WO2021147259A1 - Bacteria for degrading ethylene oxide and applications thereof - Google Patents

Bacteria for degrading ethylene oxide and applications thereof Download PDF

Info

Publication number
WO2021147259A1
WO2021147259A1 PCT/CN2020/101138 CN2020101138W WO2021147259A1 WO 2021147259 A1 WO2021147259 A1 WO 2021147259A1 CN 2020101138 W CN2020101138 W CN 2020101138W WO 2021147259 A1 WO2021147259 A1 WO 2021147259A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethylene oxide
strain
cgmcc
clostridium
deposit number
Prior art date
Application number
PCT/CN2020/101138
Other languages
French (fr)
Inventor
Shengwei Hu
Zhengtao Liu
Dongxin Hou
Jianlong Xue
Weiguo Wang
Yecheng He
Xin Yin
Zhicheng Zhang
Liqing Zhu
Jiali Lin
Original Assignee
Qiaokang Biotech (Guangdong) Co., LTD.
Chio Kang Medical, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010062774.2A external-priority patent/CN111154684A/en
Application filed by Qiaokang Biotech (Guangdong) Co., LTD., Chio Kang Medical, Inc. filed Critical Qiaokang Biotech (Guangdong) Co., LTD.
Priority to US17/012,810 priority Critical patent/US11220667B2/en
Publication of WO2021147259A1 publication Critical patent/WO2021147259A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/341Consortia of bacteria
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/36Adaptation or attenuation of cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/01Preparation of mutants without inserting foreign genetic material therein; Screening processes therefor
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/18Nature of the water, waste water, sewage or sludge to be treated from the purification of gaseous effluents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/34Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32
    • C02F2103/36Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds
    • C02F2103/365Nature of the water, waste water, sewage or sludge to be treated from industrial activities not provided for in groups C02F2103/12 - C02F2103/32 from the manufacture of organic compounds from petrochemical industry (e.g. refineries)
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/06Nutrients for stimulating the growth of microorganisms
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/145Clostridium

