WO2021147931A1 - 一种用于检测场景光线的方法与设备 - Google Patents

一种用于检测场景光线的方法与设备 Download PDF

Info

Publication number
WO2021147931A1
WO2021147931A1 PCT/CN2021/072987 CN2021072987W WO2021147931A1 WO 2021147931 A1 WO2021147931 A1 WO 2021147931A1 CN 2021072987 W CN2021072987 W CN 2021072987W WO 2021147931 A1 WO2021147931 A1 WO 2021147931A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
information
target
light intensity
light
Prior art date
Application number
PCT/CN2021/072987
Other languages
English (en)
French (fr)
Inventor
陈大年
徐强
Original Assignee
上海掌门科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海掌门科技有限公司 filed Critical 上海掌门科技有限公司
Publication of WO2021147931A1 publication Critical patent/WO2021147931A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • G01J1/04Optical or mechanical part supplementary adjustable parts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/12Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using wholly visual means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/10Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void
    • G01J1/12Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using wholly visual means
    • G01J1/14Photometry, e.g. photographic exposure meter by comparison with reference light or electric value provisionally void using wholly visual means using comparison with a surface of graded brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G5/00Control arrangements or circuits for visual indicators common to cathode-ray tube indicators and other visual indicators
    • G09G5/10Intensity circuits

