示パネルの修復による製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method by repairing the LED display panel in Embodiment 2. 実施の形態2におけるLED表示パネルの修復による製造方法の概略を示す図である。It is a figure which shows the outline of the manufacturing method by repairing the LED display panel in Embodiment 2. 実施の形態2におけるLED表示パネルの修復による製造方法の別の一例を示す図である。It is a figure which shows another example of the manufacturing method by repairing the LED display panel in Embodiment 2. FIG. 実施の形態3におけるLED表示パネルの構成を示す断面図である。It is sectional drawing which shows the structure of the LED display panel in Embodiment 3. FIG. 実施の形態3の変形例におけるLED表示パネルの構成を示す断面図である。It is sectional drawing which shows the structure of the LED display panel in the modification of Embodiment 3.
 <実施の形態1>
 (構成)
 図1は、実施の形態1におけるLED(Light Emitting Diode)表示装置100の構成を示す平面図である。LED表示装置100は、マトリクス状に配置された複数のLED表示パネル10を含み、それら複数のLED表示パネル10が1つの大画面を構成する。また、LED表示パネル10は複数のLED素子部2を含み、それら複数のLED素子部2はマトリクス状に配置されている。
<Embodiment 1>
(Constitution)
FIG. 1 is a plan view showing the configuration of the LED (Light Emitting Diode) display device 100 according to the first embodiment. The LED display device 100 includes a plurality of LED display panels 10 arranged in a matrix, and the plurality of LED display panels 10 constitute one large screen. Further, the LED display panel 10 includes a plurality of LED element units 2, and the plurality of LED element units 2 are arranged in a matrix.
 図2は、実施の形態1におけるLED表示パネル10の構成を示す断面図である。図2は、図1に示される線分ABにおける断面を示している。図3は、図2に示される領域Cの詳細な構成を示す部分断面図である。 FIG. 2 is a cross-sectional view showing the configuration of the LED display panel 10 according to the first embodiment. FIG. 2 shows a cross section of the line segment AB shown in FIG. FIG. 3 is a partial cross-sectional view showing a detailed configuration of the region C shown in FIG.
 LED表示パネル10は、基板1、複数のLED素子部2、粘着低減層(図示せず)、紫外線遮断層(図示せず)および間隙充填層3を含む。 The LED display panel 10 includes a substrate 1, a plurality of LED element portions 2, an adhesion reducing layer (not shown), an ultraviolet blocking layer (not shown), and a gap filling layer 3.
 基板1は、例えば、ガラス繊維を含むエポキシ基板である。 The substrate 1 is, for example, an epoxy substrate containing glass fiber.
 複数のLED素子部2は、基板1上に、離散的かつマトリクス状に配置されている。複数のLED素子部2の各々は、パッケージ化された方形状のチップ部品を含み、例えば、表面実装(SMD:Surface Mount Device)型LED素子である。LED素子部2は、光出射面を有し、その光出射面とは反対側の面が基板1と対向するように実装されている。 The plurality of LED element units 2 are arranged discretely and in a matrix on the substrate 1. Each of the plurality of LED element units 2 includes a packaged rectangular chip component, and is, for example, a surface mount (SMD: Surface Mount Device) type LED element. The LED element unit 2 has a light emitting surface, and is mounted so that the surface opposite to the light emitting surface faces the substrate 1.
 LED素子部2は、図3に示されるように、赤色LED2R、緑色LED2Gおよび青色LED2Bからなる3色のLEDと、それら3色のLEDを封止する封止樹脂2Aとで構成される。3色のLEDの各々は、基板1とは反対方向に光を放出するように配置されている。3色のLEDは、並べて配置されており、1つの画素ユニットを構成している。封止樹脂2Aは、光透過性を有し、3色のLEDを覆っている。封止樹脂2Aは、例えば、熱硬化性樹脂である。熱硬化性樹脂は、例えば、エポキシ樹脂等を含む。 As shown in FIG. 3, the LED element unit 2 is composed of a three-color LED composed of a red LED 2R, a green LED 2G, and a blue LED 2B, and a sealing resin 2A for sealing the three color LEDs. Each of the three-color LEDs is arranged so as to emit light in the direction opposite to that of the substrate 1. The three-color LEDs are arranged side by side to form one pixel unit. The sealing resin 2A has light transmission and covers the three-color LED. The sealing resin 2A is, for example, a thermosetting resin. The thermosetting resin includes, for example, an epoxy resin and the like.
 紫外線遮断層は、LED素子部2が実装された基板1の表面に形成されている。紫外線遮断層は、例えば、ナノレベルで分散された酸化チタンを含むアクリル樹脂により形成されている。 The ultraviolet blocking layer is formed on the surface of the substrate 1 on which the LED element portion 2 is mounted. The UV blocking layer is formed of, for example, an acrylic resin containing titanium oxide dispersed at the nano level.
 粘着低減層は、LED素子部2と間隙充填層3との間、および、複数のLED素子部2の間から露出する基板1と間隙充填層3との間に形成されている。ここでは、粘着低減層は、紫外線遮断層上に形成されている。粘着低減層は、いわゆる軽剥離コートまたは樹脂付着防止剤によって形成されている。粘着低減層は、例えば、フッ素化合物、シリコン化合物、フッ化シリコン化合物等を含む。粘着低減層は、間隙充填層3の粘着性を低減する。具体的には、粘着低減層は、LED素子部2と間隙充填層3との粘着性、および、基板1と間隙充填層3との粘着性を弱める。 The adhesive reduction layer is formed between the LED element portion 2 and the gap filling layer 3 and between the substrate 1 exposed from between the plurality of LED element portions 2 and the gap filling layer 3. Here, the adhesion reducing layer is formed on the ultraviolet blocking layer. The adhesive reduction layer is formed by a so-called light release coat or a resin adhesion inhibitor. The adhesive reduction layer contains, for example, a fluorine compound, a silicon compound, a silicon fluoride compound, and the like. The adhesive reduction layer reduces the adhesiveness of the gap filling layer 3. Specifically, the adhesive reduction layer weakens the adhesiveness between the LED element portion 2 and the gap filling layer 3 and the adhesiveness between the substrate 1 and the gap filling layer 3.
 間隙充填層3は、複数のLED素子部2の間に設けられる。LED表示パネル10の最外周に配置されたLED素子部2においては、そのLED素子部2の周囲にも間隙充填層3が設けられている。実施の形態1における間隙充填層3は黒色である。詳細は後述するが、間隙充填層3が黒色であることにより、間隙充填層3は、ブラックマトリクスと同様の機能を実現する。また、間隙充填層3は、LED素子部2を保護する機能を有する。 The gap filling layer 3 is provided between the plurality of LED element portions 2. In the LED element portion 2 arranged on the outermost periphery of the LED display panel 10, a gap filling layer 3 is also provided around the LED element portion 2. The gap filling layer 3 in the first embodiment is black. Although the details will be described later, since the gap filling layer 3 is black, the gap filling layer 3 realizes the same function as the black matrix. Further, the gap filling layer 3 has a function of protecting the LED element portion 2.
 間隙充填層3は、外部からの加熱により複数のLED素子部2よりも体積が膨張する性質を有する。例えば、LED表示パネル10が加熱された場合、LED素子部2よりも間隙充填層3の方が膨張する。間隙充填層3が加熱によって膨張することにより、間隙充填層3は基板1およびLED素子部2から剥離しやすくなる。特に、粘着低減層が形成されている場合、間隙充填層3は剥離しやすくなる。 The gap filling layer 3 has a property that the volume expands more than the plurality of LED element portions 2 by heating from the outside. For example, when the LED display panel 10 is heated, the gap filling layer 3 expands more than the LED element portion 2. As the gap filling layer 3 expands due to heating, the gap filling layer 3 is easily peeled off from the substrate 1 and the LED element portion 2. In particular, when the adhesive reduction layer is formed, the gap filling layer 3 is easily peeled off.
 間隙充填層3は、間隙充填材30と、間隙充填材30に混入された熱膨張性微粒子31と、を含む。間隙充填材30は、弾性を有する樹脂または加熱によって軟化する樹脂であることが好ましい。または、間隙充填材30は、微粘着性の樹脂であることが好ましい。間隙充填材30は、例えば、ウレタンアクリレートを含む樹脂である。 The gap filling layer 3 contains the gap filling material 30 and the heat-expandable fine particles 31 mixed in the gap filling material 30. The gap filler 30 is preferably an elastic resin or a resin that is softened by heating. Alternatively, the gap filler 30 is preferably a slightly adhesive resin. The gap filler 30 is, for example, a resin containing urethane acrylate.
