WO2021147351A1 - 基于EtherCAT P总线技术的多轴伺服电机控制系统及方法 - Google Patents

基于EtherCAT P总线技术的多轴伺服电机控制系统及方法 Download PDF

Info

Publication number
WO2021147351A1
WO2021147351A1 PCT/CN2020/115418 CN2020115418W WO2021147351A1 WO 2021147351 A1 WO2021147351 A1 WO 2021147351A1 CN 2020115418 W CN2020115418 W CN 2020115418W WO 2021147351 A1 WO2021147351 A1 WO 2021147351A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethercat
module
motor
control
drive
Prior art date
Application number
PCT/CN2020/115418
Other languages
English (en)
French (fr)
Inventor
华强
谢安桓
孔令雨
钱坤
张明瑞
张丹
Original Assignee
之江实验室
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 之江实验室 filed Critical 之江实验室
Priority to JP2021547153A priority Critical patent/JP2022516812A/ja
Publication of WO2021147351A1 publication Critical patent/WO2021147351A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P5/00Arrangements specially adapted for regulating or controlling the speed or torque of two or more electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/04Arrangements for controlling or regulating the speed or torque of more than one motor

Definitions

  • the invention belongs to the technical field of motor control, and specifically relates to a multi-axis servo motor control system and method based on EtherCAT P bus technology.
  • multi-axis servo control systems have developed rapidly, and are widely used in fields such as intelligent robots, high numerical control machine tools, and flexible manufacturing. With the increasing complexity of these application fields and the increasingly powerful functions, new requirements are put forward for the communication interface of the servo control system.
  • Traditional multi-axis servo control systems are mostly buses based on serial communication characteristics, which have the problems of low communication speed and poor synchronization performance.
  • there are many cables for power supply and communication of these complex control devices and there are problems such as high installation and maintenance costs and poor reliability.
  • the present invention provides a multi-axis servo motor control system and control method based on EtherCAT P bus technology.
  • the specific technical solutions are as follows:
  • a multi-axis servo motor control system based on EtherCAT P bus technology which includes a motion controller and several servo drive systems.
  • the motion controller and the servo drive system are connected through the EtherCAT P bus; each servo
  • the drive system includes a servo drive and a motor that are electrically connected; a position sensor is embedded in the motor to sense the rotor position of the motor;
  • the EtherCAT P bus is used to transmit the control and feedback signals of each motor, thereby realizing multi-motor control; the EtherCAT P bus is also used to transmit 2 isolated power supplies required by each servo drive system; the 2 The isolated power supply is used for the control power supply and drive power supply of the servo drive.
  • the motion controller includes a first processor module, a first power module, N standard Ethernet adapters, N EtherCAT P network ports, and N power processing modules; the first processor module and N standard Ethernet adapters are connected, one standard Ethernet adapter corresponds to an EtherCAT P network port, one end of the first power module is connected to the first processor module, and the other end is connected to the N power processing modules.
  • the processing module is connected to its corresponding EtherCAT P network port;
  • the first processor module runs the EtherCAT master station protocol, and executes the multi-axis motion control algorithm, calculates the control instructions of each motor, and sends them to each servo drive system through the EtherCAT P bus;
  • the first power supply module supplies power to the first processor module, and the power supply processing module transmits power to the corresponding EtherCAT P network port;
  • the power processing module includes a circuit for realizing current-limiting protection, reverse protection and inrush current protection, and an LC filter circuit;
  • the EtherCAT P network port includes four signal pins TX+/- and RX+/-, which transmit two isolated power supplies while transmitting EtherCAT signals.
  • the current limiting protection is realized by using a fuse
  • the reverse protection is realized by a diode
  • the inrush current protection is realized by adopting a surge current control chip
  • the first processor module adopts The processor is Intel I7 series CPU.
  • the servo driver includes a microcontroller module, an isolation module, a drive module, a detection module, a servo drive power processing module, an EtherCAT slave interface control module, and an EtherCAT P input network port, an EtherCAT P output network port ;
  • the microcontroller module, the isolation module, the drive module, the detection module, and the microcontroller module are connected in sequence, and the drive module and the detection module are also connected to the motor;
  • the servo drive power processing module receives external power input
  • the power input of the EtherCAT P input network port is used to supply power to other modules and the EtherCAT P output network port;
  • the EtherCAT slave interface control module is also connected to the EtherCAT P input network port, the microcontroller module, and the EtherCAT P output network port.
  • the EtherCAT slave station interface control module takes the EtherCAT slave station control chip as the core, and is used to realize EtherCAT data frame processing and perform data interaction with the microcontroller module; the microcontroller module is controlled by the EtherCAT slave station interface The module obtains the control signal sent by the motion controller, executes the servo motor control algorithm according to the signal collected by the detection module, and outputs the PWM signal after being processed by the isolation module and then transmitted to the drive module to drive the motor; or The microcontroller module feeds back to the motion controller through the EtherCAT slave station interface control module the operating information of the motor collected by the detection module;
  • the servo drive power processing module includes an LC filter circuit and a reverse protection circuit, and transmits two isolated power sources, which are respectively used for the control power supply and drive power supply of the servo drive; the TX+ and TX- lines of the EtherCAT P input network port Used to transmit the control power of the servo drive, and RX+, RX- are used to transmit the drive power of the servo drive.
  • the EtherCAT slave interface control module includes EEPROM, which is used to store the configuration file of the EtherCAT slave device, and indicates that the slave is of the EtherCAT P type.
  • a motor control method of a multi-axis servo motor control system based on EtherCAT P bus technology specifically includes the following steps:
  • the motion controller obtains the actual position or speed of each motor through the EtherCAT P bus, and executes the corresponding multi-axis servo control algorithm in a certain period according to actual application requirements to calculate the position or speed command data of each motor;
  • the motion controller updates the calculated position or speed command data of each motor to the EtherCAT data frame, and sends it to each servo drive through the EtherCAT P bus;
  • Each servo driver receives the position or speed command of each motor through the EtherCAT slave interface control module, the microcontroller module executes the motor control algorithm, generates a drive signal, and drives the servo motor to a specified state.
  • the microcontroller obtains the current current data after processing according to the current current measured by the detection module, executes the current control algorithm, and generates a drive signal after coordinate transformation and SVPWM algorithm;
  • the microcontroller sends the drive signal to the corresponding motor, and controls the motor to rotate to a specified position;
  • the microcontroller obtains the current current data after processing according to the current current measured by the detection module, executes the current control algorithm, and generates a drive signal after coordinate transformation and SVPWM algorithm;
  • the microcontroller sends the drive signal to the corresponding motor, and controls the motor to rotate to a specified speed.
  • the multi-axis servo drive system based on EtherCAT P line technology provided by the present invention can realize EtherCAT signal and two-way isolated power transmission on one network line. Using the method of the invention, while providing system communication speed and synchronization performance, it also reduces the complexity of system cables and improves system reliability.
