WO2021147641A1 - 一种调整波束的方法及装置 - Google Patents

一种调整波束的方法及装置 Download PDF

Info

Publication number
WO2021147641A1
WO2021147641A1 PCT/CN2020/141749 CN2020141749W WO2021147641A1 WO 2021147641 A1 WO2021147641 A1 WO 2021147641A1 CN 2020141749 W CN2020141749 W CN 2020141749W WO 2021147641 A1 WO2021147641 A1 WO 2021147641A1
Authority
WO
WIPO (PCT)
Prior art keywords
parameter
preset condition
terminal device
parameter satisfies
time period
Prior art date
Application number
PCT/CN2020/141749
Other languages
English (en)
French (fr)
Inventor
余小勇
赵治林
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021147641A1 publication Critical patent/WO2021147641A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • This application relates to the field of communication technologies, and in particular to a method and device for adjusting beams.
  • the 3rd generation partnership project (3GPP) defines the three directions of the application scenarios of the fifth generation (5G) mobile communication system—enhanced mobile broadband (eMBB), high reliability and low reliability Delay communication (ultra reliable and low latency communications, URLLC) and massive machine type communications (mMTC).
  • eMBB will be able to provide 10Gbits per second of uplink and downlink throughput for each cell.
  • eMBB will use a wider range of spectrum resources, extending from the low frequency band used by long term evolution (LTE) Up to high frequency band (such as 28GHz, 39GHz, etc.).
  • LTE long term evolution
  • High-frequency electromagnetic waves have the characteristics of high path loss.
  • a signal transmission mechanism based on beamforming technology is adopted to pass larger antenna gains. To compensate for the transmission loss during signal propagation.
  • reference signals for example, synchronization signal block (synchronization signal and PBCH block, SSB) and/or channel state information reference signal (CSI-RS)
  • CSI-RS channel state information reference signal
  • the reference signal configured in the actual system may not meet all scenarios, such as the rapid rotation of the UE or the sudden change between the base station and the UE.
  • obstacles block the electromagnetic waves the quality of the channel between the UE and the base station will deteriorate, and the communication performance will drop rapidly, which will affect the user’s service experience.
  • the present application provides a method and device for adjusting beams, which are used to solve the problem of communication performance degradation in the measurement interval between two reference signals.
  • the present application provides a method for adjusting beams, the method including:
  • the terminal device monitors the first parameter, and the terminal device determines that the first parameter satisfies the first preset condition, and switches the first beam to the second beam. After the terminal device switches to the second beam, the terminal device determines that the first parameter satisfies a second preset condition, and then uses the second beam as a working beam.
  • the first parameter is a parameter used to describe channel quality.
  • the quality of the channel between the terminal device and the network device is better than when the first parameter satisfies the first preset condition. The quality of the channel between the network devices.
  • the beam can be actively adjusted to improve the communication performance and enhance the user's service experience.
  • the terminal device selects the beam corresponding to the highest RSRP measurement value other than the first beam as the second beam.
  • the terminal device can determine the second beam.
  • the terminal device determines that the first parameter satisfies the first preset condition and the second parameter satisfies the third preset condition, and switches the first beam to the The second beam; the second parameter is used to describe the parameter of the channel quality; the terminal device determines that the first parameter satisfies the second preset condition, and the second parameter satisfies the fourth preset condition, then Use the second beam as a working beam.
  • the quality of the channel between the terminal device and the network device is better than when the first parameter satisfies the second preset condition.
  • the first preset condition and the third preset condition are preset conditions for indicating deterioration of channel quality
  • the second preset condition and the fourth preset condition are preset conditions for indicating restoration of channel quality.
  • the terminal device can switch the first beam to the second beam when it is determined that two or more parameters meet the corresponding preset conditions for indicating channel quality degradation, and when it is determined that these parameters meet the corresponding preset conditions.
  • the second beam is used as the working beam when the preset condition for indicating channel quality recovery is used to avoid frequent beam switching.
  • the terminal device determines that the first parameter does not meet the second preset condition, then the terminal device is The beam adjustment sequence switches the second beam to other beams until the terminal device determines that the first parameter satisfies the second preset condition, then the terminal device sets the first parameter to satisfy the second preset condition.
  • the beam used by the terminal device under the preset condition is the working beam.
  • the terminal device can switch beams according to the preset beam adjustment sequence until the terminal device determines that the first parameter satisfies the second preset condition.
  • the terminal device determines that the first parameter satisfies the first preset condition and has not reached the sending time of the reference signal, and switches the first beam to the second beam.
  • the terminal device can actively adjust the beam when the reference signal is sent.
  • the first parameter is any one of the following parameters: the number of downlink data packets that fail to parse within the first time period, the RSRP or the signal-to-noise ratio SNR measured against the demodulation reference signal DMRS, The power headroom of the terminal device, the number of radio link control RLC retransmissions in the second time period, the number of uplink data packets for which the network device feeds back reception failure information in the third time period, and the modulation and coding scheme in the fourth time period The total number of MCS drops, and the total number of ranks in the fifth time period.
  • the second parameter is any one of the following parameters: the number of downlink data packets that fail to parse within the first time period, the RSRP or the signal-to-noise ratio SNR measured against the demodulation reference signal DMRS, The power headroom of the terminal device, the number of radio link control RLC retransmissions in the second time period, the number of uplink data packets for which the network device feeds back reception failure information in the third time period, and the modulation and coding scheme in the fourth time period The total number of MCS drops, and the total number of ranks in the fifth time period.
  • the first parameter is different from the second parameter.
  • the terminal device can monitor one or more of the above-mentioned parameters. It should be understood that the above-mentioned parameters are only examples and are not intended to limit the application.
  • the present application provides a method for adjusting beams.
  • the method includes: when a network device uses a first beam as a working beam, the network device monitors a first parameter, and the network device determines that the first parameter satisfies The first preset condition switches the first beam to the second beam. After the network device switches to the second beam, and the network device determines that the first parameter satisfies a second preset condition, the network device uses the second beam as a working beam;
  • the first parameter is a parameter used to describe channel quality; when the first parameter satisfies a second preset condition, the quality of the channel between the terminal device and the network device is better than when the first parameter The quality of the channel between the terminal device and the network device when the first preset condition is met.
  • the network device selects the beam corresponding to the highest RSRP measurement value other than the first beam as the second beam.
  • the network device can determine the second beam.
  • the network device determines that the first parameter satisfies the first preset condition and the second parameter satisfies the third preset condition, and switches the first beam to the second Beam; the second parameter is a parameter used to describe channel quality. If the network device determines that the first parameter satisfies the second preset condition, and the second parameter satisfies the fourth preset condition, the network device uses the second beam as the working beam.
  • the quality of the channel between the terminal device and the network device is better than when the first parameter satisfies the second preset condition.
  • the first preset condition and the third preset condition are preset conditions for indicating deterioration of channel quality
  • the second preset condition and the fourth preset condition are preset conditions for indicating restoration of channel quality.
  • the terminal device can switch the first beam to the second beam when it is determined that two or more parameters meet the corresponding preset conditions for indicating channel quality degradation, and when it is determined that these parameters meet the corresponding preset conditions.
  • the second beam is used as the working beam when the preset condition for indicating channel quality recovery is used to avoid frequent beam switching.
  • the network device after the network device switches to the second beam, the network device determines that the first parameter does not meet the second preset condition, then the network device performs The beam adjustment sequence switches the second beam to other beams until the network device determines that the first parameter satisfies the second preset condition, then the network device sets the first parameter to satisfy the second preset condition.
  • the beam used by the network device under the preset condition is the working beam.
  • the network device can switch beams according to the preset beam adjustment sequence until the terminal device determines that the first parameter satisfies the second preset condition.
  • the network device determines that the first parameter satisfies the first preset condition and has not reached the sending time of the reference signal, and switches the first beam to the second beam.
  • the terminal device can actively adjust the beam when the reference signal is sent.
  • the first parameter is any one of the following parameters:
  • the terminal device In the first time period, the terminal device feedbacks the number of downlink data packets for receiving failure messages, the RSRP or SNR measured for DMRS, the power headroom of the terminal device, the number of RLC retransmissions in the second time period, and the number of RLC retransmissions in the third time period.
  • the second parameter is any one of the following parameters: the number of downlink data packets that fail to parse within the first time period, the RSRP or the signal-to-noise ratio SNR measured against the demodulation reference signal DMRS, The power headroom of the terminal device, the number of radio link control RLC retransmissions in the second time period, the number of uplink data packets for which the network device feeds back reception failure information in the third time period, and the modulation and coding scheme in the fourth time period The total number of MCS drops, and the total number of ranks in the fifth time period.
  • the first parameter is different from the second parameter.
  • the network device can monitor one or more of the above parameters. It should be understood that the above parameters are only examples and are not intended to limit the application.
  • an embodiment of the present application provides a communication device, which may be a terminal device or a chip in the terminal device.
  • the device may include a processing unit, a sending unit, and a receiving unit.
  • the sending unit and the receiving unit here may also be a transceiving unit.
  • the processing unit may be a processor, the sending unit and the receiving unit may be transceivers;
  • the terminal device may also include a storage unit, and the storage unit may be a memory; the storage unit is used to store instructions ,
  • the processing unit executes the instructions stored in the storage unit, so that the terminal device executes the first aspect or any one of the possible design methods in the first aspect.
  • the processing unit may be a processor, and the sending unit and receiving unit may be input/output interfaces, pins or circuits, etc.; the processing unit executes the instructions stored in the storage unit to
  • the chip is made to execute the method in the first aspect or any one of the possible designs in the first aspect.
  • the storage unit is used to store instructions.
  • the storage unit can be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit in the terminal device located outside the chip (for example, a read-only memory, Random access memory, etc.).
  • an embodiment of the present application provides a communication device.
  • the device may be a network device or a chip in the network device.
  • the device may include a processing unit, a sending unit, and a receiving unit. It should be understood that the sending unit and the receiving unit here may also be a transceiving unit.
  • the processing unit may be a processor, the sending unit and the receiving unit may be transceivers;
  • the terminal device may also include a storage unit, and the storage unit may be a memory; the storage unit is used to store instructions
  • the processing unit executes the instructions stored in the storage unit, so that the terminal device executes the second aspect or any one of the possible design methods in the second aspect.
  • the processing unit may be a processor, and the sending unit and receiving unit may be input/output interfaces, pins or circuits, etc.; the processing unit executes the instructions stored in the storage unit to Make the chip execute the second aspect or any one of the possible design methods of the second aspect.
  • the storage unit is used to store instructions.
  • the storage unit can be a storage unit in the chip (for example, a register, a cache, etc.), or a storage unit in the terminal device located outside the chip (for example, a read-only memory, Random access memory, etc.).
  • this application also provides a computer-readable storage medium that stores a computer program, and when the computer program runs on a computer, the computer executes the methods of the first aspect to the second aspect. .
  • the present application also provides a computer program product containing a program, which when running on a computer, causes the computer to execute the methods of the first aspect to the second aspect.
  • the present application also provides a communication device including a processor and a memory; the memory is used to store computer-executed instructions; the processor is used to execute the computer-executed instructions stored in the memory to enable the communication
  • the device executes the methods of the first aspect to the second aspect described above.
  • the present application also provides a communication device including a processor and an interface circuit; the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the code instructions to execute the foregoing Methods from the first aspect to the second aspect.
  • the present application also provides a communication system, the communication system includes a terminal device and a network device, the terminal device executes the method of the first aspect, or the network device executes the method of the second aspect.
  • FIG. 1 is a schematic diagram of the communication system in this application.
  • FIG. 2 is a schematic diagram of the P2 process in this application.
  • FIG. 3 is a schematic diagram of the P3 process in this application.
  • FIG. 4 is a schematic diagram of the deterioration of the quality of the channel between the UE and the gNB in this application;
  • FIG. 5 is one of the overview flowcharts of the method for adjusting beams in this application.
  • FIG. 6 is a schematic diagram of the UE actively adjusting the beam in this application.
  • FIG. 7 is a schematic diagram of a specific flow of a method for adjusting a beam in this application.
  • FIG. 8 is the second overview flowchart of the method for adjusting beams in this application.
  • Figure 9 is one of the schematic diagrams of the device structure in this application.
  • Figure 10 is the second schematic diagram of the device structure in this application.
  • NR new radio
  • NB-IoT narrowband-internet of things
  • MTC machine type communication
  • future next-generation communication system etc.
  • the network elements involved in the embodiments of the present application include terminal equipment and network equipment.
  • a network device and a terminal device form a communication system.
  • the network device sends information to the terminal device through a downlink channel
  • the terminal device sends information to the network device through an uplink channel.
  • the terminal device can be a mobile phone, a tablet computer, a computer with a wireless transceiver function, an Internet of Things terminal device, etc., and can also be called a mobile station, a mobile station, a remote station, and a remote terminal.
  • the network equipment can be various forms of base stations, such as: macro base stations, micro base stations (also called small stations), relay stations, access points, evolved base stations (eNodeB), wireless fidelity access points, WiFi AP), global interoperability for microwave access (worldwide interoperability for microwave access base station, WiMAX BS), etc., are not limited here.
  • base stations such as: macro base stations, micro base stations (also called small stations), relay stations, access points, evolved base stations (eNodeB), wireless fidelity access points, WiFi AP), global interoperability for microwave access (worldwide interoperability for microwave access base station, WiMAX BS), etc., are not limited here.
