WO2021148725A1 - Régulation thermique d'équipements électriques - Google Patents

Régulation thermique d'équipements électriques Download PDF

Info

Publication number
WO2021148725A1
WO2021148725A1 PCT/FR2020/051879 FR2020051879W WO2021148725A1 WO 2021148725 A1 WO2021148725 A1 WO 2021148725A1 FR 2020051879 W FR2020051879 W FR 2020051879W WO 2021148725 A1 WO2021148725 A1 WO 2021148725A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
transfer composition
use according
temperature
battery
Prior art date
Application number
PCT/FR2020/051879
Other languages
English (en)
Inventor
Laurent Abbas
Dominique Garrait
Jérémie WALKER
Original Assignee
Arkema France
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arkema France filed Critical Arkema France
Priority to JP2022543493A priority Critical patent/JP2023510418A/ja
Priority to EP20804610.2A priority patent/EP4093833A1/fr
Priority to CN202080093882.4A priority patent/CN114981381A/zh
Priority to US17/794,016 priority patent/US12080865B2/en
Publication of WO2021148725A1 publication Critical patent/WO2021148725A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/10Liquid materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/04Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa
    • C09K5/041Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems
    • C09K5/044Materials undergoing a change of physical state when used the change of state being from liquid to vapour or vice versa for compression-type refrigeration systems comprising halogenated compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20381Thermal management, e.g. evaporation control
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/10Components
    • C09K2205/12Hydrocarbons
    • C09K2205/126Unsaturated fluorinated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2205/00Aspects relating to compounds used in compression type refrigeration systems
    • C09K2205/24Only one single fluoro component present
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the use of a heat transfer composition comprising at least one refrigerant and at least one dielectric fluid, for regulating the temperature of an item of equipment (in particular for cooling the equipment), such as a battery. , an electrical component or a fuel cell.
  • a heat transfer composition comprising at least one refrigerant and at least one dielectric fluid, for regulating the temperature of an item of equipment (in particular for cooling the equipment), such as a battery. , an electrical component or a fuel cell.
  • the invention applies in particular to batteries of electric or hybrid vehicles.
  • the batteries of electric or hybrid vehicles give maximum performance under specific conditions of use and especially in a very specific temperature range.
  • the autonomy of electric or hybrid vehicles is a problem, especially since the large heating needs consume a large part of the stored electrical energy.
  • the available battery power is low, which causes a problem with driving.
  • the cost of the battery contributes significantly to the cost of the electric or hybrid vehicle.
  • dielectric oils can be used to cool the battery of an electric or hybrid vehicle.
  • dielectric oils alone is not sufficient to effectively cool the battery, especially due to the lack of evaporation due to high temperatures. boiling point of these oils.
  • more volatile and less viscous fluids should be used.
  • these fluids usually exhibit higher vapor pressures than those seen with dielectric oils, which may require reinforcement of the battery case (and therefore an increase in its weight) in order to withstand the pressure.
  • These fluids also have a higher cost than that of dielectric oils.
  • Document FR 2973809 relates to the use of a zeolitic adsorbent to improve the thermal stability of an oil subjected to temperature variations in refrigerant fluid compositions.
  • Document FR 2962442 relates to a stable composition comprising 2,3,3,3-tetrafluoropropene, for use in refrigeration and air conditioning.
  • WO 2019/242977 relates to a fluid insulated switchgear which includes a fluid compartment filled with an electrically insulating fluid and an electrical conductor placed in the fluid compartment and electrically isolated by the electrically insulating fluid.
  • Document WO 2019/162598 relates to the use of a refrigerant comprising 2,3,3,3-tetrafluoropropene for maintaining the temperature of a battery of an electric or hybrid vehicle in a temperature range.
  • Document WO 2019/162599 relates to the use of a refrigerant comprising 2,3,3,3-tetrafluoropropene for preheating a battery of an electric or hybrid vehicle from the start of the vehicle.
  • Document WO 2019/197783 relates to a process for cooling and / or heating a body or a fluid in a motor vehicle, by means of a system comprising a vapor compression circuit in which circulates a first composition of heat transfer and a secondary circuit in which circulates a second composition of heat transfer.
  • a vapor compression circuit in which circulates a first composition of heat transfer
  • a secondary circuit in which circulates a second composition of heat transfer.
  • the invention relates firstly to the use of a heat transfer composition
  • a heat transfer composition comprising at least one refrigerant chosen from halogenated hydrocarbons, fluorinated ketones, fluorinated and perhalogenated ethers as well as their combinations, and at least one dielectric fluid.
  • the heat transfer composition having a volume resistivity greater than or equal to 10 6 Q.cm at 25 ° C.
  • the refrigerant comprises or is 1 -chloro-3,3,3-trifluoropropene, preferably in E form.
  • the refrigerant is present at a content of 10 to 80%, preferably 10 to 60%, and more preferably 10 to 40% by weight relative to the total weight of the transfer composition. heat.
  • the dielectric fluid is selected from mineral dielectric oils, synthetic dielectric oils, and vegetable dielectric oils; the synthetic fluids preferably being aromatic hydrocarbons chosen from alkylbenzenes, alkyldiphenylethanes, alkylnaphthalenes, methylpolyarylmethanes as well as their combinations; the dielectric fluid being more preferably a mixture of benzyltoluene and dibenzyltoluene.
  • the heat transfer composition has a liquid saturation temperature of 20 to 80 ° C, and preferably 30 to 70 ° C at a pressure of 1 bar.
  • the heat transfer composition exhibits a breakdown voltage of greater than or equal to 20 kV at 20 ° C. In embodiments, the heat transfer composition consists essentially of 1 -chloro-3,3,3-trifluoropropene and a mixture of monobenzyltoluene and dibenzyltoluene.
  • the heat transfer composition consists essentially of 1 -chloro-3,3,3-trifluoropropene and a polyol ester synthesized from pentaerythritol.
  • the heat transfer composition exchanges heat with an additional heat transfer composition, preferably contained in a vapor compression circuit.
  • the above use is for cooling the equipment.
  • the temperature control of the equipment is effected by direct contacting the equipment with the heat transfer composition, preferably by immersing the equipment in the heat transfer composition.
  • the equipment is a battery of an electric or hybrid vehicle.
  • the above use is implemented when charging the battery of the vehicle, the battery of the vehicle preferably being fully charged in a period of less than or equal to 30 min, and preferably less or less. equal to 15 min from its total discharge.
  • the present invention makes it possible to meet the need expressed above. It makes it possible to ensure optimal operation of the equipment, in particular an electric or hybrid vehicle battery, so as to provide high-performance and secure batteries without increasing the costs associated with the batteries.
  • a heat transfer composition comprising at least one refrigerant selected from halogenated hydrocarbons, fluorinated ketones, fluorinated and perhalogenated ethers as well as combinations thereof, and at least one dielectric fluid, the Heat transfer composition having a volume resistivity greater than or equal to 10 6 Q.cm at 25 ° C.
  • the equipment is a battery, in particular an electric or hybrid vehicle battery.
  • the invention can be implemented in a similar manner with other equipment, in particular an electrical component or a fuel cell.
  • the combination of a dielectric fluid with a refrigerant makes it possible to provide a volatile and not very viscous composition (in particular in comparison with a composition consisting of a dielectric fluid) which makes it possible to increase the efficiency and the service life of the batteries, especially during rapid charging, without increasing costs.
  • composition has a volume resistivity greater than or equal to 10 6 Q.cm at 25 ° C (and preferably a breakdown voltage greater than or equal to 20 kV at 20 ° C) ensures that the dielectric properties of the composition are compatible with use near the equipment, in particular near the battery in direct or indirect contact with it.
  • the refrigerant makes it possible to reduce the viscosity of the dielectric fluid and to make the composition more volatile, and therefore more effective.
  • the refrigerant also makes it possible to reduce the liquid saturation temperature of the composition (compared to a composition comprising only dielectric fluid) and to improve the efficiency of the cooling of the battery.
  • the vapor pressure of the composition is generally lower than that of the refrigerant alone, which makes it possible to reduce the constraints for reinforcing the enclosure containing the battery to withstand the pressure and therefore the weight of the vehicle. and thus improve the performance of the vehicle.
  • the cost of the composition is generally lower than that of the refrigerant alone.
  • FIG. 1 is a diagram which illustrates the variation of the liquid saturation temperature of the heat transfer composition at a pressure of 1 bar, as a function of the refrigerant content (see the examples section below).
  • the temperature is represented on the ordinate (° C) and the dielectric fluid content is represented on the abscissa (% by weight).
  • refrigerant is meant a fluid capable of absorbing heat by evaporating at low temperature and low pressure and rejecting heat by condensing at high temperature and high pressure.
  • the refrigerant is chosen from halogenated hydrocarbons, perhalogens, fluorinated ketones, fluorinated ethers as well as their combinations.
  • hydrofluorocarbons hydrofluorocarbons, hydrochlorofluorocarbons, hydrofluoroolefins, hydrochloroolefins and hydrochlorofluoroolefins.
  • the refrigerant can be chosen from 1, 1, 1, 4,4,4-hexafluorobut-2-ene (HFO-1336mzz, isomer E or Z), 1 -chloro- 3,3 , 3-trifluoropropene (HCFO-1233zd, isomer E or Z), 3, 3, 4,4,4-pentafluorobut-1 -ene (HFO-1345fz), 2,4,4,4-tetrafluorobut-1 - ene (HFO-1354mfy), 1, 1, 2-trifluoroethylene (HFO-1123), 1, 1, 1, 3,3-pentafluoropropane (HFC-245fa), 2,3,3,3-tetrafluoropropene ( HFO-1234yf), 1, 3,3,3-tetrafluoropropene (HFO-1234ze, isomer E or Z), difluoromethane (HFC-32), 1, 1, 1, 2-tetrafluoroethane (HFC-134a), 1, 1, 1, 1, 1, 1,
  • perhalogens mention may be made, for example, of perfluorinated substances such as dodecafluoropentane, tetradecafluorohexane, hexadecafluoroheptane and their combinations.
  • fluorinated ketones mention may be made, for example, of fluorinated mono ketones, perfluorinated monocetones such as 1, 1, 1, 2,2,4,5,5,5-nonafluoro- 4- (trifluoromethyl) -3-pentanone and their combinations.
  • fluorinated ethers mention may be made, for example, of hydrofluoroethers such as methoxynonafluorobutane (HFE7100), ethoxy-nonafluorobutane (HFE-7200), 1 -methoxyheptafluoropropane (HFE-7000), perfluoropolyethers and their combinations.
  • hydrofluoroethers such as methoxynonafluorobutane (HFE7100), ethoxy-nonafluorobutane (HFE-7200), 1 -methoxyheptafluoropropane (HFE-7000), perfluoropolyethers and their combinations.
  • the heat transfer composition according to the invention essentially comprises a single compound, as a refrigerant.
  • this refrigerant is HFO-1233zd in E or Z form, and more preferably in E form.
  • composition according to the invention can be prepared according to any means well known to those skilled in the art, for example by simply mixing the various components of the composition according to the invention.
  • dielectric fluid is meant, within the meaning of the present invention, a fluid which does not conduct (or only slightly) electricity but allows electrostatic forces to be exerted.
  • the dielectric fluid is chosen from mineral dielectric oils and synthetic dielectric oils, as well as their mixtures in all proportions.
