WO2021147772A1 - 一种基于端口电流时序特征的直流换流阀状态检测方法 - Google Patents

一种基于端口电流时序特征的直流换流阀状态检测方法 Download PDF

Info

Publication number
WO2021147772A1
WO2021147772A1 PCT/CN2021/071988 CN2021071988W WO2021147772A1 WO 2021147772 A1 WO2021147772 A1 WO 2021147772A1 CN 2021071988 W CN2021071988 W CN 2021071988W WO 2021147772 A1 WO2021147772 A1 WO 2021147772A1
Authority
WO
WIPO (PCT)
Prior art keywords
valve
current
phase
conduction state
state
Prior art date
Application number
PCT/CN2021/071988
Other languages
English (en)
French (fr)
Inventor
李晓华
殷珊珊
李洁雯
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US17/761,729 priority Critical patent/US11959976B2/en
Publication of WO2021147772A1 publication Critical patent/WO2021147772A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/56Testing of electric apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2607Circuits therefor
    • G01R31/263Circuits therefor for testing thyristors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • G01R31/3271Testing of circuit interrupters, switches or circuit-breakers of high voltage or medium voltage devices
    • G01R31/3275Fault detection or status indication
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/66Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal
    • H02M7/68Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters
    • H02M7/72Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/75Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/757Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/7575Conversion of ac power input into dc power output; Conversion of dc power input into ac power output with possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only for high voltage direct transmission link
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/36Arrangements for transfer of electric power between ac networks via a high-tension dc link
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention relates to the technical field of high-voltage direct current transmission, in particular to a method for detecting the state of a direct current converter valve based on the sequence characteristics of port currents.
  • the actual grid DC transmission project cannot install measuring components inside the converter valve to measure the valve current. Only the external current transformer of the converter valve can measure the external three-phase AC electrical quantity and the DC electrical quantity of the valve. .
  • the HVDC protection system uses the characteristics of the electrical magnitude on both sides of the valve to distinguish. This kind of simple detection scheme using the external electrical quantity amplitude characteristic detection inevitably exists in the valve state discrimination mismatch situation. There are a large number of accidents of incorrect operation of DC protection on site. Therefore, it is particularly necessary to find the relationship between the valve conduction state and the timing characteristics and accurately determine whether the valve conduction state is normal from the perspective of reflecting the characteristics of the valve conduction state.
  • the purpose of the present invention is to solve the above-mentioned shortcomings in the prior art and provide a method for detecting the state of a DC converter valve based on the timing characteristics of the port current.
  • a method for detecting the status of a DC converter valve based on the time sequence characteristics of a port current includes the following steps:
  • VT 1 valve and VT 4 valve are connected in series to form the first branch.
  • VT 3 valve and VT 6 valve are connected in series to form the second branch,
  • VT 5 valve and VT 2 valve are connected in series to form the third branch.
  • the first, second, and third branches are connected in parallel to define VT 1 in the first branch.
  • the connection point between the valve and the VT 4 valve is the a-phase measurement point of the three-phase AC current.
  • connection point between the VT 3 valve and the VT 6 valve in the second branch is defined as the b-phase measurement point of the three-phase AC current.
  • the third branch is defined The connection point between the VT 5 valve and the VT 2 valve in the road is the c-phase measurement point of the three-phase AC current, and the three-phase AC current i a , i b , i c on the valve side of the converter of the DC transmission system is collected, where i a , I b and i c are the a-phase, b-phase and c-phase of the three-phase alternating current respectively;
  • the currents of the two phase commutation valves are equal as the reference value, greater than the reference value is defined as the valve on state, and less than the reference value is defined as the valve off state;
  • the valve current relative relationship is constructed by the ratio of the valve current conduction state and the valve current reference value.
  • the duty cycle of the valve current relative relationship is greater than the threshold, it is defined as the valve conduction state, and the valve current
  • the valve conduction state is integrated to construct the valve conduction time width.
  • step S2 and step S3 compare the time width of the valve conduction state of VT 1 valve, VT 2 valve, VT 3 valve, VT 4 valve, VT 5 valve and VT 6 valve with the time of normal operation valve conduction state Width, judge whether the valve status is normal according to the comparison result and locate the abnormal valve.
  • step S2 is as follows:
  • valve current i of the VT 1 valve, VT 2 valve, VT 3 valve, VT 4 valve, VT 5 valve and VT 6 valve by calculating the absolute values of the three-phase alternating current i a , i b and ic c VT1 , i VT2 , i VT3 , i VT4 , i VT5 , i VT6 , the formula is as follows:
  • i VT1 is VT 1 valve current
  • i VT2 is VT 2 valve current
  • i VT3 is VT 3 valve current
  • i VT4 is VT 4 valve current
  • i VT5 is VT 5 valve current
  • i VT6 is VT 6 valve current
  • i base is the reference value of the valve current
  • are the absolute values of the three-phase alternating current, max(
  • valve current to be greater than the valve current reference value as the valve current conduction state
  • i HVTm i VTm ;i VTm ⁇ i base (3)
  • step S3 is as follows:
  • valve current relative relationship S31. Define the ratio of the valve current conduction state to the valve current reference value as the valve current relative relationship S VT1 , S VT2 , S VT3 , S VT4 , S VT5 , S VT6 , the valve current relative relationship formula is as follows:
  • S VTm is the valve current relative relationship S VT1 , S VT2 , S VT3 , S VT4 , S VT5 , S VT6 ;
  • valve conduction state formula is as follows:
  • S HVTm is the valve conduction state
  • K is the critical value considering the calculation error
  • step S32 the valve conduction state is calculated by the integrator to calculate the valve conduction time width in each power frequency cycle.
  • the calculation formula is as follows:
  • t HVTm is the valve conduction time width
  • T is the time width of a power frequency cycle
  • step S4 is as follows:
  • t HVT_normal is the on-time width of the normal operation valve
  • is the sampling measurement error
  • valve conduction time width t HVTm is used to locate the abnormal valve according to the output state through the range comparator, and the judgment formula is as follows:
  • cs HVTm is the valve state signal