  • the names of network devices that provide wireless access functions may be different.
  • eNodeB evolved NodeB
  • eNB evolved NodeB
  • 3rd generation, 3G third generation
  • gNB gNode B
  • the above-mentioned network elements may be network elements implemented on dedicated hardware, software instances running on dedicated hardware, or instances of virtualized functions on an appropriate platform.
  • the embodiments of the present application may also be applicable to other future-oriented communication technologies.
  • the network architecture and business scenarios described in this application are intended to explain the technical solutions of this application more clearly, and do not constitute a limitation on the technical solutions provided by this application. Those of ordinary skill in the art will know that with the evolution of the network architecture and new business scenarios The technical solutions provided in this application are equally applicable to similar technical problems.
  • the network equipment takes the gNB as an example
  • the terminal equipment takes the UE as an example.
  • the gNB executes the P2 and P3 procedures through the configured reference signal to realize the determination of the working beam pair between the gNB and the UE.
  • the reference signal may be SSB or CSI-RS.
  • the gNB uses different transmit beams to send reference signals at different times, and the UE uses a fixed receive beam to measure the reference signals, and reports the measurement results to the gNB so that the gNB can select the optimal beam.
  • the measurement result includes the reference signal receiving power (RSRP) measurement value and/or the signal noise ratio (SNR) corresponding to different transmit beams.
  • RSRP reference signal receiving power
  • SNR signal noise ratio
  • the gNB may select the transmission beam corresponding to the largest measurement value in the L1_RSRP measurement value as the optimal beam based on the measurement result, or, if the cell where the UE is located includes multiple UEs, the gNB may be based on the measurement result and the cell where the UE is located The information of other UEs determines the optimal beam corresponding to the UE, as shown in Figure 2.
  • the gNB always uses the optimal beam obtained in P2 to send reference signals at different times, and the UE uses different receive beams to measure the reference signals sent by the gNB, so as to obtain the optimal beam of the UE.
  • the UE uses different receiving beams to measure the reference signal sent by the gNB, and obtains the L1_RSRP measurement values corresponding to the different receiving beams.
  • the UE selects the receiving beam corresponding to the largest measurement value in the L1_RSRP measurement value as the optimal beam, as shown in Figure 3. Shown.
  • the gNB and UE can select the optimal beam determined by each as the working beam.
  • gNB configures a periodic or aperiodic reference signal for the UE. Therefore, when the period of the reference signal is long, the UE cannot quickly adjust to the optimal work according to the changes in the detected channel conditions. On the beam, the user's service experience deteriorates rapidly.
  • the UE determines that the working beam is beam 2 by measuring the reference signal.
  • the posture of the UE changes. For example, the UE rotates a certain angle, but the reference signal transmission period is not reached at this time, and the UE cannot measure the reference signal to adjust the working beam. Then the UE continues to use beam 2 as the working beam.
  • the quality of the channel between the UE and the gNB deteriorates, which results in a rapid decline in communication performance and affects the user's service experience.
  • the UE determines that the new working beam is beam 1 by measuring the reference signal, the quality of the channel between the UE and the gNB is improved, and the user's service experience is improved.
  • an obstacle is entered between the gNB and the UE.
  • the obstacle blocks the current working beam (beam 1), but the reference signal transmission period is not reached at this time, and the UE cannot measure the reference signal to adjust the working beam.
  • the UE continues to use beam 1 as the working beam, and the quality of the channel between the UE and the gNB deteriorates, so the communication performance drops rapidly, which affects the user's service experience.
  • the UE can readjust the working beam to beam 0 by measuring the reference signal, so that the quality of the channel between the UE and the gNB is improved, and the user's service experience is improved.
  • the present application provides a method for adjusting beams to solve the problem of communication performance degradation in the measurement interval of two reference signals. As shown in FIG. 5, the method includes:
  • Step 501 When the terminal device uses the first beam as the working beam, the terminal device monitors the first parameter.
  • the first parameter is a parameter used to describe channel quality.
  • the first parameter can be any of the following parameters:
  • the terminal device demodulates RSRP or SNR measured by a reference signal (demodulation reference signal, DMRS) for the physical downlink shared channel (PUSCH);
  • DMRS demodulation reference signal
  • the terminal device can be obtained by counting the number of negative acknowledgement (NACK) feedbacks received from the network device.
  • NACK negative acknowledgement
  • the terminal device can be obtained by scheduling the physical downlink control channel (PDCCH) of the uplink transmission of the terminal device. Therefore, based on the different ways of obtaining the above parameters, (1) to (4) in the above parameters are the parameters used to describe the channel quality obtained by the terminal equipment detecting the communication performance, and (5) to (7) in the above parameters are the terminal The parameter used to describe the channel quality obtained by the device according to the notification information of the network device.
  • the terminal device may also monitor other parameters used to describe channel quality, which is not limited in this application.
  • Step 502 The terminal device determines that the first parameter satisfies the first preset condition, and switches the first beam to the second beam.
  • the first preset condition is a preset condition for indicating deterioration of channel quality, and when the terminal device determines that the first parameter satisfies the first preset condition, the beam adjustment is triggered.
  • the terminal device switches the first beam to the second beam when the number of downlink data packets that fail to parse in the first time period reaches the first threshold.
  • the terminal device switches the first beam to the second beam.
  • the terminal device switches the first beam to the second beam.
  • the terminal device may periodically report the power headroom of the terminal device to the network device.
  • the lower the power headroom of the terminal device the worse the quality of the channel between the terminal device and the network device.
  • the terminal device switches the first beam to the second beam .
  • the terminal device switches the first beam to the second beam.
  • the first parameter is the number of uplink data packets for which the network device feeds back reception failure information within the third time period
  • the more the number of uplink data packets for which the network device feeds back reception failure information during the third time period It indicates that the quality of the channel between the terminal device and the network device is worse.
  • the terminal device switches the first beam to the first beam. Two beams.
  • the terminal device switches the first beam to the second beam.
  • the terminal device switches the first beam to the second beam.
  • the terminal device may use but not limited to the following methods to determine the second beam:
  • the terminal device Before the terminal device switches the first beam to the second beam, the terminal device selects the beam corresponding to the maximum reference signal received power measurement value other than the first beam as the second beam. For example, the terminal device can obtain the reference signal received power corresponding to different received beams based on the most recent P3 process. Assuming that the beam corresponding to the maximum value of the reference signal received power is the first beam, the terminal device can obtain the received power measurement value based on the reference signal from large to small Select the beam corresponding to the second-ranked reference signal received power measurement value as the second beam.
  • Manner 2 The terminal device preferentially selects the beam adjacent to the first beam as the second beam. As shown in Figure 4, the current working beam is beam 2, and the terminal device preferentially selects beam 1 or beam 3 as the beam after the handover.
  • Step 503 After the terminal device switches to the second beam, the terminal device determines that the first parameter satisfies the second preset condition, and the terminal device uses the second beam as the working beam.
  • the quality of the channel between the terminal device and the network device when the first parameter satisfies the second preset condition is better than the quality of the channel between the terminal device and the network device when the first parameter satisfies the first preset condition.
  • first beam and the second beam are different beams, and the beam direction of the first beam is different from the beam direction of the second beam.
  • the terminal device continues to detect the first parameter, and after switching to the second beam, when it is determined that the first parameter satisfies the second preset condition, that is, After it is determined that the channel quality is improved, the second beam is used as the working beam.
  • the terminal device continues to detect the first parameter, and after switching to the second beam, when it is determined that the first parameter does not satisfy the second preset condition , That is, if it is determined that the channel quality is not improved or the improvement effect is not obvious, continue to adjust the beam until the first parameter meets the second preset condition, or the terminal device waits for the time to reach the measurement reference signal, and the terminal device re-determines the working beam by measuring the reference signal .
  • the terminal device determines that the first parameter does not meet the second preset condition, and then selects the third-ranked reference signal based on the sorting result of the reference signal received power measurement value in descending order
  • the beam corresponding to the received power measurement value is used as the third beam
  • the second beam is switched to the third beam
  • the above process is repeated to determine whether the first parameter meets the second preset condition, if so, the third beam is used as the working beam If it is not met, continue to adjust the beam until the first parameter meets the second preset condition. If the first parameter still does not meet the second preset condition until the time when the terminal device measures the reference signal, the terminal device determines the working beam by measuring the reference signal.
  • the terminal device after the terminal device switches the first beam to the second beam, the terminal device continues to detect the first parameter, and after switching to the second beam, the terminal device determines that the first parameter does not satisfy the second preset Condition, but the terminal device determines that the channel quality has improved, the terminal device no longer continues to adjust the beam, but waits for the time when the terminal device measures the reference signal, and the terminal device re-determines the working beam by measuring the reference signal.
  • the first parameter is the number of downlink data packets that failed to parse in the first time period.
  • the terminal device counts whether the number of downlink data packets that have failed to parse in the first time period has decreased, and Whether the number of downlink data packets that failed to be resolved within the first statistical time period is less than the ninth threshold, if yes, use the second beam as the working beam; otherwise, continue to adjust the beam until the analysis fails within the first statistical time period
  • the number of downlink data packets is less than the ninth threshold, or the time when the terminal device measures the reference signal, the terminal device re-determines the working beam by measuring the reference signal.
  • the terminal device determines that the first parameter satisfies the first preset condition and the second parameter satisfies the third preset condition, and switches the first beam to the second beam, and the second parameter is used for A parameter indicating channel quality, the first parameter is different from the second parameter. If the terminal device determines that the first parameter satisfies the second preset condition and the second parameter satisfies the second preset condition, the terminal device uses the second beam as the working beam.
  • the quality of the channel between the terminal device and the network device is better than when the first parameter satisfies the first preset condition and the second parameter The quality of the channel between the terminal device and the network device when the third preset condition is met.
  • the second parameter is a parameter different from the first parameter among the aforementioned parameters (1) to (7).
  • first preset condition and the third preset condition are preset conditions for indicating deterioration of channel quality
  • second preset condition and the fourth preset condition are preset conditions for indicating restoration of channel quality.
  • the terminal device can monitor multiple parameters. When it is determined that there are two or more parameters that meet the corresponding preset conditions for indicating channel quality deterioration, the terminal device switches the first beam to the second beam. At the same time, when the terminal device determines that the two or more parameters meet the corresponding preset conditions for indicating channel quality recovery, the second beam is used as the working beam to avoid frequent beam switching.
  • the terminal device monitors that the first parameter satisfies the first preset condition, and the second parameter satisfies the third preset condition, where the first parameter is the number of downlink data packets that failed to parse within the first time period, and the second parameter Is the power headroom of the terminal device.
  • the terminal device counts whether the number of downlink data packets that fail to parse within the first time period has decreased, and whether the power headroom of the terminal device has increased, when the terminal device determines If the first parameter satisfies the second preset condition, and the second parameter satisfies the fourth preset condition, the second beam is used as the working beam; otherwise, the beam continues to be adjusted.
  • the terminal device determines that the first parameter satisfies the first preset condition and has not reached the sending moment of the reference signal, and switches the first beam to the second beam.
  • the terminal device can actively adjust the beam when the reference signal transmission time is not reached.
  • the UE determines that the working beam is beam 2 by measuring the reference signal.
  • the posture of the UE changes. For example, the UE rotates by a certain angle, but the reference signal transmission time is not reached at this time.
  • the UE cannot adjust the working beam by measuring the reference signal, and the quality of the channel between the UE and the gNB deteriorates. This leads to a rapid decline in communication performance, which affects the user's business experience.
  • the UE determines that the first parameter satisfies the first preset condition, it adjusts beam 2 to beam 1, and continues to monitor the first parameter after the UE adopts beam 1.
  • the beam 1 As a working beam, the quality of the channel between the UE and the gNB is restored, and the user's service experience is improved.
  • the UE determines that the working beam is beam 1 by measuring the reference signal. Therefore, with the above design, the UE can actively adjust the beam before the reference signal transmission time is reached, so that the quality of the channel between the UE and the gNB is restored, and the user's service experience is improved.
  • S701 The gNB sends the SSB.
  • the UE completes the synchronization establishment with the gNB based on the SSB.
  • the UE sends a physical random access channel (Physical Random Access Channel, PRACH) to the gNB.
  • PRACH Physical Random Access Channel
  • the UE randomly selects a random access preamble on the PRACH resource allocated by the gNB and sends it to the gNB to notify the gNB that the UE wants to access the cell under the gNB.
  • the gNB sends a random access response (Random access response, RAR) to the UE.
  • RAR Random access response
  • the RAR includes a preamble index (preamble index) corresponding to the preamble sent by the UE.
  • S704 The UE sends a message 3 (Message 3, Msg3) to the gNB.
  • Msg3 includes specific identification information of the UE as a conflict resolution identifier.
  • S705 The gNB sends a message 4 (Message 4, Msg4) to the UE.
  • Msg4 includes the identity of the UE.
  • the UE determines that the random access is successful through the identity of the UE in Msg4. If Msg4 does not include the identity of the UE, it indicates that the random access fails.
  • the foregoing S701 to S705 correspond to the initial synchronization and random access procedures. Through the foregoing procedures, the UE completes the initial synchronization and random access.
  • the gNB sends a CSI-RS to the UE.
  • the UE sends the CSI-RS measurement result to the gNB.
  • the CSI-RS measurement result may include the RSRP measurement values corresponding to different transmission beams.
  • the foregoing S706 to S707 correspond to the P2 process.
  • the gNB selects the optimal beam as the working beam.