  • oil is understood to mean a fatty substance which is in the liquid state at ambient temperature and which is immiscible with water. Oils are fatty liquids, of vegetable, mineral or synthetic origin.
  • Insulating oils have the characteristics of heat transfer fluids in order to dissipate the calories generated.
  • the oil included in the heat transfer composition can in particular be chosen from mineral dielectric oils, synthetic dielectric oils, and vegetable dielectric oils, as well as their combinations.
  • the mineral dielectric oils can be paraffinic oils (that is to say linear or branched saturated hydrocarbons) such as Nytro Taurus oil marketed by the Nynas company and Dalia oil marketed by the Shell company, or naphthenic (that is to say cyclic paraffins) such as the Nytro libra and Nytro 10XN oils marketed by the company Nynas, aromatic compounds (that is to say cyclic unsaturated hydrocarbons containing one or more rings characterized by double alternating bonds with single bonds) and non-hydrocarbon compounds.
  • paraffinic oils that is to say linear or branched saturated hydrocarbons
  • naphthenic that is to say cyclic paraffins
  • the Nytro libra and Nytro 10XN oils marketed by the company Nynas
  • aromatic compounds that is to say cyclic unsaturated hydrocarbons containing one or more rings characterized by double alternating bonds with single bonds
  • alkylbenzenes for example phenylxyxlyethane (PXE), phenylethylphenylethane (PEPE), mono-isopropylbiphenyl (MIPB), 1, 1 -diphenylDPE (1, 1 -diphenylDPE (1, 1 -diphenylDPE) )
  • alkylnaphthalenes for example di-iso-propylnaphthalene (DIPN)
  • methylpolyarylmethanes for example benzyltoluene (BT) and dibenzyltolulene DBT
  • BT benzyltoluene
  • DBT dibenzyltolulene
  • aromatic hydrocarbons it should be understood that at least one ring is aromatic and that optionally one or more other ring (s) present may be partially or totally unsaturated.
  • dielectric fluids marketed by Soltex Inc., by Arkema under the name Jarylec ®, and SAS 60E of the company JX Nippon Chemical Texas Inc.
  • silicone oils include, without limitation, linear polydimethylsiloxane silicone oils types, such as for example those sold by the company Wacker under the name Wacker ® AK.
  • synthetic esters mention may be made, without limitation, of esters of phthalic type such as dioctylphthalate (DOP) or di-isononylphthalate (DINP) (marketed for example by the company BASF).
  • esters resulting from the reaction between a polyalcohol and an organic acid in particular an acid chosen from saturated or unsaturated C4 to C22 organic acids.
  • organic acids there may be mentioned undecanoic acid, heptanoic acid, octanoic acid, palmitic acid, and mixtures thereof.
  • organic acids there may be mentioned undecanoic acid, heptanoic acid, octanoic acid, palmitic acid, and mixtures thereof.
  • polyols which can be used for the synthesis of the abovementioned esters mention may be made, by way of nonlimiting examples, of pentaerythritol for the synthesis of MIVOLT DF7 Midel 7131 oil, and Mivolt DFK from the company M & l Materials.
  • the synthetic esters resulting from the reaction between a polyalcohol and an organic acid are, for example, Midel 7131 from the company M & l Materials or else the esters of the Nycodiel range from the company Nyco.
  • the heat transfer composition according to the invention may comprise one or more oils, for example two, or three, or four or five oils.
  • a preferred dielectric fluid is a mixture of benzyltoluene and dibenzyltoluene.
  • the heat transfer composition according to the invention comprises a single dielectric fluid.
  • the dielectric fluid is a formulationthylpolyarylméthane and more particularly a mixture of benzyltoluene and dibenzyltoluene (as Jarylec ® from Arkema); or a polyol ester made from pentaerythritol.
  • the dielectric fluid can in particular have a viscosity of 1 to 60 cP at 20 ° C. according to the ISO3104 standard.
  • this content can be from 1 to 10%; or from 10 to 15%; or from 15 to 20%; or from 20 to 25%; or from 25 to 30%; or from 30 to 35%; or from 35 to 40%; or from 40 to 45%; or from 45 to 50%; or from 50 to 55%; or from 55 to 60%; or from 60 to 65%; or from 65 to 70%; or from 70 to 75%; or from 75 to 80%; or from 80 to 85%; or from 85 to 90%; or from 90 to 95%; or from 95 to 99% by weight based on the total weight of the heat transfer composition.
  • the refrigerant can be present in the composition at a content of more than 0 to less than 100%, preferably 10 to 80%, preferably 10 to 60%, and more preferably 10 to 40% by weight per relative to the total weight of the heat transfer composition.
  • the heat transfer composition according to the invention comprises a mixture of benzyltoluene and dibenzyltoluene (as Jarylec ® from Arkema) and at least one fluorinated hydrocarbon or fluorochloré, such as for example, but not limited to a hydrofluoropropane, a hydrofluoropropene, a hydrochlorofluoropropane, a hydrochlorofluoropropene, as well as their mixtures in all proportions.
  • benzyltoluene and dibenzyltoluene as Jarylec ® from Arkema
  • fluorinated hydrocarbon or fluorochloré such as for example, but not limited to a hydrofluoropropane, a hydrofluoropropene, a hydrochlorofluoropropane, a hydrochlorofluoropropene, as well as their mixtures in all proportions.
  • the heat transfer composition according to the invention comprises a polyol ester made from pentaerythritol and at least one fluorinated or fluorochlorinated hydrocarbon, such as for example, without limitation a hydrofluoropropane, a hydrofluoropropene, a hydrochlorofluoropropane, a hydrochlorofluoropropene, as well as their mixtures in all proportions.
  • a fluorinated or fluorochlorinated hydrocarbon such as for example, without limitation a hydrofluoropropane, a hydrofluoropropene, a hydrochlorofluoropropane, a hydrochlorofluoropropene, as well as their mixtures in all proportions.
  • the heat transfer composition according to the invention comprises 1 -chloro-3,3,3-trifluoropropene (preferably in E-form) and a polyol ester made from pentaerythritol.
  • the heat transfer composition according to the invention consists essentially, or even consists, of 1 -chloro-3,3,3-trifluoropropene (preferably in E form) and a polyol ester made from pentaerythritol .
  • antioxidants which can be advantageously used in the composition, mention may be made, by way of nonlimiting examples, of phenolic antioxidants, such as, for example, dibutylhydroxytoluene, butylhydroxyanisole, tocopherols, as well as the acetates of these phenolic antioxidants.
  • phenolic antioxidants such as, for example, dibutylhydroxytoluene, butylhydroxyanisole, tocopherols, as well as the acetates of these phenolic antioxidants.
  • amine-type antioxidants such as for example phenyl-a-naphthylamine, of diamine type, for example N, N'-di- (2-naphthyl) - para-phenylenediamine, ascorbic acid and its salts, esters of ascorbic acid, alone or as mixtures of two or more of them or with other components, such as for example green tea extracts, coffee extracts.
  • sucrose fatty acid esters such as poly (alkyl methacrylate) or else poly (alkyl acrylate).
  • the preferred acrylic polymers are those whose molecular weight is between 50,000 g. mol 1 and 500,000 g. mol 1 .
  • examples of such acrylic polymers include polymers which may contain linear alkyl groups comprising from 1 to 20 carbon atoms.
  • a decomposition inhibitor is present as an additive.
  • the decomposition inhibitor can in particular be chosen from carbodi-imide derivatives such as diphenyl carbodi-imide, di-tolylcarbodi-imide, bis (isopropylphenyl) - carbodi-imide, bis (butylphenyl) carbodi-imide; but also from phenylglycidyl ethers, or esters, alkylglycidyl ethers, or esters, 3,4-epoxycyclohexylmethyl- (3,4-epoxycyclohexane) carboxylate, compounds of the anthraquinone family, such as for example b-methylanthraquinone marketed under the name “BMAQ”, epoxy derivatives such as vinylcyclohexene diepoxides, 3,4-epoxy-6-methylcyclohexylmethyl- (3,4-epoxy-6-methylhexane), epoxy
  • the total amount of additives preferably does not exceed 5% by weight, in particular 4%, in particular 3% and very particularly 2% by weight or even 1% by weight of the heat transfer composition.
  • the heat transfer composition contains impurities. When they are present, they may represent less than 1%, preferably less than 0.5%, preferably less than 0.1%, preferably less than 0.05% and preferably less than 0.01% ( by weight) based on the heat transfer composition.
  • the heat transfer composition according to the invention has a volume resistivity greater than or equal to 10 6 Q.cm at 25 ° C, and preferably greater than or equal to 10 7 Q.cm or to 10 8 Q.cm.
  • the resistivity of a material represents its ability to oppose the flow of electric current. In other words, volume resistivity is an indication of the dielectric properties of the composition. Volume resistivity is measured according to standard IEC 60247.
  • this volume resistivity can be from 10 6 to 5x10 6 Q.cm; or from 5x10 6 to 10 7 Q.cm; or from 10 7 to 5x10 7 Q.cm; or from 5x10 7 to 10 8 Q.cm; or from 10 8 to 5x10 8 Q.cm; or from 5x10 8 to 10 9 Q.cm; or more than 10 9 Q.cm.
  • the breakdown voltage at 20 ° C of the composition according to the invention may be 25 to 30 kV; or from 30 to 40 kV; or from 40 to 50 kV; or from 50 to 60 kV; or from 60 to 70 kV; or from 70 to 80 kV; or from 80 to 90 kV; or from 90 to 100 kV; or from 100 to 110 kV; or from 110 to 120 kV; or from 120 to 130 kV; or from 130 to 140 kV; or from 140 to 150 kV.
  • the heat transfer composition according to the invention can also have a liquid saturation temperature of 20 to 80 ° C, and preferably 30 to 70 ° C at a pressure of 1 bar.
  • this temperature can be 20 to 25 ° C; or from 25 to 30 ° C; or from 30 to 35'C; or from 35 to 40 ° C; or from 40 to 45 ° C; or from 45 to 50 ° C; or from 50 to 55 ° C or from 55 to 60 ° C; or from 60 to 65 ° C; or from 65 to 70 ° C; or from 70 to 75 ° C; oid 75 to 80 ° C.
  • the heat transfer composition according to the invention may in particular have a viscosity of 0.1 to 20 cP at 20 ° C according to b ISO 3104 standard.
  • the heat transfer composition according to the invention is preferably not very flammable or more preferably non-flammable.
  • the secondary source can be the environment, or an additional heat transfer composition.
  • the device does not allow direct contact of the heat transfer composition with the vehicle battery; this circulates in a heat exchanger, heat pipe or cooling plate.
  • the dielectric properties ensure the safety of the installation in the event of drilling.
  • the device allows direct contact of the heat transfer composition with the vehicle battery.
  • the vehicle battery is immersed in the heat transfer composition.
  • the device may include a closed enclosure containing all or part of the battery, the heat transfer composition being contained in the enclosure and in contact with the external wall of the battery.
  • the transfer composition is entirely in the liquid state.
  • the heat transfer composition is partly in the liquid state and partly in the gaseous state.
  • the pressure in the chamber containing the battery in direct contact or in the circuit in indirect contact can reach the vapor pressure of the transfer composition at the maximum surrounding temperature, which can be for example 70 ° C in the case of a vehicle in the sun.
  • the pressure in the enclosure can, for example, remain below 5 bar, or below 4 bar, or below 2 bar.
  • Cooling by direct contact of the battery with the heat transfer composition is particularly preferred in the case where the battery charge is rapid charge, which involves rapid heating of the battery. This is because this allows for a faster heat exchange between the battery and the heat transfer composition, which helps maintain cooling efficiency even as the cooling requirements increase.
  • the heat transfer composition can exchange heat directly with the environment, to through the enclosure wall.
  • Heat dissipation elements may be provided on the internal surface and / or the external surface of the wall.
  • the heat transfer composition can exchange heat with an additional heat transfer composition, via a heat exchanger located in the enclosure or via plates or channels on the enclosure wall.
  • the heat transfer composition can undergo circulation in and out of the enclosure, so as to exchange heat with the environment, or with an additional heat transfer composition, in a heat exchanger external to the enclosure. 'pregnant.
  • the heat transfer composition can exchange heat with the battery via a heat exchanger.
  • the device can then include a circuit in which the composition circulates.
