WO2021149228A1 - Thickness measurement system, thickness measurement method, and thickness measurement program - Google Patents

Thickness measurement system, thickness measurement method, and thickness measurement program Download PDF

Info

Publication number
WO2021149228A1
WO2021149228A1 PCT/JP2020/002375 JP2020002375W WO2021149228A1 WO 2021149228 A1 WO2021149228 A1 WO 2021149228A1 JP 2020002375 W JP2020002375 W JP 2020002375W WO 2021149228 A1 WO2021149228 A1 WO 2021149228A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
wall thickness
eddy current
unit
pulse
Prior art date
Application number
PCT/JP2020/002375
Other languages
French (fr)
Japanese (ja)
Inventor
萩原一成
Original Assignee
株式会社テイエルブイ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社テイエルブイ filed Critical 株式会社テイエルブイ
Priority to PCT/JP2020/002375 priority Critical patent/WO2021149228A1/en
Priority to JP2020522750A priority patent/JP6725778B1/en
Publication of WO2021149228A1 publication Critical patent/WO2021149228A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents

Definitions

  • This disclosure relates to a wall thickness measuring system, a wall thickness measuring method, and a wall thickness measuring program.
  • the pulse eddy current flaw detection method is widely used as a method for inspecting the presence or absence of scratches and wall thickness of a metal article to be inspected without destroying the article.
  • a probe transmission coil
  • Detect by coil Since the eddy current generated in the metal article reflects the presence or absence of scratches and the wall thickness of the article, the presence or absence of scratches and the wall thickness can be detected based on the signal detected by the probe.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2005-164593
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2016-217991
  • Japanese Patent Application Laid-Open No. 2005-164593 (or the corresponding US Patent Application Publication No. 2002/0190724) Japanese Patent Application Laid-Open No. 2016-217991
  • the wall thickness reduction rate of the metal article in a general case is small compared to the measurement error. That is, even if the measured value of the wall thickness decreases, it may not be possible to determine whether the wall thickness is actually decreasing or a measurement error. Therefore, in order to specify the wall thickness reduction rate, it is necessary to accumulate a considerable number of measured values and analyze them statistically.
  • the calculation processing load is relatively large, so that a typical pulse eddy current flaw detection device requires several tens of minutes of calculation processing. Therefore, it is difficult to perform a large number of measurements in a short period of time, and it may take several months to accumulate the measured values of the number of times sufficient to specify the wall thickness reduction rate.
  • it is necessary to identify the points requiring attention such as the places where the wall thickness decreases rapidly and the places where the wall thickness actually decreases. This is because it is necessary to focus on the specified points of interest.
  • the wall thickness measuring system has a transmitting coil and a receiving coil, and detects a plurality of pulsed eddy current probes installed so as to abut each of different measurement points and an induced current generated in the receiving coil.
  • a possible induced eddy current detection unit and a measurement control unit capable of controlling the pulse eddy current probe so that a pulse current flows through the transmission coil of one pulse eddy current probe selected from the plurality of pulse eddy current probes.
  • An attenuation analysis unit capable of calculating the duration of the induced current, and a wall thickness calculation unit capable of calculating the wall thickness of the measurement point to which the selected pulse eddy current probe abuts based on the duration.
  • a wall thickness measuring system including a measurement number distribution unit that distributes the total number of arithmetic processes that can be executed per unit period to the plurality of pulse eddy current probes. Can distribute the total number of times based on the collision rate, which is the rate of decrease of the wall thickness at each of the measurement points, and the measurement control unit executes the measurement distributed to each of the pulse eddy current probes.
  • the pulse eddy current probe can be controlled based on the number of times.
  • the wall thickness measuring method has a transmitting coil and a receiving coil, and one pulse eddy current probe selected from a plurality of pulse eddy current probes installed so as to abut each of different measurement points.
  • a decay analysis step for calculating the duration of the induced current
  • a wall thickness calculation step for calculating the wall thickness of the measurement point to which the selected pulse eddy current probe abuts based on the duration, and a unit.
  • a wall thickness measuring method including a measurement number distribution step of distributing the total number of the attenuation analysis steps that can be performed per period to a plurality of the pulsed eddy current probes, and the measurement is performed in the measurement number distribution step.
  • the total number of times is distributed based on the collision rate, which is the rate of decrease of the wall thickness at each location, and in the measurement control step, the pulse eddy current is distributed based on the number of measurement executions distributed to each of the pulse eddy current probes. It is characterized by controlling the current probe.
  • the wall thickness measurement program has a transmission coil and a reception coil, and one pulse vortex current probe selected from a plurality of pulse vortex current probes installed so as to abut on different measurement points.
  • a measurement control function that controls the pulse vortex current probe so that a pulse current flows through the transmission coil, and an induction current detection function that detects an induction current generated in the reception coil of the selected pulse vortex current probe.
  • a decay analysis function that calculates the duration of the induced current
  • a wall thickness calculation function that calculates the wall thickness of the point to be measured with which the selected pulsed vortex current probe abuts based on the duration.
  • the total number of measurements that can be performed per unit period is distributed based on the corrosion rate, so that points that require special attention can be preferentially inspected.
  • the wall thickness measuring system further includes a storage unit that can store the wall thickness calculated by the wall thickness calculation unit in association with identification information that identifies the measurement location.
  • the storage unit can store the initial wall thickness, which is the initial wall thickness of the device to be measured, and the lower limit wall thickness, which is the lower limit wall thickness that cannot be used at the device to be measured.
  • the wall thickness calculation unit can calculate the wall thickness reduction rate based on the calculated wall thickness, the initial wall thickness, and the lower limit wall thickness for each of the measurement points. It is preferable that the measurement number distribution unit can distribute the total number of times based on the corrosion rate and the wall thickness reduction rate.
  • the number of measurements is distributed in consideration of the wall thickness reduction rate, so that the current state of the measurement location is easily reflected in the number of measurements to be distributed.
  • the measurement number distribution unit includes an even allocation portion that allocates the total number of times to all of the plurality of pulsed eddy current probes by the same number of times or more.
  • the residual portion excluding the equal allocation portion from the total number of times can be divided into at least a priority allocation portion that distributes based on the coordination rate, and the measurement control unit can be divided into the equal allocation portion and the priority allocation portion. It is preferable that the pulsed eddy current probe can be controlled according to a predetermined number of executions.
  • the minimum number of measurements can be secured for all the measured points.
  • the measurement number distribution unit redistributes the total number of times at a predetermined review period.
  • the measurement control unit and the attenuation analysis unit are provided in the first device, and the wall thickness calculation unit and the measurement frequency distribution unit are the same as the first device. It is preferable that the first device is provided in the second device of another individual so that the duration can be sent to the second device.
  • the wall thickness measurement system, the wall thickness measurement method, and the embodiment of the wall thickness measurement program according to the present disclosure will be described with reference to the drawings.
  • an example in which the wall thickness measuring system according to the present disclosure is applied to the wall thickness measuring system 1 for measuring the wall thickness of the pipe P installed in the chemical plant will be described.
  • the wall thickness measuring system 1 includes a pulse eddy current probe 2, a hub terminal 3 (example of the first device), and a server device 4 (example of the second device) (FIG. 1).
  • a plurality of pulse eddy current probes 2 are provided, and are installed so as to come into contact with different measurement points set in the pipe P for which the wall thickness is to be measured.
  • the plurality of pulse eddy current probes 2 and the hub terminal 3 are connected by wire, and power is supplied and information communication is performed via the connection line L.
  • the hub terminal 3 and the server device 4 are configured to enable wireless communication with each other.
  • the pulse eddy current probe 2 includes a transmitting coil 21, a receiving coil 22, and a microcontroller 23 (FIG. 2).
  • the power supply control unit 231 of the microcontroller 23 controls the transmission coil 21 to flow a pulse current according to the control signal from the measurement control unit 311 of the hub terminal 3.
  • a pulse current flows through the transmission coil 21, a magnetic field is generated, and this magnetic field generates an induced current (eddy current) at a point to be measured with which the pulse eddy current probe 2 abuts.
  • the receiving coil 22 generates an induced current by the magnetic field generated by the induced current.
  • the induced current detection unit 232 detects the induced current generated in the receiving coil 22.
  • An example of the attenuation curve of the detected induced current is shown in FIG.
  • Each individual of the pulse eddy current probe 2 is identified by the identification information Id.
  • the identification information Id can be set by using a DIP switch as 01, 02, 03, ... In order from the hub terminal 3, for example.
  • the identification information Id is also identification information for identifying the measurement point.
  • the measured location where the pulse eddy current probe 2 specified by the identification information Id is installed may be simply referred to as the measured location specified by the identification information Id.
  • the hub terminal 3 has a hub-side arithmetic unit 31 and a hub-side communication unit 32 (FIG. 2).
  • the hub-side arithmetic unit 31 is an arithmetic unit including a measurement control unit 311 and an attenuation analysis unit 312, and is implemented as, for example, a microcontroller.
  • the hub terminal 3 operates by receiving power supply from a power source (not shown), and also supplies power to each pulse eddy current probe 2.
  • the measurement control unit 311 controls which of the plurality of pulse eddy current probes 2 is used to perform wall thickness measurement. Specifically, one pulse eddy current probe 2 is selected from the plurality of pulse eddy current probes 2, and a control signal instructing the transmission coil 21 of the selected pulse eddy current probe 2 to flow a pulse current is transmitted. ..
  • the control signal includes identification information Id that identifies the selected pulsed eddy current probe 2.
  • the microcontroller 23 of the selected pulse eddy current probe 2 recognizes that the control signal is addressed to itself based on the identification information Id, and executes control to flow a pulse current through the transmission coil 21.
  • the measurement control unit 311 controls the pulse eddy current probe 2 based on the measurement execution number Pn (described later) calculated by the measurement number distribution unit 412 of the server device 4.
  • the measurement control unit 311 determines the pulse eddy current probe so that the pulse current flows sequentially through the transmission coils 21 of the plurality of pulse eddy current probes 2 so that the number of measurement executions Pn distributed to each pulse eddy current probe 2 is satisfied. 2 is controlled.
  • the attenuation analysis unit 312 calculates the duration ⁇ of the induced current detected by the induced current detection unit 232.
  • the attenuation curve of the induced current (FIG. 3) is divided into a linear portion S1 that attenuates linearly and a curved portion S2 that exhibits a steeper attenuation than the linear portion S1.
  • the attenuation analysis unit 312 analyzes the shape of the attenuation curve, identifies the time at the boundary between the straight line portion S1 and the curved portion S2, and determines the duration ⁇ based on this.
  • the capability of the entire wall thickness measuring system 1 is determined by the arithmetic speed of the attenuation analysis unit 312. Specifically, for example, the number of measurements that the wall thickness measuring system 1 can perform per day is the value obtained by dividing 24 hours (1440 minutes) by the time required for the attenuation analysis unit 312 to perform the arithmetic processing for each measurement. ..
  • the hub-side communication unit 32 is configured to be able to communicate with the server-side communication unit 43 of the server device 4.
  • the hub-side communication unit 32 used the identification information Id for identifying the pulse eddy current probe 2 selected by the measurement control unit 311 and the measurement date and time (thickness Tc) in the duration ⁇ calculated by the attenuation analysis unit 312. The date and time when the duration ⁇ was measured. The same shall apply hereinafter), and the signal is sent to the server device 4.
  • a measurement number table representing the measurement execution number Pn of each pulse eddy current probe 2 determined by the measurement number distribution unit 412 is received.
  • the server device 4 includes a server-side arithmetic unit 41, a storage unit 42, and a server-side communication unit 43 (FIG. 2).
  • the server-side arithmetic unit 41 is an arithmetic unit including a wall thickness arithmetic unit 411 and a measurement number distribution unit 412, and is implemented as, for example, a CPU.
  • the wall thickness Tc and the duration ⁇ calculated by the wall thickness calculation unit 411 are stored in the storage unit 42 in association with the identification information Id that identifies the measurement location (pulse eddy current probe 2) and the measurement date and time. There is. Further, in the storage unit 42, for each measurement point, the initial wall thickness Ta, which is the initial wall thickness at which the pipe P is installed, and the lower limit wall thickness, which cannot be used at the measurement point, are used. A certain lower limit wall thickness Tb is stored. The initial wall thickness Ta and the lower limit wall thickness Tb are associated with the identification information Id.
  • the server-side communication unit 43 is configured to be able to communicate with the hub-side communication unit 32 on the hub terminal 3 side.
  • the server-side communication unit 43 sends a measurement number table representing the measurement execution number Pn of each pulse eddy current probe 2 determined by the measurement number distribution unit 412 to the hub terminal 3.
