WO2021147638A1 - Tbm搭载式放射性氡进行超前地质预报的系统及方法 - Google Patents

Tbm搭载式放射性氡进行超前地质预报的系统及方法 Download PDF

Info

Publication number
WO2021147638A1
WO2021147638A1 PCT/CN2020/141567 CN2020141567W WO2021147638A1 WO 2021147638 A1 WO2021147638 A1 WO 2021147638A1 CN 2020141567 W CN2020141567 W CN 2020141567W WO 2021147638 A1 WO2021147638 A1 WO 2021147638A1
Authority
WO
WIPO (PCT)
Prior art keywords
radon
air
water
tbm
radon concentration
Prior art date
Application number
PCT/CN2020/141567
Other languages
English (en)
French (fr)
Inventor
林鹏
许振浩
余腾飞
潘东东
石恒
谢辉辉
邵瑞琦
刘友博
Original Assignee
山东大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东大学 filed Critical 山东大学
Publication of WO2021147638A1 publication Critical patent/WO2021147638A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0062General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display
    • G01N33/0063General constructional details of gas analysers, e.g. portable test equipment concerning the measuring method or the display, e.g. intermittent measurement or digital display using a threshold to release an alarm or displaying means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Definitions

  • the present disclosure belongs to the field of tunnel advanced detection and prediction, and in particular relates to a system and method for advanced geological prediction of TBM-mounted radioactive radon.
  • the existing TBM tunnel advanced geological prediction methods are mainly geophysical detection methods, such as seismic wave method, induced polarization method, etc.
  • geophysical detection methods such as seismic wave method, induced polarization method, etc.
  • the above advanced geological prediction methods often It can only be carried out in an environment where the TBM is shut down for maintenance, and the TBM has a fast excavation speed, and the time interval for identifying bad geology is very short. Therefore, it is particularly important to find a method for TBM to carry out advanced geological prediction without shutting down.
  • radon is mainly formed by the decay of radium. Radon is often enriched in tunnels composed of granite and carbon-rich rock and soil. When the fault activity intensifies the rock fragmentation, the mineral crystal lattice is destroyed. A large amount of radon migrates and adsorbs to the rock surface through the cracks and pores of the rock. At the same time, a part of it exists in the pores and cracks of the rock itself, and the radon is significantly dissolved in water. , The above shows that radon is often enriched in the fractured fault zone and dense fracture zone.
  • the current radioactive radon test in TBM tunnels is different from traditional drilling and blasting tunnels, and there are still the following difficult problems:
  • TBM heavy equipment occupies most of the space in the tunnel, which makes it difficult for the traditional radioactive radon test method to be carried out in the narrow part of the tunnel and cannot meet the test requirements;
  • the traditional manual testing method uses a hand-held radioactive radon tester for testing, which cannot meet the demand for timely and long-term testing of the radon element content in the rock, and requires a lot of manpower and financial resources;
  • the present disclosure proposes a TBM-mounted radioactive radon system and method for advanced geological prediction.
  • the present disclosure can obtain the radon concentration near the tunnel face, and use the change of the radon content to advance the bad geology in front of the tunnel. forecast.
  • the present disclosure adopts the following technical solutions:
  • a TBM-carried radioactive radon system for advanced geological prediction including:
  • the radon concentration test module mounted on the TBM includes an air radon concentration test unit and a water radon test unit.
  • the air radon concentration test unit includes an air collection bag and a first drying tube connected in sequence, an air collection bag and a first drying tube.
  • a filter membrane is arranged between the drying tubes, one end of the first drying tube is provided with a suction pump, and the other end of the first drying tube is connected to a continuous radon meter through a pipeline;
  • the water radon test unit includes a diffusion bottle in which a water extractor is arranged, one end of the diffusion bottle is connected to a second drying tube, and the other end of the second drying tube is connected to the continuous radon meter through a pipeline;
  • the continuous radon meter measures the radon content in air and water, and transmits it to the data processing and analysis module to analyze and calculate the radon concentration.
  • first drying tube and the second drying tube are U-shaped drying tubes.
  • the air collection bag collects air near the face of the tunnel through a telescopic bracket fixed on the TBM and a suction pump, and the collection tube is connected to a filter membrane to filter radon daughters in the air.