  • the heat exchanger can in particular be of the fluid / solid type, for example a plate exchanger.
  • the circuit does not include a compressor.
  • the circuit is not a vapor compression circuit.
  • the heat transfer composition may remain in the liquid state as it passes through the heat exchanger, or conversely evaporate or condense, in whole or in part, depending on whether it is used for cooling or heating.
  • Means for circulating the composition for example a pump, can be provided.
  • an additional heat transfer composition When an additional heat transfer composition is provided, it may be present in an additional circuit, which may in particular be a vapor compression circuit.
  • the heat exchange between the compositions is carried out in an additional heat exchanger, which can be, for example, cocurrent or, preferably, countercurrent.
  • the additional heat transfer composition itself can exchange heat with the environment, by means of an additional heat exchanger. It can optionally also be used to heat or cool the air in the passenger compartment.
  • the additional circuit may include different branches provided with separate heat exchangers, the additional heat transfer composition circulating or not circulating in these branches, depending on the operating mode.
  • the additional circuit may include means for changing the direction of circulation of the additional heat transfer composition, comprising for example one or more three-way or four-way valves.
  • counter-current heat exchanger a heat exchanger in which heat is exchanged between a first fluid and a second fluid, the first fluid at the inlet of the exchanger exchanging heat with the heat exchanger.
  • second fluid at the outlet of the exchanger, and the first fluid at the outlet of the exchanger exchanging heat with the second fluid at the inlet of the exchanger is meant.
  • countercurrent heat exchangers include devices in which the flow of the first fluid and the flow of the second fluid are in opposite, or nearly opposite, directions. Exchangers operating in cross-current mode with a counter-current tendency are also included among the counter-current heat exchangers.
  • the heat exchangers can in particular be U-tube exchangers, horizontal or vertical tube bundle, spiral, plate or finned exchangers.
  • the invention relates to the use of a heat transfer composition according to the invention for regulating the temperature of the battery while maintaining a uniform temperature.
  • the composition is used to cool the battery. It can also be used to heat the battery. Heating and cooling can be alternated as needed (outside temperature, battery temperature, battery operating mode).
  • Heating can also be done at least in part by means of an electrical resistance.
  • battery temperature we generally mean the temperature of an outer wall of one or more of its electrochemical cells.
  • the temperature of the battery can be measured by means of a temperature sensor. If several temperature sensors are present at the battery level, the battery temperature can be considered as being the average of the different measured temperatures. The invention makes it possible to considerably reduce the difference between the temperatures measured at different points of the battery.
  • Temperature regulation can be performed while the vehicle battery is charging. Alternatively, it can be performed when the battery is discharged, in particular when the vehicle engine is on. It makes it possible in particular to prevent the temperature of the battery from becoming excessive, due to the outside temperature and / or due to the self-heating of this battery in operation.
  • the battery charge can be fast charging.
  • the use of the composition according to the invention makes it possible to maintain the temperature of the battery in an optimum temperature range with a uniform distribution. This has an advantage since during rapid charging the battery tends to heat up quickly and reach high temperatures, including hot spots that can influence its operation, performance and lifespan.
  • the cooling of the battery is continuous over a period of time.
  • the cooling and optionally the heating make it possible to maintain the temperature of the battery within an optimum temperature range, in particular when the vehicle is in operation (engine on), and in particular when the vehicle is moving. Indeed, if the temperature of the battery is too low, its performance is likely to decrease significantly.
  • the temperature of the vehicle battery can thus be maintained between a minimum temperature ti and a maximum temperature t2.
  • the minimum temperature ti is greater than or equal to 10 ° C and the maximum temperature t2 is less than or equal to 80 ° C, preferably the minimum temperature ti is greater than or equal to 15 ° C and the maximum temperature fe is less than or equal to 70 ° C, and more preferably the minimum temperature ti is greater than or equal to 16 ° C and the maximum temperature fe is less than or equal to 50 ° C.
  • a feedback loop is advantageously present, to modify the operating parameters of the installation according to the battery temperature that is being measured, in order to ensure that the temperature that is desired is maintained.
  • the outside temperature during the period of maintaining the temperature of the vehicle battery between the minimum temperature ti and the maximum temperature t2 may in particular be -60 to -50 ° C; or from -50 to -40 ° C; or from -40 to -30 ° C; or -3 from -20 to -10 ° C; or from -10 to 0 ° C; or from 0 to 10 ° C; or from 10 to 20 to 30 ° C; or from 30 to 40 ° C; or from 40 to 50 ° C; or from 50 to 60 ° C 0 ° C.
  • exit temperature is meant the ambient temperature outside the vehicle before and during the maintenance of the temperature of the vehicle battery between the minimum temperature ti and the maximum temperature t2.
  • Example 1 miscibility and dielectric properties
  • compositions were prepared by combining HCFO-1233zdE as refrigerant with a mixture of benzyltoluene and dibenzyltoluene (marketed by Arkema under the name Jarylec ® C101). It was previously verified that the two products were miscible in all proportions.
  • the oil was loaded by weighing in a 0.34 L autoclave equipped with a magnetic stirrer and a jacket in which a heat transfer fluid circulates so as to homogenize the temperature in the gas phase and the liquid phase.
  • the autoclave was then cooled to -10 ° C where a vacuum was drawn.
  • the HCFO-1233zdE contained in a cylinder was transferred in a closed circuit in liquid phase by weighing.
  • the minimum volume of charged liquid has been calculated so that the composition of the liquid phase does not vary with temperature.
  • the final mixture was brought to the desired temperature with stirring in order to homogenize it. Stirring was then turned off until the mixture reached equilibrium. The temperature and pressure were read to equilibrium.
  • FIG. 1 illustrates the influence of the refrigerant content on the liquid saturation temperature of the composition at a saturated vapor pressure of 1 bar. More particularly, it is observed that compared to a composition comprising 100% oil, the addition of refrigerant in the composition, even at a low content, makes it possible to significantly reduce the liquid saturation temperature of the composition, which allows the cooling capacity of the battery to be increased.
  • a composition was prepared by mixing 69.2 g of HCFO-1233zd E and 100.5 g of Jarylec ® C101 from Arkema under the conditions presented above.
  • composition was prepared by mixing 35% weight HCFO-1233zdE and 65% by weight of Jarylec ® C101 from Arkema under the conditions described below.
  • the breakdown voltage was measured according to standard IEC 60159: 1995.
  • Viscosity measurements were carried out in a jacketed autoclave reactor in which circulates a coolant, with a capacity of 0.2 L, into which Jarylec ® C101 oil has been introduced.
  • the reactor is cooled to -10 ° C. and stirred magnetically.
  • HCFO-1233zdE was introduced by pressure difference. The reactor was then brought to the measurement temperature.
  • a flash point measurement was carried out on a composition containing 90% by weight of oil Jarylec ® C101 and 10% by weight of HCFO-1233zdE, as well as a comparative composition containing 100% by weight of oil Jarylec ® C101.
  • the mixture was prepared at low temperature, under atmospheric pressure. It is homogeneous and liquid at room temperature and atmospheric pressure.
  • Flash point measurement was performed according to ISO 3679 or ISO3680, "Pass / No Pass Flash Point Test - Fast Closed Cup Equilibrium Method.” Standardized tests are carried out with the filling opening left free, therefore open and breathable to the atmosphere, the cup being closed.
  • the tests were adapted as appropriate by plugging the filling opening so as to be able to simulate an even more confined device during temperature equilibrium (2 minutes under standardized conditions). In this case, the tests are carried out "cover plugged”.
  • the temperature range explored was up to 300 ° C.
  • a test device placed in a thermal regulation chamber is used to measure the performance of fluids by varying the temperature. ambient.
  • the test device includes a vessel with a heating element and a condenser.
  • the condenser is located at the top of the vessel and is cooled by a chilled water loop.
  • the heating element is a cylindrical resistor with a diameter of 15 mm and a height of 80 mm in a copper sheath, which is immersed vertically in a cylinder filled with saturated liquid in order to heat it. It can deliver up to 15 W / cm 2 .
  • Eight temperature sensors are placed on the copper sheath to measure the surface temperature.
  • HCFO-1233zdE Two different mixtures of an oil whose properties, in particular viscosity, are close to that of Jarylec ® C101 oil, and whose properties in particular thermal (thermal conductivity greater than 0.05 W / (m 2 .K) and dielectrics meet the specifications for this application, and HCFO-1233zdE have been tested. HCFO-1233zdE was introduced first avoiding any ingress of moisture or air pollution. Oil was added by gravity with a graduated cylinder Miscibility and homogeneity were checked by sampling.
  • the cooling water temperature (10 ° C condenser temperature) and the flow rate have been set to the desired values. Room temperature was set at 26 ° C.
  • the thermal power was increased from 0 to 90 W in 5 W increments, then decreased again for hysteresis detection.
  • Example 5 Heat transfer coefficient (single-phase immersion)
  • a test device comprising a module of 36 prismatic cells (a real lithium-titanate cell surrounded by 35 false cells) in an airtight case.
  • the cells and the busbar are immersed in a liquid circulating at a flow rate of 0.5 L / min at 40 L / min.
  • Inlet and outlet liquid temperatures, flow rate and pressure are measured and controlled.
  • the liquid is cooled externally.
  • the cells are cooled by their small surfaces.
  • the passages for the liquid are arranged in parallel.
  • the module is equipped with 26 temperature sensors, 8 of which are distributed over one of the large surfaces of the real cell.
  • F is equal to the total thermal power supplied divided by the total heat exchange surface.
  • the liquid tested is either an oil with a viscosity close to that of Jarylec ® C101 oil, or a mixture of this oil with HCFO-1233zdE.
  • HCFO-1233zdE was first introduced with no entry of moisture or air pollution. The oil was added by gravity with a graduated cylinder. Miscibility and homogeneity were checked by sampling.
  • the device was used in automatic test mode, with a heat flux density F of 0.25 W / cm 2 (adjusted by varying the power supplied) and an average fluid temperature of 15 ° C (average between the temperature of the liquid entering the housing and the temperature of the liquid leaving the housing). For a given heat flux density, the liquid flow rate has been increased up to the maximum pumping speed, which is fluid dependent.
  • the heat transfer coefficient H corresponds to the heat flux density divided by the difference between the average temperature of the cells and the temperature of the fluid entering the housing.
  • the maximum liquid flow that can be achieved is 15 L / min.
  • the maximum liquid flow rate that can be achieved is 18 L / min.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Combustion & Propulsion (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Lubricants (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Secondary Cells (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