  • the duration ⁇ calculated by the attenuation analysis unit 312 is received.
  • the wall thickness calculation unit 411 calculates the wall thickness Tc of the measurement point specified by the identification information Id based on the duration ⁇ sent from the hub terminal 3. Specifically, based on the fact that the duration ⁇ and the wall thickness Tc are generally in a proportional relationship, the wall thickness Tc is calculated using the proportional relationship.
  • the calculated wall thickness Tc is stored in the storage unit 42 in association with the identification information Id and the measurement date and time.
  • the wall thickness calculation unit 411 calculates the corrosion rate Cc, which is the rate of decrease in wall thickness, based on the wall thickness calculated in the past multiple measurement opportunities (for example, in the last year). Corrosion rate Cc is expressed as a numerical value per year in the amount of decrease in wall thickness (in mm). The calculated corrosion rate Cc is stored in the storage unit 42 in association with the identification information Id and the calculated date and time.
  • the wall thickness calculation unit 411 calculates the wall thickness reduction rate Tg (%) based on the initial wall thickness Ta, the lower limit wall thickness Tb, and the calculated wall thickness Tc.
  • Tg is given by the following formula (1).
  • Tg (Tc-Tb) / (Ta-Tb) x 100 (1)
  • the calculated wall thickness reduction rate Tg is stored in the storage unit 42 in association with the identification information Id and the measurement date and time.
  • the measurement number distribution unit 412 determines the number of times to execute the wall thickness measurement for each of the plurality of pulse eddy current probes 2 based on the colossion rate Cc and the wall thickness reduction rate Tg accumulated in the storage unit 42.
  • the measurement frequency distribution unit 412 first calculates the measurement priority value Ma for each pulse eddy current probe 2 according to the following equation (2).
  • Ma Tg ⁇ (Cc / Cg) (2)
  • Cg represents a predetermined reference value per year for the amount of decrease in wall thickness (in mm).
  • the calculated measurement priority value Ma is stored in the storage unit 42 in association with the identification information Id and the measurement date and time.
  • the measurement priority value Ma is proportional to the wall thinning thickness ratio Tg and the corrosion rate Cc. That is, the measurement priority value Ma becomes large at the measured portion (the Tg is large) and the measured portion (the Cc is large) where the wall thickness reduction rate is large at the present time.
  • the measurement frequency distribution unit 412 calculates the total measurement priority value Msum, which is the sum of the measurement priority values Ma for all the pulse eddy current probes 2.
  • the total measurement priority value Msum is stored in the storage unit 42 in association with the measurement date and time.
  • the total number of measurements that the wall thickness measuring system 1 according to the present embodiment can perform per day is determined by the total number of arithmetic processes that the attenuation analysis unit 312 can perform per day.
  • the total number of times is expressed as 1440 / t times by using the time t (minutes) required for each arithmetic processing by the attenuation analysis unit 312.
  • the measurement frequency distribution unit 412 allocates the number of executions of 1440 / t times to all the pulse eddy current probes 2 once, and the remaining portion excluding the equal allocation portion from 1440 / t times. Divide into a certain priority allocation part.
  • the equal allocation portion of the number of executions is n times
  • the priority allocation portion is 1440 / tun times.
  • the measurement number distribution unit 412 calculates the measurement execution number Pn of each pulse eddy current probe 2 according to the following equation (3).
  • Pn ROUND ((1440 / tun) x Ma / Msum) + 1 (3)
  • the calculated measurement execution number Pn is stored in the storage unit 42 in association with the identification information Id and the measurement date and time.
  • the measurement frequency distribution unit 412 a specific example of arithmetic processing by the measurement frequency distribution unit 412 is shown.
  • the 25 pulse eddy current probes 2 are numbered 1 to 25 as the identification information Id.
  • the predetermined reference value Cg per year of the wall thickness reduction amount is set to 1.0, and the calculation process by the attenuation analysis unit 312 is performed once.
  • the measurement priority value Ma calculated with the time t required per time as 20 minutes and the measurement execution number Pn are also shown. In Table 1, first, the measurement execution counts Pn are sorted in descending order, and when the measurement execution counts Pn are equal, the measurement priority value Ma is sorted in descending order.
  • the thickness reduction rate Tg of No. 15 is medium (60%), but the corrosion rate Cc is particularly high (1.5 mm / year), so the measurement priority value Ma is large.
  • the number of measurement executions Pn is distributed in large numbers.
  • the corrosion rate Cc is medium (0.9 mm / year), but the wall thickness reduction rate Tg is large (90%), so the measurement priority value Ma is large and the number of measurement executions is large. A large amount of Pn is distributed.
  • the measurement priority value Ma is small and the distribution of the number of measurement executions Pn is small.
  • the measurement priority value Ma of the locations corresponding to (number) or both is calculated to be large, and the number of measurement executions Pn of these locations is large.
  • the measurement number table in which the measurement priority value Ma and the measurement execution number Pn are associated with the identification information Id of each pulse eddy current probe 2 by the arithmetic processing by the measurement number distribution unit 412. Is generated.
  • This measurement number table is sent to the hub terminal 3 via the server-side communication unit 43.
  • the measurement control unit 311 executes the measurement in descending order of the measurement priority value Ma in the measurement number table.
  • the measurement is executed in the order of No. 15, No. 9, No. 14, ....
  • the value of the measurement execution number Pn on the measurement number table is decremented by 1.
  • Table 2 shows a table of the number of measurements at the time when each measurement was performed for each pulse eddy current probe 2.
  • the measurement control unit 311 continues to execute the measurement in the measurement number table in descending order of the measurement priority value Ma in the same manner as described above. That is, the second measurement is executed in the order of No. 15, No. 9, No. 14, .... However, the measurement is not executed for the pulse eddy current probe 2 in which the number of measurement executions Pn is 0.
  • the second measurement of the No. 3, No. 19, No. 2, and No. 1 pulse eddy current probe 2 is not performed, and after the second measurement of the No. 10 pulse eddy current probe 2.
  • the third measurement of the 15th pulse eddy current probe 2 is performed.
  • the total value of the number of measurement executions Pn in the entire measurement number table is equal to the total number of measurements that the wall thickness measurement system 1 can perform, for example, per day. Therefore, for example, when the measurement of one day is completed, the measurement of the number of measurement executions Pn distributed to each pulse eddy current probe 2 is executed in the first received measurement number table (Table 1), and all the pulse eddy current probes. The number of measurement executions Pn of 2 becomes 0. At this time, the measurement control unit 311 acquires a new measurement number table from the server device 4, and executes the measurement for the next day based on the updated measurement number table.
  • the measurement number distribution unit 412 regenerates the measurement number table, for example, every day (example of a predetermined review period). Therefore, the measurement count table is updated to reflect the latest wall thickness measurement results, for example, once a day. Thereby, the number of measurements in the daily measurement is determined by reflecting the latest (previous day) wall thickness measurement result.
  • the first problem is that the wall thickness measurement using the pulsed eddy current includes a certain error.
  • the second problem is that the wall thickness reduction of the pipe P is about several millimeters every year even when the reduction rate is fast, and the degree is smaller than the measurement error. Due to the existence of these problems, it is necessary to accumulate a considerable number of measured values and analyze them statistically in order to calculate a significant corrosion rate Cc. For example, if the initial wall thickness is 12 mm and the measurement error is ⁇ 0.2%, it takes about 50 to 60 measurements to calculate a significant corrosion rate Cc.
  • the total number of measurements that the wall thickness measuring system 1 can perform per day is limited, and the total number of measurements is, for example, about 60 to 80 times per hub terminal 3. Further, for example, about 20 to 30 pulse eddy current probes 2 are connected to one hub terminal 3. Therefore, if the total number of times that the measurement can be performed is evenly assigned to all the measured points, the time required for a significant number of measured values to be accumulated for the points requiring attention where the wall thickness ratio Tg or the corrosion rate Cc is large. Will be long. Therefore, the detection of serious defects that may lead to damage to the piping may be delayed.
  • the number of measurements is preferentially assigned to the points requiring attention, so that the period until the required number of measurements are performed for the points requiring attention is shortened.
  • the wall thinning thickness ratio Tg is frequently calculated for the points requiring attention, and the period until a significant corrosion rate Cc is calculated is shortened. Therefore, it is easy to detect a defect in the piping at an early stage.
  • the number of measurement executions is evenly distributed to the plurality of pulse eddy current probes 2 until a significant cologulation rate Cc is calculated for each measurement point. ..
  • the wall thickness measuring system 1 including the pulse eddy current probe 2, the hub terminal 3, and the server device 4 has been described as an example.
  • the present disclosure may also be a program that causes a computer to perform a function similar to that of the above embodiment.
  • the measurement number distribution unit may distribute the total number of times by any method as long as it is based on the corrosion rate.
  • the attenuation analysis unit 312 distributes the total number of arithmetic processes that can be executed per day to each pulse eddy current probe 2
  • the unit period as a reference for the total number of times distributed to each pulse eddy current probe is not limited to one day, for example, 12 hours, two days, one week, one month, etc. Can be.
  • the configuration in which the measurement number distribution unit 412 divides the total number of measurements that can be performed per day into an equal allocation portion and a priority allocation portion has been described as an example.
  • the even allocation portion does not necessarily have to be provided.
  • the even allocation portion is a portion in which the number of times of execution of measurement is allocated once to all the pulse eddy current probes 2
  • the number of allocations for each pulse eddy current probe may be once or a plurality of times.
  • the total number of redistributions may or may not be performed in the wall thickness measuring system according to the present disclosure.
  • the review period which is the interval for the recalculation, is arbitrary. If the review period is shortened, the calculation load will increase, but it will be easier to detect defects at an early stage.
  • the review period may be the same as or different from the unit period that serves as a reference for the total number of times to be distributed to each pulse eddy current probe.
  • the pulse eddy current probe 2 is provided with the power supply control unit 231 and the induced current detection unit 232
  • the hub terminal 3 is provided with the measurement control unit 311 and the attenuation analysis unit 312
  • the server device 4 is provided with the server device 4.
  • the configuration in which the wall thickness calculation unit 411 and the measurement number distribution unit 412 are provided has been described as an example. However, without being limited to such a configuration, in the wall thickness measuring system according to the present disclosure, a power supply control unit, an induced current detection unit, a measurement control unit, an attenuation analysis unit, a wall thickness calculation unit, and a measurement frequency distribution unit.
  • the distribution of the equipment to be provided is arbitrary.
  • the power supply control unit, the induced current detection unit, and the measurement control unit may be provided in the first device, and the attenuation analysis unit, the wall thickness calculation unit, and the measurement frequency distribution unit may be provided in the second device. Further, the power supply control unit, the induced current detection unit, the measurement control unit, the attenuation analysis unit, the wall thickness calculation unit, and the measurement frequency distribution unit may all be provided in one device.
  • the connection between the devices may be a wired connection or a wireless connection.
  • a wireless communication module that enables wireless communication between the pulse eddy current probe 2 and the hub terminal 3 (first device) may be provided.
  • a battery may be mounted on the pulse eddy current probe 2 in order to supply the power required for the operation of the pulse eddy current probe 2.
  • the configuration in which the measurement control unit 311 executes the measurement in descending order of the measurement priority value Ma has been described as an example.
  • the pulse eddy current probe is controlled based on the number of measurement executions distributed to each pulse eddy current probe in the wall thickness measuring system according to the present disclosure.
  • the order is not limited. For example, based on the measurement count table illustrated in Table 1, the measurement of No. 15 is performed 6 times, the measurement of No. 9 is performed 5 times, the measurement of No. 14 is performed 5 times, and so on. May be good.
  • identification information Id for identifying each individual of the pulse eddy current probe 2 is set by using a DIP switch.
  • Other examples of information that can be used as identification information in the wall thickness measurement system according to the present disclosure include a method of using the MAC address of a module constituting the pulse eddy current probe.
  • the present disclosure can be used, for example, in a wall thickness measuring system for measuring the wall thickness of a pipe.

Abstract

This invention achieves a thickness measurement system, thickness measurement method, and thickness measurement program that make it possible to preferentially inspect a location that needs particular attention. A thickness measurement system 1 comprises: a plurality of pulsed eddy current probes 2, an induced current detection unit 232, a measurement control unit 311, an attenuation analysis unit 312, a thickness calculation unit 411, and a measurement count allocation unit 412, wherein the measurement count allocation unit 412 is capable of allocating a total count of calculation processes that can be executed by the attenuation analysis unit 312 in a unit of time on the basis of corrosion rates that are the speeds at which the thickness decreases at each location under measurement, and the measurement control unit 311 is capable of controlling the pulsed eddy current probes 2 on the basis of the measurement execution counts allocated to each pulsed eddy current probe 2.