Definitions

  • the present disclosure relates to the field of microbial technology, and more particularly to several bacterial strains capable of degrading ethylene oxide and uses thereof.
  • Ethylene oxide is one of the important petrochemical products in modern engineering. It is a broad-spectrum and highly effective sterilization agent and disinfectant. Ethylene oxide can kill most bacteria, spores, viruses and fungi and has a strong penetrating power to reach depth of an article, therefore playing an irreplaceable role in medical sterilization and related industries.
  • ethylene oxide is extremely active, flammable and explosive, and is also recognized as a carcinogen globally, which set barriers to the application of ethylene oxide.
  • the present disclosure provides a variety of bacteria strains that can effectively degrade ethylene oxide, which can be used to degrade ethylene oxide pollutants, greatly improve the decontamination disposal capacity of ethylene oxide, and reduce the environmental risks related to ethylene oxide pollution such as risk in public health.
  • a strain capable of degrading ethylene oxide which is: a Kurthia gibsonii strain comprising the 16S rDNA sequence of SEQ ID NO. 3; a Clostridium kogasensis strain comprising the 16S rDNA sequence of SEQ ID NO. 4 ;or a Clostridium acidisoli strain comprising the 16S rDNA sequence of SEQ ID NO. 5. These strains can effectively degrade ethylene oxide.
  • a degradation agent for degrading ethylene oxide comprising one or more strains selected from the group consisting of: a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436; a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438; a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439, a Kurthia gibsonii strain comprising the 16S rDNA sequence of SEQ ID NO. 3; a Clostridium kogasensis strain comprising the 16S rDNA sequence of SEQ ID NO. 4 ; or a Clostridium acidisoli strain comprising the 16S rDNA sequence of SEQ ID NO. 5.
  • the degradation agent is prepared by culturing the corresponding strain or combination of strains.
  • a final concentration of the corresponding strain or combination of strains in the degradation agent is at least 10 8 cfu /mL, or from 10 8 cfu /mL to 10 10 cfu /mL.
  • a method for preparing a degradation agent for degrading ethylene oxide comprising: incubating one or more strains selected from the group consisting of the following strains in a liquid Sabouraud medium and at a temperature of 20-40 °C: a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436; a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438; a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439; a Kurthia gibsonii strain comprising the 16S rDNA sequence of SEQ ID NO. 3; a Clostridium kogasensis strain comprising the 16S rDNA sequence of SEQ ID NO. 4; or a Clostridium acidisoli strain comprising the 16S rDNA sequence of SEQ ID NO. 5.
  • the liquid Sabouraud medium comprises, by mass, 40 parts of glucose, 10 parts of peptone, which are well mixed in water, adjusted to a pH of 5.4-5.8, and the volume brought to 1000 parts with water
  • a method for manufacturing bacteria for degrading ethylene oxide comprising: incubating one or more strains selected from the group consisting of the following strains in a liquid Sabouraud medium and at a temperature of 20-40 °C: a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436; a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438; a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439; a Kurthia gibsonii strain comprising the 16S rDNA sequence of SEQ ID NO. 3; a Clostridium kogasensis strain comprising the 16S rDNA sequence of SEQ ID NO. 4; or a Clostridium acidisoli strain comprising the 16S rDNA sequence of SEQ ID NO. 5.
  • the liquid Sabouraud medium comprises: by mass, 40 parts of glucose, 10 parts of peptone, which are well mixed in water , adjusted to a pH of 5.4-5.8, and the volume brought to 1000 parts with water.
  • it provides a method, for decreasing the amount of ethylene oxide in sample, comprising adding to a sample comprising ethylene oxide an amount a pure culture of an Kurthia gibsonii; Clostridium kogasensis, or Clostridium acidisoli strain bacterium, allowing the bacterium to degrade the ethylene oxide, thereby decreasing the amount of ethylene oxide, wherein the 16S rDNA sequence of the Kurthia gibsonii strain bacterium is SEQ ID NO. 3; the 16S rDNA sequence of the Clostridium kogasensis strain bacterium is SEQ ID NO. 4; or the 16S rDNA sequence of the Clostridium acidisoli strain bacterium is SEQ ID NO. 5.
  • the Kurthia gibsonii, Clostridium kogasensis, or Clostridium acidisoli strain bacterium is capable of using ethylene oxide as a carbon source and is capable of growing normally with ethylene oxide as the sole carbon source in the culture.
  • the Kurthia gibsonii strain bacterium is Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436;
  • the Clostridium kogasensis strain is Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438;
  • the Clostridium acidisoli strain is Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439.
  • a method for biodegrading ethylene oxide comprising: degrading ethylene oxide with one or more strains one or more strains selected from the group consisting of a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436, a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438; a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439; a Kurthia gibsonii strain comprising the 16S rDNA sequence of SEQ ID NO. 3; a Clostridium kogasensis strain comprising the 16S rDNA sequence of SEQ ID NO. 4; and a Clostridium acidisoli strain comprising the 16S rDNA sequence of SEQ ID NO. 5, or the aforementioned degradation agent, or the degradation agent prepared according to the aforementioned method.
  • the method above is used to degrade ethylene oxide in waste gas or waste water and comprises mixing the waste gas or waste water with one or more strains selected from the group consisting of a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436, a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438; and a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439, or the aforementioned degradation agent, or the degradation agent prepared according to the aforementioned method.
  • a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436 a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438
  • a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439
  • the method comprises incubating the strain in liquid Sabouraud medium to a concentration from 1010 cfu/mL to 1012 cfu/mL, to obtain an activation liquid for degrading ethylene oxide.
  • the method comprises the concentration of the strain for degrading ethylene oxide ranges from 10 8 cfu/mL to 10 10 cfu/mL.
  • the degradation rate is at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 50%, 60%, 70%, 75%, 80%, 90%, 95%, 100%, 125%, 150%, 200%, 250%, 300%, 350%, 400%, 450%, 500%, 550%, 600%, 650%, 700%, 750%, 800%, 850%, 900%, 1000%, 1100%, 1200%, 1300%, 1400%, or 1500%greater relative to the degradation rate of ethylene oxide in the absence of a strain of the invention,
  • it provides method of performing ethylene oxide tolerance and degradation acclimation to bacteria with ethylene oxide degradation potential to prepare bacteria strain having ethylene oxide tolerance and degradation ability, comprising:
  • inducted acclimation for ethylene oxide tolerance comprising: successively passaging the bacteria with ethylene oxide degradation potential by steaking the same on a series of acclimation medium for ethylene oxide tolerance containing a gradient of increasing ethylene oxide concentrations from 100 to 800 mg/L; after each passaging, incubating at 20-40°C for 24 to 48 hours, and selecting a single colony with a largest radius for next passaging; and finally selecting a single colony with a largest colony radius on an acclimation medium containing ethylene oxide of 500-800 mg/L to obtain a bacteria strain of ethylene oxide tolerance; and
  • inducted acclimation for ethylene oxide degradation ability comprising: successively passaging the bacteria strain of ethylene oxide tolerance by steaking the same on a series of acclimation medium for ethylene oxide degradation containing ethylene oxide of 500-800 mg/L and a gradient of decreasing proportion of carbon source from 50%to 0%; after each passaging, incubating at 20-40 °C for 24 to 48 hours, and selecting a single colony with a largest radius for next passaging; and finally selecting a single colony with a largest colony radius on the acclimation medium containing 500-800 mg/L of ethylene oxide and minimum carbon source to obtain the bacteria strain having ethylene oxide tolerance and degradation ability.
  • the series of acclimation medium for ethylene oxide tolerance have ethylene oxide concentrations increasing between 100 and 800 mg/L and comprises, by mass, 10 parts of peptone, 40 parts of glucose, and 15 parts of agar, which are mixed with water, adjusted to a pH of 5.4-5.8, and the volume brought to 1000 parts with water.
  • the series of acclimation medium for ethylene oxide degradation have an ethylene oxide concentration of 500-800 mg /L and comprises, by mass, 10 parts of peptone, glucose decreasing from 20 parts to 0 parts, and agar 15 parts, which are mixed with water, adjusted to a pH of 5.4-5.8, and the volume brought to 1000 parts with water.
  • it provides a method for screening and purifying bacteria with potential of ethylene oxide degradation, comprising: collecting microbial active sludge mixture containing ethylene oxide; mixing the sludge mixture with phosphate buffer, clarifying and filtering to obtain a suspension; incubating the suspension in an enriched medium containing ethylene oxide at a temperature of 20-40 °C, to obtain a bacterial suspension capable of surviving an environment containing ethylene oxide; and incubating the bacterial suspension in a screening and purification medium containing ethylene oxide at a temperature of 20-40 °C to obtain the bacteria with potential of ethylene oxide degradation.
  • the enriched medium containing ethylene oxide has an ethylene oxide concentration of 100 mg/L and comprises, by mass, 40 parts of glucose, 10 parts of peptone , which are mixed with water, adjusted to a pH of 5.4-5.8, and the volume brought to 1000 parts with water.
  • the screening and purification medium containing ethylene oxide has an ethylene oxide concentration of 100 mg/L and comprises, by mass, 40 parts of glucose, 10 parts of peptone, and 15 parts of agar, which are mixed with water, adjusted to a pH of 5.4-5.8, and the volume brought to 1000 parts with water.
  • This disclosure provides a variety of bacteria strains capable of degrading ethylene oxide and the applications thereof. It can be used to treat pollution, for example, to treat industrial or medical waste gas or waste water containing ethylene oxide.
  • the bacteria strains disclosed herein are easy to manufacture and can efficiently degrade high-concentration ethylene oxide in a short period of time without other carbon sources, which greatly improves the decontamination disposal capacity of ethylene oxide in industries.
  • the Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436, the Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438 and the Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439 were deposited on August 29, 2019 at China General Microbiological Culture Collection Center (CGMCC) of China Committee for Culture Collection of Microorganisms with the deposit address being Institute of Microbiology of Chinese Academy of Sciences, NO. 1 West Beichen Road, Beijing 100101, China.
  • CGMCC General Microbiological Culture Collection Center
  • Figure 1 shows bacterial colony growth of the EO-degrading potential bacteria in the enrichment medium B after growing for 48 hours at a constant temperature of 37 °C, wherein the EO-degrading potential bacteria were Figure 1A, Kurthia gibsonii EO-06 original strain, Figure 1B, Clostridium kogasensis EO-08 original strain and Figure 1C Clostridium acidisoli EO-09 original strain obtained by the enrichment, purification and screening processes according to Example 1 of the present disclosure;
  • Figure 2 shows the Gram staining result of the EO-degrading potential bacteria, wherein the EO-degrading potential bacteria were, Figure 2A, Kurthia gibsonii EO-06 original strain, Figure 2B Clostridium kogasensis EO-08 original strain and Figure 2C Clostridium acidisoli EO-09 original strain obtained by the enrichment, purification and screening processes according to Example 1 of the present disclosure;
  • Figure 3 shows the phylogenetic evolution diagram of the EO-degrading potential bacteria, wherein the EO-degrading potential bacteria were (Figure 3A) Kurthia gibsonii EO-06 original strain, ( Figure 3B) Clostridium kogasensis EO-08 original strain and ( Figure 3C) Clostridium acidisoli EO-09 original strain obtained by the enrichment, purification and screening processes according to Example 1 of the present disclosure;
  • Figure 4 shows bacterial colony growth of Kurthia gibsonii EO-06 strain (Figure 4A) after the inducted acclimation of Example 2, and ( Figure 4B) before the inducted acclimation of Example 2 in a liquid medium with 800 mg/L ethylene oxide after growing at a constant temperature of 37 °C for 48 hours in the comparative ethylene oxide degradation test according to Example 3, wherein the EO-06 strain was obtained by enrichment, purification and screening processes according to Example 1 of the present disclosure.
  • Figure 5 shows bacterial colony growth of Clostridium kogasensis EO-08 strain (Figure 5A) after the inducted acclimation of Example 2 and ( Figure 5B) before the inducted acclimation of Example 2 in a liquid medium with 800 mg/L ethylene oxide after growing at a constant temperature of 37°C for 48 hours in the comparative ethylene oxide degradation test according to Example 3 wherein the EO-08 strain was obtained by the enrichment, purification and screening processes according to Example 1 of the present disclosure.
  • Figure 6 shows bacterial colony growth of Clostridium acidisoli EO-09 strain (Figure 6A) after the inducted acclimation of Example 2, and ( Figure 6B) before the inducted acclimation of Example 2 in a liquid medium with 800 mg/L ethylene oxide after growing at a constant temperature of 37°C for 48 hours in the comparative ethylene oxide degradation test according to Example 3, wherein the EO-09 strain was obtained by the enrichment, purification and screening processes according to Example 1 of the present disclosure.
  • the present disclosure also provides methods for screening and purifying bacteria capable of degrading of ethylene oxide, comprising: collecting sludge containing ethylene oxide and with microbial activity, for example, collecting sewage or sludge samples from a sewage outlet of a sewage treatment plant or chemical plant; allowing tolerance enrichment culture of the samples in enrichment medium containing ethylene oxide (for example, 100 mg/L) to obtain a suspension of bacteria that can survive in an environment containing ethylene oxide; and, inoculating the suspension of bacteria to screening and purification medium containing ethylene oxide (for example, 100 mg/L) for screening and purification of original strains with potential for degrading ethylene oxide.
  • the present disclosure also provides methods for inducted acclimation of bacteria toward EO degradation, comprising:
  • a sample of the sludge mixture was collected at the sewage outlet of a suburban sewage treatment plant in Guangzhou, Guangdong province, and used for purpose of this example.
  • Enrichment medium A was prepared as the following: 40g of glucose, and 10g of peptone were thoroughly mixed in distilled water, adjusted to pH 5.4-5.8, and the volume adjusted to 1000mL with distilled water. Portions of 250 ml of the prepared medium were added to 500 mL Erlenmeyer flasks, sterilized at 121 °C for 20 min, and cooled to room temperature. Pure ethylene oxide liquid was placed on an ice box before 28 ⁇ L was taken and injected into the sterilized medium by a sealed syringe, providing 100 mg/L of ethylene oxide in the medium complying with the national emission standard, to obtain the enrichment medium A.
  • the screening and purification medium was prepared as follows: 40g of glucose, 10g of peptone, and 15g of agar were thoroughly mixed in distilled water, adjusted to pH 5.4-5.8, and the volume brought to 1000mL with distilled water. Portions of 250 ml of the prepared selection medium were added into 500 mL Erlenmeyer flasks, sterilized at 121 °C for 20 minutes, and cooled to about 50-56 °C. 28 ⁇ L (or 25mg) of ethylene oxide liquid was injected into the sterilized medium by a sealed syringe to obtain the screening and purification medium.
  • Enrichment medium B was prepared as the following: 40g of glucose, 10g of peptone were thoroughly mixed in distilled water, adjusted to pH 5.4-5.8, and adjusted to 1000mL with distilled water. Portions of 250 ml of the prepared medium were added to 500 mL Erlenmeyer flasks, sterilized at 121 °C for 20 min, and cooled to room temperature to obtain the enrichment medium B.
  • 10.0 g of the sludge mixture sample was weighed, added with 100 mL of 0.03 mol /L phosphate buffer, well mixed, allowed to stand for 120 min for clarification, and filtered to remove large particles of sediment and obtain a suspension. 1 mL of the suspension was added to 10 mL of liquid enrichment medium and placed in a shaker for oxygen-consuming enrichment culture for 24-48h (200 rpm, 37°C) and the growth status was observed.
  • the predominant strains from the enrichment medium A were streaked on the screening and purification medium for separation to obtain predominant strains for ethylene oxide degradation.
  • the predominant strains for ethylene oxide degradation were selected and cultured in the enrichment medium B for 24 hours to obtain three EO-degrading potential strains, designated as the EO-06 original strain, the EO-08 original strain and the EO-09 original strain.
  • the colony morphology of the original strain EO-06 was milky white, with irregular edges, radial shape, diameter 1.5-3.0 mm, and golden yellow pigment;
  • the colony morphology of the original strain EO-08 was milky yellow, opaque or translucent, with uneven edges, diameter2.0-2.5mm, and no pigment;
  • the colony morphology of the original strain EO-09 was gray-white, opaque or translucent, with meteor-like loose colonies, irregular edges, and no pigment.
  • Morphological characterization including observation of colony morphology, microscopic morphology, culture characteristics and Gram staining;
  • Physiological and biochemical characterization including nutrition type, nitrogen and carbon source utilization capacity, and biochemical tests;
  • Upstream primer 27F 5'-AGAGTTTGATCCTGGCTCAG-3', as shown in SEQ ID NO. 1;
  • Downstream primer 1492R 5'-GGTTACCTTGTTACGACTT-3', as shown in SEQ ID NO. 2.
  • the colony morphologies of the original strain EO-06, the original strain EO-08, and the original strain EO-09 are shown in Figures 1A-1C, their Gram staining results shown in Figures 2A-2C, and their phylogenetic trees shown in Figures 3A-3C, respectively.