L'invention concerne l'utilisation d'une composition de transfert de chaleur comprenant au moins un fluide frigorigène choisi parmi les hydrocarbures halogénés, les perhalogénés, les cétones fluorées, les éthers fluorés ainsi que leurs combinaisons, et au moins un fluide diélectrique, pour le refroidissement d'une batterie d'un équipement tel qu'un véhicule électrique ou hybride, la composition de transfert de chaleur présentant une résistivité volumique supérieure ou égale à 106 Ω.cm à 25°C.

Description

Régulation thermique d’équipements électriques
Domaine de l’invention
La présente invention concerne l’utilisation d’une composition de transfert de chaleur comprenant au moins un fluide frigorigène et au moins un fluide diélectrique, pour réguler la température d’un équipement (notamment pour refroidir l’équipement), tel qu’une batterie, un composant électrique ou une pile à combustible. L’invention s’applique en particulier aux batteries de véhicules électriques ou hybrides.
Arrière-plan technique
Le besoin de dissiper de forts flux thermiques est primordial dans plusieurs applications, notamment le refroidissement de batteries, composants électroniques et systèmes piles à combustible. Le refroidissement par changement de phase liquide-vapeur s’avère une solution efficace pour la dissipation de quantités de chaleur importantes tout en gardant une température uniforme du système.
En particulier, les batteries des véhicules électriques ou hybrides donnent un rendement maximal dans des conditions d’utilisation spécifiques et surtout dans une plage de température bien spécifique. Ainsi, dans les climats froids, l’autonomie des véhicules électriques ou hybrides pose problème, d’autant plus que les besoins importants de chauffage consomment une grande partie de l’énergie électrique stockée. En outre, à basse température, la puissance disponible de la batterie est faible, ce qui pose un problème de conduite. D’ailleurs, le coût de la batterie contribue fortement au coût du véhicule électrique ou hybride.
Inversement, le refroidissement de la batterie représente un enjeu de sécurité prépondérant. Différentes huiles diélectriques peuvent être utilisées pour refroidir la batterie d’un véhicule électrique ou hybride. Cependant, lorsque la charge rapide de la batterie est exigée, l’utilisation des huiles diélectriques seules ne suffit pas pour refroidir efficacement la batterie, notamment à cause de l’absence d’évaporation due aux hautes températures d’ébullition de ces huiles. Dans ce cas, des fluides plus volatils et moins visqueux doivent être utilisés. Cependant, ces fluides présentent d’habitude des tensions de vapeur supérieures à celles observées dans le cas des huiles diélectriques, ce qui peut nécessiter un renforcement du boîtier de la batterie (et donc une augmentation de son poids) afin de résister à la pression. Ces fluides présentent d’ailleurs un coût supérieur à celui des huiles diélectriques.
De plus, il est important d’utiliser, à proximité de la batterie, des compositions peu ou non inflammables afin d’éliminer tout risque lié à la sécurité de l’utilisation de ces compositions.
Le document FR 2973809 concerne l’utilisation d’un adsorbant zéolithique pour améliorer la stabilité thermique d’une huile soumise à des variations de température dans des compositions de fluides réfrigérants.
Le document FR 2962442 concerne une composition stable comprenant du 2,3,3,3-tetrafluoropropène, pour utilisation en réfrigération et climatisation.
Le document US 2014/057826 concerne une composition de transfert de chaleur comprenant au moins une hydrochlorofluorooléfine utilisée pour des applications de climatisation, de réfrigération et de pompe à chaleur ou utilisée pour le nettoyage des produits, composants, substrats ou autres articles contenant la substance à nettoyer.
Le document WO 2019/242977 concerne un appareillage de commutation isolé par un fluide qui comprend un compartiment de fluide rempli avec un fluide électriquement isolant et un conducteur électrique placé dans le compartiment de fluide et électriquement isolé par le fluide électriquement isolant.
Le document WO 2019/162598 concerne l'utilisation d'un fluide frigorigène comprenant du 2,3,3,3-tétrafluoropropène pour le maintien de la température d'une batterie d'un véhicule électrique ou hybride dans une gamme de température.
Le document WO 2019/162599 concerne l’utilisation d'un fluide frigorigène comprenant du 2,3,3,3-tétrafluoropropène pour le préchauffage d'une batterie d'un véhicule électrique ou hybride à partir du démarrage du véhicule.
Le document WO 2019/197783 concerne un procédé de refroidissement et/ou de chauffage d'un corps ou d'un fluide dans un véhicule automobile, au moyen d'un système comprenant un circuit de compression de vapeur dans lequel circule une première composition de transfert de chaleur et un circuit secondaire dans lequel circule une deuxième composition de transfert de chaleur. Il existe un besoin d’assurer un fonctionnement optimal des batteries de véhicules électriques ou hybrides, de sorte à fournir des batteries performantes et sécurisées sans augmenter les coûts liés aux batteries.
Résumé de l’invention
L’invention concerne en premier lieu l’utilisation d’une composition de transfert de chaleur comprenant au moins un fluide frigorigène choisi parmi les hydrocarbures halogénés, les cétones fluorées, les éthers fluorés et perhalogénés ainsi que leurs combinaisons, et au moins un fluide diélectrique, pour réguler la température d’un équipement choisi parmi une batterie, un composant électrique ou une pile à combustible, la composition de transfert de chaleur présentant une résistivité volumique supérieure ou égale à 106 Q.cm à 25°C.
Dans des modes de réalisation, le fluide frigorigène comprend ou est du 1 -chloro-3,3,3-trifluoropropène, de préférence sous forme E.
Dans des modes de réalisation, le fluide frigorigène est présent à une teneur de 10 à 80 %, de préférence de 10 à 60 %, et encore de préférence de 10 à 40 % en poids par rapport au poids total de la composition de transfert de chaleur.
Dans des modes de réalisation, le fluide diélectrique est choisi parmi les huiles diélectriques minérales, les huiles diélectriques synthétiques, et les huiles diélectriques végétales ; les fluides synthétiques étant de préférence des hydrocarbures aromatiques choisis parmi les alkylbenzènes, les alkyldiphényléthanes, les alkylnaphtalènes, les méthylpolyarylméthanes ainsi que leurs combinaisons ; le fluide diélectrique étant de préférence encore un mélange de benzyltoluène et de dibenzyltoluène.
Dans des modes de réalisation, le fluide diélectrique est présent à une teneur de 20 à 90 %, de préférence de 40 à 90 %, de préférence encore de 40 à 60 % en poids par rapport au poids total de la composition de transfert de chaleur.
Dans des modes de réalisation, la composition de transfert de chaleur présente une température de saturation liquide de 20 à 80 °C, et de préférence de 30 à 70° C à une pression de 1 bar.
Dans des modes de réalisation, la composition de transfert de chaleur présente une tension de claquage supérieure ou égale à 20 kV à 20 °C. Dans des modes de réalisation, la composition de transfert de chaleur consiste essentiellement en du 1 -chloro-3,3,3-trifluoropropène et un mélange de monobenzyltoluène et de dibenzyltoluène.
Dans des modes de réalisation, la composition de transfert de chaleur consiste essentiellement en du 1 -chloro-3,3,3-trifluoropropène et un ester de polyol synthétisé à partir du pentaérythritol.
Dans des modes de réalisation, la composition de transfert de chaleur échange de la chaleur avec une composition de transfert de chaleur supplémentaire, de préférence contenue dans un circuit de compression de vapeur.
Dans des modes de réalisation, l’utilisation ci-dessus est pour le refroidissement de l’équipement.
Dans des modes de réalisation, la régulation de la température de l’équipement est effectuée par la mise en contact direct de l’équipement avec la composition de transfert de chaleur, de préférence par immersion de l’équipement dans la composition de transfert de chaleur.
Dans des modes de réalisation, l’équipement est une batterie d’un véhicule électrique ou hybride.
Dans des modes de réalisation, l’utilisation ci-dessus est mise en oeuvre lors de la charge de la batterie du véhicule, la batterie du véhicule étant de préférence totalement chargée dans une durée inférieure ou égale à 30 min, et de préférence inférieure ou égale à 15 min à partir de sa décharge totale.
La présente invention permet de répondre au besoin exprimé ci-dessus. Elle permet en effet d’assurer un fonctionnement optimal de l’équipement, en particulier une batterie de véhicule électrique ou hybride, de sorte à fournir des batteries performantes et sécurisées sans augmenter les coûts liés aux batteries.
Cela est accompli grâce à l’utilisation d’une composition de transfert de chaleur comprenant au moins un fluide frigorigène choisi parmi les hydrocarbures halogénés, les cétones fluorées, les éthers fluorés et perhalogénés ainsi que leurs combinaisons, et au moins un fluide diélectrique, la composition de transfert de chaleur ayant une résistivité volumique supérieure ou égale à 106 Q.cm à 25°C.
Dans l’ensemble de ce qui suit, on considère le cas dans lequel l’équipement est une batterie, en particulier une batterie de véhicule électrique ou hybride. Toutefois, l’invention peut être mise en oeuvre de façon analogue avec un autre équipement, en particulier un composant électrique ou une pile à combustible. En effet, la combinaison d’un fluide diélectrique avec un fluide frigorigène permet de fournir une composition volatile et peu visqueuse (notamment en comparaison avec une composition consistant en un fluide diélectrique) qui permet d’augmenter l’efficacité et la durée de vie des batteries, notamment lors d’une charge rapide, sans augmenter les coûts.
Le fait que la composition présente une résistivité volumique supérieure ou égale à 106 Q.cm à 25 °C (et de préférence une tension de claquaçp supérieure ou égale à 20 kV à 20 °C) assure que les propriétés diélectriques de la composition sont compatibles avec une utilisation à proximité de l’équipement, notamment à proximité de la batterie en contact direct ou indirect avec elle.
Le fluide frigorigène permet de diminuer la viscosité du fluide diélectrique et de rendre la composition plus volatile, et donc plus efficace. Le fluide frigorigène permet également de diminuer la température de saturation liquide de la composition (par rapport à une composition comprenant uniquement du fluide diélectrique) et d’améliorer l’efficacité du refroidissement de la batterie.
De plus, la tension de vapeur de la composition est généralement inférieure à celle du fluide frigorigène seul, ce qui permet de diminuer les contraintes de renforcement de l’enceinte contenant la batterie pour résister à la pression et donc par la même le poids du véhicule et ainsi d’améliorer les performances du véhicule.
Le coût de la composition est généralement inférieur à celui du fluide frigorigène seul.
Avantageusement, la combinaison de fluide frigorigène avec le fluide diélectrique permet également d’obtenir des compositions qui sont peu ou non inflammables.
Brève description des figures
La figure 1 est un diagramme qui illustre la variation de la température de saturation liquide de la composition de transfert de chaleur à une pression de 1 bar, en fonction de la teneur en fluide frigorigène (voir la partie exemples ci-dessous). La température est représentée en ordonnée (°C) et la teneur en fluide diélectrique est représentée en abscisse (% en poids).
Description détaillée
L’invention est maintenant décrite plus en détail et de façon non limitative dans la description qui suit. Composition de transfert de chaleur
La composition de transfert de chaleur selon l’invention comprend au moins un fluide frigorigène et au moins un fluide diélectrique.
Par « fluide frigorigène », on entend un fluide susceptible d’absorber de la chaleur en s'évaporant à basse température et basse pression et de rejeter de la chaleur en se condensant à haute température et haute pression.
Le fluide frigorigène est choisi parmi les hydrocarbures halogénés, les perhalogénés, les cétones fluorées, les éthers fluorés ainsi que leurs combinaisons.
Parmi les hydrocarbures halogénés, on peut citer les hydrofluorocarbures, les hydrochlorofluorocarbures, les hydrofluorooléfines, les hydrochlorooléfines et les hydrochlorofluorooléfines.