 熱膨張性微粒子31は、間隙充填材30よりも大きな熱膨張率を有する。例えば、熱膨張性微粒子31を含まない間隙充填層3と、熱膨張性微粒子31を含む間隙充填層3とが、同じ温度で加熱された場合、熱膨張性微粒子31を含む間隙充填層3は、熱膨張性微粒子31を含まない間隙充填層3よりも体積が膨張する。熱膨張性微粒子31の体積膨張率は、間隙充填材30の体積膨張率の50倍以上であることが好ましい。加熱による間隙充填層3の膨張の程度は、例えば、熱膨張性微粒子31の体積膨張率または混入量によって調節される。熱膨張性微粒子31は、例えば、熱膨張性カプセル31Aである。熱膨張性カプセル31Aは、低沸点炭化水素が内包されたシェル構造を有する。シェル構造の外殻は、高分子材で形成されており、例えば、アクリルを含む樹脂である。実施の形態1における間隙充填層3は、間隙充填材30としてウレタンアクリレートを含む樹脂に、熱膨張性微粒子31としての熱膨張性カプセル31Aが混練されている。 The heat-expandable fine particles 31 have a larger coefficient of thermal expansion than the gap filler 30. For example, when the gap-filled layer 3 containing no heat-expandable fine particles 31 and the gap-filled layer 3 containing the heat-expandable fine particles 31 are heated at the same temperature, the gap-filled layer 3 containing the heat-expandable fine particles 31 , The volume expands more than the gap filling layer 3 that does not contain the thermally expandable fine particles 31. The volume expansion coefficient of the heat-expandable fine particles 31 is preferably 50 times or more the volume expansion coefficient of the gap filler 30. The degree of expansion of the gap filling layer 3 due to heating is adjusted by, for example, the volume expansion rate or the mixing amount of the heat-expandable fine particles 31. The heat-expandable fine particles 31 are, for example, a heat-expandable capsule 31A. The heat-expandable capsule 31A has a shell structure containing a low boiling point hydrocarbon. The outer shell of the shell structure is made of a polymer material, and is, for example, a resin containing acrylic. In the gap filling layer 3 of the first embodiment, the heat-expandable capsule 31A as the heat-expandable fine particles 31 is kneaded with the resin containing urethane acrylate as the gap-filling material 30.
 (製造方法)
 図4は、実施の形態1におけるLED表示パネル10の製造方法を示すフローチャートである。図5から図9は、実施の形態1におけるLED表示パネル10の製造方法の概略を示す図である。
(Production method)
FIG. 4 is a flowchart showing a method of manufacturing the LED display panel 10 according to the first embodiment. 5 to 9 are diagrams showing an outline of a method for manufacturing the LED display panel 10 according to the first embodiment.
 ステップS11にて、LED素子部2が表面実装された基板1を準備する。基板1およびLED素子部2の表面には、軽剥離コート処理が施されている。つまり、フッ素化合物などを含む粘着低減層がそれら表面に形成されている。基板1は、LED素子部2の光出射面が上方を向くように型枠9に装着される(図5)。 In step S11, the substrate 1 on which the LED element portion 2 is surface-mounted is prepared. The surfaces of the substrate 1 and the LED element portion 2 are lightly peeled and coated. That is, an adhesive reduction layer containing a fluorine compound or the like is formed on their surfaces. The substrate 1 is mounted on the mold 9 so that the light emitting surface of the LED element portion 2 faces upward (FIG. 5).
 ステップS12にて、LED素子部2の間および周囲に、熱膨張性微粒子31を含む間隙充填材30を流し込む(図6)。ここでは、熱膨張性微粒子31は熱膨張性カプセル31Aであり、間隙充填材30はゲル状の樹脂である。ゲル状の樹脂には、熱膨張性カプセル31Aが混練されている。そのゲル状の樹脂は、微粘着性の樹脂であり、ウレタンアクリレートを含む。また、そのゲル状の樹脂は、紫外線および湿気によって硬化する性質を有する。 In step S12, the gap filler 30 containing the heat-expandable fine particles 31 is poured between and around the LED element 2 (FIG. 6). Here, the heat-expandable fine particles 31 are heat-expandable capsules 31A, and the gap filler 30 is a gel-like resin. The heat-expandable capsule 31A is kneaded into the gel-like resin. The gel-like resin is a slightly adhesive resin and contains urethane acrylate. Further, the gel-like resin has a property of being cured by ultraviolet rays and moisture.
 ステップS13にて、上記のゲル状の樹脂すなわち間隙充填材30をLED素子部2の光出射面の高さまで流し込む(図7)。 In step S13, the gel-like resin, that is, the gap filling material 30, is poured to the height of the light emitting surface of the LED element portion 2 (FIG. 7).
 ステップS14にて、基板1が型枠9に装着された状態で、基板1の表面側から紫外線を照射する。その紫外線により、ゲル状の樹脂が半硬化状態に変化する。その後、半硬化状態の樹脂は、環境中の水分(湿気)を吸収することにより完全硬化状態に変化する。ここで、完全硬化とは、処理後の樹脂の流動性が処理前のゲル状の樹脂の流動性よりも低下することを意味する。ゲル状の樹脂は紫外線によって硬化し、弾性を有する樹脂へと変化する。その結果、LED素子部2の間および周辺に、弾性を有する間隙充填層3が形成される(図8)。言い換えると、LED素子部2の外周保護構造が形成される。 In step S14, with the substrate 1 mounted on the mold 9, ultraviolet rays are irradiated from the surface side of the substrate 1. The ultraviolet rays change the gel-like resin into a semi-cured state. After that, the semi-cured resin changes to a completely cured state by absorbing moisture (humidity) in the environment. Here, complete curing means that the fluidity of the resin after the treatment is lower than the fluidity of the gel-like resin before the treatment. The gel-like resin is cured by ultraviolet rays and changes into an elastic resin. As a result, an elastic gap filling layer 3 is formed between and around the LED element portions 2 (FIG. 8). In other words, the outer peripheral protection structure of the LED element portion 2 is formed.
 ステップS15にて、基板1を型枠9から取り外す(図9)。 In step S15, the substrate 1 is removed from the mold 9 (FIG. 9).
 以上の製造工程により、LED表示パネル10が完成する。その後、同様の工程で作製された複数のLED表示パネル10がマトリクス状に連結され、1つの大画面を有するLED表示装置100が完成する。 The LED display panel 10 is completed by the above manufacturing process. After that, a plurality of LED display panels 10 manufactured in the same process are connected in a matrix to complete the LED display device 100 having one large screen.
 (修復方法)
 図10は、実施の形態1におけるLED表示パネル10の修復による製造方法を示すフローチャートである。図11から図14は、実施の形態1におけるLED表示パネル10の修復による製造方法の概略を示す図である。
(Repair method)
FIG. 10 is a flowchart showing a manufacturing method by repairing the LED display panel 10 according to the first embodiment. 11 to 14 are diagrams showing an outline of a manufacturing method by repairing the LED display panel 10 according to the first embodiment.
 ステップS21にて、LED表示パネル10を準備する。ここでは、図4に示された製造方法によって作製されたLED表示パネル10が準備される(図11)。 In step S21, the LED display panel 10 is prepared. Here, the LED display panel 10 manufactured by the manufacturing method shown in FIG. 4 is prepared (FIG. 11).
 ステップS22にて、LED表示パネル10をその表面側から加熱する。LED表示パネル10は、例えば、ヒーターの輻射熱またはドライヤーの熱風によって加熱される。加熱温度は、熱膨張性カプセル31Aが過剰に膨張することによってその内部のガスの漏洩が開始する温度以下であることが好ましい。この加熱により、熱膨張性カプセル31Aの体積が膨張する。また、間隙充填材30である樹脂は、熱膨張性カプセル31Aの膨張に応じて体積が増加する。すなわち、間隙充填層3が膨張する(図12)。 In step S22, the LED display panel 10 is heated from the surface side thereof. The LED display panel 10 is heated by, for example, the radiant heat of a heater or the hot air of a dryer. The heating temperature is preferably equal to or lower than the temperature at which the gas inside the heat-expandable capsule 31A starts to leak due to excessive expansion. By this heating, the volume of the heat-expandable capsule 31A expands. Further, the volume of the resin which is the gap filling material 30 increases as the heat-expandable capsule 31A expands. That is, the gap filling layer 3 expands (FIG. 12).
 ステップS23にて、体積が膨張した間隙充填層3を、基板1およびLED素子部2から剥離する(図13)。 In step S23, the gap filling layer 3 whose volume has expanded is peeled off from the substrate 1 and the LED element portion 2 (FIG. 13).
 ステップS24にて、個々のLED素子部2は暴露状態となる(図14)。間隙充填層3が剥離されたことで露出する基板1の一部、または、複数のLED素子部2のうち少なくとも一部のLED素子部を修復する。ここでは、修復とは交換または修理を含む。例えば、複数のLED素子部2のうち、不具合が生じているLED素子部が、正常なLED素子部に交換される。または、交換の代わりに、不具合箇所が修理される。 In step S24, the individual LED element portions 2 are exposed (FIG. 14). A part of the substrate 1 exposed by peeling the gap filling layer 3 or at least a part of the LED element parts 2 of the plurality of LED element parts 2 is repaired. Here, repair includes replacement or repair. For example, among the plurality of LED element portions 2, the defective LED element portion is replaced with a normal LED element portion. Or, instead of replacement, the defective part is repaired.