  • the optimal beam please refer to the introduction of the P2 process above, which will not be repeated here.
  • the gNB sends a CSI-RS to the UE.
  • the UE selects the optimal beam based on the CSI-RS measurement result.
  • the CSI-RS measurement results include RSRP measurement values corresponding to different receiving beams.
  • the foregoing S708 to S709 correspond to the P3 process.
  • the UE selects the optimal beam as the working beam.
  • the optimal beam For details, please refer to the introduction of the P3 process above, which is not repeated here.
  • the working beam of the UE is beam 2.
  • S710 The UE actively adjusts the working beam when determining that the first parameter satisfies the first preset condition.
  • the working beam of the UE is switched from beam 2 to beam 1.
  • the gNB sends CSI-RS to the UE.
  • the UE sends the CSI-RS measurement result to the gNB.
  • the CSI-RS measurement result may include RSRP measurement values corresponding to different beam pairs.
  • the gNB uses 3 transmit beams to send CSI-RS respectively, and the UE uses 2 receive beams to receive respectively. Therefore, the CSI-RS measurement results reported by the UE include 6 RSRP measurement values, and each measurement value corresponds to one. Beam pair.
  • the gNB sends DCI to the UE, where the DCI includes a transmission configuration indicator (transmission configuration indicator, TCI), and the TCI is used to indicate a working beam pair.
  • TCI transmission configuration indicator
  • the UE may determine beam 1 as the working beam through the TCI in the DCI.
  • S711 to S713 are the maintenance process of the working beam pair.
  • S711 to S713 are prior art, which are only used as examples and not as a limitation of the present application.
  • the foregoing S711 to S713 are changed, the implementation of the embodiment of the present application is not affected.
  • the terminal device when the terminal device determines that the channel quality is degraded, the terminal device actively adjusts the beam, which can improve the communication performance and enhance the user's service experience.
  • the present application provides a method for adjusting beams to solve the problem of communication performance degradation in the measurement interval of two reference signals. As shown in FIG. 8, the method includes:
  • Step 801 When the network device uses the first beam as the working beam, the network device monitors the first parameter.
  • the first parameter is a parameter used to describe channel quality.
  • the first parameter can be any of the following parameters:
  • the network device may also monitor other parameters used to describe channel quality, which is not limited in this application.
  • Step 802 The network device determines that the first parameter satisfies the first preset condition, and switches the first beam to the second beam.
  • the first preset condition is a preset condition for indicating deterioration of channel quality, and when the network device determines that the first parameter satisfies the first preset condition, the beam adjustment is triggered.
  • the network device switches the first beam to the second beam when the number of uplink data packets that fail to parse in the third time period reaches the threshold corresponding to the first preset condition.
  • the network device may use but not limited to the following methods to determine the second beam:
  • the network device Before the network device switches the first beam to the second beam, the network device selects the beam corresponding to the maximum reference signal received power measurement value other than the first beam as the second beam. For example, the network device can obtain the measurement result fed back by the terminal device based on the most recent P2 process. The measurement result includes the reference signal received power corresponding to different transmit beams. Assuming that the beam corresponding to the maximum value of the reference signal received power is the first beam, the network device Based on the sorting result of the reference signal received power measurement value from large to small, the beam corresponding to the reference signal received power measurement value ranked second is selected as the second beam. In addition, if the cell where the terminal device is located includes multiple terminal devices, the network device may also determine the second beam based on the measurement result and the information of other terminal devices in the cell where the terminal device is located.
  • Manner 2 The network device preferentially selects the beam adjacent to the first beam as the second beam.
  • Step 803 After the network device switches to the second beam, the network device determines that the first parameter satisfies the second preset condition, and the network device uses the second beam as the working beam.
  • the quality of the channel between the terminal device and the network device when the first parameter satisfies the second preset condition is better than the quality of the channel between the terminal device and the network device when the first parameter satisfies the first preset condition.
  • the network device continues to detect the first parameter, and after switching to the second beam, when it is determined that the first parameter satisfies the second preset condition, that is, After it is determined that the channel quality is improved, the second beam is used as the working beam.
  • the network device continues to detect the first parameter, and after switching to the second beam, when it is determined that the first parameter does not meet the second preset condition , That is, if it is determined that the channel quality is not improved or the improvement effect is not obvious, continue to adjust the beam until the first parameter meets the second preset condition, or the network device waits for the time when the terminal device measures the reference signal.
  • the network device uses the measurement feedback from the terminal device As a result, the working beam is re-determined.
  • the network device determines that the first parameter does not meet the second preset condition, and then selects the reference signal ranked third based on the sorting result of the reference signal received power measurement value from large to small
  • the beam corresponding to the received power measurement value is used as the third beam
  • the second beam is switched to the third beam, and the above process is repeated to determine whether the first parameter meets the second preset condition, if so, the third beam is used as the working beam If it is not met, continue to adjust the beam until the first parameter meets the second preset condition. If the first parameter still does not meet the second preset condition until the time when the terminal device measures the reference signal, the network device re-determines the working beam based on the measurement result fed back by the terminal device.
  • the network device after the network device switches the first beam to the second beam, the network device continues to detect the first parameter, and after switching to the second beam, the network device determines that the first parameter does not meet the second preset Condition, but the network device determines that the channel quality has improved, the network device no longer continues to adjust the beam, but waits for the time when the terminal device measures the reference signal, and the network device re-determines the working beam based on the measurement result fed back by the terminal device.
  • the network device determines that the number of uplink data packets that failed to parse within the third time period reaches the threshold corresponding to the first preset condition, and after switching to the second beam, the network device counts a piece of uplink data that fails to parse within the third time period.
  • the threshold corresponding to the first preset condition is greater than the threshold corresponding to the second preset condition.
  • the network device determines that the first parameter of the at least one parameter satisfies the first preset condition, and the second parameter satisfies the third preset condition, switches the first beam to the second beam, and
  • the second parameter is a parameter used to indicate channel quality, and the first parameter is different from the second parameter.
  • the network device determines that the first parameter satisfies the second preset condition, and the second parameter satisfies the second preset condition corresponding to the second parameter, the network device uses the second beam as the working beam.
  • the second parameter is a parameter different from the first parameter among the aforementioned parameters (1) to (7).
  • the quality of the channel between the terminal device and the network device is better than when the first parameter satisfies the first preset condition and the second parameter satisfies the first preset condition. 3.
  • the quality of the channel between the terminal device and the network device under preset conditions.
  • first preset condition and the third preset condition are preset conditions for indicating deterioration of channel quality
  • second preset condition and the fourth preset condition are preset conditions for indicating restoration of channel quality.
  • the network device can monitor multiple parameters. When it is determined that there are two or more parameters that meet the corresponding preset conditions for indicating channel quality deterioration, the terminal device switches the first beam to the second beam. At the same time, when the terminal device determines that the two or more parameters meet the corresponding preset conditions for indicating channel quality recovery, the second beam is used as the working beam to avoid frequent beam switching.
  • the network device monitors that the first parameter satisfies the first preset condition, and the second parameter satisfies the third preset condition, where the first parameter is the number of uplink data packets that failed to parse within the third time period, and the second parameter Is the power headroom of the terminal device.
  • the network device counts whether the number of uplink data packets that fail to parse within the third time period has decreased, and whether the power headroom of the terminal device has increased, when the network device determines If the first parameter satisfies the second preset condition, and the second parameter satisfies the fourth preset condition, the second beam is used as the working beam; otherwise, the beam continues to be adjusted.
  • the network device when the network device determines that the channel quality is degraded, the network device actively adjusts the beam, which can improve the communication performance and enhance the user's service experience.
  • the network device determines that the first parameter satisfies the first preset condition and has not reached the sending moment of the reference signal, and switches the first beam to the second beam.
  • the network device can actively adjust the beam when the reference signal transmission time is not reached.
  • each network element such as a network device and a terminal device
  • each network element includes hardware structures and/or software modules corresponding to each function in order to realize the above-mentioned functions.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • an embodiment of the present application further provides a device 900 that includes a transceiver unit 902 and a processing unit 901.
  • the apparatus 900 is used to implement the function of the terminal device in the foregoing method.
  • the device may be a terminal device, or a device in a terminal device, such as a chip system.
  • the processing unit 901 calls the transceiver unit 902 to execute: when the first beam is used as the working beam, monitor at least one parameter; the at least one parameter is a parameter used to describe channel quality;
  • the second beam After switching to the second beam, it is determined that the first parameter satisfies a second preset condition, and then the second beam is used as the working beam;
  • the quality of the channel between the terminal device and the network device is better than the channel quality between the terminal device and the network device when the first parameter satisfies the first preset condition the quality of.
  • the apparatus 900 is used to implement the function of the network device in the foregoing method.
  • the device can be a network device, or a device in a network device, such as a chip system.
  • the processing unit 901 calls the transceiver unit 902 to execute: when the first beam is used as the working beam, monitor at least one parameter; the at least one parameter is a parameter used to describe channel quality;
  • the second beam After switching to the second beam, it is determined that the first parameter satisfies a second preset condition, and then the second beam is used as the working beam;
  • the quality of the channel between the terminal device and the network device is better than the channel quality between the terminal device and the network device when the first parameter satisfies the first preset condition the quality of.
  • the processing unit 901 and the transceiver unit 902 please refer to the record in the above method embodiment.
  • the division of modules in the embodiments of this application is illustrative, and it is only a logical function division. In actual implementation, there may be other division methods.
  • the functional modules in the various embodiments of this application can be integrated into one process. In the device, it can also exist alone physically, or two or more modules can be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software functional modules.
  • the device may be a chip system.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device includes a processor and an interface circuit, and the interface circuit is configured to receive code instructions and transmit them to the processor; the processor runs the code instructions to execute the methods of the foregoing embodiments. Among them, the processor completes the function of the aforementioned processing unit 901, and the interface circuit completes the function of the aforementioned transceiver unit 902.
  • an embodiment of the present application further provides an apparatus 1000.
  • the device 1000 includes: a communication interface 1001, at least one processor 1002, at least one memory 1003.
  • the communication interface 1001 is used to communicate with other devices through a transmission medium, so that the device used in the device 1000 can communicate with other devices.
  • the memory 1003 is used to store computer programs.
  • the processor 1002 calls a computer program stored in the memory 1003, and transmits and receives data through the communication interface 1001 to implement the method in the foregoing embodiment.
  • the memory 1003 is used to store a computer program; the processor 1002 calls the computer program stored in the memory 1003, and executes the method executed by the terminal device in the foregoing embodiment through the communication interface 1001.
  • the memory 1003 is used to store a computer program; the processor 1002 calls the computer program stored in the memory 1003, and executes the method executed by the network device in the foregoing embodiment through the communication interface 1001.
  • the communication interface 1001 may be a transceiver, a circuit, a bus, a module, or other types of communication interfaces.
  • the processor 1002 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component, and can implement or execute the The disclosed methods, steps and logic block diagrams.
  • the general-purpose processor may be a microprocessor or any conventional processor or the like.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly embodied as being executed and completed by a hardware processor, or executed and completed by a combination of hardware and software modules in the processor.
  • the memory 1003 may be a non-volatile memory, such as a hard disk drive (HDD) or a solid-state drive (SSD), etc., and may also be a volatile memory (volatile memory), such as random access memory (random access memory). -access memory, RAM).
  • the memory is any other medium that can be used to carry or store desired program codes in the form of instructions or data structures and that can be accessed by a computer, but is not limited to this.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of realizing a storage function.
  • the memory 1003 is coupled with the processor 1002.
  • the coupling in the embodiments of the present application is an interval coupling or a communication connection between devices, units or modules, which can be electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • the memory 1003 may also be located outside the apparatus 1000.
  • the processor 1002 may cooperate with the memory 1003 to operate.
  • the processor 1002 can execute program instructions stored in the memory 1003.
  • At least one of the at least one memory 1003 may also be included in the processor 1002.
  • the embodiment of the present application does not limit the connection medium between the communication interface 1001, the processor 1002, and the memory 1003.
  • the memory 1003, the processor 1002, and the communication interface 1001 may be connected by a bus, and the bus may be divided into an address bus, a data bus, and a control bus.
  • the apparatus in the embodiment shown in FIG. 9 may be implemented by the apparatus 1000 shown in FIG. 10.
  • the processing unit 901 may be implemented by the processor 1002, and the transceiver unit 902 may be implemented by the communication interface 1001.
  • the embodiments of the present application also provide a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and when the computer program runs on a computer, the computer executes the methods shown in each of the foregoing embodiments.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software When implemented by software, it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, a solid state disk Solid State Disk SSD), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种调整波束的方法及装置,该方法包括:在终端设备使用第一波束作为工作波束时,终端设备监控第一参数,终端设备确定第一参数满足第一预设条件,将第一波束切换至第二波束。在切换至第二波束后,终端设备确定第一参数满足第二预设条件,则使用第二波束作为工作波束。其中,当第一参数满足第二预设条件时终端设备与网络设备之间的信道的质量优于当第一参数满足第一预设条件时终端设备与网络设备之间的信道的质量。采用上述方法,当终端设备确定信道质量恶化时可以主动调整波束,实现改善通信性能,提升用户的业务体验。