Definitions

  • This application relates to the field of communications, and in particular to a technology for detecting scene light.
  • Myopia the name of Chinese medicine.
  • the focus of parallel rays after the refraction of the refractive system of the eye falls in front of the retina.
  • Ancient medical books have known about this disease for a long time. It is called the inability to see farsightedness, also known as near-sightedness and farsightedness, until it was called myopia in the "Mujing Dacheng".
  • myopia Those who are born congenital and have a higher degree of myopia are also called nearsightedness.
  • the occurrence of myopia is related to many factors such as heredity, development and environment, but the exact pathogenesis is still under study.
  • One purpose of the present application is to provide a method and device for detecting scene light.
  • a method for detecting scene light is provided, which is applied to a user equipment side, and the method includes:
  • the target light intensity information does not meet the recommended light intensity information distribution corresponding to the recommended scene light suitable for the retina of the user's eye, adjust the target scene light according to the recommended light intensity information distribution so that the target light The strong information satisfies the recommended light intensity information distribution.
  • a device for detecting scene light including:
  • One-to-one module used to obtain target light intensity information corresponding to the target scene light, wherein the target scene light is used to image the retina of the user's eye;
  • a second module configured to adjust the target scene light according to the recommended light intensity information distribution if the target light intensity information does not meet the recommended light intensity information distribution corresponding to the recommended scene light suitable for the retina of the user's eye, So that the target light intensity information satisfies the recommended light intensity information distribution.
  • a device for detecting scene light including:
  • a memory arranged to store computer-executable instructions that, when executed, cause the processor to perform the operations of the following method:
  • the target light intensity information does not meet the recommended light intensity information distribution corresponding to the recommended scene light suitable for the retina of the user's eye, adjust the target scene light according to the recommended light intensity information distribution so that the target light The strong information satisfies the recommended light intensity information distribution.
  • a computer-readable medium storing instructions, which when executed, cause the system to perform the following method operations:
  • the target light intensity information does not meet the recommended light intensity information distribution corresponding to the recommended scene light suitable for the retina of the user's eye, adjust the target scene light according to the recommended light intensity information distribution so that the target light The strong information satisfies the recommended light intensity information distribution.
  • a computer program product including a computer program, characterized in that, when the computer program is executed by a processor, the steps of the following method are implemented:
  • the target light intensity information does not meet the recommended light intensity information distribution corresponding to the recommended scene light suitable for the retina of the user's eye, adjust the target scene light according to the recommended light intensity information distribution so that the target light The strong information satisfies the recommended light intensity information distribution.
  • a method for detecting scene light which is applied to a user equipment side, wherein the method includes:
  • the first signal information corresponding to the scene light in the target scene, where the first signal information is obtained by converting the light intensity information of the first infrared receiving signal corresponding to the first infrared emitting signal, and the first infrared emitting signal
  • the first infrared receiving signal is an infrared signal reflected by the first infrared transmitting signal from the retina of the user's eye
  • a device for detecting scene light includes:
  • the two-one module is used to obtain the first signal information corresponding to the scene light in the target scene, wherein the first signal information is obtained by converting the light intensity information of the first infrared receiving signal corresponding to the first infrared transmitting signal, so The first infrared emission signal is used to transmit to the retina of the user's eye, and the first infrared receiving signal is an infrared signal reflected by the first infrared emission signal by the retina of the user's eye;
  • the 22nd module is used to detect whether the light of the scene is suitable for the target scene by detecting whether the first signal information meets the target signal distribution corresponding to the recommended scene light intensity information, wherein the recommended scene light intensity information is suitable for The target scene.
  • a device for detecting scene light including:
  • a memory arranged to store computer-executable instructions that, when executed, cause the processor to perform the operations of the following method:
  • the first signal information corresponding to the scene light in the target scene, where the first signal information is obtained by converting the light intensity information of the first infrared receiving signal corresponding to the first infrared emitting signal, and the first infrared emitting signal
  • the first infrared receiving signal is an infrared signal reflected by the first infrared transmitting signal from the retina of the user's eye
  • a computer-readable medium storing instructions, which when executed, cause the system to perform the following method operations:
  • the first signal information corresponding to the scene light in the target scene, where the first signal information is obtained by converting the light intensity information of the first infrared receiving signal corresponding to the first infrared emitting signal, and the first infrared emitting signal
  • the first infrared receiving signal is an infrared signal reflected by the first infrared transmitting signal from the retina of the user's eye
  • a computer program product including a computer program, characterized in that, when the computer program is executed by a processor, the steps of the following method are implemented:
  • the first signal information corresponding to the scene light in the target scene, where the first signal information is obtained by converting the light intensity information of the first infrared receiving signal corresponding to the first infrared emitting signal, and the first infrared emitting signal
  • the first infrared receiving signal is an infrared signal reflected by the first infrared transmitting signal from the retina of the user's eye
  • the present application provides a user equipment for detecting scene light.
  • the user equipment obtains target light intensity information corresponding to the target scene light to detect whether the target light intensity information meets the requirements of the user’s eye retina.
  • the target light intensity information so that the target light intensity information satisfies the recommended light intensity information distribution.
  • the target scene light used for imaging in the user's eye retina does not adapt to the user's eye retina
  • the target scene light is adjusted to adapt to the user's eye retina to protect the user's eyes, keep the user's eyes in a comfortable state, and prevent myopia.
  • the above-mentioned user equipment obtains the target light intensity information corresponding to the light of the target scene by acquiring the first signal information, and the intensity of the first signal information can directly reflect whether the user's eyes are comfortable (for example, the light The first signal information obtained when the light is relatively strong, the light is weak, and the light is suitable is different, so that the first signal information can reflect the comfort of the user’s eyes), which solves the problem of difficulty in obtaining or reflecting the light of the target scene Corresponding to the problem of target light intensity information.
  • the present application provides a user equipment for detecting scene light.
  • the user equipment detects whether the first signal information corresponding to the scene light in the target scene meets the target signal distribution corresponding to the recommended scene light intensity information. Whether the scene light is suitable for the target scene, wherein the recommended scene light intensity information is suitable for the target scene, and the target signal distribution is established, and it is directly detected whether the first signal information meets the target signal distribution during detection.
  • the light e.g., scene light
  • the environment e.g., target scene
  • Fig. 1 shows a flow chart of a method for detecting scene light according to an embodiment of the present application
  • Fig. 2 shows a flow chart of a method for detecting scene light according to another embodiment of the present application
  • Fig. 3 shows a schematic diagram for detecting scene light according to an embodiment of the present application
  • Fig. 4 shows a schematic diagram of an interface effect for detecting scene light according to an embodiment of the present application
  • Fig. 5 shows a structural diagram of a device for detecting scene light according to an embodiment of the present application
  • Fig. 6 shows a structural diagram of a device for detecting scene light according to an embodiment of the present application
  • Fig. 7 shows functional modules of an exemplary system that can be used in various embodiments of the present application.
  • the terminal, the equipment of the service network, and the trusted party all include one or more processors (for example, a central processing unit (CPU)), input/output interfaces, network interfaces, and RAM.
  • processors for example, a central processing unit (CPU)
  • Memory may include non-permanent memory in computer readable media, random access memory (RAM) and/or non-volatile memory, such as read only memory (ROM) or flash memory (Read Only Memory). Flash Memory). Memory is an example of computer readable media.
  • RAM random access memory
  • ROM read only memory
  • Flash Memory Flash Memory
  • Computer-readable media includes permanent and non-permanent, removable and non-removable media, and information storage can be realized by any method or technology.
  • the information can be computer readable instructions, data structures, program modules, or other data.
  • Examples of computer storage media include, but are not limited to, Phase-Change Memory (PCM), Programmable Random Access Memory (PRAM), Static Random-Access Memory, SRAM), dynamic random access memory (Dynamic Random Access Memory, DRAM), other types of random access memory (RAM), read-only memory (ROM), electrically-erasable programmable read-only memory (Electrically-Erasable Programmable Read -Only Memory, EEPROM), flash memory or other memory technologies, CD-ROM (Compact Disc Read-Only Memory, CD-ROM), Digital Versatile Disc (DVD) or other optical storage , Magnetic cassette tape, magnetic tape disk storage or other magnetic storage devices or any other non-transmission media that can be used to store information that can be accessed by computing devices.
  • PCM Phase-Change Memory
  • the equipment referred to in this application includes but is not limited to user equipment, network equipment, or equipment formed by the integration of user equipment and network equipment through a network.
  • the user equipment includes, but is not limited to, any mobile electronic product that can perform human-computer interaction with the user (for example, human-computer interaction through a touch panel), such as a smart phone, a tablet computer, etc., and the mobile electronic product can adopt any operation System, such as android operating system, iOS operating system, etc.
  • the network device includes an electronic device that can automatically perform numerical calculation and information processing in accordance with pre-set or stored instructions, and its hardware includes, but is not limited to, a microprocessor, an Application Specific Integrated Circuit (ASIC) ), Programmable Logic Device (PLD), Field Programmable Gate Array (FPGA), Digital Signal Processor (DSP), embedded devices, etc.
  • the network device includes, but is not limited to, a computer, a network host, a single network server, a set of multiple network servers, or a cloud composed of multiple servers; here, the cloud is composed of a large number of computers or network servers based on Cloud Computing, Among them, cloud computing is a type of distributed computing, a virtual supercomputer composed of a group of loosely coupled computer sets.
  • the network includes, but is not limited to, the Internet, a wide area network, a metropolitan area network, a local area network, a VPN network, and a wireless ad-hoc network (Ad Hoc network).
  • the device may also be a program running on the user equipment, network equipment, or user equipment and network equipment, network equipment, touch terminal, or a device formed by integrating network equipment and touch terminal through a network.
  • the pupil has an aperture function similar to that of a camera, the opening and shrinking of the pupil can control the scene light entering the eye.
  • the strong light causes the pupils to shrink, and the dim light makes the pupils dilate. If you read a book under strong light (such as sunlight) for a long time, your pupils will continue to shrink, causing eyeball muscle fatigue, eyeball swelling and pain, and even dizziness. In addition, because the light is too dazzling, you will feel that there is a cloud of light in front of your eyes. This is the afterimage effect of the macular area of the retina after being stimulated by strong light. Of course, it is not clear to see.
  • infrared light is light that human eyes cannot perceive, and the intensity of scene light (for example, visible light such as sunlight/lighting light) can cause changes in human eye pupils, ciliary muscles, and lenses.
  • scene light for example, visible light such as sunlight/lighting light
  • infrared rays are emitted to the retina of the user's eyes, changes in the pupils, ciliary muscles, and lenses of the eyes will affect the reflection of infrared light, thereby affecting the changes in the infrared received signal.
  • scattered natural light visible light with a color temperature of about 4000-4800K is suitable for the user's eyes, for example, it is the best ambient light for reading.
  • the color temperature is a unit of measurement that indicates the color components contained in the light.
  • the black body temperature refers to the color of the absolute black body after being heated from absolute zero (-273°C). After the black body is heated, it gradually turns from black to red, turns yellow, turns white, and finally emits blue light.
  • the color temperature at this temperature the spectral component of the light emitted by the black body is called the color temperature at this temperature, and the unit of measurement is "K" (Kelvin).
  • the user equipment is provided with an infrared interface, and an infrared transmitting module and an infrared receiving module are installed through the infrared interface to realize the function of transmitting infrared transmitting signals to the retina of the user's eyes and receiving infrared receiving information.
  • the user equipment shown in FIG. 3 is provided with an infrared interface, and the infrared transmitting module and the infrared receiving module are installed on the user equipment through the infrared interface.
  • the infrared receiving module includes but not limited to an infrared receiving tube.
  • the infrared emitting tube is also called an infrared emitting diode, which belongs to the class of diodes. It is a light-emitting device that can directly convert electrical energy into near-infrared light (invisible light) and radiate it out; the infrared receiving tube is named in the LED industry and is specifically used to receive and sense the infrared light emitted by the infrared emitting tube of. Under normal circumstances, it is used in product equipment as a complete set of infrared emission tubes.
  • infrared light-emitting diodes emit modulated infrared light waves
  • infrared receiving circuits are composed of infrared receiving diodes, triodes or silicon photocells, which convert the infrared light emitted by the infrared transmitter into corresponding electrical signals, and then send them to a post amplifier.
  • the user equipment itself has an infrared transmitting function and an infrared receiving function, and the user equipment can directly transmit infrared transmitting signals and receive infrared receiving signals.
  • a button for controlling the emission of infrared signals is provided in the user equipment, and the user controls the emission of infrared emission signals by clicking the button.
  • the user equipment may only have its own infrared transmitting function.
  • the user equipment is provided with an interface for installing an infrared receiving module, and the infrared receiving module is installed through the interface to receive the infrared rays reflected by the user equipment. receive signal.
  • the method described in this application is implemented by user equipment (for example, corresponding functional modules are provided in the user equipment); in other embodiments, the method described in this application is implemented by installing in The application of the user equipment is implemented.
  • Fig. 1 shows a flowchart of a method for detecting scene light according to an embodiment of the present application.
  • the method includes step S101 and step S102.
  • step S101 the user equipment obtains target light intensity information corresponding to the target scene light, where the target scene light is used to image the retina of the user's eye;
  • step S102 the user equipment if the target light intensity information is not satisfied with The recommended light intensity information distribution corresponding to the recommended scene light suitable for the retina of the user's eye, and the target scene light is adjusted according to the recommended light intensity information distribution, so that the target light intensity information satisfies the recommended light intensity information distribution .
  • the user equipment obtains target light intensity information corresponding to the target scene light, where the target scene light is used to image the retina of the user's eye.
  • the user equipment includes, but is not limited to, computing devices such as mobile phones, computers, and tablets.
  • the target scene light includes the light reflected to the retina of the user's eye, and the target scene light is affected by the light of the environment where the user is currently located, for example, the light of the environment where the user is currently located is relatively strong. Then the target scene light reflected to the retina of the user's eye will also be stronger. For example, if the user is facing the user equipment, the bright light of the screen of the user equipment will be reflected into the retina of the user's eyes.
  • the target scene light is mainly generated by the screen brightness of the user equipment.
  • the user equipment can indirectly adjust the light of the target scene by adjusting the screen brightness.
  • the target light intensity information varies with The target scene light changes with the change, and the target scene light changes with the change of the screen brightness.
  • the target light intensity information corresponding to the target scene light is generally not directly obtainable.
  • the user equipment obtains the target scene light by acquiring first signal information (for example, an electrical signal) Corresponding target light intensity information.
  • the target light intensity information may be a corresponding current value or voltage value queried based on the first signal information, for example, the current value or voltage value may be used as the target light intensity information; it may also be based on
  • the light intensity information obtained by the first signal information and reflecting the light of the environment where the user is currently located may also be light intensity information queried based on the first signal information and converted through a specific algorithm.
  • the target scene light is the light reflected into the retina of the user's eye
  • the target scene light will directly affect the changes of the user's eye retina and pupil (for example, pupil opening or shrinking), This affects the comfort of the user's eyes. Therefore, in this embodiment, whether the target light intensity information corresponding to the target scene light falls into the recommended light intensity information distribution is used to detect whether the target scene light fits the user's eye retina.
  • the user equipment adjusts the target scene light according to the recommended light intensity information distribution , So that the target light intensity information meets the recommended light intensity information distribution.
  • the recommended scene light includes light suitable for the retina of the user's eyes. For example, under the recommended scene light, the user's eyes are more comfortable.
  • color temperature is a parameter that can be used to represent light. When users read books in the color temperature range of 4000k-4800k, their eyes are more comfortable.
  • the recommended light intensity information distribution includes a light intensity information interval corresponding to the recommended scene light (for example, [200cd, 1000cd]).
  • the light intensity information interval corresponding to the light with the color temperature between 4000k-4800k is used as the recommended light intensity information distribution corresponding to the recommended scene light.
  • the 4000k-4800k and [200cd, 1000cd] mentioned above are only examples. If other existing or possible future color temperature ranges and recommended light intensity information distributions can be applied to this application, It is also included in the protection scope of this application, and is included here by reference.
  • the user equipment compares the acquired target light intensity information with the recommended light intensity information distribution, and if the target light intensity information does not fall within the recommended light intensity information distribution, it indicates that the target scene The light is not suitable for the retina of the user's eye.
  • the target light intensity information does not meet the recommended light intensity information distribution.
  • the user equipment adjusts the target light intensity information (for example, adjusting the screen brightness) by adjusting the light of the target scene, so that the The target light intensity information satisfies the recommended light intensity information distribution.
  • step S101 includes step S1011 (not shown) and step S1012 (not shown).
  • the user equipment obtains the first signal information corresponding to the light of the target scene under the light of the target light source.
  • This embodiment introduces the acquisition of the target light intensity information corresponding to the target scene light by using the first signal information.
  • the first signal information includes, but is not limited to, electrical signals.
  • the first signal information is obtained by converting the light intensity information of the first infrared receiving signal.
  • the user equipment receives the first infrared receiving signal through the infrared receiving module, and converts and generates corresponding first signal information based on the light intensity information of the first infrared receiving signal.
  • the user equipment acquires target light intensity information corresponding to the target scene light based on the first signal information.
  • the target light source light includes light emitted by the user equipment and ambient light
  • the target scene light mainly includes the light emitted by the user equipment. Therefore, the user equipment can adjust its The way of the emitted light adjusts the target scene light incident on the retina of the user's eye.
  • step S1012 the user equipment queries and acquires light intensity information corresponding to the first signal information according to the first signal information, and uses it as the target light intensity information corresponding to the target scene light.
  • the user equipment queries the light intensity information corresponding to the signal information matching the first signal information according to the first signal information, and uses the light intensity information as the target light intensity information.
  • the user equipment includes a mapping relationship between multiple pieces of signal information and light intensity information, and the user equipment queries the multiple pieces of mapping relationship according to the first signal information to match the first signal information
  • the target light intensity information for example, the light intensity information that has a mapping relationship with the signal information is used as the target light intensity information.
  • the step S1011 includes: the user equipment transmits a first infrared transmission signal to the retina of the user's eye under the light of the target light source; receiving a corresponding first infrared reception signal, wherein the first infrared transmission signal
  • the infrared receiving signal is an infrared signal reflected from the retina of the user's eye by the first infrared transmitting signal
  • the first signal information is obtained by conversion based on the light intensity information of the first infrared receiving signal, wherein the first signal The information corresponds to the target scene light, and the target scene light is used to image the retina of the user's eye.
  • the user equipment transmits a first infrared transmission signal to the retina of the user's eye.
  • the infrared signal After the retina of the user's eye receives the first infrared transmission signal, the infrared signal is reflected, and the user equipment receives the reflection from the retina of the user's eye.
  • the infrared signal is used as the first infrared receiving signal, and the first signal information is converted to generate the first signal information based on the received light intensity information of the first infrared receiving signal (for example, receiving the first infrared
  • the signal is converted to an electrical signal). Since the pupils and retinas of the user’s eyes are affected by the light of the target scene, the target scene light incident on the user’s eyes is different under different intensities of the target light source. The first infrared ray reflected by the retina of the user’s eyes receives the signal. The intensity is also different.
  • the comfort of the user’s eyes can be reflected by the first signal information, and a target light intensity information corresponding to the light of the target scene can also be obtained based on the first signal information, and by detecting whether the target light intensity information satisfies
  • the recommended light intensity information distribution detects whether the light of the target scene is suitable for the retina of the user's eye.
  • the step S1012 includes: the user equipment queries and obtains the second light intensity corresponding to the first signal information according to the first signal information and the first configuration related information of the first signal information Information, the second light intensity information is used as the target light intensity information corresponding to the target scene light, wherein the second signal information corresponding to the second light intensity information matches the first signal information, and the second light intensity information matches the first signal information.
  • the second configuration related information of the second signal information matches the first configuration related information.
  • the first configuration-related information of the first signal information includes, but is not limited to, some parameter information used to obtain the first signal information (for example, the first infrared emission for obtaining the first signal information) The first transmission intensity information of the signal, the first distance information of the user equipment from the retina of the user's eye, etc.).