  • the original strain EO-06, the original strain EO-08 and the original strain EO-09 were Kurthia gibsonii, Clostridium kogasensis and Clostridium acidisoli, respectively.
  • the characterization and identification results of the three EO-degrading potential strains are summarized in Table 1 below.
  • Inducted acclimation of EO-degrading potential bacteria strains may include inducted acclimation of ethylene oxide tolerance and inducted acclimation of ethylene oxide degradation ability.
  • Ethylene oxide tolerance acclimation may include: successively passaging the original strains with the potential for ethylene oxide degradation by steaking on a series of plates of acclimation medium for ethylene oxide tolerance containing a gradient of increasing ethylene oxide concentrations; after each passaging, incubating under 20-40 °C for 24 to 48 hours, and selecting a single colony with the largest radius for the next passaging; and finally selecting a single colony with the largest colony radius on the acclimation medium plate containing the highest concentration of ethylene oxide (e.g., 500-800 mg/L) to obtain a predominant strain of ethylene oxide tolerance.
  • ethylene oxide e.g. 500-800 mg/L
  • the acclimation method described above includes: streaking the purified EO-degrading potential original strains in an ethylene oxide tolerance acclimation medium containing 100 mg/L ethylene oxide, respectively, and incubating under 20-40 °C for 24-48h; selecting the single colony with the largest colony radius on each plate and subculturing to the ethylene oxide tolerance acclimation medium containing 100-200mg/L ethylene oxide, respectively, and incubating under 20-40 °C for 24-48h; selecting the single colony with the largest colony radius on each plate and subculturing to the ethylene oxide tolerance acclimation medium containing 200-500mg/L ethylene oxide.
  • the above-mentioned ethylene oxide tolerance acclimation medium may be consisted of the following: peptone 10g/L, glucose 40g/L, agar 15g/L, and ethylene oxide 100-800mg/L, with a pH of 5.4-5.8.
  • the preparation method of the above-mentioned ethylene oxide tolerance acclimation medium may be as follows: weighing, by mass, 10 parts of peptone, 40 parts of glucose, and 15 parts of agar, mixing in distilled water, adjusting the pH to 5.4-5.8, and bringing the volume to 1000 parts with distilled water; sterilizing; and injecting liquid ethylene oxide with a sealed injection syringe before use to make an ethylene oxide tolerance acclimation culture medium plate with 100-800mg/L of ethylene oxide.
  • the preparation method of ethylene oxide tolerance acclimation medium may be as follows: taking peptone 10g, glucose 40g, and agar 15g to mix in distilled water, adjusting the pH to 5.4-5.8, and bringing the volume to 1000 mL with distilled water; dividing the medium into portions of 250mL and sterilizing at 121 °C for 20 min; and, before use, heating the medium to melt, allowing to cool to about 50-56 °C, and injecting 25-200 mg of ethylene oxide by a sealed syringe to make ethylene oxide tolerance acclimation medium with ethylene oxide of 100-800mg/L.
  • the concentrations of ethylene oxide in the ethylene oxide tolerance acclimation medium may be 100 mg/L, 200 mg/L, 500 mg/L, or 800 mg/L.
  • Inducted acclimation toward ethylene oxide degradability may include: successively passaging the predominant strain of ethylene oxide tolerance by steaking on a series of plates of acclimation medium for ethylene oxide degradation containing a high concentration of ethylene oxide e (e.g., 500-800 mg/L) and a gradient of decreasing proportion of carbon source; after each passaging, incubating under 20-40 °C for 24 to 48 hours, and selecting a single colony with the largest radius for the next passaging; and finally selecting a single colony with the largest colony radius on the acclimation medium plate containing the high concentration of ethylene oxide (e.g., 500-800 mg/L) and minimum carbon source to obtain predominant strains of ethylene oxide tolerance and degradation.
  • a high concentration of ethylene oxide e e.g., 500-800 mg/L
  • carbon source e.g., 500-800 mg/L
  • the predominant strains for ethylene oxide tolerance obtained by acclimation of ethylene oxide tolerance may be inoculated into plates with the acclimation medium of ethylene oxide degradation containing 800 mg/L ethylene oxide and 50%carbon source , respectively, and incubating under 20-40 °C for 24-48h; selecting the single colony with the largest colony radius on each plate and subculturing to the plates of ethylene oxide degrading acclimation medium containing 800 mg/L ethylene oxide and 30%carbon source , respectively, and incubating under 20-40 °C for 24-48h; selecting the single colony with the largest colony radius on the plate and subculturing to the plates of ethylene oxide degrading acclimation medium containing 800 mg/L ethylene oxide and 10%carbon source, respectively, and incubating under 20-40 °C for 24-48h; selecting the single colony with the largest colony radius on the plate and subculturing to the plates of ethylene oxide degrading acclimation medium containing 800 mg/L ethylene oxide and 0%
  • the ethylene oxide degradation acclimation medium may be consisted of the following: peptone 10g/L, glucose 0-20 g/L, agar 15g/L, and ethylene oxide 800mg/L, with a pH of 5.4-5.8.
  • the preparation method of the ethylene oxide degradation acclimation medium may be as follows: weighing, by mass, 10 parts of peptone by mass, 0-20 parts of glucose, and 15 parts of agar, mixing in distilled water, adjusting the pH to 5.4-5.8, and bringing the volume to 1000 parts with distilled water; sterilizing; and injecting liquid ethylene oxide with a sealed injection syringe before use to make an ethylene oxide degradation acclimation culture medium plate containing 0%-50%carbon source and 800mg/L of ethylene oxide.
  • the preparation method of the ethylene oxide degradation acclimation medium may be as follows: taking peptone 10g, glucose 0-20g, and agar 15g to mix in distilled water, adjusting the pH to 5.4-5.8, and bringing the volume to 1000 mL with distilled water; dividing the medium into portions of 250mL and sterilizing at 121 °C for 20 min; and, before use, heating the medium to melt, allowing to cool to about 50-56 °C, and injecting 200 mg of liquid ethylene oxide with a sealed injection syringe to make ethylene oxide degradation acclimation medium plate contain 0%-50%carbon source and 800 mg/L ethylene oxide.
  • the glucose concentrations in the ethylene oxide degradation acclimation medium may be 20g/L, 12g/L, 4g/L, and 0g/L, respectively corresponding to carbon source of 50%, 30%, 10%, and 0%in the ethylene oxide degradation acclimation medium.
  • Phase I Inducted acclimation of ethylene oxide tolerance
  • Four tolerance acclimation medium with different EO concentrations were prepared as follows: taking peptone 10g, glucose 0-20g, and agar 15g to mix in distilled water, adjusting the pH to 5.4-5.8, and bringing the volume to 1000 mL with distilled water; dividing the medium into portions of 250 mL and sterilizing at 121 °C for 20 min; and, before use, heating the medium to melt, allowing to cool to about 50-56 °C, and injecting 25 mg, 50 mg, 125 mg or 200 mg of liquid ethylene oxide with a sealed injection syringe to make four ethylene oxide degradation acclimation medium plates with different EO concentrations (100 mg/L, 200 mg/L, 500 mg/L or 800 mg/L) , designated as ethylene oxide tolerance acclimation medium A, B, C, and D.
  • the three EO-degrading potential strains of the EO-06 original strain, EO-08 original strain and EO-09 original strain were inoculated onto the tolerance acclimation medium A and incubated at a constant temperature of 37 °C for 48 h. Then the single colony with the largest radius on each plate was selected and subcultured onto the tolerance acclimation medium B and incubated at 37 °C for 48 h. Again, the single colony with the largest colony radius on each plate was selected and subcultured onto the tolerance acclimation medium C and incubated at a constant temperature of 37 °C for 48 h.
  • the single colony with the largest radius on each plate was selected and subcultured onto the tolerance acclimation medium D and incubated at a constant temperature of 37 °C for 48 h. Then the single colony with the largest colony radius on each plate was selected to further obtain three strains with tolerance against ethylene oxide corresponding to the EO-06 original strain, EO-08 original strain and EO-09 original strain, respectively.
  • ethylene oxide degradation acclimation mediums with different carbon source % were prepared as follows: taking peptone 10g, glucose (20g, 12g, 4g or 0g) , and agar 15g to mix in distilled water, adjusting the pH to 5.4-5.8, and bringing the volume to 1000 mL with distilled water; dividing the medium into portions of 250 mL and sterilizing at 121 °C for 20 min; and, before use, heating the medium to melt, allowing to cool to about 50-56 °C, and injecting 200 mg of liquid ethylene oxide with a sealed injection syringe to make four ethylene oxide degradation acclimation medium plates with different carbon source % (50%, 30%, 10%, and 0%) , designated as ethylene oxide degradation acclimation medium A, B, C, and D.
  • the three EO-degrading potential strains i.e., the EO-06 original strain, EO-08 original strain and EO-09 original strain, were inoculated onto the degradation acclimation medium A and incubated at a constant temperature of 37 °C for 48 h. Then the single colony with the largest radius on each plate was selected and subcultured onto the degradation acclimation medium B and incubated at 37 °C for 48 h. Again, the single colony with the largest colony radius on each plate was selected and subcultured onto the degradation acclimation medium C and incubated at a constant temperature of 37 °C for 48 h.
  • the single colony with the largest radius on each plate was selected and subcultured onto the degradation acclimation medium D and incubated at a constant temperature of 37 °C for 48 h. Then the single colony with the largest colony radius on each plate was selected respectively to further obtain three strains with tolerance and degradation ability of high-concentration ethylene oxide corresponding to the EO-06 original strain, EO-08 original strain and EO-09 original strain, which were stored on bevels made from agar medium containing nutrients corresponding to the ethylene oxide degradation acclimation medium D.
  • Table 2 The results of inducted acclimation of ethylene oxide tolerance and degradation capacity are summarized in Table 2.
  • Table 2 show that the EO-06 and EO-09 strains after acclimation described above were able to grow normally under the culture conditions with ethylene oxide as the only carbon source and use ethylene oxide as a carbon source.
  • EO-08 was not able to grow normally under the culture condition with ethylene oxide as the only carbon source, but was able to grow with additional carbon source of 30%or above.
  • the EO-06, EO-08 and EO-09 strains after the inducted acclimation were subjected to the morphological characterization, physiological and biochemical characterization, and molecular biology characterization the same as in Example 1.
  • the results show that the Strain EO-06 after the inducted acclimation was Kurthia gibsonii, the Strain EO-08 after the inducted acclimation was Clostridium kogasensis, and the strain EO-09 after the inducted acclimation was Clostridium acidisoli.
  • the Kurthia gibsonii strain EO-06, the Clostridium kogasensis strain EO-08, and the Clostridium acidisoli strain EO-09 after the inducted acclimatization were deposited with the deposit numbers being CGMCC No. 18436, CGMCC No. 18438, and CGMCC No. 18439 respectively.
  • Liquid Sabouraud medium were made as follows: taking 12g of glucose, and 10g of peptone, mixing in distilled water, adjusting the pH to 5.4-5.8, and bringing the volume to 1000 mL with distilled water; dividing the medium into portions of 250mL in 500mL Erlenmeyer flasks, sterilizing at 121 °C for 20 min, and allowing to cool to room temperature.
  • Liquid Sabouraud medium for EO-08 with different ethylene oxide concentrations were made as follows: taking 12g of glucose, and 10g of peptone, mixing in distilled water, adjusting the pH to 5.4-5.8, and bringing the volume to 1000 mL with distilled water; dividing the medium into portions of 250mL in 500mL Erlenmeyer flasks, sterilizing at 121 °C for 20 min, and allowing to cool to room temperature; and, injecting 160 mg or 320 mg of ethylene oxide with a sealed syringe to make two kinds of liquid Sabouraud induction medium containing different ethylene oxide concentrations (400 mg/L and 800 mg/L) .
  • Liquid Sabouraud induction medium for EO-06 and EO-09 with different ethylene oxide concentrations were made as follows: adding 10 g peptone to distilled water, bringing the volume to 1000 mL, mixing thoroughly; dividing into 400 mL portions, sterilizing at 121 °C for 20 min, and allowing to cool to room temperature for storage; injecting 160 mg or 320 mg of ethylene oxide with a sealed syringe to make two kinds of liquid Sabouraud induction medium containing different ethylene oxide concentrations (400 mg/L and 800 mg/L) .
  • the microbes were cultured and activated by taking 10 ⁇ L each of the original EO-06, EO-08, and EO-09 EO-degrading potential strains obtained from Example 1 without induced acclimation and the EO-06, EO-08, and EO-09 strains after induced acclimation obtained from Example 2, inoculating on 100 ⁇ L of 10 ⁇ L, respectively and cultured for 48 h (37 °C, 200 rpm) to obtain activated mixture of the EO-06, EO-08, EO-09 original strains and of the EO-06, EO-08, EO-09 strains after induced acclimation.
  • the cell count in the culture mixture was 10 10 -10 12 cfu /mL.
  • Experimental group 1A acclimated strains /800 mg/L ethylene oxide: 5 mL each of the activated mixture of the EO-06, EO-08, Strain EO-09s after induced acclimation was inoculated in 400 mL of the liquid Sabouraud induction medium containing 800 mg/L ethylene oxide, with cell count in the medium being 10 8 -10 10 cfu /mL;
  • Experimental group 1B (unacclimated original strain /800mg/L ethylene oxide) : 5 mL each of the activated mixture of the EO-06, EO-08, EO-09 original strains before induced acclimation was inoculated in 400 mL of the liquid Sabouraud induction medium containing 800 mg/L ethylene oxide, with cell count in the medium being 10 8 -10 10 cfu /mL;
  • Control group 1 Liquid Sabouraud induction medium containing 800 mg/L of ethylene oxide without inoculation of any strain;
  • Experimental group 2A acclimated strains /400 mg/L ethylene oxide: 5 mL each of the activated mixture of the EO-06, EO-08, Strain EO-09s after induced acclimation was inoculated in 400 mL of the liquid Sabouraud induction medium containing 400 mg/L ethylene oxide, with cell count in the medium being 10 8 -10 10 cfu /mL;
  • Experimental group 2B (unacclimated original strain /400mg/L ethylene oxide) : 5 mL each of the activated mixture of the EO-06, EO-08, EO-09 original strains before induced acclimation was inoculated in 400 mL of the liquid Sabouraud induction medium containing 400 mg/L ethylene oxide, with cell count in the medium being 10 8 -10 10 cfu /mL; and
  • Control group 2 Liquid Sabouraud induction medium containing 400 mg/L of ethylene oxide without inoculation of any strain.
  • ethylene oxide standards of 0-200 mg/L concentrations were made by taking a certain volume of pure ethylene oxide gas with a sealed syringe for dissolving in deionized water;
  • the subject samples to be analyzed were prepared by diluting samples from the treatment and control groups 5 times with deionized water;
  • an ethylene oxide standard curve was plotted according to the measurement data of the ethylene oxide standards, and the concentrations of residual ethylene oxide within each sample from the control and treatment groups were found based on the peak area corresponding to ethylene oxide thereof;
  • Degradation Rate (%) (Control Group Concentration -Treatment Group Concentration) /Control Group Concentration; specifically, the degradation rates of Treatment groups 1 and 2 were calculated based on Control Group 1, while those of Treatment groups 3 and 4 calculated based on Control Group 2.
  • the degradation rates of EO-06, EO-08, and EO-09 strains after acclimation of 400 mg/L of ethylene oxide were 80.85%, 83.61%, and 84.19%, which were higher than the original strains before acclimation by 340.60%, 338.67%, and 326.71%, respectively.
  • the the degradation rates of EO-06, EO-08, and EO-09 strains after acclimation for 800 mg/L of ethylene oxide were 67.82%, 91.70%, and 51.64%, which were higher than the original strains before acclimation by 620.72%, 392.48%and 752.1%, respectively.
  • ethylene oxide sterilization waste gas can be absorbed into water.
  • the water containing the absorbed ethylene oxide can be contacted with a strain of the present invention in a method of biodegrading ethylene oxide.
  • the water containing the absorbed ethylene oxide can be discharged or transferred to an anaerobic vessel, such as an anaerobic sewage tank.
  • a strain of the present invention can then be added to the tank, thereby biodegrading the ethylene oxide.
  • the ethylene oxide sterilization exhaust gas generated is fed into a hydration system, which uses the internal circulating water to absorb the incoming ethylene oxide sterilization exhaust gas, and several cycles of absorption produce ethylene oxide wastewater containing 253.48 mg/L of ethylene oxide.
  • the mixture in the treatment cell was continuously stirred, the temperature was controlled at 32°C-42°C and the treatment time was 48 hours. .
  • the wastewater was treated in the anaerobic biological ethylene oxide treatment cell inoculated with the strain (s) , and the residual concentration of ethylene oxide in the treated wastewater was 18.33 mg/L with a treatment efficiency of 92.77%.
  • activated sludge can be contacted with a strain of the present invention, thereby biodegrading ethylene oxide in the activated sludge.
  • Comparative tests and applications may be carried out in other samples containing ethylene oxide, such as sewage, sludge, exhaust gas, or wastewater, such as industrial (including industries related to petroleum and derivative products) , medical treatment (such as ethylene oxide sterilant) and other sewage, sludge, exhaust gas, or wastewater using strains of the invention
  • the degradation rate is at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 50%, 60%, 70%, 75%, 80%, 90%, 95%, 100%, 125%, 150%, 200%, 250%, 300%, 350%, 400%, 450%, 500%, 550%, 600%, 650%, 700%, 750%, 800%, 850%, 900%, 1000%, 1100%, 1200%, 1300%, 1400%, or 1500%greater relative to the degradation rate of ethylene oxide in the absence of the Kurthia gibsonii strain EO-06; the Clostridium kogasensis strain EO-08; the Clostridium acidisoli strain EO-09, a Kurthia gibsonii strain comprising the 16S rDNA sequence of SEQ ID NO. 3; a Clostridium kogasensis strain comprising the 16S rDNA sequence of SEQ ID NO. 4; or a Clostridium acidisoli strain comprising the 16S