Description

一种调整波束的方法及装置
相关申请的交叉引用
本申请要求在2020年01月20日提交中国专利局、申请号为202010067641.4、申请名称为“一种调整波束的方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种调整波束的方法及装置。
背景技术
无线网络技术和应用的发展已经来到第五代移动通信技术时代。第三代合作伙伴项目(the 3rd generation partnership project,3GPP)定义了第五代(5th generation,5G)移动通信系统应用场景三大方向—增强型移动宽带(enhanced mobile broadband,eMBB)、高可靠低时延通信(ultra reliable and low latency communications,URLLC)以及海量机器类通信(massive machine type communications,mMTC)。其中eMBB将能够为每个小区提供10G比特每秒级的上下行吞吐量,为了获得这样的带宽,eMBB将使用更加广泛的频谱资源,从长期演进(long term evolution,LTE)使用的低频段扩展至高频段(例如28GHz、39GHz等)。
高频段电磁波具有高路损的特性,为了克服高频段导致的较大的传播损耗,实现更好的小区覆盖,一种基于波束赋形技术的信号传输机制被采用,以通过较大的天线增益来补偿信号传播过程中的传输损耗。
现有技术中,通过参考信号(例如同步信号块(synchronization signal and PBCH block,SSB)和/或信道状态参考信号(channel state information reference signal,CSI-RS))来维护基站与用户设备(user equipment,UE)之间的工作波束对,但是考虑到对时频资源占用和功耗的开销,实际系统中配置的参考信号不可能满足所有的场景,如UE发生快速旋转或者基站和UE中间突然有障碍物对电磁波产生了遮挡,都会出现UE与基站之间的信道的质量变差,通信性能迅速下降,影响用户的业务体验,因此当UE与基站之间的信道的质量变差,而UE当前无法测量参考信号时,即在两次参考信号的测量间隔出现通信性能下降时,如何快速恢复通信性能成为急需解决的问题。
发明内容
本申请提供一种调整波束的方法及装置,用于解决在两次参考信号的测量间隔通信性能下降的问题。
第一方面,本申请提供一种调整波束的方法,该方法包括:
在终端设备使用第一波束作为工作波束时,所述终端设备监控第一参数,所述终端设备确定所述第一参数满足第一预设条件,将所述第一波束切换至第二波束。在所述终端设备切换至所述第二波束后,所述终端设备确定所述第一参数满足第二预设条件,则使用第二波束作为工作波束。其中,所述第一参数为用于描述信道质量的参数。当所述第一参数 满足所述第二预设条件时所述终端设备与网络设备之间的信道的质量优于当所述第一参数满足所述第一预设条件时所述终端设备与所述网络设备之间的信道的质量。
采用上述方法,当终端设备确定信道质量恶化时可以主动调整波束,实现改善通信性能,提升用户的业务体验。
在一种可能的设计中,所述终端设备选择除所述第一波束外最高RSRP测量值对应的波束作为第二波束。
采用上述设计,终端设备可以确定第二波束。
在一种可能的设计中,所述终端设备确定所述第一参数满足所述第一预设条件,且第二参数满足所述第三预设条件,将所述第一波束切换至所述第二波束;所述第二参数用于描述信道质量的参数;所述终端设备确定所述第一参数满足所述第二预设条件,且所述第二参数满足第四预设条件,则使用所述第二波束作为工作波束。
其中,当所述第一参数满足所述第二预设条件且所述第二参数满足所述第四预设条件时所述终端设备与网络设备之间的信道的质量优于当所述第一参数满足所述第一预设条件且所述第二参数满足所述第三预设条件时所述终端设备与所述网络设备之间的信道的质量。
其中,第一预设条件和第三预设条件为用于指示信道质量恶化的预设条件,第二预设条件和第四预设条件为用于指示信道质量恢复的预设条件。
采用上述设计,终端设备可以在确定两个或两个以上参数分别满足对应的用于指示信道质量恶化的预设条件时再将第一波束切换至第二波束,并在确定这些参数分别满足对应的用于指示信道质量恢复的预设条件时将第二波束作为工作波束,以避免频繁切换波束。
在一种可能的设计中,在所述终端设备切换至所述第二波束后,所述终端设备确定所述第一参数不满足所述第二预设条件,则所述终端设备按照预设波束调整次序将所述第二波束切换至其他波束,直至所述终端设备确定所述第一参数满足所述第二预设条件,则所述终端设备将所述第一参数满足所述第二预设条件时所述终端设备使用的波束为工作波束。
采用上述设计,终端设备可以按照预设波束调整次序切换波束直至终端设备确定第一参数满足第二预设条件。
在一种可能的设计中,所述终端设备确定所述第一参数满足所述第一预设条件且未到达参考信号的发送时刻,将所述第一波束切换至所述第二波束。
采用上述设计,终端设备可以在为到达参考信号的发送时刻时主动调整波束。
在一种可能的设计中,所述第一参数为以下任意一个参数:在第一时长内解析失败的下行数据包的个数、针对解调参考信号DMRS测量得到的RSRP或信噪比SNR、所述终端设备的功率余量、在第二时长内无线链路控制RLC重传次数、在第三时长内网络设备反馈接收失败信息的上行数据包的个数、在第四时长内调制编码方案MCS下降的总阶数、在第五时长内秩Rank下降的总层数。
在一种可能的设计中,所述第二参数为以下任意一个参数:在第一时长内解析失败的下行数据包的个数、针对解调参考信号DMRS测量得到的RSRP或信噪比SNR、所述终端设备的功率余量、在第二时长内无线链路控制RLC重传次数、在第三时长内网络设备反馈接收失败信息的上行数据包的个数、在第四时长内调制编码方案MCS下降的总阶数、在第五时长内秩Rank下降的总层数。其中,第一参数与第二参数不同。
采用上述设计,终端设备可以监控上述参数中的一个或多个,应理解的是以上参数仅为举例不作为本申请的限定。
第二方面,本申请提供一种调整波束的方法,该方法包括:在网络设备使用第一波束作为工作波束时,所述网络设备监控第一参数,所述网络设备确定所述第一参数满足所述第一预设条件,将所述第一波束切换至第二波束。在所述网络设备切换至所述第二波束后,所述网络设备确定所述第一参数满足第二预设条件,则所述网络设备使用第二波束作为工作波束;
其中,所述第一参数为用于描述信道质量的参数;当所述第一参数满足第二预设条件时终端设备与所述网络设备之间的信道的质量优于当所述第一参数满足第一预设条件时所述终端设备与所述网络设备之间的信道的质量。
在一种可能的设计中,所述网络设备选择除所述第一波束外最高RSRP测量值对应的波束作为第二波束。
采用上述设计,网络设备可以确定第二波束。
在一种可能的设计中,所述网络设备确定所述第一参数满足所述第一预设条件,且第二参数满足第三预设条件,将所述第一波束切换至所述第二波束;所述第二参数为用于描述信道质量的参数。所述网络设备确定所述第一参数满足所述第二预设条件,且所述第二参数满足第四预设条件,则所述网络设备使用第二波束作为工作波束。
其中,当所述第一参数满足所述第二预设条件且所述第二参数满足所述第四预设条件时所述终端设备与网络设备之间的信道的质量优于当所述第一参数满足所述第一预设条件且所述第二参数满足所述第三预设条件时所述终端设备与所述网络设备之间的信道的质量。
其中,第一预设条件和第三预设条件为用于指示信道质量恶化的预设条件,第二预设条件和第四预设条件为用于指示信道质量恢复的预设条件。
采用上述设计,终端设备可以在确定两个或两个以上参数分别满足对应的用于指示信道质量恶化的预设条件时再将第一波束切换至第二波束,并在确定这些参数分别满足对应的用于指示信道质量恢复的预设条件时将第二波束作为工作波束,以避免频繁切换波束。
在一种可能的设计中,在所述网络设备切换至所述第二波束后,所述网络设备确定所述第一参数不满足所述第二预设条件,则所述网络设备按照预设波束调整次序将所述第二波束切换至其他波束,直至所述网络设备确定所述第一参数满足所述第二预设条件,则所述网络设备将所述第一参数满足所述第二预设条件时所述网络设备使用的波束为工作波束。
采用上述设计,网络设备可以按照预设波束调整次序切换波束直至终端设备确定第一参数满足第二预设条件。
在一种可能的设计中,所述网络设备确定所述第一参数满足所述第一预设条件且未到达参考信号的发送时刻,将所述第一波束切换至所述第二波束。
采用上述设计,终端设备可以在为到达参考信号的发送时刻时主动调整波束。
在一种可能的设计中,所述第一参数为以下任意一个参数:
在第一时长内终端设备反馈接收失败消息的下行数据包的个数、针对DMRS测量得到的RSRP或SNR、所述终端设备的功率余量、在第二时长内RLC重传次数、在第三时长内网络设备解析失败的上行数据包的个数、在第四时长内MCS下降的总阶数、在第五时 长内Rank下降的总层数。
在一种可能的设计中,所述第二参数为以下任意一个参数:在第一时长内解析失败的下行数据包的个数、针对解调参考信号DMRS测量得到的RSRP或信噪比SNR、所述终端设备的功率余量、在第二时长内无线链路控制RLC重传次数、在第三时长内网络设备反馈接收失败信息的上行数据包的个数、在第四时长内调制编码方案MCS下降的总阶数、在第五时长内秩Rank下降的总层数。其中,第一参数与第二参数不同。
采用上述设计,网络设备可以监控上述参数中的一个或多个,应理解的是以上参数仅为举例不作为本申请的限定。
第三方面,本申请实施例提供一种通信装置,该装置可以是终端设备,也可以是终端设备内的芯片。该装置可以包括处理单元、发送单元和接收单元。应理解的是,这里发送单元和接收单元还可以为收发单元。当该装置是终端设备时,该处理单元可以是处理器,该发送单元和接收单元可以是收发器;该终端设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该终端设备执行第一方面或第一方面任意一种可能的设计中的方法。当该装置是终端设备内的芯片时,该处理单元可以是处理器,该发送单元和接收单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该芯片执行第一方面或第一方面任意一种可能的设计中的方法。该存储单元用于存储指令,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该终端设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第四方面,本申请实施例提供一种通信装置,该装置可以是网络设备,也可以是网络设备内的芯片。该装置可以包括处理单元、发送单元和接收单元。应理解的是,这里发送单元和接收单元还可以为收发单元。当该装置是网络设备时,该处理单元可以是处理器,该发送单元和接收单元可以是收发器;该终端设备还可以包括存储单元,该存储单元可以是存储器;该存储单元用于存储指令,该处理单元执行该存储单元所存储的指令,以使该终端设备执行第二方面或第二方面任意一种可能的设计中的方法。当该装置是网络设备内的芯片时,该处理单元可以是处理器,该发送单元和接收单元可以是输入/输出接口、管脚或电路等;该处理单元执行存储单元所存储的指令,以使该芯片执行第二方面或第二方面任意一种可能的设计中的方法。该存储单元用于存储指令,该存储单元可以是该芯片内的存储单元(例如,寄存器、缓存等),也可以是该终端设备内的位于该芯片外部的存储单元(例如,只读存储器、随机存取存储器等)。