  • the latter gas enters the continuous radon meter through the drying tube to test the radon content.
  • the water extractor collects the groundwater at the drainage outlet of the tunnel through a telescopic bracket fixed on the TBM, and the collected water flows into the diffuser through the pipeline, and a drainage valve is arranged under the diffuser.
  • a blower pump is installed on one side of the diffuser tube, and the blower pump sends the radon in the water in the diffuser tube into the continuous radon meter.
  • the continuous radon meter is equipped with a silicon semiconductor detector.
  • the data processing analysis module analyzes the radon concentration in air and water, automatically draws a graph of the radon concentration in air and water, and calculates in real time the average value of the radon concentration test in the air and water over a period of time And the mean square error, the radon concentration and related data results are recorded and saved, and transmitted to the TBM main control room indefinitely.
  • the pipeline is a glass tube.
  • a flow meter is installed above the glass tube to control the amount of water.
  • the working method based on the above system includes the following steps:
  • the sum of the average value and twice the mean square error is regarded as the lower limit of radon concentration anomaly. If the real-time radon concentration in the air and water of the tunnel face exceeds the respective lower limit of radon anomaly, there may be a radon-rich fault fracture zone and structure in front of the tunnel face.
  • the fracture-intensive zone, and the scale and radon concentration of the fault fracture zone and structural fracture-intensive zone are proportional to the abnormal limit.
  • the present disclosure can conveniently, quickly and real-time measure the concentration of radon in the air and water near the tunnel face of the TBM tunnel, avoids the inconvenient testing of the traditional radon test method due to the narrow working space of the TBM tunnel, and saves manpower, material resources and financial resources.
  • the present disclosure can perform long-term monitoring of the radon concentration in the TBM tunnel, and provide a graph of the radon concentration and an abnormal lower limit in real time, while eliminating the influence of statistical errors, and testing can be carried out without TBM shutdown.
  • Figure 1 is a schematic diagram of the overall structure of the present disclosure
  • FIG. 2 is a simplified flow chart of the operating steps of the present disclosure.
  • 1 air collection bag 1 filter membrane, 2 filter membrane, 3 suction pump, 4 telescopic bracket 4a (4b), 5U-shaped drying tube 5a (5b), 6 valve 6a (6b, 6c), 7 continuous radon meter, 8 plexiglass Tube, 9 diffusion bottle, 10 drain valve, 11 blower pump, 12 flow meter, 13 water extractor, 14 exhaust valve, 15 data processing and analysis module.
  • azimuth or positional relationship is based on the azimuth or positional relationship shown in the drawings, and is only a relationship term determined to facilitate the description of the structural relationship of each component or element in the present disclosure. It does not specifically refer to any component or element in the present disclosure and cannot be understood as a reference to the present disclosure. Disclosure restrictions.
  • the advanced geological prediction system using radioactive radon in the TBM-mounted tunnel includes air radon concentration test unit UT1 and water radon test unit UT2.
  • the two units share a continuous radon meter and data processing module, which specifically includes air Collection capsule 1, filter membrane 2, suction pump 3, telescopic bracket 4a (4b), U-shaped drying tube 5a (5b), valve 6a (6b, 6c), continuous radon meter 7, organic glass tube 8, diffusion bottle 9. Drain valve 10, blower pump 11, flow meter 12, water extractor 13, exhaust valve 14, data processing and analysis module 15.
  • the air radon concentration test unit includes an air collection bag, a filter membrane, a suction pump and a U-shaped drying tube.
  • the air collection bag collects the air near the tunnel face through the telescopic bracket and the suction pump fixed on the TBM. Connect the filter membrane to filter the radon daughters in the air to improve the accuracy of the radon content test.
  • the filtered gas enters the continuous radon meter through the U-shaped drying tube for the radon content test.
  • the air collection bag 1 is supported by the telescopic bracket 4a.
  • the filter membrane 2 Fixed on the top right side of the test system, used to collect the air near the tunnel face, the filter membrane 2 is located in the lower part of the air collection bag 1, used to filter the radon progeny in the air, and improve the accuracy of the radon content test;