  • 2 represents the valve conduction state is too long
  • 1 represents the valve conduction state is normal
  • 0 represents the valve conduction state is shortened.
  • the present invention has the following advantages and effects:
  • the present invention provides a DC converter valve state detection method based on the timing characteristics of port currents. Through timing detection, the valve state can be reliably detected and abnormal valves can be located. This method can be applied to actual fault phase discrimination and commutation failure discrimination , Provide good support for the accurate judgment of DC control and protection.
  • Figure 1 is a schematic diagram of the high-voltage direct current transmission converter valve of the present invention
  • FIG 2 is a converter valve-side three-phase alternating current waveforms according to the present invention, the normal operation state of the valve, i a, i b, i c is a three-phase alternating current of the a-phase, b-phase, c-phase, i base is The equal current when the two converter valves commutate, Is the valve conduction time width;
  • Figure 3 is the timing detection logic diagram of the present invention
  • i k is the collected current of the three-phase AC current on the valve side of the converter
  • k a, b, c, t HVTm is the valve conduction time width
  • Fig. 4 is a flow chart of a DC converter valve state detection method based on the timing characteristics of port currents of the present invention to determine valve state and abnormal valve positioning.
  • i A1Y , i B1Y , and i C1Y are the three-phase AC current on the valve side;
  • valve current reference value of the present invention i base is the reference value of the valve current
  • FIG. 7 is a schematic diagram of the time width signal output by the timing detection simulation of the present invention.
  • t HVT1 , t HVT2 , t HVT3 , t HVT4 , t HVT5 , t HVT6 are the valve conduction time width output signals, and the area between the dotted lines represents the normal operation valve On-time width t HVT_normal ;
  • Figure 8 is a schematic diagram of the valve status signal output by the timing detection simulation of the present invention.
  • cs HVT1 , cs HVT2 , cs HVT3 , cs HVT4 , cs HVT5 , cs HVT6 are valve status signals, 2 represents the valve status is too long, and 1 represents the valve status is normal , 0 means that the valve state is shortened.
  • This embodiment provides a method for detecting the state of a DC converter valve based on the timing characteristics of port currents, which is implemented through the following technical solutions and includes the following steps:
  • the converter valve model of HVDC power transmission is shown in Figure 1.
  • the three-phase AC currents i a , i b , and i c on the valve side of the converter of the DC power transmission system are collected.
  • This step S2 specifically includes the following steps:
  • step S1 obtain the absolute values of the three-phase AC currents i a , i b , i c , and obtain 6 valve currents i VT1 , i VT2 , i VT3 , i VT4 , i VT5 , i VT6 , the formula is as follows :
  • i VT1 is VT 1 valve current
  • i VT2 is VT 2 valve current
  • i VT3 is VT 3 valve current
  • i VT4 is VT 4 valve current
  • i VT5 is VT 5 valve current
  • i VT6 is VT 6 valve current.
  • i base is the reference value of the valve current
  • are the absolute values of the three-phase alternating current
  • valve current to be greater than the valve current reference value as the valve current conduction state
  • i HVTm i VTm ;i VTm ⁇ i base (3)
  • m 1, 2, 3, 4, 5, 6, i HVTm is the valve current conduction state.
  • This step S3 specifically includes the following steps:
  • valve current relative relationship S31. Define the ratio of the valve current conduction state to the valve current reference value as the valve current relative relationship S VT1 , S VT2 , S VT3 , S VT4 , S VT5 , S VT6 , the valve current relative relationship formula is as follows:
  • S VTm is the valve current relative relationship S VT1 , S VT2 , S VT3 , S VT4 , S VT5 , S VT6 .
  • step S31 the valve current relative relationship S VTm is obtained through a single-phase comparator to obtain the valve current duty ratio, and the valve current duty ratio is defined to be greater than K as the valve conduction state S HVTm .
  • the valve conduction state formula is as follows:
  • m 1, 2, 3, 4, 5, 6, S HVTm is the valve conduction state, and K is the critical value considering the calculation error.
  • step S32 the valve conduction state is obtained by the integrator to calculate the valve conduction time width in each power frequency cycle, the formula is as follows:
  • m 1, 2, 3, 4, 5, 6, t HVTm is the valve conduction time width, and T is the time width of a power frequency cycle.
  • step S2 and step S3 the on-time width t VH and off-time width t VL of each valve in normal operation can be obtained. Compare the time width of the conduction state of the 6 valves with the time width of the conduction state of the normal operation valve , According to the comparison result, judge whether the valve status is normal and locate the abnormal valve.
  • This step S4 specifically includes the following steps:
  • step S41 six three-phase normal operation the valve (VT 1, VT 2, VT 3, VT 4, VT 5, VT 6) at 60 ° phase intervals, etc. are sequentially turned on in turn trigger, according to step S2 and step S3 are available.
  • the time width of the conduction state of each valve during normal operation the formula is as follows:
  • t HVT_normal is the conduction time width of the valve in normal operation.
  • m 1, 2, 3, 4, 5, 6, and ⁇ is the sampling measurement error.
  • valve conduction time width t HVTm is used to locate the abnormal valve according to the output state via the range comparator, the formula is as follows, and the valve state detection and positioning flowchart is shown in Figure 4;
  • cs HVTm is the valve state signal
  • 2 represents the valve conduction state is too long
  • 1 represents the valve conduction state is normal
  • 0 represents the valve conduction
  • the pass state is shortened.
  • the calculation is carried out in the actual power grid project, and the present invention is further described in detail.
  • valve current reference value is defined, As shown in Figure 6; when the valve current is greater than the valve current reference value, it is defined as the valve current conduction state.
  • the logic is as follows: the valve current relative relationship is constructed by the ratio of the valve current conduction state and the valve current reference value. When the duty cycle of the valve current relative relationship is greater than the threshold value, it is defined as the valve conduction state; the valve is conducted in a cycle The on-state is integrated to construct the valve on-time width, as shown in Figure 7.
  • the valve state signal cs HVTm is obtained to detect whether the valve state is abnormal and locate the abnormal valve.
  • the above embodiments provide a DC converter valve state detection method based on port current timing characteristics.
  • the purpose is to accurately detect the conduction state of each valve and locate abnormal valves, which provides a good solution for accurate determination of DC control protection. Support.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Rectifiers (AREA)