 不具合箇所が修復された後、再度、図4に示される工程を経てLED表示パネル10が再び製造される。 After the defective part is repaired, the LED display panel 10 is manufactured again through the process shown in FIG.
 上記の間隙充填材30は、ウレタンアクリレートを含み、かつ、紫外線および湿気により硬化する樹脂であったが、それに限定されるものではない。間隙充填材30は、エポキシ、アクリルまたはウレタンアクリレートを含む紫外線硬化型の樹脂であってもよい。 The above-mentioned gap filler 30 is a resin containing urethane acrylate and cured by ultraviolet rays and moisture, but is not limited thereto. The gap filler 30 may be an ultraviolet curable resin containing epoxy, acrylic or urethane acrylate.
 (効果)
 以上をまとめると、実施の形態1におけるLED表示パネル10は、基板1、複数のLED素子部2および間隙充填層3を含む。複数のLED素子部2は、基板1上に、離散的かつマトリクス状に実装されている。間隙充填層3は、複数のLED素子部2の間に設けられる。間隙充填層3は、外部からの加熱により複数のLED素子部2よりも体積が膨張する。間隙充填層3は、間隙充填材30と、間隙充填材30に混入された熱膨張性微粒子31と、を含む。熱膨張性微粒子31は、間隙充填材30よりも大きな熱膨張率を有する。
(effect)
Summarizing the above, the LED display panel 10 according to the first embodiment includes a substrate 1, a plurality of LED element portions 2, and a gap filling layer 3. The plurality of LED element units 2 are mounted on the substrate 1 in a discrete and matrix manner. The gap filling layer 3 is provided between the plurality of LED element portions 2. The volume of the gap filling layer 3 expands more than that of the plurality of LED element portions 2 due to external heating. The gap filling layer 3 contains the gap filling material 30 and the heat-expandable fine particles 31 mixed in the gap filling material 30. The heat-expandable fine particles 31 have a larger coefficient of thermal expansion than the gap filler 30.
 このような構成により、LED表示パネル10が加熱された場合、間隙充填層3は膨張して容易に剥離可能な状態になる。すなわち、LED素子部2とその周囲の部品または部材との分離が容易なLED表示パネル10が実現される。従来、LED素子部に不具合が生じた場合、その不具合が生じたLED素子部だけでなく正常なLED素子部も含むLED表示パネルを交換または修理する必要があった。一方で、実施の形態1におけるLED表示パネル10においては、間隙充填層3が剥離された結果、個々のLED素子部2は暴露状態となり、その交換または修理が可能となる。LED表示パネル10は、不具合が発生したLED素子部2だけを交換するもしくは修理することを可能にする。LED表示パネル10ごと交換した場合であっても、そのLED表示パネル10に含まれる正常なLED素子部2等が、例えば修理サービス用の部品として利用される。実施の形態1におけるLED表示パネル10は、リサイクル性に優れる。また、LED素子部2とその周囲の部品または部材との分離が容易であるため、修復作業時間の短縮および修復コストが低減される。 With such a configuration, when the LED display panel 10 is heated, the gap filling layer 3 expands and becomes easily peelable. That is, the LED display panel 10 in which the LED element portion 2 and the surrounding parts or members can be easily separated is realized. Conventionally, when a defect occurs in the LED element portion, it is necessary to replace or repair the LED display panel including not only the defective LED element portion but also the normal LED element portion. On the other hand, in the LED display panel 10 according to the first embodiment, as a result of the gap filling layer 3 being peeled off, the individual LED element portions 2 are exposed and can be replaced or repaired. The LED display panel 10 makes it possible to replace or repair only the defective LED element unit 2. Even when the entire LED display panel 10 is replaced, the normal LED element unit 2 and the like included in the LED display panel 10 are used, for example, as parts for repair service. The LED display panel 10 according to the first embodiment is excellent in recyclability. Further, since the LED element portion 2 and the surrounding parts or members can be easily separated, the repair work time is shortened and the repair cost is reduced.
 また、粘着低減層が設けられているため、間隙充填層3は容易に剥離する。すなわち、LED素子部2とその周囲の部品または部材との分離が容易なLED表示パネル10が実現される。さらに、間隙充填層3が、複数のLED素子部2および基板1に対して微粘着性の樹脂を含む場合、間隙充填層3はさらに容易に剥離する。 Further, since the adhesive reduction layer is provided, the gap filling layer 3 is easily peeled off. That is, the LED display panel 10 in which the LED element portion 2 and the surrounding parts or members can be easily separated is realized. Further, when the gap filling layer 3 contains a resin slightly adhesive to the plurality of LED element portions 2 and the substrate 1, the gap filling layer 3 is more easily peeled off.
 実施の形態1におけるLED表示パネル10の製造方法は、上記のLED表示パネル10を準備し、LED表示パネル10を外部から加熱して、間隙充填層3を膨張させ、体積が膨張した間隙充填層3を、基板1および複数のLED素子部2から剥離し、間隙充填層3が剥離されたことで露出する複数のLED素子部2のうち少なくとも一部のLED素子部2を修復することを含む。 In the method of manufacturing the LED display panel 10 according to the first embodiment, the above-mentioned LED display panel 10 is prepared, the LED display panel 10 is heated from the outside, the gap filling layer 3 is expanded, and the gap filling layer whose volume is expanded is expanded. 3 is peeled off from the substrate 1 and the plurality of LED element portions 2, and at least a part of the LED element portions 2 exposed by the peeling of the gap filling layer 3 is repaired. ..
 このようなLED表示パネル10の製造方法は、不具合が発生したLED素子部2だけを交換するもしくは修理することを可能にする。また、LED表示パネル10ごと交換した場合であっても、そのLED表示パネル10に含まれる正常なLED素子部2等は、例えば、修理サービス用の部品として利用される。このように、実施の形態1におけるLED表示パネル10の製造方法は、リサイクル性に優れるLED表示パネル10を製造可能とする。 Such a manufacturing method of the LED display panel 10 makes it possible to replace or repair only the LED element portion 2 in which a defect has occurred. Further, even when the LED display panel 10 is replaced, the normal LED element unit 2 and the like included in the LED display panel 10 are used as, for example, parts for repair service. As described above, the method for manufacturing the LED display panel 10 in the first embodiment makes it possible to manufacture the LED display panel 10 having excellent recyclability.
 また、実施の形態1におけるLED表示パネル10の間隙充填層3は、黒色である。 Further, the gap filling layer 3 of the LED display panel 10 in the first embodiment is black.
 このような構成により、画素ごとの配向特性が均一化し、外光下における視認性およびコントラストが向上する。以下、この効果について説明する。 With such a configuration, the orientation characteristics of each pixel are made uniform, and the visibility and contrast under external light are improved. This effect will be described below.
 図15は、1つのLED表示パネル10における配光特性の一例を示す図である。図16は、複数のLED表示パネル10を含むLED表示装置100における配光特性の一例を示す図である。画素ユニット2C,2Eを構成する個々のLED素子部2の側面は、黒色の間隙充填層3によって等しく遮光されている。そのため、図15の左右の端、つまりLED表示パネル10の最外周に配置された画素ユニット2Eの出射光L30の配光特性は、その内側に配置された画素ユニット2Cの出射光L40の配光特性に類似する。 FIG. 15 is a diagram showing an example of light distribution characteristics in one LED display panel 10. FIG. 16 is a diagram showing an example of light distribution characteristics in the LED display device 100 including a plurality of LED display panels 10. The side surfaces of the individual LED element portions 2 constituting the pixel units 2C and 2E are equally shielded by the black gap filling layer 3. Therefore, the light distribution characteristics of the emitted light L30 of the pixel unit 2E arranged at the left and right ends of FIG. 15, that is, the outermost periphery of the LED display panel 10, are the light distribution of the emitted light L40 of the pixel unit 2C arranged inside the pixel unit 2E. Similar to properties.
 そのため、互いに隣接するLED表示パネル10の境界部分(図16において、出射光L30が出射される2つの画素ユニット2Eの境界部分)に輝度の段差がユーザによって視認されることを防ぐ。LED表示装置100は、ユーザにLED表示パネル10の継ぎ目が視認されにくく、より一体感のある大画面を提供する。 Therefore, it is possible to prevent the user from visually recognizing a difference in brightness at the boundary portion of the LED display panels 10 adjacent to each other (in FIG. 16, the boundary portion of the two pixel units 2E from which the emitted light L30 is emitted). The LED display device 100 provides a large screen with a more integrated feeling by making it difficult for the user to visually recognize the seams of the LED display panel 10.