  • the suction pump 3 is located at the lower part of the filter membrane 2, and is used to absorb air near the face of the face, so that the air can enter the radon meter 7 smoothly.
  • the telescopic brackets 4a (4b) are located on the right and left sides of the system, respectively.
  • U-shaped drying tubes 5a (5b) are respectively located on both sides of the continuous radon meter 7 for drying before air and water radon concentration testing.
  • Valves 6a (6b) are respectively located on the right and left sides of the continuous radon meter 7 , Used to control the flow of air in the organic glass tube 8, the valve 6c is located above the flow meter 12, used to control the flow of water;
  • the continuous radon meter 7 is equipped with a silicon semiconductor detector, which can quickly and accurately measure the radon concentration. Just use the existing RCM-01 continuous radon meter.
  • the plexiglass tube 8 is used to connect each test device. The plexiglass tube is sufficient, so I won't repeat it here.
  • the radon concentration test unit in the water includes a water extractor, a diffusion tube, a flow meter, a U-shaped drying tube, a telescopic bracket and a blower pump.
  • the water extractor collects the groundwater at the tunnel outlet through the telescopic bracket fixed on the TBM, and the collected water passes through The glass tube flows into the diffuser.
  • a drain valve is set below the diffuser to drain the tested groundwater.
  • a flow meter is installed above the glass tube to control the amount of water.
  • the radon in the water in the tube is sent to the continuous radon meter.
  • the left end of the continuous radon meter is equipped with a U-shaped drying tube to dry the radon gas.
  • the diffusion bottle 9 is used to diffuse the radon gas in the water; the drain valve 10 is located at the bottom of the diffusion bottle , Used to exclude water that has been tested;
  • the blower pump 11 is located on the left side of the middle of the diffusion bottle, and is used to blow the radon gas diffused from the diffuser into the plexiglass tube 8;
  • the flow meter 12 is located on the top of the diffusion bottle 9 and is used to control the flow of collected water;
  • the water extractor 13 is supported by a telescopic bracket 4b and fixed on the top left side of the test system for collecting underground water to be tested in the tunnel.
  • the exhaust valve 14 is located at the upper right of the continuous radon meter and is used to discharge the tested radon gas;
  • the data processing and analysis module 15 analyzes the radon concentration in air and water, can automatically draw a graph of the radon concentration in air and water, and calculate in real time the average value and mean square deviation of the radon concentration test in the air and water over a period of time, and
  • the module has storage and wireless transmission functions, which can record and save the radon concentration and related data results, and transmit them to the TBM main control room indefinitely.
  • the method of using radioactive radon for advanced geological prediction in a TBM-mounted tunnel includes the following steps:
  • the air radon concentration test unit UT1 Open the valve 6a, close the valve 6b, the air radon concentration test unit UT1 performs a radon concentration test on the air near the tunnel face to obtain the radon concentration N1 in the air at the current mileage of the tunnel, and open the valve 14 for about 5 minutes to discharge the tested radon gas ;
  • the data processing analysis module automatically obtains the curve of the radon concentration tunnel face mileage change according to the test results, and respectively calculates the average radon concentration J1, J2 and mean square error in the air and water ⁇ 1 and ⁇ 2;
  • the sum of the average value of radon concentration and 2 times the mean square error is regarded as the abnormal lower limit of radon concentration. If the real-time measured radon concentration is greater than the abnormal lower limit of radon concentration, that is, N air>J1+2 ⁇ 1 or N water>J2+2 ⁇ 2, then the tunnel master There may be a radon-rich fault fracture zone and a dense zone of structural fissures in front, and the scale of the fault fracture zone and the dense structural fissure zone and the concentration of radon are proportional to the anomaly limit.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Combustion & Propulsion (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种TBM搭载式放射性氡进行超前地质预报的系统及方法,搭载于TBM上的氡浓度测试模块,包括空气中氡浓度测试单元(UT1)和水氡测试单元(UT2),空气中氡浓度测试单元(UT1)包括依次连接的空气采集囊(1)和第一干燥管(5a),空气采集囊(1)和第一干燥管(5a)之间设置有滤膜(2),第一干燥管(5a)的一端设置有吸气泵(3),第一干燥管(5a)的另一端通过管路连通至连续测氡仪(7);水氡测试单元(UT2)包括扩散瓶(9),扩散瓶(9)内设置有取水器(13),扩散瓶(9)与第二干燥管(5b)一端连接,第二干燥管(5b)的另一端通过管路连接至连续测氡仪(7);连续测氡仪(7)对空气和水中的氡含量进行测量,并传输给数据处理分析模块(15),分析计算氡浓度,对TBM隧道内氡浓度进行长期监测,并实时给出氡浓度曲线图和异常下限。