  • the second configuration related information of the second signal information includes some parameter information when acquiring the second signal information (for example, some parameter information when acquiring the second signal information, the second infrared emission The second transmission intensity information of the signal, the second distance information of the second user equipment from the retina of the user's eye, etc., where the second user equipment includes the user equipment used when the second signal information is obtained).
  • the first configuration related information of the first signal information when acquiring the target light intensity information based on the first signal information, the first configuration related information of the first signal information needs to be considered, so that the queried second signal information is Signal information that matches the first signal information (for example, not only does the second signal information match the first signal information itself, but also the second configuration related information of the second signal information matches the first signal information.
  • the first configuration related information of the signal information also needs to match), so that the second light intensity information corresponding to the second signal information can be used as the target light intensity information corresponding to the first signal information.
  • the matching of the first signal information and the second signal information includes that the first signal information is equal to the second signal information, or the first signal information is equal to the second signal information The difference of the information is equal to or less than the difference threshold.
  • the matching of the first configuration related information with the second configuration related information includes: each parameter included in the first configuration related information is respectively included in the second configuration related information
  • the parameters of are equal or the difference is equal to or less than the difference threshold.
  • the first configuration related information includes the first emission intensity information of the first infrared emission signal, the first distance information of the user equipment from the retina of the user's eye
  • the second configuration related information includes the information of the second infrared emission signal.
  • the second transmission intensity information and the second distance information of the second user equipment from the retina of the user’s eye then the first configuration related information matches the second configuration related information including the first infrared emission signal
  • the first transmission intensity information is equal to or the difference between the second transmission intensity information of the second infrared transmission signal is less than a preset threshold, and the first distance information between the user equipment and the retina of the user’s eye is the same as the distance between the second user equipment and the user’s eye
  • the second distance information of the retina is equal or the difference is smaller than the preset difference.
  • the user equipment queries and determines light intensity information corresponding to the first signal information according to the first signal information and the first configuration-related information, and uses the light intensity information as the target The target light intensity information corresponding to the scene light, wherein the second signal information corresponding to the target light intensity information matches the first signal information, and the second configuration related information of the second signal information matches the first signal information. Match the configuration related information.
  • the target light intensity information corresponding to the target scene light is acquired through the first signal information. While the target light intensity information can be acquired, the user’s eyes can also be directly reflected by the intensity of the first signal information. Comfort.
  • the step S1012 includes: according to the first signal information and the first configuration related information of the first signal information, the user equipment searches the signal database for the three-light signal corresponding to the first signal information. Strong information, using the three-light intensity information as the target light intensity information corresponding to the target scene light, wherein the second signal information corresponding to the three-light intensity information matches the first signal information, and the second The second configuration related information of the signal information matches the first configuration related information, and the signal database includes multiple mapping relationships, and each mapping relationship is used to associate the signal information with light intensity information corresponding to the signal information.
  • the signal database is established in the device, and multiple mapping relationships are stored in the signal database, so as to query and obtain the target light intensity information based on the multiple mapping relationships.
  • the device stores the signal information (such as an electrical signal) corresponding to each of the multiple light intensity information, and the third configuration related information of the signal information (for example, the third configuration related information includes Some parameter information used to obtain the signal information, such as the third emission intensity of the third infrared emission signal, the third distance information of the third infrared emission module from the retina of the human eye, etc.).
  • the third configuration related information includes Some parameter information used to obtain the signal information, such as the third emission intensity of the third infrared emission signal, the third distance information of the third infrared emission module from the retina of the human eye, etc.).
  • There is a mapping relationship between each light intensity information and its corresponding signal information and the third configuration-related information of the signal information so that the device can learn from the first signal information and the first configuration-related information of the first signal information according to the first signal information.
  • the second signal information that matches the first signal information and matches the first configuration related information is queried, and the second light intensity information that has a mapping relationship with the second signal information is used
  • the step S1012 includes: the user equipment searches the signal database for the signal information to be matched that matches the first signal information according to the first signal information, wherein the signal database includes Multiple mapping relationships, each mapping relationship is used to associate signal information with light intensity information corresponding to the signal information, and each signal information has its corresponding configuration related information; the user equipment obtains information from the first configuration related information according to the first configuration related information.
  • the configuration related information corresponding to the signal information to be matched the configuration related information that matches the first configuration related information is queried, and the signal information to be matched corresponding to the configuration related information is used as the second signal information.
  • the light intensity information for which the information has a mapping relationship is determined as target light intensity information corresponding to the first signal information, and the configuration related information is used as the second configuration related information. For example, in a specific query process, search for the signal information to be matched that matches the first signal information according to the obtained first signal information (for example, the signal information to be matched is equal to the first signal information, or the first signal information The difference between a signal information and the signal information to be matched is within a preset difference range).
  • the second configuration related information that matches the first configuration related information for example, The parameter information of the second configuration related information and the parameter information of the first configuration related information are respectively equal or the difference is less than a preset threshold
  • the signal information to be matched corresponding to the second configuration related information is used as the second Signal information, thereby determining the second light intensity information that has a mapping relationship with the second signal information as the target light intensity information corresponding to the first signal information.
  • the first configuration related information includes first emission intensity information of the first infrared emission signal, and first real-time distance information of the user equipment from the retina of the user's eye;
  • the first emission The intensity information includes the first real-time emission intensity information or the first configuration emission intensity information;
  • the second configuration related information of the second signal information includes the second emission intensity information of the second infrared emission signal when the second signal information is acquired, Second distance information of the second user equipment from the retina of the user's eye.
  • the time, the infrared emission signal, the infrared reception signal, the distance information, etc. when the recommended light intensity information distribution is obtained do not represent any sequence relationship.
  • the current value or the voltage value when the infrared emission signal is emitted can be used as the emission intensity information.
  • the first configuration transmission intensity information includes a current value or a voltage value that is fixed in the user equipment and required when the first infrared transmission signal is transmitted.
  • the first real-time transmission intensity information includes a real-time voltage value or current value required by the user equipment when transmitting the first infrared transmission signal.
  • the current value or voltage value used when transmitting the first infrared emission signal is adjustable, so that the emission intensity of the first infrared emission signal can be controlled.
  • the first distance information includes the real-time distance of the user equipment from the retina of the user's eye.
  • the second user equipment includes the user equipment used to obtain the second signal information, and the second distance information includes the distance of the second user equipment when the second signal information is obtained. The distance of the retina of the user's eye.
  • the first real-time distance information can be calculated and determined according to the phase ranging method, wherein the phase ranging method uses the frequency of the radio band to amplitude modulate the infrared laser beam and measure the modulation light generated by one round trip. Then, according to the wavelength of the modulated light, the distance D represented by the phase delay is converted (for example, the first real-time distance information).
  • the phase ranging method uses the frequency of the radio band to amplitude modulate the infrared laser beam and measure the modulation light generated by one round trip. Then, according to the wavelength of the modulated light, the distance D represented by the phase delay is converted (for example, the first real-time distance information).
  • the specific operations for determining the first real-time distance information described above are only examples, and other specific operations that are currently or that may occur in the future are also applicable to this application. Within the scope of protection, and included here by reference. For example, https://m.sohu.com/a/285766351_468626 provides a variety of methods based
  • the method further includes step S104 (not shown).
  • step S104 the user equipment establishes or updates the signal database.
  • the mapping relationship between “strong information” and “second configuration related information” is used to establish or update the signal database.
  • the step S104 includes: the user equipment acquires and records signal information obtained under multiple scene lights, wherein the signal information is based on the third infrared emission signal corresponding to the third infrared emission signal under the scene light.
  • the light intensity information of the infrared receiving signal is converted.
  • the third infrared transmitting signal is used to transmit to the retina of the human eye under the scene light.
  • the third infrared receiving signal is the third infrared transmitting signal passing through the human eye.
  • the infrared signal reflected by the retina for each signal information, determine the light intensity information corresponding to the signal information, and according to the third emission intensity information of the third infrared emission signal from which the signal information is obtained, the emission of the second infrared emission signal
  • the third distance information of the device from the retina of the user's eye generates third configuration related information of the signal information; the mapping relationship between the signal information and the light intensity information corresponding to the signal information is established in the signal database, and The third configuration related information of the signal information is recorded to establish or update the signal database.
  • the third infrared receiving signal is obtained by emitting a third infrared transmission signal to the retina of the human eye, and the signal information is obtained by converting the third infrared receiving signal into an electrical signal.
  • the current value or voltage value of the signal information can reflect the intensity of the light intensity information of the third infrared receiving signal from which the signal information is obtained, and the intensity information of the light intensity information of the third infrared receiving signal can reflect the intensity of the signal information.
  • the intensity of the light intensity information of the scene light Therefore, in some embodiments, the light intensity information corresponding to each signal information in the signal database may directly be the current value or voltage value of the signal information.
  • the current value or voltage value of the first signal information can be directly queried in the plurality of signal information according to the current value or voltage value of the first signal information.
  • the same or similar second signal information, and the current value or voltage value of the second signal information is used as the target light intensity information, wherein the second matching related information of the second signal information is the same as that of the first signal information.
  • the first configuration related information matches.
  • the user equipment that transmits the third infrared transmitting signal converts the third infrared receiving signal into an electrical signal, and detecting the electrical signal
  • the current or voltage magnitude, and the current or voltage magnitude of the electrical signal is recorded, the current or voltage magnitude is directly used as the light intensity information corresponding to the signal information, and the third configuration related information is recorded.
  • the light intensity information corresponding to each signal information in the signal database may also be the light intensity information of the light source when the signal information is obtained.
  • the third infrared receiving module converts the third infrared receiving signal after receiving the third infrared receiving signal Is an electrical signal, detecting the current or voltage of the electrical signal, recording the current or voltage of the electrical signal, and recording the mapping relationship between the known light intensity information and the current value or voltage value, based on the first
  • the target light intensity information obtained by a piece of signal information is the light intensity information reflecting the light of the environment where the user is currently located.
  • the light intensity information corresponding to each signal information in the signal database may also be based on the signal information based on a specific algorithm (for example, a conversion formula between electrical signal and light intensity, such as , On the basis of the obtained electrical signal, the value obtained by multiplying by a certain coefficient is closest to the light intensity of the current scene light) obtained light intensity information (for example, the light intensity information is the signal information Multiply the current value or voltage value by a certain coefficient, for example, 0.1, 1, 2, etc., as the signal information corresponding to the light intensity information), then based on the first signal information, it can be queried and converted by a specific algorithm Light intensity information.
  • a specific algorithm for example, a conversion formula between electrical signal and light intensity, such as ,
  • the light intensity information is the signal information Multiply the current value or voltage value by a certain coefficient, for example, 0.1, 1, 2, etc., as the signal information corresponding to the light intensity information
  • mapping relationship between the second signal information and the light intensity information obtained from the second signal information is established in the signal database, and the second configuration related information obtained from the second signal information is recorded, in other words, The mapping relationship between "second signal information", "light intensity information” and "second configuration related information".
  • there are differences in the structure of human eye retinas of different races for example, yellow, white, and black).
  • corresponding human eye retinas of different races can be established respectively.
  • the signal database for each race can use the signal database corresponding to the race based on the race of the user in practical applications. For example, the user inputs his race information, and the device obtains a signal database corresponding to the race information.
  • the recommended light intensity information distribution is obtained based on a large number of experiments. For example, under multiple ambient light where human eyes are more comfortable, the fourth user equipment (for example, the fourth infrared transmission signal transmitting device) transmits the fourth infrared transmission signal to the retina of the human eye, and receives the human eye The fourth infrared receiving signal reflected by the retina is converted into an electrical signal, and the light intensity information corresponding to the electrical signal is queried from the signal database based on the electrical signal.
  • the recommended light intensity information distribution is generated based on the multiple pieces of light intensity information obtained. For example, a light intensity information interval is obtained, or a light intensity information set including multiple light intensity information is obtained. In order to detect whether the target light intensity information falls within the recommended light intensity information distribution based on the target light intensity information.
  • Fig. 5 shows a device structure diagram of a user equipment for detecting scene light according to an embodiment of the present application.
  • the device includes a one-module and one-two modules.
  • the one-to-one module is used to obtain target light intensity information corresponding to the target scene light, where the target scene light is used to image the retina of the user's eye;
  • the one-two modules are used to obtain the target light intensity information if the target light intensity information is not Meet the recommended light intensity information distribution corresponding to the recommended scene light suitable for the user's eye retina, and adjust the target scene light according to the recommended light intensity information distribution so that the target light intensity information meets the recommended light intensity Information distribution.
  • the one-to-one module includes one-to-one module (not shown) and one-to-two modules.
  • the one-to-one module is used to obtain the first signal information corresponding to the target scene light under the light of the target light source; the one-to-two module is used to query and obtain the first signal information corresponding to the first signal information according to the first signal information.
  • the second light intensity information corresponding to the signal information is used as the target light intensity information corresponding to the target scene light.
  • the specific implementation examples of the one-on-one module and the one-on-two module are the same as or similar to the embodiments of step S1011 and step S1012, so they will not be repeated here, and they are included here by reference.
  • the one-to-one module is configured to transmit a first infrared transmission signal to the user's eye retina under the light of the target light source; receive a corresponding first infrared reception signal, wherein the first infrared transmission signal
  • the infrared receiving signal is an infrared signal reflected from the retina of the user's eye by the first infrared transmitting signal
  • the first signal information is obtained by conversion based on the light intensity information of the first infrared receiving signal, wherein the first signal The information corresponds to the target scene light, and the target scene light is used to image the retina of the user's eye.
  • step S1011 the example of the specific implementation of the above-mentioned one-by-one module is the same as or similar to the above-mentioned embodiment of step S1011, so it will not be repeated here, and it is included here by reference.
  • the one-to-two module is configured to query and obtain the second light corresponding to the first signal information according to the first signal information and the first configuration related information of the first signal information. Strong information, using the second light intensity information as the target light intensity information corresponding to the target scene light, wherein the second signal information corresponding to the second light intensity information matches the first signal information, and the The second configuration related information of the second signal information matches the first configuration related information.
  • the example of the specific implementation of the one-to-two module is the same as or similar to the embodiment of the step S1012, so it will not be repeated here, and it is included here by reference.
  • the one-two modules are configured to query the signal database for the first signal information corresponding to the first signal information according to the first signal information and the first configuration related information of the first signal information.
  • Two light intensity information using the second light intensity information as target light intensity information corresponding to the target scene light, wherein the second signal information corresponding to the second light intensity information matches the first signal information,
  • the second configuration related information of the second signal information matches the first configuration related information
  • the signal database includes a plurality of mapping relationships, and each mapping relationship is used to associate the signal information with the light corresponding to the signal information. Strong information.
  • the example of the specific implementation of the one-to-two module is the same as or similar to the embodiment of the step S1012, so it will not be repeated here, and it is included here by reference.
  • the one-to-two modules are configured to query the signal database for the signal information to be matched that matches the first signal information according to the first signal information, wherein the signal database It includes multiple mapping relationships, each mapping relationship is used to associate signal information with light intensity information corresponding to the signal information, and each signal information has its corresponding configuration related information; In the configuration related information corresponding to the matching signal information, query the configuration related information that matches the first configuration related information, and use the to-be-matched signal information corresponding to the configuration related information as the second signal information.
  • the light intensity information with the mapping relationship is determined as target light intensity information corresponding to the first signal information, and the configuration related information is used as the second configuration related information.
  • the example of the specific implementation of the one-to-two module is the same as or similar to the embodiment of the step S1012, so it will not be repeated here, and it is included here by reference.
  • the first configuration related information includes first emission intensity information of the first infrared emission signal, and first real-time distance information of the user equipment from the retina of the user's eye;
  • the first emission The intensity information includes the first real-time emission intensity information or the first configuration emission intensity information;
  • the second configuration related information of the second signal information includes the second emission intensity information of the second infrared emission signal when the second signal information is acquired, Second distance information of the second user equipment from the retina of the user's eye.
  • the device further includes a four-module (not shown), and the four-module is used to establish or update the signal database.
  • the one-fourth module is used to acquire and record signal information obtained under multiple scene lights, wherein the signal information is based on the third infrared emission signal corresponding to the third infrared emission signal under the scene light.
  • the light intensity information of the infrared receiving signal is converted.
  • the third infrared transmitting signal is used to transmit to the retina of the human eye under the scene light.
  • the third infrared receiving signal is the third infrared transmitting signal passing through the human eye.
  • the infrared signal reflected by the retina for each signal information, determine the light intensity information corresponding to the signal information, and according to the third emission intensity information of the third infrared emission signal from which the signal information is obtained, the emission of the third infrared emission signal
  • the third distance information of the device from the retina of the user's eye generates third configuration related information of the signal information; the mapping relationship between the signal information and the light intensity information corresponding to the signal information is established in the signal database, and The third configuration related information of the signal information is recorded to establish or update the signal database.
  • Fig. 2 shows a flowchart of a method for detecting scene light applied to a user equipment according to another embodiment of the present application.
  • the method includes step S201 and step S202.
  • step S201 the user equipment obtains the first signal information corresponding to the scene light in the target scene, where the first signal information is obtained by conversion based on the light intensity information of the first infrared receiving signal corresponding to the first infrared transmitting signal, The first infrared transmitting signal is used to transmit to the retina of the user's eye, and the first infrared receiving signal is an infrared signal reflected by the first infrared transmitting signal through the retina of the user's eye; in step S202, the user equipment passes the detection Whether the first signal information satisfies the target signal distribution corresponding to the recommended scene light intensity information, and detecting whether the scene light is suitable for the target scene, wherein the recommended scene light intensity information is suitable for the target scene.
  • the user equipment obtains the first signal information corresponding to the scene light in the target scene, where the first signal information is based on the light intensity of the first infrared receiving signal corresponding to the first infrared transmitting signal
  • the first infrared transmission signal is used to transmit to the retina of the user's eye
  • the first infrared reception signal is an infrared signal reflected by the first infrared transmission signal by the retina of the user's eye.