A titre d’exemple, le fluide frigorigène peut être choisi parmi le 1 ,1 ,1 ,4,4,4-hexafluorobut-2-ène (HFO-1336mzz, isomère E ou Z), le 1 -chloro- 3,3,3-trifluoropropène (HCFO-1233zd, isomère E ou Z), le 3, 3, 4,4,4- pentafluorobut-1 -ène (HFO-1345fz), le 2,4,4,4-tétrafluorobut-1 -ène (HFO- 1354mfy), le 1 ,1 ,2-trifluoroéthylène (HFO-1123), le 1 ,1 ,1 ,3,3- pentafluoropropane (HFC-245fa), le 2,3,3,3-tétrafluoropropène (HFO-1234yf), le 1 ,3,3,3-tétrafluoropropène (HFO-1234ze, isomère E ou Z), le difluorométhane (HFC-32), le 1 ,1 ,1 ,2-tétrafluoroéthane (HFC-134a), le 1 ,1 ,2,2-tétrafluoroéthane (HFC-134), le 1 ,1-difluoroéthane (HFC-152a), le pentafluoroéthane (HFC-125), le 1 ,1 ,1 ,3,3-pentafluorobutane (HFC-365mfc), le fluoroéthane (HFC-161 ), le 1 ,1 ,1 ,2,3,3,3 heptafluoropropane (HFC-227ea), le 1 ,1 ,1 -trifluoropropane (HFC-263fb), le 1 ,2 dichloroéthylene (E ou Z) et les combinaisons de ceux-ci.
Parmi les perhalogénés, on peut citer par exemple les perfluorés tels que le dodécafluoropentane, le tétradecafluorohexane, l’hexadécafluoroheptane et leurs combinaisons.
Parmi les cétones fluorées, on peut citer par exemple les mono cétones fluorées, les monocétones perfluorées tels que la 1 ,1 ,1 ,2,2,4,5,5,5-nonafluoro- 4-(trifluorométhyl)-3-pentanone et leurs combinaisons.
Parmi les éthers fluorés , on peut citer par exemple les hydrofluoroéthers tel que le méthoxynonafluorobutane (HFE7100), l’éthoxy- nonafluorobutane (HFE-7200), le 1 -méthoxyheptafluoropropane (HFE-7000), les perfluoropolyethers et leurs combinaisons.
Le fluide frigorigène peut comprendre plusieurs, par exemple deux, ou trois, ou quatre ou cinq composés tels que décrits ci-dessus. Dans certains modes de réalisation préférés, le fluide frigorigène comprend le HFO-1233zd sous forme E ou Z, et encore de préférence sous forme E
De préférence, la composition de transfert de chaleur selon l’invention comprend essentiellement un seul composé, en tant que fluide frigorigène. Dans ce cas, il est préférable que ce fluide frigorigène soit du HFO-1233zd sous forme E ou Z, et encore de préférence sous forme E.
La composition selon l’invention peut être préparée selon tout moyen bien connu de l’homme du métier, par exemple par simple mélange des divers composants de la composition selon l’invention.
Le fluide frigorigène selon l’invention peut notamment avoir une viscosité liquide de 0,1 à 2 cP à 20 °C, de préférence de 0,2 à 0,9 CP à 20 °C. La viscosité peut être mesurée selon la méthode indiquée à l’exemple 2 ci- dessous.
Le fluide frigorigène selon l’invention peut notamment avoir une température d’ébullition (température de saturation liquide) de 0 à 90° C, de préférence de 15 à 70° C, à 1 bar.
Par « fluide diélectrique », on entend, au sens de la présente invention, un fluide qui ne conduit pas (ou peu) l'électricité mais laisse s'exercer les forces électrostatiques.
De préférence, le fluide diélectrique est choisi parmi les huiles diélectriques minérales et les huiles diélectriques synthétiques, ainsi que leurs mélanges en toutes proportions.
Par « huile » on entend un corps gras qui est à l'état liquide à température ambiante et qui est immiscible avec l'eau. Les huiles sont des liquides gras, d'origine végétale, minérale ou synthétique.
Les huiles isolantes (diélectriques) possèdent des caractéristiques de fluide caloporteurs afin de permettre de dissiper les calories générées.
L’huile comprise dans la composition de transfert de chaleur peut être notamment choisie parmi les huiles diélectriques minérales, les huiles diélectriques synthétiques, et les huiles diélectriques végétales ainsi que leurs combinaisons.
Selon un mode de réalisation de l’invention, le fluide diélectrique comprend au moins une huile diélectrique minérale. Des exemples non limitatifs de telles huiles diélectriques minérales comprennent les huiles paraffiniques et les huiles naphténiques, telles que les huiles diélectriques de la famille Nytro, commercialisés par la société Nynas (en particulier Nytro Taurus, Nytro Libra, Nytro 4000X et Nytro l OXN), et Dalia, commercialisé par la société Shell.
Les huiles diélectriques minérales peuvent être des huiles paraffiniques (c’est-à-dire des hydrocarbures saturés linéaires ou ramifiés) telle que l’huile Nytro Taurus commercialisée par la société Nynas et l’huile Dalia commercialisée par la société Shell, ou naphténiques (c’est-à-dire des paraffines cycliques) telles que les huiles Nytro libra et Nytro 10XN commercialisées par la société Nynas, des composés aromatiques (c’est-à- dire des hydrocarbures insaturés cycliques contenant un ou plusieurs cycles caractérisés par des doubles liaisons alternées avec des liaisons simples) et des composés non hydrocarbures.
Selon un autre mode de réalisation de l’invention, le fluide diélectrique est une huile diélectrique synthétique. Des exemples non limitatifs de telles huiles diélectriques synthétiques comprennent les hydrocarbures aromatiques, les hydrocarbures aliphatiques, les huiles silicones, les esters, polyesters et esters de polyol, ainsi que les mélanges de deux ou plusieurs d’entre elles en toutes proportions.
Parmi les hydrocarbures aromatiques, on peut citer, de manière non limitative, les alkylbenzènes, les alkyldiphényléthanes (par exemple phénylxyxlyéthane (PXE), phényléthylphényléthane (PEPE), mono-isopropylbiphényle (MIPB), 1 ,1 -diphényléthane (1 ,1 -DPE)), les alkylnaphtalènes (par exemple di-iso-propylnaphtalène (DIPN)), les méthylpolyarylméthanes (par exemple benzyltoluène (BT) et dibenzyltolulène DBT), et leurs mélanges. Dans lesdits les hydrocarbures aromatiques, il doit être compris qu’au moins un cycle est aromatique et qu’éventuellement un ou plusieurs autres cycle(s) présent(s) peuvent être partiellement ou totalement insaturé(s). Des exemples tout particulièrement préférés sont les fluides diélectriques commercialisés par Soltex Inc, par la société Arkema sous le nom de Jarylec®, et le SAS 60E de la société JX Nippon Chemical Texas Inc.
Parmi les hydrocarbures aliphatiques, on peut citer de manière non limitative, les poly (apha)oléfines (PAO), par exemple les polyisobutènes (PIB) ou les oléfines de type vinylidène, telles que celles commercialisées par exemple par la société Soltex Inc.
Parmi les huiles silicones, on peut citer de manière non limitative, les huiles silicones linéaires de types polydiméthylsiloxanes, telles que par exemple celles commercialisées par la société Wacker sous la dénomination Wacker® AK. Parmi les esters synthétiques, on peut citer de manière non limitative les esters de type phtalique tels que le dioctylphtalate (DOP) ou le di- isononylphtalate (DINP) (commercialisé par exemple par la société BASF).
On peut également citer de manière non limitative les esters issus de la réaction entre un polyalcool et un acide organique, en particulier un acide choisi parmi les acides organiques en C4 à C22, saturés ou insaturés. À titre d’exemples non limitatifs de tels acides organiques, on peut citer l’acide undécanoïque, l’acide heptanoïque, l’acide octanoïque, l’acide palmitique, et leurs mélanges. Parmi les polyols qui peuvent être utilisés pour la synthèse des esters précités, on peut citer, à titre d’exemples non limitatifs, le pentaérythritol pour la synthèse de l’huile MIVOLT DF7 Midel 7131 , et Mivolt DFK de la société M&l Materials.
Ainsi les esters synthétiques issus de la réaction entre un polyalcool et un acide organique sont par exemple le Midel 7131 de la société M&l Materials ou encore les esters de la gamme Nycodiel de la société Nyco.
Parmi les esters naturels et les huiles végétales, on peut citer de manière non limitative, les produits issus de graines huileuses ou d’autres sources d’origine naturelle. On peut citer à titre d’exemple et de manière non limitative le FR3™ ou encore l’Envirotemp™ commercialisés par la société Cargill ou encore le Midel eN 1215 commercialisé par la société M&l Materials.
La composition de transfert de chaleur selon l’invention peut comprendre une huile ou plusieurs, par exemple deux, ou trois, ou quatre ou cinq huiles.
Un fluide diélectrique préféré est un mélange de benzyltoluène et de dibenzyltoluène.
Un autre fluide diélectrique préféré est un ester de polyol fabriqué à partir du pentaérythritol.
De préférence, la composition de transfert de chaleur selon l’invention comprend un seul fluide diélectrique. Dans ce cas, il est préférable que ce fluide diélectrique soit un méthylpolyarylméthane et plus particulièrement un mélange de benzyltoluène et de dibenzyltoluène (tel que Jarylec® de la société Arkema) ; ou un ester de polyol fabriqué à partir du pentaérythritol.
Le fluide diélectrique peut notamment avoir une viscosité de 1 à 60 cP à 20°C selon la norme ISO3104.
Le fluide diélectrique peut notamment avoir une température d’ébullition supérieure à 30°C, telle que mesurée par ébulliométie. Le fluide diélectrique peut être présent dans la composition à une teneur de plus de 0 à moins de 100 %, de préférence de 20 à 90 %, de préférence de 40 à 90 %, et encore de préférence de 40 à 60 % en poids par rapport au poids total de la composition de transfert de chaleur.
Par exemple, cette teneur peut être de 1 à 10 % ; ou de 10 à 15 % ; ou de 15 à 20 % ; ou de 20 à 25 % ; ou de 25 à 30 % ; ou de 30 à 35 % ; ou de 35 à 40 % ; ou de 40 à 45 % ; ou de 45 à 50 % ; ou de 50 à 55 % ; ou de 55 à 60 % ; ou de 60 à 65 % ; ou de 65 à 70 % ; ou de 70 à 75 % ; ou de 75 à 80 % ; ou de 80 à 85 % ; ou de 85 à 90 % ; ou de 90 à 95 % ; ou de 95 à 99 % en poids par rapport au poids total de la composition de transfert de chaleur.
Le fluide frigorigène peut être présent dans la composition à une teneur de plus de 0 à moins de 100 %, de préférence de 10 à 80 %, de préférence de 10 à 60 %, et encore de préférence de 10 à 40% en poids par rapport au poids total de la composition de transfert de chaleur.
Par exemple, cette teneur peut être de 1 à 10 % ; ou de 10 à 15 % ; ou de 15 à 20 % ; ou de 20 à 25 % ; ou de 25 à 30 % ; ou de 30 à 35 % ; ou de 35 à 40 % ; ou de 40 à 45 % ; ou de 45 à 50 % ; ou de 50 à 55 % ; ou de 55 à 60 % ; ou de 60 à 65 % ; ou de 65 à 70 % ; ou de 70 à 75 % ; ou de 75 à 80 % ; ou de 80 à 85 % ; ou de 85 à 90 % ; ou de 90 à 95 % ; ou de 95 à 99 % en poids par rapport au poids total de la composition de transfert de chaleur.
De préférence, la composition de transfert de chaleur selon l’invention comprend un mélange de benzyltoluène et de dibenzyltoluène (tel que Jarylec® de la société Arkema) et au moins un hydrocarbure fluoré ou fluorochloré, tel que par exemple, de manière non limitative un hydrofluoropropane, un hydrofluoropropène, un hydrochlorofluoropropane, un hydrochlorofluoropropène, ainsi que leurs mélanges en toutes proportions.
De préférence, la composition de transfert de chaleur selon l’invention comprend du 1 -chloro-3,3,3-trifluoropropène (de préférence sous forme E) et un mélange de monobenzyltoluène et de dibenzyltoluène. Encore plus préférentiellement, la composition de transfert de chaleur selon l’invention consiste essentiellement, voire consiste, en du 1 -chloro-3,3,3-trifluoropropène (de préférence sous forme E) et un mélange de monobenzyltoluène et de dibenzyltoluène.
Dans d’autres modes de réalisation, la composition de transfert de chaleur selon l’invention comprend un ester de polyol fabriqué à partir du pentaérythritol et au moins un hydrocarbure fluoré ou fluorochloré, tel que par exemple, de manière non limitative un hydrofluoropropane, un hydrofluoropropène, un hydrochlorofluoropropane, un hydrochlorofluoropropène, ainsi que leurs mélanges en toutes proportions.
De préférence, la composition de transfert de chaleur selon l’invention comprend du 1 -chloro-3,3,3-trifluoropropène (de préférence sous forme E) et un ester de polyol fabriqué à partir du pentaérythritol. Encore plus préférentiellement, la composition de transfert de chaleur selon l’invention consiste essentiellement, voire consiste, en du 1 -chloro-3,3,3-trifluoropropène (de préférence sous forme E) et un ester de polyol fabriqué à partir du pentaérythritol.
La composition utilisable dans le cadre de la présente invention peut en outre comprendre un ou plusieurs additifs et/ou charges, par exemple choisis parmi, de manière non limitative, les antioxydants, les passivateurs, les abaisseurs de point d’écoulement, les inhibiteurs de décomposition, les parfums et arômes, les colorants, les conservateurs, et leurs mélanges. La présence d’un inhibiteur de décomposition est particulièrement préférée.