 また、高精細化、高密度化が進んだLED表示パネルにおいて、LED素子部が実装された基板とブラックマトリクスが印刷された透明基板とを精密に位置を合わせて接合することは難しい。また、LED素子部の間に嵌合するような微細なブラックマトリクス部材を成型すること、さらにそれらの位置を精密に合わせて嵌合させることも難しい。一方で、実施の形態1におけるLED表示装置100は、間隙充填材30として、黒色のゲル状の樹脂をLED素子部2の間に流し込むだけで、ブラックマトリクス機能が実現される。 Further, in an LED display panel having advanced high definition and high density, it is difficult to precisely align and join a substrate on which an LED element portion is mounted and a transparent substrate on which a black matrix is printed. Further, it is also difficult to mold a fine black matrix member that fits between the LED element portions, and to fit them in a precise alignment. On the other hand, in the LED display device 100 according to the first embodiment, the black matrix function is realized only by pouring a black gel-like resin between the LED element portions 2 as the gap filling material 30.
 <実施の形態2>
 実施の形態2におけるLED表示パネルおよびLED表示パネルの製造方法を説明する。なお、実施の形態1と同様の構成および動作については説明を省略する。
<Embodiment 2>
The LED display panel and the method for manufacturing the LED display panel according to the second embodiment will be described. The same configuration and operation as in the first embodiment will not be described.
 図17は、実施の形態2におけるLED表示パネル11の構成を示す断面図である。 FIG. 17 is a cross-sectional view showing the configuration of the LED display panel 11 according to the second embodiment.
 実施の形態2におけるLED表示パネル11は、実施の形態1として示されたLED表示パネル10に、表面保護基板4をさらに含む。 The LED display panel 11 according to the second embodiment further includes the surface protection substrate 4 in the LED display panel 10 shown as the first embodiment.
 表面保護基板4は、光透過性および熱伝導性を有する。表面保護基板4は、間隙充填層3とLED素子部2の光出射面とを覆うように設けられる。実施の形態2における表面保護基板4は、基板本体として薄板透明ガラス基板40、接着層として光学接着フィルム41、および、表面処理層(図示せず)を含む。薄板透明ガラス基板40の厚さは、例えば0.3mm以下である。 The surface protection substrate 4 has light transmission and thermal conductivity. The surface protection substrate 4 is provided so as to cover the gap filling layer 3 and the light emitting surface of the LED element portion 2. The surface protection substrate 4 in the second embodiment includes a thin transparent glass substrate 40 as a substrate main body, an optical adhesive film 41 as an adhesive layer, and a surface treatment layer (not shown). The thickness of the thin transparent glass substrate 40 is, for example, 0.3 mm or less.
 光学接着フィルム41は、薄板透明ガラス基板40の裏面に貼り合わされている。光学接着フィルム41は、間隙充填層3および複数のLED素子部2に接している。光学接着フィルム41の粘着力は、粘着低減層を介した間隙充填層3と複数のLED素子部2との粘着力、および、粘着低減層を介した間隙充填層3と基板1との粘着力よりも大きい。また、実施の形態2における間隙充填層3は、複数のLED素子部2と基板1とに対して微粘着性を有する弾性樹脂を含む。光学接着フィルム41は、例えば、紫外線硬化型のフィルムである。光学接着フィルム41は、例えば、エポキシ、アクリルまたはウレタンアクリレートを含む樹脂製である。これらの光学接着フィルム41は、熱伝導性がよく、LED素子部2の放熱性を妨げない。光学接着フィルム41の厚さは、例えば0.25mm以下である。 The optical adhesive film 41 is attached to the back surface of the thin transparent glass substrate 40. The optical adhesive film 41 is in contact with the gap filling layer 3 and the plurality of LED element portions 2. The adhesive force of the optical adhesive film 41 is the adhesive force between the gap filling layer 3 and the plurality of LED element portions 2 via the adhesive reducing layer, and the adhesive force between the gap filling layer 3 and the substrate 1 via the adhesive reducing layer. Greater than. Further, the gap filling layer 3 in the second embodiment contains an elastic resin having a slight adhesiveness to the plurality of LED element portions 2 and the substrate 1. The optical adhesive film 41 is, for example, an ultraviolet curable film. The optical adhesive film 41 is made of a resin containing, for example, epoxy, acrylic or urethane acrylate. These optical adhesive films 41 have good thermal conductivity and do not interfere with the heat dissipation of the LED element portion 2. The thickness of the optical adhesive film 41 is, for example, 0.25 mm or less.
 表面処理層は、薄板透明ガラス基板40の表面に形成されている。表面処理層は、反射低減処理、帯電防止処理、ハードコート処理などによって形成される。例えば、反射低減処理によって、無反射コート、拡散フィルム等が表面処理層として形成される。 The surface treatment layer is formed on the surface of the thin transparent glass substrate 40. The surface treatment layer is formed by a reflection reduction treatment, an antistatic treatment, a hard coat treatment, or the like. For example, a non-reflective coating, a diffusion film, or the like is formed as a surface treatment layer by the reflection reduction treatment.
 (製造方法)
 図18は、実施の形態2におけるLED表示パネル11の製造方法を示すフローチャートである。図19から図24は、実施の形態2におけるLED表示パネル11の製造方法の概略を示す図である。
(Production method)
FIG. 18 is a flowchart showing a manufacturing method of the LED display panel 11 according to the second embodiment. 19 to 24 are diagrams showing an outline of the manufacturing method of the LED display panel 11 according to the second embodiment.
 ステップS31にて、LED素子部2が表面実装された基板1を準備する。基板1およびLED素子部2の表面には、軽剥離コート処理が施されている。つまり、フッ素化合物などを含む粘着低減層がそれら表面に形成されている。基板1は、LED素子部2の光出射面が上方を向くように型枠9に装着される(図19)。 In step S31, the substrate 1 on which the LED element portion 2 is surface-mounted is prepared. The surfaces of the substrate 1 and the LED element portion 2 are lightly peeled and coated. That is, an adhesive reduction layer containing a fluorine compound or the like is formed on their surfaces. The substrate 1 is mounted on the mold 9 so that the light emitting surface of the LED element portion 2 faces upward (FIG. 19).
 ステップS32にて、LED素子部2の間および周囲に、熱膨張性微粒子31を含む間隙充填材30を流し込む(図20)。ここでは、実施の形態1と同様に、熱膨張性カプセル31Aが混練されたゲル状の樹脂が流し込まれる。そのゲル上の樹脂は、微粘着性の樹脂であり、ウレタンアクリレートを含む。また、そのゲル状の樹脂は、紫外線および湿気によって硬化する性質を有する。 In step S32, the gap filler 30 containing the heat-expandable fine particles 31 is poured between and around the LED element 2 (FIG. 20). Here, as in the first embodiment, the gel-like resin in which the heat-expandable capsule 31A is kneaded is poured. The resin on the gel is a slightly adhesive resin and contains urethane acrylate. Further, the gel-like resin has a property of being cured by ultraviolet rays and moisture.
 ステップS33にて、上記のゲル状の樹脂すなわち間隙充填材30をLED素子部2の光出射面の高さまで流し込む。その後、基板1が型枠9に装着された状態で、基板1の表面側から紫外線が照射される(図21)。その紫外線により、ゲル状の樹脂が半硬化状態に変化する。 In step S33, the gel-like resin, that is, the gap filling material 30, is poured to the height of the light emitting surface of the LED element portion 2. After that, with the substrate 1 mounted on the mold 9, ultraviolet rays are irradiated from the surface side of the substrate 1 (FIG. 21). The ultraviolet rays change the gel-like resin into a semi-cured state.
 ステップS34にて、光学接着フィルム41がLED素子部2の光出射面および間隙充填層3と対向するように、表面保護基板4を被せる(図22)。 In step S34, the surface protection substrate 4 is covered so that the optical adhesive film 41 faces the light emitting surface of the LED element portion 2 and the gap filling layer 3 (FIG. 22).
 ステップS35にて、表面保護基板4の表面側から、紫外線を照射する。その紫外線により、光学接着フィルム41は、LED素子部2および間隙充填層3に接着および固定される。このようにして、LED素子部2の表面保護構造が形成される(図23)。 In step S35, ultraviolet rays are irradiated from the surface side of the surface protection substrate 4. The ultraviolet rays cause the optical adhesive film 41 to be adhered and fixed to the LED element portion 2 and the gap filling layer 3. In this way, the surface protection structure of the LED element portion 2 is formed (FIG. 23).
 ステップS36にて、基板1を型枠9から取り外す(図24)。 In step S36, the substrate 1 is removed from the mold 9 (FIG. 24).
 以上の製造工程により、LED表示パネル11が完成する。その後、同様の工程により作製された複数のLED表示パネル11がマトリクス状に連結され、1つの大画面を有するLED表示装置100が完成する。 The LED display panel 11 is completed by the above manufacturing process. After that, a plurality of LED display panels 11 manufactured by the same process are connected in a matrix to complete the LED display device 100 having one large screen.