Abstract

一种基于端口电流时序特征的直流换流阀状态检测方法,包括以下步骤:采集直流输电系统换流器阀侧三相交流电流;以两换流阀换相时的相等电流为基准值,大于基准值定义为阀导通状态,小于基准值定义为阀关断状态;依据三相交流电流幅值之间的相对关系,计算每个阀导通状态的时间宽度;对比6个阀导通状态的时间宽度与正常运行阀导通状态的时间宽度,依据比较结果判断6个阀状态是否正常并定位所有存在异常的阀。检测方法通过时序检测能可靠的检测阀状态并定位异常的阀,可以运用到实际的故障相判别和换相失败判别,为直流控制保护中精确判别提供良好的支撑。

Description

一种基于端口电流时序特征的直流换流阀状态检测方法 技术领域
本发明涉及高压直流输电技术领域,具体涉及一种基于端口电流时序特征的直流换流阀状态检测方法。
背景技术
由于设备散热、绝缘等工艺设计的原因,实际电网直流输电工程的换流阀内部无法安装测量元件测量阀电流,只能通过换流阀外部电流互感器测量阀外部三相交流电气量和直流电气量。当发生故障或异常运行时,阀导通状态特征会发生改变,进而直接威胁阀的安全运行,需要对应配置保护。目前,由于阀的运行状态无法直接检测,高压直流输电保护系统采用阀外部两侧电气量幅值特征进行判别。这种单纯的用外部电气量幅值特征检测的方案,必然存在阀状态判别失配情况。大量现场直流保护不正确动作事故,因此,从反映阀导通状态特性出发,寻找阀导通状态与时序特征的关系,准确判别阀导通状态是否正常的技术方案研究显得尤为必要。
发明内容
本发明的目的是为了解决现有技术中的上述缺陷,提供一种基于端口电流时序特征的直流换流阀状态检测方法。
本发明的目的可以通过采取如下技术方案达到:
一种基于端口电流时序特征的直流换流阀状态检测方法,所述的状态 检测方法包括以下步骤:
S1、定义高压直流输电换流阀模型,包括VT 1阀、VT 2阀、VT 3阀、VT 4阀、VT 5阀和VT 6阀,其中,VT 1阀与VT 4阀串联组成第一支路,VT 3阀与VT 6阀串联组成第二支路,VT 5阀与VT 2阀串联组成第三支路,第一、第二、第三支路并联,定义第一支路中VT 1阀与VT 4阀的连接点为三相交流电流的a相测量点,定义第二支路中VT 3阀与VT 6阀的连接点为三相交流电流的b相测量点,定义第三支路中VT 5阀与VT 2阀的连接点为三相交流电流的c相测量点,采集直流输电系统换流器阀侧的三相交流电流i a、i b、i c,其中,i a、i b、i c分别为三相交流电流的a相、b相、c相;
S2、以两换相阀电流相等为基准值,大于基准值定义为阀导通状态,小于基准值定义为阀关断状态;
S3、定义时序检测,逻辑如下:通过阀电流导通状态和阀电流基准值比值构造阀电流相对关系,当阀电流相对关系占空比大于阈值时定义为阀导通状态,在一个周期内对阀导通状态进行积分构造阀导通时间宽度。
S4、依据步骤S2和步骤S3,对比VT 1阀、VT 2阀、VT 3阀、VT 4阀、VT 5阀和VT 6阀的阀导通状态的时间宽度与正常运行阀导通状态的时间宽度,依据比较结果判断阀状态是否正常并定位异常阀。
进一步地,所述的步骤S2过程如下:
S21、通过求取三相交流电流i a、i b、i c的绝对值,分别得到VT 1阀、VT 2阀、VT 3阀、VT 4阀、VT 5阀和VT 6阀的阀电流i VT1、i VT2、i VT3、i VT4、i VT5、i VT6,公式如下:
Figure PCTCN2021071988-appb-000001
其中,i VT1为VT 1阀电流,i VT2为VT 2阀电流,i VT3为VT 3阀电流,i VT4为VT 4阀电流,i VT5为VT 5阀电流,i VT6为VT 6阀电流;
S22、求取三相交流电流i a、i b、i c绝对值的最大值作为阀电流的基准值,公式如下:
Figure PCTCN2021071988-appb-000002
其中,i base为阀电流基准值,|i a|、|i b|、|i c|为三相交流电流的绝对值,max(|i a|,|i b|,|i c|)为三相交流电流绝对值的最大值;
S23、定义阀电流大于阀电流基准值为阀电流导通状态,公式如下:
i HVTm=i VTm;i VTm≥i base   (3)
其中,m=1、2、3、4、5、6,i HVTm为阀电流导通状态。
进一步地,所述的步骤S3过程如下:
S31、定义阀电流导通状态与阀电流基准值的比值为阀电流相对关系S VT1、S VT2、S VT3、S VT4、S VT5、S VT6,阀电流相对关系公式如下:
Figure PCTCN2021071988-appb-000003