  • Figure 1 is a block diagram of the multi-axis servo control system of the present invention
  • FIG. 2 is a structural block diagram of an embodiment of the multi-axis servo motor control system of the present invention
  • FIG. 3 is a structural block diagram of another embodiment of the multi-axis servo motor control system of the present invention.
  • Figure 4 is a structural block diagram of the motion controller of the present invention.
  • FIG. 5 is a schematic diagram of one embodiment of the EtherCAT P network port power processing circuit of the motion controller of the present invention.
  • Figure 6 is a structural block diagram of the servo driver of the present invention.
  • FIG. 7 is a schematic circuit diagram of the servo drive power processing module of the servo drive of the present invention.
  • FIG. 8 is a schematic flowchart of the multi-axis motion control method of the present invention.
  • Fig. 9 is a schematic flow chart of the servo motor position control method of the present invention.
  • Fig. 10 is a schematic flow chart of the method for controlling the speed of the servo motor of the present invention.
  • Fig. 1 The structure block diagram of the multi-axis servo control system provided by the present invention is shown in Fig. 1, which includes a motion controller and several servo drive systems, and the motion controller and the servo drive system are connected through the EtherCAT P bus;
  • a servo drive system includes a servo drive and a motor that are electrically connected; a position sensor is embedded in the motor to sense the rotor position of the motor.
  • the EtherCAT P bus is used to transmit the control and feedback signals of each motor, thereby realizing multi-motor control; the EtherCAT P bus is also used to transmit 2 isolated power supplies required by each servo drive system; the 2 The isolated power supply is used for the control power supply and drive power supply of the servo drive.
  • the connection between the motion controller and multiple servo drive systems is very flexible.
  • FIG 2 is a structural block diagram of one embodiment of the multi-axis servo motor control system of the present invention, each servo drive system is directly connected to the motion controller;
  • Figure 3 is the structure of another embodiment of the multi-axis servo motor control system of the present invention In the block diagram, part of the servo drive system is directly connected to the motion controller, and can also be connected to the EtherCAT P network port of other servo drive systems.
  • the motor is a permanent magnet brushless servo motor.
  • the motion controller includes a first processor module, a first power module, N standard Ethernet adapters, N EtherCAT P network ports, and N power processing Module;
  • the first processor module is connected to N standard Ethernet adapters, one standard Ethernet adapter corresponds to an EtherCAT P network port, and one end of the first power module is connected to the first processor module, The other end is connected to N power processing modules, and the power processing module is connected to its corresponding EtherCAT P network port.
  • the first processor module runs the EtherCAT master station protocol and executes the multi-axis motion control algorithm, calculates the control instructions of each motor, and sends them to each servo drive system through the EtherCAT P bus.
  • the first power supply module supplies power to the first processor module, and the power supply processing module transmits power to the corresponding EtherCAT P network port. At the same time, capacitor filtering is used between the EtherCAT P network port and the standard Ethernet adapter.
  • the power processing module includes circuits for realizing current-limiting protection, reverse protection, and inrush current protection, and an LC filter circuit, as shown in FIG. 5.
  • the current-limiting protection is realized by using a fuse
  • the reverse protection is realized by a diode
  • the inrush current protection is realized by a surge current control chip, such as the LM5069 chip.
  • the processor adopted by the first processor module is an Intel I7 series CPU.
  • the EtherCAT P network port includes four signal pins TX+/- and RX+/-, which transmit two isolated power supplies while transmitting EtherCAT signals.
  • the servo drive includes a microcontroller module, an isolation module, a drive module, a detection module, and a servo drive power processing module. It also has an EtherCAT slave interface control module, as well as an EtherCAT P input network port and an EtherCAT P output network port. ;
  • the microcontroller module, isolation module, drive module, detection module, and microcontroller module are connected in sequence, and the drive module and detection module are also connected to the motor; the servo drive power processing module receives external power input
  • the power input of the EtherCAT P input network port is used to supply power to other modules and the EtherCAT P output network port; the EtherCAT slave interface control module is also connected to the EtherCAT P input network port, the microcontroller module, and the EtherCAT P output network port.
  • the EtherCAT slave station interface control module takes the EtherCAT slave station control chip as the core, and is used to realize EtherCAT data frame processing and perform data interaction with the microcontroller module; the microcontroller module is controlled by the EtherCAT slave station interface The module obtains the control signal sent by the motion controller, executes the servo motor control algorithm according to the signal collected by the detection module, and outputs the PWM signal after being processed by the isolation module and then transmitted to the drive module to drive the motor; or The microcontroller module feeds back to the motion controller through the EtherCAT slave station interface control module the operating information of the motor collected by the detection module;
  • the servo drive power processing module includes an LC filter circuit and a reverse protection circuit, and transmits two isolated power sources, which are respectively used for the control power supply and drive power supply of the servo drive.
  • the EtherCAT P input network port The TX+ and TX- lines are used to transmit the control power of the servo drive, and RX+, RX- are used to transmit the drive power of the servo drive.
  • the EtherCAT slave control chip can use ET1100/AX58100/LAN9252; the EtherCAT slave interface control module contains EEPROM, which is used to store the configuration file of the EtherCAT slave device and indicates that the slave is of the EtherCAT P type.
  • the detection module includes a position detection module, a current detection module and a bus voltage detection module, which are respectively used to detect the motor rotor position, the motor three-phase current and the bus voltage, and send them to the microcontroller module.
  • the microcontroller can use a DSP28335/STM32F407 chip with floating point operations.
  • the motor control method of the multi-axis servo motor control system based on EtherCAT P bus technology of the present invention specifically includes the following steps:
  • the motion controller obtains the actual position or speed of each motor through the EtherCAT P bus, and executes the corresponding multi-axis servo control algorithm in a certain period according to actual application requirements to calculate the position or speed command data of each motor;
  • the motion controller updates the calculated position or speed command data of each motor to the EtherCAT data frame, and sends it to each servo drive through the EtherCAT P bus;
  • Each servo driver receives the position or speed command of each motor through the EtherCAT slave interface control module, the microcontroller module executes the motor control algorithm, generates a drive signal, and drives the servo motor to a specified state;
  • the microcontroller obtains the current current data after processing according to the current current measured by the detection module, executes the current control algorithm, and generates a drive signal after coordinate transformation and SVPWM algorithm;
  • the microcontroller sends the drive signal to the corresponding motor, and controls the motor to rotate to a specified position.
  • the microcontroller obtains the current current data after processing according to the current current measured by the detection module, executes the current control algorithm, and generates a drive signal after coordinate transformation and SVPWM algorithm;
  • the microcontroller sends the drive signal to the corresponding motor, and controls the motor to rotate to a specified speed.

