WO2021147522A1 - 一种基于磁通压缩的脉冲磁体装置及高通量测量方法 - Google Patents

一种基于磁通压缩的脉冲磁体装置及高通量测量方法 Download PDF

Info

Publication number
WO2021147522A1
WO2021147522A1 PCT/CN2020/133572 CN2020133572W WO2021147522A1 WO 2021147522 A1 WO2021147522 A1 WO 2021147522A1 CN 2020133572 W CN2020133572 W CN 2020133572W WO 2021147522 A1 WO2021147522 A1 WO 2021147522A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
coil
magnetic field
magnet coil
block
Prior art date
Application number
PCT/CN2020/133572
Other languages
English (en)
French (fr)
Inventor
韩小涛
吴泽霖
刘沁莹
谌祺
曹全梁
李亮
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2021147522A1 publication Critical patent/WO2021147522A1/zh
Priority to US17/707,963 priority Critical patent/US11493581B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N24/00Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects
    • G01N24/08Investigating or analyzing materials by the use of nuclear magnetic resonance, electron paramagnetic resonance or other spin effects by using nuclear magnetic resonance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/2823Wires
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/30Fastening or clamping coils, windings, or parts thereof together; Fastening or mounting coils or windings on core, casing, or other support
    • H01F27/306Fastening or mounting coils or windings on core, casing or other support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/064Circuit arrangements for actuating electromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures
    • H01F7/202Electromagnets for high magnetic field strength