Description

肉厚測定システム、肉厚測定方法、および肉厚測定プログラムWall thickness measurement system, wall thickness measurement method, and wall thickness measurement program
 本開示は、肉厚測定システム、肉厚測定方法、および肉厚測定プログラムに関する。 This disclosure relates to a wall thickness measuring system, a wall thickness measuring method, and a wall thickness measuring program.
 検査対象の金属物品の傷の有無や肉厚などを、当該物品を破壊することなく検査する方法として、パルス渦電流探傷法が汎用される。パルス渦電流探傷法では、交流電流を連続的に流して磁界を発生させたプローブ(送信コイル)を測定対象の金属物品に近づけて渦電流を発生させ、当該渦電流により生じる磁界をプローブ(受信コイル)により検出する。金属物品に生じる渦電流は当該物品の傷の有無や肉厚などを反映するため、プローブにより検出した信号に基づいて、傷の有無や肉厚などを検知できる。かかるパルス渦電流探傷法の信頼性を向上する試みが、たとえば日本国特開2005-164593号公報(特許文献1)や日本国特開2016-217991号公報(特許文献2)などに開示されている。 The pulse eddy current flaw detection method is widely used as a method for inspecting the presence or absence of scratches and wall thickness of a metal article to be inspected without destroying the article. In the pulsed eddy current flaw detection method, a probe (transmission coil) that generates a magnetic field by continuously passing an alternating current is brought close to the metal article to be measured to generate an eddy current, and the magnetic field generated by the eddy current is received by the probe (received). Detect by coil). Since the eddy current generated in the metal article reflects the presence or absence of scratches and the wall thickness of the article, the presence or absence of scratches and the wall thickness can be detected based on the signal detected by the probe. Attempts to improve the reliability of such a pulse eddy current flaw detection method are disclosed in, for example, Japanese Patent Application Laid-Open No. 2005-164593 (Patent Document 1) and Japanese Patent Application Laid-Open No. 2016-217991 (Patent Document 2). There is.
日本国特開2005-164593号公報(または対応する米国特許出願公開第2002/0190724号明細書)Japanese Patent Application Laid-Open No. 2005-164593 (or the corresponding US Patent Application Publication No. 2002/0190724) 日本国特開2016-217991号公報Japanese Patent Application Laid-Open No. 2016-217991
 ところで、パルス渦電流探傷法によって測定対象物品の肉厚減少速度を特定しようとする場合、一般的な場合における金属物品の肉厚減少速度が測定誤差に比して小さいことが問題となる。すなわち、肉厚の測定値が低下したとしても、現に肉厚が減少しているのか測定誤差なのかを判断できない場合がある。そのため、肉厚減少速度を特定するためには、相当な回数の測定値を蓄積して統計的に解析する必要がある。 By the way, when trying to specify the wall thickness reduction rate of the article to be measured by the pulse eddy current flaw detection method, there is a problem that the wall thickness reduction rate of the metal article in a general case is small compared to the measurement error. That is, even if the measured value of the wall thickness decreases, it may not be possible to determine whether the wall thickness is actually decreasing or a measurement error. Therefore, in order to specify the wall thickness reduction rate, it is necessary to accumulate a considerable number of measured values and analyze them statistically.
 一方、パルス渦電流探傷法によって測定対象物品の肉厚を特定する際には、その演算処理負荷が比較的大きいため、典型的なパルス渦電流探傷装置において数十分単位の演算処理を要する。そのため、短期間に多数の測定を行うことが難しく、肉厚減少速度を特定するに足る回数の測定値を蓄積するまでに数カ月単位の期間を要する場合があった。しかし、設備の稼働に影響を与える不具合を防止するためには、肉厚の減少が速い箇所や現に肉厚が小さくなっている箇所などの要注意箇所を早期に特定することが求められる。特定された要注意箇所に対して重点的に検査を行う必要があるためである。 On the other hand, when the wall thickness of the article to be measured is specified by the pulse eddy current flaw detection method, the calculation processing load is relatively large, so that a typical pulse eddy current flaw detection device requires several tens of minutes of calculation processing. Therefore, it is difficult to perform a large number of measurements in a short period of time, and it may take several months to accumulate the measured values of the number of times sufficient to specify the wall thickness reduction rate. However, in order to prevent problems that affect the operation of the equipment, it is necessary to identify the points requiring attention such as the places where the wall thickness decreases rapidly and the places where the wall thickness actually decreases. This is because it is necessary to focus on the specified points of interest.
 そこで、特に注意を要する箇所を優先的に検査できる肉厚測定システム、肉厚測定方法、および肉厚測定プログラムの実現が求められる。 Therefore, it is required to realize a wall thickness measurement system, a wall thickness measurement method, and a wall thickness measurement program that can preferentially inspect the parts that require special attention.
 本開示に係る肉厚測定システムは、送信コイルおよび受信コイルを有し、それぞれ異なる被測定箇所に当接するように設置された複数のパルス渦電流プローブと、前記受信コイルに生じた誘導電流を検出可能な誘導電流検出部と、複数の前記パルス渦電流プローブから選択された一つのパルス渦電流プローブの前記送信コイルにパルス電流が流れるように、前記パルス渦電流プローブを制御可能な測定制御部と、前記誘導電流の継続時間を算出可能な減衰解析部と、前記継続時間に基づいて、選択された前記パルス渦電流プローブが当接する前記被測定箇所の肉厚を算出可能な肉厚演算部と、前記減衰解析部が単位期間あたりに実行可能な演算処理の総回数を複数の前記パルス渦電流プローブに分配する測定回数分配部と、を備える肉厚測定システムであって、前記測定回数分配部は、前記被測定箇所のそれぞれにおける前記肉厚の減少速度であるコロージョンレートに基づいて前記総回数を分配可能であり、前記測定制御部は、それぞれの前記パルス渦電流プローブに分配された測定実行回数に基づいて前記パルス渦電流プローブを制御可能であることを特徴とする。 The wall thickness measuring system according to the present disclosure has a transmitting coil and a receiving coil, and detects a plurality of pulsed eddy current probes installed so as to abut each of different measurement points and an induced current generated in the receiving coil. A possible induced eddy current detection unit and a measurement control unit capable of controlling the pulse eddy current probe so that a pulse current flows through the transmission coil of one pulse eddy current probe selected from the plurality of pulse eddy current probes. An attenuation analysis unit capable of calculating the duration of the induced current, and a wall thickness calculation unit capable of calculating the wall thickness of the measurement point to which the selected pulse eddy current probe abuts based on the duration. A wall thickness measuring system including a measurement number distribution unit that distributes the total number of arithmetic processes that can be executed per unit period to the plurality of pulse eddy current probes. Can distribute the total number of times based on the collision rate, which is the rate of decrease of the wall thickness at each of the measurement points, and the measurement control unit executes the measurement distributed to each of the pulse eddy current probes. The pulse eddy current probe can be controlled based on the number of times.
 また、本開示に係る肉厚測定方法は、送信コイルおよび受信コイルを有し、それぞれ異なる被測定箇所に当接するように設置された複数のパルス渦電流プローブから選択された一つのパルス渦電流プローブの前記送信コイルにパルス電流が流れるように、前記パルス渦電流プローブを制御する測定制御工程と、選択された前記パルス渦電流プローブの前記受信コイルに生じた誘導電流を検出する誘導電流検出工程と、前記誘導電流の継続時間を算出する減衰解析工程と、前記継続時間に基づいて、選択された前記パルス渦電流プローブが当接する前記被測定箇所の肉厚を算出する肉厚演算工程と、単位期間あたりに実行可能な前記減衰解析工程の総回数を複数の前記パルス渦電流プローブに分配する測定回数分配工程と、を含む肉厚測定方法であって、前記測定回数分配工程において、前記被測定箇所のそれぞれにおける前記肉厚の減少速度であるコロージョンレートに基づいて前記総回数を分配し、前記測定制御工程において、それぞれの前記パルス渦電流プローブに分配された測定実行回数に基づいて前記パルス渦電流プローブを制御することを特徴とする。 Further, the wall thickness measuring method according to the present disclosure has a transmitting coil and a receiving coil, and one pulse eddy current probe selected from a plurality of pulse eddy current probes installed so as to abut each of different measurement points. A measurement control step of controlling the pulse eddy current probe so that a pulse current flows through the transmission coil, and an induction current detection step of detecting an induced current generated in the receiving coil of the selected pulse eddy current probe. , A decay analysis step for calculating the duration of the induced current, and a wall thickness calculation step for calculating the wall thickness of the measurement point to which the selected pulse eddy current probe abuts based on the duration, and a unit. A wall thickness measuring method including a measurement number distribution step of distributing the total number of the attenuation analysis steps that can be performed per period to a plurality of the pulsed eddy current probes, and the measurement is performed in the measurement number distribution step. The total number of times is distributed based on the collision rate, which is the rate of decrease of the wall thickness at each location, and in the measurement control step, the pulse eddy current is distributed based on the number of measurement executions distributed to each of the pulse eddy current probes. It is characterized by controlling the current probe.
 また、本開示に係る肉厚測定プログラムは、送信コイルおよび受信コイルを有し、それぞれ異なる被測定箇所に当接するように設置された複数のパルス渦電流プローブから選択された一つのパルス渦電流プローブの前記送信コイルにパルス電流が流れるように、前記パルス渦電流プローブを制御する測定制御機能と、選択された前記パルス渦電流プローブの前記受信コイルに生じた誘導電流を検出する誘導電流検出機能と、前記誘導電流の継続時間を算出する減衰解析機能と、前記継続時間に基づいて、選択された前記パルス渦電流プローブが当接する前記被測定箇所の肉厚を算出する肉厚演算機能と、単位期間あたりに実行可能な前記減衰解析機能の総回数を複数の前記パルス渦電流プローブに分配する測定回数分配機能と、をコンピュータに実行させる肉厚測定プログラムであって、前記測定回数分配機能の実行時に、前記被測定箇所のそれぞれにおける前記肉厚の減少速度であるコロージョンレートに基づいて前記総回数が分配され、前記測定制御機能の実行時に、それぞれの前記パルス渦電流プローブに分配された測定実行回数に基づいて前記パルス渦電流プローブが制御されることを特徴とする。 Further, the wall thickness measurement program according to the present disclosure has a transmission coil and a reception coil, and one pulse vortex current probe selected from a plurality of pulse vortex current probes installed so as to abut on different measurement points. A measurement control function that controls the pulse vortex current probe so that a pulse current flows through the transmission coil, and an induction current detection function that detects an induction current generated in the reception coil of the selected pulse vortex current probe. , A decay analysis function that calculates the duration of the induced current, and a wall thickness calculation function that calculates the wall thickness of the point to be measured with which the selected pulsed vortex current probe abuts based on the duration. It is a wall thickness measurement program that causes a computer to execute a measurement number distribution function that distributes the total number of times of the attenuation analysis function that can be executed per period to a plurality of the pulse vortex current probes, and executes the measurement number distribution function. Occasionally, the total number of times is distributed based on the collision rate, which is the rate of decrease of the wall thickness at each of the points to be measured, and when the measurement control function is executed, the measurement execution is distributed to each of the pulsed eddy current probes. The pulse vortex current probe is controlled based on the number of times.
 これらの構成によれば、単位期間あたりに実行可能な測定の総回数をコロージョンレートに基づいて分配するので、特に注意を要する箇所を優先的に検査できる。 According to these configurations, the total number of measurements that can be performed per unit period is distributed based on the corrosion rate, so that points that require special attention can be preferentially inspected.
 以下、本開示の好適な態様について説明する。ただし、以下に記載する好適な態様例によって、本開示の範囲が限定されるわけではない。 Hereinafter, preferred embodiments of the present disclosure will be described. However, the scope of the present disclosure is not limited by the preferred embodiments described below.
 本開示に係る肉厚測定システムは、一態様として、前記肉厚演算部により算出された前記肉厚を、前記被測定箇所を特定する識別情報と関連付けて記憶可能な記憶部をさらに備え、前記記憶部は、前記被測定箇所のそれぞれについて、設置当初の肉厚である初期肉厚と、当該被測定箇所における使用に供することができなくなる下限の肉厚である下限肉厚と、を記憶可能であり、前記肉厚演算部は、前記被測定箇所のそれぞれについて、算出された肉厚、前記初期肉厚、および前記下限肉厚に基づいて減肉厚率を算出可能であり、
 前記測定回数分配部は、前記コロージョンレートおよび前記減肉厚率に基づいて前記総回数を分配可能であることが好ましい。
As one aspect, the wall thickness measuring system according to the present disclosure further includes a storage unit that can store the wall thickness calculated by the wall thickness calculation unit in association with identification information that identifies the measurement location. The storage unit can store the initial wall thickness, which is the initial wall thickness of the device to be measured, and the lower limit wall thickness, which is the lower limit wall thickness that cannot be used at the device to be measured. The wall thickness calculation unit can calculate the wall thickness reduction rate based on the calculated wall thickness, the initial wall thickness, and the lower limit wall thickness for each of the measurement points.
It is preferable that the measurement number distribution unit can distribute the total number of times based on the corrosion rate and the wall thickness reduction rate.
 この構成によれば、さらに減肉厚率を加味して測定回数を分配するので、被測定箇所の現状が分配される測定回数に反映されやすい。 According to this configuration, the number of measurements is distributed in consideration of the wall thickness reduction rate, so that the current state of the measurement location is easily reflected in the number of measurements to be distributed.
 本開示に係る肉厚測定システムは、一態様として、前記測定回数分配部は、前記総回数を、複数の前記パルス渦電流プローブの全てに対して1回以上の同数ずつ割り当てる均等割当部分と、前記総回数から前記均等割当部分を除いた残余部分を少なくとも前記コロージョンレートに基づいて分配する優先割当部分と、に区分可能であり、前記測定制御部は、前記均等割当部分および前記優先割当部分に定められた実行回数に従って、前記パルス渦電流プローブを制御可能であることが好ましい。 In one aspect of the wall thickness measuring system according to the present disclosure, the measurement number distribution unit includes an even allocation portion that allocates the total number of times to all of the plurality of pulsed eddy current probes by the same number of times or more. The residual portion excluding the equal allocation portion from the total number of times can be divided into at least a priority allocation portion that distributes based on the coordination rate, and the measurement control unit can be divided into the equal allocation portion and the priority allocation portion. It is preferable that the pulsed eddy current probe can be controlled according to a predetermined number of executions.
 この構成によれば、全ての被測定箇所について最低限の測定回数を確保できる。 According to this configuration, the minimum number of measurements can be secured for all the measured points.