 上記の製造方法において、表面保護基板4の接着層として、紫外線硬化型の光学接着フィルム41が用いられた。ただし、接着層の構成は、それに限定されるものではなく、例えば、液体状の樹脂が紫外線によって硬化した構成であってもよい。その場合、ステップS34において、液体状の紫外線硬化型の樹脂が、型枠9内の基板1の表面に直接流し込まれる。その後、薄板透明ガラス基板40が、その樹脂の上に被せられる。ステップS35にて、薄板透明ガラス基板40の表面側から紫外線が照射される。その紫外線により、液体状の樹脂が硬化することにより、表面保護基板4は、LED素子部2および間隙充填層3と接着して固定される。 In the above manufacturing method, an ultraviolet curable optical adhesive film 41 was used as the adhesive layer of the surface protection substrate 4. However, the structure of the adhesive layer is not limited to that, and may be, for example, a structure in which a liquid resin is cured by ultraviolet rays. In that case, in step S34, the liquid ultraviolet curable resin is directly poured onto the surface of the substrate 1 in the mold 9. After that, the thin transparent glass substrate 40 is put on the resin. In step S35, ultraviolet rays are irradiated from the surface side of the thin transparent glass substrate 40. The liquid resin is cured by the ultraviolet rays, so that the surface protection substrate 4 is adhered and fixed to the LED element portion 2 and the gap filling layer 3.
 (修復方法)
 図25は、実施の形態2におけるLED表示パネル11の修復による製造方法を示すフローチャートである。図26から図29は、実施の形態2におけるLED表示パネル11の修復による製造方法の概略を示す図である。
(Repair method)
FIG. 25 is a flowchart showing a manufacturing method by repairing the LED display panel 11 in the second embodiment. 26 to 29 are diagrams showing an outline of a manufacturing method by repairing the LED display panel 11 in the second embodiment.
 ステップS41にて、LED表示パネル11を準備する。ここでは、図18に示された製造方法によって作製されたLED表示パネル11が準備される(図26)。 In step S41, the LED display panel 11 is prepared. Here, the LED display panel 11 manufactured by the manufacturing method shown in FIG. 18 is prepared (FIG. 26).
 ステップS42にて、LED表示パネル11をその表面側から加熱する。LED表示パネル11は、例えば、ヒーターの輻射熱またはドライヤーの熱風によって加熱される。この加熱により、熱膨張性カプセル31Aの体積が膨張し、ひいては、間隙充填層3が膨張する。その結果、表面保護基板4がLED素子部2から浮き上がる(図27)。 In step S42, the LED display panel 11 is heated from the surface side thereof. The LED display panel 11 is heated by, for example, the radiant heat of a heater or the hot air of a dryer. By this heating, the volume of the heat-expandable capsule 31A expands, and eventually the gap filling layer 3 expands. As a result, the surface protection substrate 4 floats up from the LED element portion 2 (FIG. 27).
 ステップS43にて、LED素子部2から浮き上がった表面保護基板4を、間隙充填層3から剥離する(図28)。 In step S43, the surface protection substrate 4 lifted from the LED element portion 2 is peeled off from the gap filling layer 3 (FIG. 28).
 ステップS44にて、体積が膨張した間隙充填層3を、基板1およびLED素子部2から剥離する(図29)。 In step S44, the gap filling layer 3 whose volume has expanded is peeled off from the substrate 1 and the LED element portion 2 (FIG. 29).
 ステップS45にて、個々のLED素子部2は暴露状態となる(図30)。間隙充填層3が剥離されたことで露出する基板1の一部、または、複数のLED素子部2のうち少なくとも一部のLED素子部を修復する。例えば、複数のLED素子部2のうち、不具合が生じているLED素子部が、正常なLED素子部に交換される。または、交換の代わりに、不具合箇所が修理されてもよい。 In step S45, the individual LED element portions 2 are exposed (FIG. 30). A part of the substrate 1 exposed by peeling the gap filling layer 3 or at least a part of the LED element parts 2 of the plurality of LED element parts 2 is repaired. For example, among the plurality of LED element portions 2, the defective LED element portion is replaced with a normal LED element portion. Alternatively, instead of replacement, the defective part may be repaired.
 不具合箇所が修復された後、再度、図18に示される工程を経てLED表示パネル11が再び製造される。 After the defective part is repaired, the LED display panel 11 is manufactured again through the process shown in FIG.
 図31は、実施の形態2におけるLED表示パネル11の修復による製造方法の別の一例を示す図である。上記のように、光学接着フィルム41の粘着力は、間隙充填層3と複数のLED素子部2との粘着力、および、間隙充填層3と基板1との粘着力よりも大きい。したがって、上記のステップS43およびステップS44において、表面保護基板4と間隙充填層3とを一緒に基板1およびLED素子部2から剥離することができる。 FIG. 31 is a diagram showing another example of the manufacturing method by repairing the LED display panel 11 in the second embodiment. As described above, the adhesive force of the optical adhesive film 41 is larger than the adhesive force between the gap filling layer 3 and the plurality of LED element portions 2 and the adhesive force between the gap filling layer 3 and the substrate 1. Therefore, in the above steps S43 and S44, the surface protection substrate 4 and the gap filling layer 3 can be peeled together from the substrate 1 and the LED element portion 2.
 (効果)
 以上をまとめると、実施の形態2におけるLED表示パネル11は、基板1、複数のLED素子部2、間隙充填層3および表面保護基板4を含む。複数のLED素子部2は、基板1上に、離散的かつマトリクス状に、実装されている。間隙充填層3は、複数のLED素子部2の間に設けられる。粘着低減層は、複数のLED素子部2と間隙充填層3との間、および、複数のLED素子部2の間から露出する基板1と間隙充填層3との間に形成されている。表面保護基板4は、間隙充填層3および複数のLED素子部2に接する接着層(光学接着フィルム41)を含む。光学接着フィルム41の粘着力は、間隙充填層3と複数のLED素子部2との粘着力、および、間隙充填層3と基板1との粘着力よりも大きい。
(effect)
Summarizing the above, the LED display panel 11 according to the second embodiment includes a substrate 1, a plurality of LED element portions 2, a gap filling layer 3, and a surface protection substrate 4. The plurality of LED element units 2 are mounted on the substrate 1 in a discrete and matrix manner. The gap filling layer 3 is provided between the plurality of LED element portions 2. The adhesion reducing layer is formed between the plurality of LED element portions 2 and the gap filling layer 3, and between the substrate 1 exposed from between the plurality of LED element portions 2 and the gap filling layer 3. The surface protection substrate 4 includes a gap filling layer 3 and an adhesive layer (optical adhesive film 41) in contact with a plurality of LED element portions 2. The adhesive force of the optical adhesive film 41 is larger than the adhesive force between the gap filling layer 3 and the plurality of LED element portions 2 and the adhesive force between the gap filling layer 3 and the substrate 1.
 このような構成により、表面保護基板4と間隙充填層3とを一緒に基板1およびLED素子部2から剥離することができるため、修復による製造工程が容易となる。 With such a configuration, the surface protection substrate 4 and the gap filling layer 3 can be peeled together from the substrate 1 and the LED element portion 2, so that the manufacturing process by repair becomes easy.
 実施の形態2におけるLED表示パネル11は表面保護基板4を含む。例えば、複数のLED表示パネル11が縦横に配設されたLED表示装置100の組み立ての際、表面保護基板4は、最外周に配置されているLED素子部2が隣のLED表示パネル11のLED素子部2に衝突して破損することを防ぐ。 The LED display panel 11 in the second embodiment includes the surface protection substrate 4. For example, when assembling the LED display device 100 in which a plurality of LED display panels 11 are arranged vertically and horizontally, the surface protection substrate 4 has an LED element portion 2 arranged on the outermost periphery of the LED display panel 11 adjacent to the LED. It prevents the element portion 2 from colliding with the element portion 2 and being damaged.
 また、実施の形態2における表面保護基板4は、基板本体(薄板透明ガラス基板40)と接着層(光学接着フィルム41)とを含む。接着層は、基板本体よりも変形しやすい。そのため、LED表示パネル11の製造方法において以下の効果を奏する。 Further, the surface protection substrate 4 in the second embodiment includes a substrate main body (thin plate transparent glass substrate 40) and an adhesive layer (optical adhesive film 41). The adhesive layer is more easily deformed than the substrate body. Therefore, the following effects are obtained in the manufacturing method of the LED display panel 11.