Description

TBM搭载式放射性氡进行超前地质预报的系统及方法 技术领域
本公开属于隧道超前探测预报领域,具体涉及一种TBM搭载式放射性氡进行超前地质预报的系统及方法。
背景技术
本部分的陈述仅仅是提供了与本公开相关的背景技术信息,不必然构成在先技术。
国际公认隧道掘进机施工方法因具有“掘进速度快、施工扰动小、综合经济效益高”等优势,未来我国引水隧洞、铁路隧道、海底隧道的建设将越来越多采用掘进机施工方法。TBM隧道施工在遭遇断层不良地质时,在施工扰动下极有可能诱发卡机、突涌水和塌方等严重地质灾害。因此在TBM隧道施工过程中,必须对不良地质赋存情况进行准确预报。
现有TBM隧道超前地质预报方法主要为地球物理探测方法,如地震波法、激发极化法等,但由于隧道TBM施工环境复杂,观测空间狭小、震动干扰和电磁干扰强烈,上述超前地质预报方法往往在TBM停机维护保养的环境中才能开展,且TBM掘进速度快,用于不良地质识别的时间间隔很短,因此,寻求一种TBM不停机便可开展超前地质预报的方法就显得尤为重要。
众所周知,放射性镭元素普遍存在于地质体中,作为自然界唯一的放射性气体氡主要由镭元素衰变形成,氡往往在花岗岩和富含炭质的岩土层构成的隧道中富集。在断层活动加剧岩石破碎时,矿物晶格遭到破坏,大量的氡透过岩 石的裂隙和孔隙迁移吸附至岩石表面,同时一部分存在于岩石自身的孔隙和裂隙中,且氡显著地溶于水,上述表明在断层破碎带和裂隙密集区往往富集氡。
据发明人了解,目前TBM隧道放射性氡测试不同于传统钻爆法隧道,仍存在以下难以解决的问题:
(1)TBM重型设备占据了隧道内大部分空间,导致传统放射性氡测试方法难以在隧道狭窄处开展,无法满足测试需求;
(2)传统人工测试方法利用手持放射性氡测试仪进行测试,无法满足对岩石中氡元素含量及时、长期测试的需求,且需要耗费大量的人力和财力;
(3)由于放射性氡衰变具有随机性,传统人工测试方法很难消除统计误差的影响。
发明内容
本公开为了解决上述问题,提出了一种TBM搭载式放射性氡进行超前地质预报的系统及方法,本公开能够获取隧道掌子面附近氡浓度,并利用氡含量的变化对隧道前方不良地质进行超前预报。
根据一些实施例,本公开采用如下技术方案:
一种TBM搭载式放射性氡进行超前地质预报的系统,包括:
搭载于TBM上的氡浓度测试模块,包括空气中氡浓度测试单元和水氡测试单元,所述空气中氡浓度测试单元包括依次连接的空气采集囊和第一干燥管,空气采集囊和第一干燥管之间设置有滤膜,所述第一干燥管的一端设置有吸气泵,所述第一干燥管的另一端通过管路连通至连续测氡仪;
所述水氡测试单元包括扩散瓶,扩散瓶内设置有取水器,扩散瓶与第二干 燥管一端连接,第二干燥管的另一端通过管路连接至所述连续测氡仪;
所述连续测氡仪对空气和水中的氡含量进行测量,并传输给数据处理分析模块,分析计算氡浓度。
作为可选择的实施方式,所述第一干燥管和所述第二干燥管为U型干燥管。
作为可选择的实施方式,所述空气采集囊通过固定在TBM上的伸缩支架和吸气泵采集隧道掌子面附近的空气,采集管连接滤膜,用于过滤空气中的氡子体,过滤后的气体通过干燥管进入连续测氡仪进行氡含量测试。
作为可选择的实施方式,所述取水器通过固定在TBM上的伸缩支架采集隧道排水口处的地下水,采集的水通过管路流入扩散管,扩散管下方设置排水阀。
作为进一步的实施方式,所述扩散管一侧安有鼓风泵,鼓风泵将扩散管内水中的氡送入连续测氡仪。
作为可选择的实施方式,所述连续测氡仪配置硅半导体探测器。
作为可选择的实施方式,所述数据处理分析模块对空气和水中的氡浓度进行分析,自动绘制出空气和水中氡浓度曲线图,并实时计算出一段时间内空气和水中氡浓度测试的平均值和均方差,将氡浓度和相关数据结果进行记录保存,并无限传输给TBM主控室。