第五方面,本申请还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上述第一方面至第二方面的方法。
第六方面,本申请还提供一种包含程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面的方法。
第七方面,本申请还提供一种通信装置,包括处理器和存储器;所述存储器用于存储计算机执行指令;所述处理器用于执行所述存储器所存储的计算机执行指令,以使所述通信装置执行上述第一方面至第二方面的方法。
第八方面,本申请还提供一种通信装置,包括处理器和接口电路;所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行上述第一方面 至第二方面的方法。
第九方面,本申请还提供一种通信系统,所述通信系统包括终端设备和网络设备,所述终端设备执行上述第一方面的方法,或者所述网络设备执行上述第二方面的方法。
附图说明
图1为本申请中通信系统的示意图;
图2为本申请中P2过程的示意图;
图3为本申请中P3过程的示意图;
图4为本申请中UE与gNB之间的信道的质量变差的示意图;
图5为本申请中调整波束的方法的概述流程图之一;
图6为本申请中UE主动调整波束的示意图;
图7为本申请中调整波束的方法的具体流程示意图;
图8为本申请中调整波束的方法的概述流程图之二;
图9为本申请中装置结构示意图之一;
图10为本申请中装置结构示意图之二。
具体实施方式
下面结合附图,对本申请的实施例进行描述。
本申请主要应用于新无线(new radio,NR)系统,还可以应用于其它的通信系统,例如,窄带物联网(narrow band-internet of things,NB-IoT)系统,机器类通信(machine type communication,MTC)系统,未来下一代通信系统等。
本申请实施例中涉及的网元包括终端设备和网络设备。如图1所示,网络设备和终端设备组成一个通信系统,在该通信系统中,网络设备通过下行信道发送信息给终端设备,终端设备通过上行信道发送信息给网络设备。其中,终端设备可以为手机、平板电脑、带无线收发功能的电脑、物联网终端设备等,也可以称为移动站(mobile station)、移动台(mobile)、远程站(remote station)、远程终端(remote terminal)、接入终端(access terminal)、用户代理(user agent),还可以为车与车(vehicle-to-vehicle,V2V)通信中的汽车、机器类通信中的机器等,在此不作限定。网络设备可以为各种形式的基站,例如:宏基站,微基站(也称为小站),中继站,接入点、演进型基站(eNodeB)、无线保真接入点(wireless fidelity access point,WiFi AP)、全球微波接入互操作性(worldwide interoperability for microwave access base station,WiMAX BS)等,在此不作限定。此外,在采用不同的无线接入技术的系统中,具备提供无线接入功能的网络设备的名称可能会有所不同,例如,在LTE系统中,称为演进的节点B(evolved NodeB,eNB或者eNodeB),在第三代(3rd generation,3G)系统中,称为节点B(Node B),在NR系统中,称为gNB。
上述各网元既可以是在专用硬件上实现的网络元件,也可以是在专用硬件上运行的软件实例,或者是在适当平台上虚拟化功能的实例。此外,本申请实施例还可以适用于面向未来的其他通信技术。本申请描述的网络架构以及业务场景是为了更加清楚的说明本申请的技术方案,并不构成对本申请提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样 适用。
以下简要介绍现有技术中确定网络设备和终端设备间的工作波束对的过程。其中,网络设备以gNB为例,终端设备以UE为例。
在UE接入进入连接态后,gNB通过配置的参考信号执行P2和P3过程,以实现确定gNB和UE间的工作波束对。其中,参考信号可以为SSB或CSI-RS。
在P2过程中,gNB在不同的时刻使用不同的发送波束发送参考信号,UE采用固定的接收波束对参考信号进行测量,并将测量结果上报给gNB,以便于gNB选择最优波束。示例性地,测量结果包括不同发送波束对应的参考信号接收功率(reference signal receiving power,RSRP)测量值和/或信噪比(signal noise ratio,SNR)等,通常,若UE所处小区仅包括该UE,则gNB可以基于测量结果选择L1_RSRP测量值中的最大测量值对应的发送波束作为最优波束,或者,若UE所处小区包括多个UE,gNB可以基于测量结果和UE所处小区内的其他UE的信息确定UE对应的最优波束,如图2所示。
在P3过程中,gNB在不同的时刻始终使用P2中获得的最优波束发送参考信号,UE使用不同的接收波束来测量gNB发送的参考信号,从而获得UE的最优波束。示例性地,UE使用不同的接收波束来测量gNB发送的参考信号,得到不同接收波束对应的L1_RSRP测量值,UE选择L1_RSRP测量值中的最大测量值对应的接收波束作为最优波束,如图3所示。
通过上述P2过程和P3过程,gNB和UE可以选择各自确定的最优波束作为工作波束,通过重复上述P2过程和P3过程,可以实现持续保证gNB和UE始终工作在较优的波束对。
但是,在P3过程中,gNB为UE配置周期性或者非周期性的参考信号,因此,当参考信号的周期较长时,UE无法根据检测到的信道条件的变化,快速调整到最优的工作波束上,从而导致用户的业务体验快速变差。
如图4所示,在时刻A,UE通过测量参考信号,确定工作波束为波束2。在时刻B,UE的姿态发生变化,例如UE自身旋转一定角度,但是此时没有到达参考信号发送周期,UE无法测量参考信号调整工作波束,则UE继续使用波束2作为工作波束,但是由于UE的姿态发生变化后,UE与gNB之间的信道的质量变差,因此导致通信性能迅速下降,影响用户的业务体验。在时刻C,UE通过测量参考信号确定新的工作波束为波束1,UE与gNB之间的信道的质量提升,用户的业务体验得到改善。在时刻D,在gNB和UE间闯入障碍物,该障碍物遮挡住了当前的工作波束(即波束1),但是此时没有到达参考信号发送周期,UE无法测量参考信号调整工作波束,则UE继续使用波束1作为工作波束,UE与gNB之间的信道的质量变差,因此通信性能迅速下降,影响用户的业务体验。直到时刻E,UE才能通过测量参考信号重新调整工作波束到波束0,使UE与gNB之间的信道的质量得到提升,用户的业务体验得到改善。
因此,当UE与gNB之间的信道的质量变差,而UE当前无法测量参考信号时,即在两次参考信号的测量间隔出现通信性能下降时,由于UE无法及时调整工作波束,将导致通信性能下降,从而可能影响到用户的业务体验。
实施例1:
基于此,本申请提供一种调整波束的方法,用于解决在两次参考信号的测量间隔通信性能下降的问题,如图5所示,该方法包括:
步骤501:在终端设备使用第一波束作为工作波束时,终端设备监控第一参数。其中, 第一参数为用于描述信道质量的参数。
在一种可能的设计中,第一参数可以为以下任意一个参数:
(1)终端设备在第一时长内解析失败的下行数据包的个数;
(2)终端设备针对物理下行共享信道(physical downlink share channel,PUSCH)解调参考信号(demodulation reference signal,DMRS)测量得到的RSRP或SNR;
(3)终端设备的功率余量;
(4)在第二时长内无线链路控制(radio link control,RLC)重传次数;
(5)在第三时长内网络设备反馈接收失败信息的上行数据包的个数;
(6)在第四时长内调制编码方案(modulation and coding scheme,MCS)下降的总阶数;
(7)在第五时长内秩(Rank)下降的总层数。
其中,针对上述参数(5),终端设备可以通过统计接收到的网络设备反馈的否定应答(negative acknowledgement,NACK)的次数获得。针对上述参数6)中的MCS和参数(7)中的Rank,终端设备可以通过调度终端设备的上行传输的物理下行控制信道(physical downlink control channel,PDCCH)获得。因此,基于获得上述参数的不同方式,上述参数中的(1)~(4)为终端设备检测通信性能得到的用于描述信道质量的参数,上述参数中的(5)~(7)为终端设备针对网络设备通知信息得到的用于描述信道质量的参数。
应理解的是,以上参数仅为举例,终端设备还可以监控其他用于描述信道质量的参数,本申请对此不作限定。
步骤502:终端设备确定第一参数满足第一预设条件,将第一波束切换至第二波束。
应理解的是,第一预设条件为用于指示信道质量恶化的预设条件,当终端设备确定第一参数满足第一预设条件时,触发波束调整。
示例性地,若第一参数为终端设备在第一时长内解析失败的下行数据包的个数,则终端设备在第一时长内解析失败的下行数据包的个数越多,表明终端设备与网络设备之间的信道的质量越差,当终端设备在第一时长内解析失败的下行数据包的个数达到第一阈值时,则终端设备将第一波束切换至第二波束。
示例性地,若第一参数为终端设备针对DMRS测量得到的RSRP,则终端设备针对DMRS测量得到的RSRP测量值越低,表明终端设备与网络设备之间的信道的质量越差,当终端设备针对DMRS测量得到的RSRP测量值低于第二阈值时,则终端设备将第一波束切换至第二波束。
示例性地,若第一参数为终端设备针对DMRS测量得到的SNR,则终端设备针对DMRS测量得到的SNR越低,表明终端设备与网络设备之间的信道的质量越差,当终端设备针对DMRS测量得到的SNR低于第三阈值时,则终端设备将第一波束切换至第二波束。
示例性地,若第一参数为终端设备的功率余量,终端设备可以向网络设备周期性上报终端设备的功率余量。终端设备的功率余量越低,表明终端设备与网络设备之间的信道的质量越差,当终端设备的功率余量低于第四阈值时,则终端设备将第一波束切换至第二波束。
示例性地,若第一参数为在第二时长内RLC重传次数,则在第二时长内RLC重传次数越高,表明终端设备与网络设备之间的信道的质量越差,当在第二时长内RLC重传次数 大于第五阈值时,则终端设备将第一波束切换至第二波束。