其中,S VTm为阀电流相对关系S VT1、S VT2、S VT3、S VT4、S VT5、S VT6
S32、将阀电流相对关系S VTm经过单相比较器求取阀电流占空比,定义阀电流占空比大于K为阀导通状态S HVTm,阀导通状态公式如下:
S HVTm=S VTm;S VTm>K     (5)
其中,S HVTm为阀导通状态,K为考虑计算误差的临界值;
S33、根据步骤S32通过积分器求取阀导通状态计算在每个工频周期的阀导通时间宽度,计算公式如下:
Figure PCTCN2021071988-appb-000004
其中,t HVTm为阀导通时间宽度,T为一个工频周期时间宽度;
进一步地,所述的步骤S4过程如下:
S41、正常运行时三相的VT 1阀、VT 2阀、VT 3阀、VT 4阀、VT 5阀和VT 6阀以60°的等相位间隔依次轮流触发导通,依据步骤S2和步骤S3得正常运行每个阀导通状态的时间宽度,公式如下:
Figure PCTCN2021071988-appb-000005
其中,t HVT_normal为正常运行阀导通时间宽度;
S42、根据步骤S33计算得到的实际阀导通时间宽度t HVTm与正常运行阀导通时间宽度t HVT_normal进行对比,判断每个阀导通状态是否异常,公式如下:
Figure PCTCN2021071988-appb-000006
其中,ε为采样测量误差;
S43、将阀导通时间宽度t HVTm经范围比较器依据输出状态定位异常阀,判断公式如下:
Figure PCTCN2021071988-appb-000007
其中,cs HVTm为阀状态信号,2代表阀导通状态超长,1代表阀导通状态正常,0代表阀导通状态缩短。
本发明相对于现有技术具有如下的优点及效果:
本发明提供一种基于端口电流时序特征的直流换流阀状态检测方法,通过时序检测能可靠的检测阀状态并定位异常的阀,这种方法可以运用到实际的故障相判别和换相失败判别,为直流控制保护精确判别提供良好的支撑。
附图说明
图1是本发明的高压直流输电换流阀示意图;
图2是本发明中阀状态正常运行时的换流器阀侧三相交流电流波形图,i a、i b、i c为三相交流电流的a相、b相、c相,i base是两换流阀换相时的相等电流,
Figure PCTCN2021071988-appb-000008
为阀导通时间宽度;
图3是本发明时序检测逻辑图,i k为换流器阀侧三相交流电流的采集电流,k=a、b、c,t HVTm为阀导通时间宽度,cs HVTm为阀导通状态信号,m=1、2、3、4、5、6;
图4是本发明的一种基于端口电流时序特征的直流换流阀状态检测方法流程图,用以判别阀状态和定位异常阀,t HVTm为阀导通时间宽度,m=1、2、3、4、5、6,ε为采样测量误差;
图5是本发明经过电流互感器采集的三相交流电流示意图,i A1Y、i B1Y、i C1Y为阀侧三相交流电流;
图6是本发明的阀电流基准值示意图,i base为阀电流的基准值;
图7是本发明的时序检测仿真输出的时间宽度信号示意图,t HVT1、t HVT2、t HVT3、t HVT4、t HVT5、t HVT6为阀导通时间宽度输出信号,虚线之间区域代表正常运行阀导通时间宽度t HVT_normal
图8是本发明的时序检测仿真输出的阀状态信号示意图,cs HVT1、cs HVT2、cs HVT3、cs HVT4、cs HVT5、cs HVT6为阀状态信号,2代表阀状态超长,1代表阀状态正常,0代表阀状态缩短。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
本实施例提供一种基于端口电流时序特征的直流换流阀状态检测方法,通过下述技术方案实施,包括以下几个步骤:
S1、高压直流输电换流阀模型如图1所示,采集直流输电系统换流器阀侧三相交流电流i a、i b、i c
S2、以两换相阀电流相等为基准值i base,大于基准值i base定义为阀导通状态,小于基准值i base定义为阀关断状态,如图2所示;
该步骤S2具体包括以下几个步骤:
S21、根据步骤S1,求取三相交流电流i a、i b、i c的绝对值,可得6个阀电流i VT1、i VT2、i VT3、i VT4、i VT5、i VT6,公式如下:
Figure PCTCN2021071988-appb-000009
其中:i VT1为VT 1阀电流,i VT2为VT 2阀电流,i VT3为VT 3阀电流,i VT4为VT 4阀电流,i VT5为VT 5阀电流,i VT6为VT 6阀电流。