Definitions

  • the invention belongs to the field of electromagnetic technology, and more specifically, relates to a pulse magnet device based on magnetic flux compression and a high flux measurement method.
  • One of the schemes uses multiple sets of power matching to supply power to the multi-stage coil magnets, and superimposes the magnetic fields of multiple coils to achieve an ultra-high-strength magnetic field, which makes system control complicated.
  • Increasing the number of turns and the number of layers of the single magnet coil will increase the magnetic field strength, which will significantly increase the impedance of the pulse magnet, while the pulse of the discharge current will be significantly reduced, and it is difficult to realize a pulse magnet with high field strength.
  • the purpose of the present invention is to provide a magnet device with a high-strength and high-uniformity magnetic field environment, aiming to solve the problems of the existing single-stage pulsed magnets that there are few samples simultaneously measured and the magnetic field strength is low.
  • the invention provides a pulse magnet device based on magnetic flux compression, which includes a diamagnetic block, a reinforcing plate, a screw and a magnet coil; the diamagnetic block and the magnet coil are placed concentrically along the axial direction, and the reinforcing plate is placed on the magnet coil and the diamagnetic block
  • the end of the diamagnetic block is connected by a screw; the diamagnetic block is used to induce the induced current opposite to the coil current during the discharge process of the magnet coil, and the magnetic field is compressed to the area between the diamagnetic block and the magnet coil; by increasing the magnetic flux density Improve the strength and uniformity of the magnetic field around the magnet coil.
  • the magnet coil is arranged between the reinforcing plates, and the diamagnetic block is arranged concentrically with the magnet coil, and can be placed in the periphery or the aperture of the magnet coil.
  • the screw restricts the reinforcement plate and applies an axial clamping force to prevent relative displacement of the magnet coil or the antimagnetic block.
  • the screw can be made of a high-strength material, preferably a stainless steel screw rod.
  • the role of the screw is mainly used to connect the reinforcement plate, and is used to provide clamping force to the reinforcement plate.
  • the diamagnetic block can be made of high-conductivity materials or composite materials containing high-conductivity materials, preferably copper, steel and other metal materials.
  • the diamagnetic block is a circular cylinder or cylinder.
  • the diamagnetic block will induce an induced current that is opposite to the coil current, so that the magnetic field is compressed to the area formed by the diamagnetic block and the coil.
  • the magnetic field in this process is compressed and the magnetic flux density increases, so the magnetic field strength and uniformity of the magnetic field in the sample placement area will increase significantly.
  • the higher the conductivity of the diamagnetic block the greater the induced current, the better the effect of magnetic compression, and the more uniform and stronger the magnetic field in the sample placement area.
  • the antimagnetic block can be arranged in the magnet coil and placed coaxially and concentrically with the magnet coil; the antimagnetic block can also be arranged outside the magnet coil and placed coaxially and concentrically with the magnet coil.
  • the circular cylinder When the diamagnetic block is placed inside the aperture of the magnet coil and is a circular cylinder, the circular cylinder is tightly filled with high-strength material cylinders to further improve the mechanical strength of the diamagnetic block, such as stainless steel cylinders or epoxy cylinders.
  • the outer circular cylinder can be coaxially and tightly connected to the high-strength material circular cylinder to further improve the mechanical strength of the diamagnetic block, and its thickness is based on the actual diamagnetic block
  • the required strength is reasonable design, such as stainless steel circular cylinder or epoxy circular cylinder.
  • the reinforcing plate can be made of a high-strength insulating material, preferably an epoxy plate. Used to fix the magnet coil and the diamagnetic block, bear the axial and longitudinal electromagnetic stress generated by the magnet coil and the diamagnetic block during the pulse discharge process, and reduce the displacement and deformation.
  • the magnet coil is composed of n groups of magnet units connected in parallel.
  • the n groups of magnet units are layered and reinforced by layered reinforcement to form a multi-layer and multi-turn spiral coil; when the magnet coil has only one magnet unit, the magnet coil There is no need for parallel connection and no interlayer board, which is simpler and easier to wind.
  • the multiple magnet coils are arrayed up and down concentrically and supported by interlayer plates as intervals.
  • the magnet units are electrically connected in parallel, so that the impedance of the entire magnet coil can be significantly reduced and higher
  • the intensity of the pulse current induces a higher intensity magnetic field.
  • the number of interlayer plates should be configured according to the number of magnet coils.
  • the interlayer plate is placed between a plurality of magnet coils and is a high-strength insulating material, preferably an epoxy plate.
  • the pulse magnet device further includes: an interlayer plate; the interlayer plate is used to axially separate the magnet coils, share the axial stress of the magnet coils, and improve the structural strength.
  • the number of interlayer plates matches the number of groups of magnet units, and the number of interlayer plates is n-1.
  • the sample placement area is an annular space enclosed between the magnet coil and the diamagnetic block, which is the sample placement area, and the number of samples is determined according to experimental needs.
  • Supports can also be placed in the sample placement area for magnet unit and diamagnetic block support.
  • the support should be a high-strength insulating material, preferably an epoxy material.
  • the present invention also provides a method for realizing high flux measurement based on the above-mentioned magnet device, which includes the following steps:
  • Step 1 Place a plurality of sample rods containing samples in the middle of the circular cylinder area formed by the diamagnetic block and the magnet coil in sequence, and they are circularly symmetrical to each other;
  • Step 2 Charge the capacitor through the power supply. After the capacitor is charged, the magnet coil is discharged.
  • the diamagnetic block induces an induced current opposite to the coil current during the discharging process of the magnet coil, compressing the magnetic field between the diamagnetic block and the magnet coil Area, which produces a uniform toroidal magnetic field;
  • Step 3 The physical properties of the sample in the sample rod can be set according to the needs of the experiment, for example, each sample is at a different angle to the magnetic field in turn. In an experiment, all the physical properties of the sample to be explored are measured at the same time and can be used for analysis, so as to achieve high-throughput measurement of the sample.
  • the invention compresses the magnetic field around the coil to the space formed by the coil and the diamagnetic block by adding a diamagnetic block inside or outside the inner or outer diameter of the coil. Therefore, the magnetic flux density is increased, and the strength and uniformity of the magnetic field around the coil of the magnet hole are improved. It provides a good device platform foundation for related experiments.