  • the target scene is an environment to be detected, for example, an environment to be detected under natural lighting, or an environment to be detected under light.
  • the scene light is a light in the target scene, for example, a scene light corresponding to a color temperature of 4000K.
  • the user equipment transmits a first infrared emission signal to the retina of the user's eye.
  • the first signal information includes, but is not limited to, a voltage value.
  • the first signal information is a voltage value converted based on the light intensity information of the first infrared receiving signal.
  • the user equipment transmits a first infrared transmission signal to the retina of the user's eye
  • the retina of the user's eye reflects the infrared signal based on the first infrared transmission signal
  • the user equipment receives the infrared signal reflected from the user's eye.
  • the reflected infrared signal is used as the first infrared receiving signal, and is converted into an electrical signal based on the light intensity information of the first infrared receiving signal.
  • the user equipment detects whether the light of the scene is suitable for the target scene by detecting whether the first signal information meets the target signal distribution corresponding to the recommended scene light intensity information, wherein the recommended scene light intensity information is applicable In the target scene.
  • the recommended scene light intensity information includes, but is not limited to, the light intensity suitable for reading.
  • the color temperature corresponding to the light that generates the recommended scene light intensity information is 4000-4800K.
  • the target signal distribution includes, but is not limited to, the voltage range corresponding to the recommended scene light intensity information (for example, a voltage interval or a voltage set including multiple voltage values).
  • the user equipment detects whether the scene light is suitable for the target scene by detecting whether the first signal information falls within the voltage interval or voltage set.
  • the configuration condition for obtaining the voltage interval or the voltage set is the same as the configuration condition for obtaining the first signal information.
  • the voltage interval or the voltage set will include one or more second signal information, and for each of the second signal information, the intensity of the second infrared emission signal when the second signal information is obtained The information is equal to the intensity information of the first infrared emission signal, and the distance information of the second user equipment from the retina of the user's eye when the second signal information is obtained is equal to the distance between the user equipment and the retina of the user's eye when the second signal information is obtained.
  • the intensity information of the second infrared receiving signal at the time of the signal information is equal to the intensity information of the first infrared receiving signal.
  • the corresponding voltage value converted by the user equipment according to the received first infrared receiving signal is U1
  • the voltage interval corresponding to the recommended scene light intensity information is [U2, U3], if U1 Within the range of [U2, U3], it is determined that the first signal information satisfies the target signal distribution corresponding to the recommended scene light intensity information, that is, the target scene is suitable for reading.
  • the method further includes step S203 (not shown).
  • step S203 if the first signal information does not satisfy the target signal distribution, compare the first signal information with the target signal distribution.
  • the signal assignment range of the signal distribution adjust the scene light in the target scene according to the comparison result, so that the first signal information meets the target signal distribution.
  • the scene light is provided by the light source device.
  • the light source device includes, but is not limited to, a smart desk lamp. For example, if the first signal information does not satisfy the target signal distribution, it means that the scene light in the current target scene is not good for the user's eyes.
  • the user is reading (for example, the target scene is a reading scene), but the scene light (for example, light) in the reading environment is not suitable for reading (target scene).
  • the user equipment compares the first signal information with the signal assignment range of the target signal distribution, and if the first signal information is less than the minimum value of the signal assignment range, it indicates that the scene light of the target scene needs to be brightened; If the first signal information is greater than the maximum value of the signal assignment range, it means that the scene light of the target scene needs to be dimmed, so that the first signal information finally meets the target signal distribution.
  • the user equipment performs a corresponding scene on the light source device (for example, a smart desk lamp) according to the obtained detection result (for example, the detection result in which the first signal information is greater than the maximum value or less than the minimum value) Light control operation.
  • the light source device for example, a smart desk lamp
  • the detection result for example, the detection result in which the first signal information is greater than the maximum value or less than the minimum value
  • the user reads under an indoor smart desk lamp, and the light emitted by the smart desk lamp is the scene light in the target scene.
  • the scene light should be suitable for the target scene.
  • the light emitted by the desk lamp is suitable for reading, and the user will not feel uncomfortable after reading in the scene light for a long time.
  • the user can use the method described in this application to detect whether the light in the target scene is suitable for reading.
  • the user equipment performs the corresponding scene light control operation on the smart desk lamp, and automatically adjusts the light intensity of the desk lamp in time, so that the first signal information obtained meets the target signal corresponding to the recommended scene light intensity information Within the range of distribution, so that the user can read in an environment suitable for reading.
  • the user equipment adjusts the scene light in the target scene by sending control instruction information, so that the scene light matches the recommended scene light intensity information.
  • the light source device includes a communication module, and the communication module is used to communicate with the user equipment, for example, to receive the control instruction information.
  • the first signal information is less than the minimum value of the target signal distribution signal assignment range, output the control command information for increasing the voltage to brighten the brightness of the lighting device; if the first signal information is greater than the target signal distribution
  • the maximum value of the signal assignment range is to output the control command information for reducing the voltage to dim the brightness of the lighting device.
  • the method further includes step S204 (not shown).
  • step S204 if the first signal information does not satisfy the target signal distribution, compare the first signal information with the target signal distribution. The signal assignment range of the signal distribution; obtain the corresponding scene light prompt information according to the comparison result; present the scene light prompt information. For example, referring to the scene schematic shown in FIG. 4, if the first signal information does not satisfy the target signal distribution, it means that the scene light in the current target scene is not suitable for the target scene, for example, the user is reading (target scene) , But the scene light (for example, light) in the reading environment is not suitable for reading (target scene).
  • the user equipment obtains the corresponding scene light prompt information according to the comparison result (for example, the first signal information is less than the minimum value of the signal assignment range, or the first signal information is greater than the maximum value of the signal assignment range), and presents all Describes the scene light prompt information.
  • the user can be prompted by presenting text or voice that the current scene light is not suitable for the current target scene.
  • the user equipment presets that the first signal information is less than the minimum value of the signal assignment range of the target signal distribution, it obtains the scene light prompt information of "currently darker light”, and presents the scene light prompt information;
  • the scene light prompt information When the signal information is greater than the maximum value of the signal assignment range of the target signal distribution, the scene light prompt information of "the current light is brighter” is acquired, and the scene light prompt information is presented.
  • the light prompt information promptly reminds the user that the current environment is not suitable for reading.
  • the method further includes step S205 (not shown).
  • step S205 the user equipment obtains the target signal distribution corresponding to the recommended scene light intensity information based on a plurality of second signal information.
  • the second signal information includes an electrical signal, and the second signal information is obtained based on a large number of experiments to construct the target signal distribution based on a plurality of second signal information.
  • the step S205 includes: for one or more recommended scene light intensities suitable for the target scene, acquiring and recording the second signal information obtained under each recommended scene light intensity, where the first The second signal information is obtained by converting the light intensity information of the second infrared receiving signal corresponding to the second infrared transmitting signal under the light intensity of the recommended scene, and the second infrared transmitting signal is used to provide information to the person under the light intensity of the recommended scene.
  • the second infrared receiving signal is an infrared signal reflected by the retina of the human eye from the second infrared transmitting signal; according to the light intensity of each recommended scene in the one or more recommended scenes
  • the second signal information, the emission intensity information of the second infrared emission signal, and the distance information of the second user equipment that emits the second infrared emission signal from the retina of the human eye construct the light intensity corresponding to the recommended scene Target signal distribution.
  • the recommended scene light intensity includes light intensity information suitable for the target scene. For example, in the target scene (for example, a reading scene), under the recommended scene light intensity, the user's eyes are More comfortable.
  • the target signal distribution corresponding to the recommended scene light intensity information is obtained based on multiple recommended scene lights suitable for the target scene.
  • the target signal distribution is based on the obtained multiple second signal information, the emission intensity information of the second infrared emission signal when the second signal information is obtained, and the second signal when the second signal information is obtained.
  • the distance information of the user equipment from the retina of the user's eye constructs the target signal distribution.
  • a target with a curved surface structure is constructed in a three-dimensional coordinate axis through a three-tuple composed of multiple second signal information, emission intensity information of the second infrared emission signal, and distance information of the second user equipment from the retina of the user's eye Signal distribution.
  • the user equipment stores the target signal distribution locally for subsequent detection of scene light usage in the target scene.
  • the detecting whether the first signal information meets the target signal distribution corresponding to the recommended scene light intensity information includes: detecting the first signal information and the emission intensity of the first infrared emission signal Information, whether the triplet formed by the distance information of the user equipment from the retina of the user's eye falls within the range of the target signal distribution, and detecting whether the first signal information is the target signal distribution.
  • the target signal distribution is based on the second signal information corresponding to each recommended scene light in the one or more recommended scene lights, the emission intensity information of the second infrared emission signal, and the distance from the second user equipment. It is constructed from the distance information of the user’s eye retina.
  • the target signal distribution includes a curved surface formed in a three-dimensional coordinate axis based on a triplet composed of multiple sets of second signal information, emission intensity information of the second infrared emission information, and distance information of the second user equipment from the retina of the user’s eye.
  • the target signal distribution it is formed by detecting the first signal information, the first infrared emission intensity information, and the distance information of the user equipment from the user's eye retina. Whether the triplet falls on the target signal distribution, and detecting whether the first signal information satisfies the target signal distribution.
  • the detecting whether the first signal information meets the target signal distribution corresponding to the recommended scene light intensity information includes: detecting whether the first signal information falls into the target signal distribution in the target signal distribution Detect whether the first signal information meets the target signal distribution corresponding to the recommended scene light intensity information within the projection range of the transmission intensity information of the first infrared transmission signal and the distance information of the user equipment from the retina of the user's eye .
  • the target signal distribution includes a curved surface formed in a three-dimensional coordinate axis based on a triplet composed of multiple sets of second signal information, emission intensity information of the second infrared emission information, and distance information of the second user equipment from the retina of the user's eye.
  • the emission intensity information of the first infrared emission signal and the distance information of the user equipment from the retina of the user's eye constitute parallel to A straight line on the Z axis, and the value of the first signal information is a value at any point of the intersection of the straight line and the curved surface, which indicates that the first signal information satisfies the target signal distribution.
  • Fig. 6 shows a device structure diagram of a user equipment for detecting scene light according to another embodiment of the present application.
  • the device includes a two-one module and a two-two module.
  • the two-one module is used to obtain the first signal information corresponding to the scene light in the target scene, wherein the first signal information is obtained by converting the light intensity information of the first infrared receiving signal corresponding to the first infrared emitting signal
  • the first infrared transmission signal is used to transmit to the retina of the user's eye, and the first infrared receiving signal is an infrared signal reflected by the first infrared transmission signal from the retina of the user's eye;
  • the second and second module is used to By detecting whether the first signal information satisfies the target signal distribution corresponding to the recommended scene light intensity information, it is detected whether the scene light is suitable for the target scene, wherein the recommended scene light intensity information is suitable for the target scene.
  • the device further includes a second and third module (not shown), and the second and third module is used to compare the first signal information with the target signal distribution if the first signal information does not satisfy the target signal distribution.
  • the device further includes a two-four module (not shown), and the two-four module is used to compare the first signal information with the target signal distribution if the first signal information does not satisfy the target signal distribution.
  • the signal assignment range of the target signal distribution obtain corresponding scene light prompt information according to the comparison result; present the scene light prompt information.
  • the device further includes a second to fifth module (not shown), the second to fifth module is configured to obtain the target signal distribution corresponding to the recommended scene light intensity information based on a plurality of second signal information.
  • the two-five module is configured to: for one or more recommended scene light intensities suitable for the target scene, obtain and record the second signal information obtained under each recommended scene light intensity, where: The second signal information is obtained by converting the light intensity information of the second infrared receiving signal corresponding to the second infrared transmitting signal under the light intensity of the recommended scene, and the second infrared transmitting signal is used to transfer the light intensity of the second infrared transmitting signal to the recommended scene.
  • the second infrared receiving signal is an infrared signal reflected by the second infrared transmission signal by the retina of the human eye; according to the light intensity of each of the one or more recommended scenes
  • the corresponding second signal information, the emission intensity information of the second infrared emission signal, and the distance information of the second user equipment that emits the second infrared emission signal from the retina of the human eye construct the recommended scene light intensity information Corresponding target signal distribution.
  • the detecting whether the first signal information meets the target signal distribution corresponding to the recommended scene light intensity information includes: detecting the first signal information and the emission intensity of the first infrared emission signal Information, whether the triplet formed by the distance information of the user equipment from the retina of the user's eye falls within the range of the target signal distribution, and detecting whether the first signal information is the target signal distribution.
  • the detecting whether the first signal information meets the target signal distribution corresponding to the recommended scene light intensity information includes: detecting whether the first signal information falls into the target signal distribution in the target signal distribution Detect whether the first signal information meets the target signal distribution corresponding to the recommended scene light intensity information within the projection range of the transmission intensity information of the first infrared transmission signal and the distance information of the user equipment from the retina of the user's eye .
  • the present application also provides a computer-readable storage medium, the computer-readable storage medium stores computer code, and when the computer code is executed, the method described in any one of the preceding items is executed.
  • This application also provides a computer program product.
  • the computer program product is executed by a computer device, the method described in any one of the preceding items is executed.
  • This application also provides a computer device, which includes:
  • One or more processors are One or more processors;
  • Memory used to store one or more computer programs
  • the one or more processors When the one or more computer programs are executed by the one or more processors, the one or more processors are caused to implement the method as described in any one of the preceding items.
  • Figure 7 shows an exemplary system that can be used to implement the various embodiments described in this application.
  • the system 1000 can be used as any network device, first user equipment, or second user equipment in each of the described embodiments.
  • the system 1000 may include one or more computer-readable media having instructions (for example, system memory or NVM/storage device 1020) and be coupled with the one or more computer-readable media and configured to execute
  • the instructions are one or more processors (for example, the processor(s) 1005) that implement the modules to perform the actions described in this application.
  • system control module 1010 may include any suitable interface controller to provide at least one of the processor(s) 1005 and/or any suitable device or component in communication with the system control module 1010 Any appropriate interface.
  • the system control module 1010 may include a memory controller module 1030 to provide an interface to the system memory 1015.
  • the memory controller module 1030 may be a hardware module, a software module, and/or a firmware module.
  • the system memory 1015 may be used to load and store data and/or instructions for the system 1000, for example.
  • the system memory 1015 may include any suitable volatile memory, for example, a suitable DRAM.
  • the system memory 1015 may include a double data rate type quad synchronous dynamic random access memory (DDR4 SDRAM).
  • DDR4 SDRAM double data rate type quad synchronous dynamic random access memory
  • system control module 1010 may include one or more input/output (I/O) controllers to provide interfaces to the NVM/storage device 1020 and the communication interface(s) 1025.
  • I/O input/output
  • NVM/storage device 1020 can be used to store data and/or instructions.
  • the NVM/storage device 1020 may include any suitable non-volatile memory (e.g., flash memory) and/or may include any suitable non-volatile storage device(s) (e.g., one or more hard drives ( Hard Disk, HDD), one or more compact disc (CD) drives and/or one or more digital versatile disc (DVD) drives).
  • suitable non-volatile memory e.g., flash memory
  • suitable non-volatile storage device(s) e.g., one or more hard drives ( Hard Disk, HDD), one or more compact disc (CD) drives and/or one or more digital versatile disc (DVD) drives).
  • the NVM/storage device 1020 may include storage resources that are physically part of the device on which the system 1000 is installed, or it may be accessed by the device without necessarily being a part of the device.
  • the NVM/storage device 1020 can be accessed via the communication interface(s) 1025 through the network.
  • the communication interface(s) 1025 may provide an interface for the system 1000 to communicate through one or more networks and/or with any other suitable devices.
  • the system 1000 can wirelessly communicate with one or more components of a wireless network according to any of one or more wireless network standards and/or protocols.
  • At least one of the processor(s) 1005 may be packaged with the logic of one or more controllers of the system control module 1010 (e.g., the memory controller module 1030). For one embodiment, at least one of the processor(s) 1005 may be packaged with the logic of one or more controllers of the system control module 1010 to form a system in package (SiP). For one embodiment, at least one of the processor(s) 1005 may be integrated with the logic of one or more controllers of the system control module 1010 on the same mold. For one embodiment, at least one of the processor(s) 1005 may be integrated with the logic of one or more controllers of the system control module 1010 on the same mold to form a system on chip (SoC).
  • SoC system on chip
  • the system 1000 may be, but is not limited to, a server, a workstation, a desktop computing device, or a mobile computing device (for example, a laptop computing device, a handheld computing device, a tablet computer, a netbook, etc.).
  • the system 1000 may have more or fewer components and/or different architectures.
  • the system 1000 includes one or more cameras, keyboards, liquid crystal display (LCD) screens (including touchscreen displays), non-volatile memory ports, multiple antennas, graphics chips, application specific integrated circuits ( ASIC) and speakers.
  • LCD liquid crystal display
  • ASIC application specific integrated circuits
  • this application can be implemented in software and/or a combination of software and hardware.
  • it can be implemented using an application specific integrated circuit (ASIC), a general purpose computer or any other similar hardware device.
  • ASIC application specific integrated circuit
  • the software program of the present application may be executed by a processor to realize the steps or functions described above.
  • the software program (including related data structures) of the present application can be stored in a computer-readable recording medium, for example, RAM memory, magnetic or optical drives or floppy disks and similar devices.
  • some steps or functions of the present application may be implemented by hardware, for example, as a circuit that cooperates with a processor to execute each step or function.
  • a part of this application can be applied as a computer program product, such as a computer program instruction, when it is executed by a computer, through the operation of the computer, the method and/or technical solution according to this application can be invoked or provided.
  • computer program instructions in computer-readable media includes but is not limited to source files, executable files, installation package files, etc.
  • the manner in which computer program instructions are executed by the computer includes but not Limited to: the computer directly executes the instruction, or the computer compiles the instruction and then executes the corresponding compiled program, or the computer reads and executes the instruction, or the computer reads and installs the instruction and then executes the corresponding post-installation program.
  • the computer-readable medium may be any available computer-readable storage medium or communication medium that can be accessed by a computer.
  • Communication media includes media by which communication signals containing, for example, computer-readable instructions, data structures, program modules, or other data are transmitted from one system to another system.
  • Communication media can include conductive transmission media (such as cables and wires (for example, optical fiber, coaxial, etc.)) and wireless (unguided transmission) media that can propagate energy waves, such as sound, electromagnetic, RF, microwave, and infrared .
  • Computer readable instructions, data structures, program modules or other data may be embodied as, for example, a modulated data signal in a wireless medium such as a carrier wave or similar mechanism such as embodied as part of spread spectrum technology.
  • modulated data signal refers to a signal whose one or more characteristics have been altered or set in such a way as to encode information in the signal. Modulation can be analog, digital or mixed modulation techniques.
  • a computer-readable storage medium may include volatile, non-volatile, and nonvolatile, nonvolatile, and nonvolatile, and may be implemented in any method or technology for storing information such as computer-readable instructions, data structures, program modules, or other data. Removable and non-removable media.
  • computer-readable storage media include, but are not limited to, volatile memory, such as random access memory (RAM, DRAM, SRAM); and non-volatile memory, such as flash memory, various read-only memories (ROM, PROM, EPROM) , EEPROM), magnetic and ferromagnetic/ferroelectric memory (MRAM, FeRAM); and magnetic and optical storage devices (hard disks, tapes, CDs, DVDs); or other currently known media or future developments that can be stored for computer systems Computer readable information/data used.
  • volatile memory such as random access memory (RAM, DRAM, SRAM
  • non-volatile memory such as flash memory, various read-only memories (ROM, PROM, EPROM) , EEPROM), magnetic and ferromagnetic/ferroelectric memory (MRAM, FeRAM); and magnetic and optical storage devices (hard disks, tapes, CDs, DVDs); or other currently known media or future developments that can be stored for computer systems Computer readable information/data used.
  • volatile memory such as random access memory (RAM, DRAM,
  • an embodiment according to the present application includes a device that includes a memory for storing computer program instructions and a processor for executing the program instructions, wherein when the computer program instructions are executed by the processor, the device triggers
  • the operation of the device is based on the aforementioned methods and/or technical solutions according to multiple embodiments of the present application.