 例えば、ステップS42において、表面保護基板4の一端から他端にかけて順に加熱する。加熱箇所に応じて、基板1の端部側の熱膨張性カプセル31Aから順に体積が膨張する。ステップS43にて、表面保護基板4が浮き上がった端部側から徐々に表面保護基板4を剥離する。その差異、変形しやすい光学接着フィルム41が薄板透明ガラス基板40の裏面に貼付されているため、表面保護基板4を湾曲させながら剥離することができる。その結果、ステップS43の剥離工程が容易に実行できる。 For example, in step S42, the surface protection substrate 4 is heated in order from one end to the other end. The volume expands in order from the heat-expandable capsule 31A on the end side of the substrate 1 according to the heating location. In step S43, the surface protection substrate 4 is gradually peeled off from the raised end side of the surface protection substrate 4. The difference is that the easily deformable optical adhesive film 41 is attached to the back surface of the thin transparent glass substrate 40, so that the surface protection substrate 4 can be peeled off while being curved. As a result, the peeling step of step S43 can be easily executed.
 また、実施の形態2におけるLED表示パネル11は、粘着低減層を含む。粘着低減層は、複数のLED素子部2と間隙充填層3との間、および、複数のLED素子部2の間から露出する基板1と間隙充填層3との間に形成され、間隙充填層3の粘着性を低減する。さらに、実施の形態2における間隙充填層3は、複数のLED素子部2と基板1とに対して微粘着性の樹脂を含む。 Further, the LED display panel 11 in the second embodiment includes an adhesive reduction layer. The adhesive reduction layer is formed between the plurality of LED element portions 2 and the gap filling layer 3 and between the substrate 1 exposed from between the plurality of LED element portions 2 and the gap filling layer 3, and is formed between the gap filling layers. Reduce the stickiness of 3. Further, the gap filling layer 3 in the second embodiment contains a resin that is slightly adhesive to the plurality of LED element portions 2 and the substrate 1.
 このような構成により、間隙充填層3がさらに剥離しやすくなる。 With such a configuration, the gap filling layer 3 is more easily peeled off.
 また、実施の形態2における間隙充填層3は、間隙充填材30と、間隙充填材30に混入された熱膨張性微粒子31と、を含む。熱膨張性微粒子31は、間隙充填材30よりも大きな熱膨張率を有する。 Further, the gap filling layer 3 in the second embodiment includes the gap filling material 30 and the heat-expandable fine particles 31 mixed in the gap filling material 30. The heat-expandable fine particles 31 have a larger coefficient of thermal expansion than the gap filler 30.
 このような構成により、LED表示パネル11が加熱された場合、間隙充填層3は膨張して容易に剥離可能な状態になる。 With such a configuration, when the LED display panel 11 is heated, the gap filling layer 3 expands and becomes easily peelable.
 実施の形態2における間隙充填材30は、弾性を有する樹脂である。熱膨張性微粒子31は、外殻と、外殻の内部にガスが充填された熱膨張性カプセル31Aを含む。 The gap filler 30 in the second embodiment is an elastic resin. The heat-expandable fine particles 31 include an outer shell and a heat-expandable capsule 31A in which the inside of the outer shell is filled with gas.
 このような構成により、加熱によって容易に膨張する間隙充填層3が形成される。また、間隙充填材30に混入する熱膨張性カプセル31Aの特性および量により、間隙充填層3の膨張の程度が調整される。 With such a configuration, a gap filling layer 3 that easily expands by heating is formed. Further, the degree of expansion of the gap filling layer 3 is adjusted by the characteristics and amount of the heat-expandable capsule 31A mixed in the gap filling material 30.
 <実施の形態3>
 実施の形態3におけるLED表示パネルおよびLED表示パネルの製造方法を説明する。実施の形態3は実施の形態1および2の下位概念であり、実施の形態3におけるLED表示パネルは、実施の形態2におけるLED表示パネル11の各構成を含む。なお、実施の形態1または2と同様の構成および動作については説明を省略する。
<Embodiment 3>
The LED display panel and the method for manufacturing the LED display panel according to the third embodiment will be described. The third embodiment is a subordinate concept of the first and second embodiments, and the LED display panel in the third embodiment includes each configuration of the LED display panel 11 in the second embodiment. The description of the configuration and operation similar to those of the first or second embodiment will be omitted.
 図32は、実施の形態3におけるLED表示パネル12の構成を示す断面図である。 FIG. 32 is a cross-sectional view showing the configuration of the LED display panel 12 according to the third embodiment.
 実施の形態3における間隙充填層3は、表面保護基板4に接する高濃度間隙充填層3Aを含む。高濃度間隙充填層3Aに含まれる熱膨張性カプセル31Aの重量配分比は、高濃度間隙充填層3Aよりも基板1に近い領域に含まれる熱膨張性カプセル31Aの重量配分比よりも高い。 The gap filling layer 3 in the third embodiment includes the high concentration gap filling layer 3A in contact with the surface protection substrate 4. The weight distribution ratio of the heat-expandable capsule 31A contained in the high-concentration gap-filled layer 3A is higher than the weight distribution ratio of the heat-expandable capsule 31A contained in the region closer to the substrate 1 than the high-concentration gap-filled layer 3A.
 LED表示パネル12の修復の際、ヒーターの輻射またはドライヤーの熱風等による加熱によって、高濃度間隙充填層3Aの体積はその他の領域よりも大きく膨張する。そのため、表面保護基板4をLED素子部2および間隙充填層3から容易に剥離することが可能となる。 When repairing the LED display panel 12, the volume of the high-concentration gap filling layer 3A expands more than the other regions due to the radiation of the heater or the heating by the hot air of the dryer. Therefore, the surface protection substrate 4 can be easily peeled off from the LED element portion 2 and the gap filling layer 3.
 (実施の形態3の変形例)
 図33は、実施の形態3の変形例におけるLED表示パネル12Aの構成を示す断面図である。
(Modified Example of Embodiment 3)
FIG. 33 is a cross-sectional view showing the configuration of the LED display panel 12A in the modified example of the third embodiment.
 間隙充填層3は、基板1に接する高濃度間隙充填層3Bを含む。高濃度間隙充填層3Bに含まれる熱膨張性カプセル31Aの重量配分比は、高濃度間隙充填層3Bよりも表面保護基板4に近い領域に含まれる熱膨張性カプセル31Aの重量配分比よりも高い。 The gap filling layer 3 includes a high-concentration gap filling layer 3B in contact with the substrate 1. The weight distribution ratio of the heat-expandable capsule 31A contained in the high-concentration gap-filled layer 3B is higher than the weight distribution ratio of the heat-expandable capsule 31A contained in the region closer to the surface protection substrate 4 than the high-concentration gap-filled layer 3B. ..
 LED表示パネル12Aの修復の際、ヒーターの輻射またはドライヤーの熱風等による加熱によって、高濃度間隙充填層3Bの体積はより大きく膨張する。そのため、間隙充填層3を基板1から容易に剥離することが可能となる。 When repairing the LED display panel 12A, the volume of the high-concentration gap filling layer 3B expands more due to the radiation of the heater or the heating by the hot air of the dryer. Therefore, the gap filling layer 3 can be easily peeled off from the substrate 1.
 なお、本開示は、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。 In the present disclosure, each embodiment can be freely combined, and each embodiment can be appropriately modified or omitted.
 本開示は詳細に説明されたが、上記した説明は、全ての局面において、例示であって、本開示がそれに限定されるものではない。例示されていない無数の変形例が、この開示の範囲から外れることなく想定され得るものと解される。 Although the present disclosure has been described in detail, the above description is exemplary in all aspects and the disclosure is not limited thereto. It is understood that a myriad of variants not illustrated can be envisioned without departing from the scope of this disclosure.
 1 基板、2 LED素子部、2A 封止樹脂、2B 青色LED、2C 画素ユニット、2E 画素ユニット、2G 緑色LED、2R 赤色LED、3 間隙充填層、3A 高濃度間隙充填層、3B 高濃度間隙充填層、4 表面保護基板、9 型枠、10 LED表示パネル、11 LED表示パネル、12 LED表示パネル、12A LED表示パネル、30 間隙充填材、31 熱膨張性微粒子、31A 熱膨張性カプセル、40 薄板透明ガラス基板、41 光学接着フィルム、100 LED表示装置。 1 substrate, 2 LED element part, 2A sealing resin, 2B blue LED, 2C pixel unit, 2E pixel unit, 2G green LED, 2R red LED, 3 gap filling layer, 3A high concentration gap filling layer, 3B high concentration gap filling Layers, 4 surface protection substrates, 9 molds, 10 LED display panels, 11 LED display panels, 12 LED display panels, 12A LED display panels, 30 gap fillers, 31 heat-expandable fine particles, 31A heat-expandable capsules, 40 thin plates Transparent glass substrate, 41 optical adhesive film, 100 LED display device.