Abstract

一种基于EtherCAT P总线技术的多轴伺服电机控制系统及控制方法,该电机控制系统包括通过EtherCAT P总线连接的一个运动控制器以及若干个伺服驱动系统,每个伺服驱动系统包括电连接的伺服驱动器和电机。本系统通过在EtherCAT通讯网口处增加电源处理电路,从而在一根EtherCAT通讯线缆上实现2路隔离的电源的传输,在保证系统高通讯速率和高同步性能的基础上,还能减少系统线缆数量,提高系统的可靠性。

Description

基于EtherCAT P总线技术的多轴伺服电机控制系统及方法 技术领域
本发明属于电机控制技术领域,具体涉及一种基于EtherCAT P总线技术的多轴伺服电机控制系统及方法。
背景技术
近年来,多轴伺服控制系统得到了快速的发展,广泛应用于智能机器人、高数控机床、柔性制造等领域。随着这些应用领域复杂程度越来越高,功能越来越强,对伺服控制系统通讯接口提出了新的需求。传统多轴伺服控制系统大多是基于串行通信特征的总线,存在通讯速率低、同步性能差的问题。同时这些复杂控制设备的电源和通讯的线缆很多,存在安装维护成本高、可靠性较差等问题。
随着现场总线、工业以太网等技术发展,将这些技术应用于伺服电机控制系统引起了广泛的关注。中国专利号CN104820403B、CN204650244U、CN109308030A通过将EtherCAT总线技术应用于机器人、数控机床、伺服电机控制系统中,可提高系统通讯接口的速率和同步性能,但依然无法解决系统线缆复杂的问题。
发明内容
针对现有技术的不足,本发明提供一种基于EtherCAT P总线技术的多轴伺服电机控制系统及控制方法,具体技术方案如下:
一种基于EtherCAT P总线技术的多轴伺服电机控制系统,其包括一个运动控制器以及若干个伺服驱动系统,所述的运动控制器与所述的伺服驱动系统通过EtherCAT P总线连接;每个伺服驱动系统包括电连接的伺服驱动器和电机;所述的电机内嵌有位置传感器,用于感应电机转子位置;
所述的EtherCAT P总线用于传递各个电机的控制及反馈信号,进而实现多电机控制;所述EtherCAT P总线还用于传递每个伺服驱动系统所需的2路隔离的电源;所述的2路隔离的电源分别用于伺服驱动器的控制供电和驱动供电。
进一步地,所述的运动控制器包括第一处理器模块、第一电源模块、N个标准以太网适配器、N个EtherCAT P网口和N个电源处理模块;所述的第一处理器模块与N个标准以太网适配器相连,一个标准以太网适配器对应一个EtherCAT P网口,所述的第一电源模块一端与所述的第一处理器模块连接,另一端与N个电源处理模块连接,电源处理模块与其对应的EtherCAT P网口连接;
所述的第一处理器模块运行EtherCAT主站协议,并执行多轴运动控制算法,计算得到各个电机的控制指令,并通过EtherCAT P总线发送给各个伺服驱动系统;
所述的第一电源模块为所述的第一处理器模块供电,并经过电源处理模块后传给对应的EtherCAT P网口;
所述的电源处理模块包括实现限流保护、反向保护和冲击电流保护的电路,以及LC滤波电路;
所述的EtherCAT P网口包含TX+/-、RX+/-四个信号引脚,在传输EtherCAT信号的同时传输2路隔离的电源。
进一步地,所述的限流保护使用保险丝来实现,所述的反向保护采用二极管来实现;所述的冲击电流保护采用浪涌电流控制芯片来实现,所述的第一处理器模块采用的处理器为Intel I7系列CPU。
进一步地,所述的伺服驱动器包括微控制器模块、隔离模块、驱动模块、检测模块、伺服驱动电源处理模块,还具有EtherCAT从站接口控制模块,以及EtherCAT P输入网口、EtherCAT P输出网口;
所述的微控制器模块、隔离模块、驱动模块、检测模块、微控制器模块依次连接,所述的驱动模块、检测模块还与电机相连;所述的伺服驱动电源处理模块接收外部的电源输入及EtherCAT P输入网口的电源输入,用于给其他模块和EtherCAT P输出网口供电;所述的EtherCAT从站接口控制模块还与EtherCAT P输入网口、微控制器模块、EtherCAT P输出网口相连;
所述的EtherCAT从站接口控制模块以EtherCAT从站控制芯片为核心,用于实现EtherCAT数据帧处理,并与所述微控制器模块进行数据交互;所述微控制器模块通过EtherCAT从站接口控制模块得到运动控制器发来的控制信号,根据所述的检测模块采集的信号,执行伺服电机控制算法,输出PWM信号经所述的隔离模块处理后传递给所述的驱动模块来驱动电机;或者所述微控制器模块根据所述的检测模块采集的电机的运行信息,并通过所述的EtherCAT从站接口控制模块反馈给运动控制器;
所述的伺服驱动电源处理模块包括LC滤波电路和反向保护电路,传递2路隔离的电源,分别用于伺服驱动器的控制供电和驱动供电;所述EtherCAT P输入网口的TX+、TX-线路用于传输伺服驱动器的控制电源,而RX+、RX-用于传输伺服驱动器的驱动电源。
进一步地,所述的EtherCAT从站接口控制模块包含EEPROM,用于存储EtherCAT从站设备的配置文件,并说明从站为EtherCAT P类型。