作为可选择的实施方式,所述管路为玻璃管。
作为进一步的实施方式,所述玻璃管上方安有流量计,用于控制水量的大小。
基于上述系统的工作方法,包括以下步骤:
启动空气中氡浓度测试单元,关闭水中氡浓度测试单元,对隧道掌子面附 近氡浓度进行连续测量,得出一段时间内空气中氡浓度曲线图、平均值和均方差;
启动水中氡浓度测试单元,关闭空气中氡浓度测试单元,对隧道内掌子面附近地下水中氡浓度进行连续测量,得出一段时间内水中氡浓度曲线图、平均值和均方差;
将平均值与两倍均方差之和作为氡浓度异常下限,若隧道掌子面空气和水中实时氡浓度超出各自氡异常下限,则隧道掌子面前方可能存在富含氡的断层破碎带和构造裂隙密集带,且断层破碎带和构造裂隙密集带的规模和氡浓度与异常限差值呈正比。
与现有技术相比,本公开的有益效果为:
本公开可方便、快速和实时测量TBM隧道掌子面附近空气和水中的氡浓度,避免了传统氡测试方法因TBM隧道工作空间狭窄而不方便测试的情况,节省了人力、物力和财力。
本公开可对TBM隧道内氡浓度进行长期监测,并实时给出氡浓度曲线图和异常下限,同时可消除统计误差的影响,不需要TBM停机便可开展测试。
附图说明
构成本申请的一部分的说明书附图用来提供对本申请的进一步理解,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1是本公开的整体结构示意图;
图2是本公开的操作步骤简化流程图。
其中1空气采集囊、2滤膜、3吸气泵、4伸缩支架4a(4b)、5U形干燥管5a(5b)、6阀门6a(6b、6c)、7连续测氡仪、8有机玻璃管、9扩散瓶、10 排水阀、11鼓气泵、12流量计、13取水器、14排气阀、15数据处理分析模块。
具体实施方式:
下面结合附图与实施例对本公开作进一步说明。
应该指出,以下详细说明都是例示性的,旨在对本申请提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本申请所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
在本公开中,术语如“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“侧”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,只是为了便于叙述本公开各部件或元件结构关系而确定的关系词,并非特指本公开中任一部件或元件,不能理解为对本公开的限制。
本公开中,术语如“固接”、“相连”、“连接”等应做广义理解,表示可以是固定连接,也可以是一体地连接或可拆卸连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的相关科研或技术人员,可以根据具体情况确定上述术语在本公开中的具体含义,不能理解为对本公开的限制。
如图1所示,TBM搭载式隧道内利用放射性氡进行超前地质预报系统包括空气中氡浓度测试单元UT1和水氡测试单元UT2,两单元公用一个连续测氡仪 和数据处理模块,具体包括空气采集囊1、滤膜2、吸气泵3、伸缩支架4a(4b)、U形干燥管5a(5b)、阀门6a(6b、6c)、连续测氡仪7、有机玻璃管8、扩散瓶9、排水阀10、鼓气泵11、流量计12、取水器13、排气阀14、数据处理分析模块15。