Parmi les antioxydants qui peuvent être avantageusement utilisés dans la composition, on peut citer, à titre d’exemples non limitatifs, les antioxydants phénoliques, tels que par exemple le dibutylhydroxytoluène, le butylhydroxyanisole, les tocophérols, ainsi que les acétates de ces anti oxydants phénoliques ; les antioxydants de type amine, tels que par exemple la phényl-a-naphtylamine, de type diamine, par exemple la N,N’-di-(2-naphtyl)- para-phénylènediamine, l’acide ascorbique et ses sels, les esters de l’acide ascorbique, seuls ou en mélanges de deux ou plusieurs d’entre eux ou avec d’autres composants, comme par exemple les extraits de thé vert, les extraits de café.
Un antioxydant particulièrement adapté est celui disponible dans le commerce auprès de la société Brenntag sous la dénomination commerciale lonol®.
Les passivateurs utilisables dans le cadre de la présente invention sont avantageusement choisis parmi les dérivés du triazole, les benzimidazoles, les imidazoles, le thiazole, le benzothiazole. À titre d’exemple et de manière non limitative, le dioctylaminométhyl-2,3-benzotriazole et le 2-dodécyldithio- imidazole peuvent être mentionnés.
Parmi les abaisseurs de point d’écoulement qui peuvent être présents, on peut citer, à titres d’exemples non limitatifs, les esters d’acides gras de sucrose, les polymères acryliques tels que le poly(méthacrylate d’alkyle) ou encore le poly(acrylate d’alkyle). Les polymères acryliques préférés sont ceux dont le poids moléculaire est compris entre 50000 g. mol 1 et 500000 g. mol 1. Des exemples de ces polymères acryliques incluent des polymères pouvant contenir des groupes alkyles linéaires comprenant de 1 à 20 atomes de carbone.
Parmi ceux-ci, et toujours à titre d’exemples non limitatifs, on peut citer le poly(acrylate de méthyle), le poly(méthacrylate de méthyle), le poly(acrylate d’heptyle), le poly(méthacrylate d’heptyle), le poly(acrylate de nonyle), le poly(méthacrylate de nonyle), le poly(acrylate de undécyle), le poly(méthacrylate de undécyle), le poly(acrylate de tridécyle), le poly(méthacrylate de tridécyle), le poly(acrylate de pentadécyle), le poly(méthacrylate de pentadécyle), le poly(acrylate d’heptadécyle), et le poly(méthacrylate d’heptadécyle).
Un exemple d’un tel abaisseur de point d’écoulement est disponible dans le commerce auprès de la société Sanyo Chemical Industries, Ltd, sous la dénomination commerciale Aclube.
Selon un aspect tout particulièrement préféré, un inhibiteur de décomposition est présent en tant qu’additif. L’inhibiteur de décomposition peut en particulier être choisi parmi les dérivés carbodi-imides tels que le diphényle carbodi-imide, le di-tolylcarbodi-imide, le bis(isopropylphényl)- carbodi-imide, le bis(butylphényl)carbodi-imide ; mais aussi parmi les phénylglycidyl éthers, ou esters, les alkylglycidyl éthers, ou esters, le carboxylate de 3,4-époxycyclohexylméthyle-(3,4-époxycyclohexane), les composés de la famille des anthraquinones, tels que par exemple la b- méthylanthraquinone commercialisée sous le nom « BMAQ », les dérivés époxydés tels que les vinylcyclohexène diépoxydes, le carboxylate de 3,4-époxy-6-méthylcyclohexylméthyle-(3,4-époxy-6-méthylhexane), les résines époxy type phénol novolak, les diglycidyl éther époxy de bisphénol A, tels que la DGEBA ou la CEL 2021 P, disponibles notamment auprès de la société Whyte Chemicals.
La quantité totale en additifs de préférence n’excède pas 5 % en poids, en particulier 4 %, en plus particulier 3 % et tout particulièrement 2 % en poids voire 1 % en poids de la composition de transfert de chaleur.
Dans certains modes de réalisation, la composition de transfert de chaleur contient des impuretés. Lorsqu’elles sont présentes, elles peuvent représenter moins de 1 %, de préférence moins de 0,5 %, de préférence moins de 0,1 %, de préférence moins de 0,05 % et de préférence moins de 0,01 % (en poids) par rapport à la composition de transfert de chaleur. La composition de transfert de chaleur selon l’invention présente une résistivité volumique supérieure ou égale à 106 Q.cm à 25 °C, et de préférence supérieure ou égale à 107 Q.cm ou à 108 Q.cm. La résistivité d'un matériau, représente sa capacité à s'opposer à la circulation du courant électrique. En d’autres termes, la résistivité volumique est une indication des propriétés diélectriques de la composition. La résistivité volumique est mesurée selon la norme IEC 60247.
Par exemple, cette résistivité volumique peut être de 106 à 5x106 Q.cm ; ou de 5x106 à 107 Q.cm ; ou de 107 à 5x107 Q.cm ; ou de 5x107 à 108 Q.cm ; ou de 108 à 5x108 Q.cm ; ou de 5x108 à 109 Q.cm ; ou de plus de 109 Q.cm.
De plus, la composition de transfert de chaleur selon l’invention peut présenter une tension de claquage à 20 °C supérieure ou égale à 20 kV, de préférence supérieure ou égale à 20 kV, de préférence supérieure ou égale à 30 kV, de préférence supérieure ou égale à 50 kV, et encore de préférence supérieure ou égale à 100 kV. Par « tension de claquage » on entend la tension électrique minimale qui rend conductrice une portion d'un isolant. Ainsi, ce paramètre est également une indication des propriétés diélectriques de la composition. La tension de claquage est mesurée selon la norme IEC 60156.
Par exemple, la tension de claquage à 20° C de la composition selon l’invention peut être de 25 à 30 kV ; ou de 30 à 40 kV ; ou de 40 à 50 kV ; ou de 50 à 60 kV ; ou de 60 à 70 kV ; ou de 70 à 80 kV ; ou de 80 à 90 kV ; ou de 90 à 100 kV ; ou de 100 à 110 kV ; ou de 110 à 120 kV ; ou de 120 à 130 kV ; ou de 130 à 140 kV ; ou de 140 à 150 kV.
La composition de transfert de chaleur selon l’invention peut également présenter une température de saturation liquide de 20 à 80 ° C, et de préférence de 30 à 70° C à une pression de 1 bar. Par exemple, cette température peut être de 20 à 25 °C ; ou de 25 à 30 °C ; ou de 30 à 35’C ; ou de 35 à 40 °C ; ou de 40 à 45° C ; ou de 45 à 50° C ; ou de 50 à 55 °C pu de 55 à 60° C ; ou de 60 à 65°C ; ou de 65 à 70°C ; ou de 70 à 75°C ; oïde 75 à 80°C.
La composition de transfert de chaleur selon l’invention peut notamment avoir une viscosité de 0,1 à 20 cP à 20°C suivant b norme ISO 3104.
La composition de transfert de chaleur selon l’invention est de préférence peu inflammable ou encore de préférence non-inflammable.
Dispositif contenant la composition de transfert de chaleur La composition de transfert de chaleur est contenue dans un dispositif, adapté à permettre l’échange de chaleur de la composition avec la batterie, et de préférence également avec une source secondaire.
La source secondaire peut être l’environnement, ou une composition de transfert de chaleur additionnelle.
Dans certains modes de réalisation, le dispositif ne permet pas le contact direct de la composition de transfert de chaleur avec la batterie du véhicule ; celle-ci circule dans un échangeur de chaleur, caloduc ou plaque de refroidissement. Les propriétés diélectriques garantissent la sécurité de l’installation en cas de perçage.
Dans certains modes de réalisation, le dispositif permet le contact direct de la composition de transfert de chaleur avec la batterie du véhicule. De préférence, la batterie du véhicule est immergée dans la composition de transfert de chaleur. Dans ce cas, le dispositif peut comprendre une enceinte fermée contenant tout ou partie de la batterie, la composition de transfert de chaleur étant contenue dans l’enceinte et au contact de la paroi externe de la batterie.
Cela permet de tirer au mieux profit des propriétés thermiques de la composition de transfert de chaleur.
Dans certains modes de réalisation, la composition de transfert est entièrement à l’état liquide.
Dans d’autres modes de réalisation, la composition de transfert de chaleur est en partie à l’état liquide et en partie à l’état gazeux. La pression dans l’enceinte contenant la batterie en contact direct ou dans circuit en contact indirect, peut atteindre la tension de vapeur de la composition de transfert à la température maximale environnante, qui peut être par exemple de 70°C dans le cas d’un véhicule au soleil. La pression dans l’enceinte peut par exemple demeurer inférieure à 5 bar, ou inférieure à 4 bar, ou inférieure à 2 bar.
Le refroidissement par contact direct de la batterie avec la composition de transfert de chaleur est particulièrement préféré dans le cas où la charge de la batterie est une charge rapide, ce qui implique le réchauffement rapide de la batterie. En effet, cela permet un échange de chaleur entre la batterie et la composition de transfert de chaleur plus rapide, ce qui permet de maintenir l’efficacité du refroidissement même lorsque les exigences de refroidissement augmentent.
Dans le cas où la batterie est immergée, la composition de transfert de chaleur peut échanger de la chaleur directement avec l’environnement, à travers la paroi de l’enceinte. Des éléments de dissipation thermique (ailettes ou autres) peuvent être prévus sur la surface interne et/ou la surface externe de la paroi. Alternativement, la composition de transfert de chaleur peut échanger de la chaleur avec une composition de transfert de chaleur additionnelle, via un échangeur de chaleur situé dans l’enceinte ou via des plaques ou canaux sur la paroi de l’enceinte. Alternativement, la composition de transfert de chaleur peut subir une circulation vers et hors de l’enceinte, de sorte à échanger de la chaleur avec l’environnement, ou avec une composition de transfert de chaleur additionnelle, dans un échangeur de chaleur externe à l’enceinte.
Alternativement, la composition de transfert de chaleur peut échanger de la chaleur avec la batterie via un échangeur de chaleur. Le dispositif peut alors comprendre un circuit dans lequel circule la composition. L’échangeur de chaleur peut être notamment du type fluide/solide, par exemple un échangeur à plaque.
De préférence, le circuit ne comprend pas de compresseur. Autrement dit, le circuit n’est pas un circuit de compression de vapeur.
La composition de transfert de chaleur peut rester à l’état liquide au passage de l’échangeur de chaleur, ou au contraire s’évaporer ou se condenser, en tout ou partie, selon qu’elle est utilisée pour le refroidissement ou le chauffage.
Des moyens de circulation de la composition, par exemple une pompe, peuvent être prévus.
Lorsqu’une composition de transfert de chaleur additionnelle est prévue, celle-ci peut être présente dans un circuit additionnel, qui peut être notamment un circuit de compression de vapeur. L’échange de chaleur entre les compositions est effectué dans un échangeur de chaleur additionnel, qui peut être par exemple à co-courant ou, de préférence, à contre-courant.
La composition de transfert de chaleur additionnelle elle-même peut échanger de la chaleur avec l’environnement, au moyen d’un échangeur de chaleur supplémentaire. Elle peut optionnellement être également utilisée pour chauffer ou refroidir l’air de l’habitacle.
A cet effet le circuit additionnel peut comporter différentes branches dotées d’échangeurs de chaleur distincts, la composition de transfert de chaleur additionnelle circulant ou non dans ces branches, selon le mode de fonctionnement. Optionnellement, alternativement ou en complément, le circuit additionnel peut comporter des moyens de changement du sens de circulation de la composition de transfert de chaleur additionnelle, comprenant par exemple une ou plusieurs vannes à trois voies ou à quatre voies.
Par « échangeur de chaleur à contre-courant », on entend un échangeur de chaleur dans lequel de la chaleur est échangée entre un premier fluide et un deuxième fluide, le premier fluide à l’entrée de l’échangeur échangeant de la chaleur avec le deuxième fluide à la sortie de l’échangeur, et le premier fluide à la sortie de l’échangeur échangeant de la chaleur avec le deuxième fluide à l’entrée de l’échangeur.
Par exemple, les échangeurs de chaleur à contre-courant comprennent les dispositifs dans lesquels le flux du premier fluide et le flux du deuxième fluide sont dans des directions opposées, ou quasiment opposées. Les échangeurs fonctionnant en mode courant croisé à tendance contre-courant sont également compris parmi les échangeurs de chaleur à contre-courant.
Les échangeurs de chaleur peuvent être en particulier des échangeurs à tubes en U, à faisceau tubulaire horizontal ou vertical, à spirales, à plaques ou à ailettes.
Régulation de la température
L’invention concerne l’utilisation d’une composition de transfert de chaleur selon l’invention pour la régulation de la température de la batterie en gardant une température uniforme. De préférence, la composition est utilisée pour refroidir la batterie. Elle peut également être utilisable pour chauffer la batterie. Chauffage et refroidissement peuvent être alternés selon les besoins (température extérieure, température de la batterie, mode de fonctionnement de la batterie).