一种基于EtherCAT P总线技术的多轴伺服电机控制系统的电机控制方法,该方法具体 包括如下步骤:
S1:所述的运动控制器通过EtherCAT P总线得到各个电机的实际位置或速度,并根据实际应用需求,按照一定周期执行对应的多轴伺服控制算法,计算出各个电机位置或速度指令数据;
S2:所述的运动控制器将计算得到的各个电机位置或速度指令数据更新至EtherCAT数据帧中,并通过EtherCAT P总线发送给各个伺服驱动器;
S3:各个伺服驱动器通过EtherCAT从站接口控制模块接收到各个电机的位置或速度指令,微控制器模块执行电机控制算法,生成驱动信号,驱动伺服电机达到指定状态。
进一步地,所述的S3中,当各个伺服驱动器通过EtherCAT从站接口控制模块接收到各个电机的位置指令时,具体的控制步骤如下:
(1)判断是否接收到EtherCAT同步时钟信号,若接收到就进行下一步处理;
(2)通过EtherCAT通讯得到运动控制器发来的控制模式和位置指令,根据检测模块得到当前电机位置,微控制器执行位置控制算法后,输出给定转速;
(3)根据给定转速和检测模块测量的当前转速,微控制器执行转速控制算法后,输出给定电流信号;
(4)微控制器根据检测模块测量的当前电流,经过处理后得到当前的电流数据,执行电流控制算法,并经坐标变换及SVPWM算法后,生成驱动信号;
(5)微控制器发送所述驱动信号至对应的电机,控制电机转动至指定位置;
当各个伺服驱动器通过EtherCAT从站接口控制模块接收到各个电机的转速指令时,具体的控制步骤如下:
(1)判断是否接收到EtherCAT同步时钟信号,若接收到就进行下一步处理;
(2)通过EtherCAT通讯得到运动控制器发来的控制模式和转速指令,根据检测模块得到当前电机转速,微控制器执行转速控制算法后,输出给定电流;
(3)微控制器根据检测模块测量的当前电流,经过处理后得到当前的电流数据,执行电流控制算法,并经坐标变换及SVPWM算法后,生成驱动信号;
(4)微控制器发送所述驱动信号至对应的电机,控制电机转动至指定转速。
本发明的有益效果如下:
本发明提供的基于EtherCAT P线技术的多轴伺服驱动系统能在一根网线上实现EtherCAT信号和2路隔离的电源传输。利用该发明的方法,在提供系统通讯速度和同步性能的同时,还降低了系统线缆复杂性,提高了系统可靠性。
附图说明
图1是本发明中多轴伺服控制系统的结构框图;
图2是本发明的多轴伺服电机控制系统其中一个实施例的结构框图;
图3是本发明的多轴伺服电机控制系统的另一实施例的结构框图;
图4是本发明的运动控制器的结构框图;
图5是本发明的运动控制器的EtherCAT P网口电源处理电路的其中一个实施例的示意图;
图6是本发明的伺服驱动器的结构框图;
图7是本发明的伺服驱动器的伺服驱动电源处理模块的电路示意图;
图8是本发明的多轴运动控制方法的流程示意图;
图9是本发明的伺服电机位置控制方法的流程示意图;
图10是本发明的伺服电机转速控制方法的流程示意图。
具体实施方式
下面根据附图和优选实施例详细描述本发明,本发明的目的和效果将变得更加明白,应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供的多轴伺服控制系统的结构框图如图1所示,包括一个运动控制器以及若干个伺服驱动系统,所述的运动控制器与所述的伺服驱动系统通过EtherCAT P总线连接;每个伺服驱动系统包括电连接的伺服驱动器和电机;所述的电机内嵌有位置传感器,用于感应电机转子位置。所述的EtherCAT P总线用于传递各个电机的控制及反馈信号,进而实现多电机控制;所述EtherCAT P总线还用于传递每个伺服驱动系统所需的2路隔离的电源;所述的2路隔离的电源分别用于伺服驱动器的控制供电和驱动供电。
因EtherCAT总线接线的灵活性,运动控制器与多个伺服驱动系统之间连接很灵活。
图2是本发明的多轴伺服电机控制系统其中一个实施例的结构框图,各个伺服驱动系统直接与运动控制器相连;图3是本发明的多轴伺服电机控制系统的另一实施例的结构框图,部分伺服驱动系统直接与运动控制器相连,也可以与其他伺服驱动系统的EtherCAT P网口相连。
优选地,所述的电机采用永磁无刷伺服电机。
如图4所示,为本发明的运动控制器的结构框图,运动控制器包括第一处理器模块、第一电源模块、N个标准以太网适配器、N个EtherCAT P网口和N个电源处理模块;所述的第一处理器模块与N个标准以太网适配器相连,一个标准以太网适配器对应一个EtherCAT P网口,所述的第一电源模块一端与所述的第一处理器模块连接,另一端与N个电源处理模块连接,电源处理模块与其对应的EtherCAT P网口连接。
所述的第一处理器模块运行EtherCAT主站协议,并执行多轴运动控制算法,计算得到各个电机的控制指令,并通过EtherCAT P总线发送给各个伺服驱动系统。
所述的第一电源模块为所述的第一处理器模块供电,并经过电源处理模块后传给对应的EtherCAT P网口。同时EtherCAT P网口与标准以太网适配器之间通过电容滤波。