Claims (13)

  1.  基板と、
     前記基板上に、離散的かつマトリクス状に、実装される複数のLED素子部と、
     前記複数のLED素子部の間に設けられる間隙充填層と、
     光透過性を有し、前記間隙充填層と前記複数のLED素子部とを覆う表面保護基板と、を備え、
     前記表面保護基板は、前記間隙充填層および前記複数のLED素子部に接する接着層を含み、
     前記接着層の前記間隙充填層および前記複数のLED素子部に対する粘着力は、前記間隙充填層と前記複数のLED素子部との粘着力および前記間隙充填層と前記基板との粘着力よりも大きい、LED表示パネル。
    With the board
    A plurality of LED element units mounted discretely and in a matrix on the substrate,
    The gap filling layer provided between the plurality of LED element portions and
    A surface protective substrate having light transmission and covering the gap filling layer and the plurality of LED element portions is provided.
    The surface protection substrate includes the gap filling layer and an adhesive layer in contact with the plurality of LED element portions.
    The adhesive force of the adhesive layer to the gap filling layer and the plurality of LED element portions is larger than the adhesive force between the gap filling layer and the plurality of LED element portions and the adhesive force between the gap filling layer and the substrate. , LED display panel.
  2.  前記複数のLED素子部と前記間隙充填層との間、および、前記複数のLED素子部の間から露出する前記基板と前記間隙充填層との間に形成され、前記間隙充填層の粘着性を低減する粘着低減層を、さらに備える請求項1に記載のLED表示パネル。 It is formed between the plurality of LED element portions and the gap filling layer, and between the substrate and the gap filling layer exposed from between the plurality of LED element portions, and the adhesiveness of the gap filling layer is increased. The LED display panel according to claim 1, further comprising a reduced adhesion reducing layer.
  3.  前記間隙充填層は、前記複数のLED素子部と前記基板とに対して微粘着性の樹脂を含む、請求項1または請求項2に記載のLED表示パネル。 The LED display panel according to claim 1 or 2, wherein the gap filling layer contains a resin slightly adhesive to the plurality of LED element portions and the substrate.
  4.  前記間隙充填層は、間隙充填材と、前記間隙充填材に混入された熱膨張性微粒子と、を含み、
     前記熱膨張性微粒子は、前記間隙充填材よりも大きな熱膨張率を有する、請求項1から請求項3のいずれか一項に記載のLED表示パネル。
    The gap filling layer contains a gap filling material and thermally expandable fine particles mixed in the gap filling material.
    The LED display panel according to any one of claims 1 to 3, wherein the heat-expandable fine particles have a larger coefficient of thermal expansion than the gap filler.
  5.  前記間隙充填材は、弾性を有する樹脂であり、
     前記熱膨張性微粒子は、
     外殻と、前記外殻の内部にガスが充填された熱膨張性カプセルを含む、請求項4に記載のLED表示パネル。
    The gap filler is an elastic resin and is used.
    The heat-expandable fine particles are
    The LED display panel according to claim 4, further comprising an outer shell and a heat-expandable capsule in which the inside of the outer shell is filled with gas.
  6.  前記間隙充填層は、前記表面保護基板の前記接着層に接する高濃度間隙充填層を含み、
     前記高濃度間隙充填層に含まれる前記熱膨張性微粒子の重量配分比は、前記高濃度間隙充填層よりも前記基板に近い領域に含まれる前記熱膨張性微粒子の重量配分比よりも高い、請求項4または請求項5に記載のLED表示パネル。
    The gap filling layer includes a high concentration gap filling layer in contact with the adhesive layer of the surface protection substrate.
    The weight distribution ratio of the heat-expandable fine particles contained in the high-concentration gap-filled layer is higher than the weight distribution ratio of the heat-expandable fine particles contained in a region closer to the substrate than the high-concentration gap-filled layer. The LED display panel according to claim 4 or 5.
  7.  前記間隙充填層は、前記基板に接する高濃度間隙充填層を含み、
     前記高濃度間隙充填層に含まれる前記熱膨張性微粒子の重量配分比は、前記高濃度間隙充填層よりも前記表面保護基板に近い領域に含まれる前記熱膨張性微粒子の重量配分比よりも高い、請求項4または請求項5に記載のLED表示パネル。
    The gap-filled layer includes a high-concentration gap-filled layer in contact with the substrate.
    The weight distribution ratio of the heat-expandable fine particles contained in the high-concentration gap-filled layer is higher than the weight distribution ratio of the heat-expandable fine particles contained in the region closer to the surface protection substrate than the high-concentration gap-filled layer. , The LED display panel according to claim 4 or 5.
  8.  前記間隙充填層は、黒色である、請求項1から請求項7のいずれか一項に記載のLED表示パネル。 The LED display panel according to any one of claims 1 to 7, wherein the gap filling layer is black.
  9.  基板と、
     前記基板上に、離散的かつマトリクス状に、実装される複数のLED素子部と、
     前記複数のLED素子部の間に設けられる間隙充填層と、
     光透過性を有し、前記間隙充填層と前記複数のLED素子部とを覆う表面保護基板と、を備え、
     前記表面保護基板は、前記間隙充填層および前記複数のLED素子部に接する接着層を含み、
     前記接着層の粘着力は、前記間隙充填層と前記複数のLED素子部との粘着力および前記間隙充填層と前記基板との粘着力よりも大きい、LED表示パネルを準備し、
     前記表面保護基板を前記複数のLED素子部から剥離し、
     前記間隙充填層を前記基板および前記複数のLED素子部から剥離し、
     前記間隙充填層が剥離されたことで露出する前記複数のLED素子部のうち少なくとも一部のLED素子部を修復する、LED表示パネルの製造方法。
    With the board
    A plurality of LED element units mounted discretely and in a matrix on the substrate,
    The gap filling layer provided between the plurality of LED element portions and
    A surface protective substrate having light transmission and covering the gap filling layer and the plurality of LED element portions is provided.
    The surface protection substrate includes the gap filling layer and an adhesive layer in contact with the plurality of LED element portions.
    An LED display panel is prepared in which the adhesive force of the adhesive layer is larger than the adhesive force between the gap filling layer and the plurality of LED element portions and the adhesive force between the gap filling layer and the substrate.
    The surface protection substrate is peeled off from the plurality of LED element portions, and the surface protection substrate is peeled off from the plurality of LED element portions.
    The gap filling layer is peeled off from the substrate and the plurality of LED element portions, and the gap filling layer is separated from the substrate and the plurality of LED element portions.
    A method for manufacturing an LED display panel, which repairs at least a part of the LED element portions exposed by peeling off the gap filling layer.
  10.  前記表面保護基板と前記間隙充填層とを一緒に剥離する、請求項9に記載のLED表示パネルの製造方法。 The method for manufacturing an LED display panel according to claim 9, wherein the surface protection substrate and the gap filling layer are peeled off together.
  11.  前記表面保護基板および前記間隙充填層を剥離する前に、前記LED表示パネルを加熱して、前記間隙充填層を膨張させ、
     前記間隙充填層の膨張後に、前記表面保護基板および前記間隙充填層を剥離する、請求項9または請求項10に記載のLED表示パネルの製造方法。
    Before peeling off the surface protection substrate and the gap filling layer, the LED display panel is heated to expand the gap filling layer.
    The method for manufacturing an LED display panel according to claim 9 or 10, wherein the surface protection substrate and the gap filling layer are peeled off after the expansion of the gap filling layer.
  12.  基板と、
     前記基板上に、離散的かつマトリクス状に実装される複数のLED素子部と、
     前記複数のLED素子部の間に設けられ、外部からの加熱により前記複数のLED素子部よりも体積が膨張する間隙充填層と、を備え、
     前記間隙充填層は、間隙充填材と、前記間隙充填材に混入された熱膨張性微粒子と、を含み、
     前記熱膨張性微粒子は、前記間隙充填材よりも大きな熱膨張率を有する、LED表示パネル。
    With the board
    A plurality of LED element units mounted discretely and in a matrix on the substrate,
    A gap filling layer provided between the plurality of LED element portions and whose volume expands more than that of the plurality of LED element portions by heating from the outside is provided.
    The gap filling layer contains a gap filling material and thermally expandable fine particles mixed in the gap filling material.
    The LED display panel in which the heat-expandable fine particles have a larger coefficient of thermal expansion than the gap filler.
  13.  前記間隙充填材は、弾性を有する樹脂であり、
     前記熱膨張性微粒子は、
     外殻と、前記外殻の内部にガスが充填された熱膨張性カプセルを含む、請求項12に記載のLED表示パネル。
    The gap filler is an elastic resin and is used.
    The heat-expandable fine particles are
    The LED display panel according to claim 12, further comprising an outer shell and a heat-expandable capsule in which the inside of the outer shell is filled with gas.
PCT/JP2020/002437 2020-01-24 2020-01-24 Led display panel and method for producing led display panel WO2021149234A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020522392A JP6735957B1 (en) 2020-01-24 2020-01-24 LED display panel and method for manufacturing LED display panel
PCT/JP2020/002437 WO2021149234A1 (en) 2020-01-24 2020-01-24 Led display panel and method for producing led display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/002437 WO2021149234A1 (en) 2020-01-24 2020-01-24 Led display panel and method for producing led display panel