S22、求取三相交流电流i a、i b、i c绝对值的最大值作为阀电流的基准值, 公式如下:
Figure PCTCN2021071988-appb-000010
其中:i base为阀电流基准值,|i a|、|i b|、|i c|为三相交流电流的绝对值,max(|i a|,|i b|,|i c|)为三相交流电流绝对值的最大值。
S23、定义阀电流大于阀电流基准值为阀电流导通状态,公式如下:
i HVTm=i VTm;i VTm≥i base    (3)
其中:m=1、2、3、4、5、6,i HVTm为阀电流导通状态。
S3、定义时序检测,逻辑如图3所示;
该步骤S3具体包括以下几个步骤:
S31、定义阀电流导通状态与阀电流基准值的比值为阀电流相对关系S VT1、S VT2、S VT3、S VT4、S VT5、S VT6,阀电流相对关系公式如下:
Figure PCTCN2021071988-appb-000011
其中:m=1、2、3、4、5、6,S VTm为阀电流相对关系S VT1、S VT2、S VT3、S VT4、S VT5、S VT6
S32、根据步骤S31,将阀电流相对关系S VTm经过单相比较器求取阀电流占空比,定义阀电流占空比大于K为阀导通状态S HVTm,阀导通状态公式如下:
S HVTm=S VTm;S VTm>K     (5)
其中:m=1、2、3、4、5、6,S HVTm为阀导通状态,K为考虑计算误差的临界值。
S33、根据步骤S32通过积分器求取阀导通状态计算在每个工频周期的阀导通时间宽度,公式如下:
Figure PCTCN2021071988-appb-000012
其中:m=1、2、3、4、5、6,t HVTm为阀导通时间宽度,T为一个工频周期时间宽度。
S4、依据步骤S2和步骤S3,可得正常运行每个阀导通时间宽度t VH和关断时间宽度t VL,对比6个阀导通状态的时间宽度与正常运行阀导通状态的时间宽度,依据比较结果判断阀状态是否正常并定位异常阀。
该步骤S4具体包括以下几个步骤:
S41、正常运行时三相6个阀(VT 1、VT 2、VT 3、VT 4、VT 5、VT 6)以60°的等相位间隔依次轮流触发导通,依据步骤S2和步骤S3可得正常运行每个阀导通状态的时间宽度,公式如下:
Figure PCTCN2021071988-appb-000013
其中:t HVT_normal为正常运行阀导通时间宽度。
S42、根据步骤S33计算得到的实际阀导通时间宽度t HVTm与正常运行阀导通时间宽度t HVT_normal进行对比,判断每个阀导通状态是否异常,公式如下:
Figure PCTCN2021071988-appb-000014
其中:m=1、2、3、4、5、6,ε为采样测量误差。
S43、将阀导通时间宽度t HVTm经范围比较器依据输出状态定位异常阀,公式如下,阀状态检测和定位流程图如图4所示;
Figure PCTCN2021071988-appb-000015
其中:m=1、2、3、4、5、6,ε为采样测量误差,cs HVTm为阀状态信号,2代表阀导通状态超长,1代表阀导通状态正常,0代表阀导通状态缩短。
实施例二
根据实施例一中公开的一种基于端口电流时序特征的直流换流阀状态检测方法,在实际电网工程里面进行测算,对本发明做进一步详细说明。
利用电流互感器采集换流器阀侧三相交流电流i A1Y、i B1Y、i C1Y,其波形如图5所示;
根据图5中的三相交流电流幅值信息i A1Y、i B1Y、i C1Y得到6个阀电流i VT1、i VT2、i VT3、i VT4、i VT5、i VT6,并定义阀电流基准值,如图6所示;将阀电流大于阀电流基准值时定义为阀电流导通状态。
定义时序检测,逻辑如下:通过阀电流导通状态和阀电流基准值比值构造阀电流相对关系,当阀电流相对关系占空比大于阈值时定义为阀导通状态;在一个周期内对阀导通状态进行积分构造阀导通时间宽度,如图7所示。
根据上述得到的阀导通时间宽度与正常运行阀导通时间宽度比较,得到阀状态信号cs HVTm来检测阀状态是否异常,并定位异常的阀。当cs HVTm=2代表阀导通状态超长,cs HVTm=1时代表阀导通状态正常,cs HVTm=0代表阀导通状态缩短,如图8所示。
综上所述,上述实施例提供一种基于端口电流时序特征的直流换流阀状态检测方法,目的是准确检测各个阀导通状态,并定位存在异常的阀,为直流控制保护精确判别提供良好的支撑。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (4)