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Medicinal Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Biophysics (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Water Supply & Treatment (AREA)
  • Cell Biology (AREA)
  • Plant Pathology (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

A Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436, a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438 and a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439 are provided. The above strains can be used to treat pollution, for example, to treat industrial gas or wastewater containing ethylene oxide, which greatly improves the decontamination disposal capacity of ethylene oxide in industrial production. Provided are a degradation agent for degrading ethylene oxide and a method for biodegrading ethylene oxide.

Description

BACTERIA FOR DEGRADING ETHYLENE OXIDE AND APPLICATIONS THEREOF
CROSS-REFERENCE TO RELATED PATENT APPLICATIONS
This application claims the benefit of Chinese Patent Application No. 202010064774.6, filed on January 20, 2020, Chinese Patent Application No. 202010062774.2, filed on January 20, 2020, Chinese Patent Application No. 202010062877.9, filed on January 20, 2020 and Chinese Patent Application No. 202010064633.4, filed on January 20, 2020, the entire contents of which are incorporated herein by reference in their entirety for all purposes.
TECHNICAL FIELD
The present disclosure relates to the field of microbial technology, and more particularly to several bacterial strains capable of degrading ethylene oxide and uses thereof.
SEQUENCE STATEMENT
Incorporated by reference herein in its entirety is the Sequence Listing entitled "1211_CK03_ST25_PCT" created June 1, 2020, size of 6.64 kilobytes.
BACKGROUND
Ethylene oxide (EO) is one of the important petrochemical products in modern engineering. It is a broad-spectrum and highly effective sterilization agent and disinfectant. Ethylene oxide can kill most bacteria, spores, viruses and fungi and has a strong penetrating power to reach depth of an article, therefore playing an irreplaceable role in medical sterilization and related industries. However, ethylene oxide is extremely active, flammable and explosive, and is also recognized as a carcinogen globally, which set barriers to the application of ethylene oxide.
At present, there are two main methods for industrial disposal of ethylene oxide in waste gas and waste water. One way is neutralization of ethylene oxide by use of sulfuric acid, but it has relatively low absorption saturability and treatment efficiency, while producing undesirable by-products, increasing disposal costs. Another method is oxidation of ethylene oxide by use of an oxidation reaction furnace, which requires very strict control of technical parameters and is subject to high risks of explosion.
Therefore, there is an urgent and long-felt need to find a safe and effective way of disposal of ethylene oxide in waste gas and waste water. Microbial degradation of harmful substances plays an important role in the chemical industry. However, there are few studies on the use of microorganisms to degrade ethylene oxide and no reports of bacteria or their uses on effective degradation of ethylene oxide.
SUMMARY
In view of the above, the present disclosure provides a variety of bacteria strains that can effectively degrade ethylene oxide, which can be used to degrade ethylene oxide pollutants, greatly improve the decontamination disposal capacity of ethylene oxide, and reduce the environmental risks related to ethylene oxide pollution such as risk in public health.
In one aspect of the present disclosure, it provides a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436.
In one aspect of the present disclosure, it provides a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438.
In one aspect of the present disclosure, it provides a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439.
In one of the aspects of the present disclosure, there is provided a strain capable of degrading ethylene oxide, which is: a Kurthia gibsonii strain comprising the 16S rDNA sequence of SEQ ID NO. 3; a Clostridium kogasensis strain comprising the 16S rDNA sequence of SEQ ID NO. 4 ;or a Clostridium acidisoli strain comprising the 16S rDNA sequence of SEQ ID NO. 5. These strains can effectively degrade ethylene oxide.
In another aspect of the present disclosure, it provides a degradation agent for degrading ethylene oxide, comprising one or more strains selected from the group consisting of: a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436; a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438; a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439, a Kurthia gibsonii strain comprising the 16S rDNA sequence of SEQ ID NO. 3; a Clostridium kogasensis strain comprising the 16S rDNA sequence of SEQ ID NO. 4 ; or a Clostridium acidisoli strain comprising the 16S rDNA sequence of SEQ ID NO. 5.
In some of the embodiments, the degradation agent is prepared by culturing the corresponding strain or combination of strains.
In some of the embodiments, a final concentration of the corresponding strain or combination of strains in the degradation agent is at least 10 8 cfu /mL, or from 10 8 cfu /mL to 10 10 cfu /mL.
In another aspect of the present disclosure, it provides a method for preparing a degradation agent for degrading ethylene oxide, comprising: incubating one or more strains selected from the group consisting of the following strains in a liquid Sabouraud medium and at a temperature of 20-40 ℃: a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436; a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438; a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439; a Kurthia gibsonii strain comprising the 16S rDNA sequence of SEQ ID NO. 3; a Clostridium kogasensis strain comprising the 16S rDNA sequence of SEQ ID NO. 4; or a Clostridium acidisoli strain comprising the 16S rDNA sequence of SEQ ID NO. 5.
In some of the embodiments, the liquid Sabouraud medium comprises, by mass, 40 parts of glucose, 10 parts of peptone, which are well mixed in water, adjusted to a pH of 5.4-5.8, and the volume brought to 1000 parts with water
In another aspect of the present disclosure, it provides a method for manufacturing bacteria for degrading ethylene oxide, comprising: incubating one or more strains selected from the group consisting of the following strains in a liquid Sabouraud medium and at a temperature of 20-40 ℃: a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436; a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438; a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439; a Kurthia gibsonii strain comprising the  16S rDNA sequence of SEQ ID NO. 3; a Clostridium kogasensis strain comprising the 16S rDNA sequence of SEQ ID NO. 4; or a Clostridium acidisoli strain comprising the 16S rDNA sequence of SEQ ID NO. 5.
In some of the embodiments, the liquid Sabouraud medium comprises: by mass, 40 parts of glucose, 10 parts of peptone, which are well mixed in water , adjusted to a pH of 5.4-5.8, and the volume brought to 1000 parts with water.
In one of the aspects of the present disclosure, it provides a method, for decreasing the amount of ethylene oxide in sample, comprising adding to a sample comprising ethylene oxide an amount a pure culture of an Kurthia gibsonii; Clostridium kogasensis, or Clostridium acidisoli strain bacterium, allowing the bacterium to degrade the ethylene oxide, thereby decreasing the amount of ethylene oxide, wherein the 16S rDNA sequence of the Kurthia gibsonii strain bacterium is SEQ ID NO. 3; the 16S rDNA sequence of the Clostridium kogasensis strain bacterium is SEQ ID NO. 4; or the 16S rDNA sequence of the Clostridium acidisoli strain bacterium is SEQ ID NO. 5.
In a further aspect of the method, the Kurthia gibsonii, Clostridium kogasensis, or Clostridium acidisoli strain bacterium is capable of using ethylene oxide as a carbon source and is capable of growing normally with ethylene oxide as the sole carbon source in the culture.
In a further aspect of the method, the Kurthia gibsonii strain bacterium is Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436; the Clostridium kogasensis strain is Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438; and the Clostridium acidisoli strain is Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439.
In another aspect of the present disclosure, it provides a method for biodegrading ethylene oxide, comprising: degrading ethylene oxide with one or more strains one or more strains selected from the group consisting of a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436, a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438; a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439; a Kurthia gibsonii strain comprising the 16S rDNA sequence of SEQ ID NO. 3; a Clostridium kogasensis strain comprising the 16S rDNA sequence of SEQ ID NO. 4; and a Clostridium acidisoli strain comprising the 16S rDNA sequence of SEQ ID NO. 5, or the aforementioned degradation agent, or the degradation agent prepared according to the aforementioned method.
In some of the embodiments, the method above is used to degrade ethylene oxide in waste gas or waste water and comprises mixing the waste gas or waste water with one or more strains selected from the group consisting of a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436, a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438; and a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439, or the aforementioned degradation agent, or the degradation agent prepared according to the aforementioned method.
In some of the embodiments, the degrading ethylene oxide with one or more strains selected from the group consisting of a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436, a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438; a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439; a Kurthia gibsonii strain comprising the 16S rDNA sequence of SEQ ID NO. 3; a Clostridium  kogasensis strain comprising the 16S rDNA sequence of SEQ ID NO. 4 ; and a Clostridium acidisoli strain comprising the 16S rDNA sequence of SEQ ID NO. 5, comprises: incubating the strain or combination of strains in a liquid Sabouraud medium and at a temperature of 20-40 ℃.
In some embodiments, the method comprises incubating the strain in liquid Sabouraud medium to a concentration from 1010 cfu/mL to 1012 cfu/mL, to obtain an activation liquid for degrading ethylene oxide.
In one embodiment, the method comprises the concentration of the strain for degrading ethylene oxide ranges from 10 8 cfu/mL to 10 10 cfu/mL.
In some embodiments of the methods, the degradation rate is at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 50%, 60%, 70%, 75%, 80%, 90%, 95%, 100%, 125%, 150%, 200%, 250%, 300%, 350%, 400%, 450%, 500%, 550%, 600%, 650%, 700%, 750%, 800%, 850%, 900%, 1000%, 1100%, 1200%, 1300%, 1400%, or 1500%greater relative to the degradation rate of ethylene oxide in the absence of a strain of the invention,
In another aspect of the present disclosure, it provides use of one or more strains selected from the group consisting of a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436, a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438; a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439; a Kurthia gibsonii strain comprising the 16S rDNA sequence of SEQ ID NO. 3; a Clostridium kogasensis strain comprising the 16S rDNA sequence of SEQ ID NO. 4; and a Clostridium acidisoli strain comprising the 16S rDNA sequence of SEQ ID NO. 5, or the aforementioned degradation agent, or the degradation agent prepared according to the aforementioned method.
In another aspect of the present disclosure, it provides use of one or more strains selected from the group consisting of a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436, a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438; and a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439, a Kurthia gibsonii strain comprising the 16S rDNA sequence of SEQ ID NO. 3; a Clostridium kogasensis strain comprising the 16S rDNA sequence of SEQ ID NO. 4; and a Clostridium acidisoli strain comprising the 16S rDNA sequence of SEQ ID NO. 5 in preparation of a degradation agent for degrading ethylene oxide.
In another aspect of the present disclosure, it provides method of performing ethylene oxide tolerance and degradation acclimation to bacteria with ethylene oxide degradation potential to prepare bacteria strain having ethylene oxide tolerance and degradation ability, comprising:
inducted acclimation for ethylene oxide tolerance, comprising: successively passaging the bacteria with ethylene oxide degradation potential by steaking the same on a series of acclimation medium for ethylene oxide tolerance containing a gradient of increasing ethylene oxide concentrations from 100 to 800 mg/L; after each passaging, incubating at 20-40℃ for 24 to 48 hours, and selecting a single colony with a largest radius for next passaging; and finally selecting a single colony with a largest colony radius on an acclimation medium containing ethylene oxide of 500-800 mg/L to obtain a bacteria strain of ethylene oxide tolerance; and
inducted acclimation for ethylene oxide degradation ability, comprising: successively passaging the bacteria strain of ethylene oxide tolerance by steaking the same on a series of acclimation medium for ethylene oxide degradation containing ethylene oxide of 500-800 mg/L and  a gradient of decreasing proportion of carbon source from 50%to 0%; after each passaging, incubating at 20-40 ℃ for 24 to 48 hours, and selecting a single colony with a largest radius for next passaging; and finally selecting a single colony with a largest colony radius on the acclimation medium containing 500-800 mg/L of ethylene oxide and minimum carbon source to obtain the bacteria strain having ethylene oxide tolerance and degradation ability.
In some of the embodiments, the series of acclimation medium for ethylene oxide tolerance have ethylene oxide concentrations increasing between 100 and 800 mg/L and comprises, by mass, 10 parts of peptone, 40 parts of glucose, and 15 parts of agar, which are mixed with water, adjusted to a pH of 5.4-5.8, and the volume brought to 1000 parts with water.
In some of the embodiments, the series of acclimation medium for ethylene oxide degradation have an ethylene oxide concentration of 500-800 mg /L and comprises, by mass, 10 parts of peptone, glucose decreasing from 20 parts to 0 parts, and agar 15 parts, which are mixed with water, adjusted to a pH of 5.4-5.8, and the volume brought to 1000 parts with water.
In another aspect of the present disclosure, it provides a method for screening and purifying bacteria with potential of ethylene oxide degradation, comprising: collecting microbial active sludge mixture containing ethylene oxide; mixing the sludge mixture with phosphate buffer, clarifying and filtering to obtain a suspension; incubating the suspension in an enriched medium containing ethylene oxide at a temperature of 20-40 ℃, to obtain a bacterial suspension capable of surviving an environment containing ethylene oxide; and incubating the bacterial suspension in a screening and purification medium containing ethylene oxide at a temperature of 20-40 ℃ to obtain the bacteria with potential of ethylene oxide degradation.
In some of the embodiments, the enriched medium containing ethylene oxide has an ethylene oxide concentration of 100 mg/L and comprises, by mass, 40 parts of glucose, 10 parts of peptone , which are mixed with water, adjusted to a pH of 5.4-5.8, and the volume brought to 1000 parts with water.
In some of the embodiments, the screening and purification medium containing ethylene oxide has an ethylene oxide concentration of 100 mg/L and comprises, by mass, 40 parts of glucose, 10 parts of peptone, and 15 parts of agar, which are mixed with water, adjusted to a pH of 5.4-5.8, and the volume brought to 1000 parts with water.
This disclosure provides a variety of bacteria strains capable of degrading ethylene oxide and the applications thereof. It can be used to treat pollution, for example, to treat industrial or medical waste gas or waste water containing ethylene oxide. The bacteria strains disclosed herein are easy to manufacture and can efficiently degrade high-concentration ethylene oxide in a short period of time without other carbon sources, which greatly improves the decontamination disposal capacity of ethylene oxide in industries.
The deposit information of the three strains for degrading ethylene oxide mentioned disclosed herewith is as follows:
The Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436, the Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438 and the Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439 were deposited on August 29, 2019 at China General Microbiological Culture Collection Center (CGMCC) of China Committee for Culture Collection of Microorganisms with the deposit address being Institute of  Microbiology of Chinese Academy of Sciences, NO. 1 West Beichen Road, Beijing 100101, China.
BRIEF DESCRIPTION OF DRAWINGS
Figure 1 shows bacterial colony growth of the EO-degrading potential bacteria in the enrichment medium B after growing for 48 hours at a constant temperature of 37 ℃, wherein the EO-degrading potential bacteria were Figure 1A, Kurthia gibsonii EO-06 original strain, Figure 1B, Clostridium kogasensis EO-08 original strain and Figure 1C Clostridium acidisoli EO-09 original strain obtained by the enrichment, purification and screening processes according to Example 1 of the present disclosure;