示例性地,若第一参数为在第三时长内网络设备反馈接收失败信息的上行数据包的个数,则在第三时长内网络设备反馈接收失败信息的上行数据包的个数越多,表明终端设备与网络设备之间的信道的质量越差,当在第三时长内网络设备反馈接收失败信息的上行数据包的个数大于第六阈值时,则终端设备将第一波束切换至第二波束。
示例性地,若第一参数为在第四时长内MCS下降的总阶数,则在第四时长内MCS下降的总阶数越大,表明终端设备与网络设备之间的信道的质量越差,当在第四时长内MCS下降的总阶数大于第七阈值时,则终端设备将第一波束切换至第二波束。
示例性地,若第一参数为在第五时长内Rank下降的总层数,则在第五时长内Rank下降的总层数越多,表明终端设备与网络设备之间的信道的质量越差,当在第五时长内Rank下降的总层数大于第八阈值时,则终端设备将第一波束切换至第二波束。
其中,终端设备可以采用但不限于以下方式确定第二波束:
方式1:在终端设备将第一波束切换至第二波束之前,终端设备选择除第一波束外最大参考信号接收功率测量值对应的波束作为第二波束。例如,终端设备基于最近一次P3过程可以得到不同接收波束对应的参考信号接收功率,假设参考信号接收功率最大值对应的波束为第一波束,则终端设备基于参考信号接收功率测量值从大到小的排序结果,选择其中排在第二位的参考信号接收功率测量值对应的波束作为第二波束。
方式2:终端设备优先选择与第一波束临近的波束作为第二波束。如图4所示,当前工作波束为波束2,终端设备优先选择波束1或波束3作为切换后的波束。
应理解的是,上述方式1和方式2仅为举例,不作为本申请的限定。
步骤503:在终端设备切换至第二波束后,终端设备确定第一参数满足第二预设条件,则终端设备使用第二波束作为工作波束。
其中,当第一参数满足第二预设条件时终端设备与网络设备之间的信道的质量优于当第一参数满足第一预设条件时终端设备与网络设备之间的信道的质量。
应理解的是,第一波束与第二波束是不同的波束,其中,第一波束的波束方向与第二波束的波束方向不同。
在一示例中,在终端设备将第一波束切换为第二波束后,终端设备继续检测该第一参数,并在切换为第二波束后,确定第一参数满足第二预设条件时,即确定信道质量改善后,将第二波束作为工作波束。
在另一示例中,在终端设备将第一波束切换为第二波束后,终端设备继续检测该第一参数,并在切换为第二波束后,确定第一参数不满足第二预设条件时,即确定信道质量没有改善或改善效果不明显,则继续调整波束,直至第一参数满足第二预设条件,或终端设备等待到达测量参考信号的时机,终端设备通过测量参考信号重新确定工作波束。例如,在切换为第二波束后,终端设备确定第一参数不满足第二预设条件,则基于参考信号接收功率测量值从大到小的排序结果,选择其中排在第三位的参考信号接收功率测量值对应的波束作为第三波束,将第二波束切换至第三波束,并重复上述过程,判断第一参数是否满足第二预设条件,若满足,则将第三波束作为工作波束,若不满足,则继续调整波束直至第一参数满足第二预设条件。若直至到达终端设备测量参考信号的时机,第一参数仍不满足第二预设条件,则终端设备通过测量参考信号确定工作波束。
在又一示例中,在终端设备将第一波束切换为第二波束后,终端设备继续检测该第一 参数,并在切换为第二波束后,终端设备确定第一参数不满足第二预设条件,但是终端设备确定信道质量有改善,则终端设备不再继续调整波束,而是等待到达终端设备测量参考信号的时机,终端设备通过测量参考信号重新确定工作波束。
例如,第一参数为在第一时长内解析失败的下行数据包的个数,在切换为第二波束后,终端设备统计一个第一时长内解析失败的下行数据包的个数是否下降,且在统计的第一时长内解析失败的下行数据包的个数是否小于第九阈值,若是,则将第二波束作为工作波束,否则,继续调整波束,直至在统计的第一时长内解析失败的下行数据包的个数小于第九阈值,或到达终端设备测量参考信号的时机,终端设备通过测量参考信号重新确定工作波束。
此外,在一种可能的设计中,终端设备确定第一参数满足第一预设条件,且第二参数满足第三预设条件,将第一波束切换至第二波束,第二参数为用于指示信道质量的参数,第一参数与第二参数不同。终端设备确定第一参数满足第二预设条件,且第二参数满足第二预设条件,则终端设备使用第二波束作为工作波束。
其中,当第一参数满足第二预设条件且第二参数满足第四预设条件时终端设备与网络设备之间的信道的质量优于当第一参数满足第一预设条件且第二参数满足第三预设条件时终端设备与网络设备之间的信道的质量。
其中,第二参数为上述涉及的参数(1)~(7)中不同于第一参数的一个参数。
应理解的是,第一预设条件和第三预设条件为用于指示信道质量恶化的预设条件,第二预设条件和第四预设条件为用于指示信道质量恢复的预设条件。
采用上述设计,终端设备可以监控多个参数,在确定存在两个及两个以上的参数满足分别对应的用于指示信道质量恶化的预设条件时,则终端设备将第一波束切换至第二波束,同时,终端设备在确定上述两个及两个以上的参数均满足分别对应的用于指示信道质量恢复的预设条件时,将第二波束作为工作波束,以避免频繁切换波束。
例如,终端设备监控到第一参数满足第一预设条件,第二参数满足第三预设条件,其中,第一参数为在第一时长内解析失败的下行数据包的个数,第二参数为终端设备的功率余量,在切换为第二波束后,终端设备统计一个第一时长内解析失败的下行数据包的个数是否下降,以及终端设备的功率余量是否提高,当终端设备确定第一参数满足第二预设条件,且第二参数满足第四预设条件,则将第二波束作为工作波束,否则,继续调整波束。
在一种可能的设计中,终端设备确定第一参数满足第一预设条件且未到达参考信号的发送时刻,将第一波束切换至第二波束。采用上述设计,终端设备可以在未到达参考信号的发送时刻时主动调整波束。
示例性地,如图6所示,在时刻A,UE通过测量参考信号,确定工作波束为波束2。在时刻B,UE的姿态发生变化,例如UE自身旋转一定角度,但是此时没有到达参考信号发送时刻,UE无法通过测量参考信号调整工作波束,UE与gNB之间的信道的质量变差,因此导致通信性能迅速下降,影响用户的业务体验。UE在确定第一参数满足第一预设条件时,将波束2调整为波束1,并在UE采用波束1后继续监控第一参数,当确定第一参数满足第二预设条件时,将波束1作为工作波束,UE与gNB之间的信道的质量恢复,用户的业务体验得到改善。在时刻C,UE通过测量参考信号确定工作波束为波束1。因此,采用上述设计,UE能够实现在未到达参考信号发送时刻时主动调整波束,使UE与gNB之间的信道的质量得到恢复,用户的业务体验得到改善。
下面结合图7说明图6中波束调整的具体流程:
S701:gNB发送SSB。
UE基于SSB完成与gNB的同步建立。
S702:UE向gNB发送物理随机接入信道(Physical Random Access Channel,PRACH)。
示例性地,UE在gNB分配的PRACH资源上随机选择一个随机接入前导码(random access preamble)发送至gNB,以通知gNB该UE想要接入gNB下的小区。
S703:gNB向UE发送随机接入响应(Random access response,RAR)。
RAR包括与UE发送的preamble对应的前导码索引(preamble index)。
S704:UE向gNB发送消息3(Message 3,Msg3)。
由于可能存储多个UE选择相同的preamble发起随机接入过程,因此即使RAR包含了UE发送的preamble对应的preamble index,也不能说明UE本次随机接入过程成功。为了解决这种可能存在的冲突问题,Msg3包括UE的特定身份识别信息,作为冲突解决标识。
S705:gNB向UE发送消息4(Message 4,Msg4)。
Msg4包括UE的身份标识。UE通过与Msg4中的UE的身份标识确定随机接入成功。若Msg4不包括UE的身份标识,则表明随机接入失败。
上述S701~S705对应初始同步和随机接入过程,通过上述过程,UE完成初始同步和随机接入。
S706:gNB向UE发送CSI-RS。
S707:UE向gNB发送CSI-RS测量结果,CSI-RS测量结果可以包括不同发送波束对应的RSRP测量值。
上述S706~S707对应P2过程,通过上述过程,gNB选择最优波束作为工作波束,具体内容可以参见上文中关于P2过程的介绍,此处不再赘述。
S708:gNB向UE发送CSI-RS。
S709:UE基于CSI-RS测量结果选择最优波束。CSI-RS测量结果包括不同接收波束对应的RSRP测量值。
上述S708~S709对应P3过程,通过上述过程,UE选择最优波束作为工作波束,具体内容可以参见上文中关于P3过程的介绍,此处不再赘述。
应理解的是,上述S701~S709为现有技术,这里仅作为示例并不作为本申请的限定。当上述S701~S709发生变化时,不影响本申请实施例的实现。
示例性地,如图6所示,UE的工作波束为波束2。
S710:UE在确定第一参数满足第一预设条件时,主动调整工作波束。
示例性地,如图6所示,UE的工作波束为从波束2切换为波束1。
S711:gNB向UE发送CSI-RS。
S712:UE向gNB发送CSI-RS测量结果。CSI-RS测量结果可以包括不同波束对对应的RSRP测量值。
示例性地,gNB采用3个发送波束分别发送CSI-RS,UE采用2个接收波束分别进行接收,因此,UE上报的CSI-RS测量结果中包括6个RSRP测量值,每个测量值对应一个波束对。
S713:gNB向UE发送DCI,该DCI包括传输配置指示(transmission configuration indicator,TCI),TCI用于指示一个工作波束对。
示例性地,如图6所示,UE可以通过DCI中的TCI确定波束1作为工作波束。
上述S710,S711~S713均为对工作波束对维护过程。其中,S711~S713为现有技术,仅作为示例并不作为本申请的限定。当上述S711~S713发生变化时,不影响本申请实施例的实现。
因此,采用上述方法,当终端设备确定信道质量恶化时,终端设备主动调整波束,可以实现改善通信性能,提升用户的业务体验。
实施例2:
基于此,本申请提供一种调整波束的方法,用于解决在两次参考信号的测量间隔通信性能下降的问题,如图8所示,该方法包括:
步骤801:在网络设备使用第一波束作为工作波束时,网络设备监控第一参数。其中,第一参数为用于描述信道质量的参数。
在一种可能的设计中,第一参数可以为以下任意一个参数:
(1)在第一时长内终端设备反馈接收失败消息的下行数据包的个数;
(2)网络设备针对物理上行共享信道(physical uplink share channel,PUSCH)的DMRS测量得到的RSRP或SNR;
(3)终端设备的功率余量;
(4)在第二时长内RLC重传次数;
(5)在第三时长内网络设备解析失败的上行数据包的个数;
(6)在第四时长内MCS下降的总阶数;
(7)在第五时长内Rank下降的总层数。
应理解的是,以上参数仅为举例,网络设备还可以监控其他用于描述信道质量的参数,本申请对此不作限定。
步骤802:网络设备确定第一参数满足第一预设条件,将第一波束切换至第二波束。