  1. 一种基于端口电流时序特征的直流换流阀状态检测方法,其特征在于,所述的状态检测方法包括以下步骤:
    S1、定义高压直流输电换流阀模型,包括VT 1阀、VT 2阀、VT 3阀、VT 4阀、VT 5阀和VT 6阀,其中,VT 1阀与VT 4阀串联组成第一支路,VT 3阀与VT 6阀串联组成第二支路,VT 5阀与VT 2阀串联组成第三支路,第一、第二、第三支路并联,定义第一支路中VT 1阀与VT 4阀的连接点为三相交流电流的a相测量点,定义第二支路中VT 3阀与VT 6阀的连接点为三相交流电流的b相测量点,定义第三支路中VT 5阀与VT 2阀的连接点为三相交流电流的c相测量点,采集直流输电系统换流器阀侧的三相交流电流i a、i b、i c,其中,i a、i b、i c分别为三相交流电流的a相、b相、c相;
    S2、以两换相阀电流相等为基准值,大于基准值定义为阀导通状态,小于基准值定义为阀关断状态;
    S3、定义时序检测,逻辑如下:通过阀电流导通状态和阀电流基准值比值构造阀电流相对关系,当阀电流相对关系占空比大于阈值时定义为阀导通状态,在一个周期内对阀导通状态进行积分构造阀导通时间宽度;
    S4、依据步骤S2和步骤S3,对比VT 1阀、VT 2阀、VT 3阀、VT 4阀、VT 5阀和VT 6阀的阀导通状态的时间宽度与正常运行阀导通状态的时间宽度,依据比较结果判断阀状态是否正常并定位异常阀。
  2. 根据权利要求1所述的一种基于端口电流时序特征的直流换流阀状态检测方法,其特征在于,所述的步骤S2过程如下:
    S21、通过求取三相交流电流i a、i b、i c的绝对值,分别得到VT 1阀、VT 2 阀、VT 3阀、VT 4阀、VT 5阀和VT 6阀的阀电流i VT1、i VT2、i VT3、i VT4、i VT5、i VT6,公式如下:
    Figure PCTCN2021071988-appb-100001
    其中,i VT1为VT 1阀电流,i VT2为VT 2阀电流,i VT3为VT 3阀电流,i VT4为VT 4阀电流,i VT5为VT 5阀电流,i VT6为VT 6阀电流;
    S22、求取三相交流电流i a、i b、i c绝对值的最大值作为阀电流的基准值,公式如下:
    Figure PCTCN2021071988-appb-100002
    其中,i base为阀电流基准值,|i a|、|i b|、|i c|为三相交流电流的绝对值,max(|i a|,|i b|,|i c|)为三相交流电流绝对值的最大值;
    S23、定义阀电流大于阀电流基准值为阀电流导通状态,公式如下:
    i HVTm=i VTm;i VTm≥i base    (3)
    其中,m=1、2、3、4、5、6,i HVTm为阀电流导通状态。
  3. 根据权利要求1所述的一种基于端口电流时序特征的直流换流阀状态检测方法,其特征在于,所述的步骤S3过程如下:
    S31、定义阀电流导通状态与阀电流基准值的比值为阀电流相对关系S VT1、S VT2、S VT3、S VT4、S VT5、S VT6,阀电流相对关系公式如下:
    Figure PCTCN2021071988-appb-100003
    其中,S VTm为阀电流相对关系S VT1、S VT2、S VT3、S VT4、S VT5、S VT6, m=1、2、3、4、5、6,i HVTm为阀电流导通状态,i base为阀电流基准值;
    S32、将阀电流相对关系S VTm经过单相比较器求取阀电流占空比,定义阀电流占空比大于K为阀导通状态S HVTm,阀导通状态公式如下:
    S HVTm=S VTm;S VTm>K    (5)
    其中,S HVTm为阀导通状态,K为考虑计算误差的临界值;
    S33、根据步骤S32通过积分器求取阀导通状态计算在每个工频周期的阀导通时间宽度,计算公式如下:
    Figure PCTCN2021071988-appb-100004
    其中,t HVTm为阀导通时间宽度,T为一个工频周期时间宽度。
  4. 根据权利要求1所述的一种基于端口电流时序特征的直流换流阀状态检测方法,其特征在于,所述的步骤S4过程如下:
    S41、正常运行时三相的VT 1阀、VT 2阀、VT 3阀、VT 4阀、VT 5阀和VT 6阀以60°的等相位间隔依次轮流触发导通,依据步骤S2和步骤S3得正常运行每个阀导通状态的时间宽度,公式如下:
    Figure PCTCN2021071988-appb-100005
    其中,t HVT_normal为正常运行阀导通时间宽度,T为一个工频周期时间宽度;
    S42、根据步骤S33计算得到的实际阀导通时间宽度t HVTm与正常运行阀导通时间宽度t HVT_normal进行对比,判断每个阀导通状态是否异常,公式如下:
    Figure PCTCN2021071988-appb-100006
    其中,ε为采样测量误差;
    S43、将阀导通时间宽度t HVTm经范围比较器依据输出状态定位异常阀,判断公式如下:
    Figure PCTCN2021071988-appb-100007
    其中,cs HVTm为阀状态信号,2代表阀导通状态超长,1代表阀导通状态正常,0代表阀导通状态缩短。
PCT/CN2021/071988 2020-01-21 2021-01-15 一种基于端口电流时序特征的直流换流阀状态检测方法 WO2021147772A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/761,729 US11959976B2 (en) 2020-01-21 2021-01-15 DC converter valve state detection method based on temporal features of converter terminal currents