Abstract

本申请的目的是提供一种用于检测场景光线的方法与设备,其中,该方法包括:获取目标场景光线对应的目标光强信息,其中,所述目标场景光线用于在用户眼睛视网膜成像;若所述目标光强信息未满足适应所述用户眼睛视网膜的推荐场景光线所对应的目标光强信息分布,根据所述目标光强信息分布执行推荐场景光强信息控制操作。本申请在目标场景光线不适应用户眼睛视网膜时,将该目标场景光线调整为适应用户眼睛视网膜的光线,从而保护用户眼睛,预防近视。

Description

一种用于检测场景光线的方法与设备
本申请是以CN申请号为 202010072458.3,申请日为 2020.01.21的申请为基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中
技术领域
本申请涉及通信领域,尤其涉及一种用于检测场景光线的技术。
背景技术
近视,中医病名。是眼在调节松弛状态下,平行光线经眼的屈光系统的折射后焦点落在视网膜之前。古代医籍对本病早有认识,称为目不能远视,又名能近怯远症,至《目经大成》始称近视。由先天生成,近视程度较高者又称近觑。近视的发生与遗传、发育、环境等诸多因素有关,但确切的发病机理仍在研究中。
随着时代的发展,人们的工作学习压力越来越大,长期处于高强度的工作或者学习中,会造成眼睛的疲劳,容易产生近视。而若再加上环境的不适宜(例如,照明太亮或者太暗,桌椅不合适等等),则会加剧近视的恶劣程度。
发明内容
本申请的一个目的是提供一种用于检测场景光线的方法与设备。
根据本申请的一个方面,提供了一种用于检测场景光线的方法,应用于用户设备端,该方法包括:
获取目标场景光线对应的目标光强信息,其中,所述目标场景光线用于在用户眼睛视网膜成像;
若所述目标光强信息未满足与适合所述用户眼睛视网膜的推荐场景光线所对应的推荐光强信息分布,根据所述推荐光强信息分布调整所述目标场景光线,以使所述目标光强信息满足所述推荐光强信息分布。
根据本申请的一个方面,提供了一种用于检测场景光线的设备,该设备包括:
一一模块,用于获取目标场景光线对应的目标光强信息,其中,所述目标场景光线用于在用户眼睛视网膜成像;
一二模块,用于若所述目标光强信息未满足与适合所述用户眼睛视网膜的推荐场景光线所对应的推荐光强信息分布,根据所述推荐光强信息分布调整所述目标场景光线,以使所述目标光强信息满足所述推荐光强信息分布。
根据本申请的一个方面,提供了一种用于检测场景光线的设备,该设备包括:
处理器;以及
被安排成存储计算机可执行指令的存储器,所述可执行指令在被执行时使所述处理器执行如下所述方法的操作:
获取目标场景光线对应的目标光强信息,其中,所述目标场景光线用于在用户眼睛视网膜成像;
若所述目标光强信息未满足与适合所述用户眼睛视网膜的推荐场景光线所对应的推荐光强信息分布,根据所述推荐光强信息分布调整所述目标场景光线,以使所述目标光强信息满足所述推荐光强信息分布。
根据本申请的一个方面,提供了存储指令的计算机可读介质,所述指令在被执行时使得系统进行如下所述方法的操作:
获取目标场景光线对应的目标光强信息,其中,所述目标场景光线用于在用户眼睛视网膜成像;
若所述目标光强信息未满足与适合所述用户眼睛视网膜的推荐场景光线所对应的推荐光强信息分布,根据所述推荐光强信息分布调整所述目标场景光线,以使所述目标光强信息满足所述推荐光强信息分布。
根据本申请的一个方面,提供了一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序被处理器执行时实现如下所述方法的步骤:
获取目标场景光线对应的目标光强信息,其中,所述目标场景光线用于在用户眼睛视网膜成像;
若所述目标光强信息未满足与适合所述用户眼睛视网膜的推荐场景光线所对应的推荐光强信息分布,根据所述推荐光强信息分布调整所述目标场景光线,以使所述目标光强信息满足所述推荐光强信息分布。
根据本申请的另一个方面,提供了一种用于检测场景光线的方法,应用于用户 设备端,其中,该方法包括:
获取目标场景中场景光线所对应的第一信号信息,其中,所述第一信号信息是基于第一红外线发射信号对应的第一红外线接收信号的光强信息转换所得,所述第一红外线发射信号用于向用户眼睛视网膜发射,所述第一红外线接收信号为所述第一红外线发射信号经所述用户眼睛视网膜反射的红外线信号;
通过检测所述第一信号信息是否满足推荐场景光强信息所对应的目标信号分布,检测所述场景光线是否适合所述目标场景,其中所述推荐场景光强信息适用于所述目标场景。
根据本申请的另一个方面,提供了一种用于检测场景光线的设备,该设备包括:
二一模块,用于获取目标场景中场景光线所对应的第一信号信息,其中,所述第一信号信息是基于第一红外线发射信号对应的第一红外线接收信号的光强信息转换所得,所述第一红外线发射信号用于向用户眼睛视网膜发射,所述第一红外线接收信号为所述第一红外线发射信号经所述用户眼睛视网膜反射的红外线信号;
二二模块,用于通过检测所述第一信号信息是否满足推荐场景光强信息所对应的目标信号分布,检测所述场景光线是否适合所述目标场景,其中所述推荐场景光强信息适用于所述目标场景。
根据本申请的一个方面,提供了一种用于检测场景光线的设备,该设备包括:
处理器;以及
被安排成存储计算机可执行指令的存储器,所述可执行指令在被执行时使所述处理器执行如下所述方法的操作:
获取目标场景中场景光线所对应的第一信号信息,其中,所述第一信号信息是基于第一红外线发射信号对应的第一红外线接收信号的光强信息转换所得,所述第一红外线发射信号用于向用户眼睛视网膜发射,所述第一红外线接收信号为所述第一红外线发射信号经所述用户眼睛视网膜反射的红外线信号;
通过检测所述第一信号信息是否满足推荐场景光强信息所对应的目标信号分布,检测所述场景光线是否适合所述目标场景,其中所述推荐场景光强信息适用于所述目标场景。
根据本申请的另一个方面,提供了存储指令的计算机可读介质,所述指令在被执行时使得系统进行如下所述方法的操作:
获取目标场景中场景光线所对应的第一信号信息,其中,所述第一信号信息是基于第一红外线发射信号对应的第一红外线接收信号的光强信息转换所得,所述第一红外线发射信号用于向用户眼睛视网膜发射,所述第一红外线接收信号为所述第一红外线发射信号经所述用户眼睛视网膜反射的红外线信号;
通过检测所述第一信号信息是否满足推荐场景光强信息所对应的目标信号分布,检测所述场景光线是否适合所述目标场景,其中所述推荐场景光强信息适用于所述目标场景。
根据本申请的另一个方面,提供了一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序被处理器执行时实现如下所述方法的步骤:
获取目标场景中场景光线所对应的第一信号信息,其中,所述第一信号信息是基于第一红外线发射信号对应的第一红外线接收信号的光强信息转换所得,所述第一红外线发射信号用于向用户眼睛视网膜发射,所述第一红外线接收信号为所述第一红外线发射信号经所述用户眼睛视网膜反射的红外线信号;
通过检测所述第一信号信息是否满足推荐场景光强信息所对应的目标信号分布,检测所述场景光线是否适合所述目标场景,其中所述推荐场景光强信息适用于所述目标场景。
与现有技术相比,本申请提供了一种用于检测场景光线的用户设备,该用户设备通过获取目标场景光线对应的目标光强信息,检测该目标光强信息是否满足适应用户眼睛视网膜的推荐场景光线对应的推荐光强信息分布,从而检测所述目标场景光线的强弱;并在该目标光强信息未满足所述推荐光强信息分布时,通过调整所述目标场景光线的方式调整所述目标光强信息,以使所述目标光强信息满足所述推荐光强信息分布。从而在用于在用户眼睛视网膜中成像的目标场景光线不适应用户眼睛视网膜时,将该目标场景光线调整为适应用户眼睛视网膜的光线,保护用户眼睛,使用户眼睛始终处于舒适状态,预防近视。
进一步地,上述所述用户设备通过获取第一信号信息的方式获取所述目标场景光线对应的目标光强信息,所述第一信号信息的强弱可直接反映用户的眼睛是否舒服(例如,光线较强、光线较弱、光线适宜时得到的所述第一信号信息是不同的,从而可以通过所述第一信号信息反映用户眼睛的舒适度),解决了难以获取或反映所述目标场景光线对应的目标光强信息的问题。
同时,本申请提供了一种用于检测场景光线的用户设备,该用户设备通过检测目标场景中场景光线所对应的第一信号信息是否满足推荐场景光强信息所对应的目标信号分布,检测该场景光线是否适合该目标场景,其中该推荐场景光强信息适用于该目标场景,并建立有所述目标信号分布,在检测时直接检测所述第一信号信息是否满足所述目标信号分布。从环境(例如,目标场景)中的光线(例如场景光线)出发,基于所述第一信号信息检测出该环境中的光线是否适宜用户眼睛视网膜,从而达到避免因光线问题造成用户的眼睛疲劳,造成或者加剧近视问题。
附图说明
通过阅读参照以下附图所作的对非限制性实施例所作的详细描述,本申请的其它特征、目的和优点将会变得更明显:
图1示出根据本申请一个实施例的一种用于检测场景光线的方法流程图;
图2示出根据本申请另一个实施例的一种用于检测场景光线的方法流程图;
图3示出根据本申请一个实施例的一种用于检测场景光线的示意图;
图4示出根据本申请一个实施例的一种用于检测场景光线的界面效果示意图;
图5示出根据本申请一个实施例的一种用于检测场景光线的设备结构图;
图6示出根据本申请一个实施例的一种用于检测场景光线的设备结构图;
图7示出可用于本申请各实施例的一种示例性系统的功能模块。
附图中相同或相似的附图标记代表相同或相似的部件。
具体实施方式
下面结合附图对本申请作进一步详细描述。
在本申请一个典型的配置中,终端、服务网络的设备和可信方均包括一个或多个处理器(例如,中央处理器(Central Processing Unit,CPU))、输入/输出接口、网络接口和内存。
内存可能包括计算机可读介质中的非永久性存储器,随机存取存储器(Random Access Memory,RAM)和/或非易失性内存等形式,如只读存储器(Read Only Memory,ROM)或闪存(Flash Memory)。内存是计算机可读介质的示例。
计算机可读介质包括永久性和非永久性、可移动和非可移动媒体可以由任何方 法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机的存储介质的例子包括,但不限于相变内存(Phase-Change Memory,PCM)、可编程随机存取存储器(Programmable Random Access Memory,PRAM)、静态随机存取存储器(Static Random-Access Memory,SRAM)、动态随机存取存储器(Dynamic Random Access Memory,DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(Electrically-Erasable Programmable Read-Only Memory,EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(Compact Disc Read-Only Memory,CD-ROM)、数字多功能光盘(Digital Versatile Disc,DVD)或其他光学存储、磁盒式磁带,磁带磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
本申请所指设备包括但不限于用户设备、网络设备、或用户设备与网络设备通过网络相集成所构成的设备。所述用户设备包括但不限于任何一种可与用户进行人机交互(例如通过触摸板进行人机交互)的移动电子产品,例如智能手机、平板电脑等,所述移动电子产品可以采用任意操作系统,如android操作系统、iOS操作系统等。其中,所述网络设备包括一种能够按照事先设定或存储的指令,自动进行数值计算和信息处理的电子设备,其硬件包括但不限于微处理器、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程逻辑器件(Programmable Logic Device,PLD)、现场可编程门阵列(Field Programmable Gate Array,FPGA)、数字信号处理器(Digital Signal Processor,DSP)、嵌入式设备等。所述网络设备包括但不限于计算机、网络主机、单个网络服务器、多个网络服务器集或多个服务器构成的云;在此,云由基于云计算(Cloud Computing)的大量计算机或网络服务器构成,其中,云计算是分布式计算的一种,由一群松散耦合的计算机集组成的一个虚拟超级计算机。所述网络包括但不限于互联网、广域网、城域网、局域网、VPN网络、无线自组织网络(Ad Hoc网络)等。优选地,所述设备还可以是运行于所述用户设备、网络设备、或用户设备与网络设备、网络设备、触摸终端或网络设备与触摸终端通过网络相集成所构成的设备上的程序。
当然,本领域技术人员应能理解上述设备仅为举例,其他现有的或今后可能出现的设备如可适用于本申请,也应包含在本申请保护范围以内,并在此以引用方式包含于此。
在本申请的描述中,“多个”的含义是两个或者更多,除非另有明确具体的限定。
平时,我们看书写字的时候,要有合适的场景光线,才能看的清楚,看起来舒服。因为瞳孔有类似照相机的光圈作用,瞳孔的开大与缩小,可以控制进入眼内的场景光线。光线强烈使得瞳孔缩小,光线暗淡使得瞳孔扩大。如果长时间在强烈光线下看书(比如太阳光),瞳孔就会持续缩小,引起眼球肌肉疲劳,眼球胀痛,甚至头晕目眩。另外,由于光线太耀眼,会觉得眼前有一团亮光,经久不散,看到哪里,就亮到哪里。这就是视网膜黄斑区受强光刺激后的后像作用,当然看就不清楚了。长期在强光下看书,由于睫状肌过度调节,不但可以促使近视的发展,而且对视网膜(尤其是黄斑区)造成损害,使视觉敏感度下降,引起永久性减退。长期在直射的太阳光下看书,由于紫外线的照射,还容易引起角膜和晶状体的损害,要尽可能避免在强光下看书。当然,光线较弱,对人体视力也是会有很大影响的,因此,我们要在合适的光线下读书学习。
在此,发明人经研究发现,红外光线是人眼感受不到的光,而场景光线(例如,阳光/灯光等可见光)的强弱会引起人眼瞳孔、睫状肌、晶状体的变化。当有红外线发射到用户眼睛视网膜时,人眼的瞳孔、睫状肌、晶状体的变化又会影响红外光的反射,从而影响到红外线接收信号的变化。通常色温在4000~4800K左右的散射自然光(可见光)是适宜用户眼睛的,例如,是最佳的阅读环境光线。
在此,本领域技术人员应能理解,色温是表示光线中包含颜色成分的一个计量单位。从理论上说,黑体温度指绝对黑体从绝对零度(-273℃)开始加温后所呈现的颜色。黑体在受热后,逐渐由黑变红,转黄,发白,最后发出蓝色光。当加热到一定的温度,黑体发出的光所含的光谱成分,就称为这一温度下的色温,计量单位为“K”(开尔文)。
在一些实施例中,所述用户设备设置有红外线接口,通过该红外线接口安装红外线发射模块、红外线接收模块,以实现向用户眼睛视网膜发射红外线发射信号,接收红外线接收信息的功能。例如,图3所示的用户设备设置有红外线接口,通过该红外线接口将红外线发射模块以及红外线接收模块安装在该用户设备上。在一些实施例中,所述红外线接收模块包括但不限于红外线接收管。在此,本领域技术人员应能理解,所述红外线发射管(IR LED)也称红外线发射二极管,属于二极管类。它是可以将电能直接转换成近红外光(不可见光)并能辐射出去的发光器件;所述 红外线接收管是在LED行业中命名的,是专门用来接收和感应红外线发射管发出的红外线光线的。一般情况下都是与红外线发射管成套运用在产品设备当中。例如,红外发光二极管来发出经过调制的红外光波;红外接收电路由红外接收二极管、三极管或硅光电池组成,它们将红外发射器发射的红外光转换为相应的电信号,再送后置放大器。
在另一些实施例中,用户设备本身自带红外线发射功能以及红外线的接收功能,可通过该用户设备直接发射红外线发射信号,接收红外线接收信号。在一些实施例中,该用户设备中设置有控制发射红外线信号的按钮,用户通过点击该按钮控制发射红外线发射信号。
在又一些实施例中,所述用户设备也可以仅自带红外线发射功能,该用户设备上设置有安装红外线接收模块的接口,通过该接口安装红外线接收模块,以便接收该用户设备反射回的红外线接收信号。
在一些实施例中,本申请所述的方法是通过用户设备实现的(例如,所述用户设备中设置对应的功能模块);在另一些实施例中,本申请所述的方法是通过安装在该用户设备的应用实现的。
图1示出了根据本申请一个实施例的一种用于检测场景光线的方法流程图,该方法包括步骤S101以及步骤S102。在步骤S101中,用户设备获取目标场景光线对应的目标光强信息,其中,所述目标场景光线用于在用户眼睛视网膜成像;在步骤S102中,用户设备若所述目标光强信息未满足与适合所述用户眼睛视网膜的推荐场景光线所对应的推荐光强信息分布,根据所述推荐光强信息分布调整所述目标场景光线,以使所述目标光强信息满足所述推荐光强信息分布。
具体而言,在步骤S101中,用户设备获取目标场景光线对应的目标光强信息,其中,所述目标场景光线用于在用户眼睛视网膜成像。在一些实施例中,所述用户设备包括但不限于手机、电脑、平板电脑等计算设备。在一些实施例中,所述目标场景光线包括反射到用户眼睛视网膜的光线,而所述目标场景光线会受到用户当前所处环境的光线的影响,例如,用户当前所处环境的光线较强,则反射到用户眼睛视网膜的所述目标场景光线也会较强。例如,用户正对所述用户设备,所述用户设备的屏幕亮光会反射到该用户眼睛视网膜中。在一些实施例中,所述目标场景光线主要是由所述用户设备的屏幕亮度产生的。例如,用户使用电脑工作、学习时,在 光线较暗的环境中使用手机时,所述用户设备可以通过调节所述屏幕亮度间接地调整所述目标场景光线,例如,所述目标光强信息随所述目标场景光线的变化而变化,而所述目标场景光线随所述屏幕亮度的变化而变化。所述目标场景光线对应的所述目标光强信息通常是不能直接获取的,在一些实施例中,所述用户设备通过获取第一信号信息(例如,电信号)的方式获取所述目标场景光线对应的目标光强信息。当然,本领域技术人员应能理解,以上所述的通过获取第一信号信息获取该目标光强信息的操作仅为举例,其他现有的或今后可能出现的操作如能适用于本申请,也包含在本申请的保护范围内,并以引用的方式包含于此。例如,所述目标光强信息可以是基于所述第一信号信息查询到的、对应的电流值或电压值,例如,将该电流值或电压值作为所述目标光强信息;也可以是基于所述第一信号信息获取的、反映所述用户当前所处环境的光线的光强信息;也可以是基于所述第一信号信息查询到的、通过特定算法转换得到的光强信息。关于通过获取所述第一信号信息的方式获取所述目标光强信息的具体介绍请参见下面的实施例,在此不做赘述。在一些实施例中,由于所述目标场景光线是反射到所述用户眼睛视网膜中的光线,所述目标场景光线将直接影响用户眼睛视网膜、瞳孔的变化(例如,瞳孔的开大或者缩小),从而影响用户眼睛的舒适度,因此本实施例通过检测所述目标场景光线对应的目标光强信息是否落入推荐光强信息分布中检测所述目标场景光线是否适合用户眼睛视网膜。
在步骤S102中,若所述目标光强信息未满足与适合所述用户眼睛视网膜的推荐场景光线所对应的推荐光强信息分布,用户设备根据所述推荐光强信息分布调整所述目标场景光线,以使所述目标光强信息满足所述推荐光强信息分布。在一些实施例中,所述推荐场景光线包括适合用户眼睛视网膜的光线,例如,在所述推荐场景光线下,用户眼睛是比较舒服的。例如,色温是可用于表示光线的一种参数,用户在4000k-4800k的色温区间内阅读书籍时,眼睛是比较舒服的。在一些实施例中,所述推荐光强信息分布包括所述推荐场景光线对应的光强信息区间(例如,[200cd,1000cd])。例如,将色温在4000k-4800k之间的光线所对应的光强信息区间作为所述推荐场景光线所对应的推荐光强信息分布。当然,本领域技术人员应能理解,以上所述4000k-4800k、[200cd,1000cd]仅为举例,其他现有的或今后可能出现的色温范围、推荐光强信息分布如能适用于本申请,也包含在本申请的保护范围内,并 以引用的方式包含于此。在一些实施例中,所述用户设备将获取到的目标光强信息与该推荐光强信息分布进行比较,若该目标光强信息未落在该推荐光强信息分布内,说明所述目标场景光线不适合用户眼睛视网膜。例如,获取的所述目标光强信息为10cd,所述推荐场景光线对应的推荐光强信息分布为[200cd,1000cd],则该目标光强信息未满足所述推荐光强信息分布。在所述目标光强信息未满足所述推荐光强信息分布时,所述用户设备通过调整所述目标场景光线的方式调整所述目标光强信息(例如,调整屏幕亮度),以使所述目标光强信息满足所述推荐光强信息分布。
在一些实施例中,步骤S101包括步骤S1011(未示出)以及步骤S1012(未示出)。
在步骤S1011中,用户设备在目标光源光线下获取所述目标场景光线对应的第一信号信息。本实施例介绍了通过所述第一信号信息获取所述目标场景光线对应的目标光强信息。在一些实施例中,所述第一信号信息包括但不限于电信号。例如,所述第一信号信息是由第一红外线接收信号的光强信息转换获取的。例如,所述用户设备通过红外线接收模块接收第一红外线接收信号,基于该第一红外线接收信号的光强信息转换生成对应的第一信号信息。所述用户设备获取所述第一信号信息后,基于所述第一信号信息获取所述目标场景光线对应的目标光强信息。在一些实施例中,所述目标光源光线包括所述用户设备发出的光线以及环境光,并且所述目标场景光线主要包括所述用户设备所发出的光线,因此,所述用户设备可以通过调整其发出的光线的方式调整入射到用户眼睛视网膜中的所述目标场景光线。