  • the coil and the diamagnetic block of the present invention constitute the circular magnetic field area; on the one hand, the increase in the circular field space prevents the original circular magnetic field area from only placing one sample at a time, so that Multiple samples can be placed in one experiment. On the other hand, due to the consistency of the magnetic field in the symmetrical ring region, it is helpful to eliminate random errors that occur in each experiment, making high-flux measurements based on the above-mentioned magnets possible.
  • Fig. 1 is a schematic structural diagram of a high-flux magnet based on internal magnetic compression provided by an embodiment of the present invention.
  • Fig. 2 is a schematic structural diagram of a high-flux magnet based on external magnetic compression provided by an embodiment of the present invention.
  • Figure 3 is a schematic diagram of the discharge current curve of a typical pulse magnet coil.
  • Figure 4 is a schematic diagram of the principle of an internal magnetic compression pulse magnet; (a) is a magnetic field area distribution diagram of a conventional magnet, and (b) is a pulse magnet magnetic field distribution diagram based on internal magnetic compression.
  • Fig. 5 is a schematic diagram of the comparison of the magnetic field intensity curve between the new type magnet and the traditional magnet based on the principle of magnetic compression.
  • Figure 6 is a schematic diagram of the principle of an external magnetic compression pulse magnet; (a) is the magnetic field distribution characteristics of a conventional magnet, and (b) is a pulse magnet magnetic field distribution diagram based on internal magnetic compression.
  • 1 is a diamagnetic block
  • 2 is a reinforcement plate (2-1 is a reinforcement plate at the upper end of the magnet
  • 2-2 is a reinforcement plate at the lower end of the magnet)
  • 3 is a screw rod
  • 4 is a magnet coil
  • 5 is a sample placement area
  • 6 is the support
  • 7 is the interlayer board.
  • the present invention proposes a magnet structure suitable for high flux measurement, which can be used to provide a high magnetic field strength and high uniformity magnetic field environment for NMR (Nuclear Magnetic Resonance) experiments.
  • a pulse magnet device based on magnetic flux compression includes: a diamagnetic block, a reinforcing plate, a screw and a magnet coil; the diamagnetic block and the magnet coil are placed concentrically along the axial direction, and the reinforcing plate is placed on the magnet coil and the diamagnetic block The end of the diamagnetic block is connected by a screw; the diamagnetic block is used to induce the induced current opposite to the coil current during the discharge process of the magnet coil, and the magnetic field is compressed to the area between the diamagnetic block and the magnet coil; by increasing the magnetic flux density Improve the strength and uniformity of the magnetic field around the magnet coil.
  • the invention compresses the magnetic field around the coil to the space formed by the coil and the diamagnetic block by adding a diamagnetic block inside or outside the coil aperture, so the magnetic flux density is increased, and the strength and uniformity of the magnetic field around the coil of the magnet hole are improved. It provides a good platform foundation for related NMR experiments.
  • the diamagnetic block may be arranged in the magnet unit or outside the magnet unit.
  • the utilization rate of the magnetic field is high, and high magnetic field strength can be obtained, but the circular ring area is limited, which is only suitable for the experimental needs of a small number of samples simultaneously measured and higher field strength is required.
  • the utilization rate of the magnetic field is relatively low, but the circular area is large, which is suitable for the experimental requirements of a large number of samples simultaneously measured and a lower field strength is required.
  • Figure 1 shows the structure of a high-flux magnet based on internal magnetic compression provided by the first embodiment of the present invention
  • a pulse magnet device based on magnetic flux compression includes a diamagnetic block 1, a reinforcing plate 2, a screw 3, and a magnet coil 4;
  • the antimagnetic block 1 is arranged in the magnet coil 4 and placed coaxially and concentrically with the magnet coil 4.
  • the reinforcing plate 2 is placed at the end of the magnet coil 4 and the antimagnetic block 1 and is connected by the screw 3; the antimagnetic block 1 is used for the magnet During the discharge process of the coil 4, an induced current opposite to the coil current is induced to compress the magnetic field to the area between the diamagnetic block 1 and the magnet coil 4; the intensity and uniformity of the magnetic field around the magnet coil 4 are improved by increasing the magnetic flux density.
  • the diamagnetic block 1 can be configured as a hollow toroidal copper cylinder structure with a stainless steel cylinder embedded in it, so that on the one hand, the overall mechanical strength of the diamagnetic block can be improved, and on the other hand, when the mechanical strength is improved The diamagnetic block will not be deformed, and it still maintains the geometrical axisymmetric characteristics, and the magnetic field consistency of the sample placement area is also better.
  • the material of the diamagnetic block 1 can be a material with high conductivity, preferably a metal material such as copper and steel.
  • the diamagnetic block 1 induces an induced current that is opposite to the coil current, so that the magnetic field is compressed to the area formed by the diamagnetic block and the coil. Based on the principle of conservation of magnetic flux, the magnetic field in this process is compressed and the magnetic flux density increases, so the corresponding magnetic field strength and magnetic field uniformity will increase significantly. The higher the conductivity, the greater the induced current, and the better the effect of magnetic compression.
  • the reinforcing plate 2 is made of a high-strength insulating material, preferably an epoxy plate.
  • the reinforcing plate 2 is used to fix the magnet coil 4 and the diamagnetic block 1, and bear the axial and longitudinal electromagnetic stress generated by the magnet coil 4 during the pulse discharge process, and reduce displacement and deformation.
  • the screw 3 may be composed of a high-strength material, preferably a stainless steel screw rod.
  • the upper screw rod of the strut 3 is connected to the upper and lower reinforcement plates, and the screw rod is connected to the upper and lower reinforcement plates, and plays a role of fixing the plates, and together with the reinforcement plate 2 constitutes a magnet device skeleton with a stable mechanical structure.
  • the sample placement area 5 is located in an annular space enclosed by the magnet coil 4 and the diamagnetic block 1, and the number of samples can be determined by experimental needs.
  • FIG. 3 is a schematic diagram of the magnetic flux distribution in the cross-section of the magnet coil.
  • Figure 4(a) is a traditional pulse magnet with no diamagnetic block in the center of the coil;
  • Figure 4(b) is a new type of magnet with a diamagnetic block placed in the magnet coil. As shown in Figure 4(a), if the current direction is counterclockwise, a magnetic field perpendicular to the paper surface is induced at the center of the coil.
  • the magnetic flux is the densest at the center of the axis, and the magnetic field strength is the highest.
  • the outward magnetic flux gradually becomes sparser.
  • the intensity gradually decreases in a radial shape, which affects the uniformity of the magnetic field distribution.