空气中氡浓度测试单元,包含空气采集囊、滤膜、吸气泵和U形干燥管,空气采集囊通过固定在TBM上的伸缩支架和吸气泵采集隧道掌子面附近的空气,采集管连接滤膜,用于过滤空气中的氡子体,提高氡含量测试精度,过滤后的气体通过U形干燥管进入连续测氡仪进行氡含量测试,其中,空气采集囊1由伸缩支架4a支撑,固定在测试系统的顶部右侧,用于采集隧道掌子面附近的空气,所述滤膜2位于空气采集囊1的下部,用于过滤空气中的氡子体,提高氡含量测试精度;
吸气泵3位于滤膜2的下部,用于吸附掌子面附近的空气,使空气能顺利进入测氡仪7,所述伸缩支架4a(4b)分别位于系统的右侧和左侧,用于支撑空气采集囊1和取水器13;
U形干燥管5a(5b)分别位于连续测氡仪7的两侧,用于空气和水中氡浓度测试前的干燥处理,阀门6a(6b)分别位于连续测氡仪7的右侧和左侧,用于控制空气在有机玻璃管8中的流动,阀门6c位于流量计12的上方,用于控制水的流动;
连续测氡仪7配置硅半导体探测器,可对氡浓度进行快速精确测量,使用现有的RCM-01型连续测氡仪即可,有机玻璃管8用于连接各测试装置,使用现有的有机玻璃管即可,在此均不再赘述。
水中氡浓度测试单元,包含取水器、扩散管、流量计、U形干燥管、伸缩支架和鼓风泵,取水器通过固定在TBM上的伸缩支架采集隧道排水口处的地下水,采集的水通过玻璃管流入扩散管,扩散管下方设置排水阀,用于排出已测试地下水,玻璃管上方安有流量计,用于控制水量的大小,扩散管左侧安有鼓风泵,鼓风泵将扩散管内水中的氡送入连续测氡仪,连续测氡仪左端安有U形干燥管对氡气进行干燥处理,扩散瓶9用于将水中的氡气扩散出来;排水阀10位于扩散瓶的底部,用于排除已经测试过的水;
鼓气泵11位于扩散瓶中部左侧,用于鼓吹从扩散器中扩散出来的氡气进入有机玻璃管8;流量计12位于扩散瓶9的顶部,用于控制采集水的流量;
取水器13由伸缩支架4b支撑,固定在测试系统的顶部左侧,用于采集隧道内需要测试的地下水,排气阀14位于连续测氡仪的右上部,用于排出已测试的氡气;
所述数据处理分析模块15对空气和水中的氡浓度进行分析,可自动绘制出空气和水中氡浓度曲线图,并实时计算出一段时间内空气和水中氡浓度测试的平均值和均方差,且该模块具有存储和无线传输功能,可将氡浓度和相关数据结果进行记录保存,并无限传输给TBM主控室。
如图2所示,TBM搭载式的隧道内利用放射性氡进行超前地质预报的方法,包括以下步骤:
开启阀门6a,关闭阀门6b,空气氡浓度测试单元UT1对隧道掌子面附近空气进行氡浓度测试,得到隧道当前里程空气中氡浓度N1,开启阀门14约5min,用于排出已测试的氡气;
开启阀门6b,关闭阀门6a,流量计12控制进水量约300ml,后关闭阀门6c,水中氡浓度测试单元UT2对隧道掌子面附近地下水进行氡浓度测试,得到隧道当前里程水中氡浓度N2;
开启排水阀10和排气阀14,分别排除已经测试过的水和氡气;
重复上述(1)~(3)步骤,数据处理分析模块根据测试结果自动得出氡浓度隧道掌子面里程变化的曲线图,并分别计算出空气和水中氡浓度平均值J1、J2和均方差δ1和δ2;
将氡浓度平均值与2倍均方差之和作为氡浓度异常下限,若实时测得的氡浓度大于氡浓度异常下限,即N空气>J1+2δ1或N水>J2+2δ2,则隧道掌子面前方可能存在富含氡的断层破碎带和构造裂隙密集带,且断层破碎带和构造裂隙密集带的规模和氡的浓度与异常限差值呈正比。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。
上述虽然结合附图对本公开的具体实施方式进行了描述,但并非对本公开保护范围的限制,所属领域技术人员应该明白,在本公开的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本公开的保护范围以内。