Figure 2 shows the Gram staining result of the EO-degrading potential bacteria, wherein the EO-degrading potential bacteria were, Figure 2A, Kurthia gibsonii EO-06 original strain, Figure 2B Clostridium kogasensis EO-08 original strain and Figure 2C Clostridium acidisoli EO-09 original strain obtained by the enrichment, purification and screening processes according to Example 1 of the present disclosure;
Figure 3 shows the phylogenetic evolution diagram of the EO-degrading potential bacteria, wherein the EO-degrading potential bacteria were (Figure 3A) Kurthia gibsonii EO-06 original strain, (Figure 3B) Clostridium kogasensis EO-08 original strain and (Figure 3C) Clostridium acidisoli EO-09 original strain obtained by the enrichment, purification and screening processes according to Example 1 of the present disclosure;
Figure 4 shows bacterial colony growth of Kurthia gibsonii EO-06 strain (Figure 4A) after the inducted acclimation of Example 2, and (Figure 4B) before the inducted acclimation of Example 2 in a liquid medium with 800 mg/L ethylene oxide after growing at a constant temperature of 37 ℃ for 48 hours in the comparative ethylene oxide degradation test according to Example 3, wherein the EO-06 strain was obtained by enrichment, purification and screening processes according to Example 1 of the present disclosure.
Figure 5 shows bacterial colony growth of Clostridium kogasensis EO-08 strain (Figure 5A) after the inducted acclimation of Example 2  and (Figure 5B) before the inducted acclimation of Example 2 in a liquid medium with 800 mg/L ethylene oxide after growing at a constant temperature of 37℃ for 48 hours in the comparative ethylene oxide degradation test according to Example 3 wherein the EO-08 strain was obtained by the enrichment, purification and screening processes according to Example 1 of the present disclosure.
Figure 6 shows bacterial colony growth of Clostridium acidisoli EO-09 strain (Figure 6A) after the inducted acclimation of Example 2, and (Figure 6B) before the inducted acclimation of Example 2 in a liquid medium with 800 mg/L ethylene oxide after growing at a constant temperature of 37℃ for 48 hours in the comparative ethylene oxide degradation test according to Example 3, wherein the EO-09 strain was obtained by the enrichment, purification and screening processes according to Example 1 of the present disclosure.
DETAILED DESCRIPTION OF EMBODIMENTS
Detailed description will be given below with referral to the accompanying figures to facilitate understanding of the present application. Preferred examples are shown in the figures. However, the present application may be implemented in various ways, without being limited to the  examples presented in the description. The purpose of these embodiments is merely for illustration and better comprehension of the present disclosure.
Unless otherwise defined, all the technical and scientific terms herein shall be understood as the same meaning with those commonly accepted by a person skilled in the art. Such terms, as used herein, are for the purpose of describing specific embodiments of, without limiting, the present application. The term “and/or” as used herein refers to any and all combinations of one or more items recited.
The present disclosure also provides methods for screening and purifying bacteria capable of degrading of ethylene oxide, comprising: collecting sludge containing ethylene oxide and with microbial activity, for example, collecting sewage or sludge samples from a sewage outlet of a sewage treatment plant or chemical plant; allowing tolerance enrichment culture of the samples in enrichment medium containing ethylene oxide (for example, 100 mg/L) to obtain a suspension of bacteria that can survive in an environment containing ethylene oxide; and, inoculating the suspension of bacteria to screening and purification medium containing ethylene oxide (for example, 100 mg/L) for screening and purification of original strains with potential for degrading ethylene oxide.
The present disclosure also provides methods for inducted acclimation of bacteria toward EO degradation, comprising:
method for acclimation toward EO tolerance: successively passaging the original strains with the potential for ethylene oxide degradation by steaking on a series of plates of acclimation medium for ethylene oxide tolerance containing a gradient of increasing ethylene oxide concentrations; after each passaging, incubating under 20-40 ℃ for 24 to 48 hours, and selecting a single colony with the largest radius for the next passaging; and finally selecting a single colony with the largest colony radius on the acclimation medium plate containing the highest concentration of ethylene oxide to obtain a predominant strain of ethylene oxide degradation; and
method for acclimation toward EO degradation: successively passaging the predominant strain of ethylene oxide degradation by steaking on a series of plates of acclimation medium for ethylene oxide degradation containing a high concentration of ethylene oxide and a gradient of decreasing proportion of carbon source; after each passaging, incubating under 20-40 ℃ for 24 to 48 hours, and selecting a single colony with the largest radius for the next passaging; and finally selecting a single colony with the largest colony radius on the acclimation medium plate containing the high concentration of ethylene oxide and minimum carbon source to obtain a predominant strain of ethylene oxide tolerance and degradation.
The chemicals in the following specific examples of the present disclosure were all commercially available, and the methods not described are conventional experimental methods, which will not be elaborated here.
Enrichment, purification, screening and identification of strains with ethylene oxide degradation ability
Below is an exemplary example of enrichment, purification, screening, and identification of strains with ethylene oxide degradation ability.
Example 1
I. Enrichment, purification and screening
A sample of the sludge mixture was collected at the sewage outlet of a suburban sewage treatment plant in Guangzhou, Guangdong Province, and used for purpose of this example.
Enrichment medium A was prepared as the following: 40g of glucose, and 10g of peptone were thoroughly mixed in  distilled water, adjusted to pH 5.4-5.8, and the volume adjusted to 1000mL with distilled water. Portions of 250 ml of the prepared medium were added to 500 mL Erlenmeyer flasks, sterilized at 121 ℃ for 20 min, and cooled to room temperature. Pure ethylene oxide liquid was placed on an ice box before 28 μL was taken and injected into the sterilized medium by a sealed syringe, providing 100 mg/L of ethylene oxide in the medium complying with the national emission standard, to obtain the enrichment medium A.
The screening and purification medium was prepared as follows: 40g of glucose, 10g of peptone, and 15g of agar were thoroughly mixed in distilled water, adjusted to pH 5.4-5.8, and the volume brought to 1000mL with distilled water. Portions of 250 ml of the prepared selection medium were added into 500 mL Erlenmeyer flasks, sterilized at 121 ℃ for 20 minutes, and cooled to about 50-56 ℃. 28 μL (or 25mg) of ethylene oxide liquid was injected into the sterilized medium by a sealed syringe to obtain the screening and purification medium.
Enrichment medium B was prepared as the following: 40g of glucose, 10g of peptone were thoroughly mixed in distilled water, adjusted to pH 5.4-5.8, and adjusted to 1000mL with distilled water. Portions of 250 ml of the prepared medium were added to 500 mL Erlenmeyer flasks, sterilized at 121 ℃ for 20 min, and cooled to room temperature to obtain the enrichment medium B.
10.0 g of the sludge mixture sample was weighed, added with 100 mL of 0.03 mol /L phosphate buffer, well mixed, allowed to stand for 120 min for clarification, and filtered to remove large particles of sediment and obtain a suspension. 1 mL of the suspension was added to 10 mL of liquid enrichment medium and placed in a shaker for oxygen-consuming enrichment culture for 24-48h (200 rpm, 37℃) and the growth status was observed.
The predominant strains from the enrichment medium A were streaked on the screening and purification medium for separation to obtain predominant strains for ethylene oxide degradation.
The predominant strains for ethylene oxide degradation were selected and cultured in the enrichment medium B for 24 hours to obtain three EO-degrading potential strains, designated as the EO-06 original strain, the EO-08 original strain and the EO-09 original strain. The EO-degrading potential strains were preserved at -80 ℃ using the glycerin preservation method (culture medium: 50%glycerol = 1: 1) .
At 48 hours of culture in the screening and purification medium, the colony morphology of the original strain EO-06 was milky white, with irregular edges, radial shape, diameter 1.5-3.0 mm, and golden yellow pigment; the colony morphology of the original strain EO-08 was milky yellow, opaque or translucent, with uneven edges, diameter2.0-2.5mm, and no pigment; and the colony morphology of the original strain EO-09 was gray-white, opaque or translucent, with meteor-like loose colonies, irregular edges, and no pigment.
II. Characterization and Identification of EO-degrading bacteria strains:
The following identification methods were used:
Morphological characterization: including observation of colony morphology, microscopic morphology, culture characteristics and Gram staining;
Physiological and biochemical characterization: including nutrition type, nitrogen and carbon source utilization capacity, and biochemical tests;
Molecular biological characterization (16s rDNA sequencing; (the DNA in the genome that produces the ribosomal RNA is called the “rRNA gene” or simply “rDNA” ) : including the procedure of bacterial culture, bacterial DNA extraction, PCR amplification, 16s rDNA sequencing and sequence alignment analysis, wherein the primer pair for PCR amplification was as follows:
Upstream primer 27F: 5'-AGAGTTTGATCCTGGCTCAG-3', as shown in SEQ ID NO. 1; and
Downstream primer 1492R: 5'-GGTTACCTTGTTACGACTT-3', as shown in SEQ ID NO. 2.
The above characterization and identification methods are well known to those skilled in the art.
The colony morphologies of the original strain EO-06, the original strain EO-08, and the original strain EO-09 are shown in Figures 1A-1C, their Gram staining results shown in Figures 2A-2C, and their phylogenetic trees shown in Figures 3A-3C, respectively. According to the characterization results of morphology, physiology, biochemistry, and molecular biology, the original strain EO-06, the original strain EO-08 and the original strain EO-09 were Kurthia gibsonii, Clostridium kogasensis and Clostridium acidisoli, respectively. The characterization and identification results of the three EO-degrading potential strains are summarized in Table 1 below.
Table 1. Characterization and identification results of EO-06 original strain, EO-08 original strain, EO-09 original strain.
Figure PCTCN2020101138-appb-000001
Inducted acclimation of EO-degrading potential bacteria strains
Inducted acclimation of EO-degrading potential bacteria strains may include inducted  acclimation of ethylene oxide tolerance and inducted acclimation of ethylene oxide degradation ability.
Ethylene oxide tolerance acclimation may include: successively passaging the original strains with the potential for ethylene oxide degradation by steaking on a series of plates of acclimation medium for ethylene oxide tolerance containing a gradient of increasing ethylene oxide concentrations; after each passaging, incubating under 20-40 ℃ for 24 to 48 hours, and selecting a single colony with the largest radius for the next passaging; and finally selecting a single colony with the largest colony radius on the acclimation medium plate containing the highest concentration of ethylene oxide (e.g., 500-800 mg/L) to obtain a predominant strain of ethylene oxide tolerance.
In some of these examples, the acclimation method described above includes: streaking the purified EO-degrading potential original strains in an ethylene oxide tolerance acclimation medium containing 100 mg/L ethylene oxide, respectively, and incubating under 20-40 ℃ for 24-48h; selecting the single colony with the largest colony radius on each plate and subculturing to the ethylene oxide tolerance acclimation medium containing 100-200mg/L ethylene oxide, respectively, and incubating under 20-40 ℃ for 24-48h; selecting the single colony with the largest colony radius on each plate and subculturing to the ethylene oxide tolerance acclimation medium containing 200-500mg/L ethylene oxide. 48h; selecting the single colony with the largest colony radius on each plate and subculturing to the ethylene oxide tolerance acclimation medium containing 500-800mg/L ethylene oxide, respectively, and incubating under 20-40 ℃ for 24-48h; and, selecting the single colony with the largest colony radius on each plate containing 500-800 mg/L to obtain predominant strains of ethylene oxide tolerance.
In some of these examples, the above-mentioned ethylene oxide tolerance acclimation medium may be consisted of the following: peptone 10g/L, glucose 40g/L, agar 15g/L, and ethylene oxide 100-800mg/L, with a pH of 5.4-5.8.
In some of these examples, the preparation method of the above-mentioned ethylene oxide tolerance acclimation medium may be as follows: weighing, by mass, 10 parts of peptone, 40 parts of glucose, and 15 parts of agar, mixing in distilled water, adjusting the pH to 5.4-5.8, and bringing the volume to 1000 parts with distilled water; sterilizing; and injecting liquid ethylene oxide with a sealed injection syringe before use to make an ethylene oxide tolerance acclimation culture medium plate with 100-800mg/L of ethylene oxide.
In some of these examples, the preparation method of ethylene oxide tolerance acclimation medium may be as follows: taking peptone 10g, glucose 40g, and agar 15g to mix in distilled water, adjusting the pH to 5.4-5.8, and bringing the volume to 1000 mL with distilled water; dividing the medium into portions of 250mL and sterilizing at 121 ℃ for 20 min; and, before use, heating the medium to melt, allowing to cool to about 50-56 ℃, and injecting 25-200 mg of ethylene oxide by a sealed syringe to make ethylene oxide tolerance acclimation medium with ethylene oxide of 100-800mg/L.
In some of these examples, the concentrations of ethylene oxide in the ethylene oxide tolerance acclimation medium may be 100 mg/L, 200 mg/L, 500 mg/L, or 800 mg/L.
Inducted acclimation toward ethylene oxide degradability may include: successively passaging the predominant strain of ethylene oxide tolerance by steaking on a series of plates of acclimation medium for ethylene oxide degradation containing a high concentration of ethylene oxide e (e.g., 500-800 mg/L) and a gradient of decreasing proportion of carbon source; after each  passaging, incubating under 20-40 ℃ for 24 to 48 hours, and selecting a single colony with the largest radius for the next passaging; and finally selecting a single colony with the largest colony radius on the acclimation medium plate containing the high concentration of ethylene oxide (e.g., 500-800 mg/L) and minimum carbon source to obtain predominant strains of ethylene oxide tolerance and degradation.
In some of these examples, the predominant strains for ethylene oxide tolerance obtained by acclimation of ethylene oxide tolerance may be inoculated into plates with the acclimation medium of ethylene oxide degradation containing 800 mg/L ethylene oxide and 50%carbon source , respectively, and incubating under 20-40 ℃ for 24-48h; selecting the single colony with the largest colony radius on each plate and subculturing to the plates of ethylene oxide degrading acclimation medium containing 800 mg/L ethylene oxide and 30%carbon source , respectively, and incubating under 20-40 ℃ for 24-48h; selecting the single colony with the largest colony radius on the plate and subculturing to the plates of ethylene oxide degrading acclimation medium containing 800 mg/L ethylene oxide and 10%carbon source, respectively, and incubating under 20-40 ℃ for 24-48h; selecting the single colony with the largest colony radius on the plate and subculturing to the plates of ethylene oxide degrading acclimation medium containing 800 mg/L ethylene oxide and 0%carbon source, respectively, and incubating under 20-40 ℃ for 24-48h; and finally, selecting the single colony with the largest colony radius on the plates of ethylene oxide degrading acclimation medium containing 800 mg/L ethylene oxide and minimum carbon source, to obtain the predominant strains for tolerance and degradation of ethylene oxide.
In some of these examples, the ethylene oxide degradation acclimation medium may be consisted of the following: peptone 10g/L, glucose 0-20 g/L, agar 15g/L, and ethylene oxide 800mg/L, with a pH of 5.4-5.8.
In some of these examples, the preparation method of the ethylene oxide degradation acclimation medium may be as follows: weighing, by mass, 10 parts of peptone by mass, 0-20 parts of glucose, and 15 parts of agar, mixing in distilled water, adjusting the pH to 5.4-5.8, and bringing the volume to 1000 parts with distilled water; sterilizing; and injecting liquid ethylene oxide with a sealed injection syringe before use to make an ethylene oxide degradation acclimation culture medium plate containing 0%-50%carbon source and 800mg/L of ethylene oxide.