  • the surface of the copper block after inserting the diamagnetic block, due to the eddy current effect and the skin effect, the surface of the copper block generates a clockwise current that is opposite to the solenoid current direction, and induces the opposite vertical paper surface inward.
  • the original magnetic flux perpendicular to the paper surface increases and is compressed to the ring-shaped area between the coil and the copper block.
  • Figure 2 shows the structure of a high-flux magnet based on external magnetic compression provided by the second embodiment of the present invention
  • a pulse magnet device based on magnetic flux compression includes a diamagnetic block 1, a reinforcing plate 2, a screw 3, and a magnet coil 4;
  • the diamagnetic block 1 is arranged on the periphery of the magnet coil 4 and placed coaxially and concentrically with the magnet coil 4.
  • the reinforcing plate 2 is placed at the end of the magnet coil 4 and the diamagnetic block 1 and is connected by the screw 2; the diamagnetic block 1 is used for the magnet During the discharge process of the coil 4, an induced current opposite to the coil current is induced to compress the magnetic field to the area between the diamagnetic block 1 and the magnet coil 4; the intensity and uniformity of the magnetic field around the magnet coil 4 are improved by increasing the magnetic flux density.
  • the anti-magnetic block 1 may be a hollow toroidal cylinder structure and the outside is tightly connected to the stainless steel toroidal cylinder, so that on the one hand, the overall mechanical strength of the anti-magnetic block is improved, and on the other hand, when the mechanical strength is improved The back diamagnetic block will not be deformed, and it still maintains the geometrical axisymmetric characteristics, and the magnetic field consistency of the sample placement area is also better.
  • the material of the diamagnetic block 1 may be a material with high conductivity; preferably, it is a metal material such as copper and steel.
  • the diamagnetic block 1 induces an induced current that is opposite to the coil current, so that the magnetic field is compressed to the area formed by the diamagnetic block and the coil. Based on the principle of conservation of magnetic flux, the magnetic field in this process is compressed and the magnetic flux density increases, so the corresponding magnetic field strength and magnetic field uniformity will increase significantly. The higher the conductivity, the greater the induced current, and the better the effect of magnetic compression.
  • Fig. 6 is a schematic diagram of the magnetic flux distribution in the cross-section of the magnet coil.
  • Fig. 6(a) is a traditional pulse magnet with no diamagnetic block in the center of the coil;
  • Fig. 6(b) is a new type of magnet with a diamagnetic block placed in the magnet coil.
  • Figure 6(a) if the current direction is counterclockwise, a magnetic field perpendicular to the paper surface is induced at the center of the coil.
  • the magnetic flux is the densest at the center of the axis, the magnetic field strength is the highest, and the outward magnetic flux gradually becomes sparse.
  • the intensity of the magnetic field gradually decreases in a radial shape, which affects the uniformity of the magnetic field distribution.
  • Figure 6(b) after inserting the diamagnetic block, due to the eddy current effect and the skin effect, a clockwise current is generated on the surface of the copper block, which is opposite to the solenoid current direction, and the opposite vertical paper surface is induced.
  • the magnet coil 4 may be composed of two sets of magnet units connected in parallel; during operation, the impedance of the magnet coil formed by the magnet units connected in parallel will be significantly reduced, which is about half of that of a single magnet unit. In order to obtain a higher intensity pulse current, a higher intensity magnetic field is induced.
  • the present invention proposes to increase the number of coils and connect each magnet unit in parallel, thereby forming a multi-coil magnet structure to increase the peak value of the pulse current, thereby increasing the peak magnetic field strength.
  • the pulse magnet device further includes: an interlayer plate 7; the interlayer plate 7 is placed between the plurality of magnet units, and is used to axially separate the magnet coils, share the axial stress of the magnet coils, and further Improve structural strength.
  • the magnet unit is formed by tightly winding wires from the inside to the outside.
  • the wire can be a high-strength copper wire.
  • the magnet coil includes two sets of magnet units passing through the interlayer plate; and the magnet coils are electrically connected in parallel.
  • the invention divides the magnet unit axially through the interlayer plate, shares the axial stress inside the magnet coil, and improves the mechanical structure strength of the entire pulse magnet device.
  • the layered plate is used to fix the coils between the parallel coils, which can share the electromagnetic induction axial stress generated during the operation of the coil to the reinforced plate layer.
  • the axial reinforcement of the layered plate bearing force is added, which reduces the impact of electromagnetic force on the coil from both horizontal and vertical directions, enhances the stability of the magnet device, and significantly improves the structural strength of the magnet.
  • Figure 5 shows the simulation result of the pulse magnetic field intensity distribution curve based on the Comsol platform of the present invention
  • the primary magnetic flux passing area changes from a circular shape to a circular shape
  • the radial width is compressed, the radial attenuation path of the magnetic induction intensity is shortened, ⁇ B is reduced, and the uniformity of the magnetic field is also improved.
  • the pulse magnet device based on magnetic flux compression provided by the embodiment of the present invention can provide a strong magnetic field environment for NMR experiments.
  • the specific implementation process mainly includes:
  • the frame of the magnet device includes two layers of upper and lower reinforcement plates and peripheral screws, which are arranged symmetrically around the axis of the frame;
  • T represents the transverse relaxation time when the magnetic field is completely uniform
  • T' represents the transverse relaxation time under the inhomogeneous magnetic field
  • represents the nuclear seed magnetic gyration ratio coefficient
  • ⁇ B represents the inhomogeneity of the magnetic field
  • T It is mainly determined by the non-uniformity of the magnetic field distribution ⁇ B:
  • the relative resolution ⁇ is the ratio of the absolute resolution of the NMR spectrometer to the operating frequency f 0:
  • the resolution of the NMR spectrometer depends on the uniformity of the spatial distribution of the external magnetic field, and the high uniformity of the external magnetic field is the prerequisite for improving the resolution and sensitivity of the NMR experiment.
  • the Singnal and Noise Ratio (SNR) of the NMR signal measured by the standard sample on the spectrometer is used to define the NMR experimental sensitivity.
  • SNR Singnal and Noise Ratio
  • is a quantity related to the intrinsic nucleus
  • I is the quantity related to the volume of the sample and the coil
  • Q is the quality factor of the resonant circuit
  • T is the absolute temperature
  • b is the quantity related to the noise bandwidth of the receiver.
  • Fig. 6(a) is the magnetic field distribution characteristics of a conventional magnet
  • Fig. 6(b) is a magnetic field distribution diagram of a pulsed magnet based on external magnetic compression.
  • the magnetic field distribution is shown in Figure 6(b). At this time, the magnetic flux around the coil is concentrated and compressed, which can also achieve the purpose of improving the strength and uniformity of the magnetic field. .