Le chauffage peut également être effectué au moins en partie au moyen d’une résistance électrique.
Il est ainsi possible de dédier la composition de transfert de chaleur selon l’invention uniquement au refroidissement de la batterie de manière uniforme, tandis que d’autres moyens, par exemple une résistance électrique, sont utilisés pour son chauffage.
Par « température de la batterie », on entend généralement la température d’une paroi extérieure d’une ou de plusieurs de ses cellules électrochimiques.
La température de la batterie peut être mesurée au moyen d’un capteur de température. Si plusieurs capteurs de température sont présents au niveau de la batterie, la température de la batterie peut être considérée comme étant la moyenne des différentes températures mesurées. L’invention permet de réduire considérablement l’écart entre les températures mesurées en différents points de la batterie.
La régulation de la température peut être effectuée lorsque la batterie du véhicule est en charge. Alternativement, elle peut être effectuée lorsque la batterie est en décharge, notamment lorsque le moteur du véhicule est allumé. Elle permet notamment d’éviter que la température de la batterie devienne excessive, en raison de la température extérieure et/ou en raison de réchauffement propre de cette batterie en fonctionnement.
En particulier, la charge de la batterie peut être une charge rapide. Ainsi, lors du chargement complet de la batterie (à partir d’un moment ou la batterie est complètement déchargée) pendant une durée inférieure ou égale à 30 min, et de préférence inférieure ou égale à 15 min, l’utilisation de la composition selon l’invention permet de maintenir la température de la batterie dans une gamme de température optimale avec une répartition uniforme. Cela présente un avantage étant donné que lors d’une charge rapide, la batterie a tendance à s’échauffer rapidement et à atteindre des températures élevées avec notamment des points chauds qui peuvent influencer son fonctionnement, ses performances et sa durée de vie.
Dans certains modes de réalisation, le refroidissement de la batterie est continu sur une certaine durée.
Dans certains modes de réalisation, le refroidissement et optionnellement le chauffage permettent de maintenir la température de la batterie dans une gamme de température optimale, en particulier lorsque le véhicule est en fonctionnement (moteur allumé), et notamment lorsque le véhicule se déplace. En effet, si la température de la batterie est trop faible, la performance de celle-ci est susceptible de diminuer de manière importante.
Dans certains modes de réalisation, la température de la batterie du véhicule peut ainsi être maintenue entre une température minimale ti et une température maximale t2.
Dans certains modes de réalisation, la température minimale ti est supérieure ou égale à 10°C et la température maximde t2 est inférieure ou égale à 80°C, de préférence la température minimale ti est supérieure ou égale à 15°C et la température maximale fe est inférieure ou égale à 70 °C, et de préférence encore la température minimale ti est supérieure ou égale à 16°C et la température maximale fe est inférieure ou égale à 50 °C.
Une boucle de rétroaction est avantageusement présente, pour modifier les paramètres de fonctionnement de l’installation en fonction de la température de la batterie qui est mesurée, afin d’assurer le maintien de la température qui est souhaité.
La température extérieure pendant la durée du maintien de la température de la batterie du véhicule entre la température minimale ti et la température maximale t2 peut notamment être de -60 à -50° C ; ou de -50 à -40°C ; ou de -40 à -30°C ; ou de -3 de -20 à -10°C ; ou de -10 à 0°C ; ou de 0 à 10°C ; ou de 10 à 2 0 à 30° C ; ou de 30 à 40 °C ; ou de 40 à 50° C ; ou de 50 à 60° C
Figure imgf000020_0001
0 °C.
Par « température extérieure » on entend la température ambiante à l’extérieur du véhicule avant et pendant le maintien de la température de la batterie du véhicule entre la température minimale ti et la température maximale t2.
Exemples
Exemple 1 - miscibilité et propriétés diélectriques
Des compositions ont été préparées en combinant du HCFO-1233zdE en tant que fluide frigorigène avec un mélange de benzyltoluène et de dibenzyltoluène (commercialisé par Arkema sous le nom Jarylec® C101). Il a été préalablement vérifié que les deux produits étaient miscibles en toutes proportions.
L’huile a été chargée par pesée dans un autoclave de 0,34 L équipé d’un agitateur magnétique et d’une double enveloppe dans laquelle circule un fluide caloporteur de manière à homogénéiser la température dans la phase gaz et la phase liquide.
L’autoclave a été ensuite refroidi jusqu’à -10°C où le vide a été tiré.
Le HCFO-1233zdE contenu dans un cylindre a été transféré en circuit fermé en phase liquide par pesée.
Le volume minimal de liquide chargé a été calculé pour que la composition de la phase liquide ne varie pas en fonction de la température.
Le mélange final a été porté à la température souhaitée sous agitation afin de l’homogénéiser. L’agitation a ensuite été coupée jusqu’à ce que le mélange atteigne l’équilibre. La température et la pression ont été relevées à l’équilibre.
La figure 1 illustre l’influence de la teneur en fluide frigorigène sur la température de saturation liquide de la composition à une pression de vapeur saturante de 1 bar. Plus particulièrement, on constate que par rapport à une composition comprenant 100% d’huile, l’ajout de fluide frigorigène dans la composition, même en une faible teneur, permet de diminuer nettement la température de saturation liquide de la composition, ce qui permet d’augmenter la capacité du refroidissement de la batterie.
Une composition a été préparée par mélange de 69,2 g de HCFO-1233zd E et de 100,5 g de Jarylec®C101 de la société Arkema, dans les conditions présentées ci-dessus.
[Tableau 1]
Figure imgf000021_0001
Une autre composition a été préparée par mélange de 35% poids de HCFO-1233zdE et 65% en poids de Jarylec®C101 , de la société Arkema, dans les conditions présentées ci-dessous.
La tension de claquage a été mesurée suivant la norme IEC 60159:1995.
[Tableau 2]
Figure imgf000021_0002
Exemple 2 - viscosité
Des mesures de viscosité ont été effectuées dans un réacteur autoclave à double enveloppe dans laquelle circule un fluide caloporteur, d’une contenance de 0,2 L, dans lequel de l’huile Jarylec®C101 a été introduite. Le réacteur est porté refroidi à -10°C et agité magnétquement. Puis, du HCFO-1233zdE a été introduit par différence de pression. Le réacteur a ensuite été porté à la température de mesure.
La mesure de viscosité a alors été effectuée, avec un viscosimètre à tige vibrante de marque SOFRASER, modèle MIVI 9601. Une caméra a permis de confirmer la miscibilité de l’huile et du fluide frigorigène dans les conditions de la mesure et de vérifier l’immersion de la tige du viscosimètre, avant d’effectuer la mesure. [Tableau 3]
Figure imgf000022_0001
A titre de comparaison, une mesure de viscosité selon la norme ISO 3104 a été effectuée sur l’huile (0 % de HCFO-1233zd E) à 20°C. La valeur obtenue est de 6,5 cP.
Exemple 3 - inflammabilité
Une mesure de point éclair a été effectuée sur une composition contenant 90 % en poids d’huile Jarylec®C101 et 10 % en poids de HCFO-1233zdE, ainsi que sur une composition comparative contenant 100 % en poids d’huile Jarylec®C101 .
Le mélange a été préparé à basse température, sous pression atmosphérique. Il est homogène et liquide à température ambiante et pression atmosphérique.
La mesure du point éclair a été effectuée selon la norme ISO 3679 ou ISO3680, « Essai de point d’éclair de type passe/ne passe pas - méthode rapide à l’équilibre en vase clos. Les tests normalisés sont réalisés avec l’orifice de remplissage laissé libre, donc ouvert et respirant à l’atmosphère, la coupelle étant fermée.
Les tests ont été adaptés selon les cas en bouchant l’orifice de remplissage de manière à pouvoir simuler un dispositif encore plus confiné lors de l’équilibre en température (2 minutes dans des conditions normalisées). Dans ce cas, les tests sont effectués « couvercle bouché ».
La gamme de température explorée allait jusqu’à 300 °C.
[Tableau 4]
Figure imgf000022_0002
Exemple 4 - coefficient de transfert de chaleur (immersion biphasigue)
Afin d’effectuer des mesures de coefficient de transfert de chaleur, on utilise un dispositif de test placé dans une chambre de régulation thermique, pour mesurer les performances de fluides en faisant varier la température ambiante. Le dispositif de test comprend un récipient doté d’un élément de chauffage et d’un condenseur. Le condenseur est situé en haut du récipient et est refroidi par une boucle d’eau glacée. L’élément de chauffage est un résistor cylindrique d’un diamètre de 15 mm et d’une hauteur de 80 mm dans une gaine en cuivre, qui est immergé verticalement dans un cylindre rempli de liquide saturé afin de le chauffer. Il peut fournir jusqu’à 15 W/cm2. Huit capteurs de température sont placés sur la gaine en cuivre pour mesurer la température de surface.
Deux mélanges différents d’une huile dont les propriétés en particulier la viscosité sont proches de celle de l’huile Jarylec®C101 , et dont les propriétés en particulier thermiques (conductivité thermique supérieure à 0,05 W/(m2.K) et diélectriques remplissent les spécifications pour cette application, et de HCFO-1233zdE ont été testés. Le HCFO-1233zdE a été introduit d’abord en évitant toute entrée d’humidité ou pollution de l’air. L’huile a été ajoutée par gravité avec un cylindre gradué. La miscibilité et l’homogénéité ont été vérifiées par échantillonnage.
La température de l’eau de refroidissement (température de 10°C au condenseur) et le débit ont été fixés aux valeurs souhaitées. La température ambiante a été fixée à 26 °C. La puissance thermiquea été augmentée de 0 à 90 W par incréments de 5 W, puis diminuée à nouveau pour la détection d’hystérèse. Une valeur moyenne de coefficient de transfert de chaleur a été mesurée durant la montée en température : H= F/(TW-Tsat), avec F la densité de flux thermique, Tw la température de la paroi, et Tsat la température de saturation liquide de la composition mesurée.
[Tableau 5]
Figure imgf000023_0001
Exemple 5 - coefficient de transfert de chaleur (immersion monophasigue) Afin d’effectuer des mesures comparatives de coefficient de transfert de chaleur, on utilise un dispositif de test comprenant un module de 36 cellules prismatiques (une véritable cellule de lithium-titanate entourée de 35 fausses cellules) dans un boîtier hermétique. Les cellules et le jeu de barres (« busbar ») sont immergés dans un liquide circulant à un débit de 0,5 L/min à 40 L/min. Les températures de liquide en entrée et en sortie, le débit et la pression sont mesurés et contrôlés. Le liquide est refroidi de manière externe.
Les cellules sont refroidies par leurs petites surfaces. Les passages pour le liquide sont disposés en parallèle. Le module est équipé de 26 capteurs de température, dont 8 sont distribués sur l’une des grandes surfaces de la véritable cellule.
Les tests ont été effectués à différentes densités de flux thermiques F comprises entre 0 et 1 W/cm2. F est égal à la puissance thermique totale fournie divisée par la surface totale d’échange.
Le liquide testé est soit une huile de viscosité proche de celle de l’huile Jarylec®C101 , soit un mélange de cette huile avec du HCFO-1233zdE. Le HCFO-1233zdE a été introduit d’abord en évitant toute entrée d’humidité ou pollution de l’air. L’huile a été ajoutée par gravité avec un cylindre gradué. La miscibilité et l’homogénéité ont été vérifiées par échantillonnage.
Le dispositif a été utilisé en mode de test automatique, avec une densité de flux thermique F de 0,25 W/cm2 (ajustée en faisant varier la puissance fournie) et une température moyenne de fluide de 15°C (moyenne entre la température du liquide en entrée du boîtier et la température du liquide en sortie du boîtier). Pour une densité de flux thermique donnée, le débit de liquide a été augmenté jusqu’à la vitesse de pompage maximale, qui dépend du fluide.
Le coefficient de transfert de chaleur H correspond à la densité de flux thermique divisée par la différence entre la température moyenne des cellules et la température de fluide en entrée du boîtier.
[Tableau 6]
Figure imgf000024_0001
Avec l’huile pure, le débit maximal de liquide qui peut être atteint est de 15 L/min. Avec la composition comprenant 10 % de HCFO-1233zdE, le débit maximal de liquide qui peut être atteint est de 18 L/min.