 本開示に係る肉厚測定システムは、一態様として、前記測定回数分配部は、所定の見直し期間ごとに前記総回数を分配しなおすことが好ましい。 As one aspect of the wall thickness measuring system according to the present disclosure, it is preferable that the measurement number distribution unit redistributes the total number of times at a predetermined review period.
 この構成によれば、運転条件の変更などにより減肉挙動が変化したことを早期に検知しうる。 According to this configuration, it is possible to detect at an early stage that the wall thinning behavior has changed due to a change in operating conditions or the like.
 本開示に係る肉厚測定システムは、一態様として、前記測定制御部および前記減衰解析部は、第一装置に設けられ、前記肉厚演算部および前記測定回数分配部は、前記第一装置と別個体の第二装置に設けられ、前記第一装置は、前記継続時間を前記第二装置に送出可能に構成されていることが好ましい。 In one aspect of the wall thickness measurement system according to the present disclosure, the measurement control unit and the attenuation analysis unit are provided in the first device, and the wall thickness calculation unit and the measurement frequency distribution unit are the same as the first device. It is preferable that the first device is provided in the second device of another individual so that the duration can be sent to the second device.
 この構成によれば、演算処理量の大きい減衰解析部による演算処理が行われた後の比較的単純な情報(継続時間)が送出されるので、第一装置と第二装置との間の通信量を低減しうる。また、複数の第一装置に係る肉厚の演算および測定回数の分配を単一の第二装置に集約しうる。 According to this configuration, relatively simple information (duration) after the arithmetic processing is performed by the attenuation analysis unit having a large amount of arithmetic processing is transmitted, so that communication between the first apparatus and the second apparatus is performed. The amount can be reduced. In addition, the calculation of the wall thickness and the distribution of the number of measurements related to the plurality of first devices can be integrated into a single second device.
 本開示のさらなる特徴と利点は、図面を参照して記述する以下の例示的かつ非限定的な実施形態の説明によってより明確になるであろう。 Further features and advantages of the present disclosure will be further clarified by the following illustration of exemplary and non-limiting embodiments described with reference to the drawings.
実施形態に係る肉厚測定システムの概要を示す図The figure which shows the outline of the wall thickness measurement system which concerns on embodiment 実施形態に係る肉厚測定システムの構成図Configuration diagram of the wall thickness measurement system according to the embodiment 誘導電流の減衰曲線の例を示す図The figure which shows the example of the attenuation curve of an induced current
 本開示に係る肉厚測定システム、肉厚測定方法、および肉厚測定プログラムの実施形態について、図面を参照して説明する。以下では、本開示に係る肉厚測定システムを、化学プラントに設置された配管Pの肉厚を測定する肉厚測定システム1に適用した例について説明する。 The wall thickness measurement system, the wall thickness measurement method, and the embodiment of the wall thickness measurement program according to the present disclosure will be described with reference to the drawings. Hereinafter, an example in which the wall thickness measuring system according to the present disclosure is applied to the wall thickness measuring system 1 for measuring the wall thickness of the pipe P installed in the chemical plant will be described.
〔肉厚測定システム1の全体構成〕
 本実施形態に係る肉厚測定システム1は、パルス渦電流プローブ2と、ハブ端末3(第一装置の例)と、サーバ装置4(第二装置の例)と、を備える(図1)。肉厚測定システム1において、パルス渦電流プローブ2は複数備えられており、肉厚を測定する対象の配管Pに設定されたそれぞれ異なる被測定箇所に当接するように設置されている。複数のパルス渦電流プローブ2とハブ端末3とは有線接続されており、接続線Lを介して電力供給および情報通信がなされる。ハブ端末3とサーバ装置4とは、互いに無線通信可能に構成されている。
[Overall configuration of wall thickness measurement system 1]
The wall thickness measuring system 1 according to the present embodiment includes a pulse eddy current probe 2, a hub terminal 3 (example of the first device), and a server device 4 (example of the second device) (FIG. 1). In the wall thickness measuring system 1, a plurality of pulse eddy current probes 2 are provided, and are installed so as to come into contact with different measurement points set in the pipe P for which the wall thickness is to be measured. The plurality of pulse eddy current probes 2 and the hub terminal 3 are connected by wire, and power is supplied and information communication is performed via the connection line L. The hub terminal 3 and the server device 4 are configured to enable wireless communication with each other.
〔パルス渦電流プローブの構成〕
 パルス渦電流プローブ2は、送信コイル21と、受信コイル22と、マイクロコントローラ23と、を有する(図2)。マイクロコントローラ23の給電制御部231は、ハブ端末3の測定制御部311からの制御信号に従って、送信コイル21にパルス電流を流すように制御する。送信コイル21にパルス電流が流れると磁界が発生し、この磁界はパルス渦電流プローブ2が当接する被測定箇所に誘導電流(渦電流)を生じさせる。
[Pulse eddy current probe configuration]
The pulse eddy current probe 2 includes a transmitting coil 21, a receiving coil 22, and a microcontroller 23 (FIG. 2). The power supply control unit 231 of the microcontroller 23 controls the transmission coil 21 to flow a pulse current according to the control signal from the measurement control unit 311 of the hub terminal 3. When a pulse current flows through the transmission coil 21, a magnetic field is generated, and this magnetic field generates an induced current (eddy current) at a point to be measured with which the pulse eddy current probe 2 abuts.
 受信コイル22は、当該誘導電流により生じた磁界により誘導電流を生じさせる。誘導電流検出部232は、受信コイル22に生じた誘導電流を検出する。検出される誘導電流の減衰曲線の例を図3に示す。 The receiving coil 22 generates an induced current by the magnetic field generated by the induced current. The induced current detection unit 232 detects the induced current generated in the receiving coil 22. An example of the attenuation curve of the detected induced current is shown in FIG.
 なお、パルス渦電流プローブ2の各個体は、識別情報Idにより識別される。識別情報Idは、たとえば、ハブ端末3から近い順に01、02、03、…としてディップスイッチを用いて設定されうる。本実施形態では、各パルス渦電流プローブ2はそれぞれ異なる被測定箇所に固定されているので、識別情報Idは、被測定箇所を特定する識別情報でもある。以下の説明では、識別情報Idにより特定されるパルス渦電流プローブ2が設置された被測定箇所を、単に識別情報Idにより特定される被測定箇所という場合がある。 Each individual of the pulse eddy current probe 2 is identified by the identification information Id. The identification information Id can be set by using a DIP switch as 01, 02, 03, ... In order from the hub terminal 3, for example. In the present embodiment, since each pulse eddy current probe 2 is fixed to a different measurement point, the identification information Id is also identification information for identifying the measurement point. In the following description, the measured location where the pulse eddy current probe 2 specified by the identification information Id is installed may be simply referred to as the measured location specified by the identification information Id.
 なお、以下の説明では、給電制御部231が送信コイル21にパルス電流を流すように制御し、誘導電流検出部232が受信コイル22に生じた誘導電流を検出する一連の動作を、「測定を実行する」という場合がある。 In the following description, a series of operations in which the power supply control unit 231 controls the transmission coil 21 to flow a pulse current and the induced current detection unit 232 detects the induced current generated in the receiving coil 22 is described as "measurement. It may be said to "execute".
〔ハブ端末の構成〕
 ハブ端末3は、ハブ側演算装置31と、ハブ側通信部32と、を有する(図2)。ハブ側演算装置31は、測定制御部311と減衰解析部312とを含む演算装置であって、たとえばマイクロコントローラとして実装される。ハブ端末3は電源(不図示)から電力供給を受けて動作するとともに、各パルス渦電流プローブ2に電力を供給する。
[Hub terminal configuration]
The hub terminal 3 has a hub-side arithmetic unit 31 and a hub-side communication unit 32 (FIG. 2). The hub-side arithmetic unit 31 is an arithmetic unit including a measurement control unit 311 and an attenuation analysis unit 312, and is implemented as, for example, a microcontroller. The hub terminal 3 operates by receiving power supply from a power source (not shown), and also supplies power to each pulse eddy current probe 2.
 測定制御部311は、複数のパルス渦電流プローブ2のうち、いずれのパルス渦電流プローブ2を用いた肉厚測定を実行するかを制御する。具体的には、複数のパルス渦電流プローブ2から一つのパルス渦電流プローブ2を選択し、選択されたパルス渦電流プローブ2の送信コイル21にパルス電流が流れるように指示する制御信号を発信する。当該制御信号には、選択されたパルス渦電流プローブ2を識別する識別情報Idが含まれている。選択されたパルス渦電流プローブ2のマイクロコントローラ23は、識別情報Idに基づいて当該制御信号が自身宛であることを認識し、送信コイル21にパルス電流を流す制御を実行する。 The measurement control unit 311 controls which of the plurality of pulse eddy current probes 2 is used to perform wall thickness measurement. Specifically, one pulse eddy current probe 2 is selected from the plurality of pulse eddy current probes 2, and a control signal instructing the transmission coil 21 of the selected pulse eddy current probe 2 to flow a pulse current is transmitted. .. The control signal includes identification information Id that identifies the selected pulsed eddy current probe 2. The microcontroller 23 of the selected pulse eddy current probe 2 recognizes that the control signal is addressed to itself based on the identification information Id, and executes control to flow a pulse current through the transmission coil 21.
 測定制御部311は、サーバ装置4の測定回数分配部412により算出された測定実行回数Pn(後述)に基づいて、パルス渦電流プローブ2を制御する。測定制御部311は、各パルス渦電流プローブ2に分配された測定実行回数Pnが充足されるように、複数のパルス渦電流プローブ2の送信コイル21に順次パルス電流が流れるようにパルス渦電流プローブ2を制御する。 The measurement control unit 311 controls the pulse eddy current probe 2 based on the measurement execution number Pn (described later) calculated by the measurement number distribution unit 412 of the server device 4. The measurement control unit 311 determines the pulse eddy current probe so that the pulse current flows sequentially through the transmission coils 21 of the plurality of pulse eddy current probes 2 so that the number of measurement executions Pn distributed to each pulse eddy current probe 2 is satisfied. 2 is controlled.
 減衰解析部312は、誘導電流検出部232が検出した誘導電流の継続時間τを算出する。誘導電流の減衰曲線(図3)は、直線的に減衰する直線部分S1と、直線部分S1よりも急激な減衰を示す曲線部分S2とに区分される。減衰解析部312は、減衰曲線の形状を解析して直線部分S1と曲線部分S2との境界の時刻を特定し、これに基づいて継続時間τを決定する。 The attenuation analysis unit 312 calculates the duration τ of the induced current detected by the induced current detection unit 232. The attenuation curve of the induced current (FIG. 3) is divided into a linear portion S1 that attenuates linearly and a curved portion S2 that exhibits a steeper attenuation than the linear portion S1. The attenuation analysis unit 312 analyzes the shape of the attenuation curve, identifies the time at the boundary between the straight line portion S1 and the curved portion S2, and determines the duration τ based on this.
 なお、継続時間τを決定するための演算処理は比較的演算負荷が大きいため、減衰解析部312の演算速度によって肉厚測定システム1全体の能力が決定づけられる。具体的には、たとえば肉厚測定システム1が一日あたりに実行できる測定の回数は、減衰解析部312が一回あたりの演算処理に要する時間で24時間(1440分)を除した値になる。 Since the arithmetic processing for determining the duration τ has a relatively large arithmetic load, the capability of the entire wall thickness measuring system 1 is determined by the arithmetic speed of the attenuation analysis unit 312. Specifically, for example, the number of measurements that the wall thickness measuring system 1 can perform per day is the value obtained by dividing 24 hours (1440 minutes) by the time required for the attenuation analysis unit 312 to perform the arithmetic processing for each measurement. ..
 ハブ側通信部32は、サーバ装置4のサーバ側通信部43と通信可能に構成されている。ハブ側通信部32は、減衰解析部312が算出した継続時間τに、測定制御部311が選択したパルス渦電流プローブ2を特定する識別情報Idおよび測定日時(肉厚Tcの算出に用いられた継続時間τを測定した日時。以下同じ。)を付して、サーバ装置4に送出する。また、測定回数分配部412が決定した各パルス渦電流プローブ2の測定実行回数Pnを表す測定回数テーブルを受信する。 The hub-side communication unit 32 is configured to be able to communicate with the server-side communication unit 43 of the server device 4. The hub-side communication unit 32 used the identification information Id for identifying the pulse eddy current probe 2 selected by the measurement control unit 311 and the measurement date and time (thickness Tc) in the duration τ calculated by the attenuation analysis unit 312. The date and time when the duration τ was measured. The same shall apply hereinafter), and the signal is sent to the server device 4. In addition, a measurement number table representing the measurement execution number Pn of each pulse eddy current probe 2 determined by the measurement number distribution unit 412 is received.
〔サーバ装置の構成〕
 サーバ装置4は、サーバ側演算装置41と、記憶部42と、サーバ側通信部43と、を有する(図2)。サーバ側演算装置41は、肉厚演算部411と測定回数分配部412とを含む演算装置であって、たとえばCPUとして実装される。
[Server device configuration]
The server device 4 includes a server-side arithmetic unit 41, a storage unit 42, and a server-side communication unit 43 (FIG. 2). The server-side arithmetic unit 41 is an arithmetic unit including a wall thickness arithmetic unit 411 and a measurement number distribution unit 412, and is implemented as, for example, a CPU.
 記憶部42には、肉厚演算部411により算出された肉厚Tcおよび継続時間τが、被測定箇所(パルス渦電流プローブ2)を特定する識別情報Idおよび測定日時に関連付けられて記憶されている。また、記憶部42には、それぞれの被測定箇所について、配管Pが設置された当初の肉厚である当初肉厚Taと、当該被測定箇所における使用に供することができなくなる下限の肉厚である下限肉厚Tbと、が記憶されている。当初肉厚Taおよび下限肉厚Tbは、識別情報Idに関連付けられている。 The wall thickness Tc and the duration τ calculated by the wall thickness calculation unit 411 are stored in the storage unit 42 in association with the identification information Id that identifies the measurement location (pulse eddy current probe 2) and the measurement date and time. There is. Further, in the storage unit 42, for each measurement point, the initial wall thickness Ta, which is the initial wall thickness at which the pipe P is installed, and the lower limit wall thickness, which cannot be used at the measurement point, are used. A certain lower limit wall thickness Tb is stored. The initial wall thickness Ta and the lower limit wall thickness Tb are associated with the identification information Id.
 サーバ側通信部43は、ハブ端末3側のハブ側通信部32を通信可能に構成されている。サーバ側通信部43は、測定回数分配部412が決定した各パルス渦電流プローブ2の測定実行回数Pnを表す測定回数テーブルをハブ端末3に送出する。また、減衰解析部312が算出した継続時間τを受信する。 The server-side communication unit 43 is configured to be able to communicate with the hub-side communication unit 32 on the hub terminal 3 side. The server-side communication unit 43 sends a measurement number table representing the measurement execution number Pn of each pulse eddy current probe 2 determined by the measurement number distribution unit 412 to the hub terminal 3. In addition, the duration τ calculated by the attenuation analysis unit 312 is received.
〔肉厚演算部による演算処理〕
 肉厚演算部411は、ハブ端末3から送出された継続時間τに基づいて、識別情報Idにより特定される被測定箇所の肉厚Tcを算出する。具体的には、継続時間τと肉厚Tcとが概ね比例関係にあることに基づき、当該比例関係を用いて肉厚Tcを算出する。算出された肉厚Tcは、識別情報Idおよび測定日時と関連付けられて、記憶部42に記憶される。