In some of these examples, the preparation method of the ethylene oxide degradation acclimation medium may be as follows: taking peptone 10g, glucose 0-20g, and agar 15g to mix in distilled water, adjusting the pH to 5.4-5.8, and bringing the volume to 1000 mL with distilled water; dividing the medium into portions of 250mL and sterilizing at 121 ℃ for 20 min; and, before use, heating the medium to melt, allowing to cool to about 50-56 ℃, and injecting 200 mg of liquid ethylene oxide with a sealed injection syringe to make ethylene oxide degradation acclimation medium plate contain 0%-50%carbon source and 800 mg/L ethylene oxide.
In some of these examples, the glucose concentrations in the ethylene oxide degradation acclimation medium may be 20g/L, 12g/L, 4g/L, and 0g/L, respectively corresponding to carbon source of 50%, 30%, 10%, and 0%in the ethylene oxide degradation acclimation medium.
The following is an exemplary example of inducted acclimation of EO-degrading potential bacteria strains.
Example 2
Phase I: Inducted acclimation of ethylene oxide tolerance
Four tolerance acclimation medium with different EO concentrations were prepared as follows: taking peptone 10g, glucose 0-20g, and agar 15g to mix in distilled water, adjusting the pH to 5.4-5.8, and bringing the volume to 1000 mL with distilled water; dividing the medium into portions of 250 mL and sterilizing at 121 ℃ for 20 min; and, before use, heating the medium to melt, allowing to cool to about 50-56 ℃, and injecting 25 mg, 50 mg, 125 mg or 200 mg of liquid ethylene oxide with a sealed injection syringe to make four ethylene oxide degradation acclimation medium plates with different EO concentrations (100 mg/L, 200 mg/L, 500 mg/L or 800 mg/L) , designated as ethylene oxide tolerance acclimation medium A, B, C, and D.
Using the method of plate streaking, the three EO-degrading potential strains of the EO-06 original strain, EO-08 original strain and EO-09 original strain were inoculated onto the tolerance acclimation medium A and incubated at a constant temperature of 37 ℃ for 48 h. Then the single colony with the largest radius on each plate was selected and subcultured onto the tolerance acclimation medium B and incubated at 37 ℃ for 48 h. Again, the single colony with the largest colony radius on each plate was selected and subcultured onto the tolerance acclimation medium C and incubated at a constant temperature of 37 ℃ for 48 h. The single colony with the largest radius on each plate was selected and subcultured onto the tolerance acclimation medium D and incubated at a constant temperature of 37 ℃ for 48 h. Then the single colony with the largest colony radius on each plate was selected to further obtain three strains with tolerance against ethylene oxide corresponding to the EO-06 original strain, EO-08 original strain and EO-09 original strain, respectively.
Phase II: Inducted acclimation of ethylene oxide degradation ability
Four ethylene oxide degradation acclimation mediums with different carbon source %were prepared as follows: taking peptone 10g, glucose (20g, 12g, 4g or 0g) , and agar 15g to mix in distilled water, adjusting the pH to 5.4-5.8, and bringing the volume to 1000 mL with distilled water; dividing the medium into portions of 250 mL and sterilizing at 121 ℃ for 20 min; and, before use, heating the medium to melt, allowing to cool to about 50-56 ℃, and injecting 200 mg of liquid ethylene oxide with a sealed injection syringe to make four ethylene oxide degradation acclimation medium plates with different carbon source % (50%, 30%, 10%, and 0%) , designated as ethylene oxide degradation acclimation medium A, B, C, and D.
Using the method of plate streaking, the three EO-degrading potential strains, i.e., the EO-06 original strain, EO-08 original strain and EO-09 original strain, were inoculated onto the degradation acclimation medium A and incubated at a constant temperature of 37 ℃ for 48 h. Then the single colony with the largest radius on each plate was selected and subcultured onto the degradation acclimation medium B and incubated at 37 ℃ for 48 h. Again, the single colony with the largest colony radius on each plate was selected and subcultured onto the degradation acclimation medium C and incubated at a constant temperature of 37 ℃ for 48 h. The single colony with the largest radius on each plate was selected and subcultured onto the degradation acclimation medium D and incubated at a constant temperature of 37 ℃ for 48 h. Then the single colony with the largest colony radius on each plate was selected respectively to further obtain three strains with tolerance and degradation ability of high-concentration ethylene oxide corresponding to the EO-06 original strain, EO-08 original strain and EO-09 original strain, which were stored on bevels made  from agar medium containing nutrients corresponding to the ethylene oxide degradation acclimation medium D.
The results of inducted acclimation of ethylene oxide tolerance and degradation capacity are summarized in Table 2. The results in Table 2 show that the EO-06 and EO-09 strains after acclimation described above were able to grow normally under the culture conditions with ethylene oxide as the only carbon source and use ethylene oxide as a carbon source. EO-08 was not able to grow normally under the culture condition with ethylene oxide as the only carbon source, but was able to grow with additional carbon source of 30%or above.
Table 2 Results of induced acclimation of ethylene oxide tolerance and degradation ability
Figure PCTCN2020101138-appb-000002
The EO-06, EO-08 and EO-09 strains after the inducted acclimation were subjected to the morphological characterization, physiological and biochemical characterization, and molecular biology characterization the same as in Example 1. The results show that the Strain EO-06 after the inducted acclimation was Kurthia gibsonii, the Strain EO-08 after the inducted acclimation was Clostridium kogasensis, and the strain EO-09 after the inducted acclimation was Clostridium acidisoli.
The Kurthia gibsonii strain EO-06, the Clostridium kogasensis strain EO-08, and the Clostridium acidisoli strain EO-09 after the inducted acclimatization were deposited with the deposit numbers being CGMCC No. 18436, CGMCC No. 18438, and CGMCC No. 18439 respectively.
Comparative experiment of degradation of ethylene oxide
In the example below, comparative experiments were conducted to test the ability of the Kurthia gibsonii strain EO-06, the Clostridium kogasensis strain EO-08, and the Clostridium acidisoli strain EO-09 after the inducted acclimatization to degrade ethylene oxide.
Example 3
I. Experimental method:
Liquid Sabouraud medium were made as follows: taking 12g of glucose, and 10g of peptone, mixing in distilled water, adjusting the pH to 5.4-5.8, and bringing the volume to 1000 mL with distilled water; dividing the medium into portions of 250mL in 500mL Erlenmeyer flasks, sterilizing at 121 ℃ for 20 min, and allowing to cool to room temperature.
Liquid Sabouraud medium for EO-08 with different ethylene oxide concentrations were made as follows: taking 12g of glucose, and 10g of peptone, mixing in distilled water, adjusting the pH to 5.4-5.8, and bringing the volume to 1000 mL with distilled water; dividing the medium into portions of 250mL in 500mL Erlenmeyer flasks, sterilizing at 121 ℃ for 20 min, and allowing to  cool to room temperature; and, injecting 160 mg or 320 mg of ethylene oxide with a sealed syringe to make two kinds of liquid Sabouraud induction medium containing different ethylene oxide concentrations (400 mg/L and 800 mg/L) .
Liquid Sabouraud induction medium for EO-06 and EO-09 with different ethylene oxide concentrations were made as follows: adding 10 g peptone to distilled water, bringing the volume to 1000 mL, mixing thoroughly; dividing into 400 mL portions, sterilizing at 121 ℃ for 20 min, and allowing to cool to room temperature for storage; injecting 160 mg or 320 mg of ethylene oxide with a sealed syringe to make two kinds of liquid Sabouraud induction medium containing different ethylene oxide concentrations (400 mg/L and 800 mg/L) .
The microbes were cultured and activated by taking 10 μL each of the original EO-06, EO-08, and EO-09 EO-degrading potential strains obtained from Example 1 without induced acclimation and the EO-06, EO-08, and EO-09 strains after induced acclimation obtained from Example 2, inoculating on 100 μL of 10 μL, respectively and cultured for 48 h (37 ℃, 200 rpm) to obtain activated mixture of the EO-06, EO-08, EO-09 original strains and of the EO-06, EO-08, EO-09 strains after induced acclimation. The cell count in the culture mixture was 10 10-10 12 cfu /mL.
To conduct a comparative experiment of ethylene oxide degradation, the following treatment and control groups were incubated in a 37 ℃ incubator for 48 hours.
Experimental group 1A  (acclimated strains /800 mg/L ethylene oxide) : 5 mL each of the activated mixture of the EO-06, EO-08, Strain EO-09s after induced acclimation was inoculated in 400 mL of the liquid Sabouraud induction medium containing 800 mg/L ethylene oxide, with cell count in the medium being 10 8-10 10cfu /mL;
Experimental group 1B (unacclimated original strain /800mg/L ethylene oxide) : 5 mL each of the activated mixture of the EO-06, EO-08, EO-09 original strains before induced acclimation was inoculated in 400 mL of the liquid Sabouraud induction medium containing 800 mg/L ethylene oxide, with cell count in the medium being 10 8-10 10cfu /mL;
Control group 1: Liquid Sabouraud induction medium containing 800 mg/L of ethylene oxide without inoculation of any strain;
Experimental group 2A  (acclimated strains /400 mg/L ethylene oxide) : 5 mL each of the activated mixture of the EO-06, EO-08, Strain EO-09s after induced acclimation was inoculated in 400 mL of the liquid Sabouraud induction medium containing 400 mg/L ethylene oxide, with cell count in the medium being 10 8-10 10cfu /mL;
Experimental group 2B (unacclimated original strain /400mg/L ethylene oxide) : 5 mL each of the activated mixture of the EO-06, EO-08, EO-09 original strains before induced acclimation was inoculated in 400 mL of the liquid Sabouraud induction medium containing 400 mg/L ethylene oxide, with cell count in the medium being 10 8-10 10cfu /mL; and
Control group 2: Liquid Sabouraud induction medium containing 400 mg/L of ethylene oxide without inoculation of any strain.
To calculate the concentrations of residual ethylene oxide and the degradation rates, samples were taken from the above Treatment groups and Control groups after the comparative test for gas chromatography analysis according to the methods described in "Sanitary Standards for  Disposable Hygiene Products" (GB15979-2002) of China National Standards as follows:
a series of ethylene oxide standards of 0-200 mg/L concentrations were made by taking a certain volume of pure ethylene oxide gas with a sealed syringe for dissolving in deionized water;
the subject samples to be analyzed were prepared by diluting samples from the treatment and control groups 5 times with deionized water;
after the GC instrument is stabilized and under the same conditions, 2μL each of the ethylene oxide standards and the diluted samples to be analyzed were injected into the GC instrument, wherein each sample was measured twice in parallel;
qualitive determination was conducted according to the retention time and quantitative calculation on each peak area was performed to take the average value;
an ethylene oxide standard curve was plotted according to the measurement data of the ethylene oxide standards, and the concentrations of residual ethylene oxide within each sample from the control and treatment groups were found based on the peak area corresponding to ethylene oxide thereof; and
the degradation rate of ethylene oxide for each sample was calculated according to the following formula: Degradation Rate (%) = (Control Group Concentration -Treatment Group Concentration) /Control Group Concentration; specifically, the degradation rates of Treatment groups 1 and 2 were calculated based on Control Group 1, while those of Treatment groups 3 and 4 calculated based on Control Group 2.
Other details of the experiment include Column: Chromosorb 101HP60-80 mesh, glass column 2 m long, diameter 3mm. Column temperature: 120 ℃. Detector: 150 ℃, Gasifier: 150 ℃;Carrier gas volume: Nitrogen: 35 ml /min, Hydrogen: 35 ml /min, Air: 350 ml /min, and the pre-column pressure is about 108Kpaa.
Additionally, promotion in the degradation ability for ethylene oxide of the strain before and after acclimation was calculated according to the following formula:
Promotion of degradation ability (%) = (Degradation Rate (%) of the strain after acclimation -Degradation Rate (%) of the strain before acclimation) .
II. Experimental results
The experimental results are summarized in Table 3 and also shown in Figures 4A-6B. It can be seen from Table 3 that the original strains of Kurthia gibsonii EO-06, Clostridium kogasensis EO-08, and Clostridium acidisoli EO-09 after induced acclimation were able to obtain outstanding tolerance and significant degradation ability against high concentrations of ethylene oxide, capable of degrading high concentrations of ethylene oxide with no or low carbon source.
Specifically, the degradation rates of EO-06, EO-08, and EO-09 strains after acclimation of 400 mg/L of ethylene oxide were 80.85%, 83.61%, and 84.19%, which were higher than the original strains before acclimation by 340.60%, 338.67%, and 326.71%, respectively. The the degradation rates of EO-06, EO-08, and EO-09 strains after acclimation for 800 mg/L of ethylene  oxide were 67.82%, 91.70%, and 51.64%, which were higher than the original strains before acclimation by 620.72%, 392.48%and 752.1%, respectively.
Table 3 Comparative experiment results of ethylene oxide degradation of EO-06, EO-08 and EO-09 strains before and after inducted acclimation.
Figure PCTCN2020101138-appb-000003
Example 4-Treatment of Ethylene Oxide Sterilization Waste Gas
In general, ethylene oxide sterilization waste gas can be absorbed into water. The water containing the absorbed ethylene oxide can be contacted with a strain of the present invention in a method of biodegrading ethylene oxide. The water containing the absorbed ethylene oxide can be discharged or transferred to an anaerobic vessel, such as an anaerobic sewage tank. A strain of the present invention can then be added to the tank, thereby biodegrading the ethylene oxide.
In particular, 1) after the ethylene oxide sterilizer has sterilized, the ethylene oxide sterilization exhaust gas generated is fed into a hydration system, which uses the internal circulating water to absorb the incoming ethylene oxide sterilization exhaust gas, and several cycles of absorption produce ethylene oxide wastewater containing 253.48 mg/L of ethylene oxide.
(2) The wastewater was passed into an anaerobic ethylene oxide treatment cell inoculated with mixed EO-06, EO-08, and EO-09 strains, and the strain concentration was 10 10-10 12 cfu/mL, the inoculation amount was 1%-2%, the strain (s) used the active sludge in the anaerobic ethylene oxide treatment cell as the culture, ethylene oxide was used as the carbon source and energy for metabolism, growth and proliferation, thus achieving the purpose of ethylene oxide treatment.
The mixture in the treatment cell was continuously stirred, the temperature was controlled at 32℃-42℃ and the treatment time was 48 hours. . The wastewater was treated in the anaerobic biological ethylene oxide treatment cell inoculated with the strain (s) , and the residual concentration of ethylene oxide in the treated wastewater was 18.33 mg/L with a treatment efficiency of 92.77%.
The above concentrations were detected by gas chromatography in accordance with GB 15979-2002 (Appendix D) , which is explained above. The degradation rate was calculated according to the following formula: Degradation rate = (starting concentration -residual concentration) /starting concentration.
As another practical application, activated sludge can be contacted with a strain of the  present invention, thereby biodegrading ethylene oxide in the activated sludge.
Comparative tests and applications may be carried out in other samples containing ethylene oxide, such as sewage, sludge, exhaust gas, or wastewater, such as industrial (including industries related to petroleum and derivative products) , medical treatment (such as ethylene oxide sterilant) and other sewage, sludge, exhaust gas, or wastewater using strains of the invention
In the above-described tests and applications, the degradation rate is at least 10%, 15%, 20%, 25%, 30%, 35%, 40%, 50%, 60%, 70%, 75%, 80%, 90%, 95%, 100%, 125%, 150%, 200%, 250%, 300%, 350%, 400%, 450%, 500%, 550%, 600%, 650%, 700%, 750%, 800%, 850%, 900%, 1000%, 1100%, 1200%, 1300%, 1400%, or 1500%greater relative to the degradation rate of ethylene oxide in the absence of the Kurthia gibsonii strain EO-06; the Clostridium kogasensis strain EO-08; the Clostridium acidisoli strain EO-09, a Kurthia gibsonii strain comprising the 16S rDNA sequence of SEQ ID NO. 3; a Clostridium kogasensis strain comprising the 16S rDNA sequence of SEQ ID NO. 4; or a Clostridium acidisoli strain comprising the 16S rDNA sequence of SEQ ID NO. 5.
The detailed embodiments described herein are only for the purpose of illustrating the present disclosure, and are not intended to limit the scope of the present disclosure in any way. It would be understood by a person skilled in the art that various changes and modifications can be made to the embodiments described herein without departing from the scope and spirit of the present disclosure. Such changes and modifications are contemplated by the present disclosure, the scope of which should only be defined by the following claims.