应理解的是,第一预设条件为用于指示信道质量恶化的预设条件,当网络设备确定第一参数满足第一预设条件时,触发波束调整。
示例性地,若第一参数为在第三时长内解析失败的上行数据包的个数,则在第三时长内解析失败的上行数据包的个数越多,表明终端设备与网络设备之间的信道的质量越差,当网络设备在第三时长内解析失败的上行数据包的个数达到第一预设条件对应的阈值时,则网络设备将第一波束切换至第二波束。
其中,网络设备可以采用但不限于以下方式确定第二波束:
方式1:在网络设备将第一波束切换至第二波束之前,网络设备选择除第一波束外最大参考信号接收功率测量值对应的波束作为第二波束。例如,网络设备基于最近一次P2过程可以得到终端设备反馈的测量结果,该测量结果包括不同发送波束对应的参考信号接收功率,假设参考信号接收功率最大值对应的波束为第一波束,则网络设备基于参考信号接收功率测量值从大到小的排序结果,选择其中排在第二位的参考信号接收功率测量值对应的波束作为第二波束。此外,若终端设备所处小区包括多个终端设备,网络设备还可以基于测量结果和终端设备所处小区内的其他终端设备的信息确定第二波束。
方式2:网络设备优先选择与第一波束临近的波束作为第二波束。
应理解的是,上述方式1和方式2仅为举例,不作为本申请的限定。
步骤803:在网络设备切换至第二波束后,网络设备确定第一参数满足第二预设条件,则网络设备使用第二波束作为工作波束。
其中,当第一参数满足第二预设条件时终端设备与网络设备之间的信道的质量优于当第一参数满足第一预设条件时终端设备与网络设备之间的信道的质量。
在一示例中,在网络设备将第一波束切换为第二波束后,网络设备继续检测该第一参数,并在切换为第二波束后,确定第一参数满足第二预设条件时,即确定信道质量改善后,将第二波束作为工作波束。
在另一示例中,在网络设备将第一波束切换为第二波束后,网络设备继续检测该第一参数,并在切换为第二波束后,确定第一参数不满足第二预设条件时,即确定信道质量没有改善或改善效果不明显,则继续调整波束,直至第一参数满足第二预设条件,或网络设备等待到达终端设备测量参考信号的时机,网络设备通过终端设备反馈的测量结果重新确定工作波束。例如,在切换为第二波束后,网络设备确定第一参数不满足第二预设条件,则基于参考信号接收功率测量值从大到小的排序结果,选择其中排在第三位的参考信号接收功率测量值对应的波束作为第三波束,将第二波束切换至第三波束,并重复上述过程,判断第一参数是否满足第二预设条件,若满足,则将第三波束作为工作波束,若不满足,则继续调整波束直至第一参数满足第二预设条件。若直至到达终端设备测量参考信号的时机,第一参数仍不满足第二预设条件,则网络设备通过终端设备反馈的测量结果重新确定工作波束。
在又一示例中,在网络设备将第一波束切换为第二波束后,网络设备继续检测该第一参数,并在切换为第二波束后,网络设备确定第一参数不满足第二预设条件,但是网络设备确定信道质量有改善,则网络设备不再继续调整波束,而是等待到达终端设备测量参考信号的时机,网络设备通过终端设备反馈的测量结果重新确定工作波束。
例如,网络设备确定在第三时长内解析失败的上行数据包的个数达到第一预设条件对应的阈值,在切换为第二波束后,网络设备统计一个第三时长内解析失败的上行数据包的个数是否下降,且在统计的第一时长内解析失败的下行数据包的个数是否小于第二预设条件对应的阈值,若是,则将第二波束作为工作波束,否则,继续调整波束,直至在统计的第一时长内解析失败的下行数据包的个数小于第二预设条件对应的阈值,或到达网络设备测量参考信号的时机,网络设备通过终端设备反馈的测量结果重新确定工作波束。其中,第一预设条件对应的阈值大于第二预设条件对应的阈值。
此外,在一种可能的设计中,网络设备确定至少一个参数中的第一参数满足第一预设条件,且第二参数满足第三预设条件,将第一波束切换至第二波束,第二参数为用于指示信道质量的参数,第一参数与第二参数不同。网络设备确定第一参数满足第二预设条件,且第二参数满足第二参数对应的第二预设条件,则网络设备使用第二波束作为工作波束。
其中,第二参数为上述涉及的参数(1)~(7)中不同于第一参数的一个参数。
当第一参数满足第二预设条件且第二参数满足第四预设条件时终端设备与网络设备之间的信道的质量优于当第一参数满足第一预设条件且第二参数满足第三预设条件时终端设备与网络设备之间的信道的质量。
应理解的是,第一预设条件和第三预设条件为用于指示信道质量恶化的预设条件,第二预设条件和第四预设条件为用于指示信道质量恢复的预设条件。
采用上述设计,网络设备可以监控多个参数,在确定存在两个及两个以上的参数满足分别对应的用于指示信道质量恶化的预设条件时,则终端设备将第一波束切换至第二波束,同时,终端设备在确定上述两个及两个以上的参数均满足分别对应的用于指示信道质量恢 复的预设条件时,将第二波束作为工作波束,以避免频繁切换波束。
例如,网络设备监控到第一参数满足第一预设条件,第二参数满足第三预设条件,其中,第一参数为在第三时长内解析失败的上行数据包的个数,第二参数为终端设备的功率余量,在切换为第二波束后,网络设备统计一个第三时长内解析失败的上行数据包的个数是否下降,以及终端设备的功率余量是否提高,当网络设备确定第一参数满足第二预设条件,且第二参数满足第四预设条件,则将第二波束作为工作波束,否则,继续调整波束。
因此,采用上述方法,当网络设备确定信道质量恶化时,网络设备主动调整波束,可以实现改善通信性能,提升用户的业务体验。
在一种可能的设计中,网络设备确定第一参数满足第一预设条件且未到达参考信号的发送时刻,将第一波束切换至第二波束。采用上述设计,网络设备可以在未到达参考信号的发送时刻时主动调整波束。
上述本申请提供的实施例中,分别从各个网元本身、以及从各个网元之间交互的角度对本申请实施例提供的通信方法的各方案进行了介绍。可以理解的是,各个网元,例如网络设备和终端设备,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
与上述构思相同,如图9所示,本申请实施例还提供一种装置900,该装置900包括收发单元902和处理单元901。
一示例中,装置900用于实现上述方法中终端设备的功能。该装置可以是终端设备,也可以是终端设备中的装置,例如芯片系统。
其中,处理单元901调用收发单元902执行:在使用第一波束作为工作波束时,监控至少一个参数;所述至少一个参数为用于描述信道质量的参数;
确定所述至少一个参数中的第一参数满足第一预设条件,将所述第一波束切换至第二波束,所述第一参数为用于描述信道质量的参数;
在切换至所述第二波束后,确定所述第一参数满足第二预设条件,则使用第二波束作为工作波束;
其中,当所述第一参数满足第二预设条件时终端设备与网络设备之间的信道的质量优于当所述第一参数满足第一预设条件时终端设备与网络设备之间的信道的质量。
一示例中,装置900用于实现上述方法中网络设备的功能。该装置可以是网络设备,也可以是网络设备中的装置,例如芯片系统。
其中,处理单元901调用收发单元902执行:在使用第一波束作为工作波束时,监控至少一个参数;所述至少一个参数为用于描述信道质量的参数;
确定所述至少一个参数中的第一参数满足第一预设条件,将所述第一波束切换至第二波束,所述第一参数为用于描述信道质量的参数;
在切换至所述第二波束后,确定所述第一参数满足第二预设条件,则使用第二波束作为工作波束;
其中,当所述第一参数满足第二预设条件时终端设备与网络设备之间的信道的质量优 于当所述第一参数满足第一预设条件时终端设备与网络设备之间的信道的质量。
关于处理单元901、收发单元902的具体执行过程,可参见上方法实施例中的记载。本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
作为另一种可选的变形,该装置可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。示例性地,该装置包括处理器和接口电路,接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行上述各个实施例的方法。其中,处理器完成上述处理单元901的功能,接口电路完成上述收发单元902的功能。
与上述构思相同,如图10所示,本申请实施例还提供一种装置1000。该装置1000中包括:通信接口1001、至少一个处理器1002、至少一个存储器1003。通信接口1001,用于通过传输介质和其它设备进行通信,从而用于装置1000中的装置可以和其它设备进行通信。存储器1003,用于存储计算机程序。处理器1002调用存储器1003存储的计算机程序,通过通信接口1001收发数据实现上述实施例中的方法。
示例性地,当该装置为终端设备时,存储器1003用于存储计算机程序;处理器1002调用存储器1003存储的计算机程序,通过通信接口1001执行上述实施例中终端设备执行的方法。当该装置为网络设备时,存储器1003用于存储计算机程序;处理器1002调用存储器1003存储的计算机程序,通过通信接口1001执行上述实施例中网络设备执行的方法。
在本申请实施例中,通信接口1001可以是收发器、电路、总线、模块或其它类型的通信接口。处理器1002可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。存储器1003可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置。存储器1003和处理器1002耦合。本申请实施例中的耦合是装置、单元或模块之间的间隔耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。作为另一种实现,存储器1003还可以位于装置1000之外。处理器1002可以和存储器1003协同操作。处理器1002可以执行存储器1003中存储的程序指令。所述至少一个存储器1003中的至少一个也可以包括于处理器1002中。本申请实施例中不限定上述通信接口1001、处理器1002以及存储器1003之间的连接介质。例如,本申请实施例在图10中以存储器1003、处理器1002以及通信接口1001之间可以通过总线连接,所述总线可以分为地址总线、数据总线、控制总线等。
可以理解的,上述图9所示实施例中的装置可以以图10所示的装置1000实现。具体的,处理单元901可以由处理器1002实现,收发单元902可以由通信接口1001实现。
本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序在计算机上运行时,使得计算机执行上述各个实施例所示的方法。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,固态硬盘Solid State Disk SSD)等。
以上所述,以上实施例仅用以对本申请的技术方案进行了详细介绍,但以上实施例的说明只是用于帮助理解本发明实施例的方法,不应理解为对本发明实施例的限制。本技术领域的技术人员可轻易想到的变化或替换,都应涵盖在本发明实施例的保护范围之内。