所述的电源处理模块包括实现限流保护、反向保护和冲击电流保护的电路,以及LC滤波电路,如图5所示,作为其中一个实施方式,所述的限流保护使用保险丝来实现,所述的反向保护采用二极管来实现;所述的冲击电流保护采用浪涌电流控制芯片来实现,如LM5069芯片。所述的第一处理器模块采用的处理器为Intel I7系列CPU。
所述的EtherCAT P网口包含TX+/-、RX+/-四个信号引脚,在传输EtherCAT信号的同时传输2路隔离的电源。
如图6所示,伺服驱动器包括微控制器模块、隔离模块、驱动模块、检测模块、伺服驱动电源处理模块,还具有EtherCAT从站接口控制模块,以及EtherCAT P输入网口、EtherCAT P输出网口;
所述的微控制器模块、隔离模块、驱动模块、检测模块、微控制器模块依次连接,所述的驱动模块、检测模块还与电机相连;所述的伺服驱动电源处理模块接收外部的电源输入及EtherCAT P输入网口的电源输入,用于给其他模块和EtherCAT P输出网口供电;所述的EtherCAT从站接口控制模块还与EtherCAT P输入网口、微控制器模块、EtherCAT P输出网口相连;
所述的EtherCAT从站接口控制模块以EtherCAT从站控制芯片为核心,用于实现EtherCAT数据帧处理,并与所述微控制器模块进行数据交互;所述微控制器模块通过EtherCAT从站接口控制模块得到运动控制器发来的控制信号,根据所述的检测模块采集的信号,执行伺服电机控制算法,输出PWM信号经所述的隔离模块处理后传递给所述的驱动模块来驱动电机;或者所述微控制器模块根据所述的检测模块采集的电机的运行信息,并通过所述的EtherCAT从站接口控制模块反馈给运动控制器;
如图7所示,所述的伺服驱动电源处理模块包括LC滤波电路和反向保护电路,传递2路隔离的电源,分别用于伺服驱动器的控制供电和驱动供电,所述EtherCAT P输入网口的TX+、TX-线路用于传输伺服驱动器的控制电源,而RX+、RX-用于传输伺服驱动器的驱动电源。
EtherCAT从站控制芯片可采用ET1100/AX58100/LAN9252;所述的EtherCAT从站接口控制模块包含EEPROM,用于存储EtherCAT从站设备的配置文件,并说明从站为EtherCAT P类型。
所述的检测模块包括位置检测模块、电流检测模块和母线电压检测模块,分别用于检测电机转子位置、电机三相电流和母线电压,并发送给微控制器模块。
优选地,所述微控制器可采用带浮点运算的DSP28335/STM32F407芯片。
如图8所示,本发明的基于EtherCAT P总线技术的多轴伺服电机控制系统的电机控制方法,具体包括如下步骤:
S1:所述的运动控制器通过EtherCAT P总线得到各个电机的实际位置或速度,并根据实际应用需求,按照一定周期执行对应的多轴伺服控制算法,计算出各个电机位置或速度指令数据;
S2:所述的运动控制器将计算得到的各个电机位置或速度指令数据更新至EtherCAT数据帧中,并通过EtherCAT P总线发送给各个伺服驱动器;
S3:各个伺服驱动器通过EtherCAT从站接口控制模块接收到各个电机的位置或速度指令,微控制器模块执行电机控制算法,生成驱动信号,驱动伺服电机达到指定状态;
如图9所示,当各个伺服驱动器通过EtherCAT从站接口控制模块接收到各个电机的位置指令时,具体的控制步骤如下:
(1)判断是否接收到EtherCAT同步时钟信号,若接收到就进行下一步处理;
(2)通过EtherCAT通讯得到运动控制器发来的控制模式和位置指令,根据检测模块得到当前电机位置,微控制器执行位置控制算法后,输出给定转速;
(3)根据给定转速和检测模块测量的当前转速,微控制器执行转速控制算法后,输出给定电流信号;
(4)微控制器根据检测模块测量的当前电流,经过处理后得到当前的电流数据,执行电流控制算法,并经坐标变换及SVPWM算法后,生成驱动信号;
(5)微控制器发送所述驱动信号至对应的电机,控制电机转动至指定位置。
如图10所示,当各个伺服驱动器通过EtherCAT从站接口控制模块接收到各个电机的转速指令时,具体的控制步骤如下:
(1)判断是否接收到EtherCAT同步时钟信号,若接收到就进行下一步处理;
(2)通过EtherCAT通讯得到运动控制器发来的控制模式和转速指令,根据检测模块得到当前电机转速,微控制器执行转速控制算法后,输出给定电流;
(3)微控制器根据检测模块测量的当前电流,经过处理后得到当前的电流数据,执行电流控制算法,并经坐标变换及SVPWM算法后,生成驱动信号;
(4)微控制器发送所述驱动信号至对应的电机,控制电机转动至指定转速。
本领域普通技术人员可以理解,以上所述仅为发明的优选实例而已,并不用于限制发 明,尽管参照前述实例对发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实例记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在发明的精神和原则之内,所做的修改、等同替换等均应包含在发明的保护范围之内。