Claims (10)

  1. 一种TBM搭载式放射性氡进行超前地质预报的系统,其特征是:包括:
    搭载于TBM上的氡浓度测试模块,包括空气中氡浓度测试单元和水氡测试单元,所述空气中氡浓度测试单元包括依次连接的空气采集囊和第一干燥管,空气采集囊和第一干燥管之间设置有滤膜,所述第一干燥管的一端设置有吸气泵,所述第一干燥管的另一端通过管路连通至连续测氡仪;
    所述水氡测试单元包括扩散瓶,扩散瓶内设置有取水器,扩散瓶与第二干燥管一端连接,第二干燥管的另一端通过管路连接至所述连续测氡仪;
    所述连续测氡仪对空气和水中的氡含量进行测量,并传输给数据处理分析模块,分析计算氡浓度。
  2. 如权利要求1所述的一种TBM搭载式放射性氡进行超前地质预报的系统,其特征是:所述第一干燥管和所述第二干燥管为U型干燥管。
  3. 如权利要求1所述的一种TBM搭载式放射性氡进行超前地质预报的系统,其特征是:所述空气采集囊通过固定在TBM上的伸缩支架和吸气泵采集隧道掌子面附近的空气,采集管连接滤膜,用于过滤空气中的氡子体,过滤后的气体通过干燥管进入连续测氡仪进行氡含量测试。
  4. 如权利要求1所述的一种TBM搭载式放射性氡进行超前地质预报的系统,其特征是:所述取水器通过固定在TBM上的伸缩支架采集隧道排水口处的地下水,采集的水通过管路流入扩散管,扩散管下方设置排水阀。
  5. 如权利要求4所述的一种TBM搭载式放射性氡进行超前地质预报的系统,其特征是:所述扩散管一侧安有鼓风泵,鼓风泵将扩散管内水中的氡送入连续测氡仪。
  6. 如权利要求1所述的一种TBM搭载式放射性氡进行超前地质预报的系统,其特征是:所述连续测氡仪配置硅半导体探测器。
  7. 如权利要求1所述的一种TBM搭载式放射性氡进行超前地质预报的系统,其特征是:所述数据处理分析模块对空气和水中的氡浓度进行分析,自动绘制出空气和水中氡浓度曲线图,并实时计算出一段时间内空气和水中氡浓度测试的平均值和均方差,将氡浓度和相关数据结果进行记录保存,并无限传输给TBM主控室。
  8. 如权利要求1所述的一种TBM搭载式放射性氡进行超前地质预报的系统,其特征是:所述管路为玻璃管。
  9. 如权利要求8所述的一种TBM搭载式放射性氡进行超前地质预报的系统,其特征是:所述玻璃管上方安有流量计,用于控制水量的大小。
  10. 基于权利要求1-9中任一项所述的系统的工作方法,其特征是:包括以下步骤:
    启动空气中氡浓度测试单元,关闭水中氡浓度测试单元,对隧道掌子面附近氡浓度进行连续测量,得出一段时间内空气中氡浓度曲线图、平均值和均方差;
    启动水中氡浓度测试单元,关闭空气中氡浓度测试单元,对隧道内掌子面附近地下水中氡浓度进行连续测量,得出一段时间内水中氡浓度曲线图、平均值和均方差;
    将平均值与两倍均方差之和作为氡浓度异常下限,若隧道掌子面空气和水中实时氡浓度超出各自氡异常下限,则隧道掌子面前方可能存在富含氡的断层 破碎带和构造裂隙密集带,且断层破碎带和构造裂隙密集带的规模和氡浓度与异常限差值呈正比。
PCT/CN2020/141567 2020-01-21 2020-12-30 Tbm搭载式放射性氡进行超前地质预报的系统及方法 WO2021147638A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010070846.8A CN111220776A (zh) 2020-01-21 2020-01-21 Tbm搭载式放射性氡进行超前地质预报的系统及方法
CN202010070846.8 2020-01-21

Publications (1)

Publication Number Publication Date
WO2021147638A1 true WO2021147638A1 (zh) 2021-07-29

Family

ID=70831298

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141567 WO2021147638A1 (zh) 2020-01-21 2020-12-30 Tbm搭载式放射性氡进行超前地质预报的系统及方法

Country Status (2)