Claims

Revendications
1. Utilisation d’une composition de transfert de chaleur comprenant au moins un fluide frigorigène choisi parmi les hydrocarbures halogénés, les perhalogénés, les cétones fluorées, les éthers fluorés ainsi que leurs combinaisons, et au moins un fluide diélectrique, pour réguler la température d’un équipement choisi parmi une batterie, un composant électrique ou une pile à combustible, la composition de transfert de chaleur présentant une résistivité volumique supérieure ou égale à 106 Q.cm à25°C.
2. Utilisation selon la revendication 1 , dans laquelle le fluide frigorigène comprend ou est du 1-chloro-3,3,3-trifluoropropène, de préférence sous forme E.
3. Utilisation selon la revendication 1 ou 2, dans laquelle le fluide frigorigène est présent à une teneur de 10 à 80 %, de préférence de 10 à 60 %, et encore de préférence de 10 à 40 % en poids par rapport au poids total de la composition de transfert de chaleur.
4. Utilisation selon l’une des revendications précédentes, dans laquelle le fluide diélectrique est choisi parmi les huiles diélectriques minérales, les huiles diélectriques synthétiques, et les huiles diélectriques végétales ; les fluides synthétiques étant de préférence des hydrocarbures aromatiques choisis parmi les alkylbenzènes, les alkyldiphényléthanes, les alkylnaphtalènes, les méthylpolyarylméthanes ainsi que leurs combinaisons ; le fluide diélectrique étant de préférence encore un mélange de benzyltoluène et de dibenzyltoluène.
5. Utilisation selon l’une des revendications précédentes, dans laquelle le fluide diélectrique est présent à une teneur de 20 à 90 %, de préférence de 40 à 90 %, de préférence encore de 40 à 60 % en poids par rapport au poids total de la composition de transfert de chaleur.
6. Utilisation selon l’une des revendications précédentes, dans laquelle la composition de transfert de chaleur présente une température de saturation liquide de 20 à 80 °C, etde préférence de 30 à 70 °C à une pression de 1 bar.
7. Utilisation selon l’une des revendications précédentes, dans laquelle la composition de transfert de chaleur présente une tension de claquage supérieure ou égale à 20 kV à 20 °C.
8. Utilisation selon l’une des revendications précédentes, dans laquelle la composition de transfert de chaleur consiste essentiellement en du 1-chloro-3,3,3-trifluoropropène et un mélange de monobenzyltoluène et de dibenzyltoluène.
9. Utilisation selon l’une des revendications précédentes, dans laquelle la composition de transfert de chaleur consiste essentiellement en du 1 -chloro-3,3,3-trifluoropropène et un ester de polyol synthétisé à partir du pentaérythritol.
10. Utilisation selon l’une des revendications précédentes, dans laquelle la composition de transfert de chaleur échange de la chaleur avec une composition de transfert de chaleur supplémentaire, de préférence contenue dans un circuit de compression de vapeur.
11. Utilisation selon l’une des revendications précédentes, pour le refroidissement de l’équipement.
12. Utilisation selon l’une des revendications précédentes, dans laquelle la régulation de la température de l’équipement est effectuée par la mise en contact direct de l’équipement avec la composition de transfert de chaleur, de préférence par immersion de l’équipement dans la composition de transfert de chaleur.
13. Utilisation selon l’une des revendications précédentes, dans laquelle l’équipement est une batterie d’un véhicule électrique ou hybride.
14. Utilisation selon la revendication précédente, mise en oeuvre lors de la charge de la batterie du véhicule, la batterie du véhicule étant de préférence totalement chargée dans une durée inférieure ou égale à 30 min, et de préférence inférieure ou égale à 15 min à partir de sa décharge totale.
PCT/FR2020/051879 2020-01-20 2020-10-19 Régulation thermique d'équipements électriques WO2021148725A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022543493A JP2023510418A (ja) 2020-01-20 2020-10-19 電気装置のための温度調節
EP20804610.2A EP4093833A1 (fr) 2020-01-20 2020-10-19 Régulation thermique d'équipements électriques
CN202080093882.4A CN114981381A (zh) 2020-01-20 2020-10-19 电装置的热调节
US17/794,016 US12080865B2 (en) 2020-01-20 2020-10-19 Thermal regulation for electrical devices

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2000514 2020-01-20
FR2000514A FR3106347B1 (fr) 2020-01-20 2020-01-20 Régulation thermique d’équipements électriques

Publications (1)

Publication Number Publication Date
WO2021148725A1 true WO2021148725A1 (fr) 2021-07-29

Family

ID=69903655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2020/051879 WO2021148725A1 (fr) 2020-01-20 2020-10-19 Régulation thermique d'équipements électriques

Country Status (6)

Country Link
US (1) US12080865B2 (fr)
EP (1) EP4093833A1 (fr)
JP (1) JP2023510418A (fr)
CN (1) CN114981381A (fr)
FR (1) FR3106347B1 (fr)
WO (1) WO2021148725A1 (fr)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2962442A1 (fr) 2010-07-09 2012-01-13 Arkema France Composition stable de 2,3,3,3-tetrafluoropropene
FR2973809A1 (fr) 2011-04-08 2012-10-12 Ceca Sa Utilisation de zeolithes pour la stabilisation d'huiles
US20140057826A1 (en) 2008-05-12 2014-02-27 Arkema Inc. Compositions of hydrochlorofluoroolefins
WO2016146197A1 (fr) * 2015-03-19 2016-09-22 Abb Technology Ag Isolation diélectrique ou fluide d'extinction d'arc
WO2019158857A1 (fr) * 2018-02-15 2019-08-22 Arkema France Procede de chauffage et / ou de climatisation d'un vehicule
WO2019162599A1 (fr) 2018-02-21 2019-08-29 Arkema France Utilisation du 2,3,3,3-tetrafluoropropene pour le prechauffage d'une batterie d'un vehicule electrique ou hybride
WO2019162598A1 (fr) 2018-02-21 2019-08-29 Arkema France Utilisation du 2,3,3,3-tetrafluoropropene pour le maintien de la temperature d'une batterie d'un vehicule electrique ou hybride
WO2019197783A1 (fr) 2018-04-13 2019-10-17 Arkema France Procede de refroidissement et/ou de chauffage d'un corps ou d'un fluide dans un vehicule automobile
WO2019242977A1 (fr) 2018-06-18 2019-12-26 Abb Schweiz Ag Indicateur lumineux de localisation d'arcs internes dans un appareillage de commutation isolé par fluide
WO2020132335A1 (fr) * 2018-12-21 2020-06-25 Honeywell International Inc. Procédés, systèmes et fluides de transfert de chaleur

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9175146B2 (en) * 2006-08-08 2015-11-03 Sabic Global Technologies B.V. Thermal conductive polymeric PTC compositions

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140057826A1 (en) 2008-05-12 2014-02-27 Arkema Inc. Compositions of hydrochlorofluoroolefins
FR2962442A1 (fr) 2010-07-09 2012-01-13 Arkema France Composition stable de 2,3,3,3-tetrafluoropropene
FR2973809A1 (fr) 2011-04-08 2012-10-12 Ceca Sa Utilisation de zeolithes pour la stabilisation d'huiles
WO2016146197A1 (fr) * 2015-03-19 2016-09-22 Abb Technology Ag Isolation diélectrique ou fluide d'extinction d'arc
WO2019158857A1 (fr) * 2018-02-15 2019-08-22 Arkema France Procede de chauffage et / ou de climatisation d'un vehicule
WO2019162599A1 (fr) 2018-02-21 2019-08-29 Arkema France Utilisation du 2,3,3,3-tetrafluoropropene pour le prechauffage d'une batterie d'un vehicule electrique ou hybride
WO2019162598A1 (fr) 2018-02-21 2019-08-29 Arkema France Utilisation du 2,3,3,3-tetrafluoropropene pour le maintien de la temperature d'une batterie d'un vehicule electrique ou hybride
WO2019197783A1 (fr) 2018-04-13 2019-10-17 Arkema France Procede de refroidissement et/ou de chauffage d'un corps ou d'un fluide dans un vehicule automobile
WO2019242977A1 (fr) 2018-06-18 2019-12-26 Abb Schweiz Ag Indicateur lumineux de localisation d'arcs internes dans un appareillage de commutation isolé par fluide
WO2020132335A1 (fr) * 2018-12-21 2020-06-25 Honeywell International Inc. Procédés, systèmes et fluides de transfert de chaleur

Also Published As

Publication number Publication date
US12080865B2 (en) 2024-09-03
US20230051363A1 (en) 2023-02-16
JP2023510418A (ja) 2023-03-13
CN114981381A (zh) 2022-08-30
FR3106347A1 (fr) 2021-07-23
FR3106347B1 (fr) 2023-07-07
EP4093833A1 (fr) 2022-11-30

Similar Documents

Publication Publication Date Title
US9212333B2 (en) Dispersant, dispersion, method for adjusting viscosity of dispersant, mobile device, surface treatment agent, electrolytic solution, separator, and rechargeable lithium ion battery
EP3630909B1 (fr) Compositions a base de trifluoroethylene et leurs utilisations
EP3984092A1 (fr) Système, procédé et fluide de transfert de chaleur organique
FR2514938A1 (fr) Fil magnetique comportant un revetement de polyamide-imide et pouvant etre insere sous l'effet d'une force exterieure
FR3061906A1 (fr) Composition comprenant du 2,3,3,3-tetrafluoropropene
EP3198613B1 (fr) Dispositif électrique comprenant une couche réticulée
WO2022084599A1 (fr) Refroidissement d'une batterie par immersion dans une composition avec changement d'état
Tola et al. Experimental study of the characteristics of transformer oil and some selected vegetable oils
WO2022084600A1 (fr) Régulation thermique d'une batterie par immersion dans une composition liquide
EP4046223A1 (fr) Procédé de régulation de la température d'une batterie comprenant un sel de lithium
EP4093833A1 (fr) Régulation thermique d'équipements électriques
FR2779265A1 (fr) Liquide dielectrique thixotrope pour condensateurs, son procede de preparation et condensateurs l'utilisant
FR3078711A1 (fr) Utilisation d'un melange en tant que fluide dielectrique
EP4093835A1 (fr) Utilisation d'une composition de transfert de chaleur pour réguler la température d'une batterie
EP2697331A1 (fr) Utilisation d'une composition a titre d'agent antigel
FR3140088A1 (fr) Refroidissement d’une batterie par immersion dans une composition avec changement d’état
WO2021148752A1 (fr) Compositions diélectriques à propriétés améliorées
EP4045345A1 (fr) Procédé de regulation de la température d'une batterie d'un vehicule automobile
CN111187601A (zh) 冷却液
EP2896055A1 (fr) Procede de fabrication d'un cable de transport d'energie electrique et cable fabrique par un tel procede
US20240067854A1 (en) Organic heat transfer system, method and fluid
EP3230397B1 (fr) Utilisation d'additifs pour diminuer le vieillissement des matériaux à changement de phase
WO2024062207A1 (fr) Appareil électrique comprenant au moins un matériau gélifié
FR3138243A1 (fr) Procédé de management thermique et de sécurité de batteries et dispositif pour sa mise en œuvre.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20804610

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022543493

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020804610

Country of ref document: EP

Effective date: 20220822