Claims (8)

  1. 一种基于EtherCAT P总线技术的多轴伺服电机控制系统,其特征在于,该电机控制系统包括一个运动控制器以及若干个伺服驱动系统,所述的运动控制器与所述的伺服驱动系统通过EtherCAT P总线连接;每个伺服驱动系统包括电连接的伺服驱动器和电机;所述的电机内嵌有位置传感器,用于感应电机转子位置;
    所述的EtherCAT P总线用于传递各个电机的控制及反馈信号,进而实现多电机控制;所述EtherCAT P总线还用于传递每个伺服驱动系统所需的2路隔离的电源;所述的2路隔离的电源分别用于伺服驱动器的控制供电和驱动供电。
  2. 根据权利要求1所述的基于EtherCAT P总线技术的多轴伺服电机控制系统,其特征在于,所述的运动控制器包括第一处理器模块、第一电源模块、N个标准以太网适配器、N个EtherCAT P网口和N个电源处理模块;所述的第一处理器模块与N个标准以太网适配器相连,一个标准以太网适配器对应一个EtherCAT P网口,所述的第一电源模块一端与所述的第一处理器模块连接,另一端与N个电源处理模块连接,电源处理模块与其对应的EtherCAT P网口连接;
    所述的第一处理器模块运行EtherCAT主站协议,并执行多轴运动控制算法,计算得到各个电机的控制指令,并通过EtherCAT P总线发送给各个伺服驱动系统;
    所述的第一电源模块为所述的第一处理器模块供电,并经过电源处理模块后传给对应的EtherCAT P网口;
    所述的电源处理模块包括实现限流保护、反向保护和冲击电流保护的电路,以及LC滤波电路;
    所述的EtherCAT P网口包含TX+/-、RX+/-四个信号引脚,在传输EtherCAT信号的同时传输2路隔离的电源。
  3. 根据权利要求1所述的基于EtherCAT P总线技术的多轴伺服电机控制系统,其特征在于,所述的电机采用永磁无刷伺服电机。
  4. 根据权利要求2所述的基于EtherCAT P总线技术的多轴伺服电机控制系统,其特征在于,所述的限流保护使用保险丝来实现,所述的反向保护采用二极管来实现;所述的冲击电流保护采用浪涌电流控制芯片来实现,所述的第一处理器模块采用的处理器为Intel I7系列CPU。
  5. 根据权利要求1所述的基于EtherCAT P总线技术的多轴伺服电机控制系统,其特征在于,所述的伺服驱动器包括微控制器模块、隔离模块、驱动模块、检测模块、伺服驱动 电源处理模块,还具有EtherCAT从站接口控制模块,以及EtherCAT P输入网口、EtherCAT P输出网口;
    所述的微控制器模块、隔离模块、驱动模块、检测模块、微控制器模块依次连接,所述的驱动模块、检测模块还与电机相连;所述的伺服驱动电源处理模块接收外部的电源输入及EtherCAT P输入网口的电源输入,用于给其他模块和EtherCAT P输出网口供电;所述的EtherCAT从站接口控制模块还与EtherCAT P输入网口、微控制器模块、EtherCAT P输出网口相连;
    所述的EtherCAT从站接口控制模块以EtherCAT从站控制芯片为核心,用于实现EtherCAT数据帧处理,并与所述微控制器模块进行数据交互;所述微控制器模块通过EtherCAT从站接口控制模块得到运动控制器发来的控制信号,根据所述的检测模块采集的信号,执行伺服电机控制算法,输出PWM信号经所述的隔离模块处理后传递给所述的驱动模块来驱动电机;或者所述微控制器模块根据所述的检测模块采集的电机的运行信息,并通过所述的EtherCAT从站接口控制模块反馈给运动控制器;
    所述的伺服驱动电源处理模块包括LC滤波电路和反向保护电路,传递2路隔离的电源,分别用于伺服驱动器的控制供电和驱动供电;所述EtherCAT P输入网口的TX+、TX-线路用于传输伺服驱动器的控制电源,而RX+、RX-用于传输伺服驱动器的驱动电源。
  6. 根据权利要求4所述的基于EtherCAT P总线技术的多轴伺服电机控制系统,其特征在于,所述的EtherCAT从站接口控制模块包含EEPROM,用于存储EtherCAT从站设备的配置文件,并说明从站为EtherCAT P类型。
  7. 一种如权利要求1所述的基于EtherCAT P总线技术的多轴伺服电机控制系统的电机控制方法,其特征在于,该方法具体包括如下步骤:
    S1:所述的运动控制器通过EtherCAT P总线得到各个电机的实际位置或速度,并根据实际应用需求,按照一定周期执行对应的多轴伺服控制算法,计算出各个电机位置或速度指令数据;
    S2:所述的运动控制器将计算得到的各个电机位置或速度指令数据更新至EtherCAT数据帧中,并通过EtherCAT P总线发送给各个伺服驱动器;
    S3:各个伺服驱动器通过EtherCAT从站接口控制模块接收到各个电机的位置或速度指令,微控制器模块执行电机控制算法,生成驱动信号,驱动伺服电机达到指定状态。
  8. 根据权利要求7所述的基于EtherCAT P总线技术的多轴伺服电机控制系统的电机控制方法,其特征在于,所述的S3中,当各个伺服驱动器通过EtherCAT从站接口控制模块接收到各个电机的位置指令时,具体的控制步骤如下:
    (1)判断是否接收到EtherCAT同步时钟信号,若接收到就进行下一步处理;
    (2)通过EtherCAT通讯得到运动控制器发来的控制模式和位置指令,根据检测模块得到当前电机位置,微控制器执行位置控制算法后,输出给定转速;
    (3)根据给定转速和检测模块测量的当前转速,微控制器执行转速控制算法后,输出给定电流信号;
    (4)微控制器根据检测模块测量的当前电流,经过处理后得到当前的电流数据,执行电流控制算法,并经坐标变换及SVPWM算法后,生成驱动信号;
    (5)微控制器发送所述驱动信号至对应的电机,控制电机转动至指定位置;
    当各个伺服驱动器通过EtherCAT从站接口控制模块接收到各个电机的转速指令时,具体的控制步骤如下:
    (1)判断是否接收到EtherCAT同步时钟信号,若接收到就进行下一步处理;
    (2)通过EtherCAT通讯得到运动控制器发来的控制模式和转速指令,根据检测模块得到当前电机转速,微控制器执行转速控制算法后,输出给定电流;
    (3)微控制器根据检测模块测量的当前电流,经过处理后得到当前的电流数据,执行电流控制算法,并经坐标变换及SVPWM算法后,生成驱动信号;
    (4)微控制器发送所述驱动信号至对应的电机,控制电机转动至指定转速。
PCT/CN2020/115418 2020-07-17 2020-09-15 基于EtherCAT P总线技术的多轴伺服电机控制系统及方法 WO2021147351A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021547153A JP2022516812A (ja) 2020-07-17 2020-09-15 EtherCAT Pバス技術に基づく多軸サーボモータ制御システムおよび方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010691829.6 2020-07-17
CN202010691829.6A CN111740643B (zh) 2020-07-17 2020-07-17 基于EtherCAT P总线技术的多轴伺服电机控制系统及方法