Country Link
CN (1) CN111220776A (zh)
WO (1) WO2021147638A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111220776A (zh) * 2020-01-21 2020-06-02 山东大学 Tbm搭载式放射性氡进行超前地质预报的系统及方法
CN111679315B (zh) * 2020-06-29 2023-03-07 核工业航测遥感中心 基于土壤氡地震前兆异常识别及地震预测方法
CN115015503A (zh) * 2022-05-30 2022-09-06 中国海洋大学 一种海洋氡原位测量装置和测量方法
CN117310780B (zh) * 2023-11-28 2024-02-06 成都核盛科技有限公司 一种双通道全自动水中氡浓度在线测量系统及方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100952657B1 (ko) * 2009-09-09 2010-04-13 한국지질자원연구원 지진 예보를 위한 라돈 가스 측정 시스템 및 방법
WO2014049408A2 (fr) * 2012-09-27 2014-04-03 Jean Gregory Dispositif de prédiction des séismes et des éruptions volcaniques, de localisation des épicentres et des magnitudes par la mesure du radon dans le sol
CN103901503A (zh) * 2014-03-25 2014-07-02 中冶集团武汉勘察研究院有限公司 矿山地下巷道掘进时对前方不良地质体的一种综合探测方法
CN204202945U (zh) * 2014-09-07 2015-03-11 河南理工大学 一种煤矿井下巷道氡气测定装置
CN107831524A (zh) * 2017-12-18 2018-03-23 成都理工大学 氡析出率连续测量装置及测量方法
CN207557494U (zh) * 2017-12-11 2018-06-29 程树岐 地震水氡观测扩散器
CN110043267A (zh) * 2019-04-04 2019-07-23 山东大学 基于岩性与不良地质前兆特征识别的tbm搭载式超前地质预报系统及方法
CN111220776A (zh) * 2020-01-21 2020-06-02 山东大学 Tbm搭载式放射性氡进行超前地质预报的系统及方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006258758A (ja) * 2005-03-18 2006-09-28 Mitsubishi Electric Corp 目標追尾装置
CN102043159B (zh) * 2010-10-22 2012-08-08 衡阳师范学院 一种连续快速跟踪氡浓度变化的测量方法
CN202421513U (zh) * 2011-12-05 2012-09-05 珠海市泰德企业有限公司 地震前兆数据综合采集器
CN203191565U (zh) * 2013-05-03 2013-09-11 贝谷科技股份有限公司 一种用于地下水中氡气监测的装置
CN103487360B (zh) * 2013-09-26 2016-07-06 衡阳师范学院 闭环式快速测量氡析出率的方法
CN110672355B9 (zh) * 2019-07-26 2020-11-17 山东大学 一种tbm搭载式全自动取样装置及方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100952657B1 (ko) * 2009-09-09 2010-04-13 한국지질자원연구원 지진 예보를 위한 라돈 가스 측정 시스템 및 방법
WO2014049408A2 (fr) * 2012-09-27 2014-04-03 Jean Gregory Dispositif de prédiction des séismes et des éruptions volcaniques, de localisation des épicentres et des magnitudes par la mesure du radon dans le sol
CN103901503A (zh) * 2014-03-25 2014-07-02 中冶集团武汉勘察研究院有限公司 矿山地下巷道掘进时对前方不良地质体的一种综合探测方法
CN204202945U (zh) * 2014-09-07 2015-03-11 河南理工大学 一种煤矿井下巷道氡气测定装置
CN207557494U (zh) * 2017-12-11 2018-06-29 程树岐 地震水氡观测扩散器
CN107831524A (zh) * 2017-12-18 2018-03-23 成都理工大学 氡析出率连续测量装置及测量方法
CN110043267A (zh) * 2019-04-04 2019-07-23 山东大学 基于岩性与不良地质前兆特征识别的tbm搭载式超前地质预报系统及方法
CN111220776A (zh) * 2020-01-21 2020-06-02 山东大学 Tbm搭载式放射性氡进行超前地质预报的系统及方法

Also Published As

Publication number Publication date
CN111220776A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
WO2021147638A1 (zh) Tbm搭载式放射性氡进行超前地质预报的系统及方法
WO2020258589A1 (zh) 煤层瓦斯参数随钻快速测试的反演计算方法
WO2019095800A1 (zh) 裂缝性页岩气水两相流动裂缝导流能力评价装置及方法
WO2021147555A1 (zh) Tbm搭载的利用汞进行超前地质预报的系统及方法
CN103728163B (zh) 一种气体中全氚快速取样系统
CN104913886B (zh) 氟利昂阀门检漏方法
CN102607989A (zh) 含气量测试装置
CN106932328B (zh) 利用示踪气体测试煤体渗透率的系统及方法
CN104453842B (zh) 油气井井下故障诊断系统及其诊断方法
CN207248581U (zh) 一种用于测量烟气中总的逃逸氨浓度的采样系统
CN102607990A (zh) 一种煤样瓦斯解吸速度全程自动测试方法和装置
CN206990285U (zh) 一种土壤气分层采集装置
CN106546292A (zh) 煤炭地下开采煤岩体多场耦合测试装置及方法
CN205719868U (zh) 污染土壤及地下水原位注入修复扩散半径确定的试验系统
CN106404311A (zh) 乏燃料组件破损检测装置
KR100607458B1 (ko) 현장 추적자 시험장치
CN108871876A (zh) 用于监测注气驱油井场包气带土壤二氧化碳通量的采气柱
CN104614753A (zh) 一种连续测量介质表面氡析出率的方法和装置
CN107655637A (zh) 一种碘吸附器泄漏检测的脉冲式卤素气体检测方法及设备
CN114544424A (zh) 一种井下煤层瓦斯含量快速自动测定方法及装置
CN103048355B (zh) 一种耐火极限试验中烟气氧浓度测量装置和方法
CN102156181A (zh) 建筑材料表面氡析出率检测装置及其检测方法
CN109270092A (zh) 一种使用低能γ射线测定气液两相流中含气率的系统及方法
CN211648236U (zh) 一种煤层瓦斯抽采半径测量装置及系统
CN201319001Y (zh) 一种放射性碘取样装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20916106

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20916106

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 25/01/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20916106

Country of ref document: EP

Kind code of ref document: A1