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)

Abstract

一种基于磁通压缩的脉冲磁体装置及高通量测量方法,装置包括抗磁块(1)、加固板(2)、螺杆(3)和磁体线圈(4);抗磁块(1)与磁体线圈(4)沿轴向同心放置,加固板(2)放置在磁体线圈(4)与抗磁块(1)的端部并由螺杆(3)连接;抗磁块(1)用于在磁体线圈(4)放电过程中感应反向于线圈电流的感应电流,将磁场压缩至抗磁块(1)与磁体线圈(4)之间的区域;通过增加磁通密度来改善磁体线圈(4)周围磁场的强度和均匀度。通过在磁体线圈(4)孔径内或外围加入抗磁块(1)对线圈周围的磁场进行压缩至磁体线圈(4)与抗磁块(1)所构成的空间,因此磁通密度增加,改善了磁体线圈(4)周围磁场的强度和均匀度,为相关NMR实验提供了良好的装置平台基础。

Description

一种基于磁通压缩的脉冲磁体装置及高通量测量方法 【技术领域】
本发明属于电磁技术领域,更具体地,涉及一种基于磁通压缩的脉冲磁体装置及高通量测量方法。
【背景技术】
随着科学技术的发展,许多重要科学研究对脉冲磁场强度提出更高的要求。其存在的主要问题有:
(1)如何在有限能量下提高磁场强度。其中一种方案采用多套电源匹配分别对多级线圈磁体进行供电,通过多个线圈磁场叠加来实现超高强磁场,这样系统控制复杂。而通过增加单及磁体的线圈的匝数和层数来提高磁场强度,这样会使脉冲磁体的阻抗显著增加,而放电电流的脉冲会显著减小,也难以实现高场强的脉冲磁体。
(2)如何减少实验的时间。由于目前脉冲磁体的孔径的限制,一次实验只能通常只能放一根包含样品的样品杆,而一次实验由于磁体温升需要冷却到合适的温度才能继续下次实验,这个冷却过程甚至达数几个小时。若扩大磁体的孔径,一方面磁体阻抗显著增加所需的能量急剧增加,另一方面即使扩大了孔径,由于磁场分布不均匀,不能保证每个样品在同样的磁场环境。
【发明内容】
针对现有技术的缺陷,本发明的目的在于提供一种高强度、高均匀度磁场环境的磁体装置,旨在解决现有的单级脉冲磁体同时测量的样品少且磁场强度低的问题。
本发明提供了一种基于磁通压缩的脉冲磁体装置,包括抗磁块、加固板、螺杆和磁体线圈;抗磁块与磁体线圈沿轴向同心放置,加固板放置在磁体线圈与抗磁块的端部并由螺杆连接;抗磁块用于在磁体线圈放电过程中感应反向于线圈电流的感应电流,将磁场压缩至抗磁块与磁体线圈之间的区域;通过增加 磁通密度来改善磁体线圈周围磁场的强度和均匀度。
在本发明实施例中,磁体线圈设置在加固板之间,抗磁块与磁体线圈同心设置,可以置于磁体线圈的外围或者孔径内。螺杆对加固板进行限位并施加轴向夹紧力使磁体线圈或抗磁块不发生相对位移。
其中,螺杆可以采用由高强度材料构成,优选不锈钢螺丝杆。螺杆的作用主要用于连接加固板,用于给加固板以夹紧力。
更进一步地,抗磁块可以采用高导电率的材料或包含高导电率材料的复合材料,优选为铜,钢等金属材料构成。抗磁块为圆环柱体或者圆柱体。在磁体单元放电过程中,抗磁块会感应反向于线圈电流的感应电流,使磁场压缩至抗磁块与线圈构成的区域。基于磁通守恒原理此过程的磁场被压缩,磁通密度增加,那么样品放置区域的磁场强度与磁场均匀度都会显著增加。抗磁块的电导率越高感应的电流越大,磁压缩的效果越好,样品放置区域的磁场越均匀且越强。
更进一步地,抗磁块可以设置在磁体线圈内且与磁体线圈同轴同心放置;抗磁块还可以设置在磁体线圈外且与磁体线圈同轴同心放置。
当抗磁块放置在磁体线圈孔径内部且为圆环柱体时,圆环柱体内部紧密填充高强度材料柱体进一步提高抗磁块的机械强度,例如不锈钢柱体或者环氧柱体。
当抗磁块放置在磁体单元外部且为圆环柱体时,圆环柱体外部可以同轴紧密连接高强度材料圆环柱体进一步提高抗磁块的机械强度,其厚度根据实际抗磁块的所需承受的强度合理设计,例如不锈钢的圆环柱体或者环氧材料的圆环柱体。
在本发明实施例中,加固板可以采用高强度绝缘材料,优选环氧板。用于固定磁体线圈和抗磁块,承受磁体线圈和抗磁块在脉冲放电过程中产生的轴向与纵向电磁应力,减少位移和变形。
更进一步地,磁体线圈由n组并联连接的磁体单元构成,n组磁体单元通 过分层加固方式进行分层加固后形成多层多匝的螺旋线圈;当磁体线圈只有一个磁体单元时,磁体线圈无需并联也没有层间板,这样更加简单易于绕制。
当磁体单元为多个时,多个磁体线圈上下阵列且同心放置并由层间板作为间隔支撑,其中磁体单元之间为电气并联关系,这样可以使整个磁体线圈的阻抗显著减小,更高强度的脉冲电流,感应出了更高强度的磁场。层间板的个数应根据磁体线圈个数相应配置。层间板放置在多个磁体线圈之间,且为高强度绝缘材料,优选环氧板。
更进一步地,脉冲磁体装置还包括:层间板;层间板用于对磁体线圈进行轴向分隔,分担磁体线圈的轴向应力,提高结构强度。其中,层间板的个数与磁体单元的组数相匹配,层间板的个数为n-1。
在本发明实施例中,样品放置区域为磁体线圈和抗磁块之间围成一个圆环状的空间,其是样品放置区域,样品的个数与更具实验需要决定。样品放置区域中亦可以放置支撑物用于磁体单元和抗磁块支撑。支撑物应为高强度绝缘材料,优选环氧材料。
本发明还提供了一种基于上述磁体装置实现高通量测量的方法,包括下述步骤:
步骤1:将多个包含样品的样品杆依次放置在抗磁块与磁体线圈构成的圆环柱体区域的中部且彼此之间相互环向对称;
步骤2:通过电源对电容器充电,电容器充电完成后对磁体线圈进行放电,抗磁块在磁体线圈放电过程中感应反向于线圈电流的感应电流,将磁场压缩至抗磁块与磁体线圈之间的区域,从而产生了均匀的圆环磁场;
步骤3:样品杆中的样品物理特性可以根据实验需要设置,例如每个样品与磁场依次处于不同的角度。在一次实验中样品所需探究的物理特性都被同时测得并可以用于分析,从而实现样品高通量测量。
通过本发明所构思的以上技术方案,与现有技术相比,具有如下技术优点:
本发明通过在线圈内孔径的内或外围加入抗磁块对线圈周围的磁场进行压 缩至线圈与抗磁块所构成的空间,因此磁通密度增加,改善了磁体孔线圈周围磁场的强度和均匀度,为相关实验提供了良好的装置平台基础。
区别传统的磁体的圆形磁场区域,本发明线圈与抗磁块所构成的是圆环磁场区域;这样一方面圆环区域空间的增加避免了原来圆形磁场区域只能一次放一个样品,使得一次实验中可以放置多个样品,另一方面由于对称性圆环区域的磁场具有一致性,有利于消除每次实验中出现的随机误差,使得基于上述磁体的高通量测量变得可能。
【附图说明】
图1是本发明实施例提供的基于内磁压缩的高通量磁体的结构示意图。
图2是本发明实施例提供的基于外磁压缩的高通量磁体的结构示意图。
图3是典型脉冲磁体线圈的放电电流曲线示意图。
图4是内磁压缩脉冲磁体原理示意图;其中(a)为传统磁体的磁场区域分布图,(b)为基于内磁压缩的脉冲磁体磁场区域分布图。
图5是基于磁压缩原理新型磁体与传统磁体的磁场强度曲线对比示意图。
图6是外磁压缩脉冲磁体原理示意图;其中(a)为传统磁体的磁场区域分布特性,(b)为基于内磁压缩的脉冲磁体磁场区域分布图。