Publications (1)

Publication Number Publication Date
WO2021147351A1 true WO2021147351A1 (zh) 2021-07-29

Family

ID=72654927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115418 WO2021147351A1 (zh) 2020-07-17 2020-09-15 基于EtherCAT P总线技术的多轴伺服电机控制系统及方法

Country Status (4)

Country Link
JP (1) JP2022516812A (zh)
CN (1) CN111740643B (zh)
LU (1) LU500557B1 (zh)
WO (1) WO2021147351A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113485205A (zh) * 2021-08-05 2021-10-08 杭州力超智能科技有限公司 一种基于canbus总线的伺服驱动器时钟同步和位置重构方法
CN114039810A (zh) * 2022-01-10 2022-02-11 至新自动化(北京)有限公司 基于以太网的柔性自动化控制系统
CN114089662A (zh) * 2021-11-17 2022-02-25 湖南力行动力科技有限公司 一种新型高性能电子轴传动控制系统实现方法
CN114228083A (zh) * 2021-10-26 2022-03-25 深圳先进技术研究院 工业控制系统和注塑机
CN116760321A (zh) * 2023-08-18 2023-09-15 中国科学院长春光学精密机械与物理研究所 一种通用电机驱动系统及其参数调试方法
WO2023197505A1 (zh) * 2022-04-15 2023-10-19 中船动力研究院有限公司 船用低速机的驱动控制装置、方法和电子设备
CN117434907A (zh) * 2023-12-18 2024-01-23 广东科伺智能科技有限公司 基于CoDeSys控制器的伺服驱动器数量控制方法及设备

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112511043B (zh) * 2020-11-20 2022-07-29 北京精密机电控制设备研究所 一种基于重复运动多轴控制的同步控制系统及方法
CN112817272A (zh) * 2021-01-05 2021-05-18 新代科技(苏州)有限公司 一种总线步进驱控一体的激光焊接控制设备
CN113311787B (zh) * 2021-04-23 2022-03-18 临海市新睿电子科技有限公司 一种多轴伺服控制系统
CN116526894A (zh) * 2022-01-20 2023-08-01 华为技术有限公司 电机控制系统、电机控制方法和电机驱动和转发装置
CN114505845A (zh) * 2022-02-21 2022-05-17 哈尔滨工业大学(深圳) 基于EtherCAT进行多机械臂协同控制的控制器系统和焊接系统
CN115037190B (zh) * 2022-06-20 2023-03-03 黑龙江工程学院 具有电源监测功能的多轴伺服驱动系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101295956B1 (ko) * 2012-02-10 2013-08-13 엘에스산전 주식회사 이더캣 통신을 이용한 서보 모터 시스템
CN104135214A (zh) * 2014-08-14 2014-11-05 哈尔滨工业大学 飞行仿真转台的嵌入式电机模块化伺服控制器
CN106849765A (zh) * 2016-12-05 2017-06-13 重庆华数机器人有限公司 一种基于EtherCAT的直流共母线伺服驱动装置
CN206311942U (zh) * 2016-12-23 2017-07-07 山东代代良智能控制科技有限公司 一种采用EtherCAT协议的实时同步机器人脉冲输入控制系统
CN109951114A (zh) * 2019-03-26 2019-06-28 珠海瑞凌焊接自动化有限公司 一种控制多轴伺服电机的控制系统
CN209497405U (zh) * 2018-10-24 2019-10-15 苏州艾吉威机器人有限公司 一种agv伺服电机驱动控制系统