[Calculation processing by the wall thickness calculation unit]
The wall thickness calculation unit 411 calculates the wall thickness Tc of the measurement point specified by the identification information Id based on the duration τ sent from the hub terminal 3. Specifically, based on the fact that the duration τ and the wall thickness Tc are generally in a proportional relationship, the wall thickness Tc is calculated using the proportional relationship. The calculated wall thickness Tc is stored in the storage unit 42 in association with the identification information Id and the measurement date and time.
 また、肉厚演算部411は、過去複数回の測定機会(たとえば直近一年間)において算出された肉厚に基づいて、肉厚の減少速度であるコロージョンレートCcを算出する。コロージョンレートCcは、肉厚減少量(mm単位)の一年あたりの数値で表される。算出されたコロージョンレートCcは、識別情報Idおよび算出された日時に関連付けられて記憶部42に記憶される。 In addition, the wall thickness calculation unit 411 calculates the corrosion rate Cc, which is the rate of decrease in wall thickness, based on the wall thickness calculated in the past multiple measurement opportunities (for example, in the last year). Corrosion rate Cc is expressed as a numerical value per year in the amount of decrease in wall thickness (in mm). The calculated corrosion rate Cc is stored in the storage unit 42 in association with the identification information Id and the calculated date and time.
 さらに、肉厚演算部411は、当初肉厚Ta、下限肉厚Tb、および算出された肉厚Tcに基づいて、減肉厚率Tg(%)を算出する。Tgは、以下の式(1)により与えられる。
  Tg=(Tc-Tb)/(Ta-Tb)×100    (1)
 算出された減肉厚率Tgは、識別情報Idおよび測定日時に関連付けられて記憶部42に記憶される。
Further, the wall thickness calculation unit 411 calculates the wall thickness reduction rate Tg (%) based on the initial wall thickness Ta, the lower limit wall thickness Tb, and the calculated wall thickness Tc. Tg is given by the following formula (1).
Tg = (Tc-Tb) / (Ta-Tb) x 100 (1)
The calculated wall thickness reduction rate Tg is stored in the storage unit 42 in association with the identification information Id and the measurement date and time.
〔測定回数分配部による演算処理〕
 測定回数分配部412は、記憶部42に蓄積されたコロージョンレートCcおよび減肉厚率Tgに基づいて、複数のパルス渦電流プローブ2のそれぞれについて、肉厚測定を実行する回数を決定する。測定回数分配部412は、まず以下の式(2)に従って、各パルス渦電流プローブ2について測定優先値Maを算出する。
  Ma=Tg×(Cc/Cg)    (2)
 なお、式(2)において、Cgは肉厚減少量(mm単位)の一年あたりの所定の基準値を表す。算出された測定優先値Maは、識別情報Idおよび測定日時に関連付けられて記憶部42に記憶される。
[Calculation processing by the measurement frequency distribution unit]
The measurement number distribution unit 412 determines the number of times to execute the wall thickness measurement for each of the plurality of pulse eddy current probes 2 based on the colossion rate Cc and the wall thickness reduction rate Tg accumulated in the storage unit 42. The measurement frequency distribution unit 412 first calculates the measurement priority value Ma for each pulse eddy current probe 2 according to the following equation (2).
Ma = Tg × (Cc / Cg) (2)
In the formula (2), Cg represents a predetermined reference value per year for the amount of decrease in wall thickness (in mm). The calculated measurement priority value Ma is stored in the storage unit 42 in association with the identification information Id and the measurement date and time.
 ここで、式(2)から明らかなように、測定優先値Maは減肉厚率TgおよびコロージョンレートCcに比例する。すなわち、現時点の減肉量が大きい被測定箇所(Tgが大きい)および肉厚の減少速度が大きい被測定箇所(Ccが大きい)について、測定優先値Maが大きくなる。 Here, as is clear from the equation (2), the measurement priority value Ma is proportional to the wall thinning thickness ratio Tg and the corrosion rate Cc. That is, the measurement priority value Ma becomes large at the measured portion (the Tg is large) and the measured portion (the Cc is large) where the wall thickness reduction rate is large at the present time.
 また、測定回数分配部412は、全てのパルス渦電流プローブ2についての測定優先値Maを合計した測定優先値合計値Msumを算出する。測定優先値合計値Msumは、測定日時に関連付けられて記憶部42に記憶される。 Further, the measurement frequency distribution unit 412 calculates the total measurement priority value Msum, which is the sum of the measurement priority values Ma for all the pulse eddy current probes 2. The total measurement priority value Msum is stored in the storage unit 42 in association with the measurement date and time.
 ところで、本実施形態に係る肉厚測定システム1が一日(単位期間の例)あたりに実行できる測定の総回数は減衰解析部312が一日あたりに実行可能な演算処理の総回数により決定される。したがって当該総回数は、減衰解析部312による演算処理が一回あたりに要する時間t(分)を用いて、1440/t回と表される。測定回数分配部412は、この1440/t回の実行回数を、全てのパルス渦電流プローブ2に対して1回ずつ割り当てる均等割当部分と、1440/t回から均等割当部分を除いた残余部分である優先割当部分とに区分する。ここで、パルス渦電流プローブ2がn台設置されているとすると、実行回数の均等割当部分はn回であり、優先割当部分は1440/t-n回である。 By the way, the total number of measurements that the wall thickness measuring system 1 according to the present embodiment can perform per day (example of a unit period) is determined by the total number of arithmetic processes that the attenuation analysis unit 312 can perform per day. NS. Therefore, the total number of times is expressed as 1440 / t times by using the time t (minutes) required for each arithmetic processing by the attenuation analysis unit 312. The measurement frequency distribution unit 412 allocates the number of executions of 1440 / t times to all the pulse eddy current probes 2 once, and the remaining portion excluding the equal allocation portion from 1440 / t times. Divide into a certain priority allocation part. Here, assuming that n pulse eddy current probes 2 are installed, the equal allocation portion of the number of executions is n times, and the priority allocation portion is 1440 / tun times.
 測定回数分配部412は、以下の式(3)に従って、各パルス渦電流プローブ2の測定実行回数Pnを算出する。
  Pn=ROUND((1440/t-n)×Ma/Msum)+1    (3)
 算出された測定実行回数Pnは、識別情報Idおよび測定日時に関連付けられて記憶部42に記憶される。
The measurement number distribution unit 412 calculates the measurement execution number Pn of each pulse eddy current probe 2 according to the following equation (3).
Pn = ROUND ((1440 / tun) x Ma / Msum) + 1 (3)
The calculated measurement execution number Pn is stored in the storage unit 42 in association with the identification information Id and the measurement date and time.
 ここで、測定回数分配部412による演算処理の具体例を示す。この具体例では、パルス渦電流プローブ2は25台設置されており(n=25)、各パルス渦電流プローブ2の被測定箇所の減肉厚率TgおよびコロージョンレートCcは表1に示す通りである。なお、25台のパルス渦電流プローブ2には、識別情報Idとして1~25の番号が付与されている。また、表1には、各パルス渦電流プローブ2(被測定箇所)について、肉厚減少量の一年あたりの所定の基準値Cgを1.0とし、減衰解析部312による演算処理が一回あたりに要する時間tを20分として算出した測定優先値Maおよび測定実行回数Pnを併せて示している。なお表1は、まず測定実行回数Pnが大きい順にソートされ、測定実行回数Pnが等しい場合は測定優先値Maが大きい順にソートされている。 Here, a specific example of arithmetic processing by the measurement frequency distribution unit 412 is shown. In this specific example, 25 pulse eddy current probes 2 are installed (n = 25), and the wall thinning thickness ratio Tg and the corrosion rate Cc of the measured points of each pulse eddy current probe 2 are as shown in Table 1. be. The 25 pulse eddy current probes 2 are numbered 1 to 25 as the identification information Id. Further, in Table 1, for each pulsed eddy current probe 2 (measured point), the predetermined reference value Cg per year of the wall thickness reduction amount is set to 1.0, and the calculation process by the attenuation analysis unit 312 is performed once. The measurement priority value Ma calculated with the time t required per time as 20 minutes and the measurement execution number Pn are also shown. In Table 1, first, the measurement execution counts Pn are sorted in descending order, and when the measurement execution counts Pn are equal, the measurement priority value Ma is sorted in descending order.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1では、たとえば15番の被測定箇所は、減肉厚率Tgは中程度(60%)であるが、コロージョンレートCcが特に高い(1.5mm/年)ため、測定優先値Maが大きく、測定実行回数Pnが多く分配されている。また、9番の被測定箇所は、コロージョンレートCcは中程度(0.9mm/年)であるが、減肉厚率Tgが大きい(90%)ため、測定優先値Maが大きく、測定実行回数Pnが多く分配されている。反対に、1番の測定箇所は、減肉厚率TgもコロージョンレートCcも小さいため、測定優先値Maが小さく、測定実行回数Pnの分配が少ない。すなわち、減肉厚率が大きく使用限界に近付いている箇所(たとえば9番、8番)、および、減肉厚率に余裕があっても最近の減肉速度が速い箇所(たとえば15番、14番)、またはその両方に該当する箇所の測定優先値Maが大きく算出され、これらの箇所の測定実行回数Pnが大きくなる。 In Table 1, for example, the thickness reduction rate Tg of No. 15 is medium (60%), but the corrosion rate Cc is particularly high (1.5 mm / year), so the measurement priority value Ma is large. , The number of measurement executions Pn is distributed in large numbers. Further, at the 9th measurement point, the corrosion rate Cc is medium (0.9 mm / year), but the wall thickness reduction rate Tg is large (90%), so the measurement priority value Ma is large and the number of measurement executions is large. A large amount of Pn is distributed. On the contrary, at the first measurement point, since the wall thinning thickness ratio Tg and the corrosion rate Cc are small, the measurement priority value Ma is small and the distribution of the number of measurement executions Pn is small. That is, the places where the wall thinning rate is large and approaching the usage limit (for example, Nos. 9 and 8), and the places where the wall thinning rate is large but the recent wall thinning rate is fast (for example, Nos. 15 and 14). The measurement priority value Ma of the locations corresponding to (number) or both is calculated to be large, and the number of measurement executions Pn of these locations is large.
 表1に示した例のように、測定回数分配部412による演算処理によって、それぞれのパルス渦電流プローブ2の識別情報Idに対して測定優先値Maおよび測定実行回数Pnが関連付けられた測定回数テーブルが生成される。この測定回数テーブルは、サーバ側通信部43を介してハブ端末3に送出される。 As shown in the example shown in Table 1, the measurement number table in which the measurement priority value Ma and the measurement execution number Pn are associated with the identification information Id of each pulse eddy current probe 2 by the arithmetic processing by the measurement number distribution unit 412. Is generated. This measurement number table is sent to the hub terminal 3 via the server-side communication unit 43.
〔測定回数テーブルに基づく肉厚測定の実行〕
 ハブ側通信部32が受信した測定回数テーブルに基づいて、測定制御部311は、当該測定回数テーブルにおいて測定優先値Maが大きい順に測定を実行する。表1の例では、15番、9番、14番、…、という順で測定を実行していく。このとき、測定の実行と同時に、測定回数テーブル上の測定実行回数Pnの値を1減ずる。各パルス渦電流プローブ2について、一回ずつの測定が実行された時点の測定回数テーブルを表2に示す。
[Execution of wall thickness measurement based on the number of measurements table]
Based on the measurement number table received by the hub-side communication unit 32, the measurement control unit 311 executes the measurement in descending order of the measurement priority value Ma in the measurement number table. In the example of Table 1, the measurement is executed in the order of No. 15, No. 9, No. 14, .... At this time, at the same time as the measurement is executed, the value of the measurement execution number Pn on the measurement number table is decremented by 1. Table 2 shows a table of the number of measurements at the time when each measurement was performed for each pulse eddy current probe 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 測定制御部311は、引き続き上記と同様に、測定回数テーブルにおいて測定優先値Maが大きい順に測定を実行する。すなわち、15番、9番、14番、…、という順で2回目の測定を実行する。ただし、測定実行回数Pnが0のパルス渦電流プローブ2については測定を実行しない。表2の例では、3番、19番、2番、および1番のパルス渦電流プローブ2の2回目の測定は実行されず、10番のパルス渦電流プローブ2の2回目の測定の次に15番のパルス渦電流プローブ2の3回目の測定が行われる。 The measurement control unit 311 continues to execute the measurement in the measurement number table in descending order of the measurement priority value Ma in the same manner as described above. That is, the second measurement is executed in the order of No. 15, No. 9, No. 14, .... However, the measurement is not executed for the pulse eddy current probe 2 in which the number of measurement executions Pn is 0. In the example of Table 2, the second measurement of the No. 3, No. 19, No. 2, and No. 1 pulse eddy current probe 2 is not performed, and after the second measurement of the No. 10 pulse eddy current probe 2. The third measurement of the 15th pulse eddy current probe 2 is performed.
 ここで、測定回数テーブル全体の測定実行回数Pnの合計値は、肉厚測定システム1がたとえば一日当たりに実行可能な測定の総回数に等しい。したがって、たとえば一日の測定が終了すると、最初に受信した測定回数テーブル(表1)においてそれぞれのパルス渦電流プローブ2に分配された測定実行回数Pnの測定が実行され、全てのパルス渦電流プローブ2の測定実行回数Pnが0になる。このとき、測定制御部311は、サーバ装置4から新たな測定回数テーブルを取得し、更新された測定回数テーブルに基づいて次の一日の測定を実行する。 Here, the total value of the number of measurement executions Pn in the entire measurement number table is equal to the total number of measurements that the wall thickness measurement system 1 can perform, for example, per day. Therefore, for example, when the measurement of one day is completed, the measurement of the number of measurement executions Pn distributed to each pulse eddy current probe 2 is executed in the first received measurement number table (Table 1), and all the pulse eddy current probes. The number of measurement executions Pn of 2 becomes 0. At this time, the measurement control unit 311 acquires a new measurement number table from the server device 4, and executes the measurement for the next day based on the updated measurement number table.
 これに対応して、測定回数分配部412は、たとえば一日(所定の見直し期間の例)ごとに、測定回数テーブルの再生成を行う。したがって測定回数テーブルは、たとえば一日1回の頻度で最新の肉厚測定結果を反映した内容に更新される。これによって、毎日の測定における測定回数は、最新の(前日の)肉厚測定結果を反映して決定される。 Correspondingly, the measurement number distribution unit 412 regenerates the measurement number table, for example, every day (example of a predetermined review period). Therefore, the measurement count table is updated to reflect the latest wall thickness measurement results, for example, once a day. Thereby, the number of measurements in the daily measurement is determined by reflecting the latest (previous day) wall thickness measurement result.
〔本実施形態の効果〕
 上記の説明では簡単のため省略したが、コロージョンレートCcの算出にあたっては、二つの課題がある。第一の課題は、パルス渦電流を利用した肉厚測定が一定の誤差を含むことである。第二の課題は、配管Pの肉厚減少は、減少速度が速い場合であっても毎年数ミリメートル程度であり、その程度は測定誤差より小さいことである。これらの課題が存在するため、有意なコロージョンレートCcを算出するためには相当な回数の測定値を蓄積して統計的に解析する必要がある。たとえば、当初肉厚が12mmであり測定誤差が±0.2%である場合であれば、有意なコロージョンレートCcを算出するために50~60回程度の測定を要する。
[Effect of this embodiment]