附图标记说明如下:1为抗磁块,2为加固板(2-1为磁体上端加固板,2-2为磁体下端加固板),3为螺杆,4为磁体线圈,5为样品放置区域,6为支撑物,7为层间板。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明基于磁通压缩原理,提出了一种适用于高通量测量的磁体结构,可用于为NMR(Nuclear Magnetic Resonance)等实验提供高磁场强度、高均匀度的磁场环境。
本发明提供的一种基于磁通压缩的脉冲磁体装置包括:抗磁块、加固板、螺杆和磁体线圈;抗磁块与磁体线圈沿轴向同心放置,加固板放置在磁体线圈与抗磁块的端部并由螺杆连接;抗磁块用于在磁体线圈放电过程中感应反向于线圈电流的感应电流,将磁场压缩至抗磁块与磁体线圈之间的区域;通过增加磁通密度来改善磁体线圈周围磁场的强度和均匀度。
本发明通过在线圈孔径的内或外围加入抗磁块对线圈周围的磁场进行压缩至线圈与抗磁块所构成的空间,因此磁通密度增加,改善了磁体孔线圈周围磁场的强度和均匀度,为相关NMR实验提供了良好的装置平台基础。
本发明实施例中抗磁块可以设置在磁体单元内,也可以设置在磁体单元外。抗磁块放置在磁体单元内部时,磁场利用率高、且可以获得高磁场强度,但圆环形区域有限,仅适合于少量样品同时测量且需要较高场强的实验需求。抗磁块放置在磁体单元外部时,磁场利用率相对低,但圆环形区域很大,适合于很多个样品同时测量且需要较低场强的实验需求。
为了更进一步的说明两种实施例的结构,现结合附图详述如下:
图1示出了本发明第一实施例提供的基于内磁压缩的高通量磁体的结构;基于磁通压缩的脉冲磁体装置包括抗磁块1、加固板2、螺杆3和磁体线圈4;抗磁块1设置在磁体线圈4内且与磁体线圈4同轴同心放置,加固板2放置在磁体线圈4与抗磁块1的端部并由螺杆3连接;抗磁块1用于在磁体线圈4放电过程中感应反向于线圈电流的感应电流,将磁场压缩至抗磁块1与磁体线圈4之间的区域;通过增加磁通密度来改善磁体线圈4周围磁场的强度和均匀度。
作为本发明的一个实施例,抗磁块1可以设置为空心圆环铜柱体结构且内部嵌入不锈钢柱体,这样一方面可以提高抗磁块整体的机械强度,另一方面当机械强度提高后抗磁块不会发生形变,且其仍保持几何轴对称特性,样品放置区域的磁场一致性也更好。其中抗磁块1的材料可以采用高导电率的材料,优选为铜,钢等金属材料。在线圈放电过程中,抗磁块1感应反向于线圈电流的感应电流,使磁场压缩至抗磁块与线圈构成的区域。基于磁通守恒原理此过程 的磁场被压缩,磁通密度增加,那么对应的磁场强度与磁场均匀度都会显著增加。电导率越高感应的电流越大,磁压缩的效果越好。
其中,加固板2采用高强度绝缘材料,优选环氧板。加固板2用于固定磁体线圈4和抗磁块1,承受磁体线圈4在脉冲放电过程中产生的轴向与纵向电磁应力,减少位移和变形。
其中,螺杆3可以由高强度材料构成,优选不锈钢螺丝杆。撑杆3的上部螺杆连接上、下两层加固板,螺杆连接上、下两层加固板,起到固定板层的作用,与加固板2一起构成力学结构稳定的磁体装置骨架。
其中,样品放置区域5位于磁体线圈4和抗磁块1围成的一个圆环状的空间,样品的个数可以由实验需要来决定。
现结合附图详述本发明第一实施例提供的基于内磁压缩的高通量磁体的装置的工作原理如下:
在如图1所示的磁体结构装置中,电源放电开始后,脉冲大电流通入磁体线圈,脉冲电流波形如图3所示。电流上升和下降期间,由安培环路定理在磁体线圈周围产生感应磁场。图3是磁体线圈横截面磁通量分布示意图,其中图4(a)为传统的脉冲磁体,线圈中心无抗磁块;图4(b)为磁体线圈中放置抗磁块的新型磁体。图4(a)所示,若电流方向为逆时针方向,则在线圈中心处感应出垂直纸面向外的磁场,其中轴线中心处磁通量最密集,磁场强度最高,向外磁通量逐渐变稀疏,磁场强度呈辐射状逐渐降低,影响了磁场分布的均匀度。而如图4(b)所示,插入抗磁块后,由于涡流效应与趋肤效应,铜块表面产生与螺线管电流方向反向的顺时针电流,感应出相反的垂直纸面向里的磁场,为满足磁链守恒定律,垂直纸面向外的原磁通量增大,且被压缩到线圈与铜块间的环状区域。由磁通量公式:Φ=B·S;磁通量Φ不变,其垂直通过的面积S变小,磁感应强度B变大。
图2示出了本发明第二实施例提供的基于外磁压缩的高通量磁体的结构;基于磁通压缩的脉冲磁体装置包括抗磁块1、加固板2、螺杆3和磁体线圈4; 抗磁块1设置在磁体线圈4外围且与磁体线圈4同轴同心放置,加固板2放置在磁体线圈4与抗磁块1的端部并由螺杆2连接;抗磁块1用于在磁体线圈4放电过程中感应反向于线圈电流的感应电流,将磁场压缩至抗磁块1与磁体线圈4之间的区域;通过增加磁通密度来改善磁体线圈4周围磁场的强度和均匀度。
作为本发明的一个实施例,抗磁块1可以为空心圆环柱体结构且外部紧密连接不锈钢圆环柱体,这样一方面提高了抗磁块整体的机械强度,另一方面当机械强度提高后抗磁块不会发生形变,且其仍保持几何轴对称特性,样品放置区域的磁场一致性也更好。
在本发明实施例中,抗磁块1的材料可以为高导电率的材料;优选为铜,钢等金属材料。在线圈放电过程中,抗磁块1感应反向于线圈电流的感应电流,使磁场压缩至抗磁块与线圈构成的区域。基于磁通守恒原理此过程的磁场被压缩,磁通密度增加,那么对应的磁场强度与磁场均匀度都会显著增加。电导率越高感应的电流越大,磁压缩的效果越好。
现结合附图详述本发明第二实施例提供的基于外磁压缩的高通量磁体的装置的工作原理如下:
在如图2所示的磁体结构装置中,电源放电开始后,脉冲大电流通入磁体线圈,脉冲电流波形如图3所示。电流上升和下降期间,由安培环路定理在磁体线圈周围产生感应磁场。图6是磁体线圈横截面磁通量分布示意图,其中图6(a)为传统的脉冲磁体,线圈中心无抗磁块;图6(b)为磁体线圈中放置抗磁块的新型磁体。如图6(a)所示,若电流方向为逆时针方向,则在线圈中心处感应出垂直纸面向外的磁场,其中轴线中心处磁通量最密集,磁场强度最高,向外磁通量逐渐变稀疏,磁场强度呈辐射状逐渐降低,影响了磁场分布的均匀度。如图6(b)所示,插入抗磁块后,由于涡流效应与趋肤效应,铜块表面产生了与螺线管电流方向反向的顺时针电流,感应出相反的垂直纸面向里的磁场,为满足磁链守恒定律,垂直纸面向外的原磁通量增大,且被压缩到线圈与铜块 间的环状区域。由磁通量公式Φ=B·S可知,磁通量Φ不变,其垂直通过的面积S变小,磁感应强度B变大。
在本发明实施例中,磁体线圈4可以由两组并联连接的磁体单元构成;工作时,并联连接的磁体单元构成的磁体线圈的阻抗会显著减小,为单个磁体单元的二分之一左右,从而获得了更高强度的脉冲电流,感应出了更高强度的磁场。
作为进一步优选地,在多个磁体单元中,磁体单元的个数越多磁体线圈的阻抗越小,磁场强度越大。与传统脉冲磁体单线圈结构相比,本发明提出增加线圈个数,并使每个磁体单元处于并联连接,由此形成多线圈磁体结构,提高脉冲电流的峰值,从而提高峰值磁场强度。
在本发明实施例中,脉冲磁体装置还包括:层间板7;层间板7放置在多个磁体单元之间,用于对磁体线圈进行轴向分隔,分担磁体线圈的轴向应力,进一步提高结构强度。
在本发明实施例中,磁体单元由导线从内向外紧密绕制形成。其中,导线可以采用高强度铜导线。
作为本发明的一个实施例,磁体线圈包含两组磁体单元通过层间板;且磁体线圈为电气并联关系。