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5505034B2 (ja) * 2010-03-30 2014-05-28 パナソニック株式会社 サーボ制御装置およびモーションコントロールシステム
CN210724615U (zh) * 2019-09-09 2020-06-09 中国工程物理研究院计算机应用研究所 基于印制板的步进电机群组驱动控制板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101295956B1 (ko) * 2012-02-10 2013-08-13 엘에스산전 주식회사 이더캣 통신을 이용한 서보 모터 시스템
CN104135214A (zh) * 2014-08-14 2014-11-05 哈尔滨工业大学 飞行仿真转台的嵌入式电机模块化伺服控制器
CN106849765A (zh) * 2016-12-05 2017-06-13 重庆华数机器人有限公司 一种基于EtherCAT的直流共母线伺服驱动装置
CN206311942U (zh) * 2016-12-23 2017-07-07 山东代代良智能控制科技有限公司 一种采用EtherCAT协议的实时同步机器人脉冲输入控制系统
CN209497405U (zh) * 2018-10-24 2019-10-15 苏州艾吉威机器人有限公司 一种agv伺服电机驱动控制系统
CN109951114A (zh) * 2019-03-26 2019-06-28 珠海瑞凌焊接自动化有限公司 一种控制多轴伺服电机的控制系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI ZHI-ZHOU,ZHENG MIN-XIN,WANG JIN-JIN,ZHENG AN-PING: "Design of Triaxial Motion Servo Control Systems Based on EtherCAT", MODULAR MACHINE TOOL & AUTOMATIC MANUFACTURING TECHNIQUE, no. 2, 20 February 2012 (2012-02-20), pages 63 - 65+71, XP055831501 *
THOMAS, RETTIG: "EtherCAT P Integrates Ultrahigh-Speed Communication and Single Cable Dynamical Systems", MECHATRONICS TECHNOLOGY, January 2017 (2017-01-01), pages 30 - 32, XP009529402 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113485205A (zh) * 2021-08-05 2021-10-08 杭州力超智能科技有限公司 一种基于canbus总线的伺服驱动器时钟同步和位置重构方法
CN114228083A (zh) * 2021-10-26 2022-03-25 深圳先进技术研究院 工业控制系统和注塑机
CN114089662A (zh) * 2021-11-17 2022-02-25 湖南力行动力科技有限公司 一种新型高性能电子轴传动控制系统实现方法
CN114039810A (zh) * 2022-01-10 2022-02-11 至新自动化(北京)有限公司 基于以太网的柔性自动化控制系统
WO2023197505A1 (zh) * 2022-04-15 2023-10-19 中船动力研究院有限公司 船用低速机的驱动控制装置、方法和电子设备
CN116760321A (zh) * 2023-08-18 2023-09-15 中国科学院长春光学精密机械与物理研究所 一种通用电机驱动系统及其参数调试方法
CN116760321B (zh) * 2023-08-18 2023-11-14 中国科学院长春光学精密机械与物理研究所 一种通用电机驱动系统及其参数调试方法
CN117434907A (zh) * 2023-12-18 2024-01-23 广东科伺智能科技有限公司 基于CoDeSys控制器的伺服驱动器数量控制方法及设备
CN117434907B (zh) * 2023-12-18 2024-03-22 广东科伺智能科技有限公司 基于CoDeSys控制器的伺服驱动器数量控制方法及设备

Also Published As

Publication number Publication date
CN111740643A (zh) 2020-10-02
CN111740643B (zh) 2021-02-12
LU500557B1 (fr) 2022-01-17
JP2022516812A (ja) 2022-03-02

Similar Documents

Publication Publication Date Title
WO2021147351A1 (zh) 基于EtherCAT P总线技术的多轴伺服电机控制系统及方法
CN106712596B (zh) 一种基于双核mcu的永磁同步电机伺服驱动器
CN107229240B (zh) 一种基于EtherCAT的多轴同步控制装置和方法
CN104589367B (zh) 基于EtherCAT的模块化机器人驱动器和控制方法
CN103199773B (zh) 基于总线技术的伺服驱动系统
CN109981010A (zh) 一种电机驱动系统及方法
CN104880994A (zh) 一种基于EtherCAT总线的开放式数控系统及方法
CN104552311A (zh) 基于EtherCAT的智能工业机器人总线模块及其操作方法
CN109683532A (zh) 一种舵机及多舵机控制器及无人机控制系统
CN106444536B (zh) 柔性伺服驱动系统
CN106533874A (zh) 一种基于Modbus RTU协议的永磁同步电机数据通信系统及方法
CN205566144U (zh) 一种多电机速度伺服驱动控制结构
CN109361330A (zh) 一种基于总线的伺服电机同步控制方法
CN205844813U (zh) 基于EtherCAT总线的四轴伺服驱动器
CN111203889A (zh) 一种协作机器人驱动控制系统
CN204650244U (zh) 一种基于EtherCAT总线的开放式数控系统
CN109217738B (zh) 一种四轴集成的伺服驱动器及伺服驱动控制方法
CN206710827U (zh) 一种模块化的运动控制器
CN105373109B (zh) 一种Delta机器人驱控系统
CN111158285A (zh) 基于EtherCAT总线的控制系统
CN105373080A (zh) 一种基于软总线的协同数控系统
CN108199627A (zh) 一种分布式电机驱动控制系统
CN209627394U (zh) 一种数字信号采集器及系统
Gu et al. Control system design of 6-DOFs serial manipulator based on real-time ethernet
WO2014176861A1 (zh) 信号传递方法和故障处理方法及变频器多机主从控制系统

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021547153

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915442

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915442

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/07/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20915442

Country of ref document: EP

Kind code of ref document: A1