Although omitted in the above explanation for the sake of simplicity, there are two problems in calculating the corrosion rate Cc. The first problem is that the wall thickness measurement using the pulsed eddy current includes a certain error. The second problem is that the wall thickness reduction of the pipe P is about several millimeters every year even when the reduction rate is fast, and the degree is smaller than the measurement error. Due to the existence of these problems, it is necessary to accumulate a considerable number of measured values and analyze them statistically in order to calculate a significant corrosion rate Cc. For example, if the initial wall thickness is 12 mm and the measurement error is ± 0.2%, it takes about 50 to 60 measurements to calculate a significant corrosion rate Cc.
 一方、前述の通り肉厚測定システム1が一日あたりに実行できる測定の総回数には制限があり、その総回数は、たとえば一機のハブ端末3につき60~80回程度である。また、一機のハブ端末3には、たとえば20~30台程度のパルス渦電流プローブ2が接続されている。そのため、測定を実行可能な総回数を全ての被測定箇所に均等に割り当てると、減肉厚率TgまたはコロージョンレートCcが大きい要注意箇所について有意な回数の測定値が蓄積されるまでに要する時間が長くなってしまう。そのため、配管の損傷などにつながりうる重大な欠陥の検知が遅れる場合があった。 On the other hand, as described above, the total number of measurements that the wall thickness measuring system 1 can perform per day is limited, and the total number of measurements is, for example, about 60 to 80 times per hub terminal 3. Further, for example, about 20 to 30 pulse eddy current probes 2 are connected to one hub terminal 3. Therefore, if the total number of times that the measurement can be performed is evenly assigned to all the measured points, the time required for a significant number of measured values to be accumulated for the points requiring attention where the wall thickness ratio Tg or the corrosion rate Cc is large. Will be long. Therefore, the detection of serious defects that may lead to damage to the piping may be delayed.
 そこで、本実施形態に係る肉厚測定システム1によれば、要注意箇所について優先的に測定回数を割り当てるので、要注意箇所について必要な回数の測定を実行するまでの期間が短くなる。これによって、要注意箇所について減肉厚率Tgを頻度高く算出するとともに、有意なコロージョンレートCcが算出されるまでの期間が短くなる。そのため、配管の欠陥を早期に発見しやすい。 Therefore, according to the wall thickness measurement system 1 according to the present embodiment, the number of measurements is preferentially assigned to the points requiring attention, so that the period until the required number of measurements are performed for the points requiring attention is shortened. As a result, the wall thinning thickness ratio Tg is frequently calculated for the points requiring attention, and the period until a significant corrosion rate Cc is calculated is shortened. Therefore, it is easy to detect a defect in the piping at an early stage.
 なお、本実施形態に係る肉厚測定システム1においても、それぞれの被測定箇所について有意なコロージョンレートCcが算出されるまでは、測定の実行回数を複数のパルス渦電流プローブ2に均等に分配する。 Also in the wall thickness measurement system 1 according to the present embodiment, the number of measurement executions is evenly distributed to the plurality of pulse eddy current probes 2 until a significant cologulation rate Cc is calculated for each measurement point. ..
〔その他の実施形態〕
 最後に、本開示に係る肉厚測定システム、肉厚測定方法、肉厚測定プログラムのその他の実施形態について説明する。なお、以下のそれぞれの実施形態で開示される構成は、矛盾が生じない限り、他の実施形態で開示される構成と組み合わせて適用することも可能である。
[Other Embodiments]
Finally, other embodiments of the wall thickness measuring system, the wall thickness measuring method, and the wall thickness measuring program according to the present disclosure will be described. The configurations disclosed in each of the following embodiments can be applied in combination with the configurations disclosed in other embodiments as long as there is no contradiction.
 上記の実施形態では、パルス渦電流プローブ2と、ハブ端末3と、サーバ装置4と、を備える肉厚測定システム1を例として説明した。しかし本開示は、上記の実施形態と同様の機能をコンピュータに実行させるプログラムでもありうる。 In the above embodiment, the wall thickness measuring system 1 including the pulse eddy current probe 2, the hub terminal 3, and the server device 4 has been described as an example. However, the present disclosure may also be a program that causes a computer to perform a function similar to that of the above embodiment.
 上記の実施形態では、減肉厚率TgおよびコロージョンレートCcに基づいて測定実行回数Pnを算出する構成を例として説明した。しかし、そのような構成に限定されることなく、本開示に係る肉厚測定システムにおいて、測定回数分配部は、コロージョンレートに基づく限りにおいて任意の方法で総回数を分配しうる。 In the above embodiment, a configuration in which the number of measurement executions Pn is calculated based on the wall thickness reduction rate Tg and the corrosion rate Cc has been described as an example. However, without being limited to such a configuration, in the wall thickness measuring system according to the present disclosure, the measurement number distribution unit may distribute the total number of times by any method as long as it is based on the corrosion rate.
 上記の実施形態では、減衰解析部312が一日あたりに実行可能な演算処理の総回数を、各パルス渦電流プローブ2に分配する構成を例として説明した。しかし、本開示に係る肉厚測定システムにおいて、各パルス渦電流プローブに分配する総回数の基準となる単位期間は一日に限定されず、たとえば12時間、二日、一週間、一か月などでありうる。 In the above embodiment, the configuration in which the attenuation analysis unit 312 distributes the total number of arithmetic processes that can be executed per day to each pulse eddy current probe 2 has been described as an example. However, in the wall thickness measuring system according to the present disclosure, the unit period as a reference for the total number of times distributed to each pulse eddy current probe is not limited to one day, for example, 12 hours, two days, one week, one month, etc. Can be.
 上記の実施形態では、測定回数分配部412が、一日あたりに実行できる測定の総回数を均等割当部分と優先割当部分とに区分する構成を例として説明した。しかし、本開示に係る肉厚測定システムにおいて、均等割当部分は必ずしも設けられなくてもよい。 In the above embodiment, the configuration in which the measurement number distribution unit 412 divides the total number of measurements that can be performed per day into an equal allocation portion and a priority allocation portion has been described as an example. However, in the wall thickness measuring system according to the present disclosure, the even allocation portion does not necessarily have to be provided.
 上記の実施形態では、均等割当部分が、全てのパルス渦電流プローブ2に対して測定の実行回数が1回ずつ割り当てられる部分である構成を例として説明した。しかし、本開示に係る肉厚測定システムにおいて均等割当部分を設ける場合、各パルス渦電流プローブに対する割当回数は1回でも複数回でもよい。 In the above embodiment, the configuration in which the even allocation portion is a portion in which the number of times of execution of measurement is allocated once to all the pulse eddy current probes 2 has been described as an example. However, when the even allocation portion is provided in the wall thickness measurement system according to the present disclosure, the number of allocations for each pulse eddy current probe may be once or a plurality of times.
 上記の実施形態では、一日ごとに測定回数テーブルの再生成が行われる構成を例として説明した。しかし、そのような構成に限定されることなく、本開示に係る肉厚測定システムにおいて、総回数の再分配は行われなくてもよいし、行われてもよい。また、総回数の再算出が行われる場合、その再算出の間隔である見直し期間は任意である。当該見直し期間を短くすると、演算負荷が増大するが、不具合を早期に発見しやすくなる。なお、見直し期間は、各パルス渦電流プローブに分配する総回数の基準となる単位期間と同一であってもよいし、異なっていてもよい。 In the above embodiment, a configuration in which the measurement count table is regenerated every day has been described as an example. However, without being limited to such a configuration, the total number of redistributions may or may not be performed in the wall thickness measuring system according to the present disclosure. When the total number of times is recalculated, the review period, which is the interval for the recalculation, is arbitrary. If the review period is shortened, the calculation load will increase, but it will be easier to detect defects at an early stage. The review period may be the same as or different from the unit period that serves as a reference for the total number of times to be distributed to each pulse eddy current probe.
 上記の実施形態では、パルス渦電流プローブ2に、給電制御部231および誘導電流検出部232が設けられ、ハブ端末3に、測定制御部311および減衰解析部312が設けられ、サーバ装置4に、肉厚演算部411および測定回数分配部412が設けられた構成を例として説明した。しかし、そのような構成に限定されることなく、本開示に係る肉厚測定システムにおいて、給電制御部、誘導電流検出部、測定制御部、減衰解析部、肉厚演算部、および測定回数分配部を設ける機器の振り分けは任意である。たとえば、給電制御部、誘導電流検出部、および測定制御部を第一装置に設け、減衰解析部、肉厚演算部、および測定回数分配部を第二装置に設けてもよい。また、給電制御部、誘導電流検出部、測定制御部、減衰解析部、肉厚演算部、および測定回数分配部を全て一台の装置に設けてもよい。 In the above embodiment, the pulse eddy current probe 2 is provided with the power supply control unit 231 and the induced current detection unit 232, the hub terminal 3 is provided with the measurement control unit 311 and the attenuation analysis unit 312, and the server device 4 is provided with the server device 4. The configuration in which the wall thickness calculation unit 411 and the measurement number distribution unit 412 are provided has been described as an example. However, without being limited to such a configuration, in the wall thickness measuring system according to the present disclosure, a power supply control unit, an induced current detection unit, a measurement control unit, an attenuation analysis unit, a wall thickness calculation unit, and a measurement frequency distribution unit. The distribution of the equipment to be provided is arbitrary. For example, the power supply control unit, the induced current detection unit, and the measurement control unit may be provided in the first device, and the attenuation analysis unit, the wall thickness calculation unit, and the measurement frequency distribution unit may be provided in the second device. Further, the power supply control unit, the induced current detection unit, the measurement control unit, the attenuation analysis unit, the wall thickness calculation unit, and the measurement frequency distribution unit may all be provided in one device.
 上記の実施形態では、パルス渦電流プローブ2とハブ端末3とが有線接続され、ハブ端末3とサーバ装置4とが無線通信可能に構成された例について説明した。しかし、本開示に係る肉厚測定システムが複数の装置により構成される場合、当該装置間の接続は有線接続であっても無線接続であってもよい。たとえば、上記の実施形態における接続線Lに替えて、パルス渦電流プローブ2とハブ端末3(第一装置)との間での無線通信を可能にする無線通信モジュールを設けてもよい。なおこの場合、パルス渦電流プローブ2の動作に必要な電力を供給するため、パルス渦電流プローブ2にバッテリが搭載されうる。 In the above embodiment, an example in which the pulse eddy current probe 2 and the hub terminal 3 are connected by wire and the hub terminal 3 and the server device 4 are configured to enable wireless communication has been described. However, when the wall thickness measuring system according to the present disclosure is composed of a plurality of devices, the connection between the devices may be a wired connection or a wireless connection. For example, instead of the connection line L in the above embodiment, a wireless communication module that enables wireless communication between the pulse eddy current probe 2 and the hub terminal 3 (first device) may be provided. In this case, a battery may be mounted on the pulse eddy current probe 2 in order to supply the power required for the operation of the pulse eddy current probe 2.
 上記の実施形態では、測定制御部311が、測定優先値Maが大きい順に測定を実行する構成を例として説明した。しかし、そのような構成に限定されることなく、本開示に係る肉厚測定システムにおいて、それぞれのパルス渦電流プローブに分配された測定実行回数に基づいてパルス渦電流プローブの制御が行われる限り、その順序は限定されない。たとえば、表1に例示した測定回数テーブルに基づいた場合に、15番の測定を6回、9番の測定を5回、14番の測定を5回、…、という順で測定を実行してもよい。 In the above embodiment, the configuration in which the measurement control unit 311 executes the measurement in descending order of the measurement priority value Ma has been described as an example. However, without being limited to such a configuration, as long as the pulse eddy current probe is controlled based on the number of measurement executions distributed to each pulse eddy current probe in the wall thickness measuring system according to the present disclosure. The order is not limited. For example, based on the measurement count table illustrated in Table 1, the measurement of No. 15 is performed 6 times, the measurement of No. 9 is performed 5 times, the measurement of No. 14 is performed 5 times, and so on. May be good.
 上記の実施形態では、パルス渦電流プローブ2の各個体を識別する識別情報Idがディップスイッチを用いて設定される例を示した。本開示に係る肉厚測定システムにおいて識別情報として利用されうる情報としては、他に、パルス渦電流プローブを構成するモジュールのMACアドレスを利用する方法などが例示される。 In the above embodiment, an example is shown in which the identification information Id for identifying each individual of the pulse eddy current probe 2 is set by using a DIP switch. Other examples of information that can be used as identification information in the wall thickness measurement system according to the present disclosure include a method of using the MAC address of a module constituting the pulse eddy current probe.
 その他の構成に関しても、本明細書において開示された実施形態は全ての点で例示であって、本開示の範囲はそれらによって限定されることはないと理解されるべきである。当業者であれば、本開示の趣旨を逸脱しない範囲で、適宜改変が可能であることを容易に理解できるであろう。したがって、本開示の趣旨を逸脱しない範囲で改変された別の実施形態も、当然、本開示の範囲に含まれる。 It should be understood that with respect to other configurations, the embodiments disclosed herein are exemplary in all respects and the scope of this disclosure is not limited thereto. Those skilled in the art will easily understand that modifications can be made as appropriate without departing from the spirit of the present disclosure. Therefore, another embodiment modified without departing from the spirit of the present disclosure is, of course, included in the scope of the present disclosure.
 本開示は、たとえば配管の肉厚を測定する肉厚測定システムに利用できる。 The present disclosure can be used, for example, in a wall thickness measuring system for measuring the wall thickness of a pipe.
 1    :肉厚測定システム
 2    :パルス渦電流プローブ
 21   :送信コイル
 22   :受信コイル
 23   :マイクロコントローラ
 231  :給電制御部
 232  :誘導電流検出部
 3    :ハブ端末
 31   :ハブ側演算装置
 311  :測定制御部
 312  :減衰解析部
 32   :ハブ側通信部
 4    :サーバ装置
 41   :サーバ側演算装置
 411  :肉厚演算部
 412  :測定回数分配部
 42   :記憶部
 43   :サーバ側通信部
 S1   :誘導電流の減衰曲線の直線部分
 S2   :誘導電流の減衰曲線の曲線部分
 τ    :継続時間
 P    :配管
 L    :接続線
1: Wall thickness measurement system 2: Pulse eddy current probe 21: Transmit coil 22: Receive coil 23: Microcontroller 231: Power supply control unit 232: Inductive current detection unit 3: Hub terminal 31: Hub side arithmetic unit 311: Measurement control unit 312: Attenuation analysis unit 32: Hub side communication unit 4: Server device 41: Server side arithmetic unit 411: Wall thickness calculation unit 412: Measurement frequency distribution unit 42: Storage unit 43: Server side communication unit S1: Inductive current attenuation curve Straight part S2: Curved part of induced current decay curve τ: Duration P: Piping L: Connection line