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010069208.4 2020-01-21
CN202010069208.4A CN111157827B (zh) 2020-01-21 2020-01-21 一种基于端口电流时序特征的直流换流阀状态检测方法

Publications (1)

Publication Number Publication Date
WO2021147772A1 true WO2021147772A1 (zh) 2021-07-29

Family

ID=70564851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071988 WO2021147772A1 (zh) 2020-01-21 2021-01-15 一种基于端口电流时序特征的直流换流阀状态检测方法

Country Status (3)

Country Link
US (1) US11959976B2 (zh)
CN (1) CN111157827B (zh)
WO (1) WO2021147772A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111157827B (zh) * 2020-01-21 2021-06-08 华南理工大学 一种基于端口电流时序特征的直流换流阀状态检测方法
CN112769132B (zh) * 2021-01-06 2022-08-12 华南理工大学 基于阀侧电流时序特征的换流阀状态与阀电流的求解方法
CN113933619B (zh) * 2021-09-10 2024-01-12 南方电网科学研究院有限责任公司 一种换相失败检测方法及装置
CN114024452B (zh) * 2021-11-16 2024-02-13 国网智能电网研究院有限公司 换流器的换相控制方法、装置、换流器及可读存储介质
CN114879023B (zh) * 2022-04-13 2024-06-14 华南理工大学 基于阀间横纵向状态差异的换流器阀级故障定位方法及系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353874A (zh) * 2011-07-11 2012-02-15 四川大学 基于换相电流时间面积指标的换相失败检测方法
KR101264743B1 (ko) * 2011-09-30 2013-05-14 한국전력공사 Hvdc 싸이리스터 전류 실패 발생 감시 장치
CN103713249A (zh) * 2013-12-27 2014-04-09 国家电网公司 一种换流阀运行试验状态参数的在线识别方法
CN203759149U (zh) * 2014-01-08 2014-08-06 中国南方电网有限责任公司超高压输电公司检修试验中心 高压直流输电工程换相失败判断装置
CN104267288A (zh) * 2014-10-08 2015-01-07 国家电网公司 基于阀电压或阀电流的hvdc换相失败故障诊断方法
CN104764991A (zh) * 2015-04-17 2015-07-08 孟异山 一种高压直流换流阀换相电路晶闸管运行状态检测方法
CN107942181A (zh) * 2018-01-04 2018-04-20 华南理工大学 换相失败识别方法、装置、存储介质和计算机设备
CN108152680A (zh) * 2017-12-29 2018-06-12 中国电建集团贵阳勘测设计研究院有限公司 一种检测直流输电换相失败的方法
CN111157827A (zh) * 2020-01-21 2020-05-15 华南理工大学 一种基于端口电流时序特征的直流换流阀状态检测方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101187690B (zh) * 2007-11-28 2010-06-02 中国电力科学研究院 直流换流阀恢复期间瞬时正向电压试验的方法
CN101452045B (zh) * 2008-12-26 2010-12-22 中国西电电气股份有限公司 一种高压直流输电换流阀运行试验的合成方法
CN101674023A (zh) * 2009-07-13 2010-03-17 华南理工大学 一种交直流互联系统谐波求解方法
CN101752873B (zh) * 2010-01-25 2012-05-23 株洲变流技术国家工程研究中心有限公司 一种直流输电高压换流站保护方法
KR101222654B1 (ko) * 2012-09-12 2013-01-21 주식회사 썬닉스 감시 시스템 및 그 방법
CN103065016B (zh) * 2013-01-07 2015-03-11 华南理工大学 确定引起直流换相失败的交流系统故障范围的方法
CN103488883A (zh) * 2013-09-11 2014-01-01 国家电网公司 一种高压直流输电换流阀换相失败监测方法
CN103728506B (zh) * 2013-11-04 2016-10-05 华南理工大学 Hvdc系统换流变压器铁芯饱和型谐波不稳定判定的方法
CN103744017B (zh) * 2014-01-14 2017-10-10 上海交通大学 特高压直流换流阀运行合成试验装置
CN104993493A (zh) * 2014-09-18 2015-10-21 中国南方电网有限责任公司超高压输电公司广州局 一种同塔双回直流输电系统低负荷无功优化方法
WO2016112976A1 (en) * 2015-01-15 2016-07-21 Abb Technology Ltd Ionomer coated electrode
CN109239587B (zh) * 2017-07-10 2021-03-26 南京南瑞继保电气有限公司 一种基于透明转发的晶闸管阀测试系统
CN110378020B (zh) * 2019-07-19 2020-04-10 华北电力大学 电网换相换流器多频段动态相量电磁暂态仿真方法及系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102353874A (zh) * 2011-07-11 2012-02-15 四川大学 基于换相电流时间面积指标的换相失败检测方法
KR101264743B1 (ko) * 2011-09-30 2013-05-14 한국전력공사 Hvdc 싸이리스터 전류 실패 발생 감시 장치
CN103713249A (zh) * 2013-12-27 2014-04-09 国家电网公司 一种换流阀运行试验状态参数的在线识别方法
CN203759149U (zh) * 2014-01-08 2014-08-06 中国南方电网有限责任公司超高压输电公司检修试验中心 高压直流输电工程换相失败判断装置
CN104267288A (zh) * 2014-10-08 2015-01-07 国家电网公司 基于阀电压或阀电流的hvdc换相失败故障诊断方法
CN104764991A (zh) * 2015-04-17 2015-07-08 孟异山 一种高压直流换流阀换相电路晶闸管运行状态检测方法
CN108152680A (zh) * 2017-12-29 2018-06-12 中国电建集团贵阳勘测设计研究院有限公司 一种检测直流输电换相失败的方法
CN107942181A (zh) * 2018-01-04 2018-04-20 华南理工大学 换相失败识别方法、装置、存储介质和计算机设备
CN111157827A (zh) * 2020-01-21 2020-05-15 华南理工大学 一种基于端口电流时序特征的直流换流阀状态检测方法