Publications (1)

Publication Number Publication Date
WO2021149234A1 true WO2021149234A1 (en) 2021-07-29

Family

ID=71892513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002437 WO2021149234A1 (en) 2020-01-24 2020-01-24 Led display panel and method for producing led display panel

Country Status (2)

Country Link
JP (1) JP6735957B1 (en)
WO (1) WO2021149234A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042837A1 (en) * 2021-09-17 2023-03-23 積水化学工業株式会社 Led module, led module manufacturing method, and led display device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001013894A (en) * 1999-06-28 2001-01-19 Sony Corp Display device and method of repairing display device
JP2004347741A (en) * 2003-05-21 2004-12-09 Bando Chem Ind Ltd Strip-like heat radiation sheet
JP2016109932A (en) * 2014-12-08 2016-06-20 三菱電機株式会社 Display unit, video display device, and method of manufacturing display unit
US20160247983A1 (en) * 2012-12-10 2016-08-25 Shannon Lee Mutschelknaus Encapsulation of light-emitting elements on a display module
JP2017054092A (en) * 2015-09-11 2017-03-16 株式会社東芝 Display panel, display device and display panel manufacturing method
JP2018040920A (en) * 2016-09-07 2018-03-15 ス キム,ヨン Display device having detachable layer and method of manufacturing the same
JP2019192782A (en) * 2018-04-25 2019-10-31 三菱電機株式会社 Video display unit and video display device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064118A (en) * 2018-10-15 2020-04-23 株式会社ブイ・テクノロジー Carrier film, and method and device for repairing led display panel

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001013894A (en) * 1999-06-28 2001-01-19 Sony Corp Display device and method of repairing display device
JP2004347741A (en) * 2003-05-21 2004-12-09 Bando Chem Ind Ltd Strip-like heat radiation sheet
US20160247983A1 (en) * 2012-12-10 2016-08-25 Shannon Lee Mutschelknaus Encapsulation of light-emitting elements on a display module
JP2016109932A (en) * 2014-12-08 2016-06-20 三菱電機株式会社 Display unit, video display device, and method of manufacturing display unit
JP2017054092A (en) * 2015-09-11 2017-03-16 株式会社東芝 Display panel, display device and display panel manufacturing method
JP2018040920A (en) * 2016-09-07 2018-03-15 ス キム,ヨン Display device having detachable layer and method of manufacturing the same
JP2019192782A (en) * 2018-04-25 2019-10-31 三菱電機株式会社 Video display unit and video display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023042837A1 (en) * 2021-09-17 2023-03-23 積水化学工業株式会社 Led module, led module manufacturing method, and led display device

Also Published As

Publication number Publication date
JPWO2021149234A1 (en) 2021-07-29
JP6735957B1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
TWI751000B (en) Display apparatus and method of fabricating the same
JP4978997B2 (en) Manufacturing method of display device
WO2021134741A1 (en) Method for improving bright line of splicing seam of display screen
US10642098B2 (en) Illumination device and display device
JPH10123964A (en) Liquid crystal display device
JP6312586B2 (en) Display unit, video display apparatus, and display unit manufacturing method
EP3407396B1 (en) Method for manufacturing led display panel
CN113471259B (en) Display panel and display device
JPH10186333A (en) Liquid crystal display device
JP2023512767A (en) Backlight with pattern reflector
WO2021149234A1 (en) Led display panel and method for producing led display panel
TW202016622A (en) Display module, display apparatus including the same and method of manufacturing display module
US20230296819A1 (en) Display module and display device
EP1732132A1 (en) Array-type modularized light-emitting diode structure and method for packaging the structure
JP3349331B2 (en) Manufacturing method of liquid crystal display element, liquid crystal display element and image projection type liquid crystal display device
CN111856812A (en) Surface light source module for backlight device and manufacturing method thereof
JP5061617B2 (en) Method for manufacturing color filter for transflective liquid crystal display device, and color filter for transflective liquid crystal display device
JPH09159806A (en) Microlnes substrate and its production and liquid crystal display
WO2021245830A1 (en) Display panel, display device, and method for manufacturing display panel
CN114765167A (en) Display module and manufacturing method thereof
TW459154B (en) Flat display device
CN219286440U (en) LED display
CN117691028B (en) Display unit with high diffusion degree and preparation method thereof
TWI820589B (en) Electronic device and manufacturing method thereof
CN215815872U (en) LED light-emitting device capable of increasing light-emitting angle

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020522392

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20914803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20914803

Country of ref document: EP

Kind code of ref document: A1