Claims (20)

  1. A strain for degrading ethylene oxide, which is:
    Kurthia gibsonii EO-06 with Deposit Number of CGMCC No. 18436,
    Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438, or
    Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439.
  2. A degradation agent for degrading ethylene oxide, comprising one or more strains selected from the group consisting of a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436, a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438 and a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439.
  3. The degradation agent according to claim 2, wherein the degradation agent is prepared by culturing the one or more strains.
  4. The degradation agent according to claim 2, wherein a final concentration of the one or more strains in the degradation agent is at least 10 8 cfu /mL.
  5. A method for preparing a degradation agent for degrading ethylene oxide, comprising:
    incubating one or more strains selected from the group consisting of a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436, a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438 and a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439 in a liquid Sabouraud medium and at a temperature of 20-40 ℃.
  6. The method according to claim 5, wherein the liquid Sabouraud medium comprises: by mass, 40 parts of glucose, 10 parts of peptone, which are combined in water , adjusted to a pH of 5.4-5.8 and brought to 1000 parts in volume with water.
  7. A method for manufacturing bacteria for degrading ethylene oxide, comprising:
    incubating one or more strains selected from the group consisting of a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436, a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438 and a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439 in a liquid Sabouraud medium and at a temperature of 20-40 ℃.
  8. The method according to claim 7, wherein the liquid Sabouraud medium comprises: by mass, 40 parts of glucose, 10 parts of peptone, which are combined in water , adjusted to a pH of 5.4-5.8 and brought to 1000 parts in volume with water.
  9. A method for biodegrading ethylene oxide, comprising:
    degrading ethylene oxide with one or more strains selected from the group consisting of a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436, a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438 and a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439, or the degradation agent according to any one of claims 2-4, or the degradation agent prepared according to the method according to claims 5 or 6.
  10. The method according to claim 9, wherein the method is used to degrade ethylene oxide in waste gas or waste water and comprises mixing the waste gas or waste water with one or more strains selected from the group consisting of a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436, a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438 and a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439,  or the degradation agent according to 2-4, or the degradation agent prepared according to the method according to claims 5 or 6.
  11. The method of claim 9, wherein the degrading ethylene oxide with one or more strains selected from the group consisting of a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436, a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438 and a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439 comprises:
    incubating the one or more strains in a liquid Sabouraud medium and at a temperature of 20-40 ℃ for 24 to 48 hours to obtain a culture of the one or more strains; and
    use the culture of the one or more strains to degrade ethylene oxide.
  12. The method according to claim 9, wherein the degradation rate is at least 10%greater relative to the degradation rate of ethylene oxide in the absence of the strain for degrading ethylene oxide.
  13. The method according to claim 9, wherein the method comprises the concentration of the strain for degrading ethylene oxide ranges from 10 8 cfu/mL to 10 10 cfu/mL.
  14. A method for decreasing the amount of ethylene oxide in sample, comprising
    adding to a sample comprising ethylene oxide an amount a pure culture of a Kurthia gibsonii, Clostridium kogasensis, or Clostridium acidisoli strain bacterium,
    allowing the bacterium to degrade the ethylene oxide, thereby decreasing the amount of ethylene oxide,
    wherein the 16S rDNA sequence of the Kurthia gibsonii strain bacterium is SEQ ID NO. 3; the 16S rDNA sequence of the Clostridium kogasensis strain bacterium is SEQ ID NO. 4; or the 16S rDNA sequence of the Clostridium acidisoli strain bacterium is SEQ ID NO. 5.
  15. The method according to claim 14, wherein the Kurthia gibsonii, Clostridium kogasensis, or Clostridium acidisoli strain bacterium is capable of using ethylene oxide as a carbon source and is capable of growing normally with ethylene oxide as the carbon source in the culture.
  16. The method according to claim 14, wherein the Kurthia gibsonii strain bacterium is Kurthia gibsonii EO-06 with Deposit Number of CGMCC No. 18436, the Clostridium kogasensis strain bacterium is Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438 and the Clostridium acidisoli strain bacterium is Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439.
  17. Use of one or more strains selected from the group consisting of a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436, a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438 and a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439, or the degradation agent according to any one of claims 2-4, or the degradation agent prepared according to the method according to claims 5 or 6 in degradation of ethylene oxide.
  18. Use of one or more strains selected from the group consisting of a Kurthia gibsonii strain EO-06 with Deposit Number of CGMCC No. 18436, a Clostridium kogasensis strain EO-08 with Deposit Number of CGMCC No. 18438 and a Clostridium acidisoli strain EO-09 with Deposit Number of CGMCC No. 18439 in preparation of a degradation agent for degrading ethylene oxide.
  19. A method of performing ethylene oxide tolerance and degradation acclimation to bacteria with ethylene oxide degradation potential to prepare bacteria strain having ethylene oxide tolerance and degradation ability, comprising:
    inducted acclimation for ethylene oxide tolerance, comprising:
    successively passaging the bacteria with ethylene oxide degradation potential by steaking the same on a series of acclimation medium for ethylene oxide tolerance containing a gradient of increasing ethylene oxide concentrations from 100 to 800 mg/L;
    after each passaging, incubating at 20-40℃ for 24 to 48 hours, and selecting a single colony with a largest radius for next passaging; and
    finally selecting a single colony with a largest colony radius on an acclimation medium containing ethylene oxide of 500-800 mg/L to obtain a bacteria strain of ethylene oxide tolerance; and
    inducted acclimation for ethylene oxide degradation ability, comprising:
    successively passaging the bacteria strain of ethylene oxide tolerance by steaking the same on a series of acclimation medium for ethylene oxide degradation containing ethylene oxide of 500-800 mg/L and a gradient of decreasing proportion of carbon source from 50%to 0%;
    after each passaging, incubating at 20-40 ℃ for 24 to 48 hours, and selecting a single colony with a largest radius for next passaging; and
    finally selecting a single colony with a largest colony radius on the acclimation medium containing 500-800 mg/L of ethylene oxide and minimum carbon source to obtain the bacteria strain having ethylene oxide tolerance and degradation ability;
    wherein the series of acclimation medium for ethylene oxide tolerance have ethylene oxide concentrations increasing between 100 and 800 mg/L and comprises, by mass, 10 parts of peptone, 40 parts of glucose, and 15 parts of agar, which are mixed with water, adjusted to a pH of 5.4-5.8, and the volume brought to 1000 parts with water; and
    wherein the series of acclimation medium for ethylene oxide tolerance have an ethylene oxide concentration of 500-800 mg /L and comprises, by mass, 10 parts of peptone, glucose decreasing from 20 parts to 0 parts, and agar 15 parts, which are mixed with water, adjusted to a pH of 5.4-5.8, and the volume brought to 1000 parts with water.
  20. A method for screening and purifying bacteria with potential of ethylene oxide degradation, comprising:
    collecting microbial active sludge mixture containing ethylene oxide;
    mixing the sludge mixture with phosphate buffer, clarifying and filtering to obtain a suspension;
    incubating the suspension in an enriched medium containing ethylene oxide at a temperature of 20-40 ℃, to obtain a bacterial suspension capable of surviving in an environment containing ethylene oxide; and
    incubating the bacterial suspension in a screening and purification medium containing  ethylene oxide at a temperature of 20-40 ℃ to obtain the bacteria with potential of ethylene oxide degradation;
    wherein, the enriched medium containing ethylene oxide has an ethylene oxide concentration of 100 mg/L and comprises, by mass, 40 parts of glucose, 10 parts of peptone, which are mixed with water, adjusted to a pH of 5.4-5.8, and brought to 1000 parts in volume with water; and
    wherein the screening and purification medium containing ethylene oxide has an ethylene oxide concentration of 100 mg/L and comprises, by mass, 40 parts of glucose, 10 parts of peptone, which are mixed with water, adjusted to a pH of 5.4-5.8, and brought to 1000 parts in volume with water.
PCT/CN2020/101138 2020-01-20 2020-07-09 Bacteria for degrading ethylene oxide and applications thereof WO2021147259A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/012,810 US11220667B2 (en) 2020-01-20 2020-09-04 Bacteria for degrading ethylene oxide and applications thereof