本发明通过层间板对磁体单元进行轴向分隔,分担磁体线圈的内部的轴向应力,提高了整个脉冲磁体装置的机械结构强度。基于此进一步提出,并联线圈之间采用分层板固定线圈,能够将线圈工作中产生的电磁感应轴向应力分担到加固板层上,对比单线圈结构中仅有层间加固这一径向加固方法,加入了分层板承力的轴向加固手段,从水平和垂直两个方向同时减少了电磁力对线圈的冲击,增强了磁体装置的稳定性,显著提高了磁体的结构强度。
图5示出了本发明基于Comsol平台的脉冲磁场强度分布曲线的仿真结果图;其中L1为传统磁体强度分布曲线,L2为新型磁体强度分布曲线;从图中可以看出本发明实施例提供的新型磁体可以显著提高磁场强度。
在本发明实施例中,由于原磁通量通过区域从圆形变为环形,径向宽度被压缩,磁感应强度的径向衰减路程变短,ΔB减小,磁场均匀度也得到了改进。
本发明实施例提供的基于磁通压缩的脉冲磁体装置可以为NMR实验提供强磁场环境,具体实施过程主要包括:
(1)磁体装置骨架包括上、下两层加固板以及外围螺杆,外围螺杆以骨架轴线为中心呈对称排布;
(2)选择高性能导体材料(优选多层绞线复合导体材料)以及层间加固材料(优选Zylon纤维),由内而外密绕在装置骨架上构成脉冲磁体,上层线圈下端与下层线圈上端相连,形成完整电流通路;
(3)确定待研究的样品材料对象以及所需磁场强度,选取合适大小的抗磁块以产生指定强度范围脉冲强磁场;
(4)根据样品材料尺寸选择合适样品杆,将样品杆插入磁体线圈与铜块间的环状区域,基于本发明提出的磁体装置,可以在环状区域中插入多个样品杆,使之围成一圈,同时进行NMR测量实验;
(5)NMR实验中,当满足共振条件时,受激发的核种发生了能级状态跃迁,横向磁化矢量逐渐缩短,这一过程即为弛豫,横向弛豫时间与外磁场均匀度密切相关,用T表示磁场完全均匀时的横向弛豫时间,T‘表示不均匀磁场下的横向弛豫时间,γ表示核种磁旋比系数,ΔB表示磁场的不均匀量,横向弛豫时间T大小主要由磁场空间分布不均匀量ΔB决定:
T=T'+γTT'·ΔB……(2)
相对分辨率ζ是NMR谱仪绝对分辨率与工作频率f 0之比:
=Δf/f 0=ΔB/B 0……(3)
其中,B 0为背景磁场强度,ΔB/B 0为背景磁场均匀度。因此,NMR谱仪分辨率取决于外磁场空间分布的均匀度,高均匀度外磁场是提高NMR实验分辨率和灵敏度的前提。
一般用标准样品在谱仪上测到的NMR信号的信噪比(Singnal and Noise Ratio,SNR)来定义NMR实验灵敏度,理论推导的结果表明NMR检测灵敏度与下列因素相关:
Figure PCTCN2020133572-appb-000001
其中,γ是与原子核本征相关的量,
Figure PCTCN2020133572-appb-000002
是与样品与线圈体积相关的量,Q为谐振回路品质因数,T是绝对温度,b是与接收机噪声带宽相关的量。上式表明,NMR信号强度与背景磁场强度
Figure PCTCN2020133572-appb-000003
成正比,背景磁场强度越大,获得的NMR信号信噪比越高,检测灵敏度越高。
图6(a)为传统磁体的磁场区域分布特性,图6(b)为基于外磁压缩的脉冲磁体磁场区域分布图。在本发明实施例中,当抗磁块放置在磁体线圈的外部时,磁场分布如图6(b)所示,此时线圈外围磁通量被聚集压缩,同样可以达到提高磁场的强度与均匀度目的。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于磁通压缩的脉冲磁体装置,其特征在于,包括抗磁块(1)、加固板(2)、螺杆(3)和磁体线圈(4);
    所述抗磁块(1)与所述磁体线圈(4)沿轴向同心放置,所述加固板(2)放置在所述磁体线圈(4)与所述抗磁块(1)的端部并由所述螺杆(3)连接;
    所述抗磁块(1)用于在磁体线圈(4)放电过程中感应反向于线圈电流的感应电流,将磁场压缩至所述抗磁块(1)与所述磁体线圈(4)之间的区域;通过增加磁通密度来改善磁体线圈(4)周围磁场的强度和均匀度。
  2. 如权利要求1所述的脉冲磁体装置,其特征在于,所述抗磁块(1)设置在磁体线圈(4)内且与所述磁体线圈(4)同轴同心放置。
  3. 如权利要求2所述的脉冲磁体装置,其特征在于,所述抗磁块(1)为实心柱体结构或空心圆环柱体结构。
  4. 如权利要求1所述的脉冲磁体装置,其特征在于,所述抗磁块(1)设置在磁体线圈(4)外且与所述磁体线圈(4)同轴同心放置。
  5. 如权利要求4所述的脉冲磁体装置,其特征在于,所述抗磁块(1)为空心圆环柱体结构。
  6. 如权利要求1-5任一项所述的脉冲磁体装置,其特征在于,所述抗磁块(1)为高导电率的材料。
  7. 如权利要求1-5任一项所述的脉冲磁体装置,其特征在于,所述磁体线圈(4)由n组并联连接的磁体单元构成,每组磁体单元通过分层加固方式进行分层加固后形成多层多匝的螺旋线圈;n为大于等于1的整数;
    工作时,并联连接的磁体线圈的阻抗会显著减小,磁体线圈获得了更高峰值的脉冲电流,从而获得更高强度的磁场。
  8. 如权利要求7所述的脉冲磁体装置,其特征在于,所述脉冲磁体装置还包括:层间板;
    所述层间板设置在所述磁体单元之间,用于对所述磁体线圈进行轴向分隔, 分担所述磁体线圈的轴向应力,提高结构强度。
  9. 如权利要求8所述的脉冲磁体装置,其特征在于,所述层间板的个数与磁体单元的组数相匹配,层间板的个数为n-1。
  10. 一种基于权利要求1所述的高通量脉冲磁体装置实现高通量测量方法,其特征在于,包括:
    将多个包含样品的样品杆依次放置在抗磁块与所述磁体线圈构成的圆环柱体区域的中部且彼此之间相互环向对称;样品杆中样品的物理特性根据需要设置;
    通过电容器对磁体线圈进行放电,抗磁块在磁体线圈放电过程中感应反向于线圈电流的感应电流,将磁场压缩至所述抗磁块与所述磁体线圈构成的圆环柱体区域,并产生均匀的圆环磁场;在一次放电实验中同时测得样品所需探究的物理特性,从而实现样品高通量测量。
PCT/CN2020/133572 2020-01-20 2020-12-03 一种基于磁通压缩的脉冲磁体装置及高通量测量方法 WO2021147522A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/707,963 US11493581B2 (en) 2020-01-20 2022-03-30 Pulse magnet device based on magnetic flux compression, and high-flux measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010062539.5A CN110873855B (zh) 2020-01-20 2020-01-20 一种基于磁通压缩的脉冲磁体装置及高通量测量方法
CN202010062539.5 2020-01-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/707,963 Continuation US11493581B2 (en) 2020-01-20 2022-03-30 Pulse magnet device based on magnetic flux compression, and high-flux measurement method