Claims (7)

  1.  送信コイルおよび受信コイルを有し、それぞれ異なる被測定箇所に当接するように設置された複数のパルス渦電流プローブと、
     前記受信コイルに生じた誘導電流を検出可能な誘導電流検出部と、
     複数の前記パルス渦電流プローブから選択された一つのパルス渦電流プローブの前記送信コイルにパルス電流が流れるように、前記パルス渦電流プローブを制御可能な測定制御部と、
     前記誘導電流の継続時間を算出可能な減衰解析部と、
     前記継続時間に基づいて、選択された前記パルス渦電流プローブが当接する前記被測定箇所の肉厚を算出可能な肉厚演算部と、
     前記減衰解析部が単位期間あたりに実行可能な演算処理の総回数を複数の前記パルス渦電流プローブに分配する測定回数分配部と、を備える肉厚測定システムであって、
     前記測定回数分配部は、前記被測定箇所のそれぞれにおける前記肉厚の減少速度であるコロージョンレートに基づいて前記総回数を分配可能であり、
     前記測定制御部は、それぞれの前記パルス渦電流プローブに分配された測定実行回数に基づいて前記パルス渦電流プローブを制御可能である肉厚測定システム。
    A plurality of pulsed eddy current probes having a transmitting coil and a receiving coil and installed so as to contact different measurement points.
    An induced current detection unit that can detect the induced current generated in the receiving coil,
    A measurement control unit capable of controlling the pulse eddy current probe so that a pulse current flows through the transmission coil of one pulse eddy current probe selected from the plurality of pulse eddy current probes.
    An attenuation analysis unit that can calculate the duration of the induced current,
    A wall thickness calculation unit capable of calculating the wall thickness of the measurement point to which the selected pulse eddy current probe abuts based on the duration, and a wall thickness calculation unit.
    A wall thickness measuring system including a measurement number distribution unit that distributes the total number of arithmetic processes that can be executed per unit period to a plurality of the pulse eddy current probes.
    The measurement number distribution unit can distribute the total number of times based on the corrosion rate, which is the rate of decrease of the wall thickness at each of the measurement points.
    The measurement control unit is a wall thickness measurement system capable of controlling the pulse eddy current probe based on the number of measurement executions distributed to each of the pulse eddy current probes.
  2.  前記肉厚演算部により算出された前記肉厚を、前記被測定箇所を特定する識別情報と関連付けて記憶可能な記憶部をさらに備え、
     前記記憶部は、前記被測定箇所のそれぞれについて、設置当初の肉厚である初期肉厚と、当該被測定箇所における使用に供することができなくなる下限の肉厚である下限肉厚と、を記憶可能であり、
     前記肉厚演算部は、前記被測定箇所のそれぞれについて、算出された肉厚、前記初期肉厚、および前記下限肉厚に基づいて減肉厚率を算出可能であり、
     前記測定回数分配部は、前記コロージョンレートおよび前記減肉厚率に基づいて前記総回数を分配可能である請求項1に記載の肉厚測定システム。
    A storage unit that can store the wall thickness calculated by the wall thickness calculation unit in association with identification information that identifies the measurement location is further provided.
    The storage unit stores, for each of the measurement points, an initial wall thickness which is the initial wall thickness at the time of installation and a lower limit wall thickness which is a lower limit wall thickness that cannot be used at the measurement point. It is possible and
    The wall thickness calculation unit can calculate the wall thickness reduction rate based on the calculated wall thickness, the initial wall thickness, and the lower limit wall thickness for each of the measurement points.
    The wall thickness measuring system according to claim 1, wherein the measurement number distribution unit can distribute the total number of times based on the corrosion rate and the wall thickness reduction rate.
  3.  前記測定回数分配部は、前記総回数を、複数の前記パルス渦電流プローブの全てに対して1回以上の同数ずつ割り当てる均等割当部分と、前記総回数から前記均等割当部分を除いた残余部分を少なくとも前記コロージョンレートに基づいて分配する優先割当部分と、に区分可能であり、
     前記測定制御部は、前記均等割当部分および前記優先割当部分に定められた実行回数に従って、前記パルス渦電流プローブを制御可能である請求項1または2に記載の肉厚測定システム。
    The measurement number distribution unit allocates the same number of times to all of the plurality of pulse eddy current probes one or more times, and the remaining portion obtained by removing the equal allocation portion from the total number of times. It can be divided into at least a priority allocation portion to be distributed based on the corrosion rate.
    The wall thickness measuring system according to claim 1 or 2, wherein the measurement control unit can control the pulse eddy current probe according to the number of executions determined for the equal allocation portion and the priority allocation portion.
  4.  前記測定回数分配部は、所定の見直し期間ごとに前記総回数を分配しなおす請求項1~3のいずれか一項に記載の肉厚測定システム。 The wall thickness measuring system according to any one of claims 1 to 3, wherein the measurement number distribution unit redistributes the total number of times at a predetermined review period.
  5.  前記測定制御部および前記減衰解析部は、第一装置に設けられ、
     前記肉厚演算部および前記測定回数分配部は、前記第一装置と別個体の第二装置に設けられ、
     前記第一装置は、前記継続時間を前記第二装置に送出可能に構成されている請求項1~4のいずれか一項に記載の肉厚測定システム。
    The measurement control unit and the attenuation analysis unit are provided in the first apparatus.
    The wall thickness calculation unit and the measurement frequency distribution unit are provided in a second device that is separate from the first device.
    The wall thickness measuring system according to any one of claims 1 to 4, wherein the first device is configured so that the duration can be sent to the second device.
  6.  送信コイルおよび受信コイルを有し、それぞれ異なる被測定箇所に当接するように設置された複数のパルス渦電流プローブから選択された一つのパルス渦電流プローブの前記送信コイルにパルス電流が流れるように、前記パルス渦電流プローブを制御する測定制御工程と、
     選択された前記パルス渦電流プローブの前記受信コイルに生じた誘導電流を検出する誘導電流検出工程と、
     前記誘導電流の継続時間を算出する減衰解析工程と、
     前記継続時間に基づいて、選択された前記パルス渦電流プローブが当接する前記被測定箇所の肉厚を算出する肉厚演算工程と、
     単位期間あたりに実行可能な前記減衰解析工程の総回数を複数の前記パルス渦電流プローブに分配する測定回数分配工程と、を含む肉厚測定方法であって、
     前記測定回数分配工程において、前記被測定箇所のそれぞれにおける前記肉厚の減少速度であるコロージョンレートに基づいて前記総回数を分配し、
     前記測定制御工程において、それぞれの前記パルス渦電流プローブに分配された測定実行回数に基づいて前記パルス渦電流プローブを制御する肉厚測定方法。
    A pulse current flows through the transmit coil of one pulse eddy current probe having a transmit coil and a receive coil and selected from a plurality of pulse eddy current probes installed so as to abut each of different measurement points. A measurement control step for controlling the pulsed eddy current probe and
    An induced current detection step for detecting an induced current generated in the receiving coil of the selected pulsed eddy current probe, and an induced current detection step.
    Attenuation analysis step for calculating the duration of the induced current and
    A wall thickness calculation step of calculating the wall thickness of the measurement point to which the selected pulse eddy current probe abuts based on the duration, and a wall thickness calculation step.
    A wall thickness measuring method including a measurement number distribution step of distributing the total number of times of the attenuation analysis step that can be performed per unit period to a plurality of the pulsed eddy current probes.
    In the measurement number distribution step, the total number of times is distributed based on the corrosion rate, which is the rate of decrease of the wall thickness at each of the measurement points.
    A wall thickness measuring method for controlling the pulsed eddy current probe based on the number of measurement executions distributed to each of the pulsed eddy current probes in the measurement control step.
  7.  送信コイルおよび受信コイルを有し、それぞれ異なる被測定箇所に当接するように設置された複数のパルス渦電流プローブから選択された一つのパルス渦電流プローブの前記送信コイルにパルス電流が流れるように、前記パルス渦電流プローブを制御する測定制御機能と、
     選択された前記パルス渦電流プローブの前記受信コイルに生じた誘導電流を検出する誘導電流検出機能と、
     前記誘導電流の継続時間を算出する減衰解析機能と、
     前記継続時間に基づいて、選択された前記パルス渦電流プローブが当接する前記被測定箇所の肉厚を算出する肉厚演算機能と、
     単位期間あたりに実行可能な前記減衰解析機能の総回数を複数の前記パルス渦電流プローブに分配する測定回数分配機能と、をコンピュータに実行させる肉厚測定プログラムであって、
     前記測定回数分配機能の実行時に、前記被測定箇所のそれぞれにおける前記肉厚の減少速度であるコロージョンレートに基づいて前記総回数が分配され、
     前記測定制御機能の実行時に、それぞれの前記パルス渦電流プローブに分配された測定実行回数に基づいて前記パルス渦電流プローブが制御される肉厚測定プログラム。
    A pulse current flows through the transmit coil of one pulse eddy current probe having a transmit coil and a receive coil and selected from a plurality of pulse eddy current probes installed so as to abut each of different measurement points. A measurement control function that controls the pulsed eddy current probe and
    An induced current detection function that detects an induced current generated in the receiving coil of the selected pulsed eddy current probe, and an induced current detection function.
    Attenuation analysis function that calculates the duration of the induced current and
    A wall thickness calculation function that calculates the wall thickness of the measurement point to which the selected pulse eddy current probe abuts based on the duration, and
    It is a wall thickness measurement program that causes a computer to execute a measurement number distribution function that distributes the total number of times of the attenuation analysis function that can be executed per unit period to a plurality of the pulsed eddy current probes.
    When the measurement number distribution function is executed, the total number of times is distributed based on the corrosion rate, which is the rate of decrease of the wall thickness at each of the measurement points.
    A wall thickness measurement program in which the pulse eddy current probe is controlled based on the number of measurement executions distributed to each of the pulse eddy current probes when the measurement control function is executed.
PCT/JP2020/002375 2020-01-23 2020-01-23 Thickness measurement system, thickness measurement method, and thickness measurement program WO2021149228A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/002375 WO2021149228A1 (en) 2020-01-23 2020-01-23 Thickness measurement system, thickness measurement method, and thickness measurement program
JP2020522750A JP6725778B1 (en) 2020-01-23 2020-01-23 Wall thickness measuring system, wall thickness measuring method, and wall thickness measuring program