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN202010062774.2A CN111154684A (en) 2020-01-20 2020-01-20 Carboxylic bacterium EO-08 and application thereof in degrading ethylene oxide
CN202010062774.2 2020-01-20
CN202010064774 2020-01-20
CN202010062877.9 2020-01-20
CN202010064774.6 2020-01-20
CN202010064633.4 2020-01-20
CN202010064633 2020-01-20
CN202010062877 2020-01-20

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/012,810 Continuation US11220667B2 (en) 2020-01-20 2020-09-04 Bacteria for degrading ethylene oxide and applications thereof

Publications (1)

Publication Number Publication Date
WO2021147259A1 true WO2021147259A1 (en) 2021-07-29

Family

ID=76991877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101138 WO2021147259A1 (en) 2020-01-20 2020-07-09 Bacteria for degrading ethylene oxide and applications thereof

Country Status (1)

Country Link
WO (1) WO2021147259A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883199A (en) * 1997-04-03 1999-03-16 University Of Massachusetts Polyactic acid-based blends
CN103667014A (en) * 2013-12-17 2014-03-26 杨亮月 P-L flora activation and mutation reproduction tank as well as inducing method
CN103801190A (en) * 2013-12-17 2014-05-21 杨亮月 Biodegradation-based epoxy ethane waste gas treatment method and system
CN107058179A (en) * 2017-03-31 2017-08-18 华中农业大学 A kind of complex microbial inoculum for promoting pig manure to ferment
CN109294942A (en) * 2018-09-10 2019-02-01 华南理工大学 One plant of Kurthia gibsonii and its application in fractionation 1- phenyl -1,2- ethylene glycol
CN111154684A (en) * 2020-01-20 2020-05-15 中国环境科学研究院 Carboxylic bacterium EO-08 and application thereof in degrading ethylene oxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5883199A (en) * 1997-04-03 1999-03-16 University Of Massachusetts Polyactic acid-based blends
CN103667014A (en) * 2013-12-17 2014-03-26 杨亮月 P-L flora activation and mutation reproduction tank as well as inducing method
CN103801190A (en) * 2013-12-17 2014-05-21 杨亮月 Biodegradation-based epoxy ethane waste gas treatment method and system
CN107058179A (en) * 2017-03-31 2017-08-18 华中农业大学 A kind of complex microbial inoculum for promoting pig manure to ferment
CN109294942A (en) * 2018-09-10 2019-02-01 华南理工大学 One plant of Kurthia gibsonii and its application in fractionation 1- phenyl -1,2- ethylene glycol
CN111154684A (en) * 2020-01-20 2020-05-15 中国环境科学研究院 Carboxylic bacterium EO-08 and application thereof in degrading ethylene oxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SHIN YESEUL; KANG SEOK-SEONG; PAEK JAYOUNG; JIN TAE EUN; SONG HONG SEOK; KIM HONGIK; PARK HEE-MOON; CHANG YOUNG-HYO: "Clostridium kogasensissp. nov., a novel member of the genusClostridium,isolated from soil under a corroded gas pipeline", ANAEROBE, ACADEMIC PRESS, AMSTERDAM, NL, vol. 39, 17 February 2016 (2016-02-17), AMSTERDAM, NL, pages 14 - 18, XP029536932, ISSN: 1075-9964, DOI: 10.1016/j.anaerobe.2016.02.006 *

Similar Documents

Publication Publication Date Title
CN109234191B (en) Lysinibacillus fusiformis with ethanethiol and dimethyl disulfide degradation capacity and application thereof
CN111154687A (en) Bacillus subtilis and application thereof in degradation of ethylene oxide
WO2021147262A1 (en) Method for screening bacteria capable of degrading ethylene oxide
CN111117931A (en) Lactobacillus fermentum and application thereof in degradation of ethylene oxide
CN110387339B (en) Ochrobactrum intermedium B522 and application thereof
CN111117932A (en) Alcaligenes faecalis and application thereof in degradation of ethylene oxide
US11124438B2 (en) Alcaligenes faecalis for degrading ethylene oxide
CN104371948B (en) Microbacterium sp. strain and application thereof
CN110564640A (en) Siamese bacillus WF2019 strain for degrading aflatoxin B1 and application thereof
CN113462622B (en) Pseudomonas for efficiently degrading various aromatic pollutants and application thereof
US11220667B2 (en) Bacteria for degrading ethylene oxide and applications thereof
CN111235068B (en) Erythromycin degradation bacterium RJJ-61 and application thereof
WO2021147260A1 (en) Alcaligenes faecalis for degrading ethylene oxide and uses thereof
US20210221720A1 (en) Pathogenic bacteria and method for degrading ethylene oxide
WO2021147259A1 (en) Bacteria for degrading ethylene oxide and applications thereof
CN115011514B (en) Humic acid degrading bacteria and application thereof
US11085016B1 (en) Method for screening bacteria capable of degrading ethylene oxide
CN114231422B (en) Fusarium solani for degrading fomesafen and application thereof
WO2021147261A1 (en) Bacteria for degrading ethylene oxide and uses thereof
US11130939B2 (en) Bacteria for degrading ethylene oxide and uses thereof
CN111269843B (en) Erythromycin degradation bacterium RJJ-2 and application thereof
WO2021147263A1 (en) Pathogenic bacteria and method for degrading ethylene oxide
CN110669716A (en) Method for separating high-concentration phenol and heavy metal resistant and low-temperature resistant rhodococcus
CN111304098A (en) Erythromycin-degrading bacterium RJJ-5 and application thereof
CN113462592B (en) Erythromycin degrading bacterium IURM F69 and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20915949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20915949

Country of ref document: EP

Kind code of ref document: A1