在步骤S1012中,用户设备根据所述第一信号信息查询获取与所述第一信号信息相对应的光强信息,以作为所述目标场景光线对应的目标光强信息。在一些实施例中,所述用户设备根据所述第一信号信息查询与该第一信号信息相匹配的信号信息所对应的光强信息,并将该光强信息作为所述目标光强信息。例如,所述用户设备中包括多条信号信息与光强信息之间的映射关系,所述用户设备根据所述第一信号信息从所述多条映射关系中查询与该第一信号信息相匹配的信号信息,以确定所述目标光强信息,例如,将与该信号信息存在映射关系的光强信息作为所述目标光强信息。关于该步骤的具体介绍请参加下面的实施例,在此不做赘述。
在一些实施例中,所述步骤S1011包括:该用户设备在所述目标光源光线下向所述用户眼睛视网膜发射第一红外线发射信号;接收对应的第一红外线接收信号, 其中,所述第一红外线接收信号是所述第一红外线发射信号经所述用户眼睛视网膜反射的红外线信号;基于所述第一红外线接收信号的光强信息转换得到所述第一信号信息,其中,所述第一信号信息对应于所述目标场景光线,所述目标场景光线用于在用户眼睛视网膜成像。例如,所述用户设备向所述用户眼睛视网膜发射第一红外线发射信号,用户眼睛视网膜接收所述第一红外线发射信号后,会反射出红外线信号,所述用户设备接收所述用户眼睛视网膜反射回的红外线信号,并将该红外线信号作为所述第一红外线接收信号,基于接收到的该第一红外线接收信号的光强信息转换生成所述第一信号信息(例如,将所述第一红外线接收信号转换为电信号)。由于用户眼睛的瞳孔、视网膜会受所述目标场景光线的影响,因此,不同强度的目标光源光线下,入射到用户眼睛中的目标场景光线不同,用户眼睛视网膜反射回的第一红外线接收信号的强度也是不一样的。因此,可通过所述第一信号信息反映用户眼睛的舒适度,从而也可基于所述第一信号信息得到一个对应于该目标场景光线的目标光强信息,通过检测该目标光强信息是否满足推荐光强信息分布检测所述目标场景光线是否适合用户眼睛视网膜。
在一些实施例中,所述步骤S1012包括:用户设备根据所述第一信号信息及所述第一信号信息的第一配置相关信息查询获取与所述第一信号信息相对应的第二光强信息,将该第二光强信息作为所述目标场景光线对应的目标光强信息,其中,所述第二光强信息对应的第二信号信息与所述第一信号信息相匹配,所述第二信号信息的第二配置相关信息与所述第一配置相关信息相匹配。在一些实施例中,所述第一信号信息的第一配置相关信息包括但不限于用于获取所述第一信号信息时的一些参数信息(例如,得到该第一信号信息的第一红外线发射信号的第一发射强度信息、所述用户设备距离所述用户眼睛视网膜的第一距离信息等)。在一些实施例中,所述第二信号信息的第二配置相关信息包括获取该第二信号信息时的一些参数信息(例如,获取所述第二信号信息时的一些参数信息,第二红外线发射信号的第二发射强度信息、第二用户设备距离用户眼睛视网膜的第二距离信息等,其中,所述第二用户设备包括得到所述第二信号信息时所使用的用户设备)。在一些实施例中,在基于所述第一信号信息获取所述目标光强信息时,需要考虑所述第一信号信息的第一配置相关信息,以使得查询到的所述第二信号信息是与所述第一信号信息相匹配的信号信息(例如,不仅所述第二信号信息与所述第一信号信息本身相匹配, 所述第二信号信息的第二配置相关信息与所述第一信号信息的第一配置相关信息也需相匹配),从而可以将该第二信号信息对应的第二光强信息作为所述第一信号信息对应的目标光强信息。在一些实施例中,所述第一信号信息与所述第二信号信息相匹配包括所述第一信号信息与所述第二信号信息相等,或者所述第一信号信息与所述第二信号信息的差值等于或小于差值阈值。在一些实施例中,所述第一配置相关信息与所述第二配置相关信息相匹配包括:所述第一配置相关信息中所包括的各参数分别与所述第二配置相关信息中所包括的各参数相等或差值等于或小于差值阈值。例如,所述第一配置相关信息包括第一红外线发射信号的第一发射强度信息、所述用户设备距离用户眼睛视网膜的第一距离信息,所述第二配置相关信息包括第二红外线发射信号的第二发射强度信息、所述第二用户设备距离用户眼睛视网膜的第二距离信息,则所述第一配置相关信息与所述第二配置相关信息相匹配包括所述第一红外线发射信号的第一发射强度信息与所述第二红外线发射信号的第二发射强度信息相等或差值小于预设阈值,并且,所述用户设备距离用户眼睛视网膜的第一距离信息与第二用户设备距离用户眼睛视网膜的第二距离信息相等或者差值小于预设差值。在一些实施例中,所述用户设备根据所述第一信号信息以及所述第一配置相关信息查询确定与所述第一信号信息相对应的光强信息,将该光强信息作为所述目标场景光线对应的目标光强信息,其中,所述目标光强信息对应的第二信号信息与所述第一信号信息相匹配,所述第二信号信息的第二配置相关信息与所述第一配置相关信息相匹配。在本实施例通过所述第一信号信息获取目标场景光线对应的目标光强信息,在可以获取该目标光强信息的同时,也可以通过该第一信号信息的强弱来直接地反映用户眼睛的舒适度。
在一些实施例中,所述步骤S1012包括:用户设备根据所述第一信号信息及所述第一信号信息的第一配置相关信息在信号数据库中查询与该第一信号信息相对应的三光强信息,将该三光强信息作为所述目标场景光线对应的目标光强信息,其中,所述三光强信息对应的第二信号信息与所述第一信号信息相匹配,所述第二信号信息的第二配置相关信息与所述第一配置相关信息相匹配,所述信号数据库中包括多条映射关系,每条映射关系用于关联信号信息与该信号信息对应的光强信息。在一些实施例中,所述设备中建立有所述信号数据库,所述信号数据库中存储有多条映射关系,以基于所述多条映射关系查询获取所述目标光强信息。例如,该设备 中存储有多个光强信息中每个光强信息所对应的信号信息(例如电信号),以及该信号信息的第三配置相关信息(例如,所述第三配置相关信息包括用于获取该信号信息的一些参数信息,比如,第三红外线发射信号的第三发射强度、第三红外线发射模块距离人眼视网膜的第三距离信息等参数)。每个光强信息与其对应的信号信息以及该信号信息的第三配置相关信息之间存在映射关系,以便所述设备根据所述第一信号信息以及该第一信号信息的第一配置相关信息从所述信号数据库中查询与该第一信号信息相匹配,并且与该第一配置相关信息相匹配的第二信号信息,以将与该第二信号信息存在映射关系的第二光强信息作为所述目标光强信息。
在一些实施例中,所述步骤S1012包括:用户设备根据所述第一信号信息从所述信号数据库中查询与该第一信号信息相匹配的待匹配信号信息,其中,所述信号数据库中包括多条映射关系,每条映射关系用于关联信号信息与该信号信息对应的光强信息,每个信号信息都有其对应的配置相关信息;用户设备根据所述第一配置相关信息从所述待匹配信号信息对应的配置相关信息中查询与该第一配置相关信息相匹配的配置相关信息,并将该配置相关信息对应的待匹配信号信息作为所述第二信号信息,与该第二信号信息存在映射关系的光强信息确定为与所述第一信号信息相对应的目标光强信息,将该配置相关信息作为所述第二配置相关信息。例如,在具体查询过程中,根据获得的第一信号信息查找与该第一信号信息相匹配的待匹配信号信息(例如,该待匹配信号信息与所述第一信号信息相等,或者所述第一信号信息与该待匹配信号信息的差值在预设的差值范围内)。进一步地,根据所述第一信号信息的第一配置相关信息从查询获取的待匹配信号信息的第二配置相关信息中查询与该第一配置相关信息相匹配的第二配置相关信息(例如,该第二配置相关信息的各参数信息与该第一配置相关信息的各参数信息分别相等或者差值小于预设阈值),将该第二配置相关信息对应的待匹配信号信息作为所述第二信号信息,从而将与该第二信号信息存在映射关系的第二光强信息确定为所述第一信号信息对应的目标光强信息。
在一些实施例中,所述第一配置相关信息包括所述第一红外线发射信号的第一发射强度信息、所述用户设备距离所述用户眼睛视网膜的第一实时距离信息;所述第一发射强度信息包括第一实时发射强度信息或者第一配置发射强度信息;所述第二信号信息的第二配置相关信息包括获取该第二信号信息时的第二红外线发射信 号的第二发射强度信息、第二用户设备距离用户眼睛视网膜的第二距离信息。在此,本领域技术人员应能理解,本申请所述“第一”“第二”“第三”“第四”仅用于区别在实际应用、查询匹配时、用于建立所述信号数据时、以及获取所述推荐光强信息分布时的红外线发射信号、红外线接收信号、距离信息等,而不代表任何顺序关系。在一些实施例中,可以用在发射红外线发射信号时的电流值或电压值作为所述发射强度信息。在一些实施例中,所述第一配置发射强度信息包括所述用户设备中固定的、发射所述第一红外线发射信号时所需要的电流值或电压值。在一些实施例中,所述第一实时发射强度信息包括所述用户设备在发射所述第一红外线发射信号时所需要的实时电压值或电流值。例如,在发射所述第一红外线发射信号时用的电流值或电压值是可调的,从而可以控制所述第一红外线发射信号的发射强度。在一些实施例中,所述第一距离信息包括所述用户设备距离所述用户眼睛视网膜的实时距离。在一些实施例中,所述第二用户设备包括获取所述第二信号信息使所使用的用户设备,所述第二距离信息包括在获取所述第二信号信息时所述第二用户设备距离所述用户眼睛视网膜的距离。
在一些实施例中,可以根据相位测距法计算确定所述第一实时距离信息,其中,相位测距法是利用无线电波段的频率,对红外激光束进行幅度调制并测定调制光往返一次所产生的相位延迟,再根据调制光的波长,换算出此相位延迟所代表的距离D(例如,所述第一实时距离信息)。当然,本领域技术人员应能理解,以上所述的确定第一实时距离信息的具体操作仅为举例,其他现有的或今后可能出现的具体操作如能适用于本申请,也在本申请的保护范围内,并以引用的方式包含于此。例如,https://m.sohu.com/a/285766351_468626提供了多种基于红外线测距的方法,在此不做赘述。
在一些实施例中,所述方法还包括步骤S104(未示出),在步骤S104中,用户设备建立或更新所述信号数据库。在一些实施例中,需要基于大量的实验检测获取多个信号信息、每个信号信息对应的光强信息,并记录获取每个信号信息的第二配置相关信息,以建立“信号信息”“光强信息”“第二配置相关信息”之间的映射关系,从而建立或更新所述信号数据库。
在一些实施例中,所述步骤S104包括:用户设备获取并记录在多个场景光线下得到的信号信息,其中,该信号信息是基于第三红外线发射信号在该场景光线下 所对应的第三红外线接收信号的光强信息转换所得,所述第三红外线发射信号用于向该场景光线下的人眼视网膜发射,所述第三红外线接收信号为所述第三红外线发射信号经所述人眼视网膜反射的红外线信号;对于每个信号信息,确定该信号信息对应的光强信息,并根据得到该信号信息的第三红外线发射信号的第三发射强度信息、所述第二红外线发射信号的发射设备距离所述用户眼睛视网膜的第三距离信息生成该信号信息的第三配置相关信息;在所述信号数据库中建立所述信号信息与该信号信息对应的光强信息之间的映射关系,并记录得到该信号信息的第三配置相关信息,以建立或更新所述信号数据库。例如,在不同的多个场景光线下,通过向人眼视网膜发射第三红外线发射信号,得到第三红外线接收信号,通过将第三红外线接收信号转换为电信号得到所述信号信息。通过所述信号信息的电流值或者电压值可以反映得到该信号信息的第三红外线接收信号的光强信息的强弱,而通过所述第三红外线接收信号的光强信息的强弱可以反映所述场景光线的光强信息的强弱,因此,在一些实施例中,所述信号数据库中每个信号信息对应的光强信息可以直接是该信号信息电流值或者电压值,则在基于所述第一信号信息在所述信号数据库中查询匹配时,可以直接根据所述第一信号信息的电流值或电压值在所述多个信号信息中查询与该第一信号信息的电流值或电压值相同或相近的第二信号信息,并将该第二信号信息的电流值或电压值作为所述目标光强信息,其中,该第二信号信息的第二匹配相关信息与该第一信号信息的第一配置相关信息相匹配。例如,在建立所述信号数据库时,发射所述第三红外线发射信号的用户设备在接收到所述第三红外线接收信号后,将该第三红外线接收信号转换为电信号,检测该电信号的电流或电压大小,并记录该电信号的电流或电压大小,直接将该电流或电压大小作为该信号信息对应的光强信息,并记录第三配置相关信息。在另一些实施例中,所述信号数据库中每个信号信息对应的光强信息也可以是得到该信号信息时的光源光线的光强信息,例如,在建立所述信号数据库时,在不同的、已知光强信息(例如,光源组件的电流值或电压值)的光源光线下,所述第三红外线接收模块在接收到所述第三红外线接收信号后,将该第三红外线接收信号转换为电信号,检测该电信号的电流或电压大小,并记录该电信号的电流或电压大小,记录该已知光强信息与该电流值或电压值之间的映射关系,则基于所述第一信号信息得到的目标光强信息是反映所述用户当前所处环境的光线的光强信息。在又一些实施例中,所述信号数据库中每 个信号信息对应的光强信息也可以是在该信号信息的基础上,基于特定算法(例如,电信号与光强之间的转换公式,比如,在得到的所述电信号的基础上乘以一定的系数得到的值最接近当前所处的场景光线的光强大小)得到的光强信息(例如,所述光强信息为在所述信号信息的电流值或电压值基础上乘以一定的系数,例如,0.1、1、2等,以作为该信号信息对应光强信息),则基于所述第一信号信息可以查询到、通过特定算法转换得到的光强信息。当然,本领域技术人员应能理解,上述关于所述信号信息与该信号信息对应的光强信息的具体对应关系仅为举例,其他现有的或今后可能出现的具体操作如能适用于本申请,也在本申请的保护范围内,并以引用的方式包含于此。进一步地,在所述信号数据库中建立所述第二信号信息与得到该第二信号信息的光强信息之间的映射关系,并记录得到该第二信号信息的第二配置相关信息,换言之,“第二信号信息”“光强信息”“第二配置相关信息”三者之间的映射关系。在一些实施例中,不同人种(例如,黄种人、白种人、黑种人)的人眼视网膜的结构存在区别,在一些实施例中,可以基于不同人种的人眼视网膜分别建立对应于每一人种的所述信号数据库,以在实际应用中,基于用户的人种使用对应于该人种的信号数据库。例如,由用户输入其人种信息,设备获取对应于该人种信息的信号数据库。
在一些实施例中,所述推荐光强信息分布是基于大量的实验获取的。例如,在人的眼睛较舒服的多个环境光线下,所述第四用户设备(例如,第四红外线发射信号的发射设备)向人眼视网膜发射第四红外线发射信号,并接收所述人眼视网膜反射回的第四红外线接收信号,并将该第四红外线接收信号转换为电信号,基于该电信号从上述信号数据库中查询该电信号对应的光强信息。对于所述多个会使人的眼睛较舒服的环境光线,在每个环境光线下都会得到一个光强信息,基于得到的多个光强信息生成所述推荐光强信息分布。例如,得到一个光强信息区间,或者得到包括多个光强信息的光强信息集合。以便基于所述目标光强信息检测该目标光强信息是否落入了所述推荐光强信息分布内。
图5示出根据本申请一个实施例的一种用于检测场景光线的用户设备的设备结构图,该设备包括一一模块、一二模块。所述一一模块,用于获取目标场景光线对应的目标光强信息,其中,所述目标场景光线用于在用户眼睛视网膜成像;所述一二模块,用于若所述目标光强信息未满足与适合所述用户眼睛视网膜的推荐场景光 线所对应的推荐光强信息分布,根据所述推荐光强信息分布调整所述目标场景光线,以使所述目标光强信息满足所述推荐光强信息分布。
在此,有关上述一一模块、一二模块的具体实现方式的示例与上述步骤S101、步骤S102的实施例相同或相近,故不再赘述,在此以引用方式包含于此。
在一些实施例中,所述一一模块包括一一一模块(未示出)、一一二模块。所述一一一模块,用于在目标光源光线下获取所述目标场景光线对应的第一信号信息;所述一一二模块,用于根据所述第一信号信息查询获取与所述第一信号信息相对应的第二光强信息,以作为所述目标场景光线对应的目标光强信息。
在此,有关上述一一一模块、一一二模块的具体实现方式的示例与上述步骤S1011、步骤S1012的实施例相同或相近,故不再赘述,在此以引用方式包含于此。
在一些实施例中,所述一一一模块,用于在所述目标光源光线下向所述用户眼睛视网膜发射第一红外线发射信号;接收对应的第一红外线接收信号,其中,所述第一红外线接收信号是所述第一红外线发射信号经所述用户眼睛视网膜反射的红外线信号;基于所述第一红外线接收信号的光强信息转换得到所述第一信号信息,其中,所述第一信号信息对应于所述目标场景光线,所述目标场景光线用于在用户眼睛视网膜成像。
在此,有关上述一一一模块的具体实现方式的示例与上述步骤S1011的实施例相同或相近,故不再赘述,在此以引用方式包含于此。
在一些实施例中,所述一一二模块,用于根据所述第一信号信息及所述第一信号信息的第一配置相关信息查询获取与所述第一信号信息相对应的第二光强信息,将该第二光强信息作为所述目标场景光线对应的目标光强信息,其中,所述第二光强信息对应的第二信号信息与所述第一信号信息相匹配,所述第二信号信息的第二配置相关信息与所述第一配置相关信息相匹配。
在此,有关上述一一二模块的具体实现方式的示例与上述步骤S1012的实施例相同或相近,故不再赘述,在此以引用方式包含于此。
在一些实施例中,所述一一二模块,用于根据所述第一信号信息及所述第一信号信息的第一配置相关信息在信号数据库中查询与该第一信号信息相对应的第二光强信息,将该第二光强信息作为所述目标场景光线对应的目标光强信息,其中,所述第二光强信息对应的第二信号信息与所述第一信号信息相匹配,所述第二信号 信息的第二配置相关信息与所述第一配置相关信息相匹配,所述信号数据库中包括多条映射关系,每条映射关系用于关联信号信息与该信号信息对应的光强信息。
在此,有关上述一一二模块的具体实现方式的示例与上述步骤S1012的实施例相同或相近,故不再赘述,在此以引用方式包含于此。
在一些实施例中,所述一一二模块,用于根据所述第一信号信息从所述信号数据库中查询与该第一信号信息相匹配的待匹配信号信息,其中,所述信号数据库中包括多条映射关系,每条映射关系用于关联信号信息与该信号信息对应的光强信息,每个信号信息都有其对应的配置相关信息;根据所述第一配置相关信息从所述待匹配信号信息对应的配置相关信息中查询与该第一配置相关信息相匹配的配置相关信息,并将该配置相关信息对应的待匹配信号信息作为所述第二信号信息,与该第二信号信息存在映射关系的光强信息确定为与所述第一信号信息相对应的目标光强信息,将该配置相关信息作为所述第二配置相关信息。
在此,有关上述一一二模块的具体实现方式的示例与上述步骤S1012的实施例相同或相近,故不再赘述,在此以引用方式包含于此。
在一些实施例中,所述第一配置相关信息包括所述第一红外线发射信号的第一发射强度信息、所述用户设备距离所述用户眼睛视网膜的第一实时距离信息;所述第一发射强度信息包括第一实时发射强度信息或者第一配置发射强度信息;所述第二信号信息的第二配置相关信息包括获取该第二信号信息时的第二红外线发射信号的第二发射强度信息、第二用户设备距离用户眼睛视网膜的第二距离信息。
在一些实施例中,所述设备还包括一四模块(未示出),所述一四模块,用于建立或更新所述信号数据库。
在此,有关上述一四模块的具体实现方式的示例与上述步骤S104的实施例相同或相近,故不再赘述,在此以引用方式包含于此。
在一些实施例中,所述一四模块,用于获取并记录在多个场景光线下得到的信号信息,其中,该信号信息是基于第三红外线发射信号在该场景光线下所对应的第三红外线接收信号的光强信息转换所得,所述第三红外线发射信号用于向该场景光线下的人眼视网膜发射,所述第三红外线接收信号为所述第三红外线发射信号经所述人眼视网膜反射的红外线信号;对于每个信号信息,确定该信号信息对应的光强信息,并根据得到该信号信息的第三红外线发射信号的第三发射强度信息、所述第 三红外线发射信号的发射设备距离所述用户眼睛视网膜的第三距离信息生成该信号信息的第三配置相关信息;在所述信号数据库中建立所述信号信息与该信号信息对应的光强信息之间的映射关系,并记录得到该信号信息的第三配置相关信息,以建立或更新所述信号数据库。
在此,有关上述一四模块的具体实现方式的示例与上述步骤S104的实施例相同或相近,故不再赘述,在此以引用方式包含于此。
图2示出了根据本申请另一个实施例的应用于用户设备的一种用于检测场景光线的方法流程图,该方法包括步骤S201、步骤S202。在步骤S201中,用户设备获取目标场景中场景光线所对应的第一信号信息,其中,所述第一信号信息是基于第一红外线发射信号对应的第一红外线接收信号的光强信息转换所得,所述第一红外线发射信号用于向用户眼睛视网膜发射,所述第一红外线接收信号为所述第一红外线发射信号经所述用户眼睛视网膜反射的红外线信号;在步骤S202中,用户设备通过检测所述第一信号信息是否满足推荐场景光强信息所对应的目标信号分布,检测所述场景光线是否适合所述目标场景,其中所述推荐场景光强信息适用于所述目标场景。