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/002375 WO2021149228A1 (en) 2020-01-23 2020-01-23 Thickness measurement system, thickness measurement method, and thickness measurement program

Publications (1)

Publication Number Publication Date
WO2021149228A1 true WO2021149228A1 (en) 2021-07-29

Family

ID=71664067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/002375 WO2021149228A1 (en) 2020-01-23 2020-01-23 Thickness measurement system, thickness measurement method, and thickness measurement program

Country Status (2)

Country Link
JP (1) JP6725778B1 (en)
WO (1) WO2021149228A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7437030B2 (en) 2020-07-01 2024-02-22 株式会社テイエルブイ Wall thickness measurement system, wall thickness measurement method, wall thickness measurement program, and wall thickness measurement device
JP7450267B2 (en) 2020-10-07 2024-03-15 株式会社テイエルブイ Wall thickness measurement system, wall thickness measurement method, wall thickness measurement program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044087A (en) * 2012-08-24 2014-03-13 Okayama Univ Nondestructive inspection device using pulse magnetic field, and nondestructive inspection method thereof
JP2015222194A (en) * 2014-05-22 2015-12-10 日立Geニュークリア・エナジー株式会社 Eddy current inspection apparatus and eddy current inspection method
US20170168016A1 (en) * 2015-12-15 2017-06-15 Eddyfi Ndt Inc. Pulsed eddy current testing with dual-purpose coils
JP2017194404A (en) * 2016-04-22 2017-10-26 横河電機株式会社 Thickness reduction detection system, and thickness reduction detection method
JP2018119795A (en) * 2017-01-23 2018-08-02 株式会社テイエルブイ Thickness measurement device and thickness measurement method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014044087A (en) * 2012-08-24 2014-03-13 Okayama Univ Nondestructive inspection device using pulse magnetic field, and nondestructive inspection method thereof
JP2015222194A (en) * 2014-05-22 2015-12-10 日立Geニュークリア・エナジー株式会社 Eddy current inspection apparatus and eddy current inspection method
US20170168016A1 (en) * 2015-12-15 2017-06-15 Eddyfi Ndt Inc. Pulsed eddy current testing with dual-purpose coils
JP2017194404A (en) * 2016-04-22 2017-10-26 横河電機株式会社 Thickness reduction detection system, and thickness reduction detection method
JP2018119795A (en) * 2017-01-23 2018-08-02 株式会社テイエルブイ Thickness measurement device and thickness measurement method

Also Published As

Publication number Publication date
JP6725778B1 (en) 2020-07-22
JPWO2021149228A1 (en) 2021-07-29

Similar Documents

Publication Publication Date Title
WO2021149228A1 (en) Thickness measurement system, thickness measurement method, and thickness measurement program
Bergquist et al. Data analysis for condition‐based railway infrastructure maintenance
CN107871190A (en) A kind of operational indicator monitoring method and device
CN113030399B (en) Method and device for determining urea concentration
US8990826B2 (en) System and method for receiving analysis requests and configuring analytics systems
US9558091B2 (en) Information processing device, fault avoidance method, and program storage medium
US20130179226A1 (en) Automated task pricing in crowdsourcing marketplaces
US10324118B2 (en) Apparatus and method for correcting power usage measurements
CN112395120A (en) Abnormal point detection method, device, equipment and storage medium
US20160004620A1 (en) Detection apparatus, detection method, and recording medium
JP5638464B2 (en) Work process management system and work process management method
CN113807768A (en) Production material delivery cycle joint debugging control method, equipment and storage medium
US20200363245A1 (en) Method of operating and of predictive monitoring of a field device
JP6381498B2 (en) Weighing meter state change detection device and program
Li et al. A new imperfect maintenance model based on delay-time concepts for single components with multiple failure modes
CN115831813A (en) Method, device, equipment and medium for selecting wafer test batches
US8214557B2 (en) Measuring direct memory access throughput
CN104486431A (en) Method, device and system for monitoring terminal
CN111612402A (en) Automatic arbitration method and device
JP2021179981A (en) Information processing system, information processing device, and program
CN109978644B (en) Information processing method, device and system
JP7437030B2 (en) Wall thickness measurement system, wall thickness measurement method, wall thickness measurement program, and wall thickness measurement device
JP2020001591A (en) Aircraft management system
Melinda et al. A critical spare part inventory control based on hazard function approach: A case study in a garment company
JP7450267B2 (en) Wall thickness measurement system, wall thickness measurement method, wall thickness measurement program

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020522750

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916141

Country of ref document: EP

Kind code of ref document: A1