Also Published As

Publication number Publication date
US11959976B2 (en) 2024-04-16
US20220397615A1 (en) 2022-12-15
CN111157827B (zh) 2021-06-08
CN111157827A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2021147772A1 (zh) 一种基于端口电流时序特征的直流换流阀状态检测方法
CN105891658B (zh) 一种逆变器功率管开路故障的诊断方法
CN105891659B (zh) 一种风电变流器开路故障诊断方法
CN1892240B (zh) 一种对避雷器泄漏电流中阻性电流值的在线监测方法
RU2634741C1 (ru) Способ диагностирования неисправности в силовом преобразователе вентильно-индукторного двигателя методом интегрирования фазного тока
CN104965148B (zh) 一种电机驱动系统中逆变器功率管开路故障实时检测方法
CN103983889B (zh) 基于模型参考分析的有源电力滤波器开关器件开路故障诊断方法
CN110426664B (zh) 一种带两个电流传感器的三相三线制逆变器功率管开路故障和电流传感器故障综合诊断方法
CN105158623A (zh) 一种三相桥式pwm整流器开关管开路故障诊断方法
CN106383289B (zh) 开关磁阻电机功率变换器相关性分析故障诊断方法
CN104155564B (zh) 无刷直流电机逆变器单管开路故障的诊断和定位方法
CN112769132B (zh) 基于阀侧电流时序特征的换流阀状态与阀电流的求解方法
WO2017028617A1 (zh) 相位角获取方法和系统
CN112485595B (zh) 一种配电网接地故障选线保护方法及装置
CN105093132A (zh) 一种大功率整流器开路故障快速在线诊断方法
US20150331050A1 (en) Node energy diagnosis method for fault of switched reluctance motor double-switch power converter
CN107710008A (zh) 调试用于支路监测系统的电压传感器和支路电流传感器的方法和设备
CN106053954B (zh) 直流母线电容在线监测方法
CN107664719B (zh) 一种高压直流输电阻尼电容状态监测方法
CN104682354B (zh) 检测短接二极管
CN111769585B (zh) 基于逆变器能量累积特征的换相失败预测方法及装置
CN110729746B (zh) 一种直流输电换流器接地故障定位方法
CN110780129A (zh) 基于电流偏差分析技术的窃漏电定位方法
CN114236374B (zh) 一种整流器开路故障的实时诊断方法
CN113030684B (zh) 一种基于三相电流法的igbt开路测试方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21744190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 11-11-2022)

122 Ep: pct application non-entry in european phase

Ref document number: 21744190

Country of ref document: EP

Kind code of ref document: A1