Claims (23)

  1. 一种调整波束的方法,其特征在于,该方法包括:
    在终端设备使用第一波束作为工作波束时,所述终端设备监控第一参数;所述第一参数为用于描述信道质量的参数;
    所述终端设备确定所述第一参数满足第一预设条件,将所述第一波束切换至第二波束;
    在所述终端设备切换至所述第二波束后,所述终端设备确定所述第一参数满足第二预设条件,则所述终端设备使用第二波束作为工作波束;
    其中,当所述第一参数满足所述第二预设条件时所述终端设备与网络设备之间的信道的质量优于当所述第一参数满足所述第一预设条件时所述终端设备与所述网络设备之间的信道的质量。
  2. 如权利要求1所述的方法,其特征在于,还包括:
    所述终端设备选择除所述第一波束外最高参考信号接收功率RSRP测量值对应的波束作为第二波束。
  3. 如权利要求1或2所述的方法,其特征在于,还包括:
    在所述终端设备切换至所述第二波束后,所述终端设备确定所述第一参数不满足所述第二预设条件,则所述终端设备按照预设波束调整次序将所述第二波束切换至其他波束,直至所述终端设备确定所述第一参数满足所述第二预设条件,则所述终端设备将所述第一参数满足所述第二预设条件时所述终端设备使用的波束为工作波束。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述终端设备确定所述第一参数满足第一预设条件,将所述第一波束切换至第二波束,包括:
    所述终端设备确定所述第一参数满足所述第一预设条件且未到达参考信号的发送时刻,将所述第一波束切换至所述第二波束。
  5. 如权利要求1-4任一项所述的方法,其特征在于,所述终端设备确定所述第一参数满足第一预设条件,将所述第一波束切换至第二波束,包括:
    所述终端设备确定所述第一参数满足所述第一预设条件,且第二参数满足第三预设条件,将所述第一波束切换至所述第二波束;所述第二参数为用于描述信道质量的参数;
    所述终端设备确定所述第一参数满足第二预设条件,则所述终端设备使用第二波束作为工作波束,包括:
    所述终端设备确定所述第一参数满足所述第二预设条件,且所述第二参数满足第四预设条件,则所述终端设备使用所述第二波束作为工作波束;
    其中,当所述第一参数满足所述第二预设条件且所述第二参数满足所述第四预设条件时所述终端设备与网络设备之间的信道的质量优于当所述第一参数满足所述第一预设条件且所述第二参数满足所述第三预设条件时所述终端设备与所述网络设备之间的信道的质量。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述第一参数为以下任意一个参数:
    在第一时长内解析失败的下行数据包的个数、针对解调参考信号DMRS测量得到的RSRP或信噪比SNR、所述终端设备的功率余量、在第二时长内无线链路控制RLC重传次数、在第三时长内网络设备反馈接收失败信息的上行数据包的个数、在第四时长内调制编 码方案MCS下降的总阶数、在第五时长内秩Rank下降的总层数。
  7. 如权利要求5或6所述的方法,其特征在于,所述第二参数为以下任意一个参数:
    在第一时长内解析失败的下行数据包的个数、针对DMRS测量得到的RSRP或SNR、所述终端设备的功率余量、在第二时长内RLC重传次数、在第三时长内网络设备反馈接收失败信息的上行数据包的个数、在第四时长内MCS下降的总阶数、在第五时长内Rank下降的总层数;
    所述第二参数与所述第一参数不同。
  8. 一种电子设备,其特征在于,包括收发器、处理器和存储器;
    所述存储器用于存储计算机执行指令;
    所述处理器调用所述收发器执行所述存储器所存储的计算机执行指令,包括:
    所述处理器调用所述收发器执行:
    在使用第一波束作为工作波束时,监控第一参数;所述第一参数为用于描述信道质量的参数;
    确定所述第一参数满足第一预设条件,将所述第一波束切换至第二波束;
    在切换至所述第二波束后,确定所述第一参数满足第二预设条件,则使用第二波束作为工作波束;
    其中,当所述第一参数满足所述第二预设条件时所述电子设备与网络设备之间的信道的质量优于当所述第一参数满足所述第一预设条件时所述电子设备与所述网络设备之间的信道的质量。
  9. 如权利要求8所述的电子设备,其特征在于,所述处理器调用所述收发器执行:
    选择除所述第一波束外最高RSRP测量值对应的波束作为第二波束。
  10. 如权利要求8或9所述的电子设备,其特征在于,所述处理器调用所述收发器执行:
    在切换至所述第二波束后,确定所述第一参数不满足所述第二预设条件,则按照预设波束调整次序将所述第二波束切换至其他波束,直至确定所述第一参数满足所述第二预设条件,则将所述第一参数满足所述第二预设条件时使用的波束为工作波束。
  11. 如权利要求8-10任一项所述的电子设备,其特征在于,所述处理器调用所述收发器执行:
    确定所述第一参数满足所述第一预设条件且未到达参考信号的发送时刻,将所述第一波束切换至所述第二波束。
  12. 如权利要求8-11任一项所述的电子设备,其特征在于,所述处理器调用所述收发器执行:
    确定所述第一参数满足所述第一预设条件,且第二参数满足第三预设条件,将所述第一波束切换至所述第二波束;所述第二参数为用于描述信道质量的参数;
    确定所述第一参数满足所述第二预设条件,且所述第二参数满足第四预设条件,则使用第二波束作为工作波束;
    其中,当所述第一参数满足所述第二预设条件且所述第二参数满足所述第四预设条件时所述电子设备与网络设备之间的信道的质量优于当所述第一参数满足所述第一预设条件且所述第二参数满足所述第三预设条件时所述电子设备与所述网络设备之间的信道的质量。
  13. 如权利要求8-12任一项所述的电子设备,其特征在于,所述第一参数为以下任意一个参数:
    在第一时长内解析失败的下行数据包的个数、针对DMRS测量得到的RSRP或SNR、所述电子设备的功率余量、在第二时长内RLC重传次数、在第三时长内网络设备反馈接收失败信息的上行数据包的个数、在第四时长内MCS下降的总阶数、在第五时长内Rank下降的总层数。
  14. 如权利要求12或13所述的电子设备,其特征在于,所述第二参数为以下任意一个参数:
    在第一时长内解析失败的下行数据包的个数、针对DMRS测量得到的RSRP或SNR、所述电子设备的功率余量、在第二时长内RLC重传次数、在第三时长内网络设备反馈接收失败信息的上行数据包的个数、在第四时长内MCS下降的总阶数、在第五时长内Rank下降的总层数;
    所述第二参数与所述第一参数不同。
  15. 一种通信装置,其特征在于,所述通信装置为终端设备,包括处理单元和收发单元;
    所述处理单元调用所述收发单元执行:
    在使用第一波束作为工作波束时,监控第一参数;所述第一参数为用于描述信道质量的参数;
    确定所述第一参数满足第一预设条件,将所述第一波束切换至第二波束;
    在切换至所述第二波束后,确定所述第一参数满足第二预设条件,则使用第二波束作为工作波束;
    其中,当所述第一参数满足所述第二预设条件时所述终端设备与网络设备之间的信道的质量优于当所述第一参数满足所述第一预设条件时所述终端设备与所述网络设备之间的信道的质量。
  16. 如权利要求15所述的装置,其特征在于,所述处理单元调用所述收发单元执行:
    选择除所述第一波束外最高RSRP测量值对应的波束作为第二波束。
  17. 如权利要求15或16所述的装置,其特征在于,所述处理单元调用所述收发单元执行:
    在切换至所述第二波束后,确定所述第一参数不满足所述第二预设条件,则按照预设波束调整次序将所述第二波束切换至其他波束,直至确定所述第一参数满足所述第二预设条件,则将所述第一参数满足所述第二预设条件时使用的波束为工作波束。
  18. 如权利要求15-17任一项所述的装置,其特征在于,所述处理单元调用所述收发单元执行:
    确定所述第一参数满足所述第一预设条件且未到达参考信号的发送时刻,将所述第一波束切换至所述第二波束。
  19. 如权利要求15-18任一项所述的装置,其特征在于,所述处理单元调用所述收发单元执行:
    确定所述第一参数满足所述第一预设条件,且第二参数满足第三预设条件,将所述第一波束切换至所述第二波束;所述第二参数为用于描述信道质量的参数;
    确定所述第一参数满足所述第二预设条件,且所述第二参数满足第四预设条件,则使 用第二波束作为工作波束;
    其中,当所述第一参数满足所述第二预设条件且所述第二参数满足所述第四预设条件时所述终端设备与网络设备之间的信道的质量优于当所述第一参数满足所述第一预设条件且所述第二参数满足所述第三预设条件时所述终端设备与所述网络设备之间的信道的质量。
  20. 如权利要求15-19任一项所述的装置,其特征在于,所述第一参数为以下任意一个参数:
    在第一时长内解析失败的下行数据包的个数、针对DMRS测量得到的RSRP或SNR、所述终端设备的功率余量、在第二时长内RLC重传次数、在第三时长内网络设备反馈接收失败信息的上行数据包的个数、在第四时长内MCS下降的总阶数、在第五时长内Rank下降的总层数。
  21. 如权利要求19或20所述的装置,其特征在于,所述第二参数为以下任意一个参数:
    在第一时长内解析失败的下行数据包的个数、针对DMRS测量得到的RSRP或SNR、所述终端设备的功率余量、在第二时长内RLC重传次数、在第三时长内网络设备反馈接收失败信息的上行数据包的个数、在第四时长内MCS下降的总阶数、在第五时长内Rank下降的总层数;
    所述第二参数与所述第一参数不同。
  22. 一种芯片,其特征在于,包括处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器运行所述代码指令以执行如权利要求1至7任一项所述的方法。
  23. 一种可读存储介质,其特征在于,所述可读存储介质用于存储指令,当所述指令被执行时,使如权利要求1-7中任一项所述的方法被实现。
PCT/CN2020/141749 2020-01-20 2020-12-30 一种调整波束的方法及装置 WO2021147641A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010067641.4A CN113141617A (zh) 2020-01-20 2020-01-20 一种调整波束的方法及装置
CN202010067641.4 2020-01-20

Publications (1)

Publication Number Publication Date
WO2021147641A1 true WO2021147641A1 (zh) 2021-07-29

Family

ID=76809287

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141749 WO2021147641A1 (zh) 2020-01-20 2020-12-30 一种调整波束的方法及装置

Country Status (2)

Country Link
CN (1) CN113141617A (zh)
WO (1) WO2021147641A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023050208A1 (zh) * 2021-09-29 2023-04-06 北京小米移动软件有限公司 波束切换、评估上报方法和装置、通信装置及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023206461A1 (en) * 2022-04-29 2023-11-02 Qualcomm Incorporated Beam switch prediction and reporting
CN115113132B (zh) * 2022-06-14 2023-03-24 浙江晨泰科技股份有限公司 一种智能电表的电压实时监测方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104506221A (zh) * 2014-12-12 2015-04-08 福建星网锐捷网络有限公司 天线控制方法及天线
CN107342801A (zh) * 2017-06-15 2017-11-10 宇龙计算机通信科技(深圳)有限公司 一种波束处理方法、用户设备及基站
CN109076406A (zh) * 2016-03-14 2018-12-21 瑞典爱立信有限公司 用于波束切换的方法和设备
US20190387441A1 (en) * 2017-01-05 2019-12-19 Nokia Technologies Oy Method, computer program and apparatus for selecting a beam for handover
CN110637421A (zh) * 2017-05-09 2019-12-31 瑞典爱立信有限公司 用于波束故障恢复的到备用波束的ue波束切换

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889145A (zh) * 2016-09-29 2018-04-06 华为技术有限公司 切换方法及装置
CN108347272B (zh) * 2017-01-25 2020-12-15 华为技术有限公司 一种基于波束组进行通信的方法及设备
CN108811072A (zh) * 2017-05-04 2018-11-13 夏普株式会社 用户设备、基站和相关方法
US10764932B2 (en) * 2018-03-23 2020-09-01 Qualcomm Incorporated Beam switch and beam failure recovery
CN110572854B (zh) * 2018-06-06 2021-10-22 中国电信股份有限公司 波束恢复方法、系统、基站、终端和计算机可读存储介质
CN110536312A (zh) * 2019-03-22 2019-12-03 中兴通讯股份有限公司 一种波束覆盖的管理方法、装置和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104506221A (zh) * 2014-12-12 2015-04-08 福建星网锐捷网络有限公司 天线控制方法及天线
CN109076406A (zh) * 2016-03-14 2018-12-21 瑞典爱立信有限公司 用于波束切换的方法和设备
US20190387441A1 (en) * 2017-01-05 2019-12-19 Nokia Technologies Oy Method, computer program and apparatus for selecting a beam for handover
CN110637421A (zh) * 2017-05-09 2019-12-31 瑞典爱立信有限公司 用于波束故障恢复的到备用波束的ue波束切换
CN107342801A (zh) * 2017-06-15 2017-11-10 宇龙计算机通信科技(深圳)有限公司 一种波束处理方法、用户设备及基站

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023050208A1 (zh) * 2021-09-29 2023-04-06 北京小米移动软件有限公司 波束切换、评估上报方法和装置、通信装置及存储介质

Also Published As

Publication number Publication date
CN113141617A (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
TWI720235B (zh) 用於通訊的方法、裝置、及電腦可讀取媒體
US9603068B2 (en) Methods and devices for adjusting resource management procedures in heterogeneous communication networks
EP3320735B1 (en) Methods and devices for downlink control channel transmission and detection in a wireless communication system
US10973023B2 (en) Terminal and radio communication method
JP7364004B2 (ja) チャネル状態情報の測定目的の指示方法、装置及び通信システム
WO2021147641A1 (zh) 一种调整波束的方法及装置
JP7413274B2 (ja) ビーム指示方法、装置及びシステム
US20230189284A1 (en) Methods and Apparatus for User Equipment-Anticipated Common Beam Switching
US11018802B2 (en) Channel quality indicator feedback method and device
US10368325B2 (en) System and method for beam adaptation in a beam-based communications system
EP3741063B1 (en) Beta offset management for urllc uci
CN112567839A (zh) 评估无线链路质量的方法、参数配置方法、装置和系统
US20230171796A1 (en) Information transmission method, resource determination method and apparatuses
JP2022542017A (ja) サイドリンクリソース選択方法及び装置
JP7306474B2 (ja) ビーム失敗回復方法、装置及び通信システム
US11044703B2 (en) Method for carrier selection in vehicle to everything system and terminal device
WO2020151554A1 (zh) 一种信息发送、检测方法及装置
WO2020227853A1 (en) Method and network device for rank selection
JP7433269B2 (ja) サウンディング参照信号を用いてアップリンク送信を扱う方法および関連する通信デバイス装置及び方法
EP4142400A1 (en) Resource determination method and apparatus
WO2020192369A1 (zh) 一种波束失败的处理方法及装置
KR20210104570A (ko) 물리적 업링크 제어 채널 충돌을 처리하기 위한 디바이스 및 방법
WO2022077309A1 (zh) 无线通信方法、装置和系统
WO2022227052A1 (zh) 无线通信方法、装置和系统
WO2022205408A1 (zh) 上行数据的发送方法、装置和系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915760

Country of ref document: EP

Kind code of ref document: A1