具体而言,在步骤S201中,用户设备获取目标场景中场景光线所对应的第一信号信息,其中,所述第一信号信息是基于第一红外线发射信号对应的第一红外线接收信号的光强信息转换所得,所述第一红外线发射信号用于向用户眼睛视网膜发射,所述第一红外线接收信号为所述第一红外线发射信号经所述用户眼睛视网膜反射的红外线信号。在一些实施例中,所述目标场景为待检测环境场景,例如,自然光照下的待检测环境,或者灯光下的待检测环境。在一些实施例中,所述场景光线为该目标场景中的光线,例如,色温为4000K对应的场景光线。例如,在目标场景的场景光线下,所述用户设备向所述用户眼睛视网膜发射第一红外线发射信号。在一些实施例中,所述第一信号信息包括但不限于电压值,例如,所述第一信号信息是基于第一红外线接收信号的光强信息转换所得的电压值。例如,所述用户设备向用户眼睛视网膜发射第一红外线发射信号,所述用户眼睛视网膜基于所述第一红外线发射信号反射回红外线信号,所述用户设备接收该用户眼睛反射回的红外线信号,该反射回的红外线信号作为第一红外线接收信号,并基于该第一红外线接收信号的光强信息转换为电信号。
在步骤S202中,用户设备通过检测所述第一信号信息是否满足推荐场景光强信息所对应的目标信号分布,检测所述场景光线是否适合所述目标场景,其中所述推荐场景光强信息适用于所述目标场景。在一些实施例中,所述推荐场景光强信息包括但不限于适宜阅读的光强,例如,产生所述推荐场景光强信息的光线对应的色温为4000-4800K。在一些实施例中,所述目标信号分布包括但不限于该推荐场景光强信息所对应的电压范围(例如,电压区间或者包括多个电压值的电压集合)。例如,所述用户设备通过检测所述第一信号信息是否落入所述电压区间或者电压集合内检测所述场景光线是否适合所述目标场景。在一些实施例中,得到所述电压区间或者所述电压集合的配置条件与得到所述第一信号信息的配置条件相同。例如,所述电压区间或者所述电压集合中都会包括一个或多个第二信号信息,对于每个所述第二信号信息而言,得到该第二信号信息时的第二红外线发射信号的强度信息与所述第一红外线发射信号的强度信息相等,得到该第二信号信息时的第二用户设备距离用户眼睛视网膜的距离信息与所述用户设备距离用户眼睛视网膜的距离相等,得到该第二信号信息时的第二红外线接收信号的强度信息与所述第一红外线接收信号的强度信息相等。例如,所述用户设备根据接收到的第一红外线接收信号转换成的对应的电压值为U1,推荐场景光强信息(例如适宜阅读的场景)对应的电压区间为[U2,U3],若U1在[U2,U3]的范围内,则确定该第一信号信息满足该推荐场景光强信息所对应的目标信号分布,即该目标场景适宜阅读。在本实施例中,通过检测由第一红外线接收信号转换获得的第一信号信息是否落在推荐场景光强信息所对应的目标信号分布内,确定该目标场景所对应的场景光线是否适合阅读,从而帮助用户避免因光线强度问题造成眼睛近视。
在一些实施例中,所述方法还包括步骤S203(未示出),在步骤S203中,若所述第一信号信息不满足所述目标信号分布,比较所述第一信号信息与所述目标信号分布的信号赋值范围;根据比较结果调节所述目标场景中场景光线,以使所述第一信号信息满足所述目标信号分布。例如,所述场景光线由所述光源设备提供。在一些实施例中,所述光源设备包括但不限于智能台灯。例如,若所述第一信号信息未满足所述目标信号分布,则说明当前的目标场景中场景光线不利于用户眼睛。例如,用户正在阅读(例如,所述目标场景为阅读场景),但是该阅读环境中的场景光线(例如,灯光)不适合阅读(目标场景)。则所述用户设备比较所述第一信号 信息与该目标信号分布的信号赋值范围,若该第一信号信息是小于信号赋值范围的最小值,则说明需要调亮所述目标场景的场景光线;若该第一信号信息是大于信号赋值范围的最大值,则说明需要调暗所述目标场景的场景光线,最终使所述第一信号信息满足所述目标信号分布。例如,所述用户设备根据所获得的检测结果(例如,所述第一信号信息大于所述最大值或者小于所述最小值的检测结果)对光源设备(例如,智能台灯)执行相对应的场景光线控制操作。
例如,在一个具体的应用场景中,用户在室内的智能台灯下进行阅读,该智能台灯所发出的灯光为目标场景中的场景光线。在合理的情况下,该场景光线应该是适用于该目标场景的,例如,该台灯发出的灯光是适合阅读的,用户在该场景光线中长时间阅读后,眼睛不会有不舒服的感觉。在该应用场景中,该用户可通过本申请所述的方法检测该目标场景中的光线是否适合阅读,若所述用户设备获取到的第一信号信息未满足该推荐场景场景光强信息所对应的目标信号分布,说明不适合,则该用户设备对该智能台灯执行相应场景光线控制操作,及时自动调整台灯的灯光强度,使得到的第一信号信息满足推荐场景光强信息所对应的目标信号分布的范围内,从而使得该用户在一个适合阅读的环境中进行阅读。在一些实施例中,用户设备通过发送控制指令信息来调节所述目标场景中的场景光线,使所述场景光线与所述推荐场景光强信息相匹配。例如,该光源设备中包括通信模块,该通信模块用于与所述用户设备之间的通信,例如,接收该控制指令信息。例如,若该第一信号信息小于该目标信号分布信号赋值范围的最小值,则输出调大电压的控制指令信息,以调亮该灯光设备的亮度;若该第一信号信息大于该目标信号分布信号赋值范围的最大值,则输出调小电压的控制指令信息,以调暗该灯光设备的亮度。在本实施例中,通过根据比较结果输出对应的控制指令信息,以实时自动调节当前的目标场景中的场景光线,使该场景光线适用于该目标场景。
在一些实施例中,所述方法还包括步骤S204(未示出),在步骤S204中,若所述第一信号信息不满足所述目标信号分布,比较所述第一信号信息与所述目标信号分布的信号赋值范围;根据比较结果获取对应的场景光线提示信息;呈现所述场景光线提示信息。例如,参考图4所示的场景示意图,若所述第一信号信息未满足所述目标信号分布,则说明当前的目标场景中场景光线不适合该目标场景,例如,用户正在阅读(目标场景),但是该阅读环境中的场景光线(例如,灯光)不适合 阅读(目标场景)。则该用户设备根据该比较结果(例如,第一信号信息小于所述信号赋值范围的最小值,或者第一信号信息大于所述信号赋值范围的最大值)获取相应场景光线提示信息,并呈现所述场景光线提示信息。可以通过呈现文字或者呈现语音的方式提示用户当前的场景光线不适用于当前的目标场景。例如,所述用户设备预设第一信号信息小于所述目标信号分布的信号赋值范围的最小值时获取“当前光线较暗”的场景光线提示信息,并呈现该场景光线提示信息;在第一信号信息大于所述目标信号分布的信号赋值范围的最大值时获取“当前光线较亮”的场景光线提示信息,并呈现该场景光线提示信息。及时通过该光线提示信息提醒用户当前环境不适宜阅读。
在一些实施例中,所述方法还包括步骤S205(未示出),在步骤S205中,用户设备基于多个第二信号信息获取所述推荐场景光强信息所对应的目标信号分布。在一些实施例中,所述第二信号信息包括电信号,所述第二信号信息是基于大量的实验获取的,以基于多个第二信号信息构建所述目标信号分布。
在一些实施例中,所述步骤S205包括:对于适合所述目标场景的一个或多个推荐场景光强,获取并记录在每个推荐场景光强下得到的第二信号信息,其中,该第二信号信息是基于第二红外线发射信号在该推荐场景光强下所对应的第二红外线接收信号的光强信息转换所得,所述第二红外线发射信号用于向该推荐场景光强下的人眼视网膜发射,所述第二红外线接收信号为所述第二红外线发射信号经所述人眼视网膜反射的红外线信号;根据所述一个或多个推荐场景光强中每个推荐场景光强所对应的所述第二信号信息、第二红外线发射信号的发射强度信息、发射所述第二红外线发射信号的第二用户设备距离所述人眼视网膜的距离信息构建所述推荐场景光强所对应的目标信号分布。在一些实施例中,所述推荐场景光强包括适合所述目标场景的光强信息,例如,在所述目标场景(例如,阅读场景)中,在所述推荐场景光强下,用户眼睛是比较舒服的。例如,在阅读书籍时,光线的色温值在4000k-4800k之间时,用户眼睛是比较舒服的。在一些实施例中,所述推荐场景光强信息所对应的目标信号分布是基于适合所述目标场景的多个推荐场景光线得到的。在一些实施例中,所述目标信号分布是通过获取的多个第二信号信息、得到该第二信号信息时的第二红外线发射信号的发射强度信息、得到该第二信号信息时的第二用户设备距离用户眼睛视网膜的距离信息构建所述目标信号分布。例如,通过 多个第二信号信息、第二红外线发射信号的发射强度信息、所述第二用户设备距离用户眼睛视网膜的距离信息组成的三元组在三维坐标轴中构建的、曲面结构的目标信号分布,在检测时,检测得到的第一信号信息、第一红外线发射信号的发射强度信息、所述用户设备距离用户眼睛视网膜的距离信息所构成的三元组是否落在所述目标信号分布的曲面上,检测所述第一信号信息是否满足所述目标信号分布。在一些实施例中,用户设备将所述目标信号分布储存在本地,以用于后续检测目标场景中场景光线使用。
在一些实施例中,所述检测所述第一信号信息是否满足推荐场景光强信息所对应的目标信号分布,包括:通过检测所述第一信号信息、所述第一红外线发射信号的发射强度信息、所述用户设备距离所述用户眼睛视网膜的距离信息构成的三元组是否落在所述目标信号分布的范围内,检测所述第一信号信息是否所述目标信号分布。例如,所述目标信号分布是根据所述一个或多个推荐场景光线中每个推荐场景光线所对应的所述第二信号信息、第二红外线发射信号的发射强度信息、第二用户设备距离所述用户眼睛视网膜的距离信息构建的。则对应地,在实际检测时,则基于所述第一信号信息检测所述第一信号信息是否满足所述推荐场景光强信息所对应的目标信号分布即可。例如,所目标信号分布包括基于多组第二信号信息、第二红外线发射信息的发射强度信息、第二用户设备距离用户眼睛视网膜的距离信息组成的三元组在三维坐标轴中组成的曲面,在检测所述第一信号信息是否满足该目标信号分布时,则通过检测获取的所述第一信号信息、第一红外线的发射强度信息、所述用户设备距离用户眼睛视网膜的距离信息所构成的三元组是否落在所述目标信号分布上,检测所述第一信号信息是否满足所述目标信号分布。
在一些实施例中,所述检测所述第一信号信息是否满足推荐场景光强信息所对应的目标信号分布,包括:通过检测所述第一信号信息是否落入所述目标信号分布在所述第一红外线发射信号的发射强度信息及所述用户设备距离所述用户眼睛视网膜的距离信息上的投影的范围内,检测所述第一信号信息是否满足推荐场景光强信息所对应的目标信号分布。例如,所目标信号分布包括基于多组第二信号信息、第二红外线发射信息的发射强度信息、第二用户设备距离用户眼睛视网膜的距离信息组成的三元组在三维坐标轴中组成的曲面。在检测所述第一信号信息是否满足所述目标信号分布时,在该三维坐标轴中,所述第一红外线发射信号的发射强度信息、 所述用户设备距离用户眼睛视网膜的距离信息构成平行于Z轴的一条直线,所述第一信号信息的取值为该直线与该曲面的交点的任一点上的取值,都说明所述第一信号信息满足所述目标信号分布。
图6示出了根据本申请另一个实施例的一种用于检测场景光线的用户设备的设备结构图,该设备包括二一模块、二二模块。所述二一模块,用于获取目标场景中场景光线所对应的第一信号信息,其中,所述第一信号信息是基于第一红外线发射信号对应的第一红外线接收信号的光强信息转换所得,所述第一红外线发射信号用于向用户眼睛视网膜发射,所述第一红外线接收信号为所述第一红外线发射信号经所述用户眼睛视网膜反射的红外线信号;所述二二模块,用于通过检测所述第一信号信息是否满足推荐场景光强信息所对应的目标信号分布,检测所述场景光线是否适合所述目标场景,其中所述推荐场景光强信息适用于所述目标场景。
在此,有关上述二一模块、二二模块的具体实现方式的示例与上述步骤S201、步骤S202的实施例相同或相近,故不再赘述,在此以引用方式包含于此。
在一些实施例中,所述设备还包括二三模块(未示出),二三模块,用于若所述第一信号信息不满足所述目标信号分布,比较所述第一信号信息与所述目标信号分布的信号赋值范围;根据比较结果调节所述目标场景中场景光线,以使所述第一信号信息满足所述目标信号分布。
在此,有关上述二三模块的具体实现方式的示例与上述步骤S203的实施例相同或相近,故不再赘述,在此以引用方式包含于此。
在一些实施例中,所述设备还包括二四模块(未示出),二四模块用于若所述第一信号信息不满足所述目标信号分布,比较所述第一信号信息与所述目标信号分布的信号赋值范围;根据比较结果获取对应的场景光线提示信息;呈现所述场景光线提示信息。
在此,有关上述二四模块的具体实现方式的示例与上述步骤S204的实施例相同或相近,故不再赘述,在此以引用方式包含于此。
在一些实施例中,所述设备还包括二五模块(未示出),所述二五模块用于基于多个第二信号信息获取所述推荐场景光强信息所对应的目标信号分布。
在此,有关上述二五模块的具体实现方式的示例与上述步骤S205的实施例相同或相近,故不再赘述,在此以引用方式包含于此。
在一些实施例中,所述二五模块用于:对于适合所述目标场景的一个或多个推荐场景光强,获取并记录在每个推荐场景光强下得到的第二信号信息,其中,该第二信号信息是基于第二红外线发射信号在该推荐场景光强下所对应的第二红外线接收信号的光强信息转换所得,所述第二红外线发射信号用于向该推荐场景光强下的人眼视网膜发射,所述第二红外线接收信号为所述第二红外线发射信号经所述人眼视网膜反射的红外线信号;根据所述一个或多个推荐场景光强中每个推荐场景光强所对应的所述第二信号信息、第二红外线发射信号的发射强度信息、发射所述第二红外线发射信号的第二用户设备距离所述人眼视网膜的距离信息构建所述推荐场景光强所对应的目标信号分布。
在此,有关上述二五模块的具体实现方式的示例与上述步骤S205的实施例相同或相近,故不再赘述,在此以引用方式包含于此。
在一些实施例中,所述检测所述第一信号信息是否满足推荐场景光强信息所对应的目标信号分布,包括:通过检测所述第一信号信息、所述第一红外线发射信号的发射强度信息、所述用户设备距离所述用户眼睛视网膜的距离信息构成的三元组是否落在所述目标信号分布的范围内,检测所述第一信号信息是否所述目标信号分布。
在一些实施例中,所述检测所述第一信号信息是否满足推荐场景光强信息所对应的目标信号分布,包括:通过检测所述第一信号信息是否落入所述目标信号分布在所述第一红外线发射信号的发射强度信息及所述用户设备距离所述用户眼睛视网膜的距离信息上的投影的范围内,检测所述第一信号信息是否满足推荐场景光强信息所对应的目标信号分布。
本申请还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机代码,当所述计算机代码被执行时,如前任一项所述的方法被执行。
本申请还提供了一种计算机程序产品,当所述计算机程序产品被计算机设备执行时,如前任一项所述的方法被执行。
本申请还提供了一种计算机设备,所述计算机设备包括:
一个或多个处理器;
存储器,用于存储一个或多个计算机程序;
当所述一个或多个计算机程序被所述一个或多个处理器执行时,使得所述一个 或多个处理器实现如前任一项所述的方法。
图7示出了可被用于实施本申请中所述的各个实施例的示例性系统;
如图7所示在一些实施例中,系统1000能够作为各所述实施例中的任意一个网络设备、第一用户设备或第二用户设备。在一些实施例中,系统1000可包括具有指令的一个或多个计算机可读介质(例如,系统存储器或NVM/存储设备1020)以及与该一个或多个计算机可读介质耦合并被配置为执行指令以实现模块从而执行本申请中所述的动作的一个或多个处理器(例如,(一个或多个)处理器1005)。
对于一个实施例,系统控制模块1010可包括任意适当的接口控制器,以向(一个或多个)处理器1005中的至少一个和/或与系统控制模块1010通信的任意适当的设备或组件提供任意适当的接口。
系统控制模块1010可包括存储器控制器模块1030,以向系统存储器1015提供接口。存储器控制器模块1030可以是硬件模块、软件模块和/或固件模块。
系统存储器1015可被用于例如为系统1000加载和存储数据和/或指令。对于一个实施例,系统存储器1015可包括任意适当的易失性存储器,例如,适当的DRAM。在一些实施例中,系统存储器1015可包括双倍数据速率类型四同步动态随机存取存储器(DDR4SDRAM)。
对于一个实施例,系统控制模块1010可包括一个或多个输入/输出(I/O)控制器,以向NVM/存储设备1020及(一个或多个)通信接口1025提供接口。
例如,NVM/存储设备1020可被用于存储数据和/或指令。NVM/存储设备1020可包括任意适当的非易失性存储器(例如,闪存)和/或可包括任意适当的(一个或多个)非易失性存储设备(例如,一个或多个硬盘驱动器(Hard Disk,HDD)、一个或多个光盘(CD)驱动器和/或一个或多个数字通用光盘(DVD)驱动器)。
NVM/存储设备1020可包括在物理上作为系统1000被安装在其上的设备的一部分的存储资源,或者其可被该设备访问而不必作为该设备的一部分。例如,NVM/存储设备1020可通过网络经由(一个或多个)通信接口1025进行访问。
(一个或多个)通信接口1025可为系统1000提供接口以通过一个或多个网络和/或与任意其他适当的设备通信。系统1000可根据一个或多个无线网络标准和/或协议中的任意标准和/或协议来与无线网络的一个或多个组件进行无线通信。
对于一个实施例,(一个或多个)处理器1005中的至少一个可与系统控制模块 1010的一个或多个控制器(例如,存储器控制器模块1030)的逻辑封装在一起。对于一个实施例,(一个或多个)处理器1005中的至少一个可与系统控制模块1010的一个或多个控制器的逻辑封装在一起以形成系统级封装(SiP)。对于一个实施例,(一个或多个)处理器1005中的至少一个可与系统控制模块1010的一个或多个控制器的逻辑集成在同一模具上。对于一个实施例,(一个或多个)处理器1005中的至少一个可与系统控制模块1010的一个或多个控制器的逻辑集成在同一模具上以形成片上系统(SoC)。
在各个实施例中,系统1000可以但不限于是:服务器、工作站、台式计算设备或移动计算设备(例如,膝上型计算设备、手持计算设备、平板电脑、上网本等)。在各个实施例中,系统1000可具有更多或更少的组件和/或不同的架构。例如,在一些实施例中,系统1000包括一个或多个摄像机、键盘、液晶显示器(LCD)屏幕(包括触屏显示器)、非易失性存储器端口、多个天线、图形芯片、专用集成电路(ASIC)和扬声器。
需要注意的是,本申请可在软件和/或软件与硬件的组合体中被实施,例如,可采用专用集成电路(ASIC)、通用目的计算机或任何其他类似硬件设备来实现。在一个实施例中,本申请的软件程序可以通过处理器执行以实现上文所述步骤或功能。同样地,本申请的软件程序(包括相关的数据结构)可以被存储到计算机可读记录介质中,例如,RAM存储器,磁或光驱动器或软磁盘及类似设备。另外,本申请的一些步骤或功能可采用硬件来实现,例如,作为与处理器配合从而执行各个步骤或功能的电路。
另外,本申请的一部分可被应用为计算机程序产品,例如计算机程序指令,当其被计算机执行时,通过该计算机的操作,可以调用或提供根据本申请的方法和/或技术方案。本领域技术人员应能理解,计算机程序指令在计算机可读介质中的存在形式包括但不限于源文件、可执行文件、安装包文件等,相应地,计算机程序指令被计算机执行的方式包括但不限于:该计算机直接执行该指令,或者该计算机编译该指令后再执行对应的编译后程序,或者该计算机读取并执行该指令,或者该计算机读取并安装该指令后再执行对应的安装后程序。在此,计算机可读介质可以是可供计算机访问的任意可用的计算机可读存储介质或通信介质。
通信介质包括藉此包含例如计算机可读指令、数据结构、程序模块或其他数据 的通信信号被从一个系统传送到另一系统的介质。通信介质可包括有导的传输介质(诸如电缆和线(例如,光纤、同轴等))和能传播能量波的无线(未有导的传输)介质,诸如声音、电磁、RF、微波和红外。计算机可读指令、数据结构、程序模块或其他数据可被体现为例如无线介质(诸如载波或诸如被体现为扩展频谱技术的一部分的类似机制)中的已调制数据信号。术语“已调制数据信号”指的是其一个或多个特征以在信号中编码信息的方式被更改或设定的信号。调制可以是模拟的、数字的或混合调制技术。
作为示例而非限制,计算机可读存储介质可包括以用于存储诸如计算机可读指令、数据结构、程序模块或其它数据的信息的任何方法或技术实现的易失性和非易失性、可移动和不可移动的介质。例如,计算机可读存储介质包括,但不限于,易失性存储器,诸如随机存储器(RAM,DRAM,SRAM);以及非易失性存储器,诸如闪存、各种只读存储器(ROM,PROM,EPROM,EEPROM)、磁性和铁磁/铁电存储器(MRAM,FeRAM);以及磁性和光学存储设备(硬盘、磁带、CD、DVD);或其它现在已知的介质或今后开发的能够存储供计算机系统使用的计算机可读信息/数据。
在此,根据本申请的一个实施例包括一个装置,该装置包括用于存储计算机程序指令的存储器和用于执行程序指令的处理器,其中,当该计算机程序指令被该处理器执行时,触发该装置运行基于前述根据本申请的多个实施例的方法和/或技术方案。
对于本领域技术人员而言,显然本申请不限于上述示范性实施例的细节,而且在不背离本申请的精神或基本特征的情况下,能够以其他的具体形式实现本申请。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本申请的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本申请内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。装置权利要求中陈述的多个单元或装置也可以由一个单元或装置通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。