Publications (1)

Publication Number Publication Date
WO2021147522A1 true WO2021147522A1 (zh) 2021-07-29

Family

ID=69718542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133572 WO2021147522A1 (zh) 2020-01-20 2020-12-03 一种基于磁通压缩的脉冲磁体装置及高通量测量方法

Country Status (3)

Country Link
US (1) US11493581B2 (zh)
CN (1) CN110873855B (zh)
WO (1) WO2021147522A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108917805B (zh) * 2018-08-08 2019-11-26 苏州博昇科技有限公司 电磁超声波双波换能器
CN110873855B (zh) 2020-01-20 2020-04-21 华中科技大学 一种基于磁通压缩的脉冲磁体装置及高通量测量方法
CN117637309B (zh) * 2023-12-21 2024-06-21 华中科技大学 一种磁体线圈的轴向减压结构和具有该减压结构的磁体

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86102580A (zh) * 1986-04-18 1987-02-11 景尔强 铁磁体新的使用方法及强化磁力线技术
CN106970427A (zh) * 2017-03-15 2017-07-21 吉林大学 一种聚焦型超导核磁共振探测装置
CN108254029A (zh) * 2016-12-29 2018-07-06 哈尔滨顺芝科技有限公司 磁电感应式连续脉冲波变送装置及测量方法
CN108918913A (zh) * 2018-05-16 2018-11-30 华中科技大学 一种固有频率可调的垂向超导磁力弹簧振子
US20190115133A1 (en) * 2017-10-16 2019-04-18 The Boeing Company Apparatus and method for magnetic field compression using a toroid coil structure
CN110873855A (zh) * 2020-01-20 2020-03-10 华中科技大学 一种基于磁通压缩的脉冲磁体装置及高通量测量方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5694139A (en) * 1994-06-28 1997-12-02 Sony Corporation Short-distance communication antenna and methods of manufacturing and using the short-distance communication antenna
JP4856430B2 (ja) * 2006-01-23 2012-01-18 株式会社日立製作所 電磁石装置
CN101893693B (zh) * 2010-07-16 2012-10-03 中国科学院上海微系统与信息技术研究所 基于空间相关性的磁场动态补偿系统及方法
KR102150817B1 (ko) * 2012-03-20 2020-10-16 리니어 랩스, 엘엘씨 향상된 영구 자석 자속밀도를 갖는 개선된 dc 전기 모터/발전기
CN104157392B (zh) * 2014-08-12 2017-01-25 中国科学院电工研究所 一种双气隙闭式环形永磁磁路
US9564838B2 (en) * 2014-08-27 2017-02-07 Barry Stipe Magnetic levitation device for prolonged rotation
KR20170048560A (ko) * 2014-09-05 2017-05-08 하이퍼파인 리서치, 인크. 낮은 필드 자기 공명 이미징 방법들 및 장치
JP6927996B2 (ja) * 2016-03-22 2021-09-01 ハイパーファイン,インコーポレイテッド 磁場シミングのための方法および装置
US10627464B2 (en) * 2016-11-22 2020-04-21 Hyperfine Research, Inc. Low-field magnetic resonance imaging methods and apparatus
CN111009378A (zh) * 2019-12-20 2020-04-14 华中科技大学 一种高强度并联式脉冲磁体装置
CN212380216U (zh) * 2020-08-12 2021-01-19 华中科技大学 一种脉冲磁体线圈的端部加固结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN86102580A (zh) * 1986-04-18 1987-02-11 景尔强 铁磁体新的使用方法及强化磁力线技术
CN108254029A (zh) * 2016-12-29 2018-07-06 哈尔滨顺芝科技有限公司 磁电感应式连续脉冲波变送装置及测量方法
CN106970427A (zh) * 2017-03-15 2017-07-21 吉林大学 一种聚焦型超导核磁共振探测装置
US20190115133A1 (en) * 2017-10-16 2019-04-18 The Boeing Company Apparatus and method for magnetic field compression using a toroid coil structure
CN108918913A (zh) * 2018-05-16 2018-11-30 华中科技大学 一种固有频率可调的垂向超导磁力弹簧振子
CN110873855A (zh) * 2020-01-20 2020-03-10 华中科技大学 一种基于磁通压缩的脉冲磁体装置及高通量测量方法

Also Published As

Publication number Publication date
CN110873855B (zh) 2020-04-21
CN110873855A (zh) 2020-03-10
US20220221539A1 (en) 2022-07-14
US11493581B2 (en) 2022-11-08

Similar Documents

Publication Publication Date Title
WO2021147522A1 (zh) 一种基于磁通压缩的脉冲磁体装置及高通量测量方法
KR970004567B1 (ko) 영구자석을 사용한 원통형 핵자기 공명 바이어스 자석장치 및 그 제작방법
US8421462B2 (en) Sinusoidally resonant radio frequency volume coils for high field magnetic resonance applications
JP2732141B2 (ja) 領域横断磁場勾配発生用勾配コイルアセンブリー
US4276529A (en) Magnet coil arrangement for generating a homogeneous magnetic field for magnetic resonance arrangements
CN102360691B (zh) 一种带有铁环结构的开放式核磁共振磁体系统
CN1696727A (zh) 磁场发生器和具有该磁场发生器的磁共振仪
JP2003526420A (ja) Sn比を改善するためのrf磁束誘導構造を備えた磁気共鳴装置
US8154368B2 (en) Compact superconducting magnet configuration with active shielding, wherein the shielding coil damps the field maximum of the main coil as well as associated magnetic resonance tomograph, NMR spectrometer and ion cyclotron resonance mass spectrometer
JP2562289B2 (ja) Nmrプローブのための2重ポストくぼみ形空胴
CN111009378A (zh) 一种高强度并联式脉冲磁体装置
JP5203128B2 (ja) 結合モードで複数の試料を同時測定する、複数の共振器システムを備えるnmrプローブヘッド
Yang et al. A low-cost, miniature Halbach magnet designed for portable time domain NMR
US4748429A (en) Solenoidal magnet with homogeneous magnetic field
JPH11221201A (ja) 磁気共鳴像形成装置及び方法
Gavrilin et al. New concepts in transverse field magnet design
Willen et al. Superconducting magnets
US11249156B2 (en) Magnetic resonance radiation shield and shielded main magnet
Zheng et al. Optimal design of a portable arc-shaped NMR sensor and its application in the aging-level detection of silicone rubber insulator
CN113035490A (zh) 一种轴向调整均匀场的永磁体
US5309103A (en) Apparatus to excite and/or to detect magnetic resonance
CN110501663A (zh) 一种超低场双平面核磁共振常导主磁体及其构建方法
CN110579502B (zh) 一种用于核磁共振两相流测量的传感器
CN104155622A (zh) 一种用于核磁共振的平面射频线圈
Yuan et al. Some superconducting magnets at IMP

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915313

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915313

Country of ref document: EP

Kind code of ref document: A1