Claims (19)

  1. 一种用于检测场景光线的方法,应用于用户设备端,其中,该方法包括:
    获取目标场景光线对应的目标光强信息,其中,所述目标场景光线用于在用户眼睛视网膜成像;
    若所述目标光强信息未满足与适合所述用户眼睛视网膜的推荐场景光线所对应的推荐光强信息分布,根据所述推荐光强信息分布调整所述目标场景光线,以使所述目标光强信息满足所述推荐光强信息分布。
  2. 根据权利要求1所述的方法,其中,所述获取目标场景光线对应的目标光强信息,其中,所述目标场景光线用于在用户眼睛视网膜成像,包括:
    在目标光源光线下获取所述目标场景光线对应的第一信号信息;
    根据所述第一信号信息查询获取与所述第一信号信息相对应的第二光强信息,以作为所述目标场景光线对应的目标光强信息。
  3. 根据权利要求2所述的方法,其中,所述在目标光源光线下获取所述目标场景光线对应的第一信号信息,包括:
    在所述目标光源光线下向所述用户眼睛视网膜发射第一红外线发射信号;
    接收对应的第一红外线接收信号,其中,所述第一红外线接收信号是所述第一红外线发射信号经所述用户眼睛视网膜反射的红外线信号;
    基于所述第一红外线接收信号的光强信息转换得到所述第一信号信息,其中,所述第一信号信息对应于所述目标场景光线,所述目标场景光线用于在用户眼睛视网膜成像。
  4. 根据权利要求2所述的方法,其中,所述根据所述第一信号信息查询获取与所述第一信号信息相对应的第二光强信息,以作为所述目标场景光线对应的目标光强信息,包括:
    根据所述第一信号信息及所述第一信号信息的第一配置相关信息查询获取与所述第一信号信息相对应的第二光强信息,将该第二光强信息作为所述目标场景光线对应的目标光强信息,其中,所述第二光强信息对应的第二信号信息与所述第一信号信息相匹配,所述第二信号信息的第二配置相关信息与所述第一配置相关信息相匹配。
  5. 根据权利要求4所述的方法,其中,所述根据所述第一信号信息及所述第一信号 信息的第一配置相关信息查询获取与所述第一信号信息相对应的第二光强信息,将该第二光强信息作为所述目标场景光线对应的目标光强信息,其中,所述第二光强信息对应的第二信号信息与所述第一信号信息相匹配,所述第二信号信息的第二配置相关信息与所述第一配置相关信息相匹配,包括:
    根据所述第一信号信息及所述第一信号信息的第一配置相关信息在信号数据库中查询与该第一信号信息相对应的第二光强信息,将该第二光强信息作为所述目标场景光线对应的目标光强信息,其中,所述第二光强信息对应的第二信号信息与所述第一信号信息相匹配,所述第二信号信息的第二配置相关信息与所述第一配置相关信息相匹配,所述信号数据库中包括多条映射关系,每条映射关系用于关联信号信息与该信号信息对应的光强信息。
  6. 根据权利要求5所述的方法,其中,所述根据所述第一信号信息及所述第一信号信息的第一配置相关信息在信号数据库中查询与该第一信号信息相对应的第二光强信息,将该第二光强信息作为所述目标场景光线对应的目标光强信息,其中,所述第二光强信息对应的第二信号信息与所述第一信号信息相匹配,所述第二信号信息的第二配置相关信息与所述第一配置相关信息相匹配,所述信号数据库中包括多条映射关系,每条映射关系用于关联信号信息与该信号信息对应的光强信息,包括:
    根据所述第一信号信息从所述信号数据库中查询与该第一信号信息相匹配的待匹配信号信息,其中,所述信号数据库中包括多条映射关系,每条映射关系用于关联信号信息与该信号信息对应的光强信息,每个信号信息都有其对应的配置相关信息;
    根据所述第一配置相关信息从所述待匹配信号信息对应的配置相关信息中查询与该第一配置相关信息相匹配的配置相关信息,并将该配置相关信息对应的待匹配信号信息作为所述第二信号信息,与该第二信号信息存在映射关系的光强信息确定为与所述第一信号信息相对应的目标光强信息,将该配置相关信息作为所述第二配置相关信息。
  7. 根据权利要求4至6中任一项所述的方法,其中,所述第一配置相关信息包括所述第一红外线发射信号的第一发射强度信息、所述用户设备距离所述用户眼睛视网膜的第一实时距离信息;所述第一发射强度信息包括第一实时发射强度信息或者第一配置发射强度信息;
    所述第二信号信息的第二配置相关信息包括获取该第二信号信息时的第二红外线发射信号的第二发射强度信息、第二用户设备距离用户眼睛视网膜的第二距离信息。
  8. 根据权利要求5或6所述的方法,其中,所述方法还包括:
    建立或更新所述信号数据库。
  9. 根据权利要求8所述的方法,其中,所述建立或更新所述信号数据库,包括:
    获取并记录在多个场景光线下得到的信号信息,其中,该信号信息是基于第三红外线发射信号在该场景光线下所对应的第三红外线接收信号的光强信息转换所得,所述第三红外线发射信号用于向该场景光线下的人眼视网膜发射,所述第三红外线接收信号为所述第三红外线发射信号经所述人眼视网膜反射的红外线信号;
    对于每个信号信息,确定该信号信息对应的光强信息,并根据得到该信号信息的第三红外线发射信号的第三发射强度信息、第三红外线发射信号的发射设备距离所述用户眼睛视网膜的第三距离信息生成该信号信息的第三配置相关信息;
    在所述信号数据库中建立所述信号信息与该信号信息对应的光强信息之间的映射关系,并记录得到该信号信息的第三配置相关信息,以建立或更新所述信号数据库。
  10. 一种用于检测场景光线的方法,应用于用户设备端,其中,该方法包括:
    获取目标场景中场景光线所对应的第一信号信息,其中,所述第一信号信息是基于第一红外线发射信号对应的第一红外线接收信号的光强信息转换所得,所述第一红外线发射信号用于向用户眼睛视网膜发射,所述第一红外线接收信号为所述第一红外线发射信号经所述用户眼睛视网膜反射的红外线信号;
    通过检测所述第一信号信息是否满足推荐场景光强信息所对应的目标信号分布,检测所述场景光线是否适合所述目标场景,其中所述推荐场景光强信息适用于所述目标场景。
  11. 根据权利要求10所述的方法,其中,所述方法还包括:
    若所述第一信号信息不满足所述目标信号分布,比较所述第一信号信息与所述目标信号分布的信号赋值范围;
    根据比较结果调节所述目标场景中场景光线,以使所述第一信号信息满足所述目标信号分布。
  12. 根据权利要求10所述的方法,其中,所述方法还包括:
    若所述第一信号信息不满足所述目标信号分布,比较所述第一信号信息与所述目标信号分布的信号赋值范围;
    根据比较结果获取对应的场景光线提示信息;
    呈现所述场景光线提示信息。
  13. 根据权利要求10所述的方法,其中,所述方法还包括:
    基于多个第二信号信息获取所述推荐场景光强信息所对应的目标信号分布。
  14. 根据权利要求13所述的方法,其中,所述基于多个第二信号信息获取所述推荐场景光强信息所对应的目标信号分布,包括:
    对于适合所述目标场景的一个或多个推荐场景光强,获取并记录在每个推荐场景光强下得到的第二信号信息,其中,该第二信号信息是基于第二红外线发射信号在该推荐场景光强下所对应的第二红外线接收信号的光强信息转换所得,所述第二红外线发射信号用于向该推荐场景光强下的人眼视网膜发射,所述第二红外线接收信号为所述第二红外线发射信号经所述人眼视网膜反射的红外线信号;
    根据所述一个或多个推荐场景光强中每个推荐场景光强所对应的所述第二信号信息、第二红外线发射信号的发射强度信息、发射所述第二红外线发射信号的第二用户设备距离所述人眼视网膜的距离信息构建所述推荐场景光强所对应的目标信号分布。
  15. 根据权利要求10所述的方法,其中,所述检测所述第一信号信息是否满足推荐场景光强信息所对应的目标信号分布,包括:通过检测所述第一信号信息、所述第一红外线发射信号的发射强度信息、所述用户设备距离所述用户眼睛视网膜的距离信息构成的三元组是否落在所述目标信号分布的范围内,检测所述第一信号信息是否所述目标信号分布。
  16. 根据权利要求10所述的方法,其中,所述检测所述第一信号信息是否满足推荐场景光强信息所对应的目标信号分布,包括:
    通过检测所述第一信号信息是否落入所述目标信号分布在所述第一红外线发射信号的发射强度信息及所述用户设备距离所述用户眼睛视网膜的距离信息上的投影的范围内,检测所述第一信号信息是否满足推荐场景光强信息所对应的目标信号分布。
  17. 一种用于检测场景光线的设备,其中,该设备包括:
    处理器;以及
    被安排成存储计算机可执行指令的存储器,所述可执行指令在被执行时使所述处理器执行如权利要求1至16中任一项所述方法的操作。
  18. 一种存储指令的计算机可读介质,所述指令在被执行时使得系统进行如权利要求1至16中任一项所述方法的操作。
  19. 一种计算机程序产品,包括计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1至16中任一项所述方法的步骤。
PCT/CN2021/072987 2020-01-21 2021-01-21 一种用于检测场景光线的方法与设备 WO2021147931A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010072458 2020-01-21
CN202010072458.3 2020-01-21

Publications (1)

Publication Number Publication Date
WO2021147931A1 true WO2021147931A1 (zh) 2021-07-29

Family

ID=76116880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/072987 WO2021147931A1 (zh) 2020-01-21 2021-01-21 一种用于检测场景光线的方法与设备

Country Status (2)

Country Link
CN (1) CN112903094B (zh)
WO (1) WO2021147931A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201266272Y (zh) * 2008-07-21 2009-07-01 比亚迪股份有限公司 光强监控装置及具有该装置的头戴显示器
WO2011061975A1 (ja) * 2009-11-19 2011-05-26 シャープ株式会社 画像表示システム
CN103017896A (zh) * 2012-11-29 2013-04-03 广东欧珀移动通信有限公司 一种照度测量方法及装置
US20150116207A1 (en) * 2013-10-31 2015-04-30 Pegatron Corporation Electronic device and control method for screen thereof
CN104934014A (zh) * 2015-06-29 2015-09-23 广东欧珀移动通信有限公司 视力保护方法及装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4419489A1 (de) * 1994-06-03 1995-12-07 Amtech Ges Fuer Angewandte Mic Vorrichtung zum Messen der Pupillenreaktion eines Auges
AUPR872301A0 (en) * 2001-11-08 2001-11-29 Sleep Diagnostics Pty Ltd Alertness monitor
CN105049596B (zh) * 2015-06-01 2018-09-07 惠州Tcl移动通信有限公司 一种移动终端及其疲劳状态检测方法
CN106325475A (zh) * 2015-06-29 2017-01-11 北京智谷睿拓技术服务有限公司 光强度调节方法和设备
CN108040387A (zh) * 2017-09-04 2018-05-15 林铭钊 光检测装置及照明装置
CN108279496B (zh) * 2018-02-09 2021-02-19 京东方科技集团股份有限公司 一种视频眼镜的眼球追踪模组及其方法、视频眼镜
CN108595000B (zh) * 2018-04-20 2021-06-25 Oppo广东移动通信有限公司 屏幕亮度调节方法及装置
CN108811271A (zh) * 2018-04-28 2018-11-13 上海与德科技有限公司 一种灯光调节方法、装置、智能台灯和存储介质
CN108596972A (zh) * 2018-04-28 2018-09-28 上海与德科技有限公司 一种灯光调节方法、装置、智能台灯和存储介质
CN108735183A (zh) * 2018-05-07 2018-11-02 Oppo广东移动通信有限公司 显示屏亮度调整方法以及相关产品
CN109256042A (zh) * 2018-11-22 2019-01-22 京东方科技集团股份有限公司 显示面板、电子设备及人眼追踪方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201266272Y (zh) * 2008-07-21 2009-07-01 比亚迪股份有限公司 光强监控装置及具有该装置的头戴显示器
WO2011061975A1 (ja) * 2009-11-19 2011-05-26 シャープ株式会社 画像表示システム
CN103017896A (zh) * 2012-11-29 2013-04-03 广东欧珀移动通信有限公司 一种照度测量方法及装置
US20150116207A1 (en) * 2013-10-31 2015-04-30 Pegatron Corporation Electronic device and control method for screen thereof
CN104934014A (zh) * 2015-06-29 2015-09-23 广东欧珀移动通信有限公司 视力保护方法及装置

Also Published As

Publication number Publication date
CN112903094B (zh) 2022-11-08
CN112903094A (zh) 2021-06-04

Similar Documents

Publication Publication Date Title
KR102280603B1 (ko) 조도 센서를 제어하기 위한 전자 장치 및 방법
RU2705432C2 (ru) Отслеживание взгляда через очковую оптику
US9778102B2 (en) Ambient light sensor and adjusting method thereof, and electronic product
US10810773B2 (en) Headset display control based upon a user's pupil state
US10783835B2 (en) Automatic control of display brightness
KR102266468B1 (ko) 초점 제어 방법 및 그 전자 장치
WO2018171490A1 (zh) 虹膜识别系统及虹膜图像采集方法
CN110353449A (zh) 声控的梳妆镜
KR102548199B1 (ko) 전자 장치 및 전자 장치의 시선 추적 방법
US10719059B2 (en) Systems and methods for control of output from light output apparatus
US20170277258A1 (en) Method for adjusting screen luminance and electronic device
KR20190009101A (ko) 음성 인식 서비스 운용 방법, 이를 지원하는 전자 장치 및 서버
KR20180022112A (ko) 홍채 센서를 포함하는 전자 장치 및 이의 운용 방법
KR20190020578A (ko) 외부 광에 기반하여 이미지를 처리하는 방법 및 이를 지원하는 전자 장치
WO2015047288A1 (en) Using wavelength information for an ambient light environment to adjust display brightness and content
US10983349B2 (en) Method of dynamically adjusting display luminance flux in wearable heads-up displays
WO2019237838A1 (zh) 可穿戴设备的参数调整方法、装置、穿戴设备及存储介质
EP3626030B1 (en) Lighting system that maintains melanopic lux levels at the eye regardless of distance to user
WO2021147931A1 (zh) 一种用于检测场景光线的方法与设备
US20210144352A1 (en) Electronic apparatus for correcting color temperature of captured image using reference color information corresponding to external object, and method for controlling electronic apparatus
KR20200084383A (ko) 유전 정보를 활용하기 위한 방법 및 그 전자 장치
CN112857563B (zh) 一种用于检测场景光线的方法与设备
CN112924984B (zh) 一种用于控制场景光线的方法与设备
KR20150099672A (ko) 전자 장치 및 그것의 디스플레이 제어 방법
US10901501B2 (en) Ambient light intensity adjustment based upon pupil size

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21744685

Country of ref document: EP

Kind code of ref document: A1